US20160117017A1 - High voltage, High-sensitivity Self-capacitance Sensing - Google Patents

High voltage, High-sensitivity Self-capacitance Sensing Download PDF

Info

Publication number
US20160117017A1
US20160117017A1 US14/854,350 US201514854350A US2016117017A1 US 20160117017 A1 US20160117017 A1 US 20160117017A1 US 201514854350 A US201514854350 A US 201514854350A US 2016117017 A1 US2016117017 A1 US 2016117017A1
Authority
US
United States
Prior art keywords
capacitance
electrode
sensing
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/854,350
Inventor
Viktor Kremin
Andriy Maharyta
Michael Patrick Hills
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monterey Research LLC
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Priority to US14/854,350 priority Critical patent/US20160117017A1/en
Publication of US20160117017A1 publication Critical patent/US20160117017A1/en
Assigned to CYPRESS SEMICONDUCTOR CORPORATION reassignment CYPRESS SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KREMIN, VIKTOR, MAHARYTA, ANDRIY, HILLS, MICHAEL P
Assigned to SPANSION LLC, CYPRESS SEMICONDUCTOR CORPORATION reassignment SPANSION LLC PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MONTEREY RESEARCH, LLC reassignment MONTEREY RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYPRESS SEMICONDUCTOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes

Definitions

  • Capacitance sensing systems can sense electrical signals generated on electrodes that reflect changes in capacitance. Such changes in capacitance can indicate a touch event (i.e., the proximity of an object to particular electrodes).
  • Capacitive sense elements may be used to replace mechanical buttons, knobs and other similar mechanical user interface controls. The use of a capacitive sense element allows for the elimination of complicated mechanical switches and buttons, providing reliable operation under harsh conditions. In addition, capacitive sense elements are widely used in modern customer applications, providing new user interface options in existing products. Capacitive sense elements can range from a single button to a large number arranged in the form of a capacitive sense array for a touch-sensing surface.
  • Transparent touch screens that utilize capacitive sense arrays are ubiquitous in today's industrial and consumer markets. They can be found on cellular phones, GPS devices, set-top boxes, cameras, computer screens, MP3 players, digital tablets, and the like.
  • the capacitive sense arrays work by measuring the capacitance of a capacitive sense element, and looking for a delta in capacitance indicating a touch or presence of a conductive object.
  • a conductive object e.g., a finger, hand, or other object
  • the capacitance changes of the capacitive touch sense elements can be measured by an electrical circuit.
  • the electrical circuit converts the measured capacitances of the capacitive sense elements into digital values.
  • a touch panel has a distributed load of capacitance of both types (1) and (2) and Cypress' touch solutions sense both capacitances either uniquely or in hybrid form with its various sense modes.
  • FIG. 1 is a circuit diagram illustrating a base circuit for self-capacitance sensing according to one implementation.
  • FIG. 2 is a circuit diagram illustrating a second circuit for self-capacitance sensing with an active shield layer according to another implementation.
  • FIG. 3 is a circuit diagram illustrating a third circuit for self-capacitance sensing with an active shield layer in combination with active shielding for entire analog-front-end circuit according to another implementation.
  • FIG. 4 is a circuit diagram illustrating a high-voltage capacitance-sensing circuit for self-capacitance sensing according to one embodiment.
  • FIG. 5 is a waveform diagram illustrating operational waveforms in a four-phase, full-wave mode according to one embodiment.
  • FIG. 6 is a waveform diagram illustrating operational waveforms in a two-phase, half-wave mode according to another embodiment.
  • FIG. 7 is a waveform diagram illustrating operational waveforms in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • FIG. 8A is a flow diagram of a method of self-capacitance sensing in a four-phase, full-wave mode according to one embodiment.
  • FIG. 8B is a flow diagram of a method of self-capacitance sensing in a two-phase, half-wave mode according to another embodiment.
  • FIG. 8C is a flow diagram of a method of self-capacitance sensing in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • FIG. 9 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a current conveyor for self-capacitance sensing according to another embodiment.
  • FIG. 10 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a passive integrator for self-capacitance sensing according to another embodiment.
  • FIG. 11 is a block diagram illustrating a floating power supply for a high-voltage capacitance-sensing circuit and a host according to one embodiment.
  • FIGS. 12A-12B are circuit diagrams illustrating a simplified functional equivalent schematic of the floating power supply for the high-voltage capacitance-sensing circuit and the host of FIG. 11 with and without a shield layer according to one embodiment.
  • FIGS. 13A-13C are circuit diagrams of a simplified Analog Front-End (AFE) of a high-voltage capacitance-sensing circuit according to one embodiment.
  • AFE Analog Front-End
  • FIG. 14 is a diagram illustrating timing waveforms of a high-voltage capacitance-sensing circuit with the floating ground configuration according to one embodiment.
  • FIG. 15 is a block diagram illustrating one embodiment of an electronic system having a processing device with high-voltage, high-sensitivity self-capacitance sensing.
  • One apparatus includes a capacitance-sensing circuit coupled to a capacitive-sense array of electrodes.
  • the capacitance-sensing circuit includes a self-capacitance sensing channel, a first voltage source (e.g., a low-voltage drive source) to drive a reference voltage, and a second voltage source (e.g., high-voltage drive source) to drive a sensing voltage.
  • the sensing voltage is greater in magnitude than the reference voltage.
  • the capacitance-sensing circuit also includes 1) a first set of switches to selectively couple the self-capacitance sensing channel or the second voltage source to a sensing electrode of the capacitance-sensing array; and 2) a second set of switches to selectively couple the first voltage source or the second voltage source to a shielding electrode of the capacitance-sensing array.
  • capacitor may refer to any combination of conductors and dielectrics that produce a capacitance between the conductors, as well as discrete components.
  • a capacitance can created as an intersection between two electrodes.
  • An intersection between the first electrode and second electrode is also called a sensor.
  • An intersection between two sense elements may be understood as a location at which one sense electrode crosses over or overlaps another, while maintaining galvanic isolation from each other.
  • a discrete capacitor may be used to produce a capacitance.
  • FIG. 1 is a circuit diagram illustrating a base circuit 100 for self-capacitance sensing according to one implementation.
  • a sensing electrode 101 (referred to below as sensor) of a touch panel is driven by an active integrator 102 , where its drive voltage is provided by an excitation source V EXT 103 .
  • the excitation voltage provided by the excitation source V EXT 103 is limited by the low-voltage nature of conventional touch-controllers designs and its power supplies, e.g. powered from 3.3V power supply.
  • the integrated charge measured by the active integrator 102 is sampled by an analog-to-digital converter (ADC) 104 and used for subsequent processing, such as filtering, accumulation, or the like.
  • ADC analog-to-digital converter
  • the integrator input charge is defined by the sum of the parasitic capacitance (Cp) and finger capacitance (Cf), connected in series with device capacitance (Cdev). Taking into account that Cf is much smaller as compared to Cdev, it is possible to determine the integrator input charge by a sum of the parasitic capacitances (Cpp+Cp) and finger capacitances Cf. In practical applications, Cf is in several orders smaller than parasitic capacitances. As a result, most of a dynamic range of the active integrator 102 and ADC 104 is utilized by the charge, coming from non-informative parasitic capacitances, preventing accurate touch signal resolution.
  • a baseline compensation circuit 105 e.g., current sources
  • the baselines compensation circuit 105 injects compensation current opposite to the current coming from the sensing electrode of the panel. It should be noted that the baseline compensation circuit 105 may add noise to the sampling and conversion.
  • the sensing arrangement, described in FIG. 1 may have the following drawbacks: 1) Large input charge requires large baseline compensation signal; 2) Large compensation signal has larger noise component, which masks the very small useful signal changes on the sensing electrode; and 3) Low sensor excitation voltage (e.g. 2V) translates into very low touch signal charge, masked by internally generated noise signals (e.g. from baseline compensation circuit 105 ) or noise signals originated from finger (e.g. charger noise), or the like.
  • FIG. 2 is a circuit diagram illustrating a second circuit 200 for self-capacitance sensing with an active shield layer 201 according to another implementation.
  • the second circuit 200 is similar to the base circuit 100 as noted by similar reference labels.
  • a shield signal follows the excitation signal from the excitation source V EXT 103 , virtually eliminating the impact of a capacitance between the sensing electrode 101 to panel bottom shield layer 202 .
  • the capacitances from capacitance-sensing pins and routing may remain uncompensated.
  • the baselines compensation circuit 105 may be used.
  • the sensing arrangement, described in FIG. 2 may have the following drawbacks: 1) Still needs baseline compensation circuit 105 , as active shield layer 201 does not compensate for all capacitances in the design; and 2) Low sensor excitation voltage (e.g. 2V) translates into very low touch signal charge, masked by internally generated noise signals (e.g. from baseline compensation circuits) or noise signals originated from finger (e.g. charger noise), or the like.
  • Low sensor excitation voltage e.g. 2V
  • noise signals e.g. from baseline compensation circuits
  • noise signals originated from finger e.g. charger noise
  • FIG. 3 is a circuit diagram illustrating a third circuit 300 for self-capacitance sensing with an active shield layer 201 in combination with active shielding 302 (referred to as “Active Guard”) for entire analog-front-end circuit according to another implementation.
  • the third circuit 300 is similar to the second circuit 200 as noted by similar reference numbers.
  • the active shielding 302 is provided for the AFE, including the active integrator 102 and ADC 104 , using a floating power supply 303 and circuitry 304 to provide isolated data communication channel (e.g., galvanic isolation) with subsequent processing 305 .
  • the active shielding 302 can be used in addition to panel shielding as described above with respect to FIG. 2 . This approach allows reaching lowest input current level (see analysis later), but requires complex integrated circuit design, as different portions of circuit have different power supplies and cannot use common ground.
  • the sensing arrangement, described in FIG. 3 may have the following drawbacks: 1) Very complex design, as within one integrated circuit (“chip”); 2) Needs to have active shielded AFE using a floating power supply and an isolated data communication channel.
  • the high-distance hover and proximity sensing in the touch devices can be achieved using self-capacitance sensing with active shield.
  • the sensing electrode's electric field does not decay so quickly as in a mutual capacitance mode, as multiple small electrodes have same potential to form a virtual, large sensing electrode (large virtual equipotential surface).
  • This virtual, large sensing electrode allows a detection distance of the electric field to be similar to a size of the entire touch panel.
  • electric field is concentrated mostly in local an intersection (RX-TX area cross-section), so detection distance is limited in general to be similar to an individual sensor size (intersection of two electrodes).
  • the embodiments described below are directed to a high-voltage, low-baseline self-capacitance sensing with and without galvanic isolation.
  • FIG. 4 is a circuit diagram illustrating a high-voltage (HV) capacitance-sensing circuit 400 for self-capacitance sensing according to one embodiment.
  • the HV capacitance-sensing circuit 400 can be used for high-voltage, low-baseline self-capacitance sensing without galvanic isolation.
  • the HV capacitance-sensing circuit 400 has the ability to detect very small capacitance changes for high-distance hover and proximity sensing in the touch devices (e.g., tablets, smartphones, PDAs, or the like).
  • the HV capacitance-sensing circuit 400 is coupled to a touch panel with a sensing electrode 401 and a shielding electrode 405 .
  • the HV capacitance-sensing circuit 400 includes analog front-end circuitry to form a self-capacitance sensing channel.
  • the self-capacitance sensing channel is formed by an active integrator 402 , including an operational amplifier and an integrator capacitor, and an ADC 404 .
  • the active integrator 402 can also include a reset switch to reset integration.
  • An input current of the active integrator 402 is integrated on the integrator capacitor (C INT ) for a duration of charge integration phase.
  • the sensing circuit operates at the panel full charge/discharge principle: at the end of each operation phase sensor current drops almost to zero and total transferred charge amount is determined by the sensor voltage swing between phases and sensing capacitance.
  • the ADC 402 measures an output voltage (V_INT) from the active integrator 402 and convers the voltage to a digital value.
  • the digital value may represent the capacitance measured on the sensing electrode 401 .
  • the HV capacitance-sensing circuit 400 includes two voltage sources: a first voltage source for a low-voltage drive source 403 and a second voltage source for a high-voltage drive source 406 .
  • the low-voltage drive source 403 is a direct current (DC) reference voltage source that drives a reference voltage (V REF ). This reference voltage is a low voltage (e.g., less than 5 V).
  • the low-voltage drive source 403 drives the active integrator 402 .
  • a non-inverting input of the operational amplifier is coupled to receive the reference voltage from the low-voltage drive source 403 .
  • the low-voltage drive source 403 also can drive the shielding electrode 405 , as described in more detail below.
  • a shielding electrode reference buffer U 1 415 can be used to drive the shielding electrode 405 with the reference voltage.
  • the high-voltage drive source 406 is a DC high-voltage source that drives a sensing voltage (V DR ). This sensing voltage is a high voltage (e.g., more than 5 V) that is greater in magnitude than the reference voltage.
  • the high-voltage drive source 406 can also drive the sensing electrode 401 and the shielding electrode 405 with a high voltage, as described in more detail below.
  • the HV capacitance-sensing circuit 400 also includes a first set of switches 411 (e.g., S W1 -S W3 ) and a second set of switches 413 (e.g., S W4 -S W6 ).
  • the first switches can be controlled to selectively couple an input node 410 of the active integrator 402 (or other the self-capacitance sensing channel), the high-voltage drive source 406 , or a ground potential to the sensing electrode 401 .
  • the active integrator 402 is considered an input charge integrator U 2 .
  • the second set of switches 413 can be controlled to selectively couple the low-voltage drive source 403 , the high-voltage drive source 406 , or a ground potential to the shielding electrode 405 .
  • the first set of switches 411 include two switches ((e.g., S W1 -S W2 ) and the second set of switches 413 includes two switches (e.g., S W4 -S W5 ) in which the first set of switches 411 can be controlled to selectively couple the input node 410 or the high-voltage drive source 406 to the sensing electrode 401 .
  • the first set of switches 411 does not include a third switch S W3 to selectively couple the sensing electrode 401 to the ground potential.
  • the second set of switches 413 can be controlled to selectively couple the low-voltage drive source 403 or the high-voltage drive source 406 to the shielding electrode 405 .
  • the second set of switches 413 does not include a third switch S W6 to selectively couple the shielding electrode 405 to the ground potential.
  • the first set of switches 411 and second set of switches 413 can be controlled to operate in one of a variety of modes, including, for example, in a four-phase, full-wave mode, in a two-phase, half-wave mode, or in a three-phase, half-wave mode with noise subtraction.
  • both charge current and discharge current used to measure capacitance on the sensing electrode 401 is sensed by the HV capacitance-sensing circuit 400 .
  • both charge and discharge currents are integrated by the active integrator 402 and processed by ADC 404 .
  • either charge current or discharge current (but not both) used to measure capacitance on the sensing electrode 401 is sensed by the HV capacitance-sensing circuit 400 .
  • either the charge current or discharge current is integrated by the active integrator 402 and processed by ADC 404 .
  • Full-wave modes may have the following advantages: 1) up to two times the touch signal; 2) Not sensitive to noise from DC leakages from DC sources and low-frequency noise from alternating current (AC) main sources (e.g., 50/60Hz); and 3) Not sensitive to middle point voltage drifts/offsets.
  • AC alternating current
  • the first set of switches 411 of the HV capacitance-sensing circuit 400 includes a first switch S W1 , a second switch S W2 and a third switch S W3 , and the second set of switches 413 a fourth switch S W4 , a fifth switch S W5 and a sixth switch S W6 .
  • the HV capacitance-sensing circuit is operative to control the first set of switches and the second set of switches in one of a four-phase, full-wave mode, a three-phase, half-wave mode, or a two-phase, half-wave mode, as descried in more detail below.
  • the first set of switches 411 of the HV capacitance-sensing circuit 400 includes a first switch S W1 and a second switch S W2 and the second set of switches 413 includes a third switch S W5 and a fourth switch S W5 .
  • the HV capacitance-sensing circuit is operative to control the first set of switches and the second set of switches in one of a three-phase, half-wave mode or a two-phase, half-wave mode, as descried in more detail below.
  • a processing device includes an integrator, such as a passive integrator or an active integrator (e.g., operational amplifier based or a current-conveyor based integrator), and a multiplexer bus coupled to an input of the integrator.
  • the multiplexer is configured to selectively couple the sensing electrode 401 of a sense array to either an input node of a capacitance-sensing channel, a high-voltage drive source or a ground potential as described herein.
  • the multiplexer can also selectively couple the shielding electrode 405 to the high-voltage drive source, a low-voltage drive source, or a ground potential as described herein.
  • the processing device includes an ADC coupled to an output of the integrator to convert an integrated capacitance to a digital value.
  • the integrator 402 is illustrated and described as an active integrator or operational amplifier integrator. In other embodiments, the integrator 402 may be a passive integrator, a current-conveyor integrator, or other circuit to perform integration.
  • the embodiments described herein can be implemented in a touchscreen controller used in a touchscreen device, such as a point of sale terminals, trackpads, or any other touch input device.
  • the embodiments described herein can also be used in other touch devices, such as a computer trackpad, or other types of touch input devices.
  • the embodiments described herein may also provide a noise abatement procedure for normal touches, which may be an improvement over the conventional data filtering methods.
  • the operation sequences for the different modes are provided in the following Table 2, Table 3, and Table 4.
  • the signal waveforms are shown in FIG. 5 , FIG. 6 , and FIG. 7 , respectively.
  • the numbers inside circles (1), (2), (3) are used to show different signal integration stages and they are referenced later in the flowcharts or operation sequence tables.
  • FIG. 5 is a waveform diagram illustrating operational waveforms 500 in a four-phase, full-wave mode according to one embodiment.
  • the operational sequence of the six switches of HV capacitance-sensing circuit 400 in the four-phase, full-wave mode is set forth in the following Table 3.
  • the four-phase, full-wave mode includes: 1) a first phase in which the first switch S W1 and the fourth switch S W4 are turned on and the second switch S W2 , the third switch S W3 , the fifth switch S W5 , and the sixth switch S W6 are turned off; 2) a second phase in which the second switch S W2 and the fifth switch S W5 are turned on and the first switch S W1 , the third switch S W3 , the fourth switch S W4 , and the sixth switch S W6 are turned off; 3) a third phase in which the third switch S W3 and the sixth switch S W6 are turned on and the first switch S W1 , the second switch S W2 , the fourth switch S W4 , and the fifth switch S W5 are turned off; and 4) a fourth phase in which the second switch S W2 and the fifth switch S W5 are turned on and the first switch S W1 , the third switch S W3 , the fourth switch S W4 and the sixth switch S W6 are turned off.
  • first phase PHI 1 501 the charge, accumulated in the finger capacitor Cf plus uncompensated parasitic capacitance Cpp (e.g. analog switches capacitance, routing, etc.) during charge phase, first phase PHI 1 501 , is equal to as set forth in the following equation (1):
  • the sensor-shield capacitance Cs is not charged, as voltages on both sensor and shield change synchronously and are same. This charge is transferred to the active integrator 402 during the second phage PHI 2 502 , resulting in the integrator's output voltage to change as set forth in the following equation (2):
  • output charge does not depend on the Vref and solely depends on the Vdr.
  • the output charge is proportional to the uncompensated parasitic capacitance Cpp and finger touch capacitance Cf.
  • FIG. 6 is a waveform diagram illustrating operational waveforms 600 in a two-phase, half-wave mode according to another embodiment.
  • the operational sequence of the six switches of HV capacitance-sensing circuit 400 in the two-phase, half-wave mode is set forth in the following Table 4.
  • the HV capacitance-sensing circuit 400 charges the panel and measures a positive charge transfer and result accumulation with a positive result (1) 605 in FIG. 6 .
  • the two-phase, half-wave mode includes: 1) a first phase PHI 1 601 in which the first switch S W1 and the fourth switch S W4 are turned on and the second switch S W2 , the third switch S W3 , the fifth switch S W5 , and the sixth switch S W6 are turned off; and 2) a second phase PHI 2 602 in which the second switch S W2 and the fifth switch S W5 are turned on and the first switch S W1 , the third switch S W3 , the fourth switch S W4 , and the sixth switch S W6 are turned off.
  • the third phase PHI 1 and fourth phase PHI 4 are not used, so the switches S W3 and S W6 are permanently off.
  • FIG. 7 is a waveform diagram illustrating operational waveforms 700 in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • the operational sequence of the six switches of HV capacitance-sensing circuit 400 in the three-phase, half-wave mode is set forth in the following Table5.
  • the HV capacitance-sensing circuit 400 charges the panel, measures a positive charge transfer and result accumulation with a positive result (1) 705 in FIG. 7 and measures noise integration and accumulation with negative sign (3) 706 in FIG. 7 .
  • the three-phase, half-wave mode includes: 1) a first phase PHI 1 701 in which the first switch S W1 and the fourth switch S W4 are turned on and the second switch S W2 , the third switch S W3 , the fifth switch S W5 , and the sixth switch S W6 are turned off; 2) a second phase PHI 2 702 in which the second switch S W2 and the fifth switch S W5 are turned on and the first switch S W1 , the third switch S W3 , the fourth switch S W4 , and the sixth switch S W6 are turned off; and 3) a third phase PHI 3 703 in which the second switch S W2 and the fifth switch S W5 are turned on and the first switch S W1 , the third switch S W3 , the fourth switch S W4 , and the sixth switch S W6 are turned off.
  • the three-phase, half-wave mode includes: 1) a first phase in which the first switch S W1 and the third switch S W3 are turned on and the second switch S W2 and the fourth switch S W4 are turned off; 2) a second phase in which the second switch S W2 and the fourth switch S W4 are turned on and the first switch S W1 and the third switch S W3 are turned off; and 3) a third phase in which the second switch S W2 and the fourth switch S W4 are turned on and the first switch S W1 and the third switch S W3 are turned off.
  • the Sw3 and Sw6 are always off instead of removed as would be appreciated by one of ordinary skill in the art.
  • the operation frequency is determined by a time constant of the panel since the panel cannot be charged or discharged faster than some value, typically 3 ⁇ , where ⁇ —is the panel's RC network equivalent time constant. But different operation sequences use different numbers of panel recharge cycles for one full cycle, allowing the circuit to operate at different frequencies.
  • the two-phase, half-wave mode of FIG. 6 is the fastest since it only uses two cycles for operation.
  • the three-phase, half-wave mode of FIG. 7 is next, following by the four-phase, half-wave mode of FIG. 5 .
  • the low-frequency noise suppression operates in the following way for the four-phase, full-wave mode.
  • the HV capacitance-sensing circuit 400 charges the touch pane.
  • the HV capacitance-sensing circuit 400 integrates input noise as a positive charge transfer and adds a result to the conversion with a positive sign.
  • the HV capacitance-sensing circuit 400 discharges the panel.
  • the HV capacitance-sensing circuit 400 integrates input noise as a negative charge transfer and subtracts from result previously accumulated result.
  • the integrator output voltage caused by a useful signal being positive after completion of the second phase and being negative after completion of the fourth phase.
  • the useful signal response is increased after subtraction integration results from the fourth and second phases.
  • the three-phase, half-wave mode also demonstrates low-frequency noise suppression abilities in similar matter as for the four-phase full-wave mode. Having the additional operation in the third phase where noise is “listened” to, integrated and subtracted from the previous conversion result, there are no useful (touch) panel current flows during the third phase, as the panel is considered to be fully recharged to V REF during the second phase.
  • the following methods 800 , 820 , and 840 may be performed by processing logic that may comprise hardware (circuitry, dedicated logic, etc.), software (such as is run on a general purpose computing system or a dedicated machine), firmware (embedded software), or any combination thereof.
  • the high-voltage capacitance-sensing circuit 400 of FIG. 4 or high-voltage capacitance-sensing circuit 900 of FIG. 9 , or high-voltage capacitance-sensing circuit 1000 of FIG. 10 performs the methods 800 , 820 , and 840 .
  • the processing device 1510 of FIG. 15 performs the methods 800 , 900 , and 920 .
  • other components of the electronic system 1500 perform some or all of the operations of methods 800 , 820 , and 840 .
  • FIG. 8A is a flow diagram of a method 800 of self-capacitance sensing in a four-phase, full-wave mode according to one embodiment.
  • the method 800 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, V DR (block 802 ) (S W1 and S W4 are turned on to drive V_SENSE and V_SHIELD by V DR 406 ).
  • the processing logic discharges the sensing electrode to the reference voltage (V REF ) by positive charge transfer from sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 804 ).
  • the processing logic turns SW 2 and S W5 on, for example.
  • the processing logic converts a result and accumulates the result with a positive sign (1) (block 806 ).
  • the processing logic discharges the panel (sensing electrode and shielding electrode) to a ground potential (block 808 ).
  • the processing logic turns on S W3 and S W6 .
  • the processing logic charges the sensing electrode to the reference voltage (V REF ) by a negative charge transfer from the capacitance-sensing channel (e.g., active integrator) to the sensing electrode (block 810 ).
  • the processing logic converts a result and accumulates the result with a negative sign (2) (block 812 ); and the method 800 ends.
  • FIG. 8B is a flow diagram of a method 820 of self-capacitance sensing in a two-phase, half-wave mode according to another embodiment.
  • the method 820 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, V DR (block 822 ).
  • the processing logic discharges the sensing electrode to the reference voltage (V REF ) by positive charge transfer from the sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 824 ).
  • the processing logic converts a result and accumulates the result with a positive sign (1) (block 826 ); and the method 820 ends.
  • FIG. 8C is a flow diagram of a method 840 of self-capacitance sensing in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • the method 840 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, V DR (block 842 ).
  • the processing logic discharges the sensing electrode to the reference voltage (V REF ) by positive charge transfer from the sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 844 ).
  • the processing logic converts a result and accumulates the result with a positive sign (1) (block 846 ).
  • the processing logic integrates input noise (block 848 ).
  • the processing logic converts a result and accumulates the result with a negative sign (3) (block 850 ); and the method 840 ends.
  • the method further includes communicating with a host processor over a communication channel and the capacitance-sensing circuit is galvanically isolated from the host processor.
  • the methods described above regarding HV self-capacitance sensing can be implemented by a high-voltage capacitance-sensing circuit, which may be implemented in a capacitive touch screen controller.
  • the capacitive touch screen controller is the TrueTouch® capacitive touchscreen controllers, such as the CY8CTMA5xx family of TrueTouch® Multi-Touch All-Points touchscreen controllers, developed by Cypress Semiconductor Corporation of San Jose, Calif.
  • the touch position calculation features may be implemented in other touchscreen controllers, or other touch controllers of touch-sensing devices.
  • the touch position calculation features may be implemented with other touch filtering algorithms as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • FIG. 9 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit 900 with a current conveyor integrator 902 for self-capacitance sensing according to another embodiment.
  • the HV capacitance-sensing circuit 900 is similar to the HV capacitance-sensing circuit 400 as noted by similar reference labels. However, in the HV capacitance-sensing circuit 900 , an operational amplifier-based integrator is replaced with a current conveyor integrator 902 at an input node 910 for the capacitance-sensing channel.
  • FIG. 10 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a passive integrator for self-capacitance sensing according to another embodiment.
  • the HV capacitance-sensing circuit 1000 is similar to the HV capacitance-sensing circuit 400 as noted by similar reference labels. However, in the HV capacitance-sensing circuit 1000 , an operational amplifier-based integrator is replaced with a passive integrator 1002 at an input node 1010 for the capacitance-sensing channel.
  • FIG. 11 is a block diagram illustrating a floating power supply 1102 for a high-voltage capacitance-sensing circuit 1100 and a host according to one embodiment.
  • a touch controller chip (integrated circuit) 1104 e.g., Generation 5 or Gen5 of the TrueTouch® controller device
  • FIGS. 12A-12B The functional simplified schematics for two panel cases are shown in FIGS. 12A-12B .
  • FIGS. 12A-12B are circuit diagrams illustrating a simplified functional equivalent schematic of the floating power supply for the high-voltage capacitance-sensing circuit and the host of FIG. 11 with and without a shield layer according to one embodiment.
  • FIG. 12A shows the floating power supply for the touch controller 1200 when the panel does not include a shield layer.
  • FIG. 12B shows the floating power supply for the touch controller 1200 when the panel does include a shield layer.
  • FIGS. 13A-13C are circuit diagrams of a simplified AFE of a high-voltage capacitance-sensing circuit 1300 according to one embodiment.
  • the circuit diagrams show the simplified AFE schematic and the measured sensor current loop Isen.
  • the voltage on the integrator capacitor Cint can be calculated by the following equation (6):
  • V Cint V sw ⁇ 1 C int ⁇ C f ( 6 )
  • a capacitance bootstrap technique creates the floating ground and sensor excitation voltage source at same time.
  • the level shift schematic transforms TX sync signal voltage to the legal logic level of the swing sync signal.
  • a single chip I2C galvanic isolator or I2C level translator may be used for the host processor communication. The operation diagrams are illustrated in FIG. 14 .
  • DC-coupled communications interfaces e.g., I2C, SPI, UART
  • Either alternate communication interfaces or special treatment of the standard interface is required to allow communications with a host device (e.g., host processor).
  • the simplest form of isolation is through series capacitors.
  • Such communications is common in serial interfaces such as Fibre Channel and Ethernet.
  • the source signaling must be DC-balanced such as that found in 8B10B, Manchester, biphase (differential Manchester), or similar encodings.
  • These DC-balanced communications forms can also be coupled magneticly (through pulse transformers).
  • the galvanic isolation block of FIG. 11 would need to be used.
  • Such a block is normally implemented using optical isolators which can communicate static (i.e., DC) states, while offering hundreds to thousands of volts of isolation.
  • differential drivers and receivers can be used.
  • RS-485 standard receivers allow a common mode operating range of +12V to ⁇ 7V, which would allow a local ground modulation of up to 7V.
  • an integrated circuit including the HV-capacitance-sensing circuit further includes a communication channel coupled to a host processor (e.g., 1550 of FIG. 15 ).
  • the HV capacitance-sensing circuit e.g., 1501 of FIG. 15
  • the HV capacitance-sensing circuit is galvanicly isolated from the host processor using one of the galvanic isolation techniques described herein.
  • FIG. 14 is a diagram illustrating timing waveforms 1400 of a high-voltage capacitance-sensing circuit with the floating ground configuration according to one embodiment.
  • the timing waveforms 1400 can be performed during a self-capacitance scanning period with a floating ground. After other procedures may be performed in other all-points-addressable APA scan and host side reporting frame. During this time, the chip ground may not be floating and it connects to the host device ground.
  • the HV self-capacitance sensing techniques e.g., HV capacitance-sensing circuits 400 , 900 , 1000
  • HV capacitance-sensing circuits 400 , 900 , 1000 have the ability to utilize a high-voltage drive in a self-capacitance mode.
  • These embodiments permit low capacitance baseline and noise and have the ability to sense small capacitance changes (e.g., for hover events or proximity events).
  • the operations of the first and second sets of switches convert a touch controller into a high-sensitive touch controller.
  • Other embodiments, such as those illustrated in FIG. 11 have the ability of high-voltage drive in a self-capacitance mode and have ultra-low capacitance baseline and noise.
  • These techniques also have the ability to sense small capacitance changes (e.g., for hover events or proximity events). These techniques can convert a touch controller into a high-sensitive touch controller by implement floating ground concept for the entire chip.
  • the embodiments described herein may allow high-sensitivity, high distance capacitance sensing by reducing a non-informative baseline signal from the parasitic capacitance without adding noise from baseline circuits and by providing the ability of the high-voltage panel drive at same time. Reducing the non-informative input signal component is used to obtain system noise reduction.
  • Some embodiments utilize an input multiplexer for achieving combination of high-excitation voltage in combination with current of a low-voltage sensing circuit without using additional baseline compensation circuits or arrangements. Different control techniques for the multiplexer control to achieve various modes with different combinations of excitation frequency and noise suppression abilities, such as described herein for the the four-phase, full-wave mode, the two-phase, half-wave mode and the three-phase, half-wave mode described herein.
  • a floating power supply may not be used, but high-voltage driver and a high-voltage mux can be used.
  • a sequence and a charge to code converter such as an integrator and ADC as described herein, can be used.
  • Providing the floating power supply to existing touch controllers can also be used for baseline reduction and higher excitation voltage.
  • the excitation signal propagation from a floating device to the excitation source can also be done.
  • the excitation signal and touch controller floating power generation can use bootstrap circuit.
  • a level translator or galvanic isolation circuit are used.
  • a method of synchronization of the floating excitation source with sensing chip demodulation can be performed. This can be synchronization from touch controller to excitation source or from excitation source to the touch controller, as described herein.
  • the embodiments described herein can be used in various applications, as well as many others: fingerprint sensors, seat occupant detection, long-range proximity sensing, motion capture systems, toys with capacitive proximity sensing, or the like.
  • the systems can be used in a matrix and a switch fingerprint sensor using the self-capacitance sensing techniques described herein.
  • FIG. 15 is a block diagram illustrating one embodiment of an electronic system 1500 having a processing device 1510 including high-voltage capacitance-sensing circuit 1520 .
  • the HV capacitance-sensing circuit 1520 includes both a low-voltage source driver 1521 and a high-voltage source driver 1523 Details regarding the high-voltage capacitance-sensing circuit 1520 are described in more detail with respect to FIGS. 4, 9, and 10 .
  • the processing device 1510 is configured to detect one or more touches on a touch-sensing device, such as the capacitive sense array 1525 .
  • the processing device can detect conductive objects, such as touch objects 1540 (fingers or passive styluses, an active stylus 1530 , or any combination thereof.
  • the high-voltage capacitance-sensing circuit 1501 can measure touch data on the capacitive sense array 1525 .
  • the touch data may be represented as multiple cells, each cell representing an intersection of sense elements (e.g., electrodes) of the capacitive sense array 1525 .
  • the touch data is a 2D capacitive image of the capacitive sense array 1525 .
  • the high-voltage capacitance-sensing circuit 1501 when the high-voltage capacitance-sensing circuit 1501 measures mutual capacitance of the touch-sensing device (e.g., capacitive sense array 1525 ), the high-voltage capacitance-sensing circuit 1501 obtains a 2D capacitive image of the touch-sensing device and processes the data for peaks and positional information.
  • the processing device 1510 is a microcontroller that obtains a capacitance touch signal data set, such as from a sense array, and finger detection firmware executing on the microcontroller identifies data set areas that indicate touches, detects and processes peaks, calculates the coordinates, or any combination therefore. The firmware identifies the peaks using the embodiments described herein.
  • the firmware can calculate a precise coordinate for the resulting peaks.
  • the firmware can calculate the precise coordinates for the resulting peaks using a centroid algorithm, which calculates a centroid of the touch, the centroid being a center of mass of the touch.
  • the centroid may be an X/Y coordinate of the touch.
  • other coordinate interpolation algorithms may be used to determine the coordinates of the resulting peaks.
  • the microcontroller can report the precise coordinates to a host processor, as well as other information.
  • Electronic system 1500 includes processing device 1510 , capacitive sense array 1525 , stylus 1530 , host processor 1550 , embedded controller 1560 , and non-capacitive sense elements 1570 .
  • the capacitive sense elements are electrodes of conductive material, such as copper.
  • the sense elements may also be part of an ITO panel.
  • the capacitive sense elements can be configurable to allow the capacitive-sensing circuit 1501 to measure self-capacitance, mutual capacitance, or any combination thereof.
  • the electronic system 1500 includes the capacitive sense array 1525 coupled to the processing device 1510 via bus 1522 .
  • the capacitive sense array 1525 may include a multi-dimension capacitive sense array.
  • the multi-dimension sense array includes multiple sense elements, organized as rows and columns.
  • the capacitive sense array 1525 operates as an all-points-addressable (“APA”) mutual capacitive sense array.
  • the capacitive sense array 1525 operates as a coupled-charge receiver.
  • the capacitive sense array 1525 is non-transparent capacitive sense array (e.g., PC touchpad).
  • the capacitive sense array 1525 may be disposed to have a flat surface profile. Alternatively, the capacitive sense array 1525 may have non-flat surface profiles. Alternatively, other configurations of capacitive sense arrays may be used.
  • the capacitive sense array 1525 may have a hexagon arrangement, or the like, as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • the capacitive sense array 1525 may be included in an ITO panel or a touch screen panel.
  • the processing device 1510 is configurable to detect a presence of the touch object 1540 , a presence of a stylus 1530 on the capacitive sense array 1525 , or any combination thereof.
  • the processing device 1510 may detect and track the stylus 1530 and the touch object 1540 individually on the capacitive sense array 1525 .
  • the processing device 1510 can detect and track both the stylus 1530 and touch object 1540 concurrently on the capacitive sense array 1525 .
  • the active stylus 1530 is configurable to operate as the timing “master,” and the processing device 1510 adjusts the timing of the capacitive sense array 1525 to match that of the active stylus 1530 when the active stylus 1530 is in use.
  • the capacitive sense array 1525 capacitively couples with the active stylus 1530 , as opposed to conventional inductive stylus applications. It should also be noted that the same assembly used for the capacitive sense array 1525 , which is configurable to detect touch objects 1540 , is also used to detect and track a stylus 1530 without an additional PCB layer for inductively tracking the active stylus 1530 .
  • the processing device 1510 includes analog and/or digital general purpose input/output (“GPIO”) ports 1507 .
  • GPIO ports 1507 may be programmable.
  • GPIO ports 1507 may be coupled to a Programmable Interconnect and Logic (“PIL”), which acts as an interconnect between GPIO ports 1507 and a digital block array of the processing device 1510 (not shown).
  • PIL Programmable Interconnect and Logic
  • the digital block array may be configurable to implement a variety of digital logic circuits (e.g., DACs, digital filters, or digital control systems) using, in one embodiment, configurable user modules (“UMs”).
  • UMs configurable user modules
  • the digital block array may be coupled to a system bus.
  • Processing device 1510 may also include memory, such as random access memory (“RAM”) 1505 and program flash 1504 .
  • RAM random access memory
  • program flash 1504 program flash 1504 .
  • RAM 1505 may be static RAM (“SRAM”), and program flash 1504 may be a non-volatile storage, which may be used to store firmware (e.g., control algorithms executable by processing core 1502 to implement operations described herein).
  • Processing device 1510 may also include a memory controller unit (“MCU”) 1503 coupled to memory and the processing core 1502 .
  • the processing core 1502 is a processing element configured to execute instructions or perform operations.
  • the processing device 1510 may include other processing elements as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • the memory may be internal to the processing device or external to it. In the case of the memory being internal, the memory may be coupled to a processing element, such as the processing core 1502 . In the case of the memory being external to the processing device, the processing device is coupled to the other device in which the memory resides as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • the processing device 1510 may also include an analog block array (not shown).
  • the analog block array is also coupled to the system bus.
  • Analog block array may also be configurable to implement a variety of analog circuits (e.g., ADCs or analog filters) using, in one embodiment, configurable UMs.
  • the analog block array may also be coupled to the GPIO 1507 .
  • high-voltage capacitance-sensing circuit 1501 may be integrated into processing device 1510 .
  • Capacitance-sensing circuit 1501 may include analog I/O for coupling to an external component, such as touch-sensor pad (not shown), capacitive sense array 1525 , touch-sensor slider (not shown), touch-sensor buttons (not shown), and/or other devices.
  • the high-voltage capacitance-sensing circuit 1501 may be configurable to measure capacitance using mutual-capacitance sensing techniques, self-capacitance sensing technique, charge coupling techniques or the like.
  • high-voltage capacitance-sensing circuit 1501 operates using a charge accumulation circuit, a capacitance modulation circuit, or other capacitance sensing methods known by those skilled in the art.
  • the high-voltage capacitance-sensing circuit 1501 is of the Cypress TMA-3xx, TMA-4xx, or TMA-xx families of touch screen controllers.
  • other high-voltage capacitance-sensing circuit s may be used.
  • the mutual capacitive sense arrays, or touch screens, as described herein, may include a transparent, conductive sense array disposed on, in, or under either a visual display itself (e.g. LCD monitor), or a transparent substrate in front of the display.
  • the TX and RX electrodes are configured in rows and columns, respectively. It should be noted that the rows and columns of electrodes can be configured as TX or RX electrodes by the high-voltage capacitance-sensing circuit 1501 in any chosen combination.
  • the TX and RX electrodes of the sense array 1525 are configurable to operate as a TX and RX electrodes of a mutual capacitive sense array in a first mode to detect touch objects, and to operate as electrodes of a coupled-charge receiver in a second mode to detect a stylus on the same electrodes of the sense array.
  • the stylus which generates a stylus TX signal when activated, is used to couple charge to the capacitive sense array, instead of measuring a mutual capacitance at an intersection of a RX electrode and a TX electrode (a sense element) as done during mutual-capacitance sensing.
  • An intersection between two sense elements may be understood as a location at which one sense electrode crosses over or overlaps another, while maintaining galvanic isolation from each other.
  • the high-voltage capacitance-sensing circuit 1501 does not use mutual-capacitance or self-capacitance sensing to measure capacitances of the sense elements when performing a stylus sensing.
  • the high-voltage capacitance-sensing circuit 1501 measures a charge that is capacitively coupled between the sense array 1525 and the stylus as described herein.
  • the capacitance associated with the intersection between a TX electrode and an RX electrode can be sensed by selecting every available combination of TX electrode and RX electrode.
  • a touch object such as a finger or stylus
  • the object causes a decrease in mutual capacitance between some of the TX/RX electrodes.
  • the presence of a finger increases the coupling capacitance of the electrodes.
  • the location of the finger on the capacitive sense array 1525 can be determined by identifying the RX electrode having a decreased coupling capacitance between the RX electrode and the TX electrode to which the TX signal was applied at the time the decreased capacitance was measured on the RX electrode. Therefore, by sequentially determining the capacitances associated with the intersection of electrodes, the locations of one or more inputs can be determined. It should be noted that the process can calibrate the sense elements (intersections of RX and TX electrodes) by determining baselines for the sense elements. It should also be noted that interpolation may be used to detect finger position at better resolutions than the row/column pitch as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. In addition, various types of coordinate interpolation algorithms may be used to detect the center of the touch as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • the high-voltage capacitance-sensing circuit 1501 includes the high-voltage capacitance-sensing circuit 1520 . Additional details of the high-voltage capacitance-sensing circuit 1520 are described above with respect to FIGS. 2-8 .
  • the electronic system 1500 may also include non-capacitive sense elements 1570 coupled to the processing device 1510 via bus 1571 and GPIO port 1507 .
  • the non-capacitive sense elements 1570 may include buttons, light emitting diodes (“LEDs”), and other user interface devices, such as a mouse, a keyboard, or other functional keys that do not use capacitance sensing.
  • buses 1522 , and 1571 are embodied in a single bus. Alternatively, these buses may be configured into any combination of one or more separate buses.
  • Processing device 1510 may include internal oscillator/clocks 1506 and communication block (“COM”) 1508 .
  • the processing device 1510 includes a spread spectrum clock (not shown).
  • the oscillator/clocks block 1506 provides clock signals to one or more of the components of processing device 1510 .
  • Communication block 1508 may be used to communicate with an external component, such as a host processor 1550 , via host interface (“I/F”) line 1551 .
  • processing device 1510 may also be coupled to embedded controller 1560 to communicate with the external components, such as host processor 1550 .
  • the processing device 1510 is configurable to communicate with the embedded controller 1560 or the host processor 1550 to send and/or receive data.
  • Processing device 1510 may reside on a common carrier substrate such as, for example, an integrated circuit (“IC”) die substrate, a multi-chip module substrate, or the like. Alternatively, the components of processing device 1510 may be one or more separate integrated circuits and/or discrete components. In one exemplary embodiment, processing device 1510 is the Programmable System on a Chip (PSoC®) processing device, developed by Cypress Semiconductor Corporation, San Jose, Calif. Alternatively, processing device 1510 may be one or more other processing devices known by those of ordinary skill in the art, such as a microprocessor or central processing unit, a controller, special-purpose processor, digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”), or the like.
  • PSoC® Programmable System on a Chip
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • processing device 1510 may be done in the host.
  • Capacitance-sensing circuit 1501 may be integrated into the IC of the processing device 1510 , or alternatively, in a separate IC. Alternatively, descriptions of high-voltage capacitance-sensing circuit 1501 may be generated and compiled for incorporation into other integrated circuits. For example, behavioral level code describing the high-voltage capacitance-sensing circuit 1501 , or portions thereof, may be generated using a hardware descriptive language, such as VHDL or Verilog, and stored to a machine-accessible medium (e.g., CD-ROM, hard disk, floppy disk, etc.).
  • a hardware descriptive language such as VHDL or Verilog
  • the behavioral level code can be compiled into register transfer level (“RTL”) code, a netlist, or even a circuit layout and stored to a machine-accessible medium.
  • RTL register transfer level
  • the behavioral level code, the RTL code, the netlist, and the circuit layout may represent various levels of abstraction to describe high-voltage capacitance-sensing circuit 1501 .
  • electronic system 1500 may include all the components described above. Alternatively, electronic system 1500 may include some of the components described above.
  • the electronic system 1500 is used in a tablet computer.
  • the electronic device may be used in other applications, such as a notebook computer, a mobile handset, a personal data assistant (“PDA”), a keyboard, a television, a remote control, a monitor, a handheld multi-media device, a handheld media (audio and/or video) player, a handheld gaming device, a signature input device for point of sale transactions, an eBook reader, global position system (“GPS”) or a control panel.
  • PDA personal data assistant
  • the embodiments described herein are not limited to touch screens or touch-sensor pads for notebook implementations, but can be used in other capacitive sensing implementations, for example, the sensing device may be a touch-sensor slider (not shown) or touch-sensor buttons (e.g., capacitance sensing buttons). In one embodiment, these sensing devices include one or more capacitive sensors or other types of capacitance-sensing circuitry.
  • the operations described herein are not limited to notebook pointer operations, but can include other operations, such as lighting control (dimmer), volume control, graphic equalizer control, speed control, or other control operations requiring gradual or discrete adjustments.
  • capacitive sensing implementations may be used in conjunction with non-capacitive sensing elements, including but not limited to pick buttons, sliders (ex. display brightness and contrast), scroll-wheels, multi-media control (ex. volume, track advance, etc.) handwriting recognition, and numeric keypad operation.
  • the embodiments described herein may be used in various designs of mutual-capacitance sensing arrays of the capacitance sensing system, or in self-capacitance sensing arrays.
  • the capacitance sensing system detects multiple sense elements that are activated in the array, and can analyze a signal pattern on the neighboring sense elements to separate noise from actual signal.
  • the embodiments described herein are not tied to a particular capacitive sensing solution and can be used as well with other sensing solutions, including optical sensing solutions, as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • example or “exemplary” are used herein to mean serving as an example, instance or illustration. Any aspect or design described herein as “example’ or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion.
  • the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances.
  • Embodiments descried herein may also relate to an apparatus for performing the operations herein.
  • This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program may be stored in a non-transitory computer-readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, flash memory, or any type of media suitable for storing electronic instructions.
  • computer-readable storage medium should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store one or more sets of instructions.
  • the term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present embodiments.
  • the term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, magnetic media, any medium that is capable of storing a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present embodiments.

Abstract

Apparatuses and methods of high-voltage capacitance-sensing circuits are described. One apparatus includes a capacitance-sensing circuit coupled to a capacitive-sense array of electrodes. The capacitance-sensing circuit includes a self-capacitance sensing channel, a first voltage source (e.g., a low-voltage drive source) to drive a reference voltage, and a second voltage source (e.g., high-voltage drive source) to drive a sensing voltage. The sensing voltage is greater in magnitude than the reference voltage. The capacitance-sensing circuit also includes 1) a first set of switches to selectively couple the self-capacitance sensing channel or the second voltage source to a sensing electrode of the capacitance-sensing array; and 2) a second set of switches to selectively couple the first voltage source or the second voltage source to a shielding electrode of the capacitance-sensing array.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/479,193, filed on Sep. 5, 2014, which claims the benefit of U.S. Provisional Application No. 62/004,589, filed May 29, 2014, both of which are incorporated by reference herein their entirety.
  • BACKGROUND
  • Capacitance sensing systems can sense electrical signals generated on electrodes that reflect changes in capacitance. Such changes in capacitance can indicate a touch event (i.e., the proximity of an object to particular electrodes). Capacitive sense elements may be used to replace mechanical buttons, knobs and other similar mechanical user interface controls. The use of a capacitive sense element allows for the elimination of complicated mechanical switches and buttons, providing reliable operation under harsh conditions. In addition, capacitive sense elements are widely used in modern customer applications, providing new user interface options in existing products. Capacitive sense elements can range from a single button to a large number arranged in the form of a capacitive sense array for a touch-sensing surface.
  • Transparent touch screens that utilize capacitive sense arrays are ubiquitous in today's industrial and consumer markets. They can be found on cellular phones, GPS devices, set-top boxes, cameras, computer screens, MP3 players, digital tablets, and the like. The capacitive sense arrays work by measuring the capacitance of a capacitive sense element, and looking for a delta in capacitance indicating a touch or presence of a conductive object. When a conductive object (e.g., a finger, hand, or other object) comes into contact or close proximity with a capacitive sense element, the capacitance changes and the conductive object is detected. The capacitance changes of the capacitive touch sense elements can be measured by an electrical circuit. The electrical circuit converts the measured capacitances of the capacitive sense elements into digital values.
  • There are two typical types of capacitance: 1) mutual capacitance where the capacitance-sensing circuit has access to both electrodes of the capacitor; 2) self-capacitance where the capacitance-sensing circuit has only access to one electrode of the capacitor where the second electrode is tied to a DC voltage level or is parasitically coupled to Earth Ground. A touch panel has a distributed load of capacitance of both types (1) and (2) and Cypress' touch solutions sense both capacitances either uniquely or in hybrid form with its various sense modes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is illustrated by way of example, and not of limitation, in the figures of the accompanying drawings.
  • FIG. 1 is a circuit diagram illustrating a base circuit for self-capacitance sensing according to one implementation.
  • FIG. 2 is a circuit diagram illustrating a second circuit for self-capacitance sensing with an active shield layer according to another implementation.
  • FIG. 3 is a circuit diagram illustrating a third circuit for self-capacitance sensing with an active shield layer in combination with active shielding for entire analog-front-end circuit according to another implementation.
  • FIG. 4 is a circuit diagram illustrating a high-voltage capacitance-sensing circuit for self-capacitance sensing according to one embodiment.
  • FIG. 5 is a waveform diagram illustrating operational waveforms in a four-phase, full-wave mode according to one embodiment.
  • FIG. 6 is a waveform diagram illustrating operational waveforms in a two-phase, half-wave mode according to another embodiment.
  • FIG. 7 is a waveform diagram illustrating operational waveforms in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • FIG. 8A is a flow diagram of a method of self-capacitance sensing in a four-phase, full-wave mode according to one embodiment.
  • FIG. 8B is a flow diagram of a method of self-capacitance sensing in a two-phase, half-wave mode according to another embodiment.
  • FIG. 8C is a flow diagram of a method of self-capacitance sensing in a three-phase, half-wave mode with noise subtraction according to another embodiment.
  • FIG. 9 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a current conveyor for self-capacitance sensing according to another embodiment.
  • FIG. 10 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a passive integrator for self-capacitance sensing according to another embodiment.
  • FIG. 11 is a block diagram illustrating a floating power supply for a high-voltage capacitance-sensing circuit and a host according to one embodiment.
  • FIGS. 12A-12B are circuit diagrams illustrating a simplified functional equivalent schematic of the floating power supply for the high-voltage capacitance-sensing circuit and the host of FIG. 11 with and without a shield layer according to one embodiment.
  • FIGS. 13A-13C are circuit diagrams of a simplified Analog Front-End (AFE) of a high-voltage capacitance-sensing circuit according to one embodiment.
  • FIG. 14 is a diagram illustrating timing waveforms of a high-voltage capacitance-sensing circuit with the floating ground configuration according to one embodiment.
  • FIG. 15 is a block diagram illustrating one embodiment of an electronic system having a processing device with high-voltage, high-sensitivity self-capacitance sensing.
  • DETAILED DESCRIPTION
  • Apparatuses and methods of high-voltage capacitance-sensing circuits are described. One apparatus includes a capacitance-sensing circuit coupled to a capacitive-sense array of electrodes. The capacitance-sensing circuit includes a self-capacitance sensing channel, a first voltage source (e.g., a low-voltage drive source) to drive a reference voltage, and a second voltage source (e.g., high-voltage drive source) to drive a sensing voltage. The sensing voltage is greater in magnitude than the reference voltage. The capacitance-sensing circuit also includes 1) a first set of switches to selectively couple the self-capacitance sensing channel or the second voltage source to a sensing electrode of the capacitance-sensing array; and 2) a second set of switches to selectively couple the first voltage source or the second voltage source to a shielding electrode of the capacitance-sensing array.
  • In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known circuits, structures, and techniques are not shown in detail, but rather in a block diagram in order to avoid unnecessarily obscuring an understanding of this description.
  • Reference in the description to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The phrase “in one embodiment” located in various places in this description does not necessarily refer to the same embodiment. It should be noted that the term capacitor, as used herein, may refer to any combination of conductors and dielectrics that produce a capacitance between the conductors, as well as discrete components. For example, as described herein, a capacitance can created as an intersection between two electrodes. An intersection between the first electrode and second electrode is also called a sensor. An intersection between two sense elements (electrodes) may be understood as a location at which one sense electrode crosses over or overlaps another, while maintaining galvanic isolation from each other. In other cases, a discrete capacitor may be used to produce a capacitance.
  • There are multiple configurations for the self-capacitance sensing circuits.
  • FIG. 1 is a circuit diagram illustrating a base circuit 100 for self-capacitance sensing according to one implementation. In the base circuit 100, shown in FIG. 1, a sensing electrode 101 (referred to below as sensor) of a touch panel is driven by an active integrator 102, where its drive voltage is provided by an excitation source V EXT 103. The excitation voltage provided by the excitation source V EXT 103 is limited by the low-voltage nature of conventional touch-controllers designs and its power supplies, e.g. powered from 3.3V power supply. The integrated charge measured by the active integrator 102 is sampled by an analog-to-digital converter (ADC) 104 and used for subsequent processing, such as filtering, accumulation, or the like.
  • In the typical configuration, the following parameters in Table 1 may be used:
  • TABLE 1
    Parameter examples for the typical cell phone application
    Label Typical value Description
    CF ≈1 fF Finger hover signal at 30 mm distance
    C
    R 1 pF Sensor capacitance to Earth
    CS 50 pF Sensor to bottom panel layer capacitance
    CINT 30 pF Integration capacitor value
    VEXT 2 V Sensor excitation voltage
  • In the base circuit 100, the integrator input charge is defined by the sum of the parasitic capacitance (Cp) and finger capacitance (Cf), connected in series with device capacitance (Cdev). Taking into account that Cf is much smaller as compared to Cdev, it is possible to determine the integrator input charge by a sum of the parasitic capacitances (Cpp+Cp) and finger capacitances Cf. In practical applications, Cf is in several orders smaller than parasitic capacitances. As a result, most of a dynamic range of the active integrator 102 and ADC 104 is utilized by the charge, coming from non-informative parasitic capacitances, preventing accurate touch signal resolution.
  • There are some conventional techniques to reduce impact of the parasitic capacitance. As illustrated in FIG. 1, a baseline compensation circuit 105 (e.g., current sources) can be used to reduce impact of the parasitic capacitance. The baselines compensation circuit 105 injects compensation current opposite to the current coming from the sensing electrode of the panel. It should be noted that the baseline compensation circuit 105 may add noise to the sampling and conversion.
  • The sensing arrangement, described in FIG. 1 may have the following drawbacks: 1) Large input charge requires large baseline compensation signal; 2) Large compensation signal has larger noise component, which masks the very small useful signal changes on the sensing electrode; and 3) Low sensor excitation voltage (e.g. 2V) translates into very low touch signal charge, masked by internally generated noise signals (e.g. from baseline compensation circuit 105) or noise signals originated from finger (e.g. charger noise), or the like.
  • Another technique of reducing parasitic capacitance can be done by driving a bottom shield layer. FIG. 2 is a circuit diagram illustrating a second circuit 200 for self-capacitance sensing with an active shield layer 201 according to another implementation. The second circuit 200 is similar to the base circuit 100 as noted by similar reference labels. However, in this second circuit 200, a shield signal follows the excitation signal from the excitation source V EXT 103, virtually eliminating the impact of a capacitance between the sensing electrode 101 to panel bottom shield layer 202. However, the capacitances from capacitance-sensing pins and routing may remain uncompensated. The baselines compensation circuit 105 may be used.
  • The sensing arrangement, described in FIG. 2 may have the following drawbacks: 1) Still needs baseline compensation circuit 105, as active shield layer 201 does not compensate for all capacitances in the design; and 2) Low sensor excitation voltage (e.g. 2V) translates into very low touch signal charge, masked by internally generated noise signals (e.g. from baseline compensation circuits) or noise signals originated from finger (e.g. charger noise), or the like.
  • FIG. 3 is a circuit diagram illustrating a third circuit 300 for self-capacitance sensing with an active shield layer 201 in combination with active shielding 302 (referred to as “Active Guard”) for entire analog-front-end circuit according to another implementation. The third circuit 300 is similar to the second circuit 200 as noted by similar reference numbers. The active shielding 302 is provided for the AFE, including the active integrator 102 and ADC 104, using a floating power supply 303 and circuitry 304 to provide isolated data communication channel (e.g., galvanic isolation) with subsequent processing 305. The active shielding 302 can be used in addition to panel shielding as described above with respect to FIG. 2. This approach allows reaching lowest input current level (see analysis later), but requires complex integrated circuit design, as different portions of circuit have different power supplies and cannot use common ground.
  • The sensing arrangement, described in FIG. 3 may have the following drawbacks: 1) Very complex design, as within one integrated circuit (“chip”); 2) Needs to have active shielded AFE using a floating power supply and an isolated data communication channel.
  • The high-distance hover and proximity sensing in the touch devices (e.g., tablets, smartphones, personal digital assistants (PDAs)) can be achieved using self-capacitance sensing with active shield. In the self-capacitance sensing mode with active shield technique, the sensing electrode's electric field does not decay so quickly as in a mutual capacitance mode, as multiple small electrodes have same potential to form a virtual, large sensing electrode (large virtual equipotential surface). This virtual, large sensing electrode allows a detection distance of the electric field to be similar to a size of the entire touch panel. Whereas, in the mutual capacitance sensing mode, electric field is concentrated mostly in local an intersection (RX-TX area cross-section), so detection distance is limited in general to be similar to an individual sensor size (intersection of two electrodes).
  • The embodiments described below are directed to a high-voltage, low-baseline self-capacitance sensing with and without galvanic isolation.
  • FIG. 4 is a circuit diagram illustrating a high-voltage (HV) capacitance-sensing circuit 400 for self-capacitance sensing according to one embodiment. The HV capacitance-sensing circuit 400 can be used for high-voltage, low-baseline self-capacitance sensing without galvanic isolation. The HV capacitance-sensing circuit 400 has the ability to detect very small capacitance changes for high-distance hover and proximity sensing in the touch devices (e.g., tablets, smartphones, PDAs, or the like).
  • The HV capacitance-sensing circuit 400 is coupled to a touch panel with a sensing electrode 401 and a shielding electrode 405. The HV capacitance-sensing circuit 400 includes analog front-end circuitry to form a self-capacitance sensing channel. In the depicted embodiment, the self-capacitance sensing channel is formed by an active integrator 402, including an operational amplifier and an integrator capacitor, and an ADC 404. The active integrator 402 can also include a reset switch to reset integration. An input current of the active integrator 402 is integrated on the integrator capacitor (CINT) for a duration of charge integration phase. The sensing circuit operates at the panel full charge/discharge principle: at the end of each operation phase sensor current drops almost to zero and total transferred charge amount is determined by the sensor voltage swing between phases and sensing capacitance. This transferred from/to sensing electrode 401 charge is being integrated by the active integrator and causes the integrator output voltage step by V=Q/CINT. The ADC 402 measures an output voltage (V_INT) from the active integrator 402 and convers the voltage to a digital value. The digital value may represent the capacitance measured on the sensing electrode 401.
  • Instead of the input current being balanced by a current source, as illustrated in FIGS. 1-2, the HV capacitance-sensing circuit 400 includes two voltage sources: a first voltage source for a low-voltage drive source 403 and a second voltage source for a high-voltage drive source 406. The low-voltage drive source 403 is a direct current (DC) reference voltage source that drives a reference voltage (VREF). This reference voltage is a low voltage (e.g., less than 5 V). The low-voltage drive source 403 drives the active integrator 402. For example, a non-inverting input of the operational amplifier is coupled to receive the reference voltage from the low-voltage drive source 403. The low-voltage drive source 403 also can drive the shielding electrode 405, as described in more detail below. In one embodiment, a shielding electrode reference buffer U 1 415 can be used to drive the shielding electrode 405 with the reference voltage. The high-voltage drive source 406 is a DC high-voltage source that drives a sensing voltage (VDR). This sensing voltage is a high voltage (e.g., more than 5 V) that is greater in magnitude than the reference voltage. The high-voltage drive source 406 can also drive the sensing electrode 401 and the shielding electrode 405 with a high voltage, as described in more detail below.
  • The HV capacitance-sensing circuit 400 also includes a first set of switches 411 (e.g., SW1-SW3) and a second set of switches 413 (e.g., SW4-SW6). The first switches can be controlled to selectively couple an input node 410 of the active integrator 402 (or other the self-capacitance sensing channel), the high-voltage drive source 406, or a ground potential to the sensing electrode 401. The active integrator 402 is considered an input charge integrator U2. The second set of switches 413 can be controlled to selectively couple the low-voltage drive source 403, the high-voltage drive source 406, or a ground potential to the shielding electrode 405. In another embodiment, the first set of switches 411 include two switches ((e.g., SW1-SW2) and the second set of switches 413 includes two switches (e.g., SW4-SW5) in which the first set of switches 411 can be controlled to selectively couple the input node 410 or the high-voltage drive source 406 to the sensing electrode 401. The first set of switches 411 does not include a third switch SW3 to selectively couple the sensing electrode 401 to the ground potential. Similarly, the second set of switches 413 can be controlled to selectively couple the low-voltage drive source 403 or the high-voltage drive source 406 to the shielding electrode 405. The second set of switches 413 does not include a third switch SW6 to selectively couple the shielding electrode 405 to the ground potential.
  • As described in more detail below, the first set of switches 411 and second set of switches 413 can be controlled to operate in one of a variety of modes, including, for example, in a four-phase, full-wave mode, in a two-phase, half-wave mode, or in a three-phase, half-wave mode with noise subtraction.
  • The following description clarifies full-wave and half-wave modes. In the full-wave modes, both charge current and discharge current used to measure capacitance on the sensing electrode 401 is sensed by the HV capacitance-sensing circuit 400. For example, in the depicted embodiment, both charge and discharge currents are integrated by the active integrator 402 and processed by ADC 404. In the half-wave modes, either charge current or discharge current (but not both) used to measure capacitance on the sensing electrode 401 is sensed by the HV capacitance-sensing circuit 400. For example, in the depicted embodiment, either the charge current or discharge current is integrated by the active integrator 402 and processed by ADC 404. Full-wave modes may have the following advantages: 1) up to two times the touch signal; 2) Not sensitive to noise from DC leakages from DC sources and low-frequency noise from alternating current (AC) main sources (e.g., 50/60Hz); and 3) Not sensitive to middle point voltage drifts/offsets.
  • In one embodiment, the first set of switches 411 of the HV capacitance-sensing circuit 400 includes a first switch SW1, a second switch SW2 and a third switch SW3, and the second set of switches 413 a fourth switch SW4, a fifth switch SW5 and a sixth switch SW6. The HV capacitance-sensing circuit is operative to control the first set of switches and the second set of switches in one of a four-phase, full-wave mode, a three-phase, half-wave mode, or a two-phase, half-wave mode, as descried in more detail below.
  • In one embodiment, the first set of switches 411 of the HV capacitance-sensing circuit 400 includes a first switch SW1 and a second switch SW2 and the second set of switches 413 includes a third switch SW5 and a fourth switch SW5. The HV capacitance-sensing circuit is operative to control the first set of switches and the second set of switches in one of a three-phase, half-wave mode or a two-phase, half-wave mode, as descried in more detail below.
  • In one embodiment, a processing device includes an integrator, such as a passive integrator or an active integrator (e.g., operational amplifier based or a current-conveyor based integrator), and a multiplexer bus coupled to an input of the integrator. The multiplexer is configured to selectively couple the sensing electrode 401 of a sense array to either an input node of a capacitance-sensing channel, a high-voltage drive source or a ground potential as described herein. The multiplexer can also selectively couple the shielding electrode 405 to the high-voltage drive source, a low-voltage drive source, or a ground potential as described herein. In a further embodiment, the processing device includes an ADC coupled to an output of the integrator to convert an integrated capacitance to a digital value.
  • In the depicted embodiment, the integrator 402 is illustrated and described as an active integrator or operational amplifier integrator. In other embodiments, the integrator 402 may be a passive integrator, a current-conveyor integrator, or other circuit to perform integration.
  • The embodiments described herein can be implemented in a touchscreen controller used in a touchscreen device, such as a point of sale terminals, trackpads, or any other touch input device. The embodiments described herein can also be used in other touch devices, such as a computer trackpad, or other types of touch input devices. The embodiments described herein may also provide a noise abatement procedure for normal touches, which may be an improvement over the conventional data filtering methods.
  • The operation sequences for the different modes are provided in the following Table 2, Table 3, and Table 4. The signal waveforms are shown in FIG. 5, FIG. 6, and FIG. 7, respectively. In these figures, the numbers inside circles (1), (2), (3) are used to show different signal integration stages and they are referenced later in the flowcharts or operation sequence tables.
  • FIG. 5 is a waveform diagram illustrating operational waveforms 500 in a four-phase, full-wave mode according to one embodiment. The operational sequence of the six switches of HV capacitance-sensing circuit 400 in the four-phase, full-wave mode is set forth in the following Table 3.
  • TABLE 3
    Operational Sequence of Switches in the four-phase, full-wave mode
    Phase # SW1 SW2 SW3 SW4 SW5 SW6 Comment
    PHI1 ON OFF OFF ON OFF OFF Charge panel
    from VDR
    PHI2 OFF ON OFF OFF ON OFF Positive charge
    transfer and result
    accumulation
    with positive sign
    (1)
    PHI3 OFF OFF ON OFF OFF ON Discharge panel
    to ground
    PHI4 OFF ON OFF OFF ON OFF Negative charge
    transfer and result
    accumulation
    with negative
    sign. (2)
  • In another embodiment, the four-phase, full-wave mode includes: 1) a first phase in which the first switch SW1 and the fourth switch SW4 are turned on and the second switch SW2, the third switch SW3, the fifth switch SW5, and the sixth switch SW6 are turned off; 2) a second phase in which the second switch SW2 and the fifth switch SW5 are turned on and the first switch SW1, the third switch SW3, the fourth switch SW4, and the sixth switch SW6 are turned off; 3) a third phase in which the third switch SW3 and the sixth switch SW6 are turned on and the first switch SW1, the second switch SW2, the fourth switch SW4, and the fifth switch SW5 are turned off; and 4) a fourth phase in which the second switch SW2 and the fifth switch SW5 are turned on and the first switch SW1, the third switch SW3, the fourth switch SW4 and the sixth switch SW6 are turned off.
  • Referring to FIGS. 4 and 5, during a circuit conversion function by the HV capacitance-sensing circuit 400, the charge, accumulated in the finger capacitor Cf plus uncompensated parasitic capacitance Cpp (e.g. analog switches capacitance, routing, etc.) during charge phase, first phase PHI1 501, is equal to as set forth in the following equation (1):

  • Q p=(Cpp+Cf)·(Vdr−Vref)   (1)
  • The sensor-shield capacitance Cs is not charged, as voltages on both sensor and shield change synchronously and are same. This charge is transferred to the active integrator 402 during the second phage PHI2 502, resulting in the integrator's output voltage to change as set forth in the following equation (2):
  • Vint p = Q p Cint = 1 Cint ( Cpp + Cf ) · ( Vdr - Vref ) ( 2 )
  • This is the positive charge transfer and result accumulation with positive sign (1) 505 in FIG. 5. During the third phase PHI3 503, the panel (e.g., both sensing electrode 401 and shielding electrode 405) is fully discharged to ground. Once the panel is connected to the integrator input in the fourth phage PHI4 504, the panel is charge to the reference voltage VREF and sinks from active integrator 402 the following charge as represented in equation (3):

  • Q n=(Cpp+Cf)·(0−Vref)   (3)
  • This charge causes the integrator's output voltage to change as set forth in equation (4):
  • Vint n = Q n Cint = - 1 Cint ( Cpp + Cf ) ( 4 )
  • This is the negative charge transfer and result accumulation with negative sign (2) 506 in FIG. 5. The system subtracts two integration results (either in analog or digital domains (e.g. subtract two ADC conversions)), so the final equivalent integrator output voltage change is measured as set forth in the following equation (5):
  • Vint = Vint p - Vint n = Vdr Cpp Cf Cint ( 5 )
  • As seen in equation (5), output charge does not depend on the Vref and solely depends on the Vdr. The output charge is proportional to the uncompensated parasitic capacitance Cpp and finger touch capacitance Cf.
  • FIG. 6 is a waveform diagram illustrating operational waveforms 600 in a two-phase, half-wave mode according to another embodiment. The operational sequence of the six switches of HV capacitance-sensing circuit 400 in the two-phase, half-wave mode is set forth in the following Table 4.
  • TABLE 4
    Operational Sequence of Switches in the two-phase, half-wave mode
    Phase # SW1 SW2 SW3 SW4 SW5 SW6 Comment
    PHI1 ON OFF OFF ON OFF OFF Charge panel
    from VDR
    PHI2 OFF ON OFF OFF ON OFF Positive charge
    transfer and result
    accumulation
    with positive
    sign (1)
  • Referring to FIGS. 4 and 6, during a circuit conversion function by the HV capacitance-sensing circuit 400 in the two-phase, half-wave mode, the HV capacitance-sensing circuit 400 charges the panel and measures a positive charge transfer and result accumulation with a positive result (1) 605 in FIG. 6. In another embodiment, the two-phase, half-wave mode includes: 1) a first phase PHI1 601 in which the first switch SW1 and the fourth switch SW4 are turned on and the second switch SW2, the third switch SW3, the fifth switch SW5, and the sixth switch SW6 are turned off; and 2) a second phase PHI2 602 in which the second switch SW2 and the fifth switch SW5 are turned on and the first switch SW1, the third switch SW3, the fourth switch SW4, and the sixth switch SW6 are turned off. In this embodiment, there are three switches in each the first set of switches 411 and second set of switches 413. As shown in the waveforms 600, the third phase PHI1 and fourth phase PHI4 are not used, so the switches SW3 and SW6 are permanently off.
  • In another embodiment, there may be four switches SW1, SW2, SW4 and SW5, with two in each of the first set of switches 411 and the second set of switches 413 (not illustrated), and the two-phase, half-wave mode includes: 1) a first phase in which the first switch SW1 and the third switch SW4 are turned on and the second switch SW2 and fourth switch SW5 are turned off; and 2) a second phase in which the second switch SW2 and the fourth switch SW5 are turned on and the first switch SW1 and the third switch SW4 are turned off.
  • FIG. 7 is a waveform diagram illustrating operational waveforms 700 in a three-phase, half-wave mode with noise subtraction according to another embodiment. The operational sequence of the six switches of HV capacitance-sensing circuit 400 in the three-phase, half-wave mode is set forth in the following Table5.
  • TABLE 5
    Operational Sequence of Switches in the
    three-phase, half-wave mode with noise subtraction
    Phase # SW1 SW2 SW3 SW4 SW5 SW6 Comment
    PHI1 ON OFF OFF ON OFF OFF Charge panel
    from VDR
    PHI2 OFF ON OFF OFF ON OFF Positive charge
    transfer and
    result
    accumulation
    with positive
    sign (1)
    PHI3 OFF ON OFF OFF ON OFF Noise integration
    and accumulation
    with negative
    sign (3)
  • Referring to FIGS. 4 and 7, during a circuit conversion function by the HV capacitance-sensing circuit 400 in the three-phase, half-wave mode, the HV capacitance-sensing circuit 400 charges the panel, measures a positive charge transfer and result accumulation with a positive result (1) 705 in FIG. 7 and measures noise integration and accumulation with negative sign (3) 706 in FIG. 7. In another embodiment, the three-phase, half-wave mode includes: 1) a first phase PHI1 701 in which the first switch SW1 and the fourth switch SW4 are turned on and the second switch SW2, the third switch SW3, the fifth switch SW5, and the sixth switch SW6 are turned off; 2) a second phase PHI2 702 in which the second switch SW2 and the fifth switch SW5 are turned on and the first switch SW1, the third switch SW3, the fourth switch SW4, and the sixth switch SW6 are turned off; and 3) a third phase PHI3 703 in which the second switch SW2 and the fifth switch SW5 are turned on and the first switch SW1, the third switch SW3, the fourth switch SW4, and the sixth switch SW6 are turned off. In this embodiment, there are three switches in each the first set of switches 411 and second set of switches 413. As shown in the waveforms 700, the fourth phase PHI4 is not used.
  • In another embodiment, there may be four switches SW1-SW4, with two in each of the first set of switches 411 and the second set of switches 413 (not illustrated), and the three-phase, half-wave mode includes: 1) a first phase in which the first switch SW1 and the third switch SW3 are turned on and the second switch SW2 and the fourth switch SW4 are turned off; 2) a second phase in which the second switch SW2 and the fourth switch SW4 are turned on and the first switch SW1 and the third switch SW3 are turned off; and 3) a third phase in which the second switch SW2 and the fourth switch SW4 are turned on and the first switch SW1 and the third switch SW3 are turned off. In another embodiment, in some half-wave modes, the Sw3 and Sw6 are always off instead of removed as would be appreciated by one of ordinary skill in the art.
  • Relative comparisons of operational frequency of the different modes are provided in Table 6.
  • TABLE 6
    Operation Frequency Comparison of different modes
    # Configuration Operation frequency (relative)
    1 4 Phase Full-way Mode  0.5x
    2 2 Phase Half-way Mode 1x
    3 3 Phase Half-way Mode with Noise ≈0.7x
    Subtraction
  • The operation frequency is determined by a time constant of the panel since the panel cannot be charged or discharged faster than some value, typically 3τ, where τ—is the panel's RC network equivalent time constant. But different operation sequences use different numbers of panel recharge cycles for one full cycle, allowing the circuit to operate at different frequencies. The two-phase, half-wave mode of FIG. 6 is the fastest since it only uses two cycles for operation. The three-phase, half-wave mode of FIG. 7 is next, following by the four-phase, half-wave mode of FIG. 5.
  • The low-frequency noise suppression operates in the following way for the four-phase, full-wave mode. In the first phase PHI1 501, the HV capacitance-sensing circuit 400 charges the touch pane. In the second phase PHI2 502, the HV capacitance-sensing circuit 400 integrates input noise as a positive charge transfer and adds a result to the conversion with a positive sign. In the third phase PHI3 503, the HV capacitance-sensing circuit 400 discharges the panel. In the fourth phase PHI4 504, the HV capacitance-sensing circuit 400 integrates input noise as a negative charge transfer and subtracts from result previously accumulated result. It should be noted that the integrator output voltage, caused by a useful signal being positive after completion of the second phase and being negative after completion of the fourth phase. The useful signal response is increased after subtraction integration results from the fourth and second phases. The three-phase, half-wave mode also demonstrates low-frequency noise suppression abilities in similar matter as for the four-phase full-wave mode. Having the additional operation in the third phase where noise is “listened” to, integrated and subtracted from the previous conversion result, there are no useful (touch) panel current flows during the third phase, as the panel is considered to be fully recharged to VREF during the second phase.
  • The following methods 800, 820, and 840 may be performed by processing logic that may comprise hardware (circuitry, dedicated logic, etc.), software (such as is run on a general purpose computing system or a dedicated machine), firmware (embedded software), or any combination thereof. In one embodiment, the high-voltage capacitance-sensing circuit 400 of FIG. 4, or high-voltage capacitance-sensing circuit 900 of FIG. 9, or high-voltage capacitance-sensing circuit 1000 of FIG. 10 performs the methods 800, 820, and 840. In one embodiment, the processing device 1510 of FIG. 15 performs the methods 800, 900, and 920. Alternatively, other components of the electronic system 1500 perform some or all of the operations of methods 800, 820, and 840.
  • FIG. 8A is a flow diagram of a method 800 of self-capacitance sensing in a four-phase, full-wave mode according to one embodiment. Referring to FIG. 8A, the method 800 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, VDR (block 802) (SW1 and SW4 are turned on to drive V_SENSE and V_SHIELD by VDR 406). The processing logic discharges the sensing electrode to the reference voltage (VREF) by positive charge transfer from sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 804). The processing logic turns SW2 and SW5 on, for example. The processing logic converts a result and accumulates the result with a positive sign (1) (block 806). The processing logic discharges the panel (sensing electrode and shielding electrode) to a ground potential (block 808). For example, the processing logic turns on SW3 and SW6. The processing logic charges the sensing electrode to the reference voltage (VREF) by a negative charge transfer from the capacitance-sensing channel (e.g., active integrator) to the sensing electrode (block 810). The processing logic converts a result and accumulates the result with a negative sign (2) (block 812); and the method 800 ends.
  • FIG. 8B is a flow diagram of a method 820 of self-capacitance sensing in a two-phase, half-wave mode according to another embodiment. Referring to FIG. 8B, the method 820 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, VDR (block 822). The processing logic discharges the sensing electrode to the reference voltage (VREF) by positive charge transfer from the sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 824). The processing logic converts a result and accumulates the result with a positive sign (1) (block 826); and the method 820 ends.
  • FIG. 8C is a flow diagram of a method 840 of self-capacitance sensing in a three-phase, half-wave mode with noise subtraction according to another embodiment. Referring to FIG. 8C, the method 840 begins with processing logic charging a panel (e.g., sensing electrode and shielding electrode) with a sensing voltage, VDR (block 842). The processing logic discharges the sensing electrode to the reference voltage (VREF) by positive charge transfer from the sensing electrode to a capacitance-sensing channel (e.g., an active integrator) (block 844). The processing logic converts a result and accumulates the result with a positive sign (1) (block 846). The processing logic integrates input noise (block 848). The processing logic converts a result and accumulates the result with a negative sign (3) (block 850); and the method 840 ends.
  • In another embodiment, the method further includes communicating with a host processor over a communication channel and the capacitance-sensing circuit is galvanically isolated from the host processor.
  • The methods described above regarding HV self-capacitance sensing can be implemented by a high-voltage capacitance-sensing circuit, which may be implemented in a capacitive touch screen controller. In one embodiment, the capacitive touch screen controller is the TrueTouch® capacitive touchscreen controllers, such as the CY8CTMA5xx family of TrueTouch® Multi-Touch All-Points touchscreen controllers, developed by Cypress Semiconductor Corporation of San Jose, Calif. The TrueTouch® capacitive touchscreen controllers sensing technology to resolve touch locations of multiple fingers and a stylus on the touch-screens, supports leading operating systems, and is optimized for low-power multi-touch gesture and all-point touchscreen functionality. Alternatively, the touch position calculation features may be implemented in other touchscreen controllers, or other touch controllers of touch-sensing devices. In one embodiment, the touch position calculation features may be implemented with other touch filtering algorithms as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • FIG. 9 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit 900 with a current conveyor integrator 902 for self-capacitance sensing according to another embodiment. The HV capacitance-sensing circuit 900 is similar to the HV capacitance-sensing circuit 400 as noted by similar reference labels. However, in the HV capacitance-sensing circuit 900, an operational amplifier-based integrator is replaced with a current conveyor integrator 902 at an input node 910 for the capacitance-sensing channel.
  • FIG. 10 is a circuit diagram illustrating another high-voltage capacitance-sensing circuit with a passive integrator for self-capacitance sensing according to another embodiment. The HV capacitance-sensing circuit 1000 is similar to the HV capacitance-sensing circuit 400 as noted by similar reference labels. However, in the HV capacitance-sensing circuit 1000, an operational amplifier-based integrator is replaced with a passive integrator 1002 at an input node 1010 for the capacitance-sensing channel.
  • There is another way for the high-sensitivity, low noise self-capacitance sensing implementation. It is based on the driving of entire touch controller chip from external high-voltage signal using the floating ground principle as illustrated in FIG. 11.
  • FIG. 11 is a block diagram illustrating a floating power supply 1102 for a high-voltage capacitance-sensing circuit 1100 and a host according to one embodiment. A touch controller chip (integrated circuit) 1104 (e.g., Generation 5 or Gen5 of the TrueTouch® controller device) can be used for high-sensitivity implementations described herein, without changing the integrated circuit.
  • In this floating ground self-capacitance method, a sensors excitation signal is applied between our chip ground and the host device ground. The floating ground means that the potential between our chip ground and host device ground isn't zero. This potential can be controlled by touch controller 1104. The functional simplified schematics for two panel cases are shown in FIGS. 12A-12B.
  • FIGS. 12A-12B are circuit diagrams illustrating a simplified functional equivalent schematic of the floating power supply for the high-voltage capacitance-sensing circuit and the host of FIG. 11 with and without a shield layer according to one embodiment. FIG. 12A shows the floating power supply for the touch controller 1200 when the panel does not include a shield layer. FIG. 12B shows the floating power supply for the touch controller 1200 when the panel does include a shield layer. These embodiments allow self-capacitance measurements (Cp) of the sensing electrode and of the capacitance (Cf) between a finger and the sensing element.
  • FIGS. 13A-13C are circuit diagrams of a simplified AFE of a high-voltage capacitance-sensing circuit 1300 according to one embodiment. The circuit diagrams show the simplified AFE schematic and the measured sensor current loop Isen. The voltage on the integrator capacitor Cint can be calculated by the following equation (6):
  • V Cint = V sw · 1 C int · C f ( 6 )
  • A capacitance bootstrap technique creates the floating ground and sensor excitation voltage source at same time. The level shift schematic transforms TX sync signal voltage to the legal logic level of the swing sync signal. A single chip I2C galvanic isolator or I2C level translator may be used for the host processor communication. The operation diagrams are illustrated in FIG. 14.
  • For implementations that make use of an isolated device ground, standard DC-coupled communications interfaces (e.g., I2C, SPI, UART) do not work. Either alternate communication interfaces or special treatment of the standard interface is required to allow communications with a host device (e.g., host processor). The simplest form of isolation is through series capacitors. Such communications is common in serial interfaces such as Fibre Channel and Ethernet. For such an interface to operate, the source signaling must be DC-balanced such as that found in 8B10B, Manchester, biphase (differential Manchester), or similar encodings. These DC-balanced communications forms can also be coupled magneticly (through pulse transformers).
  • To maintain interoperability with a standard DC-coupled communications link and a wide range modulation of the local ground, the galvanic isolation block of FIG. 11 would need to be used. Such a block is normally implemented using optical isolators which can communicate static (i.e., DC) states, while offering hundreds to thousands of volts of isolation. Alternately, if the amount of shift in the device local ground (vs. that of the host ground) is sufficiently small, differential drivers and receivers can be used. For example, RS-485 standard receivers allow a common mode operating range of +12V to −7V, which would allow a local ground modulation of up to 7V.
  • In other embodiments, an integrated circuit including the HV-capacitance-sensing circuit further includes a communication channel coupled to a host processor (e.g., 1550 of FIG. 15). The HV capacitance-sensing circuit (e.g., 1501 of FIG. 15) is galvanicly isolated from the host processor using one of the galvanic isolation techniques described herein.
  • FIG. 14 is a diagram illustrating timing waveforms 1400 of a high-voltage capacitance-sensing circuit with the floating ground configuration according to one embodiment. During a scan frame, the timing waveforms 1400 can be performed during a self-capacitance scanning period with a floating ground. After other procedures may be performed in other all-points-addressable APA scan and host side reporting frame. During this time, the chip ground may not be floating and it connects to the host device ground.
  • The embodiments described herein may achieve various embodiments. For example, in some embodiments, the HV self-capacitance sensing techniques (e.g., HV capacitance-sensing circuits 400, 900, 1000) have the ability to utilize a high-voltage drive in a self-capacitance mode. These embodiments permit low capacitance baseline and noise and have the ability to sense small capacitance changes (e.g., for hover events or proximity events). The operations of the first and second sets of switches convert a touch controller into a high-sensitive touch controller. Other embodiments, such as those illustrated in FIG. 11, have the ability of high-voltage drive in a self-capacitance mode and have ultra-low capacitance baseline and noise. These techniques also have the ability to sense small capacitance changes (e.g., for hover events or proximity events). These techniques can convert a touch controller into a high-sensitive touch controller by implement floating ground concept for the entire chip. The technique of the excitation signal transfer from touch controller to the floating power supply using the bootstrap technique for supply and excitation signal generation for the power touch controller.
  • The embodiments described herein may allow high-sensitivity, high distance capacitance sensing by reducing a non-informative baseline signal from the parasitic capacitance without adding noise from baseline circuits and by providing the ability of the high-voltage panel drive at same time. Reducing the non-informative input signal component is used to obtain system noise reduction. Some embodiments utilize an input multiplexer for achieving combination of high-excitation voltage in combination with current of a low-voltage sensing circuit without using additional baseline compensation circuits or arrangements. Different control techniques for the multiplexer control to achieve various modes with different combinations of excitation frequency and noise suppression abilities, such as described herein for the the four-phase, full-wave mode, the two-phase, half-wave mode and the three-phase, half-wave mode described herein. For these embodiments, a floating power supply may not be used, but high-voltage driver and a high-voltage mux can be used. For the embodiments, which do not use the floating power supply, a sequence and a charge to code converter, such as an integrator and ADC as described herein, can be used. Providing the floating power supply to existing touch controllers can also be used for baseline reduction and higher excitation voltage. The excitation signal propagation from a floating device to the excitation source can also be done. In other embodiments, the excitation signal and touch controller floating power generation can use bootstrap circuit. For the embodiments with the floating power supply, a level translator or galvanic isolation circuit are used. For these embodiments, a method of synchronization of the floating excitation source with sensing chip demodulation can be performed. This can be synchronization from touch controller to excitation source or from excitation source to the touch controller, as described herein.
  • The embodiments described herein can be used in various applications, as well as many others: fingerprint sensors, seat occupant detection, long-range proximity sensing, motion capture systems, toys with capacitive proximity sensing, or the like. For example, the systems can be used in a matrix and a switch fingerprint sensor using the self-capacitance sensing techniques described herein.
  • FIG. 15 is a block diagram illustrating one embodiment of an electronic system 1500 having a processing device 1510 including high-voltage capacitance-sensing circuit 1520. The HV capacitance-sensing circuit 1520 includes both a low-voltage source driver 1521 and a high-voltage source driver 1523 Details regarding the high-voltage capacitance-sensing circuit 1520 are described in more detail with respect to FIGS. 4, 9, and 10. The processing device 1510 is configured to detect one or more touches on a touch-sensing device, such as the capacitive sense array 1525. The processing device can detect conductive objects, such as touch objects 1540 (fingers or passive styluses, an active stylus 1530, or any combination thereof. The high-voltage capacitance-sensing circuit 1501 can measure touch data on the capacitive sense array 1525. The touch data may be represented as multiple cells, each cell representing an intersection of sense elements (e.g., electrodes) of the capacitive sense array 1525. In another embodiment, the touch data is a 2D capacitive image of the capacitive sense array 1525. In one embodiment, when the high-voltage capacitance-sensing circuit 1501 measures mutual capacitance of the touch-sensing device (e.g., capacitive sense array 1525), the high-voltage capacitance-sensing circuit 1501 obtains a 2D capacitive image of the touch-sensing device and processes the data for peaks and positional information. In another embodiment, the processing device 1510 is a microcontroller that obtains a capacitance touch signal data set, such as from a sense array, and finger detection firmware executing on the microcontroller identifies data set areas that indicate touches, detects and processes peaks, calculates the coordinates, or any combination therefore. The firmware identifies the peaks using the embodiments described herein. The firmware can calculate a precise coordinate for the resulting peaks. In one embodiment, the firmware can calculate the precise coordinates for the resulting peaks using a centroid algorithm, which calculates a centroid of the touch, the centroid being a center of mass of the touch. The centroid may be an X/Y coordinate of the touch. Alternatively, other coordinate interpolation algorithms may be used to determine the coordinates of the resulting peaks. The microcontroller can report the precise coordinates to a host processor, as well as other information.
  • Electronic system 1500 includes processing device 1510, capacitive sense array 1525, stylus 1530, host processor 1550, embedded controller 1560, and non-capacitive sense elements 1570. The capacitive sense elements are electrodes of conductive material, such as copper. The sense elements may also be part of an ITO panel. The capacitive sense elements can be configurable to allow the capacitive-sensing circuit 1501 to measure self-capacitance, mutual capacitance, or any combination thereof. In the depicted embodiment, the electronic system 1500 includes the capacitive sense array 1525 coupled to the processing device 1510 via bus 1522. The capacitive sense array 1525 may include a multi-dimension capacitive sense array. The multi-dimension sense array includes multiple sense elements, organized as rows and columns. In another embodiment, the capacitive sense array 1525 operates as an all-points-addressable (“APA”) mutual capacitive sense array. In another embodiment, the capacitive sense array 1525 operates as a coupled-charge receiver. In another embodiment, the capacitive sense array 1525 is non-transparent capacitive sense array (e.g., PC touchpad). The capacitive sense array 1525 may be disposed to have a flat surface profile. Alternatively, the capacitive sense array 1525 may have non-flat surface profiles. Alternatively, other configurations of capacitive sense arrays may be used. For example, instead of vertical columns and horizontal rows, the capacitive sense array 1525 may have a hexagon arrangement, or the like, as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. In one embodiment, the capacitive sense array 1525 may be included in an ITO panel or a touch screen panel.
  • The operations and configurations of the processing device 1510 and the capacitive sense array 1525 for detecting and tracking the touch object 1540 and stylus 1530 are described herein. In short, the processing device 1510 is configurable to detect a presence of the touch object 1540, a presence of a stylus 1530 on the capacitive sense array 1525, or any combination thereof. The processing device 1510 may detect and track the stylus 1530 and the touch object 1540 individually on the capacitive sense array 1525. In one embodiment, the processing device 1510 can detect and track both the stylus 1530 and touch object 1540 concurrently on the capacitive sense array 1525. If the touching object is an active stylus, in one embodiment, the active stylus 1530 is configurable to operate as the timing “master,” and the processing device 1510 adjusts the timing of the capacitive sense array 1525 to match that of the active stylus 1530 when the active stylus 1530 is in use. In one embodiment, the capacitive sense array 1525 capacitively couples with the active stylus 1530, as opposed to conventional inductive stylus applications. It should also be noted that the same assembly used for the capacitive sense array 1525, which is configurable to detect touch objects 1540, is also used to detect and track a stylus 1530 without an additional PCB layer for inductively tracking the active stylus 1530.
  • In the depicted embodiment, the processing device 1510 includes analog and/or digital general purpose input/output (“GPIO”) ports 1507. GPIO ports 1507 may be programmable. GPIO ports 1507 may be coupled to a Programmable Interconnect and Logic (“PIL”), which acts as an interconnect between GPIO ports 1507 and a digital block array of the processing device 1510 (not shown). The digital block array may be configurable to implement a variety of digital logic circuits (e.g., DACs, digital filters, or digital control systems) using, in one embodiment, configurable user modules (“UMs”). The digital block array may be coupled to a system bus. Processing device 1510 may also include memory, such as random access memory (“RAM”) 1505 and program flash 1504. RAM 1505 may be static RAM (“SRAM”), and program flash 1504 may be a non-volatile storage, which may be used to store firmware (e.g., control algorithms executable by processing core 1502 to implement operations described herein). Processing device 1510 may also include a memory controller unit (“MCU”) 1503 coupled to memory and the processing core 1502. The processing core 1502 is a processing element configured to execute instructions or perform operations. The processing device 1510 may include other processing elements as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. It should also be noted that the memory may be internal to the processing device or external to it. In the case of the memory being internal, the memory may be coupled to a processing element, such as the processing core 1502. In the case of the memory being external to the processing device, the processing device is coupled to the other device in which the memory resides as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • The processing device 1510 may also include an analog block array (not shown). The analog block array is also coupled to the system bus. Analog block array may also be configurable to implement a variety of analog circuits (e.g., ADCs or analog filters) using, in one embodiment, configurable UMs. The analog block array may also be coupled to the GPIO 1507.
  • As illustrated, high-voltage capacitance-sensing circuit 1501 may be integrated into processing device 1510. Capacitance-sensing circuit 1501 may include analog I/O for coupling to an external component, such as touch-sensor pad (not shown), capacitive sense array 1525, touch-sensor slider (not shown), touch-sensor buttons (not shown), and/or other devices. The high-voltage capacitance-sensing circuit 1501 may be configurable to measure capacitance using mutual-capacitance sensing techniques, self-capacitance sensing technique, charge coupling techniques or the like. In one embodiment, high-voltage capacitance-sensing circuit 1501 operates using a charge accumulation circuit, a capacitance modulation circuit, or other capacitance sensing methods known by those skilled in the art. In an embodiment, the high-voltage capacitance-sensing circuit 1501 is of the Cypress TMA-3xx, TMA-4xx, or TMA-xx families of touch screen controllers. Alternatively, other high-voltage capacitance-sensing circuit s may be used. The mutual capacitive sense arrays, or touch screens, as described herein, may include a transparent, conductive sense array disposed on, in, or under either a visual display itself (e.g. LCD monitor), or a transparent substrate in front of the display. In an embodiment, the TX and RX electrodes are configured in rows and columns, respectively. It should be noted that the rows and columns of electrodes can be configured as TX or RX electrodes by the high-voltage capacitance-sensing circuit 1501 in any chosen combination. In one embodiment, the TX and RX electrodes of the sense array 1525 are configurable to operate as a TX and RX electrodes of a mutual capacitive sense array in a first mode to detect touch objects, and to operate as electrodes of a coupled-charge receiver in a second mode to detect a stylus on the same electrodes of the sense array. The stylus, which generates a stylus TX signal when activated, is used to couple charge to the capacitive sense array, instead of measuring a mutual capacitance at an intersection of a RX electrode and a TX electrode (a sense element) as done during mutual-capacitance sensing. An intersection between two sense elements may be understood as a location at which one sense electrode crosses over or overlaps another, while maintaining galvanic isolation from each other. The high-voltage capacitance-sensing circuit 1501 does not use mutual-capacitance or self-capacitance sensing to measure capacitances of the sense elements when performing a stylus sensing. Rather, the high-voltage capacitance-sensing circuit 1501 measures a charge that is capacitively coupled between the sense array 1525 and the stylus as described herein. The capacitance associated with the intersection between a TX electrode and an RX electrode can be sensed by selecting every available combination of TX electrode and RX electrode. When a touch object, such as a finger or stylus, approaches the capacitive sense array 1525, the object causes a decrease in mutual capacitance between some of the TX/RX electrodes. In another embodiment, the presence of a finger increases the coupling capacitance of the electrodes. Thus, the location of the finger on the capacitive sense array 1525 can be determined by identifying the RX electrode having a decreased coupling capacitance between the RX electrode and the TX electrode to which the TX signal was applied at the time the decreased capacitance was measured on the RX electrode. Therefore, by sequentially determining the capacitances associated with the intersection of electrodes, the locations of one or more inputs can be determined. It should be noted that the process can calibrate the sense elements (intersections of RX and TX electrodes) by determining baselines for the sense elements. It should also be noted that interpolation may be used to detect finger position at better resolutions than the row/column pitch as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure. In addition, various types of coordinate interpolation algorithms may be used to detect the center of the touch as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • The high-voltage capacitance-sensing circuit 1501 includes the high-voltage capacitance-sensing circuit 1520. Additional details of the high-voltage capacitance-sensing circuit 1520 are described above with respect to FIGS. 2-8.
  • In an embodiment, the electronic system 1500 may also include non-capacitive sense elements 1570 coupled to the processing device 1510 via bus 1571 and GPIO port 1507. The non-capacitive sense elements 1570 may include buttons, light emitting diodes (“LEDs”), and other user interface devices, such as a mouse, a keyboard, or other functional keys that do not use capacitance sensing. In one embodiment, buses 1522, and 1571 are embodied in a single bus. Alternatively, these buses may be configured into any combination of one or more separate buses.
  • Processing device 1510 may include internal oscillator/clocks 1506 and communication block (“COM”) 1508. In another embodiment, the processing device 1510 includes a spread spectrum clock (not shown). The oscillator/clocks block 1506 provides clock signals to one or more of the components of processing device 1510. Communication block 1508 may be used to communicate with an external component, such as a host processor 1550, via host interface (“I/F”) line 1551. Alternatively, processing device 1510 may also be coupled to embedded controller 1560 to communicate with the external components, such as host processor 1550. In one embodiment, the processing device 1510 is configurable to communicate with the embedded controller 1560 or the host processor 1550 to send and/or receive data.
  • Processing device 1510 may reside on a common carrier substrate such as, for example, an integrated circuit (“IC”) die substrate, a multi-chip module substrate, or the like. Alternatively, the components of processing device 1510 may be one or more separate integrated circuits and/or discrete components. In one exemplary embodiment, processing device 1510 is the Programmable System on a Chip (PSoC®) processing device, developed by Cypress Semiconductor Corporation, San Jose, Calif. Alternatively, processing device 1510 may be one or more other processing devices known by those of ordinary skill in the art, such as a microprocessor or central processing unit, a controller, special-purpose processor, digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”), or the like.
  • It should also be noted that the embodiments described herein are not limited to having a configuration of a processing device coupled to a host, but may include a system that measures the capacitance on the sensing device and sends the raw data to a host computer where it is analyzed by an application. In effect, the processing that is done by processing device 1510 may be done in the host.
  • Capacitance-sensing circuit 1501 may be integrated into the IC of the processing device 1510, or alternatively, in a separate IC. Alternatively, descriptions of high-voltage capacitance-sensing circuit 1501 may be generated and compiled for incorporation into other integrated circuits. For example, behavioral level code describing the high-voltage capacitance-sensing circuit 1501, or portions thereof, may be generated using a hardware descriptive language, such as VHDL or Verilog, and stored to a machine-accessible medium (e.g., CD-ROM, hard disk, floppy disk, etc.). Furthermore, the behavioral level code can be compiled into register transfer level (“RTL”) code, a netlist, or even a circuit layout and stored to a machine-accessible medium. The behavioral level code, the RTL code, the netlist, and the circuit layout may represent various levels of abstraction to describe high-voltage capacitance-sensing circuit 1501.
  • It should be noted that the components of electronic system 1500 may include all the components described above. Alternatively, electronic system 1500 may include some of the components described above.
  • In one embodiment, the electronic system 1500 is used in a tablet computer. Alternatively, the electronic device may be used in other applications, such as a notebook computer, a mobile handset, a personal data assistant (“PDA”), a keyboard, a television, a remote control, a monitor, a handheld multi-media device, a handheld media (audio and/or video) player, a handheld gaming device, a signature input device for point of sale transactions, an eBook reader, global position system (“GPS”) or a control panel. The embodiments described herein are not limited to touch screens or touch-sensor pads for notebook implementations, but can be used in other capacitive sensing implementations, for example, the sensing device may be a touch-sensor slider (not shown) or touch-sensor buttons (e.g., capacitance sensing buttons). In one embodiment, these sensing devices include one or more capacitive sensors or other types of capacitance-sensing circuitry. The operations described herein are not limited to notebook pointer operations, but can include other operations, such as lighting control (dimmer), volume control, graphic equalizer control, speed control, or other control operations requiring gradual or discrete adjustments. It should also be noted that these embodiments of capacitive sensing implementations may be used in conjunction with non-capacitive sensing elements, including but not limited to pick buttons, sliders (ex. display brightness and contrast), scroll-wheels, multi-media control (ex. volume, track advance, etc.) handwriting recognition, and numeric keypad operation.
  • The embodiments described herein may be used in various designs of mutual-capacitance sensing arrays of the capacitance sensing system, or in self-capacitance sensing arrays. In one embodiment, the capacitance sensing system detects multiple sense elements that are activated in the array, and can analyze a signal pattern on the neighboring sense elements to separate noise from actual signal. The embodiments described herein are not tied to a particular capacitive sensing solution and can be used as well with other sensing solutions, including optical sensing solutions, as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
  • In the above description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that embodiments of the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the description.
  • Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “encrypting,” “decrypting,” “storing,” “providing,” “deriving,” “obtaining,” “receiving,” “authenticating,” “deleting,” “executing,” “requesting,” “communicating,” or the like, refer to the actions and processes of a computing system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computing system's registers and memories into other data similarly represented as physical quantities within the computing system memories or registers or other such information storage, transmission or display devices.
  • The words “example” or “exemplary” are used herein to mean serving as an example, instance or illustration. Any aspect or design described herein as “example’ or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an embodiment” or “one embodiment” or “an implementation” or “one implementation” throughout is not intended to mean the same embodiment or implementation unless described as such.
  • Embodiments descried herein may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory computer-readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, flash memory, or any type of media suitable for storing electronic instructions. The term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present embodiments. The term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, magnetic media, any medium that is capable of storing a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present embodiments.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present embodiments are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein.
  • The above description sets forth numerous specific details such as examples of specific systems, components, methods and so forth, in order to provide a good understanding of several embodiments of the present invention. It will be apparent to one skilled in the art, however, that at least some embodiments of the present invention may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram format in order to avoid unnecessarily obscuring the present invention. Thus, the specific details set forth above are merely exemplary. Particular implementations may vary from these exemplary details and still be contemplated to be within the scope of the present invention.
  • It is to be understood that the above description is intended to be illustrative and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (21)

What is claimed is:
1.-20. (canceled)
21. An apparatus comprising:
a first portion of a capacitance-sensing circuit, the first portion being configured to generate an output corresponding to a capacitance measured at a first electrode of a plurality of electrodes included in a capacitive-sense array;
a plurality of signal sources including a first signal source and a second signal source, the first signal source being configured to generate a first signal, and the second signal source configured to generate a second signal having a voltage magnitude greater than the first signal; and
switching circuitry configured to couple the first portion of the capacitance-sensing circuit or the second signal source to the first electrode of the plurality of electrodes, and further configured to couple the first signal source or the second signal source to a second electrode of the plurality of electrodes.
22. The apparatus of claim 21, wherein the first signal generated by the first signal source is a reference voltage, and wherein the second signal generated by the second signal source is a sensing voltage.
23. The apparatus of claim 21, wherein the first electrode is a sensing electrode configured to sense, at least in part, a capacitance associated with an object proximate to the capacitive-sense array, and wherein the second electrode is a shielding electrode capacitively coupled to the first electrode.
24. The apparatus of claim 23, wherein the first portion of the capacitance-sensing circuit comprises a self-capacitance sensing channel coupled to the first electrode.
25. The apparatus of claim 24, wherein the self-capacitance sensing channel comprises:
an integrator;
a capacitor; and
an analog-to-digital converter (ADC).
26. The apparatus of claim 21, wherein the switching circuitry comprises first switching circuitry and second switching circuitry, wherein the first switching circuitry is configured to couple the first portion of the capacitance-sensing circuit, the second signal source, or a ground potential to the first electrode, and wherein the second switching circuitry is configured to couple the first signal source, the second signal source, or the ground potential to the second electrode.
27. The apparatus of claim 21, wherein the capacitance-sensing circuit is configured to control the switching circuitry in a four-phase, full-wave mode.
28. The apparatus of claim 21, wherein the capacitance-sensing circuit is configured to control the switching circuitry in a two-phase, half-wave mode.
29. The apparatus of claim 21, wherein the capacitance-sensing circuit is configured to control the switching circuitry in a three-phase, half-wave mode.
30. A method comprising:
applying a first signal to a first electrode and a second electrode, the first signal being generated by a first signal source;
discharging the first electrode to a voltage associated with a second signal, the discharging being based on positive charge transfer from the first electrode to a portion of a capacitive-sensing circuit, the second signal being generated by a second signal source, and the second signal having a lesser voltage magnitude than the first signal;
converting the positive charge transfer to a first digital value; and
accumulating the first digital value.
31. The method of claim 30, wherein the first electrode is a sensing electrode, wherein the second electrode is a shielding electrode capacitively coupled to the first electrode, wherein the first signal source is a sensing voltage source, and wherein the second signal source is a reference voltage source.
32. The method of claim 30, wherein the applying, setting, converting, and accumulating are included in a four-phase, full-wave mode.
33. The method of claim 30, wherein the applying, setting, converting, and accumulating are included in a two-phase, half-wave mode.
34. The method of claim 30, wherein the applying, setting, converting, and accumulating are included in a three-phase, half-wave mode.
35. A system comprising:
a capacitive-sense array comprising a plurality of electrodes, the plurality of electrodes including a first electrode and a second electrode; and
a capacitance-sensing circuit coupled to the capacitive-sense array, the capacitance-sensing circuit comprising:
a first portion configured to generate an output corresponding to a capacitance measured at the first electrode;
a plurality of signal sources including a first signal source and a second signal source, the first signal source being configured to generate a first signal, and the second signal source configured to generate a second signal having a voltage magnitude greater than the first signal; and
switching circuitry configured to couple the first portion or the second signal source to the first electrode of the plurality of electrodes, and further configured to couple the first signal source or the second signal source to the second electrode of the plurality of electrodes.
36. The system of claim 35, wherein the first signal generated by the first signal source is a reference voltage, and wherein the second signal generated by the second signal source is a sensing voltage.
37. The system of claim 35, wherein the first electrode is a sensing electrode configured to sense, at least in part, a capacitance associated with an object proximate to the capacitive-sense array, and wherein the second electrode is a shielding electrode capacitively coupled to the first electrode.
38. The system of claim 37, wherein the first portion of the capacitance-sensing circuit comprises a self-capacitance sensing channel coupled to the first electrode.
39. The system of claim 38, wherein the self-capacitance sensing channel comprises:
an integrator;
a capacitor; and
an analog-to-digital converter (ADC).
40. The system of claim 35, wherein the switching circuitry comprises first switching circuitry and second switching circuitry, wherein the first switching circuitry is configured to couple the first portion of the capacitance-sensing circuit, the second signal source, or a ground potential to the first electrode, and wherein the second switching circuitry is configured to couple the first signal source, the second signal source, or the ground potential to the second electrode.
US14/854,350 2014-05-29 2015-09-15 High voltage, High-sensitivity Self-capacitance Sensing Abandoned US20160117017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/854,350 US20160117017A1 (en) 2014-05-29 2015-09-15 High voltage, High-sensitivity Self-capacitance Sensing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462004589P 2014-05-29 2014-05-29
US14/479,193 US9151792B1 (en) 2014-05-29 2014-09-05 High-voltage, high-sensitivity self-capacitance sensing
US14/854,350 US20160117017A1 (en) 2014-05-29 2015-09-15 High voltage, High-sensitivity Self-capacitance Sensing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/479,193 Continuation US9151792B1 (en) 2014-05-29 2014-09-05 High-voltage, high-sensitivity self-capacitance sensing

Publications (1)

Publication Number Publication Date
US20160117017A1 true US20160117017A1 (en) 2016-04-28

Family

ID=54203750

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/479,193 Expired - Fee Related US9151792B1 (en) 2014-05-29 2014-09-05 High-voltage, high-sensitivity self-capacitance sensing
US14/854,350 Abandoned US20160117017A1 (en) 2014-05-29 2015-09-15 High voltage, High-sensitivity Self-capacitance Sensing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/479,193 Expired - Fee Related US9151792B1 (en) 2014-05-29 2014-09-05 High-voltage, high-sensitivity self-capacitance sensing

Country Status (1)

Country Link
US (2) US9151792B1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035787A1 (en) * 2013-07-31 2015-02-05 Apple Inc. Self capacitance touch sensing
US20160188041A1 (en) * 2014-12-31 2016-06-30 Lg Display Co., Ltd. Touch Screen Device and Method of Driving the Same
CN106971139A (en) * 2016-11-11 2017-07-21 深圳信炜科技有限公司 Capacitance type sensor, capacitance-type sensing device and electronic equipment
US20170285869A1 (en) * 2014-09-05 2017-10-05 Quickstep Technologies Llc Control interface device and fingerprint sensor
US20170322659A1 (en) * 2016-05-09 2017-11-09 Touchplus Information Corp. Touch-sensitive control device
US20170371451A1 (en) * 2014-08-21 2017-12-28 Cypress Semiconductor Corporation Providing a baseline capacitance for a capacitance sensing channel
CN107621579A (en) * 2017-09-05 2018-01-23 华显光电技术(惠州)有限公司 The touch-control adjustment method of touch screen
WO2018023089A1 (en) * 2016-07-29 2018-02-01 Apple Inc. Touch sensor panel with multi-power domain chip configuration
JP2018060502A (en) * 2016-10-03 2018-04-12 株式会社東海理化電機製作所 Input device
US9946920B1 (en) * 2016-11-23 2018-04-17 Image Match Design Inc. Sensing element and fingerprint sensor comprising the sensing elements
WO2018086054A1 (en) * 2016-11-11 2018-05-17 深圳信炜科技有限公司 Capacitive sensor, capacitive sensing device, and electronic device
US20180173342A1 (en) * 2016-12-20 2018-06-21 Lg Display Co., Ltd. Touch circuit, touch sensing device, and touch sensing method
US10007388B2 (en) 2009-08-07 2018-06-26 Quickstep Technologies Llc Device and method for control interface sensitive to a movement of a body or of an object and viewing screen integrating this device
US10146390B1 (en) * 2017-07-21 2018-12-04 Cypress Semiconductor Corporation Method of combining self and mutual capacitance sensing
US10175832B2 (en) 2011-12-22 2019-01-08 Quickstep Technologies Llc Switched-electrode capacitive-measurement device for touch-sensitive and contactless interfaces
US20190057235A1 (en) * 2017-08-21 2019-02-21 Superc-Touch Corporation Biometric identification apparatus having multiple electrodes
US20190286261A1 (en) * 2016-05-25 2019-09-19 Fogale Nanotech Zero-guard capacitive detection device
US10429998B2 (en) 2014-07-23 2019-10-01 Cypress Semiconductor Corporation Generating a baseline compensation signal based on a capacitive circuit
US10503328B2 (en) 2011-06-16 2019-12-10 Quickstep Technologies Llc Device and method for generating an electrical power supply in an electronic system with a variable reference potential
CN111065993A (en) * 2017-09-12 2020-04-24 赛普拉斯半导体公司 Suppressing noise in touch panels using shielding layers
US10795488B2 (en) 2015-02-02 2020-10-06 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US10809847B2 (en) 2013-02-13 2020-10-20 Apple Inc. In-cell touch for LED
EP3591506A4 (en) * 2017-03-03 2020-12-30 Alps Alpine Co., Ltd. Input device and method for controlling same
US10936120B2 (en) 2014-05-22 2021-03-02 Apple Inc. Panel bootstraping architectures for in-cell self-capacitance
US10990221B2 (en) 2017-09-29 2021-04-27 Apple Inc. Multi-power domain touch sensing
US11016616B2 (en) 2018-09-28 2021-05-25 Apple Inc. Multi-domain touch sensing with touch and display circuitry operable in guarded power domain
US11086444B2 (en) 2013-12-13 2021-08-10 Apple Inc. Integrated touch and display architectures for self-capacitive touch sensors
US11086463B2 (en) 2017-09-29 2021-08-10 Apple Inc. Multi modal touch controller
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985048B1 (en) * 2011-12-21 2014-08-15 Nanotec Solution PRESSURE-SENSITIVE CAPACITIVE MEASUREMENT DEVICE AND METHOD FOR TOUCH-FREE CONTACT INTERFACES
US20150338958A1 (en) * 2014-05-20 2015-11-26 Semtech Corporation Measuring circuit for a capacitive touch-sensitive panel
US20160078269A1 (en) * 2014-09-15 2016-03-17 Fingerprint Cards Ab Fingerprint sensor with sync signal input
US9864464B2 (en) * 2014-10-31 2018-01-09 Semtech Corporation Method and device for reducing radio frequency interference of proximity and touch detection in mobile devices
CN105989327A (en) * 2015-02-02 2016-10-05 神盾股份有限公司 Fingerprint sensing device and method
US10431424B2 (en) 2015-02-18 2019-10-01 Reno Technologies Inc. Parasitic capacitance compensation circuit
CN110738162A (en) * 2015-04-02 2020-01-31 神盾股份有限公司 Fingerprint sensing device and sensing method thereof
US10095948B2 (en) * 2015-06-30 2018-10-09 Synaptics Incorporated Modulation scheme for fingerprint sensing
US10068121B2 (en) 2015-08-31 2018-09-04 Cypress Semiconductor Corporation Baseline compensation for capacitive sensing
US10175830B2 (en) * 2015-09-30 2019-01-08 Apple Inc. Systems and methods for pre-charging a display panel
GB2543340B (en) * 2015-10-16 2019-09-04 Touchnetix Ltd Capacitive sensor apparatus and methods
US9753598B2 (en) * 2015-12-30 2017-09-05 Image Match Design Inc. Sensing device
TWI581167B (en) * 2016-03-29 2017-05-01 矽創電子股份有限公司 Noise suppression circuit
TWI758283B (en) * 2016-05-30 2022-03-21 瑞典商指紋卡阿娜卡敦Ip有限公司 Fingerprint sensor with controllable resolution
US10394368B2 (en) * 2016-05-31 2019-08-27 Microsoft Technology Licensing, Llc Touch-sensitive display device
US10061415B2 (en) * 2016-06-30 2018-08-28 Synaptics Incorporated Input device receiver with delta-sigma modulator
US10578575B2 (en) * 2016-09-14 2020-03-03 Sunasic Technologies, Inc. Noise-reduced capacitive sensing unit
CN110088637B (en) * 2016-12-21 2021-07-27 阿尔卑斯阿尔派株式会社 Capacitance detection device and input device
CN106680591B (en) * 2016-12-21 2019-05-31 北京集创北方科技股份有限公司 The detection circuit and detection method of touch-control display panel
EP3416093B1 (en) 2017-01-24 2024-01-03 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition system
LU100330B1 (en) * 2017-06-29 2019-01-08 Iee Sa Capacitive Sensor Arrangement
EP3428659A1 (en) * 2017-07-12 2019-01-16 LEM Intellectual Property SA Contactless voltage transducer
CN111183372B (en) * 2017-10-04 2022-06-14 阿尔卑斯阿尔派株式会社 Electrostatic sensor and door handle
JP6960831B2 (en) * 2017-11-17 2021-11-05 エイブリック株式会社 Sensor device
JP6998741B2 (en) * 2017-11-20 2022-01-18 エイブリック株式会社 Sensor device
US10698540B2 (en) * 2018-01-22 2020-06-30 Semicondutor Components Industries, Llc Methods and apparatus for a capacitive touch sensor
CN110463041B (en) * 2018-03-06 2023-08-25 深圳市汇顶科技股份有限公司 Circuit for capacitance detection, touch detection device and terminal equipment
WO2020059014A1 (en) * 2018-09-18 2020-03-26 国立大学法人東北大学 Capacitive detection area sensor, and conductive pattern testing device having said capacitive detection area sensor
CN114556278B (en) * 2019-11-07 2023-07-11 阿尔卑斯阿尔派株式会社 Capacitance detection device and capacitance detection method
WO2021174543A1 (en) * 2020-03-06 2021-09-10 深圳市汇顶科技股份有限公司 Capacitive detection circuit, touch device, and terminal apparatus
WO2021225061A1 (en) * 2020-05-07 2021-11-11 アルプスアルパイン株式会社 Capacitance detection device and input device
DE112021007016T5 (en) * 2021-02-04 2023-12-07 Alps Alpine Co., Ltd. CAPACITY DETECTION DEVICE, CAPACITY DETECTION METHOD AND INPUT DEVICE
CN117751278A (en) * 2021-09-30 2024-03-22 阿尔卑斯阿尔派株式会社 Capacitance sensor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009953B2 (en) * 2003-05-14 2007-11-21 オムロン株式会社 Object detection sensor
EP1766547B1 (en) * 2004-06-18 2008-11-19 Fingerprint Cards AB Fingerprint sensor element
US7301350B2 (en) * 2005-06-03 2007-11-27 Synaptics Incorporated Methods and systems for detecting a capacitance using sigma-delta measurement techniques
US7876311B2 (en) 2007-06-13 2011-01-25 Apple Inc. Detection of low noise frequencies for multiple frequency sensor panel stimulation
KR20100100773A (en) * 2007-10-04 2010-09-15 가부시키가이샤후지쿠라 Capacitive proximity sensor and proximity detection method
US8941394B2 (en) 2008-06-25 2015-01-27 Silicon Laboratories Inc. Capacitive sensor system with noise reduction
JP2010061405A (en) * 2008-09-03 2010-03-18 Rohm Co Ltd Capacitance sensor, detection circuit thereof, input device, and control method of capacity sensor
US9323398B2 (en) * 2009-07-10 2016-04-26 Apple Inc. Touch and hover sensing
US9069405B2 (en) 2009-07-28 2015-06-30 Cypress Semiconductor Corporation Dynamic mode switching for fast touch response
US8723825B2 (en) * 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US9244569B2 (en) 2010-03-31 2016-01-26 Stmicroelectronics Asia Pacific Pte Ltd Capacitive sensing analog front end
US9489072B2 (en) 2010-04-15 2016-11-08 Atmel Corporation Noise reduction in capacitive touch sensors
US8624870B2 (en) 2010-04-22 2014-01-07 Maxim Integrated Products, Inc. System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
KR101031498B1 (en) * 2010-07-09 2011-04-29 주식회사 켐트로닉스 Apparatus and method for sensing change of capacitance and computer readable record-midium on which program for excuting method thereof, apparatus and method for sensing touch using the same and computer readable record-midium on which program for excuting method thereof
WO2012043443A1 (en) * 2010-09-28 2012-04-05 株式会社フジクラ Capacitance sensor and method for determining failure of capacitance sensor
WO2013058446A1 (en) 2011-10-21 2013-04-25 포항공과대학교 산학협력단 Capacitive touch sensor
WO2013069289A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Touch-panel device
WO2013109698A1 (en) * 2012-01-17 2013-07-25 Apple Inc. Fingerprint sensor having pixel sensing circuitry for coupling electrodes and pixel sensing traces and related method
TW201335822A (en) 2012-02-24 2013-09-01 Elan Microelectronics Corp Driving method for charger noise rejection in touch panel
US20130265276A1 (en) 2012-04-09 2013-10-10 Amazon Technologies, Inc. Multiple touch sensing modes
US8913021B2 (en) * 2012-04-30 2014-12-16 Apple Inc. Capacitance touch near-field—far field switching
TWI490455B (en) * 2012-10-12 2015-07-01 Morevalued Technology Co Let Capacitive sensing array device with high sensitivity and electronic apparatus using the same
US8723586B1 (en) * 2012-11-02 2014-05-13 Atmel Corporation Charge measurement
US8610443B1 (en) 2013-03-12 2013-12-17 Cypress Semiconductor Corp. Attenuator circuit of a capacitance-sensing circuit

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10007388B2 (en) 2009-08-07 2018-06-26 Quickstep Technologies Llc Device and method for control interface sensitive to a movement of a body or of an object and viewing screen integrating this device
US10503328B2 (en) 2011-06-16 2019-12-10 Quickstep Technologies Llc Device and method for generating an electrical power supply in an electronic system with a variable reference potential
US10175832B2 (en) 2011-12-22 2019-01-08 Quickstep Technologies Llc Switched-electrode capacitive-measurement device for touch-sensitive and contactless interfaces
US10809847B2 (en) 2013-02-13 2020-10-20 Apple Inc. In-cell touch for LED
US20150035787A1 (en) * 2013-07-31 2015-02-05 Apple Inc. Self capacitance touch sensing
US10061444B2 (en) * 2013-07-31 2018-08-28 Apple Inc. Self capacitance touch sensing
US11409353B2 (en) 2013-07-31 2022-08-09 Apple Inc. Mitigation of parasitic capacitance in self capacitance touch sensing
US11086444B2 (en) 2013-12-13 2021-08-10 Apple Inc. Integrated touch and display architectures for self-capacitive touch sensors
US10936120B2 (en) 2014-05-22 2021-03-02 Apple Inc. Panel bootstraping architectures for in-cell self-capacitance
US10429998B2 (en) 2014-07-23 2019-10-01 Cypress Semiconductor Corporation Generating a baseline compensation signal based on a capacitive circuit
US20170371451A1 (en) * 2014-08-21 2017-12-28 Cypress Semiconductor Corporation Providing a baseline capacitance for a capacitance sensing channel
US11481066B2 (en) * 2014-08-21 2022-10-25 Cypress Semiconductor Corporation Providing a baseline capacitance for a capacitance sensing channel
US11054938B2 (en) * 2014-08-21 2021-07-06 Cypress Semiconductor Corporation Providing a baseline capacitance for a capacitance sensing channel
US10860137B2 (en) * 2014-09-05 2020-12-08 Quickstep Technologies Llc Control interface device and fingerprint sensor
US20170285869A1 (en) * 2014-09-05 2017-10-05 Quickstep Technologies Llc Control interface device and fingerprint sensor
US10013123B2 (en) * 2014-12-31 2018-07-03 Lg Display Co., Ltd. Touch screen device and method of driving the same
US20160188041A1 (en) * 2014-12-31 2016-06-30 Lg Display Co., Ltd. Touch Screen Device and Method of Driving the Same
US10795488B2 (en) 2015-02-02 2020-10-06 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US11353985B2 (en) 2015-02-02 2022-06-07 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
CN107357471A (en) * 2016-05-09 2017-11-17 新益先创科技股份有限公司 Sensing device further
US20170322659A1 (en) * 2016-05-09 2017-11-09 Touchplus Information Corp. Touch-sensitive control device
US20190286261A1 (en) * 2016-05-25 2019-09-19 Fogale Nanotech Zero-guard capacitive detection device
US10120520B2 (en) 2016-07-29 2018-11-06 Apple Inc. Touch sensor panel with multi-power domain chip configuration
CN109564485A (en) * 2016-07-29 2019-04-02 苹果公司 Touch sensor panel with the configuration of multi-power domain chip
WO2018023089A1 (en) * 2016-07-29 2018-02-01 Apple Inc. Touch sensor panel with multi-power domain chip configuration
US10459587B2 (en) 2016-07-29 2019-10-29 Apple Inc. Touch sensor panel with multi-power domain chip configuration
US10852894B2 (en) 2016-07-29 2020-12-01 Apple Inc. Touch sensor panel with multi-power domain chip configuration
JP2018060502A (en) * 2016-10-03 2018-04-12 株式会社東海理化電機製作所 Input device
WO2018086054A1 (en) * 2016-11-11 2018-05-17 深圳信炜科技有限公司 Capacitive sensor, capacitive sensing device, and electronic device
CN106971139A (en) * 2016-11-11 2017-07-21 深圳信炜科技有限公司 Capacitance type sensor, capacitance-type sensing device and electronic equipment
US9946920B1 (en) * 2016-11-23 2018-04-17 Image Match Design Inc. Sensing element and fingerprint sensor comprising the sensing elements
US20180173342A1 (en) * 2016-12-20 2018-06-21 Lg Display Co., Ltd. Touch circuit, touch sensing device, and touch sensing method
US10496230B2 (en) * 2016-12-20 2019-12-03 Lg Display Co., Ltd. Touch circuit, touch sensing device, and touch sensing method
EP3591506A4 (en) * 2017-03-03 2020-12-30 Alps Alpine Co., Ltd. Input device and method for controlling same
US10146390B1 (en) * 2017-07-21 2018-12-04 Cypress Semiconductor Corporation Method of combining self and mutual capacitance sensing
CN111108465A (en) * 2017-07-21 2020-05-05 赛普拉斯半导体公司 Method for combining self-capacitance and mutual capacitance sensing
US20190057235A1 (en) * 2017-08-21 2019-02-21 Superc-Touch Corporation Biometric identification apparatus having multiple electrodes
CN107621579B (en) * 2017-09-05 2021-02-02 华显光电技术(惠州)有限公司 Touch debugging method of touch screen
CN107621579A (en) * 2017-09-05 2018-01-23 华显光电技术(惠州)有限公司 The touch-control adjustment method of touch screen
CN111065993A (en) * 2017-09-12 2020-04-24 赛普拉斯半导体公司 Suppressing noise in touch panels using shielding layers
US10990221B2 (en) 2017-09-29 2021-04-27 Apple Inc. Multi-power domain touch sensing
US11086463B2 (en) 2017-09-29 2021-08-10 Apple Inc. Multi modal touch controller
US11016616B2 (en) 2018-09-28 2021-05-25 Apple Inc. Multi-domain touch sensing with touch and display circuitry operable in guarded power domain
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel

Also Published As

Publication number Publication date
US9151792B1 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
US9151792B1 (en) High-voltage, high-sensitivity self-capacitance sensing
US9164640B2 (en) Barrier electrode driven by an excitation signal
US11481066B2 (en) Providing a baseline capacitance for a capacitance sensing channel
US8836669B1 (en) High resolution capacitance to code converter
US10429998B2 (en) Generating a baseline compensation signal based on a capacitive circuit
US8575947B1 (en) Receive demodulator for capacitive sensing
US10775929B2 (en) Suppressing noise in touch panels using a shield layer
US8866494B2 (en) Attenuator circuit of a capacitance-sensing circuit
US10545614B2 (en) Two-electrode touch button with a multi-phase capacitance measurement process
US10068121B2 (en) Baseline compensation for capacitive sensing
US8779783B1 (en) Mutual capacitance sensing using a self-capacitance sensing device
US9310953B1 (en) Full-wave synchronous rectification for self-capacitance sensing
CN105531654B (en) Injection touch noise analysis
US9383395B1 (en) Charge balancing converter using a passive integrator circuit
US9594462B2 (en) Uniform signals from non-uniform patterns of electrodes
US10310687B2 (en) Multi-phase self-capacitance scanning of sensors arrays
WO2015038177A1 (en) High resolution capacitance to code converter

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KREMIN, VIKTOR;MAHARYTA, ANDRIY;HILLS, MICHAEL P;SIGNING DATES FROM 20140902 TO 20140903;REEL/FRAME:038923/0282

AS Assignment

Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001

Effective date: 20160811

Owner name: SPANSION LLC, CALIFORNIA

Free format text: PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:039708/0001

Effective date: 20160811

AS Assignment

Owner name: MONTEREY RESEARCH, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRESS SEMICONDUCTOR CORPORATION;REEL/FRAME:040028/0054

Effective date: 20160811

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION