WO2018086244A1 - 一种led线性恒流控制电路以及led发光装置 - Google Patents

一种led线性恒流控制电路以及led发光装置 Download PDF

Info

Publication number
WO2018086244A1
WO2018086244A1 PCT/CN2017/070701 CN2017070701W WO2018086244A1 WO 2018086244 A1 WO2018086244 A1 WO 2018086244A1 CN 2017070701 W CN2017070701 W CN 2017070701W WO 2018086244 A1 WO2018086244 A1 WO 2018086244A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
voltage
current control
input
output
Prior art date
Application number
PCT/CN2017/070701
Other languages
English (en)
French (fr)
Inventor
李照华
林道明
符传汇
黄存华
Original Assignee
深圳市明微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市明微电子股份有限公司 filed Critical 深圳市明微电子股份有限公司
Publication of WO2018086244A1 publication Critical patent/WO2018086244A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present application relates to the field of LED display, and in particular to an LED linear constant current control circuit and an LED illumination device.
  • the linear constant current control method of the traditional LED string is to connect a linear constant current control circuit to the output of the input rectifier circuit and the LED. Between the input terminals of the string (as shown in Figure 1), or between the output of the LED string and ground (as shown in Figure 2).
  • the LED light string can only emit light when the input voltage reaches its total forward voltage, which will make the LED use.
  • the rate is low and the power factor is low, the total harmonic distortion is severe, and the output current changes as the input voltage peak changes.
  • the prior art proposes two solutions.
  • the first type is to add a filtering large capacitor at the output end of the input rectifying circuit, and filter the input sinusoidal voltage into a DC voltage higher than the forward conducting voltage of the LED string by the filtering large capacitor, thereby making the LED string LEDs can continue to illuminate throughout the clock cycle.
  • the prior art has the problems of low power factor, serious system total harmonic distortion, low system efficiency, and unsteady input.
  • the technical problem to be solved by the present application is to provide an LED linear constant current control circuit and an LED lighting device for the above-mentioned drawbacks of the prior art.
  • the technical solution adopted by the present application to solve the technical problem is: constructing an LED linear constant current control circuit for connecting LED light strings, the LED light strings are serially connected by N LED light groups, the LED linear
  • the constant current control circuit includes:
  • a reference voltage generating module configured to sample an input voltage of the LED string, and convert the sampled input voltage into N reference voltages having different fixed peaks and being in phase with the input voltage;
  • N output current control modules wherein the control ends of the N output current control modules are respectively connected to the reference voltage generating module to receive corresponding reference voltages one by one, and the input ends are respectively connected to the output ends of the corresponding LED light groups
  • the output terminals are connected in parallel and grounded through the first resistor.
  • the reference voltage generating module includes:
  • An input voltage sampling module the input end is connected to the input end of the LED string, and is used for sampling a sine wave signal with a peak change;
  • a multiplier module for converting a sinusoidal signal obtained by sampling a peak change into a sine wave signal having a fixed peak value and being in phase with the input voltage
  • a voltage dividing output circuit for dividing the sine wave signal whose peak is fixed and in phase with the input voltage to form the N reference voltages.
  • the multiplier module includes a peak voltage sample and hold circuit and a multiplier circuit; one input end of the multiplier circuit is connected to an output end of the input voltage sampling module, and An input is coupled to an output of the input voltage sampling module via the peak voltage sample and hold circuit, and an output of the multiplier circuit is coupled to the voltage dividing output circuit.
  • the voltage dividing output circuit includes a first operational amplifier, an N-channel first MOS transistor, and a voltage dividing circuit having N voltage dividing coefficients,
  • the non-inverting input terminal of the first operational amplifier is connected to the output end of the multiplier circuit, and the out-of-phase input terminal is grounded via the voltage dividing circuit, and the out-of-phase input end of the first operational amplifier is further connected to the first MOS via a resistor
  • the source of the tube, the gate of the first MOS transistor is connected to the output of the first operational amplifier, and the drain of the first MOS transistor is connected to the built-in power supply.
  • each of the output current control modules includes: a second operational amplifier and an N-channel second MOS transistor; and a non-inverting input terminal of the second operational amplifier
  • the control end of the output current control module, the out-of-phase input end is connected to the source of the second MOS tube, the output end is connected to the gate of the second MOS tube, the source of the second MOS tube is used as the output end of the output current control module, and the second The MOS tube is drained as an input to the output current control module.
  • the present application also discloses an LED lighting device comprising: a rectifying input module for supplying an input voltage to an LED light string, an LED light string, and the LED linear constant current control circuit.
  • each LED lamp group is obtained by combining different numbers of LED lamps in series or in parallel or in series and parallel combination.
  • the LED linear constant current control circuit and the LED light-emitting device of the present application have the following beneficial effects: the application can enable the input voltage of the LED light string to drive the constant current illumination of the LED light group step by step, thereby achieving no increase in height. Under the premise of cost components, the utilization of LEDs is improved, the power factor and system efficiency of the entire LED linear constant current control circuit are greatly improved, the total harmonic distortion of the system is effectively reduced, and the reference voltage generating module will sample the input voltage.
  • the output current control module Converting to N reference voltages having different fixed peaks and being in phase with the input voltage, when the input voltage of the LED string reaches the forward conduction voltage of the M LED groups, the front M LED groups are turned on, and via the Mth
  • the output current control module generates a current corresponding to the Mth reference voltage on the first resistor. Since each of the reference voltages has a fixed peak value and is independent of the peak value of the input voltage, the current flowing through the LED lamp can be kept independent of the input voltage. The peak changes and changes to achieve a true input constant current.
  • FIG. 1 is a schematic structural view of a conventional LED linear constant current control circuit
  • FIG. 2 is a schematic structural view of another conventional LED linear constant current control circuit
  • FIG. 3 is a block diagram of a first embodiment of the LED linear constant current control circuit of the present application.
  • FIG. 4 is a schematic circuit diagram of the output current control module of FIG. 3;
  • FIG. 5 is a schematic circuit diagram of a reference voltage generating module of FIG. 3;
  • FIG. 6 is a schematic diagram showing the circuit structure of the peak voltage sample-and-hold circuit of FIG. 5;
  • FIG. 7 is a schematic structural diagram of an input circuit of a conventional LED driving power source
  • FIG. 8 is a waveform diagram of an AC input voltage, a string input voltage, and an AC input current of the circuit shown in FIG. 7;
  • FIG. 10 is a schematic diagram showing the circuit structure of a second embodiment of the LED linear constant current control circuit of the present application.
  • FIG. 3 is a block diagram of a first embodiment of a LED linear constant current control circuit of the present application.
  • the LED lighting device of the present application includes a rectification input module 100 for supplying an input voltage to the LED lamp string 200, an LED lamp string 200, and an LED linear constant current control circuit 300.
  • the LED light string 200 is connected in series by N LED light groups.
  • the number of LED lights in each LED light group may be equal or different, and the connection manner of each LED light group may also be different, for example, an LED light group. All of the LED lights in the series can be connected in series or in parallel or in series and parallel.
  • the N LED groups are: LED 1 , LED 2 , ..., LED n-1 , LED n .
  • the LED linear constant current control circuit 300 includes a reference voltage generating module 310, N output current control modules, and a first resistor Re. As shown in the figure, the N output current control modules are: CTR 1 , CTR 2 , ..., CTR n-1 , CTR n .
  • the reference voltage generating module 310 is configured to sample the input voltage of the LED string 200, and convert the sampled input voltage into N reference voltages having different fixed peaks and being in phase with the input voltage. As shown in the figure, the N reference voltages respectively represent It is: V 1 , V 2 , ..., V n-1 , V n .
  • N output current control modules wherein the control ends of the N output current control modules are respectively connected to the reference voltage generating module 310 to receive corresponding reference voltages one by one, and the input ends are respectively connected to the outputs of the corresponding LED light groups
  • the terminals and the output terminals are connected in parallel and grounded through the first resistor Re.
  • the current control module generates a current corresponding to the Mth reference voltage on the first resistor Re, wherein M and N are positive integers, and M is less than or equal to N.
  • FIG. 4 is a schematic diagram showing the circuit structure of the output current control module of FIG. 3.
  • Each of the output current control modules includes: an operational amplifier and an N-channel MOS transistor; as shown, the first output current control module CTR 1 includes an operational amplifier OP 1 , a MOS transistor M 1 , and a second The output current control module CTR 2 includes an operational amplifier OP 2 , a MOS transistor M 2 , and so on.
  • the non-inverting input terminal of the operational amplifier is used as the control terminal of the output current control module, the non-inverting input terminal is connected to the source of the MOS transistor, the output terminal is connected to the gate of the MOS transistor, and the source of the MOS transistor is As the output of the output current control module, the MOSFET is missed as the input of the output current control module.
  • the reference voltage generating module 310 includes an input voltage sampling module 311, a multiplier module 312, and a voltage dividing output circuit 313. among them:
  • the input voltage sampling module 311 is connected to the input end of the LED light string 200 for sampling to obtain a peak-changing sine wave signal.
  • the input voltage sampling module 311 includes an output terminal connected in series with the rectification input module 100 ( That is, two voltage dividing resistors between the input end of the LED light string 200 and the ground, and the connection node of the two voltage dividing resistors serve as the output end of the input voltage sampling module 311.
  • a multiplier module 312 for converting a sinusoidal signal with a peak change into a peak fixed And a sine wave signal in phase with the input voltage.
  • 5 is a schematic diagram showing the circuit structure of the reference voltage generating module of FIG. 3.
  • 6 is a schematic diagram showing the circuit configuration of the peak voltage sample-and-hold circuit of FIG. 5.
  • the multiplier module 312 includes a peak voltage sample and hold circuit and a multiplier circuit; one input of the multiplier circuit is connected to an output of the input voltage sampling module 311, and the other input is sampled via the peak voltage.
  • the hold circuit is coupled to the output of the input voltage sampling module 311, and the output of the multiplier circuit is coupled to the voltage divider output circuit 313.
  • the peak voltage sample-and-hold circuit includes: a diode D1, an operational amplifier Amp1, an N-channel MOS transistor M0, a capacitor C0, a positive terminal of the diode D1 is connected to an output terminal of the input voltage sampling module 311, a negative-phase is connected to an in-phase input terminal of the operational amplifier Amp1, and an operational amplifier
  • the non-inverting input terminal of Amp1 is connected to the source of the MOS transistor M0 and grounded via the capacitor C0, and the output terminal of the operational amplifier Amp1 is connected to the gate of the MOS transistor M0.
  • the drain of the MOS transistor M0 is connected to the built-in power supply, and the source of the MOS transistor M0 is used as the source.
  • the output of the peak voltage sample-and-hold circuit is coupled to an input of the multiplier circuit.
  • the peak voltage sample-and-hold circuit is not limited to the circuit structure in this embodiment, and the technical effects of the present application can be realized as long as the peak sampling and holding can be realized, and are within the protection scope of the present application.
  • the multiplier circuit can adopt the circuit structure in FIG. 4 or a multiplier commonly used in the electronic field, and there is no limitation thereto.
  • the voltage dividing output circuit 313 is configured to divide the sine wave signal whose peak is fixed and in phase with the input voltage to form the N reference voltages.
  • the voltage dividing output circuit 313 includes a first operational amplifier Amp4, an N-channel first MOS transistor, and has N partial voltage coefficients (k 1 , k 2 , . . .
  • a non-inverting input terminal of the first operational amplifier Amp4 is connected to an output end of the multiplier circuit, and an out-of-phase input terminal is grounded via the voltage dividing circuit, and the first operational amplifier Amp4 is different
  • the phase input terminal is also connected to the source of the first MOS transistor via a resistor, the gate of the first MOS transistor is connected to the output terminal of the first operational amplifier Amp4, and the drain of the first MOS transistor is connected to the built-in power supply.
  • the input AC voltage is rectified by the rectifier bridge of the rectification input module 100 to obtain a DC voltage with a period of ⁇ , and the instantaneous voltage expression is: V pp *sin( ⁇ t), where V pp is the input peak value. Voltage.
  • the voltage is divided by the input voltage sampling module 311 and output As the input voltage of the multiplier module 312.
  • the peak voltage sample and hold circuit in multiplier module 312 outputs the peak value of the input voltage:
  • I 1 is the bias current and is fixed
  • the current I 4 is applied to the resistor R p4 to obtain the output voltage of the multiplier module 312 as follows:
  • the voltage is input to the voltage dividing output circuit 313, and N reference voltages are obtained as follows:
  • k 1 , k 2 , . . . , k n-1 , k n are partial pressure coefficients, which are unequal constants, and it can be assumed here that V 1 ⁇ V 2 ⁇ ... ⁇ V n-1 ⁇ V n .
  • the N reference voltages are independent of the peak value of the input voltage of the net network, and exhibit the same sinusoidal characteristics as the input voltage of the net network without phase difference. Now, a sinusoidal voltage having no phase difference from the line sine wave voltage, which is independent of the peak value of the wire network, is obtained.
  • the input circuit uses a simple bridge rectifier and electrolytic capacitor filter circuit.
  • the rectifier diode is only turned on near the peak of the input AC voltage, so its guide The through angle ⁇ is relatively small (about 60°), resulting in a sharp pulse of the input current (pulse width is about 3ms).
  • the AC input voltage, the input voltage of the string, and the AC input current waveform are shown in Figure 8. It can be seen that the root cause of the distortion of the AC input current of the LED power source is caused by the capacitive load of the DC filter electrolytic capacitor.
  • the instantaneous input current can be expressed as:
  • n is the harmonic order and the Fourier coefficients a n and b n are expressed as:
  • nth harmonic current rms I n, rms can be calculated by:
  • the input total current RMS is:
  • the power factor PF refers to the ratio of the active power P of the AC input to the apparent power S of the output, namely:
  • the input voltage of the LED string 200 rises from 0V, and when the input voltage of the string reaches the forward voltage of the first LED group LED 1 , due to the operational amplifier OP 1
  • the input reference voltage V 1 of the non-inverting input terminal is greater than the voltage of the out-of-phase input terminal, so the output terminal of the operational amplifier OP 1 outputs a high-level driving M 1 , and the source voltage of M 1 is equal to the reference voltage V 1 .
  • the voltage of the first end of the first resistor Re is also V 1 , and therefore, the current I LED1 flowing through the LED lamp group LED1 is as follows:
  • the LED 1 and the LED 2 are turned on when the input voltage reaches the forward voltage of the two LED groups, and the reference voltage is input due to the non-inverting input of the op amp OP 2 .
  • V 2 is greater than the voltage V 1 of its out-of-phase input (the out-of-phase input of op amp OP 2 is connected to the source of M 1 , where the voltage is V 1 ), so the output of op amp OP 2 outputs a high-level drive.
  • the operational amplifier OP isopropyl 1 voltage terminal phase input from the V 1 becomes V 2
  • the operational amplifier OP isopropyl 1-inverting input terminal of the voltage V 2 is greater than its noninverting input voltage V 1, so the output of the operational amplifier OP a low level so that the NMOS transistor M 1 is turned off, LED lamps the LED 1 and the LED 2 by the output
  • the current control module CTR 2 controls, thus realizing the transition from the output current control module CTR 1 to the illumination control of the LED lamp group LED 1 and the LED 2 by the output current control module CTR 2 , and at the same time, the first resistor Re One end of the voltage rise to V 2, therefore, flows through the LED Group current I LED 2 LED 1 and LED2 shown in the following formula:
  • the output control modules CTR 3 to CTR n continue to advance according to the above-mentioned working process, so as to drive more LED light groups to be driven backwards step by step while the input voltage continues to rise. Until all the LED groups in the LED string 200 are illuminated, that is, the LED groups LED 1 to LED n are both illuminated. At this time, the current I LEDn flowing through all the LED groups is as follows:
  • V AC , V DC , and I AC represent the AC input voltage, the string input voltage, and the AC input current, respectively.
  • the current flowing through the LED is the absolute value of the AC input current.
  • the LED current is integrated over the entire wire network cycle to obtain the average current flowing through the LED during the entire wire network cycle:
  • the current flowing through the LED is determined by the resistance R e and the reference voltage.
  • the input current (that is, the current flowing through the LED string 200) can follow the input voltage to make a synchronous change, basically maintaining the continuity of the input current throughout the network cycle and
  • the sinusoidal characteristics and no phase difference can greatly reduce the total harmonic distortion of the system and further improve the system PF value and efficiency.
  • the current flowing through the LED lamp set is equal to the current generated by the certain reference voltage on the first resistance Re.
  • the multiplier module 312 included in the present application enables the peaks of the N reference voltages to be fixed and in phase with the input voltage, the flow
  • the peak value of the current passing through the LED ie, the output current
  • the output current does not change in accordance with the peak voltage variation of the wire mesh, achieving excellent constant current characteristics.
  • FIG. 10 is a schematic diagram showing the circuit structure of a second embodiment of the LED linear constant current control circuit of the present application.
  • a current regulating resistor is further included between the outputs of the adjacent two output current control modules.
  • the resistors R 1 to R n-1 the resistor R 1 is connected between the output current control module CTR 1 and the output current control module CTR 2
  • the resistor R 2 is connected to the output current control module CTR 2 and the output current control module CTR 3
  • the resistor R n-1 is connected between the output current control module CTR n-1 and the output current control module CTR n .
  • the purpose of adding a plurality of resistors R 1 to R n-1 in this embodiment is to achieve a more flexible current flow through one or more LED lamps that are driven to emit light in the LED string 200 on the basis of the first embodiment.
  • the adjustments are thus optimized for constant current control effects. Since the current flowing through the LED lamp group is adjusted, the resistances of the plurality of resistors R 1 to R n-1 are relatively small.
  • the LED string input voltage 200 rises from 0V
  • the input voltage reaches LED lamps LED forward voltage when 1, M 1 is turned on
  • first a first resistor Re The voltage at the terminal is V 1 , so the current I LED1 flowing through the LED lamp group LED1 is as follows:
  • the output current from the switching control module CTR. 1 transitions to the CTR control the output current of the LED lamp module 2.
  • 1 LED group The light emission control is performed with the LED 2 , and at the same time, the voltage of the first end of the first resistor Re also rises to V 2 , and the current I LED2 flowing through the LED lamp group LED 1 and the LED 2 is as follows:
  • the output control modules CTR 3 to CTR n continue to advance according to the above-mentioned working process, so as to drive more LED light groups to be driven backwards step by step while the input voltage continues to rise. Until all the LED groups in the LED string 200 are illuminated, that is, the LED groups LED 1 to LED n are both illuminated. At this time, the current I LEDn flowing through all the LED groups is as follows:
  • I LED1 ⁇ I LED2 ⁇ ... ⁇ I LEDn-1 ⁇ I LEDn which causes the LED light to flow through
  • the current of the group can be synchronously changed with the input voltage, which greatly expands the conduction angle of the rectifier diode, thereby improving the system power factor and efficiency.
  • the input current that is, the current flowing through the LED string 200
  • the sinusoidal characteristics and no phase difference can greatly reduce the total harmonic distortion of the system and further improve the system PF value and efficiency.
  • the current flowing through the LED lamp set is equal to the current generated by the certain reference voltage on the first resistance Re. Since the multiplier module 312 included in the present application enables the peaks of the N reference voltages to be fixed and in phase with the input voltage, the flow The peak value of the current passing through the LED (ie, the output current) does not change with the peak voltage of the wire mesh, and the output current does not change in accordance with the peak voltage variation of the wire mesh, achieving excellent constant current characteristics.
  • Another object of the present application is to provide an LED lighting apparatus including: a rectifying input module 100 for supplying an input voltage to the LED string 200, an LED string 200, and the LED linear constant current control circuit 300.
  • the present application enables the input voltage of the LED string to be driven step by step accordingly.
  • the constant current illumination of the LED lamp group realizes the improvement of the utilization rate of the LED without increasing the cost of the component, greatly improves the power factor and system efficiency of the entire LED linear constant current control circuit, and effectively reduces the total harmonic of the system.
  • the reference voltage generating module converts the sampled input voltage into N reference voltages having different fixed peaks and being in phase with the input voltage
  • the input voltage of the LED string reaches the forward conduction voltage of the M LED groups
  • the M LED groups are turned on, and a current corresponding to the Mth reference voltage is generated on the first resistor via the Mth output current control module, since each of the reference voltages has a fixed peak value, regardless of the peak value of the input voltage. Therefore, the current flowing through the LED lamp does not change with the peak value of the input voltage, realizing a true input constant current.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED线性恒流控制电路(300)以及LED发光装置,该控制电路(300)连接LED灯串(200),LED灯串(200)由N个LED灯组(LED 1、LED 2、…、LED n-1、LED n)串接在一起,控制电路(300)包括:基准电压产生模块(310),用于采样LED灯串(200)的输入电压,将输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压(V 1、V 2、…、V n-1、V n);N个输出电流控制模块(CTR 1、CTR 2、…、CTR n-1、CTR n),N个输出电流控制模块(CTR 1、CTR 2、…、CTR n-1、CTR n)的控制端一一对应的接收相应的一个参考电压、输入端分别连接至对应的LED灯组的输出端、输出端并联在一起后通过第一电阻(Re)接地,当LED灯串(200)的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻(Re)上产生与第M个基准电压对应的电流;其功率因数高、总谐波失真低且能保持流过LED灯的电流不随输入电压峰值变化而变化。

Description

一种LED线性恒流控制电路以及LED发光装置 技术领域
本申请涉及LED显示领域,尤其涉及一种LED线性恒流控制电路以及LED发光装置。
背景技术
目前,LED作为一种新型光源,因其具备亮度强、能耗低且寿命长的优点而被广泛应用于各个领域。由于LED具有固定的正向导通电压,只有达到整个LED灯串的总的正向导通电压时,LED灯串才能发光。为了保证LED灯串能够正常稳定地工作,需要对其进行恒流控制,而传统的LED灯串的线性恒流控制方法就是通过将一个线性恒流控制电路连接于输入整流电路的输出端与LED灯串的输入端之间(如图1所示),或者连接于LED灯串的输出端与地之间(如图2所示)。而在市电供电条件下,采用上述恒流源对LED灯串进行恒流控制时,LED灯串只能在输入电压达到其总的正向导通电压时才会发光,这样会使LED的利用率低且功率因数低,总谐波失真严重,且输出电流会跟随输入电压峰值变化而变化。
为了解决上述传统的LED灯串的恒流控制方法所存在的问题,现有技术提出了两种解决方法。第一种是通过在输入整流电路的输出端增加一个滤波大电容,通过该滤波大电容将输入正弦波电压滤波成高于LED灯串的正向导通电压的直流电压,从而使LED灯串中的LED能够在整个时钟周期持续发光, 虽然这样可以提高LED的利用率,但却降低了功率因数,加大了系统总谐波失真(THD)且同时增加了系统成本,也不能解决输入不恒流的问题;第二种则是通过减少LED灯串中的LED数量,从而通过减小LED灯串总的正向导通电压进而使LED在每个时钟周期的发光时间增加,提高了LED的利用率。但这种解决方法会使LED线性恒流控制电路承受更大的电压,加大了驱动电路的功耗,降低了系统效率,也无法解决输入不恒流的问题。
综上所述,现有技术存在功率因数低、系统总谐波失真严重且系统效率低和输入不恒流的问题。
发明内容
本申请要解决的技术问题在于,针对现有技术的上述缺陷,提供一种LED线性恒流控制电路以及LED发光装置。
本申请解决其技术问题所采用的技术方案是:构造一种LED线性恒流控制电路,用于连接LED灯串,所述LED灯串由N个LED灯组串接在一起,所述LED线性恒流控制电路包括:
基准电压产生模块,用于采样LED灯串的输入电压,将采样到的输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压;
N个输出电流控制模块,所述N个输出电流控制模块的控制端分别连接至基准电压产生模块以一一对应的接收相应的一个参考电压、输入端分别连接至对应的LED灯组的输出端、输出端并联在一起后通过第一电阻接地,当LED灯串的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻上产生与第M个基准电压对应的电流,其中,M、N为正整数,且M小于等于N。
在本申请所述的LED线性恒流控制电路中,所述基准电压产生模块包括:
输入电压采样模块,输入端连接LED灯串的输入端,用于采样得到峰值变化的正弦波信号;
乘法器模块,用于将采样得到峰值变化的正弦波信号转变为峰值固定且与输入电压同相的正弦波信号;
分压输出电路,用于将所述峰值固定且与输入电压同相的正弦波信号分压形成所述N个基准电压。
在本申请所述的LED线性恒流控制电路中,所述乘法器模块包括峰值电压采样保持电路和乘法器电路;所述乘法器电路的一个输入端与输入电压采样模块的输出端连接、另一个输入端经由所述峰值电压采样保持电路与输入电压采样模块的输出端连接,乘法器电路的输出端连接至所述分压输出电路。
在本申请所述的LED线性恒流控制电路中,所述分压输出电路包括一个第一运算放大器、一个N沟道的第一MOS管以及具有N个分压系数的分压电路,所述第一运算放大器的同相输入端连接所述乘法器电路的输出端、异相输入端经由所述分压电路接地,所述第一运算放大器的异相输入端还经由一电阻连接至第一MOS管的源极,第一MOS管的栅极连接至第一运算放大器的输出端,第一MOS管的漏极连接内置电源。
在本申请所述的LED线性恒流控制电路中,每个所述输出电流控制模块均包括:一个第二运算放大器和一个N沟道的第二MOS管;第二运算放大器的同相输入端作为输出电流控制模块的控制端、异相输入端连接第二MOS管的源极、输出端连接第二MOS管的栅极,第二MOS管的源极作为输出电流控制模块的输出端,第二MOS管的漏接作为输出电流控制模块的输入端。
在本申请所述的LED线性恒流控制电路中,相邻的两个输出电流控制模 块的输出端之间还包括一个电流调节电阻。
本申请还公开了一种LED发光装置,包括:用于给LED灯串提供输入电压的整流输入模块、LED灯串以及所述的LED线性恒流控制电路。
在本申请所述的LED发光装置中,各LED灯组由不同数量的LED灯串联或者并联或者串并联结合方式组合得到。
实施本申请的LED线性恒流控制电路以及LED发光装置,具有以下有益效果:本申请能够使LED灯串的输入电压相应地逐级驱动其中的LED灯组恒流发光,实现了在不增加高成本元件的前提下,提高LED的利用率,极大地提升整个LED线性恒流控制电路的功率因数和系统效率,有效地降低了系统总谐波失真,同时基准电压产生模块将采样到的输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压,当LED灯串的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻上产生与第M个基准电压对应的电流,由于每个基准电压都是峰值固定的,与输入电压的峰值无关,所以能保持流过LED灯的电流不随输入电压峰值变化而变化,实现真正的输入恒流。
附图说明
下面将结合附图及实施例对本申请作进一步说明,附图中:
图1是一种传统LED线性恒流控制电路的结构示意图;
图2是另一种传统LED线性恒流控制电路的结构示意图;
图3是本申请的LED线性恒流控制电路的第一实施例的模块框图;
图4是图3中的输出电流控制模块的电路结构示意图;
图5是图3中的基准电压产生模块的电路结构示意图;
图6是图5中的峰值电压采样保持电路的电路结构示意图;
图7是传统LED驱动电源的输入电路结构示意图;
图8是图7所示电路的交流输入电压、灯串输入电压、交流输入电流的波形图;
图9是本申请在N取4时交流输入电压、灯串输入电压、交流输入电流的波形图;
图10是本申请的LED线性恒流控制电路的第二实施例的电路结构示意图。
具体实施方式
为了对本申请的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本申请的具体实施方式。
参考图3是本申请的LED线性恒流控制电路的第一实施例的模块框图。
本申请的LED发光装置包括:用于给LED灯串200提供输入电压的整流输入模块100、LED灯串200以及LED线性恒流控制电路300。所述LED灯串200由N个LED灯组串接在一起,各个LED灯组中的LED灯的数量可以相等也可以不等,各LED灯组的连接方式也可不同,例如一个LED灯组中的所有LED灯可以是串联或者并联或者串并联结合。如图中,N个LED灯组分别为:LED1、LED2、…、LEDn-1、LEDn
其中,所述LED线性恒流控制电路300包括:基准电压产生模块310、N个输出电流控制模块以及一个第一电阻Re。如图中,N个输出电流控制模块分别为:CTR1、CTR2、…、CTRn-1、CTRn
基准电压产生模块310,用于采样LED灯串200的输入电压,将采样到 的输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压,如图中,N个基准电压分别表示为:V1、V2、…、Vn-1、Vn
N个输出电流控制模块,所述N个输出电流控制模块的控制端分别连接至基准电压产生模块310以一一对应的接收相应的一个参考电压、输入端分别连接至对应的LED灯组的输出端、输出端并联在一起后通过第一电阻Re接地,当LED灯串200的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻Re上产生与第M个基准电压对应的电流,其中,M、N为正整数,且M小于等于N。
参考图4是图3中的输出电流控制模块的电路结构示意图。
每个所述输出电流控制模块均包括:一个运算放大器和一个N沟道的MOS管;如图中,第一个输出电流控制模块CTR1包括运算放大器OP1、MOS管M1,第二个输出电流控制模块CTR2包括运算放大器OP2、MOS管M2,以此类推。每个所述输出电流控制模块中,运算放大器的同相输入端作为输出电流控制模块的控制端、异相输入端连接MOS管的源极、输出端连接MOS管的栅极,MOS管的源极作为输出电流控制模块的输出端,MOS管的漏接作为输出电流控制模块的输入端。
继续参考图3,所述基准电压产生模块310包括:输入电压采样模块311、乘法器模块312、分压输出电路313。其中:
输入电压采样模块311,输入端连接LED灯串200的输入端,用于采样得到峰值变化的正弦波信号,具体实施例中,输入电压采样模块311包括串接于整流输入模块100的输出端(即LED灯串200的输入端)和地之间的两个分压电阻,两个分压电阻的连接节点作为输入电压采样模块311的输出端。
乘法器模块312,用于将采样得到峰值变化的正弦波信号转变为峰值固定 且与输入电压同相的正弦波信号。参考图5是图3中的基准电压产生模块的电路结构示意图。参考图6是图5中的峰值电压采样保持电路的电路结构示意图。
具体的,所述乘法器模块312包括峰值电压采样保持电路和乘法器电路;所述乘法器电路的一个输入端与输入电压采样模块311的输出端连接、另一个输入端经由所述峰值电压采样保持电路与输入电压采样模块311的输出端连接,乘法器电路的输出端连接至所述分压输出电路313。
峰值电压采样保持电路包括:二极管D1、运算放大器Amp1、N沟道MOS管M0、电容C0,二极管D1的正极连接输入电压采样模块311的输出端、负极连接运算放大器Amp1的同相输入端,运算放大器Amp1的异相输入端连接MOS管M0的源极以及经由电容C0接地、运算放大器Amp1的输出端连接MOS管M0的栅极,MOS管M0的漏极连接内置电源,MOS管M0的源极作为峰值电压采样保持电路的输出端连接至乘法器电路的一个输入端。
可以理解的是,峰值电压采样保持电路并不限于本实施例中的电路结构,只要能实现峰值采样和保持都能实现本申请的技术效果,都在本申请的保护范围之内。乘法器电路可以采用图4中的电路结构,也可以采用电子领域常见的乘法器,对此不做限制。
分压输出电路313,用于将所述峰值固定且与输入电压同相的正弦波信号分压形成所述N个基准电压。继续参考图5,所述分压输出电路313包括一个第一运算放大器Amp4、一个N沟道的第一MOS管以及具有N个分压系数(k1,k2,…,kn-1,kn)的分压电路,所述第一运算放大器Amp4的同相输入端连接所述乘法器电路的输出端、异相输入端经由所述分压电路接地,所述第一运算放大器Amp4的异相输入端还经由一电阻连接至第一MOS管的源极,第一MOS管的栅极连接至第一运算放大器Amp4的输出端,第一MOS管的漏极连 接内置电源。
下面结合第一实施例,详细阐述本申请的工作原理。
结合图3和图5,输入交流电压经过整流输入模块100的整流桥整流后,得到周期为π的直流电压,其瞬时电压表达式为:Vpp*sin(ωt),其中Vpp为输入峰值电压。该电压经过输入电压采样模块311分压后输出
Figure PCTCN2017070701-appb-000001
作为乘法器模块312的输入电压。乘法器模块312中的峰值电压采样保持电路输出该输入电压的峰值:
Figure PCTCN2017070701-appb-000002
假设图中的电路中的NPN管严格匹配,具有相同的增益β且足够大,以至于可以忽略基极电流的影响,根据乘法器的特性(乘法器的具体工作原理不再叙述),有以下公式成立:
I1*I2=I3*I4              (1)
其中I1为偏置电流,固定不变;
现为了计算方便,假设所有的电流镜镜像比例为1:1,可以得到各电流表达式:
Figure PCTCN2017070701-appb-000003
Figure PCTCN2017070701-appb-000004
将公式(2)、(3)代入上式(1),得到输出电流:
Figure PCTCN2017070701-appb-000005
将该电流I4加在电阻Rp4上,得到乘法器模块312的输出电压为:
Figure PCTCN2017070701-appb-000006
该电压输入分压输出电路313,得到N个基准电压如下:
Figure PCTCN2017070701-appb-000007
其中,k1,k2,…,kn-1,kn为分压系数,为不相等的常数,这里可以假设V1<V2<...<Vn-1<Vn
可以看到,N个基准电压均与线网输入电压峰值无关,与线网输入电压同样呈现为正弦波特性且无相位差。现在,得到了与线网电压峰值无关的、与线网正弦波电压无相位差的正弦波电压。
下面首先对系统总谐波失真进行说明。
市面上很多的LED驱动电源,其输入电路采用简单的桥式整流器和电解电容滤波电路,如图7所示,该电路只有在输入交流电压的峰值附近,整流二极管才会导通,因此其导通角θ比较小(大约为60°),导致输入电流波形为尖状脉冲(脉宽约为3ms),交流输入电压、灯串输入电压及交流输入电流波形如图8所示。由此可见,造成LED电源交流输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。
根据傅里叶(Fourier)变换原理,瞬时输入电流可以表示为:
Figure PCTCN2017070701-appb-000008
式中,n是谐波次数,傅里叶系数an和bn分别表示为:
Figure PCTCN2017070701-appb-000009
Figure PCTCN2017070701-appb-000010
每一个电流谐波,通常会有一个正弦或者余弦周期,n次谐波电流有效值In,rms可用下式计算得到:
Figure PCTCN2017070701-appb-000011
输入总电流有效值为:
Figure PCTCN2017070701-appb-000012
上式中,I1,rms为基波电流有效值,总谐波失真为:
Figure PCTCN2017070701-appb-000013
根据功率因素PF的定义,功率因数PF是指交流输入的有功功率P和输出视在功率S的比值,即:
Figure PCTCN2017070701-appb-000014
其中,U为输入电源电压,cosθ1为相移因数,θ1为基波相移角。
结合上式(11)、(12)以得到:
Figure PCTCN2017070701-appb-000015
由此可知,在相移因素cosθ1不变时,降低总谐波失真可以提高功率因素PF。
以下结合上述原理对本申请的工作原理以及如何实现高PF值和低总谐波失真作进一步说明。
在整流输入模块100的整流桥接入交流电时,LED灯串200输入电压从0V开始上升,当灯串输入电压达到第一个LED灯组LED1的正向导通电压时, 由于运算放大器OP1的同相输入端所输入基准电压V1大于其异相输入端的电压,所以运算放大器OP1的输出端输出高电平驱动M1导通,此时M1的源极电压与基准电压V1相等,则第一电阻Re的第一端的电压也为V1,因此,流过LED灯组LED1的电流ILED1如下式所示:
Figure PCTCN2017070701-appb-000016
随着LED灯串200的输入电压继续上升,当该输入电压达到两个LED灯组的正向导通电压时LED1、LED2导通,由于运算放大器OP2的同相输入端所输入的参考电压V2大于其异相输入端的电压V1(运算放大器OP2的异相输入端与M1的源极连接,此处电压为V1),所以运算放大器OP2的输出端输出高电平驱动M2导通,LED灯组LED1与LED2中的所有LED发光,且NMOS管M2的源极电压也为V2,即运算放大器OP1的异相输入端的电压由V1变为V2,于是运算放大器OP1的异相输入端的电压V2大于其同相输入端的电压V1,所以运算放大器OP1输出低电平使NMOS管M1截止,LED灯组LED1与LED2由输出电流控制模块CTR2控制,因此实现了从输出电流控制模块CTR1切换过渡至由输出电流控制模块CTR2对LED灯组LED1与LED2进行发光控制,与此同时,第一电阻Re的第一端的电压也上升为V2,因此,流过LED灯组LED1与LED2的电流ILED2如下式所示:
Figure PCTCN2017070701-appb-000017
依此类推,随着输入电压的持续上升,输出控制模块CTR3至CTRn会根据上述工作进程继续推进,从而达到在输入电压继续上升的过程中逐级往后驱动更多LED灯组发光,直至LED灯串200中所有LED灯组都发光为止,即LED灯组LED1至LEDn均发光,此时,流过所有LED灯组的电流ILEDn如下式 所示:
Figure PCTCN2017070701-appb-000018
根据以上公式,以N取4为例,其交流输入电压、灯串输入电压、交流输入电流的波形图如图9。图中,VAC、VDC、IAC分别表示交流输入电压、灯串输入电压、交流输入电流。流过LED的电流为交流输入电流的绝对值。
对LED电流在整个线网周期内进行积分计算,可以得到整个线网周期内的流过LED电流平均值为:
Figure PCTCN2017070701-appb-000019
上式中所有的参数均与输入电压峰值无关,流过LED的电流由基准电压和Re电阻决定。
由以上推到可知,由于V1<V2<...<Vn-1<Vn,故ILED1<ILED2<...<ILEDn-1<ILEDn,这使得流过正在发光的LED灯组的电流(即输出电流)能够跟随输入电压进行同步变化,大大扩展了整流二极管的导通角,因此提高了系统功率因数和效率。同时,在线网输入电压逐渐变化过程中,输入电流(也就是流过LED灯串200的电流)能够很好的跟随输入电压进行同步变化,基本维持输入电流在整个线网周期内的连续性以及正弦波特性且无相位差,因此能够极大的降低系统总谐波失真,进一步提高系统PF值和效率。而且,流过LED灯组的电流等于某个基准电压在第一电阻Re上产生的电流,由于本申请包含的乘法器模块312能够使得N个基准电压的峰值固定且与输入电压同相,因此流过LED的电流(即输出电流)的峰值也不随线网峰值电压的变化而变化,输出电流也不会跟随线网峰值电压变化而变化,实现优异的恒流特性。
下面介绍本申请的第二个实施例。
参考图10是本申请的LED线性恒流控制电路的第二实施例的电路结构示意图。
在本申请第二实施例中,与第一实施例唯一不同的是:相邻的两个输出电流控制模块的输出端之间还包括一个电流调节电阻。如图电阻R1至Rn-1,电阻R1连接于输出电流控制模块CTR1与输出电流控制模块CTR2之间,电阻R2连接于输出电流控制模块CTR2与输出电流控制模块CTR3之间,依次类推,电阻Rn-1连接于输出电流控制模块CTRn-1与输出电流控制模块CTRn之间。
本实施例中加入多个电阻R1至Rn-1的目的是在第一实施例的基础上,对流过LED灯串200中被驱动发光的一个或多个LED灯组的电流实现更加灵活的调整,从而优化对恒流控制效果。由于是对流过LED灯组电流的调整,因此,多个电阻R1至Rn-1的阻值相对较小。
下面主要是结合工作原理对图10所示的LED线性恒流控制电路300作进一步说明:
同理,在整流桥接入交流电时,LED灯串200输入电压从0V开始上升,当输入电压达到LED灯组LED1的正向导通电压时,M1导通,第一电阻Re的第一端的电压为V1,因此,流过LED灯组LED1的电流ILED1如下式所示:
Figure PCTCN2017070701-appb-000020
同理,随着输入电压继续上升,当该输入电压达到两个LED灯组的正向导通电压时,从输出电流控制模块CTR1切换过渡至由输出电流控制模块CTR2对LED灯组LED1与LED2进行发光控制,与此同时,第一电阻Re的第一端的电压也上升为V2,流过LED灯组LED1与LED2的电流ILED2如下式所示:
Figure PCTCN2017070701-appb-000021
依此类推,随着输入电压的持续上升,输出控制模块CTR3至CTRn会根据上述工作进程继续推进,从而达到在输入电压继续上升的过程中逐级往后驱动更多LED灯组发光,直至LED灯串200中所有LED灯组都发光为止,即LED灯组LED1至LEDn均发光,此时,流过所有LED灯组的电流ILEDn如下式所示:
Figure PCTCN2017070701-appb-000022
同理,由于V1<V2<...<Vn-1<Vn,故ILED1<ILED2<...<ILEDn-1<ILEDn,这使得流过正在发光的LED灯组的电流能够跟随输入电压进行同步变化,大大扩展了整流二极管的导通角,因此提高了系统功率因数和效率。同时,在线网输入电压逐渐变化过程中,输入电流(也就是流过LED灯串200的电流)能够很好的跟随输入电压进行同步变化,基本维持输入电流在整个线网周期内的连续性以及正弦波特性且无相位差,因此能够极大的降低系统总谐波失真,进一步提高系统PF值和效率。而且,流过LED灯组的电流等于某个基准电压在第一电阻Re上产生的电流,由于本申请包含的乘法器模块312能够使得N个基准电压的峰值固定且与输入电压同相,因此流过LED的电流(即输出电流)的峰值也不随线网峰值电压的变化而变化,输出电流也不会跟随线网峰值电压变化而变化,实现优异的恒流特性。
本申请的另一目的还在于提供一种LED发光装置,装置包括:用于给LED灯串200提供输入电压的整流输入模块100、LED灯串200以及所述的LED线性恒流控制电路300。
综上所述,本申请能够使LED灯串的输入电压相应地逐级驱动其中的 LED灯组恒流发光,实现了在不增加高成本元件的前提下,提高LED的利用率,极大地提升整个LED线性恒流控制电路的功率因数和系统效率,有效地降低了系统总谐波失真,同时基准电压产生模块将采样到的输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压,当LED灯串的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻上产生与第M个基准电压对应的电流,由于每个基准电压都是峰值固定的,与输入电压的峰值无关,所以能保持流过LED灯的电流不随输入电压峰值变化而变化,实现真正的输入恒流。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (8)

  1. 一种LED线性恒流控制电路,用于连接LED灯串,所述LED灯串由N个LED灯组串接在一起,其特征在于,所述LED线性恒流控制电路包括:
    基准电压产生模块,用于采样LED灯串的输入电压,将采样到的输入电压转变为具有不同固定峰值且与输入电压同相的N个基准电压;
    N个输出电流控制模块,所述N个输出电流控制模块的控制端分别连接至基准电压产生模块以一一对应的接收相应的一个参考电压、输入端分别连接至对应的LED灯组的输出端、输出端并联在一起后通过第一电阻接地,当LED灯串的输入电压达到M个LED灯组的正向导通电压时前面M个LED灯组导通,且经由第M个输出电流控制模块在第一电阻上产生与第M个基准电压对应的电流,其中,M、N为正整数,且M小于等于N。
  2. 根据权利要求1所述的LED线性恒流控制电路,其特征在于,所述基准电压产生模块包括:
    输入电压采样模块,输入端连接LED灯串的输入端,用于采样得到峰值变化的正弦波信号;
    乘法器模块,用于将采样得到峰值变化的正弦波信号转变为峰值固定且与输入电压同相的正弦波信号;
    分压输出电路,用于将所述峰值固定且与输入电压同相的正弦波信号分压形成所述N个基准电压。
  3. 根据权利要求2所述的LED线性恒流控制电路,其特征在于,所述乘法器模块包括峰值电压采样保持电路和乘法器电路;所述乘法器电路的一个输入端与输入电压采样模块的输出端连接、另一个输入端经由所述峰值电压采样 保持电路与输入电压采样模块的输出端连接,乘法器电路的输出端连接至所述分压输出电路。
  4. 根据权利要求2所述的LED线性恒流控制电路,其特征在于,所述分压输出电路包括一个第一运算放大器、一个N沟道的第一MOS管以及具有N个分压系数的分压电路,所述第一运算放大器的同相输入端连接所述乘法器电路的输出端、异相输入端经由所述分压电路接地,所述第一运算放大器的异相输入端还经由一电阻连接至第一MOS管的源极,第一MOS管的栅极连接至第一运算放大器的输出端,第一MOS管的漏极连接内置电源。
  5. 根据权利要求1所述的LED线性恒流控制电路,其特征在于,每个所述输出电流控制模块均包括:一个第二运算放大器和一个N沟道的第二MOS管;第二运算放大器的同相输入端作为输出电流控制模块的控制端、异相输入端连接第二MOS管的源极、输出端连接第二MOS管的栅极,第二MOS管的源极作为输出电流控制模块的输出端,第二MOS管的漏接作为输出电流控制模块的输入端。
  6. 根据权利要求1所述的LED线性恒流控制电路,其特征在于,相邻的两个输出电流控制模块的输出端之间还包括一个电流调节电阻。
  7. 一种LED发光装置,其特征在于,包括:用于给LED灯串提供输入电压的整流输入模块、LED灯串以及如权利要求1-6任一项所述的LED线性恒流控制电路。
  8. 根据权利要求7所述的LED发光装置,其特征在于,各LED灯组由不同数量的LED灯串联或者并联或者串并联结合方式组合得到。
PCT/CN2017/070701 2016-11-11 2017-01-10 一种led线性恒流控制电路以及led发光装置 WO2018086244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610993838.4A CN106455227B (zh) 2016-11-11 2016-11-11 一种led线性恒流控制电路以及led发光装置
CN2016109938384 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018086244A1 true WO2018086244A1 (zh) 2018-05-17

Family

ID=58207380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070701 WO2018086244A1 (zh) 2016-11-11 2017-01-10 一种led线性恒流控制电路以及led发光装置

Country Status (2)

Country Link
CN (1) CN106455227B (zh)
WO (1) WO2018086244A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307477A (zh) * 2019-08-05 2019-10-08 厦门集长新材料科技有限公司 一种可裁剪的恒压led灯带
CN112839406A (zh) * 2019-11-07 2021-05-25 华润微集成电路(无锡)有限公司 线性led驱动系统及驱动方法
CN116634626A (zh) * 2023-01-16 2023-08-22 深圳新摩尔半导体有限公司 一种用于led灯的恒流控制电路和led灯
CN111200892B (zh) * 2020-02-28 2023-08-29 深圳市晟碟半导体有限公司 一种led控制装置、电路及其控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642042B (zh) * 2019-03-01 2023-02-28 华润微集成电路(无锡)有限公司 线性led驱动电路及其驱动方法
EP4240111A4 (en) * 2020-11-04 2024-04-03 Suzhou opple lighting co ltd CONTROL CIRCUIT AND LIGHTING DEVICE
CN113365388A (zh) * 2021-03-18 2021-09-07 上海可大光电科技有限公司 一种恒流电源驱动的灯带和灯具
CN113630933B (zh) * 2021-09-18 2024-02-27 上海三思电子工程有限公司 Led驱动器、驱动电路及驱动方法
CN114205963A (zh) * 2021-12-21 2022-03-18 欧普照明股份有限公司 线性led驱动电路、驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711066A (zh) * 2009-12-23 2010-05-19 陕西西电科大华成电子股份有限公司 Led交流直接供电电路及供电方法
US20100289424A1 (en) * 2008-11-17 2010-11-18 Lepower Semiconductor Inc. Methods and Circuits for LED Drivers and for PWM Dimming Controls
CN102186282A (zh) * 2011-03-21 2011-09-14 中国航天科技集团公司第九研究院第七七一研究所 一种可提高ac led 灯功率因数的驱动电路
CN102497695A (zh) * 2011-11-18 2012-06-13 上海晶丰明源半导体有限公司 一种led线性恒流控制电路及led线性电路
CN102595715A (zh) * 2012-01-19 2012-07-18 上海晶丰明源半导体有限公司 一种led线性电流控制电路及led线性电路
CN202759647U (zh) * 2012-08-22 2013-02-27 深圳市明微电子股份有限公司 一种具有高功率因数的led控制电路及led照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123973A (ja) * 2010-12-07 2012-06-28 Yoshikawa Rf System Kk Led点灯装置
CN102684517B (zh) * 2012-05-24 2014-08-06 深圳市明微电子股份有限公司 一种具有高功率因数的开关电源及其控制器
CN102858062A (zh) * 2012-08-22 2013-01-02 深圳市明微电子股份有限公司 一种具有高功率因数的led控制电路及led照明装置
CN103561509B (zh) * 2013-10-17 2015-10-14 易美芯光(北京)科技有限公司 开关管分离式led驱动电路结构
CN103596328B (zh) * 2013-10-23 2015-11-25 浙江大学 一种led驱动电路
CN104902609B (zh) * 2014-03-04 2019-04-05 上海酷蓝电子科技有限公司 一种分段式线性恒流驱动电路恒定功率的控制电路
CN203801118U (zh) * 2014-03-19 2014-08-27 杰华特微电子(杭州)有限公司 一种基于自适应控制的高效率线性led驱动器
TWI613931B (zh) * 2014-06-10 2018-02-01 群高科技股份有限公司 Led光引擎的電子控制裝置及其應用
CN104812118B (zh) * 2015-04-17 2017-03-01 华南理工大学 一种采用交流市电的led照明驱动电路及方法
CN205610985U (zh) * 2016-04-06 2016-09-28 普诚科技股份有限公司 电流控制电路
CN106332362B (zh) * 2016-09-20 2019-03-15 陕西亚成微电子股份有限公司 一种降低谐波的高压线性led控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289424A1 (en) * 2008-11-17 2010-11-18 Lepower Semiconductor Inc. Methods and Circuits for LED Drivers and for PWM Dimming Controls
CN101711066A (zh) * 2009-12-23 2010-05-19 陕西西电科大华成电子股份有限公司 Led交流直接供电电路及供电方法
CN102186282A (zh) * 2011-03-21 2011-09-14 中国航天科技集团公司第九研究院第七七一研究所 一种可提高ac led 灯功率因数的驱动电路
CN102497695A (zh) * 2011-11-18 2012-06-13 上海晶丰明源半导体有限公司 一种led线性恒流控制电路及led线性电路
CN102595715A (zh) * 2012-01-19 2012-07-18 上海晶丰明源半导体有限公司 一种led线性电流控制电路及led线性电路
CN202759647U (zh) * 2012-08-22 2013-02-27 深圳市明微电子股份有限公司 一种具有高功率因数的led控制电路及led照明装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307477A (zh) * 2019-08-05 2019-10-08 厦门集长新材料科技有限公司 一种可裁剪的恒压led灯带
CN112839406A (zh) * 2019-11-07 2021-05-25 华润微集成电路(无锡)有限公司 线性led驱动系统及驱动方法
CN112839406B (zh) * 2019-11-07 2023-05-30 华润微集成电路(无锡)有限公司 线性led驱动系统及驱动方法
CN111200892B (zh) * 2020-02-28 2023-08-29 深圳市晟碟半导体有限公司 一种led控制装置、电路及其控制方法
CN116634626A (zh) * 2023-01-16 2023-08-22 深圳新摩尔半导体有限公司 一种用于led灯的恒流控制电路和led灯

Also Published As

Publication number Publication date
CN106455227B (zh) 2019-02-01
CN106455227A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018086244A1 (zh) 一种led线性恒流控制电路以及led发光装置
CN104427688B (zh) Led交流驱动电路
US9101014B2 (en) LED controlling circuit with high power factor and an LED lighting device
CN103648219B (zh) 一种led开关恒流驱动电路
WO2017219648A1 (zh) 一种单段线性恒功率led驱动电路及方法
CN101702849B (zh) 一种适用于led驱动器的多路pwm斩波均流电路
EP2377369B1 (en) Led light source and lamp comprising such a led light source
CN208094847U (zh) 一种高效低纹波调光led驱动电路
KR20120111963A (ko) 조명용 전원 장치
Kim et al. A soft self-commutating method using minimum control circuitry for multiple-string LED drivers
CN106919211B (zh) 电子装置
TW201019795A (en) Light-emitting device
CN104270874A (zh) 分段式led驱动电路
TW201332390A (zh) 具有高功因之無閃頻led驅動電路
TW201811112A (zh) 電流控制電路
US10667353B2 (en) Lighting system of alternate current light-emitting diodes
TWI429315B (zh) AC light emitting diode drive
TWI492662B (zh) A device for driving a light - emitting diode
CN103702495B (zh) 一种基于交流电供电的线性led驱动电路
US20150084516A1 (en) Led-based lighting apparatus with low flicker
CN109152132A (zh) 一种多路led调光电路
CN109561539A (zh) 一种数字定时恒功率交流直接驱动led电路
CN103167685B (zh) 照明控制电路与照明系统
CN103415103B (zh) 一种高光效可独立调光的led均流电路
RU183309U1 (ru) Светодиодный выпрямительный мост Ермакова

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17869918

Country of ref document: EP

Kind code of ref document: A1