WO2018086157A1 - 超广角眼底成像系统 - Google Patents

超广角眼底成像系统 Download PDF

Info

Publication number
WO2018086157A1
WO2018086157A1 PCT/CN2016/107011 CN2016107011W WO2018086157A1 WO 2018086157 A1 WO2018086157 A1 WO 2018086157A1 CN 2016107011 W CN2016107011 W CN 2016107011W WO 2018086157 A1 WO2018086157 A1 WO 2018086157A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
scanning
angle
imaging system
scanning mirror
Prior art date
Application number
PCT/CN2016/107011
Other languages
English (en)
French (fr)
Inventor
李超宏
Original Assignee
苏州微清医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微清医疗器械有限公司 filed Critical 苏州微清医疗器械有限公司
Priority to US15/768,544 priority Critical patent/US10575730B2/en
Publication of WO2018086157A1 publication Critical patent/WO2018086157A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors

Definitions

  • the present invention relates to a fundus imaging system, and more particularly to a total reflection type confocal scanning fundus imaging system.
  • the fundus camera belongs to the field of medical imaging and is used to acquire the retinal image of the human eye so that the medical staff can check the fundus disease or assist the medical staff in judging the condition of other organs. Since the blood vessels in the fundus are the only blood vessels that can be directly observed through the body surface, medical personnel can check whether the optic nerve, retina, choroid, and refractive medium of the fundus have lesions through the fundus camera. At the same time, other systems can be assisted by the fundus camera.
  • Disease diagnosis and disease judgment for example, screening for retinal photographs to detect cerebral infarction, cerebral hemorrhage, cerebral arteriosclerosis, brain tumor, diabetes, kidney disease, hypertension, retinopathy of prematurity, glaucoma, age-related macular degeneration, and the like.
  • fundus cameras are commonly used for clinical screening of fundus diseases and become indispensable medical devices.
  • fundus cameras mainly perform fundus imaging through a lens module.
  • the lens module reflects the illumination light to form a ghost image, which affects the image quality.
  • the imaging field of the lens module imaging system is small, which cannot meet the needs of medical personnel for large field of view imaging.
  • the object of the present invention is to provide an ultra-wide-angle fundus imaging system capable of effectively avoiding ghost images brought by imaging of a lens module and capable of realizing large field of view imaging.
  • the present invention provides an ultra wide-angle fundus imaging system including a light source, a beam splitter, a scanning assembly, a detecting pinhole, and an imaging assembly, the scanning assembly including a first scanning mirror scanned in a first direction and a second scanning mirror scanned in a second direction; the super wide-angle fundus imaging system further includes a curved mirror disposed opposite to the scanning assembly; the light emitted by the light source passes through the optical splitter and is respectively first The scanning mirror, the curved mirror, the second scanning mirror, and the curved mirror reflect, and then enter the fundus; the light entering the fundus is reflected by the retina and then reflected by the curved mirror, the second scanning mirror, the curved mirror, and the first scanning mirror respectively. After returning to the beam splitter and reflecting through the beam splitter, it passes through the probe pinhole and enters the imaging assembly.
  • the curved mirror is ellipsoidal and the concave surface is a reflecting surface.
  • the light reflected by the first scanning mirror to the curved mirror is opposite to the curved surface
  • the trajectory on the light mirror is a parabola; the trajectory of the light reflected by the second scanning mirror to the curved mirror on the curved mirror is a parabola.
  • the rotation angle of the first scanning mirror per unit time is a first scanning angle; the light reflected by the first scanning mirror to the curved mirror is on the curved mirror unit time
  • the inner motion track is a first trajectory line, and the angle between the tangent line of the first trajectory line and the tangent line at the end point is a first trajectory angle; the difference between the first scan angle and the first trajectory angle is Constant value.
  • the rotation angle of the second scanning mirror in a unit time is a second scanning angle; the light reflected by the second scanning mirror to the curved mirror is on the curved mirror unit time
  • the inner motion track is a second track line, and the angle between the tangent line of the start point of the second track line and the tangent line at the end point is a second track angle; the difference between the second scan angle and the second track angle is Constant value.
  • the beam splitter is a half mirror.
  • the beam splitter is a hollow mirror.
  • the beam splitter is a two-color mirror.
  • the first scanning mirror is a resonant scanning mirror or a rotating polygon scanning mirror; and the second scanning mirror is a mechanical scanning mirror.
  • a focusing lens is further disposed between the beam splitter and the detecting pinhole.
  • the invention has the advantages that the super wide-angle fundus imaging system of the invention realizes fundus imaging by total reflection, effectively avoids the ghost image brought by the imaging of the lens module, thereby improving the imaging quality. Moreover, since the curvature of the curved mirror is gradually changed, the light reflected by the curved mirror can enter the fundus at a large angle of incidence (a viewing angle of 100° to 180° can be achieved), thereby realizing a large vision. Field imaging.
  • FIG. 1 is a schematic view showing the structure of an ultra wide-angle fundus imaging system of the present invention.
  • the super wide-angle fundus imaging system 100 of the present invention includes a light source 10, a beam splitter 20, a scanning assembly 30, a curved mirror 40 disposed opposite the scanning assembly 30, a probe pinhole 50, and an imaging assembly 60.
  • the scanning assembly 30 includes a first scanning mirror 31 scanned in a first direction and a second scanning mirror 32 scanned in a second direction, the first direction and the second direction being orthogonal. After the light emitted by the light source 10 passes through the beam splitter 20, it is reflected by the first scanning mirror 31, the curved mirror 40, the second scanning mirror 32, and the curved mirror 40, and then enters the fundus.
  • the light source 10 may be a single-wavelength laser, a multi-wavelength composite light, or a natural light.
  • the beam splitter 20 may be a two-color mirror, a half-reverse half mirror, or a hollow mirror.
  • a collimator lens 71 is further disposed between the light source 10 and the beam splitter 20 such that light emitted by the light source 10 is directed toward the beam splitter 20 in the form of parallel light.
  • the first scanning mirror 31 may be a resonant scanning mirror or a rotating polygon scanning mirror.
  • the second scanning mirror 32 is a mechanical scanning mirror or other large angle rotating scanning mirror.
  • the curved mirror 40 is a spherical mirror or an ellipsoidal mirror, and the concave surface is a reflective surface.
  • a focus lens 72 is disposed between the probe pinhole 50 and the beam splitter 20.
  • the imaging assembly 60 is an image sensor.
  • the super wide-angle fundus imaging system 100 of the present invention realizes fundus imaging by total reflection, effectively avoiding ghost images brought by imaging of the lens module, thereby improving image quality. Moreover, since the curvature of the curved mirror 40 is gradually changed, the light reflected by the curved mirror 40 can enter the fundus at a large angle of incidence (a viewing angle of 100° to 180° can be achieved), thereby realizing Large field of view imaging.
  • the super wide-angle fundus imaging system 100 of the present invention can be applied to autofluorescence retinography, choroidography, near-infrared imaging, fundus color imaging, and the like.
  • the curved mirror 40 can also be designed in the following manner:
  • the trajectory of the light reflected by the first scanning mirror 31 to the curved mirror 40 on the curved mirror 40 is a parabola; the light reflected by the second scanning mirror 32 to the curved mirror 40 is in the The motion trajectory on the curved mirror 40 is a parabola.
  • the curved mirror 40 can also be designed in the following manner:
  • the rotation angle of the first scanning mirror 31 in a unit time is a first scanning angle.
  • a motion trajectory of the light reflected by the first scanning mirror 31 to the curved mirror 40 per unit time on the curved mirror is a first trajectory, and the first trajectory is at a tangent to the starting point and at the end point.
  • the angle between the tangent lines is the first track angle.
  • the difference between the first scan angle and the first track angle is a constant value.
  • the rotation angle of the second scanning mirror 32 in a unit time is a second scanning angle.
  • the trajectory of the light reflected by the second scanning mirror to the curved mirror 40 on the curved mirror 40 is a second trajectory, and the second trajectory is at the tangent of the starting point and at the end point.
  • the angle between the tangent lines is the second track angle.
  • the difference between the second scan angle and the second track angle is a constant value.

Abstract

一种超广角眼底成像系统(100),包括光源(10)、分光器(20)、扫描组件(30)、曲面反光镜(40)、探测针孔(50)以及成像组件(60),扫描组件(30)包括在第一方向扫描的第一扫描镜(31)以及在第二方向扫描的第二扫描镜(32);光源(10)发出的光经分光器(20)后,分别被第一扫描镜(31)、曲面反光镜(40)、第二扫描镜(32)、曲面反光镜(40)反射,然后进入眼底;进入眼底的光被视网膜反射后沿原路返回至分光器(20),然后穿过探测针孔(50),并进入成像组件(60)。相较于现有技术,该超广角眼底成像系统(100)是通过全反射来实现眼底成像的,有效避免了透镜模组成像所带来的鬼像。又由于曲面反光镜(40)的曲率是逐渐变化的,因此经曲面反光镜(40)反射的光可以以较大的入射角进入眼底,从而实现了大视场成像。

Description

超广角眼底成像系统
本申请要求了申请日为2016年11月09日,申请号为201610984986.X,发明名称为“超广角眼底成像系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种眼底成像系统,尤其涉及一种全反射式共焦扫描眼底成像系统。
背景技术
眼底相机属于医学成像领域,用于获取人眼视网膜图像,以便医疗人员检查眼底病或者辅助医疗人员判断其它器官的病情。由于眼底的血管是人体唯一可以通过体表直接观察到的血管,医疗人员通过眼底照相机可以检查眼底的视神经、视网膜、脉络膜以及屈光介质是否存在病变,同时还可以通过眼底照相机的协助对其它系统疾病进行诊断和病情判断,例如通过筛选视网膜照片检测脑梗塞、脑溢血、脑动脉硬化、脑肿瘤、糖尿病、肾病、高血压、早产儿视网膜病变、青光眼、老年化黄斑变性等。越早检测出这些疾病越有利于临床治疗,因此眼底照相机普遍用于临床筛查眼底疾病,成为不可或缺的医疗器械。
目前,眼底相机主要通过透镜模组实现眼底成像。但是,透镜模组会反射照明光,从而形成鬼像,影响成像质量。此外,透镜模组成像系统的成像视场较小,不能满足医疗人员对大视场成像的需求。
鉴于上述问题,有必要提供一种新的眼底成像系统,以解决上述问题。
发明内容
本发明的目的在于提供一种超广角眼底成像系统,该超广角眼底成像系统能够有效避免透镜模组成像所带来的鬼像,并能够实现大视场成像。
为实现上述发明目的,本发明提供了一种超广角眼底成像系统,包括光源、分光器、扫描组件、探测针孔以及成像组件,所述扫描组件包括在第一方向扫描的第一扫描镜以及在第二方向扫描的第二扫描镜;所述超广角眼底成像系统还包括与所述扫描组件相对设置的曲面反光镜;所述光源发出的光穿过所述分光器后,分别被第一扫描镜、曲面反光镜、第二扫描镜、曲面反光镜反射,然后进入眼底;进入眼底的光被视网膜反射后再分别经曲面反光镜、第二扫描镜、曲面反光镜、第一扫描镜反射后返回所述分光器,并经所述分光器反射后穿过所述探测针孔,进入所述成像组件。
作为本发明的进一步改进,所述曲面反光镜呈椭球面状,且凹面为反射面。
作为本发明的进一步改进,所述第一扫描镜反射至所述曲面反光镜的光在所述曲面反 光镜上的运动轨迹为抛物线;所述第二扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上的运动轨迹为抛物线。
作为本发明的进一步改进,所述第一扫描镜在单位时间内的转动角度为第一扫描角;所述第一扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上单位时间内的运动轨迹为第一轨迹线,所述第一轨迹线在起点的切线与在终点的切线之间的夹角为第一轨迹角;所述第一扫描角、第一轨迹角之差为恒值。
作为本发明的进一步改进,所述第二扫描镜在单位时间内的转动角度为第二扫描角;所述第二扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上单位时间内的运动轨迹为第二轨迹线,所述第二轨迹线在起点的切线与在终点的切线之间的夹角为第二轨迹角;所述第二扫描角、第二轨迹角之差为恒值。
作为本发明的进一步改进,所述分光器为半反半透镜。
作为本发明的进一步改进,所述分光器为中空反射镜。
作为本发明的进一步改进,所述分光器为双色镜。
作为本发明的进一步改进,所述第一扫描镜为谐振扫描镜或旋转式多边形扫描镜;所述第二扫描镜为机械式扫描镜。
作为本发明的进一步改进,所述分光器和探测针孔之间还设置有聚焦透镜。
与现有技术相比,本发明的优势在于:本发明超广角眼底成像系统是通过全反射来实现眼底成像的,有效避免了透镜模组成像所带来的鬼像,进而提高了成像质量。又由于曲面反光镜的曲率是逐渐变化的,因此经所述曲面反光镜反射的光可以以较大的入射角进入眼底(能够实现眼底100°~180°的视角成像),从而实现了大视场成像。
附图说明
图1为本发明超广角眼底成像系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
请参阅图1所示,本发明超广角眼底成像系统100包括光源10、分光器20、扫描组件30、与所述扫描组件30相对设置的曲面反光镜40、探测针孔50以及成像组件60。所述扫描组件30包括在第一方向扫描的第一扫描镜31以及在第二方向扫描的第二扫描镜32,所述第一方向、第二方向正交。所述光源10发出的光穿过所述分光器20后,分别被第一扫描镜31、曲面反光镜40、第二扫描镜32、曲面反光镜40反射,然后进入眼底。进入眼底的光被视网 膜反射后再分别经曲面反光镜40、第二扫描镜32、曲面反光镜40、第一扫描镜31反射后返回所述分光器20,并经所述分光器20反射后穿过所述探测针孔50,进入所述成像组件60。
请参阅图1所示,所述光源10可以是单波长激光,也可以是多波长的复合光,也可以是自然光。所述分光器20可以是双色镜,也可以是半反半透镜,也可以是中空反射镜。所述光源10和所述分光器20之间还具有准直透镜71,使得光源10发出的光以平行光的形式射向所述分光器20。所述第一扫描镜31可以是谐振扫描镜,也可以是旋转式多边形扫描镜。所述第二扫描镜32是机械式扫描镜或者其它大角度旋转扫描镜。所述曲面反光镜40为球面镜或者椭球面镜,且凹面是反射面。所述探测针孔50和所述分光器20之间具有聚焦透镜72。所述成像组件60为图像传感器。
相较于现有技术,本发明超广角眼底成像系统100是通过全反射来实现眼底成像的,有效避免了透镜模组成像所带来的鬼像,进而提高了成像质量。又由于曲面反光镜40的曲率是逐渐变化的,因此经所述曲面反光镜40反射的光可以以较大的入射角进入眼底(能够实现眼底100°~180°的视角成像),从而实现了大视场成像。本发明超广角眼底成像系统100可以应用于自发荧光视网膜造影、脉络膜造影、近红外成像、眼底彩色成像等。
此外,为了获得更好的成像质量,所述曲面反光镜40还可以设计成下述式样:
所述第一扫描镜31反射至所述曲面反光镜40的光在所述曲面反光镜40上的运动轨迹为抛物线;所述第二扫描镜32反射至所述曲面反光镜40的光在所述曲面反光镜40上的运动轨迹为抛物线。
此外,为了实现均匀扫描,所述曲面反光镜40还可以设计成下述式样:
所述第一扫描镜31在单位时间内的转动角度为第一扫描角。所述第一扫描镜31反射至所述曲面反光镜40的光在所述曲面反光镜上单位时间内的运动轨迹为第一轨迹线,所述第一轨迹线在起点的切线与在终点的切线之间的夹角为第一轨迹角。所述第一扫描角、第一轨迹角之差为恒值。
所述第二扫描镜32在单位时间内的转动角度为第二扫描角。所述第二扫描镜反射至所述曲面反光镜40的光在所述曲面反光镜40上单位时间内的运动轨迹为第二轨迹线,所述第二轨迹线在起点的切线与在终点的切线之间的夹角为第二轨迹角。所述第二扫描角、第二轨迹角之差为恒值。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种超广角眼底成像系统,包括光源、分光器、扫描组件、探测针孔以及成像组件,所述扫描组件包括在第一方向扫描的第一扫描镜以及在第二方向扫描的第二扫描镜;其特征在于:所述超广角眼底成像系统还包括与所述扫描组件相对设置的曲面反光镜;所述光源发出的光穿过所述分光器后,分别被第一扫描镜、曲面反光镜、第二扫描镜、曲面反光镜反射,然后进入眼底;进入眼底的光被视网膜反射后再分别经曲面反光镜、第二扫描镜、曲面反光镜、第一扫描镜反射后返回所述分光器,并经所述分光器反射后穿过所述探测针孔,进入所述成像组件。
  2. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述曲面反光镜呈椭球面状,且凹面为反射面。
  3. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述第一扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上的运动轨迹为抛物线;所述第二扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上的运动轨迹为抛物线。
  4. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述第一扫描镜在单位时间内的转动角度为第一扫描角;所述第一扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上单位时间内的运动轨迹为第一轨迹线,所述第一轨迹线在起点的切线与在终点的切线之间的夹角为第一轨迹角;所述第一扫描角、第一轨迹角之差为恒值。
  5. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述第二扫描镜在单位时间内的转动角度为第二扫描角;所述第二扫描镜反射至所述曲面反光镜的光在所述曲面反光镜上单位时间内的运动轨迹为第二轨迹线,所述第二轨迹线在起点的切线与在终点的切线之间的夹角为第二轨迹角;所述第二扫描角、第二轨迹角之差为恒值。
  6. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述分光器为半反半透镜。
  7. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述分光器为中空反射镜。
  8. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述分光器为双色镜。
  9. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述第一扫描镜为谐振扫描镜或旋转式多边形扫描镜;所述第二扫描镜为机械式扫描镜。
  10. 如权利要求1所述的超广角眼底成像系统,其特征在于:所述分光器和探测针孔之间还设置有聚焦透镜。
PCT/CN2016/107011 2016-11-09 2016-11-24 超广角眼底成像系统 WO2018086157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/768,544 US10575730B2 (en) 2016-11-09 2016-11-24 Ultra wide field fundus imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610984986.X 2016-11-09
CN201610984986.XA CN106388765B (zh) 2016-11-09 2016-11-09 超广角眼底成像系统

Publications (1)

Publication Number Publication Date
WO2018086157A1 true WO2018086157A1 (zh) 2018-05-17

Family

ID=59229870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107011 WO2018086157A1 (zh) 2016-11-09 2016-11-24 超广角眼底成像系统

Country Status (3)

Country Link
US (1) US10575730B2 (zh)
CN (1) CN106388765B (zh)
WO (1) WO2018086157A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3649923A4 (en) 2017-07-07 2021-03-17 Aiinsight Inc. POLARIZING FUNDAMENTAL CAMERA FOR EFFECTIVE SUPPRESSION OF INTERNAL REFLECTION
CN111462650B (zh) * 2020-04-23 2022-03-25 歌尔光学科技有限公司 成像组件及成像装置
CN113729620B (zh) * 2021-08-16 2023-06-23 温州医科大学 一种级联式超广角激光扫描眼底成像系统
CN115969308A (zh) * 2022-12-23 2023-04-18 宁乡爱尔眼科医院有限公司 基于超广角眼底成像的远程眼检系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008288A (zh) * 2010-12-17 2011-04-13 中国科学院光电技术研究所 一种线扫描共焦检眼镜的系统和方法
CN102429638A (zh) * 2011-10-26 2012-05-02 中国科学院光电技术研究所 一种基于图像相关的视网膜抖动校正装置和方法
CN102641115A (zh) * 2012-05-03 2012-08-22 中国科学院长春光学精密机械与物理研究所 一种大视场折反式眼底相机光学系统
WO2014020966A1 (ja) * 2012-07-30 2014-02-06 株式会社トプコン 眼底解析装置、眼底解析プログラム及び眼底解析方法
US20140340635A1 (en) * 2013-05-16 2014-11-20 Canon Kabushiki Kaisha Ocular characteristics measuring apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9323065D0 (en) * 1993-11-09 1994-01-05 Besca Ltd A wide field retinal scanning ophthalmoscope
US5784148A (en) * 1996-04-09 1998-07-21 Heacock; Gregory Lee Wide field of view scanning laser ophthalmoscope
EP1806092A1 (en) * 2006-01-10 2007-07-11 Kabushiki Kaisha TOPCON A fundus observation device
JP2008035944A (ja) * 2006-08-02 2008-02-21 Topcon Corp 眼科撮影システム
JP4987409B2 (ja) * 2006-09-29 2012-07-25 株式会社ニデック 眼底撮影装置
JP5179102B2 (ja) * 2007-06-29 2013-04-10 株式会社ニデック 走査型レーザ検眼鏡、及び走査型レーザ検眼鏡用広角レンズアタッチメント
CA2693979A1 (en) * 2007-07-26 2009-02-05 Pacific Biosciences Of California, Inc. Molecular redundant sequencing
GB201217538D0 (en) * 2012-10-01 2012-11-14 Optos Plc Improvements in or relating to scanning laser ophthalmoscopes
US8783868B2 (en) * 2012-12-21 2014-07-22 Carl Zeiss Meditec, Inc. Two-dimensional confocal imaging using OCT light source and scan optics
CN206443683U (zh) * 2016-11-09 2017-08-29 苏州微清医疗器械有限公司 超广角眼底成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008288A (zh) * 2010-12-17 2011-04-13 中国科学院光电技术研究所 一种线扫描共焦检眼镜的系统和方法
CN102429638A (zh) * 2011-10-26 2012-05-02 中国科学院光电技术研究所 一种基于图像相关的视网膜抖动校正装置和方法
CN102641115A (zh) * 2012-05-03 2012-08-22 中国科学院长春光学精密机械与物理研究所 一种大视场折反式眼底相机光学系统
WO2014020966A1 (ja) * 2012-07-30 2014-02-06 株式会社トプコン 眼底解析装置、眼底解析プログラム及び眼底解析方法
US20140340635A1 (en) * 2013-05-16 2014-11-20 Canon Kabushiki Kaisha Ocular characteristics measuring apparatus

Also Published As

Publication number Publication date
US20190082956A1 (en) 2019-03-21
CN106388765B (zh) 2018-06-05
US10575730B2 (en) 2020-03-03
CN106388765A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US9271643B2 (en) Compact multimodality optical coherence tomography imaging systems having a ring of optical fibers in image capture path
US20180199811A1 (en) Ophthalmology
US8070289B2 (en) Non-contact optical coherence tomography imaging of the central and peripheral retina
WO2018086157A1 (zh) 超广角眼底成像系统
US20120140176A1 (en) Optical Coherence Imaging Systems Having a Mechanism for Shifting Focus and Scanning Modality
JP2017121464A (ja) 広視野の網膜撮像システム
CN107692963B (zh) 一种共聚焦扫描激光眼底镜
JP2018167000A (ja) 眼底撮影装置および眼科装置
JP2019042304A (ja) 眼科用画像処理プログラム
US10441166B2 (en) Apparatus and method for non-contact examination of eye
JP2022027879A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
US9427149B2 (en) Optical tomographic imaging apparatus
JP6853690B2 (ja) 眼科撮影装置
CN214342249U (zh) 一种眼底相机的照明系统
JP6611593B2 (ja) 情報処理装置、情報処理方法、及び、プログラム
CN107115096A (zh) 眼底光学成像系统
CN206443683U (zh) 超广角眼底成像系统
JP7050488B2 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
US11241153B2 (en) Method and apparatus for parallel optical coherence tomographic funduscope
CN212465958U (zh) 一种眼底成像仪
WO2023157494A1 (ja) 眼科装置
US20230073778A1 (en) Oct zonule imaging
Patel et al. High-resolution retinal phase gradient imaging using line-scanning laser ophthalmoscopy
JP2024040241A (ja) 模型眼及び眼科装置
CN117617891A (zh) 一种扫描激光眼屈光间质地形图测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921017

Country of ref document: EP

Kind code of ref document: A1