WO2018086088A1 - 四旋翼飞行器 - Google Patents

四旋翼飞行器 Download PDF

Info

Publication number
WO2018086088A1
WO2018086088A1 PCT/CN2016/105587 CN2016105587W WO2018086088A1 WO 2018086088 A1 WO2018086088 A1 WO 2018086088A1 CN 2016105587 W CN2016105587 W CN 2016105587W WO 2018086088 A1 WO2018086088 A1 WO 2018086088A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
sensor
quadrotor
angular velocity
signal
Prior art date
Application number
PCT/CN2016/105587
Other languages
English (en)
French (fr)
Inventor
钟玲珑
Original Assignee
钟玲珑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钟玲珑 filed Critical 钟玲珑
Priority to PCT/CN2016/105587 priority Critical patent/WO2018086088A1/zh
Publication of WO2018086088A1 publication Critical patent/WO2018086088A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present invention relates to a quadrotor aircraft, which belongs to the field of drones.
  • a miniature four-rotor aircraft is an electric, vertically traversable (VTOL) aircraft that is operated by radio ground-controlled remote control or/and autonomously controlled. It is a form of rotorcraft that is functionally vertical. Aircraft. It uses aerodynamics to overcome its own weight, has a simple structure and flexible control, and has gained more and more attention.
  • VTOL vertically traversable
  • Rotorcraft unmanned aerial vehicles are much slower to develop than fixed-wing UAVs.
  • Fixed-wing UAVs are already very mature in technology, and have demonstrated their superior operational performance in local wars over the past two decades, and have made great contributions to the victory of the US, Israel and other countries in the war [2].
  • the rotor-type vertical take-off and landing aircraft has more advantages than the fixed-wing drone: vertical take-off and landing, air hovering, flying in any direction, small take-off and landing site, strong environmental adaptability, and high intelligence.
  • non-human helicopters can perform a variety of non-lethal tasks as well as perform various hard and soft killing tasks, including reconnaissance, surveillance, target interception, bait, attack, and communication relay.
  • unmanned helicopters have broad application prospects in atmospheric monitoring, traffic monitoring, resource exploration, power line monitoring, and forest fire prevention.
  • tail rotor control and rotor tilt problems can be ignored because the two pairs of motors on the diagonal rotate in opposite directions, just offsetting the torque they generate. That is, the quadrotor does not require a tail rotor to counteract the counter-torque and avoid complex rotor tilt control to achieve various flight attitudes. Due to its unique symmetry and multi-rotor, the attitude of the flight is achieved by adjusting the speed of the four rotors.
  • a quadrotor has a highly coupled dynamics, and a change in rotor speed will affect at least the motion in three degrees of freedom. For example, reducing the speed of the right rotor, the left and right lifts are unbalanced, which will cause the helicopter to roll to the right; the left and right sides of a group of rotors The torque and the torque generated by the rotors in front and rear are unbalanced, which will cause the helicopter to yaw to the right; in addition, the rolling motion will cause the helicopter to translate to the right, thus changing the direction of advancement.
  • the present invention provides a quadrotor aircraft, including a receiver, a processor, an auxiliary power supply, a communication serial port, a tilt sensor, a height sensor, an angular velocity sensor, an industrial computer, a signal input device, a signal output device, and a plurality of drivers.
  • the processor is respectively connected to an auxiliary power source, a communication serial port, a tilt sensor, a height sensor, an angular velocity sensor, a signal input device and a signal output device, wherein the receiver is connected to the processor through a signal input device, and the industrial computer passes through the communication serial port. Connect to the processor.
  • the plurality of drivers include a first driver, a second driver, a third driver, and a fourth driver, and the first driver, the second driver, the third driver, and the fourth driver are respectively connected to the signal output device. .
  • the first driver, the second driver, the third driver and the fourth driver are respectively connected to the rotors.
  • the flight system is powered by a lithium battery, and the auxiliary power source is used to supply power to the onboard electronic device.
  • the flight system has a wireless communication part for receiving a ground remote control signal and obtaining a flight instruction.
  • the tilt sensor can detect the tilt angle in the X and Y orthogonal directions, the detection range is 90°, the detection precision is 0.0025°, the sensitive component adopts the overdamped frequency response output, and the anti-vibration capability is strong, the chip It is powered by 5V and has both analog and SPI output interfaces for outputting dip and temperature information.
  • the height sensor detects the atmospheric pressure of different heights, and then converts the pressure signal into a height signal according to the correspondence relationship between the height and the pressure;
  • the power supply voltage of the chip is 2.4V-3.3V, and the measuring range is 30kPa- 120kPa, 3Pa accuracy, built-in temperature sensor, pressure information and temperature information can be output via SPI interface.
  • the angular velocity sensor comprises an angular velocity detecting piezoelectric gyro, and the mounting cymbal is perpendicular to each other.
  • the supply voltage is 2.7V-5.25V
  • the maximum detection angular velocity is ⁇ 300deg./sec.
  • the zero output voltage is 1.35V
  • the scale factor is 0.67mV/deg. /sec.
  • the frequency response is up to 50Hz.
  • the quadrotor aircraft provided by the invention is light weight, small in size and low in power consumption; considering modularization, interface standardization, and reserved expandable ports, enhancing the scalability of the whole device It is easy to upgrade, realizes autonomous flight of the aircraft, and can complete tasks such as trajectory tracking and obstacle avoidance.
  • FIG. 1 is a schematic structural view of a four-rotor aircraft according to the present invention.
  • FIG. 2 is a schematic diagram of a control flow of a quadrotor according to the present invention.
  • Reference numerals 1-receiver; 2-processor; 3-auxiliary power supply; 4-communication serial port; 5-inclination sensor; 6-height sensor; 7-angular speed sensor; 8-IPC; Input device; 10-signal output device; 11-first driver; 12-second driver; 13-third driver; 14-fourth driver.
  • the receiver 1 is connected to the processor 2 via a signal input device 9, and the industrial computer 8 is connected to the processor 2 via a communication serial port 4.
  • the plurality of drivers include the first driver 11, the second driver 12, the third driver 13, and the fourth driver
  • the first driver 11, the second driver 12, the third driver 13, and the fourth driver 14 are connected to the signal output device 10, respectively.
  • the first driver 11, the second driver 12, the third driver 13, and the fourth driver 14 are respectively connected to the rotors.
  • the flying system is powered by a lithium battery, and the auxiliary power supply 3 is used to supply power to the onboard electronic equipment.
  • the flight system has a wireless communication section for receiving ground control signals and obtaining flight instructions.
  • the present invention specifically includes an auxiliary power supply portion, a wireless communication portion, a signal acquisition portion, and a signal processing and control strategy decision portion.
  • it also includes parts such as the body, motor drive, motor, rotor and battery not shown.
  • the power supply of the machine is a lithium battery.
  • the auxiliary power supply is used to supply power to the onboard electronic equipment.
  • the wireless communication part is used to receive ground remote control signals to obtain flight instructions.
  • the signal acquisition part mainly includes various types of sensors, which are used to collect the various required flights.
  • the signal processing part is used to modulate the sensor signal into a signal that can be directly read by the DSP;
  • the control decision part integrates the remote control command and various types of sensor information to derive a flight control strategy, and controls the rotational speed of the four rotors, Thereby the aircraft is flying according to a predetermined instruction.
  • the dotted line in the figure is the control circuit part of the system.
  • the control system is the core of the four-rotor flight control. It aggregates the sensor acquisition information, then gives control decisions based on the current flight state, and adjusts the motor to run at a predetermined speed to complete the flight control of the quadrotor. According to the flight function to be realized by the quadrotor, the tasks of the control system are as follows:
  • the auxiliary power supply section is mainly used to supply power to the processing chip on the controller, and the power supply of the fuselage is performed through a 3S lithium battery, and the power supply voltage is 11.1V.
  • the required voltage of the control board is 5V and 3.3V.
  • the 5V voltage is provided by the 5V power supply of the electronic governor and the control board.
  • the 3.3V is obtained by the single-chip linear power conversion chip LM3940 on the control board.
  • the pressure sensor used for height detection has high-precision pressure detecting capability and temperature compensation function.
  • the atmospheric pressure of different heights is detected by the sensor, and then the pressure signal is converted into a height signal according to the correspondence of the height---pressure.
  • the chip supply voltage is 2.4V-3.3V
  • the measurement range is 3 0kPa-120kPa
  • precision 3Pa built-in temperature sensor, can output pressure information and temperature f ⁇ information through SPI interface.
  • the dual-axis tilt sensor used for tilt detection enables the tilt detection in the X and Y orthogonal directions with a detection range of ⁇ 90° and a detection accuracy of 0.0025°.
  • Sensitive components use over-damped frequency response output and strong anti-vibration capability.
  • the chip is powered by 5V and has both analog and SPI output interfaces for outputting dip and temperature information.
  • the angular velocity detecting piezoelectric gyro is perpendicular to each other to detect angular velocities in three directions of X, Y, and ⁇ .
  • the chip's supply voltage is 2.7V-5.25V
  • the maximum detection angular velocity is ⁇ 300deg./ SeC .
  • the zero output voltage is 1.35V
  • the scale factor is 0.67mV/deg./sec.
  • the frequency response is up to 50Hz.
  • the position and attitude double closed loop control method is used to design the control law, and the control law design and simulation are respectively attempted by using the PD control, the Backstepping control, and the sliding mode control method.
  • the controller divides the aircraft control into inner ring attitude control and outer ring position control.
  • the inner ring attitude control is used to maintain the balance of the aircraft, and the outer ring control is used to achieve the aircraft reaching the designated position.
  • the four-rotor aircraft provided by the present invention is light weight, small in size, low in power consumption; considering modularization, interface standardization, and reserved expandable ports, enhancing the scalability of the whole device It is easy to upgrade, realizes autonomous flight of the aircraft, and can complete tasks such as trajectory tracking and obstacle avoidance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种四旋翼飞行器,包括接收机(1)、处理器(2)、辅助电源(3)、通信串口(4)、倾角传感器(5)、高度传感器(6)、角速度传感器(7)、工控机(8)、信号输入器(9)、信号输出器(10)和多个驱动器,所述处理器(2)分别与辅助电源(3)、通信串口(4)、倾角传感器(5)、高度传感器(6)、角速度传感器(7)、信号输入器(9)以及信号输出器(10)连接。该四旋翼飞行器重量轻、体积小、功耗低,考虑了模块化、接口标准化,预留可扩展端口,增强了整体装置的可扩展性,便于升级,实现飞行器自主飞行,并能完成轨迹跟踪和避障等任务。

Description

发明名称:四旋翼飞行器
技术领域
[0001] 本发明涉及一种四旋翼飞行器, 属于无人机领域。
背景技术
[0002] 微小型四旋翼飞行器是一种电动的, 由无线电地面遥控飞行或 /和自主控制飞 行的可垂直起降 (VTOL) 飞行器, 在构造形式上属于旋翼飞行器, 在功能上属 于垂直起降飞行器。 它利用空气动力来克服自身重量, 结构简单、 控制灵活, 获得了越来越多的关注。
[0003] 相对固定翼无人机而言, 旋翼无人飞行器发展要缓慢得多。 固定翼无人机在技 术上已经非常成熟, 而且在过去二十多年的局部战争中展现其优越的作战性能 , 为美国、 以色列等国军队取得战争的胜利立下了功勋 [2]。 然而旋翼式垂直起 降飞行器与固定翼无人机相比具有更大的优点: 垂直起降、 空中悬停、 朝任意 方向飞行, 起飞着陆场地小、 环境适应性强、 高度智能化等。 在军用方面, 无 人直升机既能执行各种非杀伤性任务, 又能执行各种软硬杀伤性任务, 包括侦 察、 监视、 目标截获、 诱饵、 攻击、 通信中继等。 民用方面, 无人直升机在大 气监测、 交通监控、 资源勘探、 电力线路监测、 森林防火等方面具有广泛的应 用前景。
技术问题
[0004] 四旋翼飞行器与传统直升机相比, 尾桨控制和旋翼倾斜问题可以被忽略, 这是 因为对角线上的两对电机的旋转方向相反, 正好抵消了它们产生的扭力矩。 也 就是说, 四旋翼飞行器无需尾桨来抵消反扭力矩以及避免复杂的旋翼倾斜控制 来实现各种飞行姿态。 由于其独特的对称性和多旋翼性, 飞行姿态是靠调整四 个旋翼转速来实现的。
[0005] 从另一方面来说, 四旋翼飞行器具有高度耦合的动态特性, 一个旋翼速度的改 变将至少影响三个自由度方向上的运动。 例如, 减小右面旋翼的转速, 左右升 力出现了不平衡, 这将会导致直升机向右滚动; 同吋左右为一组的旋翼产生的 力矩和前后为一组的旋翼产生的力矩出现了不平衡, 这将会导致直升机向右偏 航; 此外, 滚转运动将导致直升机向右平移, 从而改变了前进的方向。
[0006] 迄今为止, 微小型四旋翼飞行器基础理论与实验研究已取得较大进展, 但要真 正走向成熟与实用, 还需面临诸多关键技术挑战。
问题的解决方案
技术解决方案
[0007] 鉴于上述现有技术的不足之处, 本发明的目的在于提供一种四旋翼飞行器。
[0008] 本发明提供了一种四旋翼飞行器, 包括接收机、 处理器、 辅助电源、 通信串口 、 倾角传感器、 高度传感器、 角速度传感器、 工控机、 信号输入器、 信号输出 器和多个驱动器, 所述处理器分别与辅助电源、 通信串口、 倾角传感器、 高度 传感器、 角速度传感器、 信号输入器以及信号输出器连接, 所述接收机通过信 号输入器与处理器连接, 所述工控机通过通信串口与处理器连接。
[0009] 优选的, 上述多个驱动器包括第一驱动器、 第二驱动器、 第三驱动器和第四驱 动器, 所述第一驱动器、 第二驱动器、 第三驱动器和第四驱动器分别与信号输 出器连接。
[0010] 优选的, 上述第一驱动器、 第二驱动器、 第三驱动器和第四驱动器分别对应连 接有旋翼。
[0011] 优选的, 上述飞行系统供电选用锂电池, 辅助电源用来向机载电子设备供电。
[0012] 优选的, 上述飞行系统具有无线通讯部分, 用来接收地面遥控信号, 得出飞行 指令。
[0013] 优选的, 上述倾角传感器能够进行 X、 Y正交方向上的倾角检测, 检测范围为土 90°, 检测精度为 0.0025°, 敏感元件采用过阻尼频响输出, 抗震动能力强, 芯片 采用 5V供电, 拥有模拟和 SPI两种输出接口, 可输出倾角和温度信息。
[0014] 优选的, 上述高度传感器检测不同高度的大气压强, 然后根据高度…-压强的 对应关系, 将压强信号转换为高度信号; 该芯片供电电压为 2.4V-3.3V, 测量范 围为 30kPa-120kPa, 精度 3Pa, 内置温度传感器, 可通过 SPI接口输出压强信息和 温度信息。
[0015] 优选的, 上述角速度传感器包括角速度检测压电陀螺, 安装吋, 两两互相垂直 以检测 X、 Y、 Ζ三个方向上的角速度; , 供电电压为 2.7V-5.25V, 最大检测角速 度为 ±300deg./sec., 零点输出电压为 1.35V, 比例因子为 0.67mV/deg./sec., 频率 响应最大为 50Hz。
发明的有益效果
有益效果
[0016] 相比现有技术, 本发明提供的四旋翼飞行器, 重量轻、 体积小、 功耗低的产品 ; 考虑模块化、 接口标准化, 预留可扩展端口, 增强了整体装置的可扩展性, 便于升级, 实现飞行器自主飞行, 并能完成轨迹跟踪和避障等任务。
对附图的简要说明
附图说明
[0017] 图 1为本发明四旋翼飞行器结构示意图;
[0018] 图 2为本发明四旋翼飞行器控制流程示意图。
[0019] 附图标记: 1-接收机; 2-处理器; 3-辅助电源; 4-通信串口; 5-倾角传感器; 6- 高度传感器; 7-角速度传感器; 8-工控机; 9-信号输入器; 10-信号输出器; 11- 第一驱动器; 12-第二驱动器; 13-第三驱动器; 14-第四驱动器。
本发明的实施方式
[0020] 本发明提供一种四旋翼飞行器, 为使本发明的目的、 技术方案及效果更加清楚 、 明确, 以下参照附图并举实施例对本发明进一步详细说明。 应当理解, 此处 所描述的具体实施例仅用以解释本发明, 并不用于限定本发明。
[0021] 如图 1所示, 本发明提供的四旋翼飞行器, 包括接收机 1、 处理器 2、 辅助电源 3 、 通信串口 4、 倾角传感器 5、 高度传感器 6、 角速度传感器 7、 工控机 8、 信号输 入器 9、 信号输出器 10和多个驱动器, 所述处理器 2分别与辅助电源 3、 通信串口 4、 倾角传感器 5、 高度传感器 6、 角速度传感器 7、 信号输入器 9以及信号输出器 10连接, 所述接收机 1通过信号输入器 9与处理器 2连接, 所述工控机 8通过通信 串口 4与处理器 2连接。
[0022] 其中, 多个驱动器包括第一驱动器 11、 第二驱动器 12、 第三驱动器 13和第四驱 动器 14, 所述第一驱动器 11、 第二驱动器 12、 第三驱动器 13和第四驱动器 14分 别与信号输出器 10连接。 第一驱动器 11、 第二驱动器 12、 第三驱动器 13和第四 驱动器 14分别对应连接有旋翼。 飞行系统供电选用锂电池, 辅助电源 3用来向机 载电子设备供电。 飞行系统具有无线通讯部分, 用来接收地面遥控信号, 得出 飞行指令。
[0023] 在实施例中, 本发明具体包括辅助电源部分、 无线通信部分、 信号采集部分、 信号处理与控制策略决策部分。 此外, 还包括机体、 电机驱动器、 电机、 旋翼 以及未画出的电池等部分。 机体供电选用锂电池, 辅助电源部分用来向机载电 子设备供电; 无线通讯部分用来接收地面遥控信号, 得出飞行指令; 信号采集 部分主要包括各类传感器, 用来收集飞行所需的各种姿态、 位置等信息; 信号 处理部分用来将传感器信号调制为能够被 DSP直接读取的信号; 控制决策部分综 合遥控指令和各类传感器信息得出飞行控制策略, 控制四个旋翼的转速, 从而 使飞行器按照预定指令飞行。 图中虚线部分为系统的控制电路部分。 控制系统 是四旋翼飞行器飞行控制核心, 它将传感器采集信息汇总, 然后根据当前飞行 状态给出控制决策, 调节电机按预定转速运行, 从而完成四旋翼飞行器的飞行 控制。 按照四旋翼飞行器所要实现的飞行功能, 控制系统所承担的任务如下:
[0024] (1)得出控制决策, 输出电机转速控制信号;
[0025] (2)进行飞行器姿态检测, 得出准确的飞行姿态信息;
[0026] (3)进行高度检测, 得出准确的高度信息;
[0027] (4)接收遥控输入信号;
[0028] (5)与计算机进行通信的调试接口功能。
[0029] 辅助电源部分主要用来向控制器上的处理芯片供电, 机身供电通过 3S锂电池进 行, 供电电压为 11.1V。 控制板所需电压为 5V和 3.3V, 5V电压由电子调速器与控 制板接口的 5V电源提供, 3.3V通过控制板上单片线性电源转换芯片 LM3940来得 到。
[0030] 高度检测使用的压强传感器具有高精度的压力检测能力和温度补偿功能。 在该 系统中, 通过该传感器检测不同高度的大气压强, 然后根据高度 --- -压强的对应 关系, 将压强信号转换为高度信号。 该芯片供电电压为 2.4V-3.3V, 测量范围为 3 0kPa-120kPa, 精度 3Pa, 内置温度传感器, 可通过 SPI接口输出压强信息和温度 f π息。
[0031] 倾角检测使用的双轴倾角传感器, 该芯片能够进行 X、 Y正交方向上的倾角检 测, 检测范围为 ±90°, 检测精度为 0.0025°。 敏感元件采用过阻尼频响输出, 抗 震动能力强, 芯片采用 5V供电, 拥有模拟和 SPI两种输出接口, 可输出倾角和温 度信息。
[0032] 角速度检测压电陀螺两两互相垂直以检测 X、 Y、 Ζ三个方向上的角速度。 该芯 片的供电电压为 2.7V-5.25V, 最大检测角速度为 ±300deg./SeC., 零点输出电压为 1 .35V, 比例因子为 0.67mV/deg./sec., 频率响应最大为 50Hz。
[0033] 如图 2所示, 本实施例中使用位置、 姿态双闭环控制方法进行控制律设计, 分 别尝试使用 PD控制、 Backstepping控制、 滑模控制方法进行控制律设计和仿真。 控制器将飞行器控制分为内环姿态控制和外环位置控制, 内环姿态控制用来维 持飞行器的平衡, 外环控制来实现飞行器到达指定位置。
[0034] 相比现有技术, 本发明提供的四旋翼飞行器, 重量轻、 体积小、 功耗低的产品 ; 考虑模块化、 接口标准化, 预留可扩展端口, 增强了整体装置的可扩展性, 便于升级, 实现飞行器自主飞行, 并能完成轨迹跟踪和避障等任务。
[0035]
[0036] 可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方案及其 发明构思加以等同替换或改变, 而所有这些改变或替换都应属于本发明所附的 权利要求的保护范围。

Claims

权利要求书
一种四旋翼飞行器, 其特征在于: 所述四旋翼飞行器包括接收机 (1 ) 、 处理器 (2) 、 辅助电源 (3) 、 通信串口 (4) 、 倾角传感器 (5 ) 、 高度传感器 (6) 、 角速度传感器 (7) 、 工控机 (8) 、 信号输 入器 (9) 、 信号输出器 (10) 和多个驱动器, 所述处理器 (2) 分别 与辅助电源 (3) 、 通信串口 (4) 、 倾角传感器 (5) 、 高度传感器 (6) 、 角速度传感器 (7) 、 信号输入器 (9) 以及信号输出器 (10 ) 连接, 所述接收机 (1) 通过信号输入器 (9) 与处理器 (2) 连接 , 所述工控机 (8) 通过通信串口 (4) 与处理器 (2) 连接。
如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述多个驱动器包 括第一驱动器 (11) 、 第二驱动器 (12) 、 第三驱动器 (13) 和第四 驱动器 (14) , 所述第一驱动器 (11) 、 第二驱动器 (12) 、 第三驱 动器 (13) 和第四驱动器 (14) 分别与信号输出器 (10) 连接。
如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述第一驱动器 (1 1) 、 第二驱动器 (12) 、 第三驱动器 (13) 和第四驱动器 (14) 分 别对应连接有旋翼。
如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述飞行系统供电 选用锂电池, 辅助电源 (3) 用来向机载电子设备供电。
如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述飞行系统具有 无线通讯部分, 用来接收地面遥控信号, 得出飞行指令。
如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述倾角传感器 (5
) 能够进行 X、 Y正交方向上的倾角检测, 检测范围为 ±90°, 检测精 度为 0.0025°, 敏感元件采用过阻尼频响输出, 抗震动能力强, 芯片 采用 5V供电, 拥有模拟和 SPI两种输出接口, 可输出倾角和温度信息
[权利要求 7] 如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述高度传感器 (6
) 检测不同高度的大气压强, 然后根据高度 -压强的对应关系, 将压 强信号转换为高度信号; 该芯片供电电压为 2.4V-3.3V, 测量范围为 3 0kPa-120kPa, 精度 3Pa, 内置温度传感器, 可通过 SPI接口输出压强 信息和温度信息。
[权利要求 8] 如权利要求 1所述的四旋翼飞行器, 其特征在于: 所述角速度传感器
(7) 包括角速度检测压电陀螺, 安装吋, 两两互相垂直以检测 X、 Y 、 Z三个方向上的角速度; 供电电压为 2.7V-5.25V, 最大检测角速度 为土 300deg./sec., 零点输出电压为 1.35V, 比例因子为 0.67mV/deg./sec. , 频率响应最大为 50Hz。
PCT/CN2016/105587 2016-11-14 2016-11-14 四旋翼飞行器 WO2018086088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105587 WO2018086088A1 (zh) 2016-11-14 2016-11-14 四旋翼飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105587 WO2018086088A1 (zh) 2016-11-14 2016-11-14 四旋翼飞行器

Publications (1)

Publication Number Publication Date
WO2018086088A1 true WO2018086088A1 (zh) 2018-05-17

Family

ID=62109039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105587 WO2018086088A1 (zh) 2016-11-14 2016-11-14 四旋翼飞行器

Country Status (1)

Country Link
WO (1) WO2018086088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681332A (zh) * 2018-06-11 2018-10-19 山东超越数控电子股份有限公司 一种四旋翼飞行器控制系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536456A (zh) * 2014-12-19 2015-04-22 郑州市公路工程公司 一种自主飞行四旋翼无人机路桥施工巡检系统及方法
CN104615142A (zh) * 2014-12-19 2015-05-13 重庆大学 基于民用小型无人机的飞行控制器
CN204613745U (zh) * 2015-01-09 2015-09-02 浙江师范大学 一种多功能小型四旋翼飞行器
US20150370258A1 (en) * 2014-06-23 2015-12-24 Thomson Licensing Method for controlling a path of a rotary-wing drone, a corresponding system, a rotary-wing drone implementing this system and the related uses of such a drone
CN105353762A (zh) * 2015-09-25 2016-02-24 南京航空航天大学 基于双余度姿态传感器的六旋翼无人机及其控制方法
CN105607640A (zh) * 2016-01-20 2016-05-25 南京工业大学 四旋翼飞行器的位姿控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150370258A1 (en) * 2014-06-23 2015-12-24 Thomson Licensing Method for controlling a path of a rotary-wing drone, a corresponding system, a rotary-wing drone implementing this system and the related uses of such a drone
CN104536456A (zh) * 2014-12-19 2015-04-22 郑州市公路工程公司 一种自主飞行四旋翼无人机路桥施工巡检系统及方法
CN104615142A (zh) * 2014-12-19 2015-05-13 重庆大学 基于民用小型无人机的飞行控制器
CN204613745U (zh) * 2015-01-09 2015-09-02 浙江师范大学 一种多功能小型四旋翼飞行器
CN105353762A (zh) * 2015-09-25 2016-02-24 南京航空航天大学 基于双余度姿态传感器的六旋翼无人机及其控制方法
CN105607640A (zh) * 2016-01-20 2016-05-25 南京工业大学 四旋翼飞行器的位姿控制器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681332A (zh) * 2018-06-11 2018-10-19 山东超越数控电子股份有限公司 一种四旋翼飞行器控制系统及控制方法

Similar Documents

Publication Publication Date Title
Çetinsoy et al. Design and construction of a novel quad tilt-wing UAV
Lozano Unmanned aerial vehicles: Embedded control
Hoffmann et al. Quadrotor helicopter flight dynamics and control: Theory and experiment
US20180281941A1 (en) Unmanned Aerial Vehicle With Monolithic Wing and Twin-Rotor Propulsion/Lift Modules
Bai et al. Robust control of quadrotor unmanned air vehicles
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
CN105539037A (zh) 一种能在地面滚动的陆空四旋翼无人飞行器
CN104597912A (zh) 一种六旋翼无人直升机跟踪飞行控制系统及方法
CN103365295A (zh) 基于dsp的四旋翼无人飞行器自主悬停控制系统及方法
CN105607640B (zh) 四旋翼飞行器的位姿控制器
CN104460685A (zh) 一种四旋翼飞行器的控制系统及其控制方法
CN107264813A (zh) 一种尾坐式垂直起降飞行器飞行控制系统
CN105204514A (zh) 一种新型倾转旋翼无人机姿态控制系统
JP2012111475A (ja) Wing−Rotorによる垂直離着陸無人航空機
AU2019100363A4 (en) Unmanned Aerial Vehicle And Its Program Control Device Unmanned Aerial Vehicle And Its Program Control Device
Suzuki et al. Attitude control of quad rotors QTW-UAV with tilt wing mechanism
CN105468010A (zh) 多自由度惯性传感器四轴无人机自主导航飞行控制器
CN111137082A (zh) 单涵道陆空跨域机器人及其控制方法
CN105151296A (zh) 多轴载人飞行器
CN106143878A (zh) 基于滑模控制算法的多轴固定翼一体机控制器
CN210526849U (zh) 一种可倾转动力的固定翼无人机
JP2009234551A (ja) 主翼取り付け角変更装置を備えた垂直離着陸航空機
CN106802662A (zh) 一种多旋翼无人机嵌入式控制系统
CN106114817A (zh) 一种飞行器及飞行系统
Zhan et al. Control system design and experiments of a quadrotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921079

Country of ref document: EP

Kind code of ref document: A1