WO2018086116A1 - Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same - Google Patents

Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same Download PDF

Info

Publication number
WO2018086116A1
WO2018086116A1 PCT/CN2016/105696 CN2016105696W WO2018086116A1 WO 2018086116 A1 WO2018086116 A1 WO 2018086116A1 CN 2016105696 W CN2016105696 W CN 2016105696W WO 2018086116 A1 WO2018086116 A1 WO 2018086116A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ester
groups
dye
phthalocyanine dye
Prior art date
Application number
PCT/CN2016/105696
Other languages
French (fr)
Inventor
Chao He
Xiangyang Tai
Kainan ZHANG
Ling Yuan
Xiaolian HU
Juelin LIU
Hua Ren
Original Assignee
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc filed Critical Dow Global Technologies Llc
Priority to PCT/CN2016/105696 priority Critical patent/WO2018086116A1/en
Publication of WO2018086116A1 publication Critical patent/WO2018086116A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/44Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring
    • C09B62/465Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring the reactive group being an acryloyl group, a quaternised or non-quaternised aminoalkyl carbonyl group or a (—N)n—CO—A—O—X or (—N)n—CO—A—Hal group, wherein A is an alkylene or alkylidene group, X is hydrogen or an acyl radical of an organic or inorganic acid, Hal is a halogen atom, and n is 0 or 1
    • C09B62/483Porphines; Azaporphines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical

Definitions

  • the present invention relates to reactive phthalocyanine dyes having improved solvent solubility and compatibility in addition polymer binders used to make color filters, as well as to color filters made from the same.
  • the transmittance (Y) of the LCD color filter needs to be improved as compared with pigment containing color filters.
  • PGMEA Polylene glycol monomethyl ether acetate
  • copper phthalocyanine is one of the most attractive colorants in LCD blue color filters due to its superior color properties and stability.
  • U.S. patent no. 8,486,591 to Jeong et al. discloses a color filter photosensitive composition that includes an acryl based binder resin, a photopolymerizable acryl-based monomer, a photoinitiator, wherein the binder or the monomer includes a blue dye functional group, such as a copper phthalocyanine.
  • the blue dye functional group can be a benzene sulfonate of copper phthalocyanine.
  • colorants that provide acceptable compatibility between the binder resin and the colorant orand acceptable heat stability.
  • the present inventors have endeavored to improve the processability of a blue color filter using a copper phthalocyanine dye having improved solubility in PGMEA and compatibility in color filter applications.
  • reactive phthalocyanine dyes comprise unsaturation functional groups and have the following Formula I:
  • R is a monovalent hydrocarbon chain that contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, R further contains one of a second ester group, an amide or carbamoyl group, and, still further, R contains one or more hydroxyl or OR’ groups in which R’ can be any of a C 1 -C 12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (-NHCOO-) , an ethylenically unsaturated group, such as an acrylic ester or methacrylic ester group ( (meth) acryloyl group) , or a (meth) acryloyl group containing hydrocarbon chain that contains an ether, amide or carbamoyl (-OOCNH-) group or a second ester group in the chain, and, yet still further, in which R has a total of from 4 to 64 or, preferably, from 7 to 34, or
  • R contains an acrylic ester or methacrylic ester group and the number of (meth) acrylic ester groups ranges from 1 to 50, or, preferably, from 2 to 10, and wherein R contains a hydroxyl group so that the number of hydroxyl groups ranges from 1 to 32 or, preferably, from 1 to 8.
  • R 1 is a C 1 -C 12 ester or amide containing divalent hydrocarbon chain
  • R 2 is any of H, a C 1 -C 8 alkyl group, an acryloyl group, a methacryloyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group, or an acryloyl or methacryloyl group containing monovalent hydrocarbon chain that further contains a second ester or a carbamoyl (-OOCNH-) linkage in the chain
  • R 3 is any of H or a methyl group
  • n ranges 1 to 4.
  • formulations for making thin films comprise a reactive phthalocyanine dye of the following Formula I:
  • R is a monovalent hydrocarbon radical that contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, R further contains one of a second ester group, or an amide or carbamoyl group, R still further contains one or more hydroxyl or OR’ groups in which R’ can be any of a C 1 -C 12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (-NHCOO-) , an ethylenically unsaturated group, such as an acrylic ester or methacrylic ester group ( (meth) acryloyl group) , or a (meth) acryloyl group containing hydrocarbon chain that contains an ether, amide or carbamoyl (-OOCNH-) linkage or a second ester group in the chain, and, yet still further in which R has a total of from 4 to 64, or, preferably, from 7 to 16 carbon atom
  • the total solids content of the formulation ranges from 5 to 60 wt. %, or from 5 to 40 wt. %or, preferably, from 10 to 35 wt. %, or, more preferably, from 15 to 35 wt. %.
  • R 1 is or a C 1 -C 12 ester or amide containing divalent hydrocarbon chain
  • R 2 is any of H, a C 1 -C 8 alkyl group, a (meth) acryloyl group, an acryloyl group containing monovalent hydrocarbon chain that contains a second ester or a carbamoyl group (-OOCNH-) in the chain, a methacryloyl group containing monovalent hydrocarbon chain that contains a second ester or a carbamoyl group (-OOCNH-) in the chain, an allyl group, an epoxy group, or a carboxylic acid group
  • R 3 is any of H or a methyl group
  • n 1 to 4.
  • the one or more polymeric binders is a polymeric binder having an unsaturated (meth) acrylate ( (meth) acryloyl) group or vinyl group, preferably wherein the (meth) acrylate ( (meth) acryloyl) group or vinyl group further comprises a hydroxyl group.
  • the one or more polymeric binders is a polymeric binder having an unsaturated (meth) acrylate ( (meth) acryloyl) group or vinyl group.
  • the total amount of the one or more polymeric binders ranges from 3 to 30 wt. %or, preferably, from 3 to 25 wt. %, or more preferably, from 3 to 20 wt. %, based on the total weight of the formulation, preferably, wherein the (meth) acrylate ( (meth) acryloyl) group or vinyl group further comprises a hydroxyl group.
  • the thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention further comprising one or more of an unsaturated monomer, such as methyl methacrylate, one or more complementary pigments or dyes, such as one or more pigments or complementary dyes having a low absorbance as measured by UV/Vis spectrophotometry of 0.25 or less, or, preferably, of 0.2 or less at from 425 to 475 nm, or, preferably, one or more magenta or violet dyes, like [9- (2-carboxyphenyl) -6-diethylamino-3-xanthenylidene] -diethylammonium chloride, to improve color match, and a cross linker, such as divinyl benzene, wherein the total amount of pigment ranges from 0 to 10 wt. %, or, preferably, from 0.1 to 5 wt. %based on the total weight of the formulation.
  • an unsaturated monomer such as methyl methacrylate
  • the thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention further comprising one or more organic solvents in the amount of from 40 to 95 wt. %, or, preferably, from 60 to 90 wt. %, or, more preferably, from 65 to 85 wt. %, based on the total weight of the formulation.
  • color filters comprise one or more layers made from the composition of any one of items 5, 6, 7, or 8 as a blue color filter.
  • the one or more layers further comprises one or more of an unsaturated monomer, such as methyl methacrylate, a pigment, such as one or more pigments having a small absorbance from 425 to 475 nm, and a cross linker, such as divinyl benzene.
  • unsaturated monomer such as methyl methacrylate
  • pigment such as one or more pigments having a small absorbance from 425 to 475 nm
  • a cross linker such as divinyl benzene.
  • methods of making color filters comprise applying the composition of any one of items 5, 6, 7, or 8 onto a support, such as glass, polycarbonate, or other transparent polymer material to form a colored photosensitive composition layer; exposing the colored photosensitive composition layer with light through a mask; and developing the exposed colored photosensitive composition layer to form a pattern on the support.
  • a support such as glass, polycarbonate, or other transparent polymer material
  • any term containing parentheses refers, alternatively, to the whole term as if no parentheses were present and the term without them (i.e. excluding the content of the parentheses) , and combinations of each alternative.
  • the term “ (meth) acrylate” refers to any of an acrylate, a methacrylate, and mixtures thereof.
  • all temperature units refer to room temperature ( ⁇ 20-22°C) and all pressure units refer to standard pressure.
  • solids or “total solids” for formulations, this includes all polymers, oligomers and monomers and all non-volatile additives that end up in the product color filter or film, whether they are liquid or not to begin with, and excludes solvents, ammonia and water.
  • the inventors have found that by introducing acrylic or methacrylic ester group containing hydrocarbon chains having a second ester group in the chain and at least one hydroxyl or OR’ group which are side chain ether, ester, carboxylic acid, urethane or ethylenically unsaturated groups into a reactive phthalocyanine dye, the compatibility of developed phthalocyanine blue color resist solutions in color filters was highly improved. Further, because the double bond group of a (meth) acrylic ester can be easily cross-linked with an unsaturation functional polymeric binder during the UV exposure process of color filter fabrication, such compatibility can contribute to color stability.
  • the obtained phthalocyanine dye exhibited good solubility in conventional organic solvents, such as propylene glycol monomethyl ether acetate, and thermal stability, as well as significantly higher transmittance (Y) than that of a comparative phthalocyanine dyes in a fabricated color filter.
  • the reactive phthalocyanine dyes of the present invention have 2 or more (meth) acrylate double bond end groups ( (meth) acryloyl groups) , preferably, on one side chain.
  • Such reactive phthalocyanine dyes have better compatibility with an acrylic binder and cross-linker in a color filter forming formulation; the dye of the present invention also has better reactivity during UV curing, thereby bonding the dye onto a polymer network so that dye migration and aggregation can be minimized.
  • the transmittance of a color filter film in the UV-vis spectrum is increased, and any spectrum change after post-baking, illustrating by ⁇ E value, is minimized.
  • the reactive phthalocyanine dyes of the present invention are made in a method whereby the side groups are introduced by reaction between the intermediate substituted phenol, as shown, below, made by condensation of a hydroxycinnamic acid and a glycidyl methacrylate, wherein m is 0 to 40, preferably 0 to 8, and a sulfonyl chloride substituted phthalocyanine:
  • the acrylic ester may be formed by reacting glycidyl methacrylate and 4-hydroxycinnamic acid in the presence of a radical polymerization inhibitor, such as hydroquinone,
  • DMF dimethyl formamide
  • sodium sulfonate or sulfonic acid substituted phthalocyanine suspended in thionyl chloride solution.
  • the mixture was stirred and heated to reflux for 2 hrs. U pon cooling the solution was poured over cracked ice/water causing a blue solid to form.
  • the solid was washed with water, acetone and dried over vacuum. Then, the obtained blue solid and functional group (acrylic ester and hydroxyl group) substituted phenol was dissolved in 1, 2-dichloroethane.
  • Trimethylamine (Et 3 N) trimethylamine
  • the reactive phthalocyanine dye of the present invention provides color filters with low absorption in the blue light region, while maintaining high absorption in the green and red light regions, both before and after 230 °C post baking.
  • the reactive phthalocyanine dyes of the present invention can be drawn down into films from formulations thereof in a solvent.
  • the formulations comprise the reactive phthalocyanine dye, one or more polymeric binders, one or more photoinitiators, such as, benzoin, camphorquinone and other such compounds known in the art, and, preferably, one or more complementary dyes or pigments, such as a magenta or violet dyes or pigments or those having a low absorbance as measured by ultraviolet visible (UV/Vis) spectrophotometry of 0.25 or less, or, preferably, of 0.2 or less at from 425 to 475 nm.
  • UV/Vis ultraviolet visible
  • Suitable complementary dyes or pigments include, for example, magenta and violet dyes including xanthene dyes, like Rhodamine TM B dye (Rhodia) , or tributyl (hexadecyl) phosphonium-4- ( (3- ( (2, 6-dimethylphenyl) (2- (methacryloyloxy) ethyl) iminio) -9- (2-sulfonatophenyl) -3H-xanthen-6-yl) (2- (methacryloyloxy) ethyl) amino) -3, 5-dimethylbenzenesulfonate; Acid Red 52, Acid Red 289; C.I. Pigment Violet 1; dioxazine dyes, such as C.I. Pigment Violet 23; quinacridone dyes, such as C.I. Pigment Violet 19; and squarylium dyes.
  • magenta and violet dyes including xanthene dyes, like Rhodamine TM
  • Suitable polymeric binders for use in the formulations of the present invention are any acrylic or vinyl polymers having one or more ethylenically unsaturated groups, such as (meth) acryloyl, allyl, or vinyl ether groups on their side chain.
  • Such polymers may be formed by emulsion or solvent polymerization of acrylic or vinyl monomers, wherein from 0.1 to 50 wt. %, or, preferably, from 1 to 40 wt. %of the total weight of monomers have reactive side chains, such as hydroxyl, amide or carboxyl side chains, followed by reaction with acrylic or vinyl monomers having groups that will react with the polymer in the presence of a radical polymerization inhibitor.
  • Monomers or polymers having carboxyl groups such as (meth) acrylic acid, or acyl halide groups, such as acryloyl chloride, or polymers thereof will react, respectively, with polymers or monomers having hydroxyl groups, such as hydroxyalkyl (meth) acrylates or vinyl alcohol.
  • a preferred polymeric binder in accordance with the present invention is an acrylic binder having from 0.1 to 40 wt. %or, preferably, from 0.5 to 27 wt.
  • MAA methacrylic acid
  • GMA glycidyl methacrylate
  • Such a monomer contains an ester group linkage and an hydroxyl group between the two ethylenically unsaturated methacryloyl groups.
  • Additional components in formulating color filters in accordance with the present invention may include any of addition cross-linkers, pigments, leveling agents, defoaming agents, wetting agents and dispersants.
  • Co-solvents such as N-methyl-2-pyrrolidone or ethyl lactate, ethanol, can be used in the formulation.
  • Formulations are all neat liquids, except the polymeric binder which has solvent.
  • the dye, polymeric binder and photoinitiator and any additional components can be added into the formulation prior to forming a film.
  • Films for blue color filters in accordance with the present invention are formed by conventional methods, such as spin coating, vapor deposition and evaporation methods. Once films are formed, they can be dried at ambient temperature.
  • the color resists or films of the present invention are useful in color filters for LCDs and luminescent LEDs that have a white or blue backlight.
  • Example 1-1 Synthesis of acryloyl ester substitute group intermediate of dye-1 by condensation
  • Example 2-1A Synthesis of Dye 2 from methacryloyloxyethylisocyanate, where n ⁇ 1-4
  • Reaction of Compound 1 with methacryloyloxyethyl isocyanate (MOI) is as same as the example shown above.
  • LC-MS two cross-linkable groups, m/z (M+H) +1101.2172; four cross-linkable groups, m/z (M+H) + 1626.3476; six cross-linkable groups, m/z (M+H) + 2151.4781; eight cross-linkable groups, m/z (M+H) + 2676.6086.
  • Dye solubility Procedure A: 1. Add 0.6g of the indicated dye to a 10 mL bottle. 2. Add 2.4g PGMEA into the same bottle. 3. Shake the bottle at 25 °C at 180 cycles/min overnight (12-16 hours) and then keeping the bottle at 25 °C overnight (12 -16 hours) without shaking. 4. Filter the mixture with a 0.45 ⁇ m filter. 5. Prepare three round Al plates (5 cm diam) and weigh them (balance error 0.0001g) . 6. Add 0.7g of the indicated filtered solution to each plate and weigh it (balance error 0.0001g) . 7. Put all the Al plates on 150 °C hot-plate for 30 min to remove the solvent. 8. Weigh Al plates (balance error 0.0001g) . 9.
  • step 7 and step 8 Repeat step 7 and step 8 until the weight no longer changes, and then record the final Al plate weights. 10. Calculate the average solubility of dye in PGMEA, which is the amount lost from the film on the Al plate divided by the amount of PGMEA used, multiplied by 100%.
  • Thermal stability The dye was dissolved in the PGMEA at a 9 wt. %concentration, and then the solution was filtered with 0.45 ⁇ m PTFE filter to remove big particles.
  • the prepared dye solution (1.2 g) was added into the binder solution (1.08 g) , and then the solution was shaken for 2 h at room temperature.
  • the final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) .
  • the wet film was dried at 90 °C for 90 seconds, and then post baked at 230 °C for 30 min. Color change ( ⁇ E) of the film was tested before and after baking at 230 °C. A more stable film gives a lower ⁇ E.
  • the indicated dye was dissolved at a 9 wt. %concentration PGMEA, and then the solution was filtered with 0.45 ⁇ m PTFE filter to remove big particles.
  • the prepared dye solution (1.2 g) was added into the binder solution (1.08 g) , and then the solution was shaken for 2 h at room temperature.
  • the final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) .
  • the wet film was dried at 90 °C for 90 seconds, and then post bake at 230 °C for 30 min. Color change ( ⁇ E) of the film was tested before and after UV exposure. A more stable film gives a lower ⁇ E.
  • the indicated dye was dissolved at a 6.9 wt. %concentration in PGMEA with 900ppm of benzophenone.
  • the prepared dye solution (1 g) was added into the binder solution (1.3 g) , and then the solution was shaken for 2 h at room temperature. After that, the solution was filtered with a 0.45 ⁇ m PTFE filter to remove big particles.
  • the final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) . The wet film was dried at 90 °C for 90 seconds.
  • the UV-vis spectra and microscopy image was tested using SHIMADZU UV3600 (Shimadzu Corp, Japan) UV-vis spectrophotometer. The results are shown in Table 3, below.
  • reactive Dye 1 is more soluble in solvent and provides improved light stability when compared to Comparative Compound 2C.
  • the Color space for Dye 1 absorbs far less blue light than does the color space for Comparative Compound 2C.
  • Example 3 A blue color filter was fabricated using [9- (2-carboxyphenyl) -6-diethylamino-3-xanthenylidene] -diethylammonium chloride (Compound 3, shown in the formula below) as a complementary dye. Three dye-containing compositions for blue color filters were evaluated.
  • Formulations of each of the above composition were spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 200-450 rpm, time: 18 s) .
  • the wet film was dried at 90 °C for 90 seconds.
  • Chromaticity The fabricated color filter films made , as above, were analyzed for color space specified by x, y and Y, known as the CIE xyY color space to specify colors.
  • x and y describe the color coordinate of a color in the color space
  • Y describes a measure of the brightness (transmittance) or luminance of a color.
  • Transmittance – UV/Vis Spectrophotometry (Y) The films were tested on a Hunterlab UltraScan Pro spectrometer (Hunter Associates Laboratory, Inc., Reston, VA, using C2 (CIE illuminant C) as the light source. Results are shown in Table 4, below. Absorbance is determined as the value (1 –Transmittance) .
  • the evaluation results show that the inventive phthalocyanine dye has thermal stability and light stability ( ⁇ E ⁇ 3 for both hard-baking and UV exposure) , but also has a high compatibility in a color resist solution.
  • the compatibility results indicate that the inventive phthalocyanine Dye 1 has higher transmittance at the target color than the Comparative Compound 2C.
  • a color filter of the inventive phthalocyanine Dye 1 containing composition showed improved transmittance (Y) . Therefore, the inventive phthalocyanine dyes may provide an improved LCD color filter.
  • Example 4 Films were made and tested, as follows:
  • AIBN 0.096 g
  • PGMEA 70 g
  • AIBN 0.098 g
  • PGMEA 70 g
  • Comparative polymeric binder 6 Into a 3 neck round bottom flask, AIBN (0.168 g) and PGMEA (70 g) were weighted into it. The mixture was sonicated for 5 min, and then marked as initiator stock solution which was ready for use. Into a 1 neck round bottom flask, methyl methacrylate (14.019 g) and ethyl methacrylate (15.981 g) were weighed, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable syringe, which was marked as syringe number 2.
  • the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 °C. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 °C for 2 hours. The reaction mixture was then heated to 120 °C, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at 120 °C for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification.
  • the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 °C. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 °C for 2 hours. The reaction mixture was then heated to 120 °C, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at 120 °C for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification.
  • the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 °C. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 °C for 2 hours. The reaction mixture was then heated to 120 °C, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at 120 °C for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification.
  • MAA-GMA represents a condensation product of methacrylic acid and glycidyl methacrylate.
  • Example 4-1 Film formation .
  • Formulations of Dye 2 in a thin film with 2 wt. %chromophore (CuPc) loading are shown in Table 6, below. All the films were prepared by spin coating the indicated composition on a pre-cut square glass using 600 rpm for 18 seconds.
  • the films were evaluated for blue color transmittance and the results of the transmittance spectra of the thin films are set forth in Tables 7A, 7B, and 7C, below.
  • the films with each of inventive Dyes 1 or 2 have a low absorbance in the blue light region of the color space, especially in Example 4-1.
  • the films the inventive Dye 1 or 2 have low absorbance in the blue light region of the color space, especially in Example 4-2.
  • inventive Dyes 1 or 2 have a low absorbance in the blue light region of the color space, especially in Example 4-3.
  • Inventive Dye 2 containing carbamoyl linkages along the acrylic ester chains of the dye compound generally outperforms Inventive Dye 1 interms of absorbance in the region of blue light.
  • the evaluation results showed that the inventive cross-linkable reactive dye metal phthalocyanine showed high transmittance (390-510 nm) in a colorant-binder film matrix.
  • the results indicate that multiple cross-linkable end groups tethered by carbamate or ester linkers decreased intermolecular aggregation.
  • Films were made with the formulations indicated in Tables 8 and 9, below by spincoating. In each case, about 1 g of the indicated formulation solution was dropped on the top of on a pre-cut square glass, then spin coated at 600 rpm for 18 seconds or at 250 rpm for the 5 wt. %dye loading.
  • the spincoater used was a “smart coater 100” (Best Tools, LLC, Rolla, MO) . The films were pre-baked at 100 °C for 100 sec. to remove solvent and then baked at 230 °C for 30 minutes.
  • Tables 8, and 9, below, show that the inventive binders made so as to have a hydroxyl group and a side chain acrylic group exhibits dramaitically improved heat stability and reduced absorption in blue light, especially after heating.
  • the inventive examples show a much greater phase compatibility in formulation than the film with the comparative binder without a hydroxyl group on the side chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides reactive phthalocyanine dyes of Formula I: wherein R is a monovalent hydrocarbon chain that has a total of from 4 to 64 carbon atoms and R contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, as well as one of a second ester group, an amide or carbamoyl group, and, still further, one or more hydroxyl or OR' groups in which R' can be any of a C1-C12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (NCOOR), or an ethylenically unsaturated group; wherein M represents divalent metal ion, such as Cu2+; and, wherein, n is 1 to 16. Also provided are films and color resists for blue color filters containing the reactive dye.

Description

COPPER PHTHALOCYANINE REACTIVE DYES AND COLOR RESIST COMPOSITES FOR LIQUID CRYSTAL DISPLAY CONTAINING THE SAME
The present invention relates to reactive phthalocyanine dyes having improved solvent solubility and compatibility in addition polymer binders used to make color filters, as well as to color filters made from the same.
In the flat panel display industry, higher brightness and lower energy consumption remain top needs. Both require higher light transmittance through color filters and reduced light scattering. Thus, the shift from pigment colorants to dyes in liquid crystal display (LCD) color filters has driven changes in the flat panel display industry as an efficient way to suppress the deterioration of brightness and contrast ratio caused by light scattering. However most dye colorants have poor compatibility between the dye and the color filter binder, and poor thermal stability even where the dye is soluble in the color resist solvent. These problems cause color filter film fabricated from the color resist composite to produce a poor spectrum, as shown by high absorption in blue light (380nm~510nm) both before and after high temperature (230 ℃) post-baking.
In LCD color filters containing blue, green and red dye color filters, the transmittance (Y) of the LCD color filter needs to be improved as compared with pigment containing color filters. Despite its poor solubility in the solvent PGMEA (Propylene glycol monomethyl ether acetate) , copper phthalocyanine is one of the most attractive colorants in LCD blue color filters due to its superior color properties and stability.
U.S. patent no. 8,486,591 to Jeong et al. discloses a color filter photosensitive composition that includes an acryl based binder resin, a photopolymerizable acryl-based monomer, a photoinitiator, wherein the binder or the monomer includes a blue dye functional group, such as a copper phthalocyanine. The blue dye functional group can be a benzene sulfonate of copper phthalocyanine. However, there remains a need for colorants that provide acceptable compatibility between the binder resin and the colorant orand acceptable heat stability.
The present inventors have endeavored to improve the processability of a blue color filter using a copper phthalocyanine dye having improved solubility in PGMEA and compatibility in color filter applications.
STATEMENT OF THE INVENTION
1. In accordance with the present invention, reactive phthalocyanine dyes comprise unsaturation functional groups and have the following Formula I:
Figure PCTCN2016105696-appb-000001
wherein R is a monovalent hydrocarbon chain that contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, R further contains one of a second ester group, an amide or carbamoyl group, and, still further, R contains one or more hydroxyl or OR’ groups in which R’ can be any of a C1-C12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (-NHCOO-) , an ethylenically unsaturated group, such as an acrylic ester or methacrylic ester group ( (meth) acryloyl group) , or a (meth) acryloyl group containing hydrocarbon chain that contains an ether, amide or carbamoyl (-OOCNH-) group or a second ester group in the chain, and, yet still further, in which R has a total of from 4 to 64 or, preferably, from 7 to 34, or, more preferably, 7 to 16 carbon atoms; wherein M represents divalent metal ion, such as Zn2+, Cu2+, Ni2+, Co2+, or Mg2+; and, wherein, n is 1 to 16, or, preferably, n is 1 to 8, or, preferably, n is from 2 to 8.
2. The reactive phthalocyanine dyes in accordance with the present invention of item 1, wherein R contains an acrylic ester or methacrylic ester group and the number of (meth) acrylic ester groups ranges from 1 to 50, or, preferably, from 2 to 10, and wherein R contains a hydroxyl group so that the number of hydroxyl groups ranges from 1 to 32 or, preferably, from 1 to 8.
3. The reactive phthalocyanine dyes in accordance with the present invention of any one of items 1 or 2, wherein the dye has the following Formula II:
Figure PCTCN2016105696-appb-000002
wherein R1 is a C1-C12 ester or amide containing divalent hydrocarbon chain, R2 is any of H, a C1-C8 alkyl group, an acryloyl group, a methacryloyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group, or an acryloyl or methacryloyl group containing monovalent hydrocarbon chain that further contains a second ester or a carbamoyl (-OOCNH-) linkage in the chain; R3 is any of H or a methyl group; and n ranges 1 to 4.
4. The reactive phthalocyanine dyes in accordance with the present invention of item 3, wherein one or more of the R2 groups contains a (meth) acryloyl end group and a carbamoyl (-OOCN) group, and wherein, the number of carbamoyl groups ranges from 1 to 8 or, preferably, from 1 to 4.
5. In accordance with another aspect of the present invention, formulations for making thin films comprise a reactive phthalocyanine dye of the following Formula I:
Figure PCTCN2016105696-appb-000003
wherein R is a monovalent hydrocarbon radical that contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, R further contains one of a second ester group, or an amide or carbamoyl group, R still further contains one or more hydroxyl or OR’ groups in which R’ can be any of a C1-C12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (-NHCOO-) , an ethylenically unsaturated group, such as an acrylic ester or methacrylic ester group ( (meth) acryloyl group) , or a (meth) acryloyl group containing  hydrocarbon chain that contains an ether, amide or carbamoyl (-OOCNH-) linkage or a second ester group in the chain, and, yet still further in which R has a total of from 4 to 64, or, preferably, from 7 to 16 carbon atoms; wherein M represents divalent metal ion, such as Zn2+, Cu2+, Ni2+, Co2+, or Mg2+; and, wherein, n is 1 to 16, or, preferably, n is 1 to 8, or, preferably, from 2 to 8; and, wherein the formulation comprises further one or more polymeric binders, preferably, the one or more film forming polymeric binders of the present invention comprising acrylic or vinyl polymers containing one or more ethylenically unsaturated groups, such as an acrylate ester or a methacrylate ester, and one or more photoinitiators, wherein the reactive phthalocyanine dye content ranges from 0.1 to 30 wt. %preferably, from 1 to 20 wt. %, or, more preferably from 2 to 15 wt. %, based on the total weight of the formulation, and, further wherein, the total solids content of the formulation ranges from 5 to 60 wt. %, or from 5 to 40 wt. %or, preferably, from 10 to 35 wt. %, or, more preferably, from 15 to 35 wt. %.
6. The thin film formulation in accordance with item 5 of the present invention, wherein the formulation comprises a reactive phthalocyanine dye of the following Formula II:
Figure PCTCN2016105696-appb-000004
wherein R1 is or a C1-C12 ester or amide containing divalent hydrocarbon chain , R2 is any of H, a C1-C8 alkyl group, a (meth) acryloyl group, an acryloyl group containing monovalent hydrocarbon chain that contains a second ester or a carbamoyl group (-OOCNH-) in the chain, a methacryloyl group containing monovalent hydrocarbon chain that contains a second ester or a carbamoyl group (-OOCNH-) in the chain, an allyl group, an epoxy group, or a carboxylic acid group; R3 is any of H or a methyl group; and n=1 to 4.
7. The thin film formulation in accordance with item 5 of the present invention, wherein the one or more polymeric binders is a polymeric binder having an  unsaturated (meth) acrylate ( (meth) acryloyl) group or vinyl group, preferably wherein the (meth) acrylate ( (meth) acryloyl) group or vinyl group further comprises a hydroxyl group.
8. The thin film formulation in accordance with item 6 of the present invention, wherein the one or more polymeric binders is a polymeric binder having an unsaturated (meth) acrylate ( (meth) acryloyl) group or vinyl group.
9. The thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention, wherein the total amount of the one or more polymeric binders ranges from 3 to 30 wt. %or, preferably, from 3 to 25 wt. %, or more preferably, from 3 to 20 wt. %, based on the total weight of the formulation, preferably, wherein the (meth) acrylate ( (meth) acryloyl) group or vinyl group further comprises a hydroxyl group.
10. The thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention, further comprising one or more of an unsaturated monomer, such as methyl methacrylate, one or more complementary pigments or dyes, such as one or more pigments or complementary dyes having a low absorbance as measured by UV/Vis spectrophotometry of 0.25 or less, or, preferably, of 0.2 or less at from 425 to 475 nm, or, preferably, one or more magenta or violet dyes, like [9- (2-carboxyphenyl) -6-diethylamino-3-xanthenylidene] -diethylammonium chloride, to improve color match, and a cross linker, such as divinyl benzene, wherein the total amount of pigment ranges from 0 to 10 wt. %, or, preferably, from 0.1 to 5 wt. %based on the total weight of the formulation.
11. The thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention, further comprising one or more organic solvents in the amount of from 40 to 95 wt. %, or, preferably, from 60 to 90 wt. %, or, more preferably, from 65 to 85 wt. %, based on the total weight of the formulation.
12. The thin film formulation in accordance with any of items 5, 6, 7 or 8 of the present invention, wherein the total amount of the one or more photoinitiators ranges from 0.1 to 8 wt. %or, preferably, from 0.5 to 5 wt. %, or, more preferably, from 0.8 to 3 wt. %, based on the total weight of the formulation of the color resist formulation.
13. In yet another aspect of the present invention, color filters comprise one or more layers made from the composition of any one of items 5, 6, 7, or 8 as a blue color filter.
14. The color filter in accordance with the present invention as set forth in item 13, wherein the one or more layers further comprises one or more of an unsaturated monomer, such as methyl methacrylate, a pigment, such as one or more pigments having a small absorbance from 425 to 475 nm, and a cross linker, such as divinyl benzene.
15. The color filter in accordance with the present invention as set forth in item 13, wherein the one or more layers comprises the reactive phthalocyanine dye in the amount of from 1 to 60 wt. %, or, preferably, from 2 to 20 wt%, by weight as solids.
16. In yet still another aspect of the present invention, methods of making color filters comprise applying the composition of any one of items 5, 6, 7, or 8 onto a support, such as glass, polycarbonate, or other transparent polymer material to form a colored photosensitive composition layer; exposing the colored photosensitive composition layer with light through a mask; and developing the exposed colored photosensitive composition layer to form a pattern on the support.
Unless otherwise indicated, any term containing parentheses refers, alternatively, to the whole term as if no parentheses were present and the term without them (i.e. excluding the content of the parentheses) , and combinations of each alternative. Thus, the term “ (meth) acrylate” refers to any of an acrylate, a methacrylate, and mixtures thereof.
Unless otherwise specified, all temperature units refer to room temperature (~20-22℃) and all pressure units refer to standard pressure.
As used herein, the term “solids” or “total solids” for formulations, this includes all polymers, oligomers and monomers and all non-volatile additives that end up in the product color filter or film, whether they are liquid or not to begin with, and excludes solvents, ammonia and water.
In accordance with the present invention, the inventors have found that by introducing acrylic or methacrylic ester group containing hydrocarbon chains having a second ester group in the chain and at least one hydroxyl or OR’ group which are side chain ether, ester, carboxylic acid, urethane or ethylenically unsaturated groups  into a reactive phthalocyanine dye, the compatibility of developed phthalocyanine blue color resist solutions in color filters was highly improved. Further, because the double bond group of a (meth) acrylic ester can be easily cross-linked with an unsaturation functional polymeric binder during the UV exposure process of color filter fabrication, such compatibility can contribute to color stability. Moreover, the obtained phthalocyanine dye exhibited good solubility in conventional organic solvents, such as propylene glycol monomethyl ether acetate, and thermal stability, as well as significantly higher transmittance (Y) than that of a comparative phthalocyanine dyes in a fabricated color filter.
Preferably, the reactive phthalocyanine dyes of the present invention have 2 or more (meth) acrylate double bond end groups ( (meth) acryloyl groups) , preferably, on one side chain. Such reactive phthalocyanine dyes have better compatibility with an acrylic binder and cross-linker in a color filter forming formulation; the dye of the present invention also has better reactivity during UV curing, thereby bonding the dye onto a polymer network so that dye migration and aggregation can be minimized. As a result, the transmittance of a color filter film in the UV-vis spectrum is increased, and any spectrum change after post-baking, illustrating by ΔE value, is minimized.
The reactive phthalocyanine dyes of the present invention are made in a method whereby the side groups are introduced by reaction between the intermediate substituted phenol, as shown, below, made by condensation of a hydroxycinnamic acid and a glycidyl methacrylate, wherein m is 0 to 40, preferably 0 to 8, and a sulfonyl chloride substituted phthalocyanine:
Figure PCTCN2016105696-appb-000005
The acrylic ester may be formed by reacting glycidyl methacrylate and 4-hydroxycinnamic acid in the presence of a radical polymerization inhibitor, such as hydroquinone,
To form a sulfonyl chloride substituted phthalocyanine, dimethyl formamide (DMF) was added to sodium sulfonate or sulfonic acid substituted phthalocyanine suspended in thionyl chloride solution. The mixture was stirred and heated to reflux for 2 hrs. U pon cooling the solution was poured over cracked ice/water causing a blue solid to form. The solid was washed with water, acetone and dried over vacuum. Then, the obtained blue solid and functional group (acrylic ester and hydroxyl group) substituted phenol was dissolved in 1, 2-dichloroethane. To this solution was slowly added trimethylamine (Et3N) , and the mixture was stirred at 65 ℃ for 24 hrs. After the reaction completed, the solvent was removed, residue was dissolved in CH2Cl2, filtered by silica gel chromatography to remove the salts, and then washed with Na2CO3 (0.5 M aq) , water, and brine. Finally, solvent of the organic layer was removed and the residue was purified on silica gel chromatography to get a dark blue solid.
The reactive phthalocyanine dye of the present invention provides color filters with low absorption in the blue light region, while maintaining high absorption in the green and red light regions, both before and after 230 ℃ post baking.
Representative structures of suitable Dyes are:
Figure PCTCN2016105696-appb-000006
Figure PCTCN2016105696-appb-000007
The reactive phthalocyanine dyes of the present invention can be drawn down into films from formulations thereof in a solvent. The formulations comprise the reactive phthalocyanine dye, one or more polymeric binders, one or more photoinitiators, such as, benzoin, camphorquinone and other such compounds known in the art, and, preferably, one or more complementary dyes or pigments, such as a magenta or violet dyes or pigments or those having a low absorbance as measured by ultraviolet visible (UV/Vis) spectrophotometry of 0.25 or less, or, preferably, of 0.2 or less at from 425 to 475 nm.
Suitable complementary dyes or pigments include, for example, magenta and violet dyes including xanthene dyes, like RhodamineTM B dye (Rhodia) , or tributyl (hexadecyl) phosphonium-4- ( (3- ( (2, 6-dimethylphenyl) (2- (methacryloyloxy) ethyl) iminio) -9- (2-sulfonatophenyl) -3H-xanthen-6-yl) (2- (methacryloyloxy) ethyl) amino) -3, 5-dimethylbenzenesulfonate; Acid Red 52, Acid Red 289; C.I. Pigment Violet 1; dioxazine dyes, such as C.I. Pigment Violet 23; quinacridone dyes, such as C.I. Pigment Violet 19; and squarylium dyes.
Suitable polymeric binders for use in the formulations of the present invention are any acrylic or vinyl polymers having one or more ethylenically unsaturated groups, such as (meth) acryloyl, allyl, or vinyl ether groups on their side chain. Such  polymers may be formed by emulsion or solvent polymerization of acrylic or vinyl monomers, wherein from 0.1 to 50 wt. %, or, preferably, from 1 to 40 wt. %of the total weight of monomers have reactive side chains, such as hydroxyl, amide or carboxyl side chains, followed by reaction with acrylic or vinyl monomers having groups that will react with the polymer in the presence of a radical polymerization inhibitor. Monomers or polymers having carboxyl groups, such as (meth) acrylic acid, or acyl halide groups, such as acryloyl chloride, or polymers thereof will react, respectively, with polymers or monomers having hydroxyl groups, such as hydroxyalkyl (meth) acrylates or vinyl alcohol. Monomers or polymers having hydroxyl groups, such as hydroxyalkyl (meth) acrylates or vinyl alcohol, or polymers thereof will react, respectively, with polymers or monomers having isocyanate groups, such as isocyanatoethyl (meth) acrylate. A preferred polymeric binder in accordance with the present invention is an acrylic binder having from 0.1 to 40 wt. %or, preferably, from 0.5 to 27 wt. %of a monomer that is the condensation reaction product of methacrylic acid (MAA) and glycidyl methacrylate (GMA) . Such a monomer contains an ester group linkage and an hydroxyl group between the two ethylenically unsaturated methacryloyl groups.
Additional components in formulating color filters in accordance with the present invention may include any of addition cross-linkers, pigments, leveling agents, defoaming agents, wetting agents and dispersants. Co-solvents, such as N-methyl-2-pyrrolidone or ethyl lactate, ethanol, can be used in the formulation.
Formulations are all neat liquids, except the polymeric binder which has solvent. In making color filters, the dye, polymeric binder and photoinitiator and any additional components can be added into the formulation prior to forming a film.
Films for blue color filters in accordance with the present invention are formed by conventional methods, such as spin coating, vapor deposition and evaporation methods. Once films are formed, they can be dried at ambient temperature.
The color resists or films of the present invention are useful in color filters for LCDs and luminescent LEDs that have a white or blue backlight.
Examples: Raw materials are described in Table 1, below. All the other reagents and solvents were obtained from commercial suppliers without further purification unless otherwise specified.
Unless otherwise indicated, all units of temperature and pressure are room temperature and standard pressure; and, unless otherwise indicated, all parts and percentages are by weight.
Table 1: Raw Materials used in this invention
Figure PCTCN2016105696-appb-000008
 
SYNTHESIS OF REACTIVE DYES
Example 1-1: Synthesis of acryloyl ester substitute group intermediate of dye-1 by condensation
Figure PCTCN2016105696-appb-000009
4-Hydroxyhydrocinnamic acid (5.9 g, 35.5 mmol) , Tetrabutylammonium Bromide (TBAB) (0.36 g, 1.1 mmol) and anhydrous MeCN (40 mL) were added to a round flask, then glycidyl methacrylate (5.1 g, 35.9 mmol) was added slowly, the mixture was heated to reflux for 24h. After that the solvent was removed, the residue was washed with NaHCO3 (aq, 0.9g/500mL) and extracted with CH2Cl2, then, the solvent was removed; the residue was purified on silica gel chromatography to get slightly green oil (9.89 g, yield 86%) . 1 H NMR (CDCl3, ppm) : 7.01 (d, 2H) , 6.74 (d, 2H) , 6.46 (s, 1 H) , 6.15 (s, 1 H) , 5.62 (s, 1 H) , 4.18 (m, 5H) , 3.05 (s, 1 H) , 2.85 (t, 2H) , 2.61 (t, 2H) , 1.95 (s, 3H) . LC-MS: m/z (M+H) +, 309.1315; m/z (M+NH4) +, 326.1630.
Example 1-2 Synthesis of Dye 1, where n~1 to 4 (n is a distribution of from 1 to 4 groups in various molecules) :
Figure PCTCN2016105696-appb-000010
To 25.0 g (32 mmol) of direct blue 86 suspended in 110 g (862 mmol) of thionyl chloride was added 10.0 mL of DMF. The mixture was stirred and heated to reflux for 2 hrs. Upon cooling the solution was poured over 1500 mL of cracked ice/water causing a blue solid to form. The solid was washed with water, acetone and dried over vacuum. Then, 13.5 g of the obtained blue solid and the substitute group intermediate synthesized in Example 1-1, above, (11.6 g) were dissolved in 1, 2-dichloroethane (200 ml) . To this solution was slowly added triethylamine (25 mL) , and the mixture was stirred at 65 ℃ for 24 hrs. After the reaction completed, the solvent was removed, residue was dissolved in CH2Cl2, filtered by silica gel chromatography to remove the salts, and then washed with Na2CO3 (0.5 M aq) , water, and brine. Solvent of the organic layer was removed and residue was purified on silica gel chromatography to get 7.0 g dark blue solid (compound 1) . 1 H NMR (CDCl3, ppm) : 6.6-6.9 (Ar-H) , 5.4-5.9 (4H) , 4.0-4.1 (10H) , 3.6 (2H, OH) , 2.5-2.7 (8H) ,  1.7 (6H) . 13C NMR (CDCl3, ppm) : 173.4, 167.5, 115.2-154.1 (Ar and double bonds) , 68.3-65.0, 35.8, 30.0, 18.1. LC-MS: m/z (M+H) + 1316.2311.
Example 2-1: Synthesis of Dye 2, where n~ 1-4
Figure PCTCN2016105696-appb-000011
Into a 2 or 3 necked round bottom flask was weighted pre-dried Dye 1 as synthesized in Example 1-2, above, (5 g, 3.32 mmol) , catalyst 1: Triethylene diamine (20 mg) , and catalyst 2: dibutyltin dilaurate (20 mg) . Into the mixture in the round bottom flask, dry dichloromethane (30 mL) (distilled over calcium hydride) was added to completely dissolve all the solids at r.t. by vigorously stirring with a magnetic stir bar. To this reaction mixture, 2-acryloyloxyethyl isocyanate (AOI) (1.519 g, 10.8 mmol) was added dropwise by a disposable syringe to keep the temperature below 25 ℃. The mixture was stirred over night, after that corresponding amount of methanol (0.09 mL) was added to quench the excess amount of AOI. And then most of the solvent was removed under reduced pressure. The residue dichloromethane solution was transferred into a beaker covered by a polytetrafluoroethylene film and then dried in air overnight. The crude product was peeled off from the polytetrafluoroethylene film and then dried under vacuum at room temperature to afford Dye-2 (6.5 g, quantitative yield) . 1 H NMR (CDCl3, ppm) : 6.7-7.5 (Ar-H) , 5.4-6.5 (double bond H) , 3.2-5.3 (H next to N or O) , 1.8-1.9 (CH3) . LC-MS: three cross-linkable groups, m/z (M+H) + 1457.2737; (M+NH4) + 1474.3003; four cross-linkable groups, m/z (M+H) + 1598.3163; (M+NH4) + 1615.3429; five cross-linkable groups, m/z (M+H) + 1968.3886; (M+NH4) + 1985.4151; six cross-linkable groups, m/z (M+H) + 2109.4312; (M+NH4) + 2126.4577; seven cross-linkable groups, m/z (M+H) +2479.5034; (M+NH4) + 2496.53; eight cross-linkable groups, m/z (M+H) + 2620.546; (M+NH4) + 2637.5725; GPC: Mn = 1973, Mw = 2247, PDI = 1.14. Solubility in PGMEA: 19 wt. %. Td =306 ℃ by TGA.
Example 2-1A: Synthesis of Dye 2 from methacryloyloxyethylisocyanate, where n~ 1-4
Reaction of Compound 1 with methacryloyloxyethyl isocyanate (MOI) is as same as the example shown above. LC-MS: two cross-linkable groups, m/z (M+H) +1101.2172; four cross-linkable groups, m/z (M+H) + 1626.3476; six cross-linkable groups, m/z (M+H) + 2151.4781; eight cross-linkable groups, m/z (M+H) + 2676.6086.
Synthesis of Dye 3, where n~ 1-4:
Figure PCTCN2016105696-appb-000012
Into a 2 or 3 necked round bottom flask was weighted pre-dried substituted copper phthalocyanine (1.5 g 0.996 mmol) , triethylamine (0.7 mL, 5 mmol) , and 4-dimethylaminopyridine (49 mg, 0.4 mmol) . Into the mixture in the round bottom flask, dichloromethane was added to completely dissolve all the solids at r. t. by vigorously stirring with a magnetic stir bar. To this reaction mixture, methacryloyl chloride (MAC) (5.6 g, 53.8 mmol) was added dropwise by a disposable syringe. The mixture was stirred at room temperature over night, after that the mixture was washed by over excess of saturated sodium hydroxide aqueous solution and water. The organic phase was dried over sodium sulfate anhydrous. The solid was filtered off and most of the solvent was removed under reduced pressure. The residue dichloromethane solution was transferred into a beaker covered by a polytetrafluoroethylene film and then dried in air overnight. The crude product was peeled off from the polytetrafluoroethylene film and then dried under vacuum at room temperature to afford Dye 3 that is ready to be used. LC-MS: four cross-linkable groups, m/z (M+H) + 1452.2836; (M+NH4) + 1469.3101; six cross-linkable groups, m/z (M+H) + 1890.382; (M+NH4) + 1907.4086; eight cross-linkable groups, m/z (M+H) + 2328.4805; (M+NH4) + 2345.507.
Synthesis of Comparative Compound 2C:
Figure PCTCN2016105696-appb-000013
To 5.0 g (6.4 mmol) of direct blue 86 suspended in 11 g (86.2 mmol) of thionyl chloride was added 2.0 mL of DMF. The mixture was stirred and heated to reflux for 2 hrs. Upon cooling the solution was poured over 300 mL of cracked ice/water causing a blue solid to form. The solid was washed with water, acetone and dried under vacuum. Then, 0.3 g of the obtained blue solid and heptylphenol (0.16 g) were dissolved in 1, 2-dichloroethane (20 ml) . To this solution was slowly added trimethylamine (Et3N) (0.1 g) , and the mixture was stirred at 60 ℃ for 24 hrs. After the reaction completed, the solvent was removed; and the residue was dissolved in CH2Cl2, filtered by silica gel chromatography to remove the salts, and then washed with Na2CO3 (0.5 M aq) , water, and brine. The solvent or organic layer was removed and residue was purified via silica gel chromatography to get 0.22 g dark blue solid (compound 2) . 1 H NMR (CDCl3, ppm) : 6.5-8.0 (m, 22H) , 2.0-3.0 (m, 4H) , 1.0-1.6 (m, 20H) , 0.78 (m, 6H) . LC-MS: m/z (M+H) + 1084.2820.
The above-produced dyes were tested, as follows:
Dye solubility: Procedure A: 1. Add 0.6g of the indicated dye to a 10 mL bottle. 2. Add 2.4g PGMEA into the same bottle. 3. Shake the bottle at 25 ℃ at 180 cycles/min overnight (12-16 hours) and then keeping the bottle at 25 ℃ overnight (12 -16 hours) without shaking. 4. Filter the mixture with a 0.45 μm filter. 5. Prepare three round Al plates (5 cm diam) and weigh them (balance error 0.0001g) . 6. Add 0.7g of the indicated filtered solution to each plate and weigh it (balance error 0.0001g) . 7. Put all the Al plates on 150 ℃ hot-plate for 30 min to remove the solvent. 8. Weigh Al plates (balance error 0.0001g) . 9. Repeat step 7 and step 8 until the weight no longer changes, and then record the final Al plate weights. 10. Calculate the average solubility of dye in PGMEA, which is the amount lost from the film on the Al plate divided by the amount of PGMEA used, multiplied by 100%.
Thermal stability: The dye was dissolved in the PGMEA at a 9 wt. %concentration, and then the solution was filtered with 0.45 μm PTFE filter to remove big particles. The prepared dye solution (1.2 g) was added into the binder solution (1.08 g) , and then the solution was shaken for 2 h at room temperature. The final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) . The wet film was dried at 90 ℃ for 90 seconds, and then post baked at 230 ℃ for 30 min. Color change (ΔE) of the film was tested before and after baking at 230 ℃. A more stable film gives a lower ΔE.
Light stability: The indicated dye was dissolved at a 9 wt. %concentration PGMEA, and then the solution was filtered with 0.45 μm PTFE filter to remove big particles. The prepared dye solution (1.2 g) was added into the binder solution (1.08 g) , and then the solution was shaken for 2 h at room temperature. The final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) . The wet film was dried at 90 ℃ for 90 seconds, and then post bake at 230 ℃ for 30 min. Color change (ΔE) of the film was tested before and after UV exposure. A more stable film gives a lower ΔE.
Compatibility: The indicated dye was dissolved at a 6.9 wt. %concentration in PGMEA with 900ppm of benzophenone. The prepared dye solution (1 g) was added into the binder solution (1.3 g) , and then the solution was shaken for 2 h at room temperature. After that, the solution was filtered with a 0.45 μm PTFE filter to remove big particles. The final dye solution was spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 250 rpm, time: 18 s) . The wet film was dried at 90 ℃ for 90 seconds. The UV-vis spectra and microscopy image was tested using SHIMADZU UV3600 (Shimadzu Corp, Japan) UV-vis spectrophotometer. The results are shown in Table 3, below.
Table 2: Summary of solubility, thermal stability and light stability for examples
Figure PCTCN2016105696-appb-000014
 
As shown in Table 2, above, reactive Dye 1 is more soluble in solvent and provides improved light stability when compared to Comparative Compound 2C.
Table 3: Absorption Spectrum in UV/Vis Spectrum -Color Space
Figure PCTCN2016105696-appb-000015
As shown in Table 3, above, the Color space for Dye 1 absorbs far less blue light than does the color space for Comparative Compound 2C.
Example 3: A blue color filter was fabricated using [9- (2-carboxyphenyl) -6-diethylamino-3-xanthenylidene] -diethylammonium chloride (Compound 3, shown in the formula below) as a complementary dye. Three dye-containing compositions for blue color filters were evaluated.
Figure PCTCN2016105696-appb-000016
Film Composition 3-1:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 71.13 g
Ethanol (organic solvent) 11.62 g
Dye 1 3.62 g
Compound 3 0.74 g
Acrylic Polymer Binder 12.89 g
Film Composition 3-2:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 69.32 g
Ethanol (organic solvent) 13.53 g
Dye 1 3.45 g
Compound 3 0.86 g
Acrylic Polymer Binder 12.84 g
Film Composition 3-3:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 72.32 g
Ethanol (organic solvent) 10.47 g
Dye 1 3.78 g
Compound 3 0.67 g
Acrylic Polymer Binder 12.76 g
Preparing the films:
Formulations of each of the above composition were spin coated onto a glass plate (glass thickness: 1 mm, spinning rate: 200-450 rpm, time: 18 s) . The wet film was dried at 90 ℃ for 90 seconds.
Comparative Film Composition 3-1C:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 71.13 g
Ethanol (organic solvent) 11.62 g
Comparative Compound 2C 3.62 g
Compound 3 0.74 g
Acrylic Polymer Binder 12.89 g
Film Composition 3-2C:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 69.32 g
Ethanol (organic solvent) 13.53 g
Comparative Compound 2C 3.45 g
Compound 3 0.86 g
Acrylic Polymer Binder 12.84 g
Film Composition 3-3C:
Compounds in the composition described below were mixed and dissolved.
PGMEA (organic solvent) 72.32 g
Ethanol (organic solvent) 10.47 g
Comparative Compound 2C 3.78 g
Compound 3 0.67 g
Acrylic Polymer Binder 12.76 g
Chromaticity: The fabricated color filter films made , as above, were analyzed for color space specified by x, y and Y, known as the CIE xyY color space to specify colors. In practice, the x and y describe the color coordinate of a color in the color space, and the Y describes a measure of the brightness (transmittance) or luminance of a color.
Transmittance – UV/Vis Spectrophotometry (Y) : The films were tested on a Hunterlab UltraScan Pro spectrometer (Hunter Associates Laboratory, Inc., Reston, VA, using C2 (CIE illuminant C) as the light source. Results are shown in Table 4, below. Absorbance is determined as the value (1 –Transmittance) .
Table 4: Color Performance: Transmittance and Chromaticity
Figure PCTCN2016105696-appb-000017
The evaluation results show that the inventive phthalocyanine dye has thermal stability and light stability (ΔE<3 for both hard-baking and UV exposure) , but also has a high compatibility in a color resist solution. The compatibility results indicate that the inventive phthalocyanine Dye 1 has higher transmittance at the target color than the Comparative Compound 2C. When blending with a complementary dye, at the same target color (y=0.120) , a color filter of the inventive phthalocyanine Dye 1 containing composition showed improved transmittance (Y) . Therefore, the inventive phthalocyanine dyes may provide an improved LCD color filter.
Example 4: Films were made and tested, as follows:
Synthesis of polymeric binder 1:
Into a 3 neck round bottom flask, AIBN (0.096 g) and PGMEA (70 g) were weighted into it. The mixture was sonicated for 5 min, and then marked as initiator stock solution which was ready for use.
Into a 1 neck round bottom flask, methacrylic acid (6.863 g) and butyl methacrylate (14.062 g) were weighted, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable  syringe, which was marked as syringe number 2. Into the 3 neck round bottom flask containing the rest of the two third of the initiator stock solution (47 g) , the monomer from syringe number 1 and the initiator from syringe number 2 were added drop-wise simultaneously at 95 ℃. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 ℃ for 2 hours under nitrogen protection. Shift the piping from the nitrogen to atmosphere, the reaction mixture was then heated to 120 ℃, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane, triphenyl phosphine (0.18 g) and glycidyl methacrylate (9.075 g) were added into the mixture. The mixture was then stirred at 120 ℃ for 120 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-1, with solid content at 30 wt%. As measured by GPC, Mn =32725, Mw=187290, PDI=5.72.
Synthesis of polymeric Binder 2:
Into a 3 neck round bottom flask, AIBN (0.098 g) and PGMEA (70 g) were weighted into it. The mixture was sonicated for 5 min, and then marked as initiator stock solution which was ready for use.
Into a 1 neck round bottom flask, methacrylic acid (5.646 g) and Butyl methacrylate (17.354 g) were weighted, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable syringe, which was marked as syringe number 2. Into the 3 neck round bottom flask containing the rest of the two third of the initiator stock solution (47 g) , the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 ℃. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 ℃ for 2 hours under nitrogen protection. Shift the piping from the nitrogen to atmosphere, the reaction mixture was then heated to 120 ℃, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane, triphenyl phosphine (0.14 g) and glycidyl methacrylate (7 g) were added into the mixture. The mixture was then stirred at 120 ℃ for 120 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-2, with solid content at 30 wt%. As measured by GPC, Mn =32487, Mw=197460, PDI=6.08.
Synthesis of polymeric Binder 3:
Into a 250ml three-neck round bottom flask, equipped with N2 inlet, condenser and mechanical stirring, PGMEA (70 g) was weighted into it. Into a 1 neck round bottom flask, methacrylic acid (7.52 g) , Benzyl methacrylate (18.512 g) and Tert-butyl peroxy-2-ethylhexanoate (2.343 g) were weighted, and then the solution mixture was transferred into a dropping funnel, the monomer and initiator mixture were added dropwise simultaneously at 120 ℃ within 30 min. Then the reaction mixture was stirred at 120 ℃ for 45 min under nitrogen protection. Shift the piping from the nitrogen to atmosphere, 10%hydroquinone solution in 1, 4-dioxane (0.098 g) , 2, 4, 6-Tris (dimethylaminomethyl) phenol (0.056 g) and glycidyl methacrylate (3.967 g) were added into the mixture. The mixture was then stirred at 120 ℃ for 300 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-4, with solid content at 30 wt%. As measured by GPC, Mn =993, Mw=4407, PDI=4.44.
Synthesis of polymeric Binder 4:
Into a 250ml three-neck round bottom flask, equipped with N2 inlet, condenser and mechanical stirring, PGMEA (70 g) was weighted into it. Into a 1 neck round bottom flask, methacrylic acid (7.52 g) , benzyl methacrylate (18.512 g) and tert-butyl peroxy-2-ethylhexanoate (0.195 g) were weighted, and then the solution mixture was transferred into a dropping funnel, the monomer and initiator mixture were added dropwise simultaneously at 120 ℃ within 30 min. Then the reaction mixture was stirred at 120 ℃ for 45 min under nitrogen protection. Shift the piping from the nitrogen to atmosphere, 10%hydroquinone solution in 1, 4-dioxane (0.098 g) , 2, 4, 6-tris (dimethylaminomethyl) phenol (0.056 g) and glycidyl methacrylate (3.967 g) were added into the mixture. The mixture was then stirred at 120 ℃ for 300 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-5, with solid content at 30 wt%. As measured by GPC, Mn =12938, Mw=282720, PDI=21.85.
Synthesis of polymeric Binder 5:
Into a 250ml three-neck round bottom flask, equipped with N2 inlet, condenser and mechanical stirring, PGMEA (70 g) was weighted into it. Into a 1 neck round bottom flask, methacrylic acid (8.556 g) , dicyclopentadiene acrylate (7.409 g) , Benzyl  methacrylate (8.053 g) and tert-butyl peroxy-2-ethylhexanoate (2.162 g) were weighted, and then the solution mixture was transferred into a dropping funnel, the monomer and initiator mixture were added dropwise simultaneously at 120 ℃ within 30 min. Then the reaction mixture was stirred at 120 ℃ for 120 min under nitrogen protection. Shift the piping from the nitrogen to atmosphere, 2, 4, 6-Tris (dimethylaminomethyl) phenol (0.084g) and glycidyl methacrylate (5.983 g) were added into the mixture. The mixture was then stirred at 120 ℃ for 120 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-3, with solid content at 30 wt%. As measured by GPC, Mn =1202, Mw=337650, PDI=281.
Synthesis of Comparative polymeric binder 6: Into a 3 neck round bottom flask, AIBN (0.168 g) and PGMEA (70 g) were weighted into it. The mixture was sonicated for 5 min, and then marked as initiator stock solution which was ready for use. Into a 1 neck round bottom flask, methyl methacrylate (14.019 g) and ethyl methacrylate (15.981 g) were weighed, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable syringe, which was marked as syringe number 2. Into the 3 neck round bottom flask containing the rest of the two third of the initiator stock solution (47 g) , the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 ℃. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 ℃ for 2 hours. The reaction mixture was then heated to 120 ℃, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at 120 ℃ for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder 6, with solid content at 30 wt%. GPC: Mn = 22522, Mw = 57188, PDI = 2.54. A separate batch of this solution was marked as XT0513. GPC: Mn = 21174, Mw = 53146, PDI = 2.5.
Synthesis of Comparative polymeric binder 7:
Into a 3 neck round bottom flask, AIBN (0.175 g) and PGMEA (70 g) were weighed into it. The mixture was sonicated for 5 min, and then marked as initiator  stock solution which was ready for use. Into a 1 neck round bottom flask, methacrylic acid (5.019 g) , methyl methacrylate (11.673 g) and ethyl methacrylate (13.307 g) were weighed, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable syringe, which was marked as syringe number 2. Into the 3 neck round bottom flask containing the rest of the two third of the initiator stock solution (47 g) , the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 ℃. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 ℃ for 2 hours. The reaction mixture was then heated to 120 ℃, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at 120 ℃ for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-7, with solid content at 30 wt%. GPC: Mn = 25535, Mw =60422, PDI = 2.37. A separate batch of this solution was marked as XT0514. GPC: Mn = 23666, Mw = 57820, PDI = 2.4.
Synthesis of Comparative polymeric binder 8:
Into a 3 neck round bottom flask, AIBN (0.169 g) and PGMEA (70 g) were weighted into it. The mixture was sonicated for 5 min, and then marked as initiator stock solution which was ready for use. Into a 1 neck round bottom flask, styrene (5.865 g) , methyl methacrylate (11.278 g) and ethyl methacrylate (12.857 g) were weighed, and then the solution mixture was transferred into a disposable syringe, which was marked as syringe number 1. One third of the initiator stock solution (23 g) was transferred into another disposable syringe, which was marked as syringe number 2. Into the 3 neck round bottom flask containing the rest of the two third of the initiator stock solution (47 g) , the monomer from syringe number 1 and the initiator from syringe number 2 were added dropwise simultaneously at 95 ℃. Addition of syringe number 1 took 15 min and syringe number 2 took 17 min. Then the reaction mixture was stirred at 95 ℃ for 2 hours. The reaction mixture was then heated to 120 ℃, and 3 drops of 10%hydroquinone solution in 1, 4-dioxane was added into the mixture to terminate the reaction. The mixture was then stirred at  120 ℃ for 15 min, then cool down to room temperature. Then the binder solution was used directly without further purification. This solution was marked as binder-8, with solid content at 30 wt%. GPC: Mn = 20902, Mw = 53817, PDI = 2.57. Another batch of this solution was marked as XT0514. GPC: Mn = 23666, Mw = 57820, PDI = 2.4.
The monomer composition and molecular weight of each binder are summarized in Table 5, below. MAA-GMA represents a condensation product of methacrylic acid and glycidyl methacrylate.
Table 5: Polymeric Binders
Figure PCTCN2016105696-appb-000018
Example 4-1: Film formation. Formulations of Dye 2 in a thin film with 2 wt. %chromophore (CuPc) loading are shown in Table 6, below. All the films were prepared by spin coating the indicated composition on a pre-cut square glass using 600 rpm for 18 seconds.
Table 6: Film Formulations
Figure PCTCN2016105696-appb-000019
Figure PCTCN2016105696-appb-000020
The films were evaluated for blue color transmittance and the results of the transmittance spectra of the thin films are set forth in Tables 7A, 7B, and 7C, below.
Table 7A: Absorbance of Films
Figure PCTCN2016105696-appb-000021
The films with each of inventive Dyes 1 or 2 have a low absorbance in the blue light region of the color space, especially in Example 4-1.
Table 7B: Absorbance of Films
Figure PCTCN2016105696-appb-000022
The films the inventive Dye 1 or 2 have low absorbance in the blue light region of the color space, especially in Example 4-2.
Table 7C: Transmittance of Films
EXAMPLE 400 nm 420 nm 450 nm 480 nm 510nm 540 nm
4-3 0.209 0.102 0.034 0.021 0.048 0.195
4-6 0.294 0.143 0.054 0.031 0.049 0.182
The films with each of inventive Dyes 1 or 2 have a low absorbance in the blue light region of the color space, especially in Example 4-3. Inventive Dye 2 containing carbamoyl linkages along the acrylic ester chains of the dye compound generally outperforms Inventive Dye 1 interms of absorbance in the region of blue light. 
The evaluation results showed that the inventive cross-linkable reactive dye metal phthalocyanine showed high transmittance (390-510 nm) in a colorant-binder film matrix. The results indicate that multiple cross-linkable end groups tethered by carbamate or ester linkers decreased intermolecular aggregation.
Example 5: Formulated Films
Films were made with the formulations indicated in Tables 8 and 9, below by spincoating. In each case, about 1 g of the indicated formulation solution was dropped on the top of on a pre-cut square glass, then spin coated at 600 rpm for 18 seconds or at 250 rpm for the 5 wt. %dye loading. The spincoater used was a  “smart coater 100” (Best Tools, LLC, Rolla, MO) . The films were pre-baked at 100 ℃ for 100 sec. to remove solvent and then baked at 230 ℃ for 30 minutes. The same Tables 8 and 9, below, indicate the performance of the films.
Tables 8, and 9, below, show that the inventive binders made so as to have a hydroxyl group and a side chain acrylic group exhibits dramaitically improved heat stability and reduced absorption in blue light, especially after heating. In addition, the inventive examples show a much greater phase compatibility in formulation than the film with the comparative binder without a hydroxyl group on the side chain.
Table 8: Color resist composite formulation and evaluation
Figure PCTCN2016105696-appb-000023
Table 9: Color resist composite formulation and evaluation - Comparative
Figure PCTCN2016105696-appb-000024
Figure PCTCN2016105696-appb-000025

Claims (12)

  1. A reactive phthalocyanine dye comprising unsaturation functional groups and having the following Formula I:
    Figure PCTCN2016105696-appb-100001
    wherein R is a monovalent hydrocarbon chain that contains at least one ethylenically unsaturated acrylic ester group or methacrylic ester group, R further contains one of a second ester group, an amide group or carbamoyl group, R still further contains one or more hydroxyl group or OR’ groups in which R’ can be any of a C1-C12 alkyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group (-NHCOO-) , an ethylenically unsaturated group, or a (meth) acryloyl ester group containing hydrocarbon chain that contains an ether, amide or carbamoyl (-OOCHN-) group or a second ester group in the chain, and, yet still further, in which R has a total of from 4 to 64 carbon atoms; wherein M represents divalent metal ion; and, wherein, n is 1 to 16.
  2. The reactive phthalocyanine dye as claimed in claim 1, wherein R is a monovalent hydrocarbon chain that contains at least one ethylenically unsaturated (meth) acrylic ester group, R further contains a second ester group, and R still further contains one or more hydroxyl groups.
  3. The reactive phthalocyanine dye as claimed in claim 1, wherein R is a monovalent hydrocarbon chain that contains at least one ethylenically unsaturated (meth) acrylic ester group, R further contains a second ester, group, and R still further contains one or more OR’ groups in which R’ can be any of an ethylenically unsaturated group, a (meth) acryloyl ester group containing hydrocarbon chain that contains either a carbamoyl (-OOCNH-) linkage or a second ester group in the chain.
  4. The reactive phthalocyanine dye as claimed in claim 1, wherein R has a total of from 7 to 34 carbon atoms.
  5. The reactive phthalocyanine dye as claimed in claim 1, wherein M represents the divalent metal ion Cu2+.
  6. The reactive phthalocyanine dye as claimed in claim 1, wherein n is from 2 to 8.
  7. The reactive phthalocyanine dye as claimed in claim 1, wherein the number of unsaturated (meth) acrylic ester groups ranges from 2 to 10, and wherein R contains a hydroxyl group so that the number of hydroxyl groups ranges from 1 to 8.
  8. The reactive phthalocyanine dye as claimed in claim 1, wherein the dye has the following Formula II:
    Figure PCTCN2016105696-appb-100002
    wherein R1 is a C1-C12 ester or amide containing divalent hydrocarbon chain, R2 is any of H, a C1-C8 alkyl group, an acryloyl group, a methacryloyl group, an allyl group, an epoxy group, a carboxylic acid group, a urethane group, or an acryloyl or methacryloyl group containing monovalent hydrocarbon chain that further contains a second ester or a carbamoyl (-OOCNH-) linkage in the chain; R3 is any of H or a methyl group; and n=1 to 4.
  9. The reactive phthalocyanine dye as claimed in claim 8, wherein, wherein one or more of the R2 groups contains a (meth) acryloyl end group and a carbamoyl (-OOCNH-) group, and wherein, and the number of carbamoyl groups ranges from 1 to 4.
  10. A formulation for making thin films comprise a reactive phthalocyanine dye as claimed in claim 1, wherein the formulation comprises further one or more polymeric binders, and one or more photoinitiators, wherein the reactive phthalocyanine dye content ranges from 0.1 to 30 wt. %, based on the total weight of  the formulation, and, further wherein, the total solids content of the formulation ranges from 5 to 60 wt. %.
  11. The formulation as claimed in claim 10, wherein the one or more polymeric binders are acrylic or vinyl polymers that contain one or more ethylenically unsaturated groups.
  12. The formulation as claimed in claim 10, wherein the formulation further comprises one or more complementary dyes or pigments.
PCT/CN2016/105696 2016-11-14 2016-11-14 Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same WO2018086116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105696 WO2018086116A1 (en) 2016-11-14 2016-11-14 Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105696 WO2018086116A1 (en) 2016-11-14 2016-11-14 Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same

Publications (1)

Publication Number Publication Date
WO2018086116A1 true WO2018086116A1 (en) 2018-05-17

Family

ID=62110153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105696 WO2018086116A1 (en) 2016-11-14 2016-11-14 Copper phthalocyanine reactive dyes and color resist composites for liquid crystal display containing the same

Country Status (1)

Country Link
WO (1) WO2018086116A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575113A (en) * 2009-09-29 2012-07-11 富士胶片株式会社 Colorant multimer, colored curable composition, color filter and method for producing the same, and solid-state image sensor, image display device, liquid crystal display device and organic el display with the color filter
CN103205139A (en) * 2012-01-16 2013-07-17 清华大学 Polymerizable dye monomers, color polymer emulsion and preparation methods thereof
CN104334594A (en) * 2012-07-30 2015-02-04 富士胶片株式会社 Coloring curable composition and color filter
JP2015068852A (en) * 2013-09-26 2015-04-13 富士フイルム株式会社 Color filter, and transmission type liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575113A (en) * 2009-09-29 2012-07-11 富士胶片株式会社 Colorant multimer, colored curable composition, color filter and method for producing the same, and solid-state image sensor, image display device, liquid crystal display device and organic el display with the color filter
CN103205139A (en) * 2012-01-16 2013-07-17 清华大学 Polymerizable dye monomers, color polymer emulsion and preparation methods thereof
CN104334594A (en) * 2012-07-30 2015-02-04 富士胶片株式会社 Coloring curable composition and color filter
JP2015068852A (en) * 2013-09-26 2015-04-13 富士フイルム株式会社 Color filter, and transmission type liquid crystal display device

Similar Documents

Publication Publication Date Title
CN101373329B (en) Colored cured composition
CN102799067B (en) Colored curable resin composition
CN104109218A (en) (meth)acrylate-based polymer, composition comprising same and use thereof
CN106164180B (en) Rhodamine system coloured composition
CN102575113A (en) Colorant multimer, colored curable composition, color filter and method for producing the same, and solid-state image sensor, image display device, liquid crystal display device and organic el display with the color filter
CN105652596A (en) Colored photosensitive resin composition
CN104932199A (en) Radiation-sensitive composition, cured film, display device and colorants dispersion
KR101328782B1 (en) Organic pigments for colour filters
WO2008105552A1 (en) Radiation-sensitive resin composition, spacer for liquid crystal display element, protective film, and method for producing spacer for liquid crystal display element or protective film
CN105189431A (en) Vinyl-group-containing fluorene compound
CN103454859A (en) Colored curable resin composition
TW202221052A (en) Photosensitive resin composition, and method for producing same, color filter, and method for producing same, and image display element
CN105319848A (en) Colored curable resin composition
CN103172626A (en) Dye compound
CN110073253B (en) Resin composition for color filter, method for producing resin composition for color filter, and color filter
DE60122903T2 (en) THERMALLY STABLE ANTHRACINE DYES WITH COPOLYMERIZABLE VINYL GROUPS
CN102681346B (en) Photosensitive composition
CN102040795A (en) Resin composition
KR20100071080A (en) Non-aqueous pigment dispersion composition
CN102914943B (en) Colored curable resin composition
CN107783373A (en) Colored curable resin composition, colour filter and display device
JPWO2017204079A1 (en) Photosensitive resin composition for forming black column spacer, black column spacer and image display device
KR20160037180A (en) Phthalocyanine dye used for color filter of lcd
JP2007503509A (en) Ethylenically unsaturated blue anthraquinone dye
DE60207513T2 (en) Anthraquinone dyes with copolymerizable vinyl groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921333

Country of ref document: EP

Kind code of ref document: A1