WO2018084601A1 - Quantum dot biosensor - Google Patents

Quantum dot biosensor Download PDF

Info

Publication number
WO2018084601A1
WO2018084601A1 PCT/KR2017/012332 KR2017012332W WO2018084601A1 WO 2018084601 A1 WO2018084601 A1 WO 2018084601A1 KR 2017012332 W KR2017012332 W KR 2017012332W WO 2018084601 A1 WO2018084601 A1 WO 2018084601A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
biosensor
dot layer
quantum dots
ligand
Prior art date
Application number
PCT/KR2017/012332
Other languages
French (fr)
Korean (ko)
Inventor
정광섭
신항범
정영도
윤빛나
최동선
정주연
Original Assignee
주식회사 엘지화학
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 고려대학교 산학협력단 filed Critical 주식회사 엘지화학
Priority to CN201780068078.9A priority Critical patent/CN109906375B/en
Priority to EP17867342.2A priority patent/EP3537138B1/en
Priority to JP2019520451A priority patent/JP6737540B2/en
Priority to US16/346,720 priority patent/US11060997B2/en
Priority claimed from KR1020170145154A external-priority patent/KR102173767B1/en
Publication of WO2018084601A1 publication Critical patent/WO2018084601A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a biosensor, and more particularly, to a biosensor using quantum dots.
  • the quantum dot can easily adjust the energy band gap by adjusting its size, and can be used as a light emitting material by using such a characteristic.
  • the quantum dot can generate light by absorbing light of various wavelengths, and thus can be used as a material for biosensors and light sensing sensors in addition to light emitting materials.
  • biosensors include electrochemical biosensors, piezoelectric biosensors, optical biosensors, and thermal biosensors. In many cases, samples may be destroyed during measurement to change the equilibrium of real-time sample concentrations. . In addition, since the detection through the additional bio-labels, an additional procedure of adding a bio-labeled material is required, and has a disadvantage of low density of the grafted bio-labels.
  • the present invention is to change the potential of the quantum dot layer due to the transfer of the quantum dot layer and the target biomolecule and electronic vibrational energy (electronic vibrational), which provides a biosensor that can be measured by inducing a minute potential difference generated by the current change Let's solve the problem.
  • the present invention is to solve the problem to provide a biosensor that can effectively transfer the charge of the collecting unit to the sensing unit.
  • a substrate, a gate electrode provided on the substrate, an insulating layer provided on the gate electrode, a source electrode and a drain electrode provided on the insulating layer, respectively Provided is a biosensor provided on an n-type channel provided between an electrode and a drain electrode, and a quantum dot layer provided on the n-type channel and having an electron transition energy capable of resonance and resonance of the target biomaterial.
  • the quantum dots constituting the quantum dot layer are colloidal quantum dots.
  • the biosensor may be provided in the quantum dot layer, and may further include a collecting unit for collecting the biomaterial to be analyzed.
  • the quantum dots constituting the quantum dot layer are colloidal quantum dots.
  • the biosensor may be provided in the quantum dot layer, and may further include a collecting unit for collecting the biomaterial to be analyzed.
  • the biomaterial can be detected. Can be.
  • FIG. 1 is a schematic cross-sectional view showing a biosensor according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a biosensor according to a second embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view showing a biosensor according to a third embodiment of the present invention.
  • 4 and 5 are graphs showing a detection result of Cystein.
  • each component member may be exaggerated or reduced Can be.
  • FIG. 1 is a schematic cross-sectional view showing a biosensor 10 according to a first embodiment of the present invention.
  • the present invention provides a biosensor 100, comprising a quantum dot layer formed on an n-type channel.
  • the quantum dot layer is provided to have an electron transition energy in which vibration energy and resonance of a target biomaterial may occur.
  • the biosensor 10 includes a substrate 11, a gate electrode 14, an insulating layer 18, a source electrode 12, a drain electrode 13, and n ⁇ . a type channel 15, and a quantum dot layer 16.
  • the biosensor 10 includes a substrate 11, a gate electrode 14 provided on the substrate 11, and an insulating layer 18 provided on the gate electrode 14. And a source electrode 12 and a drain electrode 13 provided on the insulating layer 18, respectively.
  • the biosensor 10 is provided so that current flows through the n-type channel 15 provided between the source electrode 12 and the drain electrode 13, and the quantum dot layer provided on the n-type channel 15 ( 16).
  • n-type channel 15 is provided to electrically connect the source electrode 12 and the drain electrode 13.
  • the quantum dot layer 16 is provided to have electron transition energy (in-band electron transition energy) in which vibration energy and resonance of the target biomaterial may occur.
  • the quantum dot layer 16 may be provided to electrically connect the source electrode 12 and the drain electrode 13, and the quantum dot layer 16 may electrically connect the source electrode 12 and the drain electrode 13. It may be arranged not to.
  • the quantum dot layer 16 is arranged to form a plurality of quantum dots having a spherical shape, the quantum dots can easily adjust the energy gap of the electronic structure by adjusting the size and composition.
  • the operating principle of the biosensor 10 using the quantum dots is to sense the current flowing in the quantum dot layer in real time and use the current change of the quantum dot layer 16.
  • the biosensor 10 using quantum dots it may be combined with a field effect thin film transistor (TFT) and applied thereto.
  • TFT thin film transistor
  • the potential of the quantum dot layer 16 due to the transfer of the quantum dot layer 16 and the target biomaterial and the electron vibrational energy is changed, and the minute potential difference generated at this time can be measured by inducing a change in current. .
  • the quantum dot layer 16 may be manufactured in the form of a film.
  • the change of the functional group occurring on the surface of the quantum dot layer 16 changes the potential of the quantum dot, and the minute change of the potential is converted into the current change of the conduction channel of the n-type channel. And amplification.
  • the change of the surface potential in the quantum dot is a change in the current in the thin film transistor, which also appears as a change in the threshold voltage, it can be measured and applied as a biosensor.
  • a conduction channel is formed in the n-type channel, through which the source electrode 12 and the source electrode 12 are formed. Electrons may move between the drain electrodes 13. In addition, the potential of the quantum dot may also affect the n-type conduction channel, and thus may affect the threshold voltage.
  • the biosensor 10 measures the current between the source electrode 12 and the gate electrode 14 in real time, it is possible to observe the potential difference induced in the quantum dot layer 16, the target biomolecule It is arranged to measure the changed current in accordance with a specific electronic-vibrational energy transfer from the quantum dot layer 16 to the quantum dot layer 16.
  • the current to be measured is a change in the current is absorbed by the transition energy in the band of the quantum dot by the vibration of a specific functional group of the target biomolecule.
  • the increase of the potential due to the vibration of the target biomolecule is a new and highly feasible measurement method, and the potential value is proportional to the concentration of the biomolecule.
  • the n-type channel 15 usable in the present invention may be made of any one n-type material selected from the group consisting of IGZO, ZnO, ZTO, IZO, IHZO, AIN, InN, GaN, and InGaN. have.
  • the n-type channel 15 made of IGZO is preferred because it has excellent optical transparency, amorphous structure, high electron mobility, and also quantum dots can be functionalized directly on the IGZO channel.
  • the IGZO channel can directly function as an active matrix backplane, so that an additional integration process can be omitted.
  • a colloidal quantum dot as the quantum dot that can be used in the present invention.
  • a colloidal quantum dot it can be formed on the n-type channel 15 by a simple method such as spin coating, it is possible to uniformly distribute the quantum dot.
  • the quantum dots include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTd, ZZSeSd, CnT, , CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSeTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, Ga
  • the biosensor 10 may use the quantum dot layer 16 having an electron transition in the infrared region, particularly the mid-infrared region.
  • the type or size of the quantum dots it is possible to use a quantum dot absorbing light in the infrared region, in particular in the wavelength of 1000 nm to 20 ⁇ m, preferably 1000 nm to 8000 nm.
  • colloidal quantum dots can be processed in a large area at low cost, it is preferable to use colloidal quantum dots in the present invention.
  • the quantum dot may use a ligand substituted quantum dot.
  • the quantum dots may be substituted with at least one ligand of an organic ligand and an inorganic ligand.
  • the ligand which is the quantum dot, may include ethanedithol (EDT), butanethiol (BDT), mercaptocarboxylic acid (MPA), tyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium chloride (HTAC), tetrabutylammonium iodide (TBAI), or Na2S.
  • Quantum dots have a structure wrapped in oleic acid ligand for the dispersibility and stability of the colloidal solution. Quantum dots in this state can also be applied to biosensors, but since the oleic acid ligand has a long chain structure, electrons generated in the quantum dots are prevented from moving to the n-type channel 15. Therefore, it is preferable to substitute the above ligand with a ligand having a shorter chain structure.
  • a quantum dot wrapped with an oleic acid ligand may be formed on the n-type channel 15 and then reacted with the ligand to be substituted.
  • the organic ligand of the colloidal quantum dot layer can be replaced with a monomolecular organic ligand or an inorganic ligand to improve the accessibility of the target biomolecule and to facilitate the vibration mode of the functional group of the biomolecule and the resonance of the band transition in the quantum dot layer.
  • the organic ligand for charge transfer is to use a short-length bidentate ligand, such as EDT, BDT, MPA, etc. described above, and the film structure of the colloidal quantum dot layer by mixing with an inorganic ligand It can form uniformly.
  • a short-length bidentate ligand such as EDT, BDT, MPA, etc. described above
  • Halogen ions such as Br-, Cl-, and I-, are used to replace organic ligands used after synthesis using compounds that provide halogen ions such as CTAB (Cetyltrimethylammonium bromide), CTACl (Cetyltrimethylammonium chloride), and TBAI (Tributylammonium iodide) Can be.
  • CTAB Cetyltrimethylammonium bromide
  • CTACl Cetyltrimethylammonium chloride
  • TBAI Tributylammonium iodide
  • the halogen ions may be present for a few minutes to proceed with the substitution process at room temperature.
  • the thickness of the film can be increased sequentially, the thickness can be from 10nm to 300nm.
  • halogen is an atomic ligand, there is no vibratory motion caused by the ligand, and thus it is possible to remove molecules that cause resonance in addition to the target biomolecule in the mid-infrared region. As a result, a more improved and stable electric signal can be obtained.
  • a method using a polar difference between a polar solution and a nonpolar solution may be used.
  • the colloidal quantum dot solution modified with the nonpolar organic ligand is stirred at room temperature with the polar inorganic ligand solution, the polar ligand is modified on the surface of the colloidal quantum dot to increase the dielectric constant of the colloidal quantum dot.
  • colloidal quantum dots modified with inorganic ligands are present in the polar solution.
  • Colloidal quantum dot solutions modified with polar inorganic ligands have the advantage of coating the colloidal solution on the surface.
  • the insulating layer 18 may be formed of SiO 2, Al 2 O 3, TiO 2, ZrO 2, HfO 2, SiN x, or the like.
  • the gate electrode 14 may be formed of a metal, and may be selected from a group consisting of, for example, Cr, Mo, Al, Ti / Au, Ag, Cu, and Pt.
  • the source electrode 12 and the drain electrode 13, respectively may be formed of a metal, for example selected from the group consisting of Cr, Ti / Au, Mo, Al, Ag, Cu, Pt and W Can be.
  • the remaining components other than the insulating layer 18, the n-type channel 15, the quantum dot layer 16, and the source and drain electrodes 12 and 13 described above are specially used as long as they can be normally used in the biosensor 10. It is not limited.
  • a glass substrate or a plastic substrate may be used as the substrate 11, and is not particularly limited as long as it is applied to the biosensor 10.
  • the arrangement of each component of the biosensor 10 is not particularly limited as long as it is applied in the conventional biosensor 100.
  • FIG. 2 is a schematic cross-sectional view showing a biosensor 100 according to a second embodiment of the present invention.
  • the biosensor 100 includes a substrate 110, a gate electrode 140, an insulating layer 180, a source electrode 120, a drain electrode 130, an n-type channel 150, And a quantum dot layer 160 and a collecting unit 170. That is, the biosensor 100 according to the second embodiment may be provided in the quantum dot layer 160 and may further include a collecting unit 170 for collecting the target biomaterial. In the second embodiment, the other components are the same as those of the biosensor 10 described in the first embodiment.
  • the biosensor 100 includes a substrate 110, a gate electrode 140 provided on the substrate 110, an insulating layer 180 provided on the gate electrode 140, and an insulating layer ( And a source electrode 120 and a drain electrode 130 respectively provided on the 180.
  • the biosensor 100 includes an n-type channel 150 provided to electrically connect the source electrode 120 and the drain electrode 130 between the source electrode 120 and the drain electrode 130.
  • the source electrode 120 and the drain electrode 130 are provided on the insulating layer 180 and the n-type channel 150, respectively.
  • the biosensor 100 is provided to flow a current, is provided on the n-type channel 150, the quantum dot layer 160 provided to have the vibration energy of the target biomaterial and the electron transition energy that can occur resonance. And a collecting unit 170 provided in the quantum dot layer 160 and collecting the target biomaterial.
  • the collecting unit 170 may include a plurality of collecting molecules.
  • the plurality of collecting molecules may be fixed to the curved portion of the quantum dot. That is, the quantum dot layer 160 may be provided to have a curved surface.
  • the quantum dot layer 160 may be manufactured in the form of a film.
  • the current change of the quantum dot layer causes electrons to move to the conduction channel of the n-type channel to generate a change in the threshold voltage, which can be measured and applied as a biosensor.
  • a conduction channel is formed in the n-type channel 150 and thereby the source electrode 120 ) And the electron may move between the drain electrode 130.
  • the biosensor 100 is a real-time measurement of the current flowing through the quantum dot layer 160 after a certain amount of voltage is applied within + /-5V before and after the threshold voltage between the source electrode and the gate electrode As a result, a small electric potential difference is induced in the quantum dot layer 160 according to a specific electric-vibrational energy transfer between the target biomolecule collected in the collecting unit and the quantum dot layer 160, which is an n-type channel 150. Current is varied to provide for measurement.
  • the current to be measured is a transition of the current due to absorption of the transition energy in the band by the vibration of a specific functional group of the target biomolecule.
  • the change in the potential at the quantum dot caused by the vibration of the target biomolecule is a new and highly feasible measurement method, and the change in the current value is proportional to the concentration of the biomolecule.
  • the advantage of the thin film transistor by the quantum dot layer 160 of this method is that it can react characteristically to the biomolecular change of a specific energy, it can amplify the signal.
  • the insulating layer 180 may be formed of SiO 2, Al 2 O 3, TiO 2, ZrO 2, HfO 2, SiN x, or the like.
  • the gate electrode 140 may be formed of a metal, and may be selected from, for example, Cr, Mo, Al, Ti / Au, Ag, Cu, and Pt.
  • the source electrode 120 and the drain electrode 130 may be formed of a metal, for example, from the group consisting of Cr, Ti / Au, Mo, Al, Ag, Cu, Pt and W Can be selected.
  • biosensor 100 the remaining components other than the above-described insulating layer 180, n-type channel 150, quantum dot layer 160, collecting unit 170, source and drain electrodes 120 and 130 are usually biosensor 100. It is not particularly limited as long as it can be used at.
  • a glass substrate or a plastic substrate may be used as the substrate 110, and is not particularly limited as long as it is applied to the biosensor 100.
  • the arrangement of each component of the biosensor 100 is not particularly limited as long as it is applied in the conventional biosensor 100.
  • capture molecules may be immobilized on the quantum dot layer 160.
  • the capture molecules may specifically bind to the target biomaterial to be analyzed to capture the biomaterial.
  • the reaction of the capture molecules with the biomaterial may be, for example, nucleic acid hybridization, antigen-antibody reaction or effect binding reaction.
  • the biomaterial may be immobilized on the surface of the collecting molecules.
  • the capture molecules can be, for example, proteins, cells, viruses, nucleic acid organic molecules or inorganic molecules.
  • the proteins may be, for example, antigens, antibodies, substrate proteins, enzymes or coenzymes.
  • the capture molecules are nucleic acids
  • the nucleic acids can be, for example, DNA, RNA, PNA, LNA or hybrids thereof.
  • Methods of immobilizing the trapping molecules 25 on the surface of the quantum dot layer include chemical adsorption, covalent-binding, electrostatic attraction, copolymerization, or avidin-biotin.
  • a binding system avidin-biotin affinity system
  • a functional group may be provided to fix the trapping molecules on the surface of the quantum dot layer 160.
  • the functional group may be, for example, a carboxyl group (-COOH), a thiol group (-SH), a hydroxyl group (-OH), a silane group (Si-H), an amine group (-NH), or an epoxy group.
  • FIG 3 is a schematic cross-sectional view showing a biosensor 200 according to a third embodiment of the present invention.
  • the biosensor 200 includes a substrate 210, a gate electrode 240 provided on the substrate 210, an insulating layer 280 provided on the gate electrode 240, and an insulating layer ( And a source electrode 220 and a drain electrode 230 provided on the 280, respectively.
  • the biosensor 200 is positioned on the insulating layer 280, is provided to allow a current to flow between the source electrode 220 and the drain electrode 230, and electrons in which vibration energy and resonance of the target biomaterial may occur.
  • a quantum dot layer 260 provided to have a transition energy.
  • the biosensor 200 may be provided in the quantum dot layer 260 and may further include a collecting unit 270 for collecting the target biomaterial.
  • the n-type layer 150 may not be provided, and the quantum dot layer 260 electrically connects the source electrode 220 and the drain electrode 230.
  • 4 and 5 are graphs showing a detection result of Cystein.
  • HgSe samples were measured by depositing on the thin film transistor (TFT) device by spin coating.
  • the threshold voltage of the blank state has a value smaller than the threshold voltage after HgSe_HDA is deposited, and thus the driving energy is changed.
  • the TFT device is a device using a colloidal quantum dot synthesized by a chemical wet method as an active layer, and the material is a II-VI semiconductor compound, a III-V semiconductor compound, a IV-VI semiconductor compound, or IV. Group semiconductor compounds, or combinations thereof.
  • Specific quantum dots include AuS, AuSe, AuTe, AgS, AgSe, AgTe, AgO, CuS, CuSe, CuTe, CuO, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, AuSeS, AuSeTe, AuSTe , AgSeS, AgSeTe, AgSTe, CuSeS, CuSeTe, CuSTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, AuAgS, AuAgSe, AuAgTe, AuCSeZe Au, AuCuSu Au , AuCdSe, AuCdTe, AuHgS, AuHgSe, AuHgTe, AgZnS,
  • the surface of the quantum dots produced by the chemical wet method is surrounded by organic and inorganic ligands, and by replacing them, the chemical and physical properties can be changed.
  • biomaterials can be selectively detected by using a property that changes as the surface of the prepared quantum dot is replaced with various ligands.
  • Substituting HAD for the ligand of the initial HgSe active layer controls the change of cysteine when HDstein removes HDA and newly attaches to the active layer as a ligand, and the same effect on other biomaterials other than simple cysteine. Can be induced to appear.
  • a spin coating method is used as a method of applying a quantum dot to a biosensor.
  • quantum dots may be deposited on the surface of the sensor, and the biomaterial may be detected using the active layer.
  • Applying a solution containing the biomaterial to be detected on the spin-coated sensor the ligand substitution reaction occurs on the surface of the quantum dot, resulting in a change in the threshold voltage as the electrical properties of the active layer change. You can check.
  • Thin film transistor (TFT) devices and semiconductor analyzers can be used to measure the electrical characteristics of the sensor.
  • TFT Thin film transistor
  • the measured voltage can deposit quantum dots on a device designed to measure the change in the electrical properties of the active layer and to measure the change. It can be applied to to detect changes in electrical properties.
  • the voltage value of the gate due to the characteristics of the TFT device, it is possible to detect other types of biomaterials by utilizing not only the HgSe quantum dot used in the present experimental example but also the property of other materials deposited.
  • This experimental example measures the change of threshold voltage by substituting ligand to n-type doped material using the characteristics of HgSe.
  • the measured current value is a phenomenon off current is 10-8 and 10-4 is on a current, a biomaterial is applied on the surface appears raised to the Properties of the active layer.
  • the biomaterial since the current change of the quantum dot layer and the target biomolecule and the electron-vibration energy transfer can be measured, the biomaterial can be detected.

Abstract

The present invention relates to a quantum dot biosensor. Provided according to one aspect of the present invention is a biosensor comprising: a substrate; a gate electrode provided on the substrate; an insulation layer provided on the gate electrode; a source electrode and a drain electrode provided on the insulation layer; an n-type channel provided between the source electrode and the drain electrode; and a quantum dot layer provided on the n-type channel and provided so as to have electronic transition energy capable of resonating with the vibration energy of a target biomaterial.

Description

양자점 바이오센서Quantum Dot Biosensor
본 발명은 바이오센서에 관한 것으로, 특히 양자점을 이용한 바이오센서에 관한 것이다.The present invention relates to a biosensor, and more particularly, to a biosensor using quantum dots.
본 출원은 2016년 11월 2일자 한국 특허 출원 제10-2016-0144849호 및 2017년 11월 2일자 한국 특허 출원 제10-2017-0145154호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0144849 dated November 2, 2016 and Korean Patent Application No. 10-2017-0145154 dated November 2, 2017. All content disclosed in the literature is included as part of this specification.
양자점(Quantum dot)은 그 크기를 조절함에 따라 에너지 밴드갭을 용이하게 조절할 수 있으며, 이러한 특성을 이용하여 발광 재료로 사용할 수 있다. 또한 양자점은 다양한 파장의 빛을 흡수하여 전하를 발생시킬 수 있으며, 따라서 발광 재료 외에도 바이오 센서 및 광감지 센서의 소재로 활용할 수 있다. The quantum dot can easily adjust the energy band gap by adjusting its size, and can be used as a light emitting material by using such a characteristic. In addition, the quantum dot can generate light by absorbing light of various wavelengths, and thus can be used as a material for biosensors and light sensing sensors in addition to light emitting materials.
한편, 생체저분자인 Immunoglobulin E 등의 메타 볼라이트나 글루코오스(Glucose), 변형된 유전자, 암세포, 환경 호르몬 등 특정 바이오 물질을 실시간으로 모니터하기 위한 연구개발 및 투자가 매우 활발히 진행되고 있다.Meanwhile, research and development and investment are being actively conducted to monitor specific biomaterials such as metabolite, glucose, modified genes, cancer cells, and environmental hormones such as Immunoglobulin E, which are biomolecular molecules.
통상 사용되는 바이오센서의 기술적인 방식으로는 Electrochemical 바이오센서, Piezoelectric 바이오센서, Optical 바이오센서, Thermal 바이오센서 등이 있으며, 많은 경우에 측정 중 시료가 파괴되어 실시간 시료 농도에 대한 평형을 변화시킬 수 있다. 또한, 추가적인 바이오 표지를 통해 검출하기 때문에 바이오 표지 물질을 첨가하는 추가적인 절차가 필요하며, 접붙여진 바이오 표지의 밀도가 낮은 단점을 가지고 있다.Technical methods of commonly used biosensors include electrochemical biosensors, piezoelectric biosensors, optical biosensors, and thermal biosensors. In many cases, samples may be destroyed during measurement to change the equilibrium of real-time sample concentrations. . In addition, since the detection through the additional bio-labels, an additional procedure of adding a bio-labeled material is required, and has a disadvantage of low density of the grafted bio-labels.
본 발명은 양자점층과 타겟 바이오 분자와 전자-진동 에너지(electronic vibrational) 전달에 따른 양자점층의 전위가 변하게 되는데, 이 때 발생하는 미세한 전위차를 전류 변화로 유도하여 측정할 수 있는 바이오센서를 제공하는 것을 해결하고자 하는 과제로 한다.The present invention is to change the potential of the quantum dot layer due to the transfer of the quantum dot layer and the target biomolecule and electronic vibrational energy (electronic vibrational), which provides a biosensor that can be measured by inducing a minute potential difference generated by the current change Let's solve the problem.
또한, 본 발명은 포집부의 전하를 효과적으로 감지부로 전달할 수 있는 바이오센서를 제공하는 것을 해결하고자 하는 과제로 한다.In addition, the present invention is to solve the problem to provide a biosensor that can effectively transfer the charge of the collecting unit to the sensing unit.
상기한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 기판과, 기판 상에 마련된 게이트 전극과, 게이트 전극 상에 마련된 절연층과, 절연층 상에 각각 마련된 소스 전극 및 드레인 전극과, 소스 전극과 드레인 전극 사이에 마련된 n-type 채널, 및 n-type 채널 상에 마련되고, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층을 포함하는 바이오센서가 제공된다.In order to solve the above problems, according to an aspect of the present invention, a substrate, a gate electrode provided on the substrate, an insulating layer provided on the gate electrode, a source electrode and a drain electrode provided on the insulating layer, respectively, Provided is a biosensor provided on an n-type channel provided between an electrode and a drain electrode, and a quantum dot layer provided on the n-type channel and having an electron transition energy capable of resonance and resonance of the target biomaterial. .
또한, 상기 양자점층을 구성하는 양자점은 콜로이달 양자점이다.The quantum dots constituting the quantum dot layer are colloidal quantum dots.
또한, 바이오센서는 양자점층에 마련되며, 분석하고자 하는 바이오 물질을 포집하기 위한 포집부를 추가로 포함할 수 있다. In addition, the biosensor may be provided in the quantum dot layer, and may further include a collecting unit for collecting the biomaterial to be analyzed.
또한, 본 발명의 또 다른 측면에 따르면, 기판과, 기판 상에 마련된 게이트 전극과, 게이트 전극 상에 마련된 절연층과, 절연층 상에 각각 마련된 소스 전극 및 드레인 전극, 및 절연층 상에 마련되며, 소스 전극 및 드레인 전극을 전기적으로 연결하도록 마련되고, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층을 포함하는 바이오센서가 제공된다. 또한, 상기 양자점층을 구성하는 양자점은 콜로이달 양자점이다. 또한, 바이오센서는 양자점층에 마련되며, 분석하고자 하는 바이오 물질을 포집하기 위한 포집부를 추가로 포함할 수 있다. Further, according to another aspect of the invention, the substrate, the gate electrode provided on the substrate, the insulating layer provided on the gate electrode, the source electrode and drain electrode provided on the insulating layer, respectively, and provided on the insulating layer And a quantum dot layer provided to electrically connect the source electrode and the drain electrode, the quantum dot layer provided to have an oscillation energy of the target biomaterial and an electron transition energy capable of resonance. The quantum dots constituting the quantum dot layer are colloidal quantum dots. In addition, the biosensor may be provided in the quantum dot layer, and may further include a collecting unit for collecting the biomaterial to be analyzed.
이상에서 살펴본 바와 같이, 본 발명의 적어도 일 실시예와 관련된 바이오센서에 따르면, 양자점층과 타겟 바이오 분자와 전자-진동 에너지 전달에 따른 양자점층의 전류 변화를 측정할 수 있으므로, 바이오물질을 감지할 수 있다. 또한, 포집부의 전하를 효과적으로 감지부로 전달할 수 있고, 바이오센서의 효율을 향상시킬 수 있다.As described above, according to the biosensor according to at least one embodiment of the present invention, since the current change of the quantum dot layer due to the transfer of the quantum dot layer, the target biomolecule, and the electron-vibration energy can be measured, the biomaterial can be detected. Can be. In addition, it is possible to effectively transfer the charge of the collecting unit to the sensing unit, it may improve the efficiency of the biosensor.
도 1은 본 발명의 제1 실시예와 관련된 바이오센서를 나타내는 개략 단면도이다.1 is a schematic cross-sectional view showing a biosensor according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예와 관련된 바이오센서를 나타내는 개략 단면도들이다.2 is a schematic cross-sectional view showing a biosensor according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예와 관련된 바이오센서를 나타내는 개략 단면도이다.3 is a schematic cross-sectional view showing a biosensor according to a third embodiment of the present invention.
도 4 및 도 5는 시스테인(Cystein)의 감지 결과를 나타내는 그래프들이다.4 and 5 are graphs showing a detection result of Cystein.
이하, 본 발명의 일 실시예에 따른 바이오센서를 첨부된 도면을 참고하여 상세히 설명한다.Hereinafter, a biosensor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.In addition, irrespective of the reference numerals, the same or corresponding components will be given the same or similar reference numerals, and redundant description thereof will be omitted. For convenience of description, the size and shape of each component member may be exaggerated or reduced Can be.
도 1은 본 발명의 제1 실시예와 관련된 바이오센서(10)를 나타내는 개략 단면도이다.1 is a schematic cross-sectional view showing a biosensor 10 according to a first embodiment of the present invention.
본 발명은 n-type 채널 상에 형성된 양자점층을 포함하는, 바이오센서(100)를 제공한다. 또한, 상기 양자점층은 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된다.The present invention provides a biosensor 100, comprising a quantum dot layer formed on an n-type channel. In addition, the quantum dot layer is provided to have an electron transition energy in which vibration energy and resonance of a target biomaterial may occur.
도 1을 참조하면, 제1 실시예와 관련된 상기 바이오센서(10)는 기판(11), 게이트 전극(14), 절연층(18), 소스 전극(12), 드레인 전극(13), n-type 채널(15), 및 양자점층(16)을 포함한다Referring to FIG. 1, the biosensor 10 according to the first embodiment includes a substrate 11, a gate electrode 14, an insulating layer 18, a source electrode 12, a drain electrode 13, and n−. a type channel 15, and a quantum dot layer 16.
구체적으로, 본 발명의 일 실시예와 관련된 바이오센서(10)는 기판(11)과, 기판(11) 상에 마련된 게이트 전극(14)과, 게이트 전극(14) 상에 마련된 절연층(18)과, 절연층(18) 상에 각각 마련된 소스 전극(12) 및 드레인 전극(13)을 포함한다. 또한, 바이오센서(10)는 소스 전극(12)과 드레인 전극(13) 사이에 마련된 n-type 채널(15) 및 전류가 흐르도록 마련되고, n-type 채널(15) 상에 마련된 양자점층(16)을 포함한다.Specifically, the biosensor 10 according to the embodiment of the present invention includes a substrate 11, a gate electrode 14 provided on the substrate 11, and an insulating layer 18 provided on the gate electrode 14. And a source electrode 12 and a drain electrode 13 provided on the insulating layer 18, respectively. In addition, the biosensor 10 is provided so that current flows through the n-type channel 15 provided between the source electrode 12 and the drain electrode 13, and the quantum dot layer provided on the n-type channel 15 ( 16).
또한, 상기 n-type 채널(15)은 소스 전극(12)과 드레인 전극(13)을 전기적으로 연결하도록 마련된다.In addition, the n-type channel 15 is provided to electrically connect the source electrode 12 and the drain electrode 13.
또한, 양자점층(16)은 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지(띠내 전자 전이 에너지)를 갖도록 마련된다.In addition, the quantum dot layer 16 is provided to have electron transition energy (in-band electron transition energy) in which vibration energy and resonance of the target biomaterial may occur.
또한, 양자점층(16)은 소스 전극(12)과 드레인 전극(13)을 전기적으로 연결하도록 마련될 수도 있고, 양자점층(16)은 소스 전극(12)과 드레인 전극(13)을 전기적으로 연결하지 않도록 마련될 수도 있다.In addition, the quantum dot layer 16 may be provided to electrically connect the source electrode 12 and the drain electrode 13, and the quantum dot layer 16 may electrically connect the source electrode 12 and the drain electrode 13. It may be arranged not to.
양자점층(16)은 구 형상을 갖는 복수 개의 양자점이 층을 이루도록 배열된 것으로, 양자점은 그 크기와 조성을 조절함에 따라 전자 구조의 에너지 갭을 용이하게 조절할 수 있다. The quantum dot layer 16 is arranged to form a plurality of quantum dots having a spherical shape, the quantum dots can easily adjust the energy gap of the electronic structure by adjusting the size and composition.
양자점을 이용한 바이오센서(10)의 작동 원리는, 양자점층에 흐르는 전류를 실시간으로 감지하여, 양자점층(16)의 전류 변화를 이용하는 것이다. 예를 들어, 양자점을 이용한 바이오센서(10)의 경우, 전계효과 박막트랜지스터(TFT)와 결합하여 이를 응용할 수 있다.The operating principle of the biosensor 10 using the quantum dots is to sense the current flowing in the quantum dot layer in real time and use the current change of the quantum dot layer 16. For example, in the case of the biosensor 10 using quantum dots, it may be combined with a field effect thin film transistor (TFT) and applied thereto.
특히, 양자점층(16)과 타겟 바이오 물질과 전자-진동 에너지(electronic vibrational) 전달에 따른 양자점층(16)의 전위가 변하게 되는데, 이 때 발생하는 미세한 전위차를 전류 변화로 유도하여 측정할 수 있다.In particular, the potential of the quantum dot layer 16 due to the transfer of the quantum dot layer 16 and the target biomaterial and the electron vibrational energy is changed, and the minute potential difference generated at this time can be measured by inducing a change in current. .
또한, 양자점층(16)은 필름 형태로 제조될 수 있다.In addition, the quantum dot layer 16 may be manufactured in the form of a film.
상기 전계효과 박막 트랜지스터에서 양자점층(16) 표면에서 일어나는 작용기의 변화는 양자점의 전위를 변화시키는데, 이 미세한 전위의 변화를, 전자가 n-type 채널의 전도 채널(conduction channel)의 전류변화로 변환 및 증폭시키게 된다. 요약하면, 양자점에서의 표면전위의 변화는 곧 박막 트랜지스터에서의 전류변화를 나타내게 되는데, 임계 전압의 변화로도 나타나며, 이를 측정하여 바이오 센서로 응용할 수 있다. In the field effect thin film transistor, the change of the functional group occurring on the surface of the quantum dot layer 16 changes the potential of the quantum dot, and the minute change of the potential is converted into the current change of the conduction channel of the n-type channel. And amplification. In summary, the change of the surface potential in the quantum dot is a change in the current in the thin film transistor, which also appears as a change in the threshold voltage, it can be measured and applied as a biosensor.
구체적으로, 박막 트랜지스터(TFT)에서 소스 전극과 게이트 전극 사이에 임계 전압(threshold voltage) 이상의 전압이 인가되면, n-type 채널에서 전도 채널(conduction channel)이 형성되고 이를 통하여 소스 전극(12)과 드레인 전극(13) 간에 전자가 이동할 수 있다. 그리고, 양자점의 전위 역시 n-type 전도채널에 영향을 줄 수 있으므로, 임계전압에 영향을 미칠 수 있다.Specifically, when a voltage equal to or greater than a threshold voltage is applied between the source electrode and the gate electrode in the thin film transistor TFT, a conduction channel is formed in the n-type channel, through which the source electrode 12 and the source electrode 12 are formed. Electrons may move between the drain electrodes 13. In addition, the potential of the quantum dot may also affect the n-type conduction channel, and thus may affect the threshold voltage.
따라서, 본 발명에 따른 바이오센서(10)는 소스 전극(12)과 게이트 전극(14) 사이에 전류를 실시간으로 측정한다면, 양자점층(16)에 유도되는 전위차를 관찰할 수 있으며, 타겟 바이오 분자로부터 양자점층(16)으로 전달되는 특정 전자-진동 에너지 전달(electronic-vibrational energy transfer)에 따라 변화된 전류를 측정하도록 마련된다. 또한, 측정하고자 하는 전류는 타겟 바이오 분자의 특정 작용기의 진동에 의해서 양자점의 띠내 전이 에너지가 흡수되어 전류의 변화가 일어나게 된다. Therefore, if the biosensor 10 according to the present invention measures the current between the source electrode 12 and the gate electrode 14 in real time, it is possible to observe the potential difference induced in the quantum dot layer 16, the target biomolecule It is arranged to measure the changed current in accordance with a specific electronic-vibrational energy transfer from the quantum dot layer 16 to the quantum dot layer 16. In addition, the current to be measured is a change in the current is absorbed by the transition energy in the band of the quantum dot by the vibration of a specific functional group of the target biomolecule.
또한, 타겟 바이오 분자의 진동에 의한 전위의 증가는 새롭고 실현 가능성이 높은 측정 방식이며, 바이오 분자의 농도에 따라 전위값이 비례하게 된다.In addition, the increase of the potential due to the vibration of the target biomolecule is a new and highly feasible measurement method, and the potential value is proportional to the concentration of the biomolecule.
또한, 양자점층(16)과 바이오 분자 진동 간의 커플링에 의한 에너지 전달이기 때문에, 바이오 분자와 양자점층(16) 간의 물리적인 거리에 대한 정보도 측정할 수 있다.In addition, since the energy is transferred by the coupling between the quantum dot layer 16 and the biomolecule vibration, information on the physical distance between the biomolecule and the quantum dot layer 16 can also be measured.
한편, 본 발명에서 사용할 수 있는 n-type 채널(15)은 IGZO, ZnO, ZTO, IZO, IHZO, AIN, InN, GaN 및 InGaN으로 구성되는 군으로부터 선택되는 어느 하나의 n-type 물질로 이루어질 수 있다. Meanwhile, the n-type channel 15 usable in the present invention may be made of any one n-type material selected from the group consisting of IGZO, ZnO, ZTO, IZO, IHZO, AIN, InN, GaN, and InGaN. have.
특히, IGZO로 이루어진 n-type 채널(15)이 바람직한데, 이는 우수한 광학 투명성, 비결정 구조, 높은 전자 이동성을 가지고 있으며, 또한 양자점이 직접 IGZO 채널 상에 기능화 될 수 있기 때문이다. 나아가, IGZO 채널은 직접 active matrix backplane으로 기능할 수 있어, 별도의 집적화 공정이 생략될 수 있는 장점이 있다. In particular, the n-type channel 15 made of IGZO is preferred because it has excellent optical transparency, amorphous structure, high electron mobility, and also quantum dots can be functionalized directly on the IGZO channel. In addition, the IGZO channel can directly function as an active matrix backplane, so that an additional integration process can be omitted.
또한, 본 발명에서 사용할 수 있는 양자점은 콜로이달 양자점을 사용하는 것이 바람직하다. 콜로이달 양자점을 사용할 경우, n-type 채널(15) 상에 스핀 코팅과 같은 간단한 방법으로 형성할 수 있으며, 양자점을 균일하게 분포시킬 수 있다. In addition, it is preferable to use a colloidal quantum dot as the quantum dot that can be used in the present invention. When using a colloidal quantum dot, it can be formed on the n-type channel 15 by a simple method such as spin coating, it is possible to uniformly distribute the quantum dot.
상기 양자점으로는, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC, 및 SiGe으로 구성되는 군으로부터 선택되는 어느 하나 이상을 사용할 수 있다. The quantum dots include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTd, ZZSeSd, CnT, , CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSeTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC, and SiGe Can be used.
특히, 본 발명의 일 실시예와 관련된 바이오센서(10)는 적외선 영역, 특히 중적외선 영역에서 전자전이를 갖는 양자점층(16)을 사용할 수 있다. 이 경우, 상기 양자점의 종류 또는 크기를 조절하여 적외선 영역, 특히 1000 nm 내지 20 ㎛ 파장, 바람직하게, 1000 nm 내지 8000 nm 파장의 빛을 흡수하는 양자점을 사용할 수 있다. 또한, 콜로이달 양자점은 저비용으로 대면적의 가공이 가능하기 때문에 본 발명에서도 콜로이달 양자점을 이용하는 것이 바람직하다.In particular, the biosensor 10 according to an embodiment of the present invention may use the quantum dot layer 16 having an electron transition in the infrared region, particularly the mid-infrared region. In this case, by adjusting the type or size of the quantum dots, it is possible to use a quantum dot absorbing light in the infrared region, in particular in the wavelength of 1000 nm to 20 ㎛, preferably 1000 nm to 8000 nm. In addition, since colloidal quantum dots can be processed in a large area at low cost, it is preferable to use colloidal quantum dots in the present invention.
또한, 상기 양자점은 리간드 치환된 양자점을 사용할 수 있다. 양자점은 유기 리간드 및 무기 리간드 중 적어도 하나의 리간드로 치환될 수 있다. 상기 양자점인 상기 리간드의 예로는 EDT(ethanedithol), BDT(butanethiol), MPA(mercaptocarboxylic acid), CTAB(tyltrimethylammonium bromide), HTAC(hexadecyltrimethylammonium chloride), TBAI(tetrabutylammonium iodide), 또는 Na2S을 들 수 있다. In addition, the quantum dot may use a ligand substituted quantum dot. The quantum dots may be substituted with at least one ligand of an organic ligand and an inorganic ligand. Examples of the ligand, which is the quantum dot, may include ethanedithol (EDT), butanethiol (BDT), mercaptocarboxylic acid (MPA), tyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium chloride (HTAC), tetrabutylammonium iodide (TBAI), or Na2S.
양자점은 콜로이달 용액의 분산성과 안정성을 위하여 올레산 리간드로 감싸져 있는 구조를 가지고 있다. 이 상태의 양자점도 바이오센서에 적용할 수 있으나, 올레산 리간드는 사슬 구조가 길기 때문에, 양자점에서 발생한 전자가 n-type 채널(15)로 이동하는데 방해가 된다. 따라서, 보다 짧은 사슬 구조의 리간드로 상기의 리간드로 치환하는 것이 바람직하다. 상기 리간드 치환된 양자점을 사용하는 경우, 예를 들어 올레산 리간드로 감싸진 양자점을 n-type 채널(15) 상에 형성한 후 상기 리간드와 반응시켜 치환하는 방법으로 사용할 수 있다.Quantum dots have a structure wrapped in oleic acid ligand for the dispersibility and stability of the colloidal solution. Quantum dots in this state can also be applied to biosensors, but since the oleic acid ligand has a long chain structure, electrons generated in the quantum dots are prevented from moving to the n-type channel 15. Therefore, it is preferable to substitute the above ligand with a ligand having a shorter chain structure. In the case of using the ligand-substituted quantum dot, for example, a quantum dot wrapped with an oleic acid ligand may be formed on the n-type channel 15 and then reacted with the ligand to be substituted.
이와는 다르게, 콜로이달 양자점층의 유기물질 리간드를 단분자 유기 리간드 또는 무기 리간드로 치환하여 타겟 바이오 분자의 접근성을 향상시키고 바이오 분자의 작용기의 진동 모드와 양자점층의 띠내 전이의 공명을 용이하게 할 수 있다.Alternatively, the organic ligand of the colloidal quantum dot layer can be replaced with a monomolecular organic ligand or an inorganic ligand to improve the accessibility of the target biomolecule and to facilitate the vibration mode of the functional group of the biomolecule and the resonance of the band transition in the quantum dot layer. have.
일 실시예로, 전하 이동을 위한 유기 리간드로는 전술한, EDT, BDT, MPA 등의 길이가 짧은 두자리 리간드(bidentate ligand)를 사용할 계획이며, 무기 리간드와 혼합하여 콜로이달 양자점층의 필름 구조를 균일하게 형성할 수 있다.In one embodiment, the organic ligand for charge transfer is to use a short-length bidentate ligand, such as EDT, BDT, MPA, etc. described above, and the film structure of the colloidal quantum dot layer by mixing with an inorganic ligand It can form uniformly.
CTAB(Cetyltrimethylammonium bromide), CTACl(Cetyltrimethylammonium chloride), TBAI(Tributylammonium iodide) 등의 할로겐 이온을 제공하는 화합물을 이용하여 합성 후 사용되고 있는 유기 리간드를 Br-, Cl-, I- 등의 할로겐 이온으로 치환할 수 있다. 유기 리간드로 감싸진 콜로이달 양자점층으로 구성된 필름 상에 수분 동안 할로겐 이온을 존재하게 하여 상온에서 치환과정을 진행할 수 있다. 필름의 두께는 순차적으로 증가시킬 수 있으며, 두께는 10nm 에서 300nm까지 일 수 있다. 할로겐의 경우 원자 리간드이기 때문에 리간드에 의한 진동운동이 없어서 중적외선 영역에서 타겟 바이오 분자외의 공명 현상을 일으킬 분자를 제거할 수 있다. 이에 따라 보다 향상되고 안정된 전기 신호를 얻을 수 있다.Halogen ions, such as Br-, Cl-, and I-, are used to replace organic ligands used after synthesis using compounds that provide halogen ions such as CTAB (Cetyltrimethylammonium bromide), CTACl (Cetyltrimethylammonium chloride), and TBAI (Tributylammonium iodide) Can be. On the film composed of the colloidal quantum dot layer wrapped with an organic ligand, the halogen ions may be present for a few minutes to proceed with the substitution process at room temperature. The thickness of the film can be increased sequentially, the thickness can be from 10nm to 300nm. Since halogen is an atomic ligand, there is no vibratory motion caused by the ligand, and thus it is possible to remove molecules that cause resonance in addition to the target biomolecule in the mid-infrared region. As a result, a more improved and stable electric signal can be obtained.
무기 리간드로 치환하는 다른 방법으로는 극성 용액과 무극성 용액과의 극성 차이를 이용하는 방법이 이용될 수 있다. 무극성 유기 리간드로 개질되어 있는 콜로이달 양자점 용액을 극성 무기 리간드 용액과 상온에서 교반시키면, 콜로이달 양자점 표면에 극성 리간드가 개질되게 되어 콜로이달 양자점의 유전율(dielectric constant)가 증가한다. 따라서, 무기 리간드로 개질된 콜로이달 양자점은 극성 용액에 존재하게 된다. 극성 무기 리간드로 개질된 콜로이달 양자점 용액은 표면 위에 콜로이드 용액을 코팅시킬 수 있는 장점이 있다.As another method for substituting an inorganic ligand, a method using a polar difference between a polar solution and a nonpolar solution may be used. When the colloidal quantum dot solution modified with the nonpolar organic ligand is stirred at room temperature with the polar inorganic ligand solution, the polar ligand is modified on the surface of the colloidal quantum dot to increase the dielectric constant of the colloidal quantum dot. Thus, colloidal quantum dots modified with inorganic ligands are present in the polar solution. Colloidal quantum dot solutions modified with polar inorganic ligands have the advantage of coating the colloidal solution on the surface.
또한, 상기 절연층(18)은, SiO2, Al2O3, TiO2, ZrO2, HfO2, 또는 SiNx 등으로 형성될 수 있다. In addition, the insulating layer 18 may be formed of SiO 2, Al 2 O 3, TiO 2, ZrO 2, HfO 2, SiN x, or the like.
또한, 상기 게이트 전극(14)은, 금속으로 형성될 수 있고, 예를 들어 Cr, Mo, Al, Ti/Au, Ag, Cu, 및 Pt으로 구성되는 군으로부터 선택될 수 있다. In addition, the gate electrode 14 may be formed of a metal, and may be selected from a group consisting of, for example, Cr, Mo, Al, Ti / Au, Ag, Cu, and Pt.
또한, 상기 소스 전극(12) 및 드레인 전극(13)은, 각각 금속으로 형성될 수 있고, 예를 들어 Cr, Ti/Au, Mo, Al, Ag, Cu, Pt 및 W로 구성되는 군으로부터 선택될 수 있다. In addition, the source electrode 12 and the drain electrode 13, respectively, may be formed of a metal, for example selected from the group consisting of Cr, Ti / Au, Mo, Al, Ag, Cu, Pt and W Can be.
한편, 상술한 절연층(18), n-type 채널(15), 양자점층(16), 소스 및 드레인 전극(12, 13) 이외의 나머지 구성은 통상 바이오센서(10)에서 사용할 수 있는 것이면 특별히 제한되지 않는다. On the other hand, the remaining components other than the insulating layer 18, the n-type channel 15, the quantum dot layer 16, and the source and drain electrodes 12 and 13 described above are specially used as long as they can be normally used in the biosensor 10. It is not limited.
예를 들어, 상기 기판(11)으로는 유리 기판이나 플라스틱 기판이 사용될 수 있으며, 바이오센서(10)에 적용되는 것이면 특별히 제한되지 않는다. 또한, 바이오센서(10)의 각 구성요소의 배치 등은 종래 바이오센서(100)에서 적용되는 것이면 특별히 제한되지 않는다. For example, a glass substrate or a plastic substrate may be used as the substrate 11, and is not particularly limited as long as it is applied to the biosensor 10. In addition, the arrangement of each component of the biosensor 10 is not particularly limited as long as it is applied in the conventional biosensor 100.
도 2는 본 발명의 제2 실시예와 관련된 바이오 센서(100)를 나타내는 개략 단면도이다.2 is a schematic cross-sectional view showing a biosensor 100 according to a second embodiment of the present invention.
도 2를 참조하면, 상기 바이오센서(100)는 기판(110), 게이트 전극(140), 절연층(180), 소스 전극(120), 드레인 전극(130), n-type 채널(150), 및 양자점층(160) 및 포집부(170)를 포함한다. 즉, 제2 실시예에 따른 바이오센서(100)는 양자점층(160)에 마련되며, 타켓 바이오 물질을 포집하기 위한 포집부(170)를 추가로 포함할 수 있다. 제2 실시예에서, 그 밖에 다른 구성요소는 제1 실시예에서 설면한 바이오센서(10)의 구성요소들과 동일하다.Referring to FIG. 2, the biosensor 100 includes a substrate 110, a gate electrode 140, an insulating layer 180, a source electrode 120, a drain electrode 130, an n-type channel 150, And a quantum dot layer 160 and a collecting unit 170. That is, the biosensor 100 according to the second embodiment may be provided in the quantum dot layer 160 and may further include a collecting unit 170 for collecting the target biomaterial. In the second embodiment, the other components are the same as those of the biosensor 10 described in the first embodiment.
제2 실시예와 관련된 바이오센서(100)는 기판(110)과, 기판(110) 상에 마련된 게이트 전극(140)과, 게이트 전극(140) 상에 마련된 절연층(180)과, 절연층(180) 상에 각각 마련된 소스 전극(120) 및 드레인 전극(130)을 포함한다. 또한, 바이오센서(100)는 소스 전극(120)과 드레인 전극(130) 사이에, 소스 전극(120)과 드레인 전극(130)을 전기적으로 연결하도록 마련된 n-type 채널(150)을 포함한다. 상기 소스 전극(120)과 드레인 전극(130)은 각각 절연층(180) 및 n-type 채널(150) 상에 걸쳐 마련된다. 또한, 바이오 센서(100)는 전류가 흐르도록 마련되고, n-type 채널(150) 상에 마련되며, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층(160) 및 양자점층(160)에 마련되며, 타겟 바이오 물질을 포집하기 위한 포집부(170)을 포함한다.The biosensor 100 according to the second embodiment includes a substrate 110, a gate electrode 140 provided on the substrate 110, an insulating layer 180 provided on the gate electrode 140, and an insulating layer ( And a source electrode 120 and a drain electrode 130 respectively provided on the 180. In addition, the biosensor 100 includes an n-type channel 150 provided to electrically connect the source electrode 120 and the drain electrode 130 between the source electrode 120 and the drain electrode 130. The source electrode 120 and the drain electrode 130 are provided on the insulating layer 180 and the n-type channel 150, respectively. In addition, the biosensor 100 is provided to flow a current, is provided on the n-type channel 150, the quantum dot layer 160 provided to have the vibration energy of the target biomaterial and the electron transition energy that can occur resonance. And a collecting unit 170 provided in the quantum dot layer 160 and collecting the target biomaterial.
상기 포집부(170)는 복수 개의 포집 분자를 포함할 수 있다. 또한, 복수 개의 포집분자는 양자점의 곡면부에 고정될 수 있다. 즉, 양자점층(160)은 굴곡 있는 표면을 갖도록 마련될 수 있다. 또한, 양자점층(160)은 필름 형태로 제조될 수 있다.The collecting unit 170 may include a plurality of collecting molecules. In addition, the plurality of collecting molecules may be fixed to the curved portion of the quantum dot. That is, the quantum dot layer 160 may be provided to have a curved surface. In addition, the quantum dot layer 160 may be manufactured in the form of a film.
상기 전계효과 박막 트랜지스터에서 양자점층의 전류변화는 이의 전자가 n-type 채널의 전도 채널(conduction channel)로 이동하여 임계 전압의 변화를 발생시키며, 이를 측정하여 바이오 센서로 응용할 수 있다. In the field effect thin film transistor, the current change of the quantum dot layer causes electrons to move to the conduction channel of the n-type channel to generate a change in the threshold voltage, which can be measured and applied as a biosensor.
구체적으로, 박막 트랜지스터(TFT)에서 소스 전극과 게이트 사이에 임계 전압(threshold voltage) 이상의 전압이 인가되면, n-type 채널(150)에서 전도 채널(conduction channel)이 형성되고 이를 통하여 소스 전극(120)과 드레인 전극(130) 간에 전자가 이동할 수 있다. Specifically, when a voltage equal to or greater than a threshold voltage is applied between the source electrode and the gate in the thin film transistor TFT, a conduction channel is formed in the n-type channel 150 and thereby the source electrode 120 ) And the electron may move between the drain electrode 130.
따라서, 본 발명에 따른 바이오센서(100)는 소스 전극과 게이트 전극 사이에 임계전압 전후 +/- 5 V 이내에서의 일정량의 전압이 인가된 후, 양자점층(160)에 흐르는 전류에 대한 실시간 측정으로, 포집부에 포집된 타겟 바이오 분자와 양자점층(160) 간의 특정 전자-진동 에너지 전달(electric-vibrational energy transfer)에 따라 양자점층(160)에 미세한 전위차를 유도하고 이는 n-type 채널(150)에서 전류가 변화되어 측정하도록 마련된다. 측정하고자 하는 전류는 타겟 바이오 분자의 특정 작용기의 진동에 의해서 띠내 전이 에너지가 흡수되어 전류의 변화가 일어나게 된다. Therefore, the biosensor 100 according to the present invention is a real-time measurement of the current flowing through the quantum dot layer 160 after a certain amount of voltage is applied within + /-5V before and after the threshold voltage between the source electrode and the gate electrode As a result, a small electric potential difference is induced in the quantum dot layer 160 according to a specific electric-vibrational energy transfer between the target biomolecule collected in the collecting unit and the quantum dot layer 160, which is an n-type channel 150. Current is varied to provide for measurement. The current to be measured is a transition of the current due to absorption of the transition energy in the band by the vibration of a specific functional group of the target biomolecule.
또한, 타겟 바이오 분자의 진동에 의한 양자점에서의 전위의 변화는, 새롭고 실현 가능성이 높은 측정 방식이며, 바이오 분자의 농도에 따라 전류값의 변화가 비례하게 된다.The change in the potential at the quantum dot caused by the vibration of the target biomolecule is a new and highly feasible measurement method, and the change in the current value is proportional to the concentration of the biomolecule.
또한, 이러한 방식의 양자점층(160)에 의한 박막트랜지스터로의 장점은, 특정에너지의 바이오 분자변화에 특징적으로 반응할 수 있으며, 그 신호를 증폭할 수 있다는데 있다.In addition, the advantage of the thin film transistor by the quantum dot layer 160 of this method is that it can react characteristically to the biomolecular change of a specific energy, it can amplify the signal.
또한, 양자점층(160)과 바이오 분자 진동 간의 커플링에 의한 에너지 전달이기 때문에, 바이오 분자와 양자점층(160) 간의 물리적인 거리에 대한 정보도 측정할 수 있다.In addition, since the energy is transferred by the coupling between the quantum dot layer 160 and the biomolecule vibration, information on the physical distance between the biomolecule and the quantum dot layer 160 may also be measured.
또한, 상기 절연층(180)은, SiO2, Al2O3, TiO2, ZrO2, HfO2, 또는 SiNx 등으로 형성될 수 있다. In addition, the insulating layer 180 may be formed of SiO 2, Al 2 O 3, TiO 2, ZrO 2, HfO 2, SiN x, or the like.
또한, 상기 게이트 전극(140)은, 금속으로 형성될 수 있고, 예를 들어 Cr, Mo, Al, Ti/Au, Ag, Cu, 및 Pt으로 구성되는 군으로부터 선택될 수 있다. In addition, the gate electrode 140 may be formed of a metal, and may be selected from, for example, Cr, Mo, Al, Ti / Au, Ag, Cu, and Pt.
또한, 상기 소스 전극(120) 및 드레인 전극(130))은, 각각 금속으로 형성될 수 있고, 예를 들어 Cr, Ti/Au, Mo, Al, Ag, Cu, Pt 및 W로 구성되는 군으로부터 선택될 수 있다. In addition, the source electrode 120 and the drain electrode 130, respectively, may be formed of a metal, for example, from the group consisting of Cr, Ti / Au, Mo, Al, Ag, Cu, Pt and W Can be selected.
한편, 상술한 절연층(180), n-type 채널(150), 양자점층(160), 포집부(170), 소스 및 드레인 전극(120, 130) 이외의 나머지 구성은 통상 바이오센서(100)에서 사용할 수 있는 것이면 특별히 제한되지 않는다. Meanwhile, the remaining components other than the above-described insulating layer 180, n-type channel 150, quantum dot layer 160, collecting unit 170, source and drain electrodes 120 and 130 are usually biosensor 100. It is not particularly limited as long as it can be used at.
예를 들어, 상기 기판(110)으로는 유리 기판이나 플라스틱 기판이 사용될 수 있으며, 바이오센서(100)에 적용되는 것이면 특별히 제한되지 않는다. 또한, 바이오센서(100)의 각 구성요소의 배치 등은 종래 바이오센서(100)에서 적용되는 것이면 특별히 제한되지 않는다. For example, a glass substrate or a plastic substrate may be used as the substrate 110, and is not particularly limited as long as it is applied to the biosensor 100. In addition, the arrangement of each component of the biosensor 100 is not particularly limited as long as it is applied in the conventional biosensor 100.
또한, 양자점층(160)에는 포집 분자들이 고정화될 수 있다. 상기 포집 분자들은 분석하고자 하는 타겟 바이오 물질과 특이 결합하여 상기 바이오 물질을 포집할 수 있다. 상기 포집 분자들과 상기 바이오 물질의 반응은 예를 들어, 핵산 혼성화, 항원-항체 반응 또는 효과결합 반응일 수 있다. 또한, 상기 바이오 물질은 상기 포집 분자들의 표면에 고정될 수 있다. 예를 들어, 상기 포집 분자들은 예를 들어, 단백질, 세포, 바이러스, 핵산 유기 분자 또는 무기 분자일 수 있다. 상기 포집 분자들이 단백질인 경우, 상기 단백질은 예를 들어, 항원, 항체, 기질 단백질, 효소 또는 조효소일 수 있다. 상기 포집 분자들이 핵산인 경우, 상기 핵산은 예를 들어, DNA, RNA, PNA, LNA 또는 이들의 혼성체일 수 있다. In addition, capture molecules may be immobilized on the quantum dot layer 160. The capture molecules may specifically bind to the target biomaterial to be analyzed to capture the biomaterial. The reaction of the capture molecules with the biomaterial may be, for example, nucleic acid hybridization, antigen-antibody reaction or effect binding reaction. In addition, the biomaterial may be immobilized on the surface of the collecting molecules. For example, the capture molecules can be, for example, proteins, cells, viruses, nucleic acid organic molecules or inorganic molecules. When the capture molecules are proteins, the proteins may be, for example, antigens, antibodies, substrate proteins, enzymes or coenzymes. When the capture molecules are nucleic acids, the nucleic acids can be, for example, DNA, RNA, PNA, LNA or hybrids thereof.
양자점층 표면에 포집 분자들(25)을 고정화시키는 방법으로는 화학적인 흡착(chemical adsorption), 공유결합(covalent-binding), 전기적인 결합(electrostatic attraction), 공중합체(copolymerization), 또는 아비딘-바이오틴 결합 시스템(avidin-biotin affinity system) 등이 이용될 수 있다.Methods of immobilizing the trapping molecules 25 on the surface of the quantum dot layer include chemical adsorption, covalent-binding, electrostatic attraction, copolymerization, or avidin-biotin. A binding system (avidin-biotin affinity system) and the like can be used.
예를 들어, 상기 양자점층(160) 표면에 상기 포집 분자들을 고정화시키기 위하여 작용기(functional group)가 제공될 수 있다. 상기 작용기는 예를 들어, 카르복실기(-COOH), 티올기(-SH), 수산기(-OH), 실란기 (Si-H), 아민기(-NH), 또는 에폭시기일 수 있다.For example, a functional group may be provided to fix the trapping molecules on the surface of the quantum dot layer 160. The functional group may be, for example, a carboxyl group (-COOH), a thiol group (-SH), a hydroxyl group (-OH), a silane group (Si-H), an amine group (-NH), or an epoxy group.
도 3은 본 발명의 제3 실시예와 관련된 바이오센서(200)를 나타내는 개략 단면도이다.3 is a schematic cross-sectional view showing a biosensor 200 according to a third embodiment of the present invention.
도 3을 참조하면, 바이오센서(200)는 기판(210)과, 기판(210) 상에 마련된 게이트 전극(240)과, 게이트 전극(240) 상에 마련된 절연층(280)과, 절연층(280) 상에 각각 마련된 소스 전극(220) 및 드레인 전극(230)을 포함한다. 또한, 바이오센서(200)는 절연층(280) 상에 위치하고, 소스 전극(220)과 드레인 전극(230) 사이에 전류가 흐르도록 마련되고, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층(260)을 포함한다. 또한, 상기 바이오센서(200)는 양자점층(260)에 마련되며, 타겟 바이오 물질을 포집하기 위한 포집부(270)을 추가로 포함할 수 있다.Referring to FIG. 3, the biosensor 200 includes a substrate 210, a gate electrode 240 provided on the substrate 210, an insulating layer 280 provided on the gate electrode 240, and an insulating layer ( And a source electrode 220 and a drain electrode 230 provided on the 280, respectively. In addition, the biosensor 200 is positioned on the insulating layer 280, is provided to allow a current to flow between the source electrode 220 and the drain electrode 230, and electrons in which vibration energy and resonance of the target biomaterial may occur. And a quantum dot layer 260 provided to have a transition energy. In addition, the biosensor 200 may be provided in the quantum dot layer 260 and may further include a collecting unit 270 for collecting the target biomaterial.
제3 실시예에서는, 제1 실시예와 다르게, n-type 층(150)이 마련되지 않을 수 있고, 양자점층(260)이 소스 전극(220)과 드레인 전극(230)을 전기적으로 연결한다.In the third embodiment, unlike the first embodiment, the n-type layer 150 may not be provided, and the quantum dot layer 260 electrically connects the source electrode 220 and the drain electrode 230.
한편, 도 4 및 도 5는 시스테인(Cystein)의 감지 결과를 나타내는 그래프들이다.4 and 5 are graphs showing a detection result of Cystein.
박막 트랜지스터(TFT) 소자 위에 아무것도 올리지 않은 상태(Blank)를 측정 후, HgSe샘플을 스핀코팅 방법으로 박막 트랜지스터 (TFT) 소자 위에 증착하여 측정하였다.After measuring the state in which nothing was placed on the thin film transistor (TFT) device, HgSe samples were measured by depositing on the thin film transistor (TFT) device by spin coating.
도 4에서, A3_Blank_HgSe_HDA에서 볼 수 있는 것처럼 Blank상태의 임계전압(threshold)은 HgSe_HDA가 증착된 후의 임계전압(threshold)보다 작은 값을 가지기 때문에 구동 에너지가 달라진 것을 확인 할 수 있다.In FIG. 4, as shown in A3_Blank_HgSe_HDA, the threshold voltage of the blank state has a value smaller than the threshold voltage after HgSe_HDA is deposited, and thus the driving energy is changed.
도 5의 A영역을 참조하면, 다시 박막 트랜지스터(TFT) 소자 위에, 시스테인(Cysteine)이 수용액 상으로 존재하는 용액을 도포하면, 임계전압이 HgSe_HDA 그래프에서 Cysteine 그래프로 바뀌는 것을 확인할 수 있었다.Referring to area A of FIG. 5, when the solution in which cysteine is present in the aqueous phase is applied to the TFT device again, it can be seen that the threshold voltage is changed from the HgSe_HDA graph to the Cysteine graph.
구체적으로, 박막 트랜지스터(TFT) 소자는 화학적 습식 방법으로 합성된 콜로이드 양자점을 활동층으로 사용한 소자로서, 물질은 II-VI족 반도체 화합물, III-V족 반도체 화합물, IV-VI족 반도체 화합물, IV족 반도체 화합물, 또는 이들의 조합을 포함한다.Specifically, the TFT device is a device using a colloidal quantum dot synthesized by a chemical wet method as an active layer, and the material is a II-VI semiconductor compound, a III-V semiconductor compound, a IV-VI semiconductor compound, or IV. Group semiconductor compounds, or combinations thereof.
구체적인 양자점은 AuS, AuSe, AuTe, AgS, AgSe, AgTe, AgO, CuS, CuSe, CuTe, CuO, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, AuSeS, AuSeTe, AuSTe, AgSeS, AgSeTe, AgSTe, CuSeS, CuSeTe, CuSTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, AuAgS, AuAgSe, AuAgTe, AuCuS, AuCuSe, AuCuTe, AuZnS, AuZnSe, AuZnTe, AuCdS, AuCdSe, AuCdTe, AuHgS, AuHgSe, AuHgTe, AgZnS, AgZnSe, AgZnTe, AgCuS, AgCuSe, AgCuTe, AgCdS, AgCdSe, AgCdTe, AgHgS, AgHgSe, AgHgTe, CuZnS, CuZnSe, CuZnTe, CuCdS, CuCdSe, CuCdTe, CuHgS, CuHgSe, CuHgTe, ZnCdS, ZnCdSe, ZnCdTe, ZnHgS, ZnHgSe, ZnHgTe, CdHgS, CdHgSe, CdHgTe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC, 및 SiGe로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 양자점 나노 입자이다. Specific quantum dots include AuS, AuSe, AuTe, AgS, AgSe, AgTe, AgO, CuS, CuSe, CuTe, CuO, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, AuSeS, AuSeTe, AuSTe , AgSeS, AgSeTe, AgSTe, CuSeS, CuSeTe, CuSTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, AuAgS, AuAgSe, AuAgTe, AuCSeZe Au, AuCuSu Au , AuCdSe, AuCdTe, AuHgS, AuHgSe, AuHgTe, AgZnS, AgZnSe, AgZnTe, AgCuS, AgCuSe, AgCuTe, AgCdS, AgCdSe, AgCdTe, AgHgS, AgHgSe, AgHgTe, CuZSeC, CuZnCe , CuHgTe, ZnCdS, ZnCdSe, ZnCdTe, ZnHgS, ZnHgSe, ZnHgTe, CdHgS, CdHgSe, CdHgTe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZgSTSe, CdHgZeH GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC, and SiGe selected from the group consisting of Quantum dot nanoparticles.
화학적 습식 방법으로 제조된 양자점의 표면은 유기·무기 리간드로 둘러 쌓여 있으며, 이것을 치환함으로서 화학 및 물리적 성질을 바꿀 수 있다. 본 발명에서는 제조된 양자점의 표면이 여러가지 리간드로 치환됨에 따라 바뀌는 성질을 이용하면, 바이오 물질을 선택적으로 검출할 수 있다. 초기의 HgSe 활동층의 리간드를 HAD로 치환함으로 인하여 시스테인(Cysteine)이 HDA를 제거하고 활동층에 새롭게 리간드로서 붙었을 때 큰 변화가 나타나도록 제어하고, 단순 시스테인 뿐만이 아닌 다른 바이오 물질들에서도 같은 효과가 나타나도록 유도할 수 있다. The surface of the quantum dots produced by the chemical wet method is surrounded by organic and inorganic ligands, and by replacing them, the chemical and physical properties can be changed. In the present invention, biomaterials can be selectively detected by using a property that changes as the surface of the prepared quantum dot is replaced with various ligands. Substituting HAD for the ligand of the initial HgSe active layer controls the change of cysteine when HDstein removes HDA and newly attaches to the active layer as a ligand, and the same effect on other biomaterials other than simple cysteine. Can be induced to appear.
바이오 센서에 양자점을 도포하는 방법으로, 스핀 코팅(spin coating)방법을 사용한다. 층간(layer-by-layer) 증착을 통하여 센서의 표면에 양자점을 증착하고, 이를 활동층으로 활용하여 바이오 물질을 검출할 수 있다. 양자점이 스핀 코팅 되어있는 센서 위에 검출하고자 하는 바이오 물질이 녹아 있는 용액을 도포하면, 양자점 표면에서 리간드 치환반응이 일어나며, 이로 인한 활동층의 전기적 특성이 바뀜에 따라 임계전압(threshold voltage)이 변하는 것을 확인 할 수 있다.As a method of applying a quantum dot to a biosensor, a spin coating method is used. Through layer-by-layer deposition, quantum dots may be deposited on the surface of the sensor, and the biomaterial may be detected using the active layer. Applying a solution containing the biomaterial to be detected on the spin-coated sensor, the ligand substitution reaction occurs on the surface of the quantum dot, resulting in a change in the threshold voltage as the electrical properties of the active layer change. You can check.
이는 전체적인 센서의 전기적 특성이 변화됨에 따라 나타나는 현상이며 물질의 농도에 영향을 받는다. This is a phenomenon that occurs as the overall electrical characteristics of the sensor change and is affected by the concentration of the substance.
박막 트랜지스터(TFT) 소자와 반도체 분석기(Semiconductor analyzer)를 사용하여 센서의 전기적 특성을 측정할 수 있다. 측정 전압은 -10V ~ 10 V 사이로 게이트의 전압을 바꾸어 줌으로써 활동층의 전기적 특성 변화를 측정하고 이에 대한 변화 값을 측정할 수 있게 설계된 소자 위에 양자점을 증착할 수 있고, 이후 검출 하고자 하는 물질을 표면에 도포하여 전기적 특성 변화를 감지 할 수 있다. 또한 TFT 소자의 특성상 게이트의 전압값을 변화시킴으로써 본 실험예에서 사용된 HgSe양자점 뿐만이 아닌 다른 물질이 증착된 상태의 특성을 활용하여 다른 여러 종류의 바이오 물질 검출도 가능하다.Thin film transistor (TFT) devices and semiconductor analyzers can be used to measure the electrical characteristics of the sensor. By measuring the voltage of the gate between -10V and 10V, the measured voltage can deposit quantum dots on a device designed to measure the change in the electrical properties of the active layer and to measure the change. It can be applied to to detect changes in electrical properties. In addition, by changing the voltage value of the gate due to the characteristics of the TFT device, it is possible to detect other types of biomaterials by utilizing not only the HgSe quantum dot used in the present experimental example but also the property of other materials deposited.
본 실험예는 HgSe의 특성을 사용하여 n-type도핑 되어있는 물질에 리간드를 치환하여 임계전압(threshold voltage) 변화를 측정한 것이다. 또한, 측정된 전류값은 off current가 10-8이고 on current가 10-4로서, 표면에 도포된 바이오 물질이 활동층의 성질 변화를 일으킴으로 나타나는 현상이다. This experimental example measures the change of threshold voltage by substituting ligand to n-type doped material using the characteristics of HgSe. In addition, the measured current value is a phenomenon off current is 10-8 and 10-4 is on a current, a biomaterial is applied on the surface appears raised to the Properties of the active layer.
P-type의 활동층을 활용한다면 전압값을 10 ~ -10 V의 역방향으로 걸어주는 것도 가능하며, 온/오프(on/off) 포인트가 더 높거나 낮은 전압을 필요로 할 때 전압을 변화시켜가면서 측정이 가능하다.If you use the P-type active layer, it is possible to walk the voltage value in the reverse direction of 10 to -10 V, and change the voltage when the on / off point requires a higher or lower voltage. It is possible to measure while going.
위에서 설명된 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.Preferred embodiments of the present invention described above are disclosed for purposes of illustration, and those skilled in the art having various ordinary knowledge of the present invention may make various modifications, changes, and additions within the spirit and scope of the present invention. And additions should be considered to be within the scope of the following claims.
본 발명의 적어도 일 실시예와 관련된 바이오센서에 따르면, 양자점층과 타겟 바이오 분자와 전자-진동 에너지 전달에 따른 양자점층의 전류 변화를 측정할 수 있으므로, 바이오물질을 감지할 수 있다. According to the biosensor associated with at least one embodiment of the present invention, since the current change of the quantum dot layer and the target biomolecule and the electron-vibration energy transfer can be measured, the biomaterial can be detected.

Claims (10)

  1. 기판;Board;
    기판 상에 마련된 게이트 전극;A gate electrode provided on the substrate;
    게이트 전극 상에 마련된 절연층;An insulating layer provided on the gate electrode;
    절연층 상에 각각 마련된 소스 전극 및 드레인 전극;A source electrode and a drain electrode respectively provided on the insulating layer;
    소스 전극과 드레인 전극 사이에 마련된 n-type 채널; 및An n-type channel provided between the source electrode and the drain electrode; And
    n-type 채널 상에 마련되고, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층을 포함하며,a quantum dot layer provided on the n-type channel, the quantum dot layer provided to have an electron transition energy capable of resonance and resonance of the target biomaterial,
    양자점은 콜로이달 양자점인 바이오센서.Quantum dots are biosensors that are colloidal quantum dots.
  2. 제 1 항에 있어서,The method of claim 1,
    양자점층에 마련되며, 타켓 바이오 물질을 포집하기 위한 포집부를 포함하는 바이오센서.A biosensor provided in the quantum dot layer and including a collecting unit for collecting the target biomaterial.
  3. 제 2 항에 있어서,The method of claim 2,
    포집부는 하나 이상의 포집 분자를 포함하는 바이오센서.The collecting part is a biosensor comprising one or more collecting molecules.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    포집 분자는 양자점의 곡면부에 고정된 바이오센서.The collecting molecule is a biosensor fixed to the curved portion of the quantum dot.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC 및 SiGe로 구성되는 군으로부터 선택되는 어느 하나 이상인 바이오센서.The quantum dots include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, CdZ, Se, CdZ, Zd , CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, SnS, SnSe, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, Si, Ge, SiC and SiGe selected from the group consisting of one or more of the following: sensor.
  6. 제 1 항에 있어서,The method of claim 1,
    양자점은 리간드 치환된 양자점인 바이오센서.Quantum dots are biosensors that are ligand substituted quantum dots.
  7. 제 6 항에 있어서,The method of claim 6,
    양자점은 유기 리간드 및 무기 리간드 중 적어도 하나의 리간드로 치환된 양자점인 바이오센서.A quantum dot is a biosensor which is a quantum dot substituted with at least one ligand of an organic ligand and an inorganic ligand.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 n-type 채널은 IGZO, ZnO, ZTO, IZO, IHZO, AlN, InN, GaN 및 InGaN으로 구성되는 군으로부터 선택되는 어느 하나의 n-type 물질로 이루어진 바이오센서.The n-type channel is a biosensor made of any one n-type material selected from the group consisting of IGZO, ZnO, ZTO, IZO, IHZO, AlN, InN, GaN and InGaN.
  9. 기판;Board;
    기판 상에 마련된 게이트 전극;A gate electrode provided on the substrate;
    게이트 전극 상에 마련된 절연층;An insulating layer provided on the gate electrode;
    절연층 상에 각각 마련된 소스 전극 및 드레인 전극; 및A source electrode and a drain electrode respectively provided on the insulating layer; And
    절연층 상에 마련되며, 소스 전극 및 드레인 전극을 전기적으로 연결하도록 마련되고, 타겟 바이오 물질의 진동 에너지와 공명이 일어날 수 있는 전자 전이 에너지를 갖도록 마련된 양자점층을 포함하며,A quantum dot layer provided on the insulating layer, the quantum dot layer provided to electrically connect the source electrode and the drain electrode, and having the electron transition energy capable of resonance and resonance of the target biomaterial,
    양자점은 콜로이달 양자점인 바이오센서.Quantum dots are biosensors that are colloidal quantum dots.
  10. 제 9 항에 있어서,The method of claim 9,
    양자점층에 마련되며, 타겟 바이오 물질을 포집하기 위한 포집부를 포함하는 바이오센서.A biosensor provided in the quantum dot layer and including a collecting unit for collecting the target biomaterial.
PCT/KR2017/012332 2016-11-02 2017-11-02 Quantum dot biosensor WO2018084601A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780068078.9A CN109906375B (en) 2016-11-02 2017-11-02 Quantum dot biosensor
EP17867342.2A EP3537138B1 (en) 2016-11-02 2017-11-02 Quantum dot biosensor
JP2019520451A JP6737540B2 (en) 2016-11-02 2017-11-02 Quantum dot biosensor
US16/346,720 US11060997B2 (en) 2016-11-02 2017-11-02 Quantum dot biosensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160144849 2016-11-02
KR10-2016-0144849 2016-11-02
KR10-2017-0145154 2017-11-02
KR1020170145154A KR102173767B1 (en) 2016-11-02 2017-11-02 Quantum dot BIOSENSOR

Publications (1)

Publication Number Publication Date
WO2018084601A1 true WO2018084601A1 (en) 2018-05-11

Family

ID=62075821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012332 WO2018084601A1 (en) 2016-11-02 2017-11-02 Quantum dot biosensor

Country Status (1)

Country Link
WO (1) WO2018084601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813877A (en) * 2022-05-31 2022-07-29 华中科技大学 Sensor for detecting glucose, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229341A (en) * 2008-03-25 2009-10-08 Hiroshima Univ Biosensor and manufacturing method thereof
US20100019226A1 (en) * 2006-09-22 2010-01-28 Koninklijke Philips Electronics N.V. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device
KR20140044538A (en) * 2012-10-05 2014-04-15 나노칩스 (주) Method and analysis system for biosensor with room-temperature operating single-electron transistor
KR20150072888A (en) * 2013-12-20 2015-06-30 한국과학기술연구원 Quantum dot sensitized metal oxide phototransistor and manufacturing process thereof
KR101616560B1 (en) * 2014-11-24 2016-04-28 한국과학기술연구원 Nanoprobe-fused ion-sensitive field effect transistor biosensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019226A1 (en) * 2006-09-22 2010-01-28 Koninklijke Philips Electronics N.V. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device
JP2009229341A (en) * 2008-03-25 2009-10-08 Hiroshima Univ Biosensor and manufacturing method thereof
KR20140044538A (en) * 2012-10-05 2014-04-15 나노칩스 (주) Method and analysis system for biosensor with room-temperature operating single-electron transistor
KR20150072888A (en) * 2013-12-20 2015-06-30 한국과학기술연구원 Quantum dot sensitized metal oxide phototransistor and manufacturing process thereof
KR101616560B1 (en) * 2014-11-24 2016-04-28 한국과학기술연구원 Nanoprobe-fused ion-sensitive field effect transistor biosensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813877A (en) * 2022-05-31 2022-07-29 华中科技大学 Sensor for detecting glucose, preparation method and application thereof
CN114813877B (en) * 2022-05-31 2023-03-14 华中科技大学 Sensor for detecting glucose, preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP3537140B1 (en) Use of a gas detecting sensor
KR102173767B1 (en) Quantum dot BIOSENSOR
Syedmoradi et al. A review on nanomaterial-based field effect transistor technology for biomarker detection
US9535063B2 (en) High-sensitivity nanoscale wire sensors
US6815218B1 (en) Methods for manufacturing bioelectronic devices
JP6243035B2 (en) Quantum dot thin film formation method
CA2430888A1 (en) Nanosensors
Lefler et al. Multicolor spectral-specific silicon nanodetectors based on molecularly embedded nanowires
WO2018084601A1 (en) Quantum dot biosensor
WO2019208977A1 (en) Biosensor comprising linker material and quantum dot beads, and target antigen detection method using same
WO2018084602A1 (en) Gas detection sensor
CN108531161A (en) Quantum dot and quantum dot dispersion
KR20170138772A (en) Method for manufacturing electrode structure having nano-gap and photovolatic element having quantum dot
KR102587824B1 (en) Stack transfer printing method for quantum dot multilayer and quantum dot multilayer manufactured by the method
KR102440313B1 (en) electric hydrogen gas sensor and the manufacturing method thereof
WO2022131498A1 (en) Analyte detection system, and analyte detection method using same
KR102638262B1 (en) Functional photoresist and patterning method using thereof
KR102420429B1 (en) Photodetector Based on Oxide Semiconductor with Quantum Dot Embedded Therein
US20240026222A1 (en) Semiconductor nanoparticles and electronic device including the same
US11870001B2 (en) Semiconductor nanoparticles, electronic device including the same, and method for manufacturing semiconductor nanoparticles
US8093069B2 (en) Functionalized nitride nanomaterials for electrochemistry and biosensor applications
KR20210124566A (en) Kit for analyzing phthalic based material using aptamer and method for analyzing phthalic based material using the same
Fritzsche DNA-Conjugated Metal Nanoparticles: Chip Detection Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867342

Country of ref document: EP

Effective date: 20190603