WO2018086054A1 - 电容式传感器、电容式传感装置、以及电子设备 - Google Patents

电容式传感器、电容式传感装置、以及电子设备 Download PDF

Info

Publication number
WO2018086054A1
WO2018086054A1 PCT/CN2016/105425 CN2016105425W WO2018086054A1 WO 2018086054 A1 WO2018086054 A1 WO 2018086054A1 CN 2016105425 W CN2016105425 W CN 2016105425W WO 2018086054 A1 WO2018086054 A1 WO 2018086054A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
electrodes
circuit
electrode
sensor according
Prior art date
Application number
PCT/CN2016/105425
Other languages
English (en)
French (fr)
Inventor
林峰
Original Assignee
深圳信炜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信炜科技有限公司 filed Critical 深圳信炜科技有限公司
Priority to PCT/CN2016/105425 priority Critical patent/WO2018086054A1/zh
Priority to CN201690000181.0U priority patent/CN208689588U/zh
Publication of WO2018086054A1 publication Critical patent/WO2018086054A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • Capacitive sensors capacitive sensing devices, and electronic devices
  • the utility model relates to the field of sensing technology, in particular to a capacitive sensor and a capacitive sensing device.
  • a conventional fingerprint sensing device 10 includes a sensing electrode 11, a sensing circuit 12, a reference voltage generating circuit 14, a processing circuit 15, and a current source 16.
  • the sensing electrode 11 is used to capacitively couple to the finger F of the user, forming a capacitance Cf therebetween.
  • the user's body Z is connected to the earth.
  • the reference voltage generating circuit 14 is configured to supply a reference signal Vtx (also referred to as an excitation signal) to the sensing electrode 11.
  • Vtx also referred to as an excitation signal
  • the sensing circuit 12 receives the current signal of the current source 16 and is responsive to the change of the voltage signal on the sensing electrode 11 to output a corresponding AC signal to the processing circuit 15.
  • the processing circuit 15 acquires fingerprint image information of the finger F based on the alternating current signal.
  • the sensing circuit 13 includes a transistor 13.
  • the transistor 13 includes a gate 0, a source S, and a drain D.
  • the source S is used to connect the current source 16, and the drain D is used to connect the processing circuit 15, and the gate G is used to connect the sensing electrode 11.
  • the transistor 13 is responsive to a change in the voltage signal on the sensing electrode 11, and corresponds to a corresponding alternating current signal to the processing circuit 15.
  • a parasitic capacitance Cp exists between the sensing electrode 11, the gate G, and the chip ground of the fingerprint sensing device 10.
  • the chip ground is, for example, a ground line and is located below the sensing electrode 11.
  • the amount of voltage change on the gate G of the transistor 13 that the fingerprint sensing device 10 can detect is:
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention provides a capacitive sensor, a capacitive sensing device, and an electronic device.
  • the utility model provides a capacitive sensor, comprising:
  • a sensing circuit is disposed under the plurality of sensing electrodes and is respectively connected to the plurality of sensing electrodes, wherein the sensing circuit is configured to respond to a change of a voltage signal on the sensing electrode, and correspondingly generate Corresponding communication signal;
  • a plurality of shielding electrodes are disposed between the plurality of sensing electrodes and the sensing circuit, and are disposed opposite to the plurality of sensing electrodes;
  • each of the compensation circuits is connected to a sensing electrode and a shielding electrode disposed opposite to each other, and the compensation circuit is configured to dynamically provide a compensation voltage signal according to a voltage signal on the sensing electrode
  • a shield electrode is provided to reduce parasitic capacitance formed between the element underlying the shield electrode and the plurality of sense electrodes.
  • the pressure difference between each of the shield electrode and the sensing electrode disposed opposite each other remains unchanged.
  • the voltage difference between the shield electrode and the sensing electrode disposed oppositely is maintained at 0 volts.
  • the compensation circuit is any one of a voltage follower, a buffer, an operational amplifier, and a source follower.
  • one side of the plurality of sensing electrodes facing away from the sensing circuit is configured to capacitively couple to a target object to sense biometric information of the target object.
  • the capacitive sensor further includes a ground line, located below the plurality of shielding electrodes
  • the compensation circuit is configured to dynamically provide a compensation voltage signal to the shielding electrode according to the voltage signal on the sensing electrode to reduce a parasitic capacitance formed between the ground line and the plurality of sensing electrodes.
  • the ground line is located on a side of the plurality of shielding electrodes facing away from the plurality of sensing electrodes for receiving a varying voltage signal from a modulation circuit output.
  • the electrical signals in the capacitive sensor are increased as the voltage signal on the ground line increases, and the voltage signal on the ground line decreases. .
  • the sensing circuit includes a plurality of first transistors, each of the first transistors includes a gate, a source, and a drain, wherein each gate is connected to one of the sensing electrodes, and each a source is connected to a current source, and each of the drains is connected to a processing circuit, and the plurality of first transistors are configured to respond to changes in voltage signals caused by proximity or contact of the target object on the sensing electrodes, and correspondingly generate corresponding And an output AC signal to the processing circuit through the drain to obtain biometric information of the target object [0024]
  • the transistor is used as the compensation circuit, wherein the shielding electrode is connected to the source
  • the sensing circuit includes a plurality of differential pair tubes, each differential pair tube includes a first transistor and a second transistor, and the second transistor includes a gate, a source, and a drain, wherein a source of the first transistor is coupled to a source of the second transistor, and is selectively connectable to the current source, a gate of the first transistor and a gate of the second transistor respectively
  • the drain of the first transistor and the drain of the second transistor are used to output a differential AC signal to the processing circuit.
  • the shape and area of the shielding electrode are the same as the shape and area of the sensing electrode.
  • each of the shielding electrodes is provided with a through hole, and the plurality of sensing electrodes are respectively connected to the sensing circuit through the through hole.
  • the plurality of shielding electrodes are located in the same layer, the plurality of sensing electrodes are located in the same layer, and the plurality of shielding electrodes and the plurality of sensing electrodes are located in different layers.
  • the capacitive sensor is integrated in a chip.
  • the capacitive sensor is a fingerprint sensor.
  • the present invention also provides a capacitive sensing device, including a capacitive sensor and a control circuit, wherein
  • the capacitive sensor is the capacitive sensor according to any one of the preceding claims, wherein the control circuit is configured to provide a voltage signal to the sensing electrode, and receive an alternating current signal output by the sensing circuit, and The AC signal acquires sensing information.
  • the capacitive sensor is integrated in one die, and the control circuit is integrated in another die.
  • the present invention also provides an electronic device, comprising the capacitive sensor according to any one of the above.
  • the present invention also provides an electronic device, comprising the capacitive sensing device according to any one of the above
  • each compensation circuit connects a pair of the sensing electrodes and a shielding electrode disposed opposite to each other,
  • the compensation circuit is configured to dynamically provide a compensation voltage signal to the shielding electrode according to the voltage signal on the sensing electrode, to reduce a parasitic capacitance formed between the component under the shielding electrode and the plurality of sensing electrodes, thereby improving electricity Sensing accuracy of the capacitive sensor. Accordingly, the capacitive sensing device having the capacitive sensor and the electronic device have higher sensing accuracy.
  • the present invention also provides a fingerprint sensor, including:
  • a plurality of shielding electrodes are disposed under the plurality of sensing electrodes and disposed opposite to the plurality of sensing electrodes;
  • each of the voltage followers being connected to one of the sensing electrodes and one of the shielding electrodes disposed opposite to each other.
  • the fingerprint sensor further includes a sensing circuit located under the plurality of sensing electrodes and connected to the plurality of sensing electrodes, wherein the sensing circuit is configured to respond to the sensing electrode The change in the voltage signal is corresponding to the corresponding AC signal.
  • the plurality of shielding electrodes are located between the plurality of sensing electrodes and the sensing circuit.
  • the plurality of sensing electrodes are for capacitively coupling to a user's finger to sense fingerprint image information of the finger.
  • the fingerprint sensor further includes a grounding line, where the plurality of shielding electrodes are opposite to a side of the plurality of sensing electrodes, and the plurality of shielding electrodes are used for shielding or lowering A parasitic capacitance formed between the ground line and the plurality of sensing electrodes.
  • the ground line is configured to receive a changed voltage signal from a modulation circuit output, wherein the electrical signal in the fingerprint sensor rises as the voltage signal on the ground line increases. High, falling with the drop of the voltage signal on the ground line.
  • the sensing circuit includes a plurality of first transistors, each of the first transistors includes a gate, a source, and a drain, wherein each gate is coupled to one of the sensing electrodes, and each a source is connected to a current source, and each drain is connected to a processing circuit, and the plurality of first transistors are configured to respond to changes in a voltage signal caused by proximity or contact of the finger on the sensing electrode, and correspondingly generate corresponding An AC signal is outputted to the processing circuit through the drain to obtain fingerprint image information of the finger.
  • the transistor is used as the voltage follower, wherein the shield electrode is connected to the source.
  • the sensing circuit includes a plurality of differential pair tubes, each differential pair tube including a first crystal And a second transistor, the second transistor includes a gate, a source, and a drain, wherein a source of the first transistor is coupled to a source of the second transistor, and is selectively selectable with the current source Connecting, a gate of the first transistor and a gate of the second transistor are respectively used to load a voltage signal, and a drain of the first transistor and a drain of the second transistor are used to output a differential AC signal to the Processing circuit.
  • the shape and area of the shielding electrode are the same as the shape and area of the sensing electrode.
  • each of the shielding electrodes is provided with a through hole, and the plurality of sensing electrodes are respectively connected to the sensing circuit through the through hole.
  • the plurality of shielding electrodes are located in the same layer, the plurality of sensing electrodes are located in the same layer, and the plurality of shielding electrodes and the plurality of sensing electrodes are located in different layers.
  • the fingerprint sensor is integrated in a chip.
  • the present invention further provides a fingerprint sensing device, including a fingerprint sensor and a control circuit, wherein the fingerprint sensor is the fingerprint sensor according to any one of the above, wherein the control circuit is configured to provide a voltage signal to The sensing electrode receives a current signal output by the fingerprint sensor and acquires fingerprint information according to the current signal.
  • the fingerprint sensor is integrated in one die, and the control circuit is integrated in another die.
  • the present invention also provides an electronic device, comprising the fingerprint sensor according to any one of the above.
  • the present invention also provides an electronic device including the fingerprint sensing device.
  • the sensing accuracy of the fingerprint sensor is high.
  • the fingerprint sensing device and the electronic device having the fingerprint sensor have higher sensing accuracy, and the user experience is better.
  • 1 is a circuit diagram of a prior art fingerprint sensor.
  • 2 is a schematic structural view of an embodiment of a capacitive sensing device of the present invention.
  • FIG. 3 is a schematic enlarged view of a set of opposing sensing electrodes and shielding electrodes shown in FIG. 2.
  • FIG. 4 is a partial circuit diagram of an embodiment of the capacitive sensor shown in FIG. 2.
  • FIG. 5 is a partial circuit diagram of another embodiment of the capacitive sensor shown in FIG. 2.
  • FIG. 6 is a waveform diagram of a partial signal of the capacitive sensor shown in FIG. 5.
  • FIG. 7 is a partial circuit diagram of still another embodiment of the capacitive sensor shown in FIG. 2.
  • FIG. 8 is a partial circuit diagram of still another embodiment of the capacitive sensor shown in FIG. 2.
  • FIG. 9 is a structural block diagram of an embodiment of an electronic device of the present invention.
  • first and second may include one or more of the described features, either explicitly or implicitly.
  • a plurality means two or more, unless specifically defined otherwise.
  • installation should be understood broadly, unless otherwise clearly defined and limited.
  • it may be a fixed connection, It can be a detachable connection, or can be connected integrally; it can be a mechanical connection, it can be an electrical connection or it can communicate with each other; it can be directly connected, or it can be connected indirectly through an intermediate medium, it can be the internal connection of two elements or two The interaction of components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • FIG. 2 is a schematic structural view of an embodiment of a capacitive sensing device according to the present invention.
  • 3 is a schematic enlarged view of a pair of facing sensing electrodes and shielding electrodes shown in FIG. 2.
  • 4 is a circuit diagram of an embodiment of the capacitive sensor shown in FIG. 2.
  • the capacitive sensing device 100 includes a capacitive sensor 20 and a control circuit 30.
  • the capacitive sensor 20 is coupled to the control circuit 30.
  • the capacitive sensor 20 is for sensing biometric information of a target object.
  • the control circuit 30 is configured to provide a voltage signal and a DC signal to the capacitive sensor 20, and receive an AC signal output from the capacitive sensor 20, and acquire biometric information of the target object according to the AC signal.
  • the target object for example, is not limited to a user's finger, ear, toe, palm, or the like. In the following embodiments of the present application, the target object is mainly referred to as a finger F as an example.
  • the biometric information such as ⁇ is not limited to fingerprint information, ear pattern information, toe pattern information, palm print information, and the like.
  • the capacitive sensor 20 is, for example, a fingerprint sensor, or a fingerprint sensor in combination with one or more of an infrared sensor, a blood oxygen sensor, a heartbeat sensor, and the like.
  • the capacitive sensor 20 includes a plurality of sensing electrodes 21, a plurality of shielding electrodes 22, a sensing circuit 23, a ground line L, and a plurality of compensation circuits 24.
  • the plurality of sensing electrodes 21 are for capacitively coupling to the finger F to sense fingerprint information of the finger F.
  • the plurality of sensing electrodes 21 are for receiving a voltage signal from the control circuit 30.
  • the capacitance Cf is formed between the sensing electrode 21 and the finger F.
  • the plurality of sensing electrodes 21 are arranged, for example, in an array, of course, Optionally, the plurality of sensing electrodes 21 may also be arranged in other regular or irregular manners.
  • the user's body Z is generally connected to the earth.
  • the sensing circuit 23 is located below the plurality of sensing electrodes 21 and is respectively connected to the plurality of sensing electrodes 21.
  • the sensing circuit 23 is responsive to a change in the voltage signal on the sensing electrode 21, and correspondingly generates a corresponding AC signal to the control circuit 30.
  • the plurality of shielding electrodes 22 are disposed opposite to the plurality of sensing electrodes 21 and are located between the plurality of sensing electrodes 21 and the sensing circuit 23. Accordingly, a shield capacitance Cs is formed between each of the oppositely disposed shield electrodes 22 and the sensing electrodes 21.
  • the shielding electrodes 22 are arranged in an array, for example, and the plurality of shielding electrodes 22 may be arranged in other regular or irregular manners. .
  • the ground line L is located on a side of the shield electrode 22 facing away from the sensing electrode 21.
  • a parasitic capacitance Cp is formed between the ground line L and the plurality of sensing electrodes 22, for example.
  • Each of the compensation circuits 24 is connected to one of the sensing electrodes 21 and one of the shielding electrodes 22 disposed opposite to each other.
  • the compensation circuit 24 includes an input terminal a and an output terminal b, wherein the input terminal a is connected to the sensing electrode 21, and the output terminal b is connected to the shielding electrode 22.
  • the compensation circuit 24 is configured to dynamically provide a compensation voltage signal to the shielding electrode 22 according to the voltage signal on the sensing electrode 21 to reduce the formation between the component under the shielding electrode 22 and the plurality of sensing electrodes 21
  • the parasitic capacitance for example, reduces the parasitic capacitance Cp formed between the ground line L and the plurality of sensing electrodes 22.
  • the voltage difference between the shield electrode 22 and the sensing electrode 21 which are disposed opposite each other remains unchanged, that is, the charge and discharge electric power of the shield capacitor Cs is made zero. Thereby, the parasitic capacitance Cp is shielded, thereby improving the sensing accuracy of the capacitive sensor 20.
  • the compensation circuit 24 dynamically supplies, for example, the same signal as the voltage signal on the sensing electrode 21 to the shield electrode 22, that is, between the shield electrode 22 and the sensing electrode 21 disposed opposite each other.
  • the differential pressure is maintained at 0 volts.
  • the pressure difference between the shield electrode 22 and the sensing electrode 21 that are disposed opposite can also be maintained at other constant pressure differences, such as IV.
  • “dynamically” means that the compensation circuit 24 sequentially outputs a corresponding compensation voltage to the shield electrode 22 according to the change of the voltage signal on the sensing electrode 21.
  • the compensation circuit 24 is, for example, not limited to including a voltage follower, a buffer, an operational amplifier, a source Any one or several of the followers.
  • the input end a of the voltage follower is connected to the sensing electrode 21, and the output end b is connected to the shielding electrode 22, so that when the voltage signal on the sensing electrode 21 changes, the voltage follower The same signal as the voltage signal on the sensing electrode 21 is supplied to the shield electrode 22.
  • the shape and area of the shield electrode 22 are, for example, the same as the shape and area of the sensing electrode 21.
  • the shape and area of the shielding electrode 22 and the shape and area of the sensing electrode 21 may also be different.
  • the area of the shielding electrode 22 may also be larger or smaller than the sensing.
  • the area of the electrode 21; the shape of the shield electrode 22 may also be different from the shape of the sensing electrode 21.
  • the set sensing electrodes 21 are aligned with the edges of the shield electrode 22.
  • Each of the shield electrodes 22 is provided with a through hole H through which the plurality of sensing electrodes 21 are respectively connected to the sensing circuit 23.
  • the plurality of sensing electrodes 21 may be connected to the sensing circuit 23 by other means.
  • the plurality of sensing electrodes 21 are located, for example, in the same layer, and the layer in which the sensing electrodes 21 are defined is the sensing electrode layer 210.
  • the plurality of shielding electrodes 22 are, for example, located in the same layer, and the layer in which the sensing electrodes 22 are defined is the shielding electrode layer 220.
  • the sensing electrode layer 210 and the shielding electrode layer 220 are located in different layers.
  • the capacitive sensor 20 is, for example, a self-capacitance sensor or a mutual capacitance sensor.
  • the control circuit 30 includes a switching unit 33, a reference voltage generating circuit 34, a processing circuit 35, and a current source 36.
  • the reference voltage generating circuit 34 is connected to the plurality of sensing electrodes 21 for supplying a voltage signal to the plurality of sensing electrodes 21.
  • the sensing circuit 23 includes a plurality of first transistors T1.
  • Each of the first transistors T1 includes a gate 0, a source S, and a drain D, wherein each gate G is connected to one of the sensing electrodes 21, and each source S is connected, for example, by the switching unit 33.
  • the current source 36, each drain D is connected to the processing circuit 35.
  • the plurality of first transistors T1 are responsive to changes in the voltage signals on the sensing electrodes 21, and correspondingly generate corresponding AC signals, and output the AC signals to the processing circuit 35 through the drain D.
  • the processing circuit 35 acquires fingerprint image information of the finger F according to the alternating current signal.
  • the control circuit 30 may further include a modulation circuit 31.
  • the modulation circuit 31 is connected to the device ground, and receives Ground signal GND.
  • the ground signal GND is generally a constant voltage signal of, for example, 0 V (volts). However, the ground signal GND may also be a signal having a voltage close to 0V.
  • the modulation circuit 31 is configured to output a modulation signal NGND to the ground line L.
  • the modulation signal NGND serves as a reference for the voltage signal of the capacitive sensor 20.
  • the electrical signals in the capacitive sensor 20 rise as the voltage signal on the ground line L rises, and fall with the voltage signal on the ground line L. That is, the ground signal in the capacitive sensor 20 is not a constant voltage signal but a varying voltage signal, thereby improving the sensing accuracy of the capacitive sensor 20.
  • the modulation signal NGND includes, for example, different first signals and second signals, wherein the first signal is a ground signal GND, and the second signal is a driving signal higher than or equal to the ground signal GND.
  • the modulation circuit 30 generates the modulation signal NGND corresponding to the ground signal GND, for example, according to a second signal generated by a voltage generating circuit (not shown).
  • the modulation signal NGND is, for example, a square wave pulse signal, a triangular wave pulse signal, a sine wave signal, a ladder wave pulse signal, or the like.
  • FIG. 5 is a partial circuit diagram of another embodiment of the capacitive sensing device of the present invention.
  • Fig. 6 is a partial waveform diagram of the capacitive sensing device shown in Fig. 5.
  • the utility model name given to the State Intellectual Property Office is "Capacitive Sensor, Sensing Device, Sensing System, and Electronic Equipment”
  • the patent application file with the application number is "201510612208.3”. The contents of this patent application can be recorded. All or part of this is cited here.
  • the sensing circuit 23 of the capacitive sensor 20 of the capacitive sensing device 100a of the present embodiment includes a differential pair tube 25.
  • the differential pair tube 25 includes a first transistor T1 and a second transistor T2.
  • the second transistor ⁇ 2 includes a gate 0, a source S, and a drain D.
  • the source S of the first transistor T1 and the source S of the second transistor T2 are connected and are selectively connectable to the current source 36 through the switching unit 33.
  • the gate G of the first transistor T1 is for receiving the voltage signal R1 from the reference voltage generating circuit 34.
  • the gate G of the second transistor T2 is for receiving the voltage signal R2 from the reference voltage generating circuit 34.
  • the voltage signals R1, R2 all change with the change of the modulation signal NGND on the ground line L (see FIG. 2).
  • the current source 36 provides a constant DC signal I to the source S of the differential pair tube 25.
  • the drain D of the first transistor T1 and the drain D of the second transistor T2 respectively output a constant direct current signal (1/2) to the processing circuit 35.
  • the voltage signal R1 on the sensing electrode 21 changes, thereby, the drain D of the first transistor T1 and the drain of the second transistor T2.
  • D outputs differential AC signals ( ⁇ /2+ ⁇ ) and (1/2- ⁇ ) to the processing circuit 35, respectively.
  • the processing circuit 35 acquires fingerprint image information of the user's finger F according to the differential AC signal ( ⁇ /2+ ⁇ ), (I/2- ⁇ ).
  • control circuit 30 may further include components such as a sequence control circuit, a scan drive circuit, and the like. The related description can be found in the patent reference cited here, and is not described here.
  • FIG. 7 is a partial circuit diagram of another embodiment of the capacitive sensing device of the present application.
  • the capacitive sensor 20 of the capacitive sensing device 100b includes a plurality of sensing units 26, each sensing unit 26 including a sensing electrode 21, a shielding electrode 22 (see FIG. 2), a compensation circuit 24, and a sensing circuit twenty three.
  • the first transistor T1 of the adjacent sensing unit 26 is used to form a differential pair tube in the fingerprint sensing.
  • the specific working principle refer to the patent reference here, and the details are not described here.
  • FIG. 8 is a partial circuit diagram of another embodiment of the capacitive sensing device of the present application.
  • the shield electrode 22 of the capacitive sensing device 100c is coupled to the source S of the first transistor T1.
  • the first transistor T1 is used as the compensation circuit 24. Thereby, the manufacturing cost of the product is saved.
  • the capacitive sensor 20 of the above embodiments may be integrated into a chip.
  • the present application is not limited thereto, and the capacitive sensor 20 may also be disposed on a display screen of an electronic device.
  • the capacitive sensor 20 of each of the above embodiments is integrated, for example, in a single die (Die), and the control circuit 30 is integrated in another die.
  • Die a single die
  • the two dies are packaged together or packaged separately.
  • FIG. 9 is a structural block diagram of an embodiment of an electronic device according to the present invention.
  • the electronic device 200 includes the capacitive sensing device 100 of any of the above embodiments.
  • the capacitive sensing device 100 can be disposed at a suitable location on the front, side, or back of the electronic device 200.
  • the electronic device 200 is, for example, a portable electronic product, a home-based electronic product, or an in-vehicle electronic product.
  • the electronic device is not limited to the electronic products listed herein, but may be other suitable electronic products.
  • the portable electronic product is, for example, a mobile terminal, and the mobile terminal is, for example, a suitable mobile terminal such as the mobile phone, tablet computer, notebook computer, wearable product, or the like.
  • the home-based electronic products are, for example, smart home locks, televisions, refrigerators, desktop computers, and the like, suitable home-based electronic products.
  • the in-vehicle electronic product is, for example, a suitable in-vehicle electronic product such as an in-vehicle display, a driving recorder, a navigator, or a car refrigerator.
  • portions of the embodiments of the present invention can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in various embodiments of the present invention may be integrated in one processing module.
  • each unit physically exists alone, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Image Input (AREA)

Abstract

一种电容式传感器(20)、电容式传感装置(100)及电子设备(200)。该电容式传感器(20)包括:多个感测电极(21);传感电路(23),位于所述多个感测电极(21)下方,并与所述多个感测电极(21)分别连接,所述传感电路(23)用于响应感测电极(21)上的电压信号的变化,而对应产生相应的交流信号;多个屏蔽电极(22),位于所述多个感测电极(21)与所述传感电路(23)之间,且与所述多个感测电极(21)一一正对设置;多个补偿电路(24),每一补偿电路(24)连接正对设置的一所述感测电极(21)和一所述屏蔽电极(22),所述补偿电路(24)用于根据感测电极(21)上的电压信号动态地提供补偿电压信号给屏蔽电极(22),以降低位于屏蔽电极(22)下方的元件与所述多个感测电极(21)之间形成的寄生电容。该电容式传感装置(100)包括该电容式传感器(20)。该电子设备(200)包括该电容式传感装置(100)。

Description

电容式传感器、 电容式传感装置、 以及电子设备
[0001] 技术领域
[0002] 本实用新型涉及传感技术领域, 特别涉及一种电容式传感器、 电容式传感装置
、 以及电子设备。
[0003] 背景技术
[0004] 请参阅图 1 , 现有的指纹传感装置 10包括感测电极 11、 传感电路 12、 参考电压 产生电路 14、 处理电路 15、 和电流源 16。 所述感测电极 11用于以电容的方式耦 合到用户的手指 F, 二者之间形成电容 Cf。 用户的身体 Z—般为连接至大地。
[0005] 工作吋, 所述参考电压产生电路 14用于提供参考信号 Vtx(也称: 激励信号)给 感测电极 11。 所述传感电路 12接收电流源 16的电流信号, 并用于响应感测电极 1 1上的电压信号的变化, 而对应输出相应的交流信号给所述处理电路 15。 所述处 理电路 15根据所述交流信号获取手指 F的指纹图像信息。
[0006] 所述传感电路 13包括晶体管 13。 所述晶体管 13包括栅极0、 源极 S、 和漏极 D。
其中, 所述源极 S用于连接电流源 16, 所述漏极 D用于连接处理电路 15, 所述栅 极 G用于连接感测电极 11。 所述晶体管 13用于响应感测电极 11上的电压信号的变 化, 而对应相应的交流信号给所述处理电路 15。
[0007] 通常, 所述感测电极 11、 栅极 G与指纹传感装置 10的芯片地之间存在寄生电容 Cp。 需要说明的是, 芯片地例如为接地线, 位于感测电极 11的下方。 所述指纹 传感装置 10能侦测到的晶体管 13的栅极 G上的电压变化量为:
[0008] 从上述关系式中可以看出, 寄生电容 Cp越大, 指纹传感装置 10所侦测到的栅 极 G上的电压变化量也就越小, 如此, 影响指纹传感装置 10的感测精度。
[0009] 实用新型内容
[0010] 本实用新型旨在至少解决现有技术中存在的技术问题之一。 为此, 本实用新型 提供一种电容式传感器、 电容式传感装置、 以及电子设备。
[0011] 本实用新型提供一种电容式传感器, 包括:
[0012] 多个感测电极; [0013] 传感电路, 位于所述多个感测电极下方, 并与所述多个感测电极分别连接, 所 述传感电路用于响应感测电极上的电压信号的变化, 而对应产生相应的交流信 号;
[0014] 多个屏蔽电极, 位于所述多个感测电极与所述传感电路之间, 且与所述多个感 测电极一一正对设置;
[0015] 多个补偿电路, 每一补偿电路连接正对设置的一所述感测电极和一所述屏蔽电 极, 所述补偿电路用于根据感测电极上的电压信号动态地提供补偿电压信号给 屏蔽电极, 以降 ί氐位于屏蔽电极下方的元件与所述多个感测电极之间形成的寄 生电容。
[0016] 可选地, 各正对设置的屏蔽电极和感测电极之间的压差均保持不变。
[0017] 可选地, 正对设置的屏蔽电极和感测电极之间的压差保持为 0伏。
[0018] 可选地, 所述补偿电路为电压跟随器、 缓冲器、 运算放大器、 源极跟随器中的 任意一者。
[0019] 可选地, 所述多个感测电极背对所述传感电路的一侧用于以电容方式耦合到目 标物体, 以感测所述目标物体的生物特征信息。
[0020] 可选地, 所述电容式传感器进一步包括接地线, 位于所述多个屏蔽电极的下方
, 所述补偿电路用于根据感测电极上的电压信号动态地提供补偿电压信号给屏 蔽电极, 以降 ί氐所述接地线与所述多个感测电极之间形成的寄生电容。
[0021] 可选地, 所述接地线位于所述多个屏蔽电极背对所述多个感测电极的一侧, 用 于接收来自一调制电路输出的变化的电压信号。
[0022] 可选地, 所述电容式传感器中的电信号均随所述接地线上的电压信号的升高而 升高、 随所述接地线上的电压信号的降 ί氐而降 ί氐。
[0023] 可选地, 所述传感电路包括多个第一晶体管, 每一第一晶体管包括栅极、 源极 、 和漏极, 其中, 每一栅极连接一所述感测电极, 每一源极连接一电流源, 每 一漏极连接一处理电路, 所述多个第一晶体管用于响应感测电极上因目标物体 的接近或接触所引起的电压信号的变化, 而对应产生相应的交流信号, 并通过 所述漏极输出交流信号给所述处理电路, 以获取所述目标物体的生物特征信息 [0024] 可选地, 所述晶体管用作所述补偿电路, 其中, 所述屏蔽电极与所述源极连接
[0025] 可选地, 所述传感电路包括多个差分对管, 每一差分对管包括一所述第一晶体 管和一第二晶体管, 所述第二晶体管包括栅极、 源极、 和漏极、 其中, 第一晶 体管的源极和第二晶体管的源极连接, 并用于与所述电流源可选择性连接, 所 述第一晶体管的栅极和所述第二晶体管的栅极分别用于加载电压信号, 所述第 一晶体管的漏极和第二晶体管的漏极用于输出差分交流信号给所述处理电路。
[0026] 可选地, 对于正对设置的屏蔽电极与感测电极: 屏蔽电极的形状和面积与感测 电极的形状和面积相同。
[0027] 可选地, 每一屏蔽电极上设置有通孔, 所述多个感测电极分别通过所述通孔连 接到所述传感电路。
[0028] 可选地, 所述多个屏蔽电极位于同一层, 所述多个感测电极位于同一层, 所述 多个屏蔽电极和所述多个感测电极位于不同层。
[0029] 可选地, 所述电容式传感器集成在一芯片中。
[0030] 可选地, 所述电容式传感器为指纹传感器。
[0031] 本实用新型还提供一种电容式传感装置, 包括电容式传感器和控制电路, 其中
, 所述电容式传感器为上述中任意一项所述的电容式传感器, 所述控制电路用 于提供电压信号给所述感测电极, 并接收所述传感电路输出的交流信号, 以及 根据所述交流信号获取感测信息。
[0032] 可选地, 所述电容式传感器集成在一颗裸片中, 所述控制电路集成在另一颗裸 片中。
[0033] 本实用新型还提供一种电子设备, 包括上述中任意一项所述的电容式传感器。
[0034] 本实用新型还提供一种电子设备, 包括上述中任意一项所述的电容式传感装置
[0035] 由于所述电容式传感器在所述多个感测电极下方新增所述多个屏蔽电极, 每一 补偿电路连接相对设置的一所述感测电极和一所述屏蔽电极, 所述补偿电路用 于根据感测电极上的电压信号动态地提供补偿电压信号给屏蔽电极, 以降 ί氐位 于屏蔽电极下方的元件与所述多个感测电极之间形成的寄生电容, 进而提高电 容式传感器的感测精度。 相应地, 具有所述电容式传感器的电容式传感装置以 及电子设备的感测精度较高。
[0036] 本实用新型还一种指纹传感器, 包括:
[0037] 多个感测电极;
[0038] 多个屏蔽电极, 位于所述多个感测电极下方, 且与所述多个感测电极一一正对 设置;
[0039] 多个电压跟随器, 每一电压跟随器连接正对设置的一所述感测电极和一所述屏 蔽电极。
[0040] 可选地, 所述指纹传感器进一步包括传感电路, 位于所述多个感测电极下方, 并与所述多个感测电极分别连接, 所述传感电路用于响应感测电极上的电压信 号的变化, 而对应产生相应的交流信号。
[0041] 可选地, 所述多个屏蔽电极位于所述多个感测电极与所述传感电路之间。
[0042] 可选地, 所述多个感测电极用于以电容方式耦合到用户的手指, 以感测手指的 指纹图像信息。
[0043] 可选地, 所述指纹传感器进一步包括接地线, 位于所述多个屏蔽电极背对所述 多个感测电极的一侧, 所述多个屏蔽电极用于屏蔽或降 ί氐所述接地线与所述多 个感测电极之间形成的寄生电容。
[0044] 可选地, 所述接地线用于接收来自一调制电路输出的变化的电压信号, 其中, 所述指纹传感器中的电信号均随所述接地线上的电压信号的升高而升高、 随所 述接地线上的电压信号的降氐而降氐。
[0045] 可选地, 所述传感电路包括多个第一晶体管, 每一第一晶体管包括栅极、 源极 、 和漏极, 其中, 每一栅极连接一所述感测电极, 每一源极连接一电流源, 每 一漏极连接一处理电路, 所述多个第一晶体管用于响应感测电极上因手指的接 近或接触所引起的电压信号的变化, 而对应产生相应的交流信号, 并通过所述 漏极输出交流信号给所述处理电路, 以获取所述手指的指纹图像信息。
[0046] 可选地, 所述晶体管用作所述电压跟随器, 其中, 所述屏蔽电极与所述源极连 接。
[0047] 可选地, 所述传感电路包括多个差分对管, 每一差分对管包括一所述第一晶体 管和一第二晶体管, 所述第二晶体管包括栅极、 源极、 和漏极、 其中, 第一晶 体管的源极和第二晶体管的源极连接, 并用于与所述电流源可选择性连接, 所 述第一晶体管的栅极和所述第二晶体管的栅极分别用于加载电压信号, 所述第 一晶体管的漏极和第二晶体管的漏极用于输出差分交流信号给所述处理电路。
[0048] 可选地, 对于正对设置的屏蔽电极与感测电极: 屏蔽电极的形状和面积与感测 电极的形状和面积相同。
[0049] 可选地, 每一屏蔽电极上设置有通孔, 所述多个感测电极分别通过所述通孔连 接到所述传感电路。
[0050] 可选地, 所述多个屏蔽电极位于同一层, 所述多个感测电极位于同一层, 所述 多个屏蔽电极和所述多个感测电极位于不同层。
[0051] 可选地, 所述指纹传感器集成在一芯片中。
[0052] 本实用新型还提供一种指纹传感装置, 包括指纹传感器和控制电路, 其中, 所 述指纹传感器为上述中任意一项所述的指纹传感器, 所述控制电路用于提供电 压信号给所述感测电极, 并接收所述指纹传感器输出的电流信号, 以及根据所 述电流信号获取指纹信息。
[0053] 可选地, 所述指纹传感器集成在一颗裸片中, 所述控制电路集成在另一颗裸片 中。
[0054] 本实用新型还提供一种电子设备, 包括上述中任意一项所述的指纹传感器。
[0055] 本实用新型还提供一种电子设备, 包括所述指纹传感装置。
[0056] 与所述电容式传感器相类似, 所述指纹传感器的感测精度较高。 相应地, 具有 所述指纹传感器的指纹传感装置和电子设备的感测精度较高, 用户的体验较好
[0057] 本实用新型的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描 述中变得明显, 或通过本实用新型的实践了解到。
[0058] 附图说明
[0059] 本实用新型的上述和 /或附加的方面和优点可以从结合下面附图对实施方式的 描述中将变得明显和容易理解, 其中:
[0060] 图 1是现有技术的指纹传感器的电路示意图。 [0061] 图 2是本实用新型电容式传感装置的一实施方式的结构示意图。
[0062] 图 3是图 2所示一组相对的感测电极与屏蔽电极的放大结构示意图。
[0063] 图 4是图 2所示的电容式传感器的一实施方式的部分电路示意图。
[0064] 图 5是图 2所示的电容式传感器的另一实施方式的部分电路示意图。
[0065] 图 6是图 5所示电容式传感器的部分信号的波形图。
[0066] 图 7是图 2所示的电容式传感器的又一实施方式的部分电路示意图。
[0067] 图 8是图 2所示的电容式传感器的又一实施方式的部分电路示意图。
[0068] 图 9是本实用新型电子设备的一实施方式的结构框图。
[0069] 具体实施方式
[0070] 下面详细描述本实用新型的实施方式, 所述实施方式的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的 元件。 下面通过参考附图描述的实施方式是示例性的, 仅用于解释本实用新型 , 而不能理解为对本实用新型的限制。
[0071] 在本实用新型的描述中, 需要理解的是, 术语"第一"、 "第二 "仅用于描述目的
, 而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量 。 由此, 限定有 "第一"、 "第二 "的特征可以明示或者隐含地包括一个或者更多 个所述特征。 在本实用新型的描述中, "多个"的含义是两个或两个以上, 除非 另有明确具体的限定。
[0072] 在本实用新型的描述中, 需要说明的是, 除非另有明确的规定和限定, 术语" 安装"、 "相连"、 "连接 "应做广义理解, 例如, 可以是固定连接, 也可以是可拆 卸连接, 或一体地连接; 可以是机械连接, 也可以是电连接或可以相互通信; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两个元件内部的连通 或两个元件的相互作用关系。 对于本领域的普通技术人员而言, 可以根据具体 情况理解上述术语在本实用新型中的具体含义。
[0073] 下文的公幵提供了许多不同的实施方式或例子用来实现本实用新型的不同结构 。 为了简化本实用新型的公幵, 下文中对特定例子的部件和设定进行描述。 当 然, 它们仅仅为示例, 并且目的不在于限制本实用新型。 此外, 本实用新型可 以在不同例子中重复参考数字和 /或参考字母, 这种重复是为了简化和清楚的目 的, 其本身不指示所讨论各种实施方式和 /或设定之间的关系。 此外, 本实用新 型提供了的各种特定的工艺和材料的例子, 伹是本领域普通技术人员可以意识 到其他工艺的应用和 /或其他材料的使用。
[0074] 进一步地, 所描述的特征、 结构可以以任 1可合适的方式结合在一个或更多实 施方式中。 在下面的描述中, 提供许多具体细节从而给出对本实用新型的实施 方式的充分理解。 然而, 本领域技术人员应意识到, 没有所述特定细节中的一 个或更多, 或者采用其它的结构、 组元等, 也可以实践本实用新型的技术方案 。 在其它情况下, 不详细示出或描述公知结构或者操作以避免模糊本实用新型
[0075] 进一步地, 为了图示清楚, 附图中示出的有些元件数量并非为实际的元件数量 。 然, 本领域的一般技术员在阅图本申请之后是可以明确确定这些技术内容。
[0076] 请一并参阅图 2-4, 图 2为本实用新型电容式传感装置的一实施方式的结构示意 图。 图 3是图 2所示一组正对的感测电极与屏蔽电极的放大结构示意图。 图 4是图 2所示的电容式传感器的一实施方式的电路示意图。 所述电容式传感装置 100包 括电容式传感器 20和控制电路 30。 所述电容式传感器 20与所述控制电路 30相连 接。 所述电容式传感器 20用于感测目标物体的生物特征信息。 所述控制电路 30 用于提供电压信号和直流信号给所述电容式传感器 20, 并接收来自所述电容式 传感器 20输出的交流信号, 以及根据所述交流信号获取所述目标物体的生物特 征信息。 其中, 所述目标物体例如伹不局限为用户的手指、 耳朵、 脚趾、 手掌 等部位, 在本申请中下述的实施方式, 主要以目标物体为手指 F为例进行说明。 所述生物特征信息例如伹不局限为指纹信息、 耳纹信息、 趾纹信息、 掌纹信息 等。 相应地, 所述电容式传感器 20例如为指纹传感器, 或为指纹传感器结合红 外传感器、 血氧传感器、 心跳传感器等中的一种或几种。
[0077] 所述电容式传感器 20包括多个感测电极 21、 多个屏蔽电极 22、 传感电路 23、 接 地线 L、 和多个补偿电路 24。
[0078] 所述多个感测电极 21用于以电容方式耦合到手指 F , 以感测所述手指 F的指纹 信息。 所述多个感测电极 21用于接收来自控制电路 30的电压信号。 其中, 感测 电极 21与手指 F之间形成电容 Cf。 所述多个感测电极 21例如呈阵列式排布, 然, 可变更地, 所述多个感测电极 21也可为其它规则或非规则方式排布。 用户的身 体 Z—般为连接至大地。
[0079] 所述传感电路 23位于所述多个感测电极 21下方, 并与所述多个感测电极 21分别 连接。 所述传感电路 23用于响应感测电极 21上的电压信号的变化, 而对应产生 相应的交流信号给所述控制电路 30。
[0080] 所述多个屏蔽电极 22与所述多个感测电极 21—一相对设置, 且位于所述多个感 测电极 21与所述传感电路 23之间。 相应地, 各相对设置的屏蔽电极 22与感测电 极 21之间形成屏蔽电容 Cs。 对应所述多个感测电极 21的排布方式, 所述屏蔽电 极 22例如呈阵列式排布, 然, 可变更地, 所述多个屏蔽电极 22也可为其它规则 或非规则方式排布。
[0081] 所述接地线 L位于所述屏蔽电极 22背对所述感测电极 21的一侧。 所述接地线 L 与所述多个感测电极 22之间例如形成有寄生电容 Cp。
[0082] 每一补偿电路 24连接相对设置的一所述感测电极 21与一所述屏蔽电极 22。 所述 补偿电路 24包括输入端 a和输出端 b, 其中, 所述输入端 a连接所述感测电极 21 , 所述输出端 b连接所述屏蔽电极 22。 所述补偿电路 24用于根据感测电极 21上的电 压信号动态地提供补偿电压信号给屏蔽电极 22, 以降 ί氐位于屏蔽电极 22下方的 元件与所述多个感测电极 21之间形成的寄生电容, 例如, 降 ί氐接地线 L与所述多 个感测电极 22之间形成的寄生电容 Cp。
[0083] 例如, 各正对设置的屏蔽电极 22和感测电极 21之间的压差均保持不变, 即, 使 得屏蔽电容 Cs的充放电电量为零。 从而屏蔽寄生电容 Cp, 进而提高电容式传感 器 20的感测精度。
[0084] 所述补偿电路 24例如动态地提供与所述感测电极 21上的电压信号相同的信号给 所述屏蔽电极 22, 即, 正对设置的屏蔽电极 22和感测电极 21之间的压差保持为 0 伏。 然, 正对设置的屏蔽电极 22和感测电极 21之间的压差也可保持为其它恒定 的压差, 如 IV。
[0085] 需要说明的是, "动态地"是指所述补偿电路 24吋吋刻刻根据感测电极 21上的电 压信号的变化, 而对应输出相应的补偿电压给所述屏蔽电极 22。
[0086] 所述补偿电路 24例如伹不局限于包括电压跟随器、 缓冲器、 运算放大器、 源极 跟随器中的任意一者或几者。
[0087] 以电压跟随器为例, 电压跟随器的输入端 a连接感测电极 21 , 输出端 b连接屏蔽 电极 22, 从而, 当感测电极 21上的电压信号变化吋, 所述电压跟随器会即吋提 供与感测电极 21上的电压信号相同的信号给屏蔽电极 22。
[0088] 对于各正对设置的屏蔽电极 22与感测电极 21: 屏蔽电极 22的形状和面积例如与 感测电极 21的形状和面积相同。 然, 可变更地, 所述屏蔽电极 22的形状和面积 和所述感测电极 21的形状和面积也可以有所不同, 例如, 所述屏蔽电极 22的面 积也可大于或小于所述感测电极 21的面积; 所述屏蔽电极 22的形状也可与所述 感测电极 21的形状不同。
[0089] 当屏蔽电极 22的形状和面积例如与感测电极 21的形状和面积相同吋, 正对设置 的感测电极 21与屏蔽电极 22的边缘对齐。
[0090] 每一屏蔽电极 22上设置有通孔 H, 所述多个感测电极 21分别通过所述通孔 H连 接到所述传感电路 23。 然, 可变更地, 在其它实施方式中, 所述多个感测电极 2 1也可通过其它方式连接到所述传感电路 23。
[0091] 所述多个感测电极 21例如位于同一层, 定义所述感测电极 21所在的层为感测电 极层 210。 所述多个屏蔽电极 22例如位于同一层, 定义所述感测电极 22所在的层 为屏蔽电极层 220。 所述感测电极层 210与所述屏蔽电极层 220位于不同层。
[0092] 所述电容式传感器 20例如为自电容式传感器或互电容式传感器。
[0093] 所述控制电路 30包括幵关单元 33、 参考电压产生电路 34、 处理电路 35、 和电流 源 36。 其中, 所述参考电压产生电路 34与所述多个感测电极 21连接, 用于提供 电压信号给所述多个感测电极 21。
[0094] 所述传感电路 23包括多个第一晶体管 Tl。 每一第一晶体管 T1包括栅极0、 源极 S、 和漏极 D, 其中, 每一栅极 G连接一所述感测电极 21 , 每一源极 S例如通过所 述幵关单元 33连接所述电流源 36, 每一漏极 D连接所述处理电路 35。 所述多个第 一晶体管 T1用于响应感测电极 21上的电压信号的变化, 而对应产生相应的交流 信号, 并通过所述漏极 D输出所述交流信号给所述处理电路 35。
[0095] 所述处理电路 35根据所述交流信号获取手指 F的指纹图像信息。
[0096] 所述控制电路 30可进一步包括调制电路 31。 所述调制电路 31连接设备地, 接收 接地信号 GND。 所述接地信号 GND—般例如为 0V (伏)的恒定电压信号, 然, 所 述接地信号 GND也可为电压接近 0V的信号。 所述调制电路 31用于输出一调制信 号 NGND给所述接地线 L。
[0097] 所述调制信号 NGND作为所述电容式传感器 20的电压信号参照基准。 所述电容 式传感器 20中的电信号均随所述接地线 L上的电压信号的升高而升高、 随所述接 地线 L上的电压信号的降氐而降氐。 即, 所述电容式传感器 20中的地信号并非 为恒定电压信号, 而是变化的电压信号, 从而提高所述电容式传感器 20的感测 精度。
[0098] 所述调制信号 NGND例如包括不同的第一信号与第二信号, 其中, 第一信号为 接地信号 GND, 第二信号为高于或 ί氐于接地信号 GND的驱动信号。
[0099] 所述调制电路 30例如根据一电压产生电路 (图未示)所产生的第二信号与所述接 地信号 GND对应产生所述调制信号 NGND。
[0100] 所述调制信号 NGND例如为方波脉冲信号、 三角波脉冲信号、 正弦波信号、 梯 形波脉冲信号等。
[0101] 请一并参阅图 5与图 6, 图 5为本实用新型的电容式传感装置的另一实施方式的 部分电路示意图。 图 6为图 5所示的电容式传感装置的部分波形图。 为了能更清 楚明白本申请中各实施方式、 尤其图 6所示实施方式以及下面图 7所示实施方式 、 的电容式传感装置的工作原理, 也可参考本申请人于 2015年 9月 23日向国家知 识产权局提出的实用新型名称为"电容式传感器、 传感装置、 感测系统、 以及电 子设备"、 申请号为" 201510612208.3"的专利申请文件, 此篇专利申请文件所记 载的内容可全部或部分援引在此。 本实施方式的电容式传感装置 100a的电容式 传感器 20的传感电路 23包括差分对管 25。 所述差分对管 25包括一所述第一晶体 管 T1和一第二晶体管 T2。 所述第二晶体管 Τ2包括栅极0、 源极 S、 和漏极 D。 其 中, 第一晶体管 T1的源极 S和第二晶体管 T2的源极 S连接, 并用于通过幵关单元 33与电流源 36可选择性连接。
[0102] 所述第一晶体管 T1的栅极 G用于接收来自参考电压产生电路 34的电压信号 Rl。
所述第二晶体管 T2的栅极 G用于接收来自参考电压产生电路 34的电压信号 R2。 所述电压信号 Rl、 R2均随接地线 L (见图 2)上的调制信号 NGND的变化而变化。 所述电流源 36提供恒定直流信号 I给所述差分对管 25的源极 S。 当电容式传感器 2 0未感测到手指 F的接近或接触吋, 所述第一晶体管 T1的漏极 D和第二晶体管 T2 的漏极 D分别输出恒定直流信号 (1/2)给处理电路 35。 当电容式传感器 20感测到手 指 F的接近或接触吋, 所述感测电极 21上的电压信号 R1发生变化, 从而, 所述第 一晶体管 T1的漏极 D和第二晶体管 T2的漏极 D分别输出差分交流信号 (Ι/2+ί)、 (1/ 2-ί)给处理电路 35。 所述处理电路 35根据所述差分交流信号 (Ι/2+ί)、 (I/2-ί)获取用 户手指 F的指纹图像信息。
[0103] 由于差分交流信号 (Ι/2+ί)、 (I/2-ί)更加稳定, 因此, 所述电容式传感器 20的感测 精度可进一步得到提高。
[0104] 需要说明的是, 在图 6中未示出屏蔽电极 22和补偿电路 24。 另外, 控制电路 30 还可包括吋序控制电路、 扫描驱动电路等元件。 相关说明可参见援引在此的专 利参考文献, 此处不再赘述。
[0105] 请参阅图 7, 图 7为本申请的电容式传感装置的另一实施方式的部分电路示意图 。 所述电容式传感装置 100b的电容式传感器 20包括多个传感单元 26, 每一传感 单元 26包括感测电极 21、 屏蔽电极 22(见图 2)、 补偿电路 24、 以及传感电路 23。 其中, 相邻的传感单元 26的第一晶体管 T1用于在指纹感测吋组成差分对管。 具 体工作原理参见援弓 I在此的专利参考文献, 此处不再赘述。
[0106] 请参阅图 8, 图 8为本申请的电容式传感装置的另一实施方式的部分电路示意图 。 所述电容式传感装置 100c的屏蔽电极 22与第一晶体管 T1的源极 S连接。 所述第 一晶体管 T1用作所述补偿电路 24。 从而, 节省产品的制造成本。
[0107] 上述各实施方式的电容式传感器 20可集成在一芯片 (Chip)中, 然, 本申请并不 局限于此, 所述电容式传感器 20也可设置在电子设备的显示屏幕中等。
[0108] 进一步地, 上述各实施方式的电容式传感器 20例如集成在一颗裸片 (Die)中, 所 述控制电路 30集成在另一颗裸片中。 这两颗裸片封装在一起, 或者分别进行封 装。
[0109] 更进一步地, 上述电容式传感器 20或电容式传感装置 100、 100a、 100b ^ 100c 并不局限为用于生物特征信息的感测技术领域, 也可用于其它合适的感测技术 领域。 [0110] 请参阅图 9, 图 9为本实用新型电子设备的一实施方式的结构框图。 所述电子设 备 200包括上述任一实施方式的电容式传感装置 100。 所述电容式传感装置 100可 设置在电子设备 200的正面、 侧面或背面等合适的位置。
[0111] 所述电子设备 200例如为可携式电子产品、 家居式电子产品、 或车载电子产品
。 然而, 所述电子设备不局限此处所列的电子产品, 还可以是其它合适的电子 产品。 所述可携式电子产品例如为移动终端, 所述移动终端例如为所述手机、 平板电脑、 笔记本电脑、 穿戴式产品等合适的移动终端。 所述家居式电子产品 例如为智能门锁、 电视、 冰箱、 台式电脑等合适的家居式电子产品。 所述车载 电子产品例如为车载显示器、 行车记录仪、 导航仪、 车载冰箱等合适的车载电 子产品。
[0112] 应当理解, 本实用新型的实施方式的各部分可以用硬件、 软件、 固件或它们的 组合来实现。 在上述实施方式中, 多个步骤或方法可以用存储在存储器中且由 合适的指令执行系统执行的软件或固件来实现。 例如, 如果用硬件来实现, 和 在另一实施方式中一样, 可用本领域公知的下列技术中的任一项或他们的组合 来实现: 具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路, 具 有合适的组合逻辑门电路的专用集成电路, 可编程门阵列 (PGA), 现场可编程门 阵列 (FPGA)等。
[0113] 本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机 可读存储介质中, 该程序在执行吋, 包括方法实施例的步骤之一或其组合。
[0114] 此外, 在本实用新型的各个实施例中的各功能单元可以集成在一个处理模块中
, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个模 块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功能模块 的形式实现。 所述集成的模块如果以软件功能模块的形式实现并作为独立的产 品销售或使用吋, 也可以存储在一个计算机可读取存储介质中。
[0115] 尽管上面已经示出和描述了本实用新型的实施方式, 可以理解的是, 上述实施 方式是示例性的, 不能理解为对本实用新型的限制, 本领域的普通技术人员在 本实用新型的范围内可以对上述实施实施进行变化、 修改、 替换和变型。 技术问题 问题的解决方案 发明的有益效果

Claims

权利要求书
一种电容式传感器, 包括:
多个感测电极;
传感电路, 位于所述多个感测电极下方, 并与所述多个感测电极分别 连接, 所述传感电路用于响应感测电极上的电压信号的变化, 而对应 产生相应的交流信号;
多个屏蔽电极, 位于所述多个感测电极与所述传感电路之间, 且与所 述多个感测电极一一正对设置;
多个补偿电路, 每一补偿电路连接正对设置的一所述感测电极和一所 述屏蔽电极, 所述补偿电路用于根据感测电极上的电压信号动态地提 供补偿电压信号给屏蔽电极, 以降低位于屏蔽电极下方的元件与所述 多个感测电极之间形成的寄生电容。
根据权利要求 1所述的电容式传感器, 其特征在于: 各正对设置的屏 蔽电极和感测电极之间的压差均保持不变。
根据权利要求 2所述的电容式传感器, 其特征在于: 正对设置的屏蔽 电极和感测电极之间的压差保持为 0伏。
根据权利要求 1所述的电容式传感器, 其特征在于: 所述补偿电路为 电压跟随器、 缓冲器、 运算放大器、 源极跟随器中的任意一者。 根据权利要求 1所述的电容式传感器, 其特征在于: 所述多个感测电 极背对所述传感电路的一侧用于以电容方式耦合到目标物体, 以感测 所述目标物体的生物特征信息。
根据权利要求 1所述的电容式传感器, 其特征在于: 所述电容式传感 器进一步包括接地线, 位于所述多个屏蔽电极的下方, 所述补偿电路 用于根据感测电极上的电压信号动态地提供补偿电压信号给屏蔽电极 , 以降低所述接地线与所述多个感测电极之间形成的寄生电容。 根据权利要求 6所述的电容式传感器, 其特征在于: 所述接地线位于 所述多个屏蔽电极背对所述多个感测电极的一侧, 用于接收来自一调 制电路输出的变化的电压信号。 [权利要求 8] 根据权利要求 7所述的电容式传感器, 其特征在于: 所述电容式传感 器中的电信号均随所述接地线上的电压信号的升高而升高、 随所述接 地线上的电压信号的降低而降低。
[权利要求 9] 根据权利要求 1-8中任意一项所述的电容式传感器, 其特征在于: 所 述传感电路包括多个第一晶体管, 每一第一晶体管包括栅极、 源极、 和漏极, 其中, 每一栅极连接一所述感测电极, 每一源极连接一电流 源, 每一漏极连接一处理电路, 所述多个第一晶体管用于响应感测电 极上因目标物体的接近或接触所引起的电压信号的变化, 而对应产生 相应的交流信号, 并通过所述漏极输出交流信号给所述处理电路, 以 获取所述目标物体的生物特征信息。
[权利要求 10] 根据权利要求 9所述的电容式传感器, 其特征在于: 所述晶体管用作 所述补偿电路, 其中, 所述屏蔽电极与所述源极连接。
[权利要求 11] 根据权利要求 9所述的电容式传感器, 其特征在于: 所述传感电路包 括多个差分对管, 每一差分对管包括一所述第一晶体管和一第二晶体 管, 所述第二晶体管包括栅极、 源极、 和漏极、 其中, 第一晶体管的 源极和第二晶体管的源极连接, 并用于与所述电流源可选择性连接, 所述第一晶体管的栅极和所述第二晶体管的栅极分别用于加载电压信 号, 所述第一晶体管的漏极和第二晶体管的漏极用于输出差分交流信 号给所述处理电路。
[权利要求 12] 根据权利要求 1所述的电容式传感器, 其特征在于: 对于正对设置的 屏蔽电极与感测电极: 屏蔽电极的形状和面积与感测电极的形状和面 积相同。
[权利要求 13] 根据权利要求 1所述的电容式传感器, 其特征在于: 每一屏蔽电极上 设置有通孔, 所述多个感测电极分别通过所述通孔连接到所述传感电 路。
[权利要求 14] 根据权利要求 1所述的电容式传感器, 其特征在于: 所述多个屏蔽电 极位于同一层, 所述多个感测电极位于同一层, 所述多个屏蔽电极和 所述多个感测电极位于不同层。 根据权利要求 1所述的电容式传感器, 其特征在于: 所述电容式传感 器集成在一芯片中。
根据权利要求 1所述的电容式传感器, 其特征在于: 所述电容式传感 器为指纹传感器。
一种电容式传感装置, 包括电容式传感器和控制电路, 其中, 所述电 容式传感器为权利要求 1-16中任意一项所述的电容式传感器, 所述控 制电路用于提供电压信号给所述感测电极, 并接收所述传感电路输出 的交流信号, 以及根据所述交流信号获取感测信息。
根据权利要求 17所述的电容式传感装置, 其特征在于: 所述电容式传 感器集成在一颗裸片中, 所述控制电路集成在另一颗裸片中。
一种电子设备, 包括权利要求 1-16中任意一项所述的电容式传感器。 一种电子设备, 包括权利要求 17或 18所述的电容式传感装置。
一种指纹传感器, 包括:
多个感测电极;
多个屏蔽电极, 位于所述多个感测电极下方, 且与所述多个感测电极 一一正对设置;
多个电压跟随器, 每一电压跟随器连接正对设置的一所述感测电极和 一所述屏蔽电极。
根据权利要求 21所述的指纹传感器, 其特征在于: 所述指纹传感器进 一步包括传感电路, 位于所述多个感测电极下方, 并与所述多个感测 电极分别连接, 所述传感电路用于响应感测电极上的电压信号的变化 , 而对应产生相应的交流信号。
根据权利要求 22所述的指纹传感器, 其特征在于: 所述多个屏蔽电极 位于所述多个感测电极与所述传感电路之间。
根据权利要求 22所述的指纹传感器, 其特征在于: 所述多个感测电极 用于以电容方式耦合到用户的手指, 以感测手指的指纹图像信息。 根据权利要求 21-24中任意一项所述的指纹传感器, 其特征在于: 所 述指纹传感器进一步包括接地线, 位于所述多个屏蔽电极背对所述多 个感测电极的一侧, 所述多个屏蔽电极用于屏蔽或降低所述接地线与 所述多个感测电极之间形成的寄生电容。
根据权利要求 25所述的指纹传感器, 其特征在于: 所述接地线用于接 收来自一调制电路输出的变化的电压信号, 其中, 所述指纹传感器中 的电信号均随所述接地线上的电压信号的升高而升高、 随所述接地线 上的电压信号的降低而降低。
根据权利要求 22所述的指纹传感器, 其特征在于: 所述传感电路包括 多个第一晶体管, 每一第一晶体管包括栅极、 源极、 和漏极, 其中, 每一栅极连接一所述感测电极, 每一源极连接一电流源, 每一漏极连 接一处理电路, 所述多个第一晶体管用于响应感测电极上因手指的接 近或接触所引起的电压信号的变化, 而对应产生相应的交流信号, 并 通过所述漏极输出交流信号给所述处理电路, 以获取所述手指的指纹 图像信息。
根据权利要求 27所述的指纹传感器, 其特征在于: 所述晶体管用作所 述电压跟随器, 其中, 所述屏蔽电极与所述源极连接。
根据权利要求 27所述的指纹传感器, 其特征在于: 所述传感电路包括 多个差分对管, 每一差分对管包括一所述第一晶体管和一第二晶体管 , 所述第二晶体管包括栅极、 源极、 和漏极、 其中, 第一晶体管的源 极和第二晶体管的源极连接, 并用于与所述电流源可选择性连接, 所 述第一晶体管的栅极和所述第二晶体管的栅极分别用于加载电压信号 , 所述第一晶体管的漏极和第二晶体管的漏极用于输出差分交流信号 给所述处理电路。
根据权利要求 21所述的指纹传感器, 其特征在于: 对于正对设置的屏 蔽电极与感测电极: 屏蔽电极的形状和面积与感测电极的形状和面积 相同。
根据权利要求 22所述的指纹传感器, 其特征在于: 每一屏蔽电极上设 置有通孔, 所述多个感测电极分别通过所述通孔连接到所述传感电路 [权利要求 32] 根据权利要求 1所述的指纹传感器, 其特征在于: 所述多个屏蔽电极 位于同一层, 所述多个感测电极位于同一层, 所述多个屏蔽电极和所 述多个感测电极位于不同层。
[权利要求 33] 根据权利要求 1所述的指纹传感器, 其特征在于: 所述指纹传感器集 成在一芯片中。
[权利要求 34] 一种指纹传感装置, 包括指纹传感器和控制电路, 其中, 所述指纹传 感器为权利要求 21-33中任意一项所述的指纹传感器, 所述控制电路 用于提供电压信号给所述感测电极, 并接收所述指纹传感器输出的电 流信号, 以及根据所述电流信号获取指纹信息。
[权利要求 35] 根据权利要求 34所述的指纹传感装置, 其特征在于: 所述指纹传感器 集成在一颗裸片中, 所述控制电路集成在另一颗裸片中。
[权利要求 36] 一种电子设备, 包括权利要求 21-33中任意一项所述的指纹传感器。
[权利要求 37] 一种电子设备, 包括权利要求 34或 35所述的指纹传感装置。
PCT/CN2016/105425 2016-11-11 2016-11-11 电容式传感器、电容式传感装置、以及电子设备 WO2018086054A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/105425 WO2018086054A1 (zh) 2016-11-11 2016-11-11 电容式传感器、电容式传感装置、以及电子设备
CN201690000181.0U CN208689588U (zh) 2016-11-11 2016-11-11 电容式传感器、电容式传感装置、指纹传感器、指纹传感装置、以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105425 WO2018086054A1 (zh) 2016-11-11 2016-11-11 电容式传感器、电容式传感装置、以及电子设备

Publications (1)

Publication Number Publication Date
WO2018086054A1 true WO2018086054A1 (zh) 2018-05-17

Family

ID=62110210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105425 WO2018086054A1 (zh) 2016-11-11 2016-11-11 电容式传感器、电容式传感装置、以及电子设备

Country Status (2)

Country Link
CN (1) CN208689588U (zh)
WO (1) WO2018086054A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651612B2 (en) 2020-09-14 2023-05-16 Superc-Touch Corporation Fingerprint sensing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971139B (zh) * 2016-11-11 2020-11-17 深圳信炜科技有限公司 电容式传感器、电容式传感装置、以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214051A (zh) * 2010-04-06 2011-10-12 三星电子株式会社 触摸面板中补偿寄生电容的方法和设备
CN102955627A (zh) * 2011-08-25 2013-03-06 比亚迪股份有限公司 一种电容式触摸屏检测电路及检测方法
CN103870817A (zh) * 2014-03-27 2014-06-18 成都费恩格尔微电子技术有限公司 一种射频式微电容指纹采集芯片及采集方法
CN205038622U (zh) * 2015-10-22 2016-02-17 京东方科技集团股份有限公司 一种触摸屏和显示装置
CN205121586U (zh) * 2015-11-04 2016-03-30 圆台科技有限公司 降低寄生电容的指纹辨识感测器
US20160117017A1 (en) * 2014-05-29 2016-04-28 Cypress Semiconductor Corporation High voltage, High-sensitivity Self-capacitance Sensing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214051A (zh) * 2010-04-06 2011-10-12 三星电子株式会社 触摸面板中补偿寄生电容的方法和设备
CN102955627A (zh) * 2011-08-25 2013-03-06 比亚迪股份有限公司 一种电容式触摸屏检测电路及检测方法
CN103870817A (zh) * 2014-03-27 2014-06-18 成都费恩格尔微电子技术有限公司 一种射频式微电容指纹采集芯片及采集方法
US20160117017A1 (en) * 2014-05-29 2016-04-28 Cypress Semiconductor Corporation High voltage, High-sensitivity Self-capacitance Sensing
CN205038622U (zh) * 2015-10-22 2016-02-17 京东方科技集团股份有限公司 一种触摸屏和显示装置
CN205121586U (zh) * 2015-11-04 2016-03-30 圆台科技有限公司 降低寄生电容的指纹辨识感测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651612B2 (en) 2020-09-14 2023-05-16 Superc-Touch Corporation Fingerprint sensing apparatus

Also Published As

Publication number Publication date
CN208689588U (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US11093055B2 (en) Stylus to host synchronization using a magnetic field
KR102112092B1 (ko) 터치 센싱 시스템
CN106468969B (zh) 驱动电路以及具有触控面板的显示面板的驱动方法
CN103729073B (zh) 主动式电容笔
CN103513813B (zh) 具有集成式触摸屏的显示装置
TWI484384B (zh) 用於觸控致能顯示之動態電壓產生
KR102102881B1 (ko) 터치 센싱 시스템과 그 소비전력 제어방법
CN110045855B (zh) 包括触摸传感器的显示设备
CN104750301A (zh) 触摸感测系统
CN107665052A (zh) 触笔、触摸感测系统及其驱动方法
CN105630261A (zh) 积分器及使用积分器的触摸感测系统
CN104182076A (zh) 显示装置及其驱动方法
TW202105156A (zh) 光學式指紋感測器之控制方法和控制電路
CN104849895B (zh) 显示装置
KR102364099B1 (ko) 능동형 스타일러스 펜과 그를 포함한 터치 센싱 시스템, 및 그 구동방법
US10345951B2 (en) Touch panel and sensing method thereof
WO2018086054A1 (zh) 电容式传感器、电容式传感装置、以及电子设备
KR102670235B1 (ko) 드라이브 ic와 이를 이용한 표시장치
CN103294297B (zh) 信号处理及前置放大电路和触摸屏
KR102489286B1 (ko) 표시패널의 구동 회로 및 이를 포함한 표시장치
KR101661693B1 (ko) 사용자 기기의 사용자 입력 이중화 방법 및 이를 위한 장치
CN106971139B (zh) 电容式传感器、电容式传感装置、以及电子设备
CN104484084A (zh) 一种触摸屏的驱动方法、触摸屏及显示装置
CN108475133A (zh) 用一个感测电路实现多个模式的触摸板用驱动电路及利用其的触摸感测方法
KR101798662B1 (ko) 터치 스크린 구동 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920942

Country of ref document: EP

Kind code of ref document: A1