WO2018084354A1 - 전력 계통의 보호 시스템 및 이의 동작 방법 - Google Patents

전력 계통의 보호 시스템 및 이의 동작 방법 Download PDF

Info

Publication number
WO2018084354A1
WO2018084354A1 PCT/KR2016/013418 KR2016013418W WO2018084354A1 WO 2018084354 A1 WO2018084354 A1 WO 2018084354A1 KR 2016013418 W KR2016013418 W KR 2016013418W WO 2018084354 A1 WO2018084354 A1 WO 2018084354A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance relay
superconducting cable
relay
correction value
contact switch
Prior art date
Application number
PCT/KR2016/013418
Other languages
English (en)
French (fr)
Inventor
강연욱
박진우
정채균
김민주
강지원
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2018084354A1 publication Critical patent/WO2018084354A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/40Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/85Protective circuit

Definitions

  • the present invention relates to a protection system of a power system and a method of operating the same, and more particularly, to properly eliminate a system failure in consideration of the state of a superconducting cable in a superconducting cable application system. And a method of operating the same.
  • the current differential relay protection method is used to determine the location of the failure and automatically isolate the failure line from the grid to protect the system at the same time as the failure. It is adopted mainly.
  • a current differential relay is called a main protection relay.
  • the back protection relay In case of failure to separate the fault line from the system by the main protection relay, the back protection relay is installed and operated.
  • the distance relay In the domestic transmission line, the distance relay is mainly used.
  • FIG. 1 is a system diagram illustrating the concept of a three-step time limit relay method used for transmission line protection.
  • F3 failure
  • the distance relays 21Ry (3R) and 21Ry (4L) operate as short-circuit protection, causing the breaker CB (3R) and CB (4L) to trip in an instant. Block the section instantaneously. This is called Zone1 operation of the distance relay.
  • Zone2 operation If the distance relays 21Ry (3R) and 21Ry (4L) do not operate, 21Ry (2R) and 21Ry (5L) operate to trip CB (2R) and CB (5L) after about 20 cycles, which is called Zone2 operation. . If 21Ry (2R) and 21Ry (5L) do not work, finally 21Ry (1R) and 21Ry (6L) operate, tripping CB (2R) and CB (5L) after about 100 cycles. This is called Zone3 operation.
  • the distance relay 21Ry (3R) In the view of the distance relay 21Ry (3R), the post-protection is explained. If a failure occurs at the point F3, which is a failure in the self-protection section, the distance relay 21Ry (3R) operates as Zone1, which is an instantaneous cutoff, and a failure on an adjacent line. In case of failure at the point F4, it operates as Zone2, which is a 20 cycle delay blocking, and in case of failure at point F5 after it, it operates as Zone3, which is a 100 cycle delay blocking.
  • relay correction for Zone1, Zone2, and Zone3 operation should be performed so that the relay can operate properly.
  • the power transmission line is determined to have impedances of Z 1, Z 2, Z 3, Z 4, Z 5 [ ⁇ ] and the like depending on the distance.
  • the impedance of the failure point can be calculated as the voltage and current of the transmission line, the input element of the relay, the failure position can be determined by this value. Therefore, each distance relay is operated by setting the impedance of the self-protection section as the Zone1 correction value, the impedance to the adjacent section as the Zone2 correction value, and the impedance to the subsequent section as the Zone3 correction value.
  • the correction value of the distance relay 21Ry (3R) is Z3 [ ⁇ ] for the transmission line impedance of Zone1 in the self-protection section, Z3 [ ⁇ ] + Z4 [ ⁇ ], and Zone3 for the Zone2 section. It becomes Z3 [ ⁇ ] + Z4 [ ⁇ ] + Z5 [ ⁇ ], and operates by correcting (setting) the relay according to the appropriate standard 1 considering the error of relay and transmission line impedance.
  • the Zone1 correction is 85% of the magnetic section line impedance
  • the Zone 2 correction adds 50% of the next section line impedance to the magnetic section line impedance
  • the Zone3 correction is 125% of the section line impedance. Plus the value.
  • Table 1 shows the impedances of the protection sections of the back protection relays based on the fault F3 occurring between the S3 substation and the S4 substation in the system of FIG. 1.
  • the F3 fault points are the line impedance of Zone1 section of 21Ry (3R) and 21Ry (4L) relays, the line impedance of Zone2 section of 21Ry (2R) and 21Ry (5L) relays, 21Ry (1R) and 21Ry ( 6L)
  • the relay is under the influence of the line impedance of Zone3 section of the relay, so the relay correction value is input to protect the system.
  • the back protection distance relay of the transmission line is a method of effectively separating the fault line from the system by determining the fault point based on the impedance of the power line and by varying the relay operation time according to the fault position.
  • the superconducting cable has a threshold current at which the resistance remains 0. If the threshold current is exceeded, the superconducting property is lost, and thus the resistance has a large resistance value. This property is called quench shape.
  • the resistance of the superconducting cable becomes 0 in the normal state, and the resistance remains 0 when the fault current is less than the threshold current in the event of a system failure.
  • the system impedance is changed by the quench phenomenon.
  • the line impedance of the superconducting state is Z3 [ ⁇ ]
  • the line impedance of the quench state is Z3 '[. ⁇ ]
  • malfunctioning may occur with any one of the protection period setting methods.
  • the present invention provides a power system protection system and an operation method thereof capable of properly eliminating a system failure without malfunction and non-operation according to the presence of a quench phenomenon when the superconducting cable is operated in a superconducting state in a superconducting cable application system. There is this.
  • the protection system of the power system to which the superconducting cable of the present invention is applied to solve the above problems one side is connected to the bus bar, the other side is a first distance relay connected to the breaker; A second distance relay, one side of which is connected to the bus bar; A contact switch, the other side of which is connected to the other side of the second distance relay and the breaker; And an overcurrent relay on one side connected to the bus bar, the other side connected to the contact switch, receiving the line current and the line voltage of the superconducting cable, and controlling the operation of the contact switch according to the magnitude of the line current.
  • the relay and the second distance relay are characterized in that different corrections are applied to determine whether the breaker operates.
  • the overcurrent relay may determine that a quench condition occurs when the line current exceeds the threshold current, and operate the contact switch.
  • first distance relay and the second distance relay may be selectively operated according to the operation of the contact switch.
  • the first distance relay may be operated when the superconducting cable is in the superconducting state
  • the second distance relay may be operated when the superconducting cable is in the quench state
  • the first correction value is applied to the first distance relay
  • the second correction value is applied to the second distance relay
  • the second correction value may be larger than the first correction value
  • the second distance relay may determine the failure point by calculating the impedance of the superconducting cable and comparing the impedance of the superconducting cable with the second correction value.
  • the first distance relay may determine the failure point by calculating the impedance of the superconducting cable and comparing the impedance of the superconducting cable with the first correction value.
  • One side of the present invention for solving the above problems is connected to the bus bar, the other side is a first distance relay connected to the breaker, one side is a second distance relay connected to the bus, the other side is connected to the other side and the breaker of the second distance relay
  • a method of operating a protection system of a power system to which a superconducting cable including a contact switch and one side connected to a bus bar and the other side connected to a contact switch is applied includes: setting a first correction value by a first distance relay; ; Setting, by the second distance relay, a second correction value; Receiving, by an overcurrent relay, line current and line voltage of the superconducting cable; And controlling, by the overcurrent relay, the operation of the contact switch in accordance with the magnitude of the line current, wherein the first correction value and the second correction value are different from each other.
  • the controlling of the operation of the contact switch may include determining that a quench state occurs when the line current exceeds a threshold current; And operating the contact switch when it is determined that the quench state has occurred.
  • first distance relay and the second distance relay may be selectively operated according to the operation of the contact switch.
  • the first distance relay may be operated when the superconducting cable is in the superconducting state
  • the second distance relay may be operated when the superconducting cable is in the quench state
  • the operating method of the power system protection system by the second distance relay, calculating the impedance of the superconducting cable; And determining the failure point by comparing the impedance of the superconducting cable with the second correction value.
  • the operating method of the power system protection system by the first distance relay, calculating the impedance of the superconducting cable; And determining the failure point by comparing the impedance of the superconducting cable with the first correction value.
  • a protection system and a method of operating the power system by selectively operating the distance relay to which different correction values are applied according to the state of the superconducting cable (for example, the superconducting state and the quench state) In addition, it has the effect of accurately removing system faults and accurately determining fault points.
  • the protection system of the power system and an operation method thereof when applied as a transmission system protection scheme, it is possible to prevent the malfunction and non-operation of the distance relay when the system failure to which the superconducting cable is applied, As it can cut off the system failure like the existing protection system, it can prevent the spread of failure due to large power failure and contribute to the expansion and use of superconducting cable.
  • 1 is a schematic diagram illustrating the concept of a three-step time limit distance relay method used for transmission line protection.
  • FIG. 2 is a conceptual diagram for a method of setting a protection interval correction value of a three-step time limit distance relay method.
  • FIG. 3 is a system diagram showing an example of a system in which a superconducting cable is installed.
  • 4A and 4B are conceptual views illustrating the concept of a three-step time limit distance relay method of a system to which a superconducting cable is applied.
  • 5 is a configuration diagram of a general transmission line pick protection system.
  • FIG. 6 is a block diagram of a protection system of a power system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of operating a protection system of a power system according to an embodiment of the present invention.
  • FIGS. 8A and 8B are schematic diagrams illustrating an example in which a protection system of a power system according to an embodiment of the present invention is applied to a superconducting cable application system.
  • 9 to 14 are line impedance complex plan views for explaining examples of Zone1, Zone2, and Zone3 operating area correction of the back protection distance relay of the superconducting cable application system.
  • the conventional transmission line pick protection system 12 may include a distance relay, and the distance relay may be operated according to the line voltage and the line current. Specifically, the distance relay calculates the impedance based on the line voltage and the line current measured through the potential transformer (PT) and the current transformer (CT), estimates the location of the fault point using the impedance, and locates the fault point. To control the breaker. That is, as described above, the distance relay estimates the location of the failure point, but is configured to instantaneously trip if the location of the failure point is Zone1 section, 20 cycle delay trip if Zone2 section, and 100 cycle delay trip if Zone3 section.
  • the impedance of the superconducting cable line in the quench state is different when the impedance of the superconducting cable is superconducting, and the superconducting cable is maintained in the superconducting state or in the quench state according to the magnitude of the fault current.
  • the conventional hobby protection system 12 alone causes an error in determining a location of a failure point, and thus appropriate control is difficult.
  • the protection system 100 of the power system sets a correction value by dividing the quench state and the superconducting state, respectively, and the state of the superconducting cable. According to the present invention, a failure point is found based on differently set correction values.
  • a description is now given of the protection system 100 of a power system according to an embodiment of the invention with reference to FIG. 6.
  • the protection system 100 of the power system according to an embodiment of the present invention is the first distance relay 110, the second distance relay 120, the overcurrent relay 130 and the contact switch 140 to perform the above-described function. It may be configured to include). Specifically, the protection system 100 of the power system according to an embodiment of the present invention, the first distance relay 110 and the second distance relay 120 according to the state of the superconducting cable (that is, the superconducting state or the quench state). It is characterized in that to selectively operate, and to determine the location of the failure point using the first distance relay 110 and the second distance relay 120 is selectively operated. Referring now to FIG. 6, a description is given of the protection system 100 of a power system in accordance with one embodiment of the present invention.
  • One side of the first distance relay 110 may be connected to a bus, that is, a superconducting cable, and the other may be connected to a breaker (not shown).
  • One side of the second distance relay 120 may be connected to the bus bar, and the other side of the second distance relay 120 may be connected to a breaker (not shown) through the contact switch 140.
  • the protection system 100 of the power system may be configured to include two distance relays, where the first distance relay 110 is operated when the superconducting state, the second distance The relay 120 is characterized in that it is operated when in the quench state. To this end, the first distance relay 110 and the second distance relay 120 may apply different correction values, respectively, to determine whether the breaker operates.
  • the first correction value may be applied to the first distance relay 110
  • the second correction value may be applied to the second distance relay 120.
  • the second correction value is set higher than the first correction value because the impedance value generated in the bus bar is higher than that of the superconducting state.
  • the protection system 100 of the power system includes a contact switch 140 so that the first distance relay 110 and the second distance relay 120 are selectively operated. It is done.
  • the contact switch 140 is one side is connected to the other side of the second distance relay 120, the other side is connected to the breaker and the contact switch 140 is open when the superconducting state. That is, the contact switch 140 is opened in the superconducting state, as shown in FIG. 6, so that the breaker is controlled only by the first distance relay 110.
  • the overcurrent relay 130 has one side connected to the bus bar, the other side connected to the contact switch 140, and measures the line current and the line voltage of the superconducting cable, thereby determining whether the superconducting cable is in the quench state.
  • the contact switch is closed by transmitting a signal to operate the contact switch.
  • the breaker may be operated under the control of the second distance relay 120. That is, the overcurrent relay 130 determines that the quench state occurs when the line current exceeds the threshold current, and operates the contact switch 140.
  • the power system protection system 100 selectively selects the first distance relay 110 and the second distance relay 120 by operating the contact switch 140 through the overcurrent relay 130. Can be operated.
  • each distance relay can determine the failure point based on a different correction value, it is possible to determine the exact failure point compared to the prior art, thereby enabling more accurate failure handling.
  • FIG. 7 is a flowchart illustrating a method of operating a protection system of a power system according to an embodiment of the present invention. Now, a description will be given of a method of operating a protection system of a power system according to an embodiment of the present invention with reference to FIG. 7.
  • an impedance that is, a correction value
  • a first correction value may be set for the first distance relay and a second correction value may be set for the second distance relay.
  • the first distance relay is operated when the bus is in the superconducting state
  • the second distance relay is operated when the bus is in the quench state.
  • examples of the first correction value and the second correction value set in each distance relay are shown in Table 2 below.
  • the first distance relay indicates a first distance relay (ie, a distance relay operated when in a superconducting state), and a second distance relay.
  • a first distance relay ie, a distance relay operated when in a superconducting state
  • a second distance relay ie, a distance relay operated when in the quench state
  • step S120 the line voltage of the superconducting cable is input by the overcurrent relay, and the operation of the contact switch is controlled according to the magnitude of the line current.
  • step S120 is a step of controlling the operation of the contact switch by comparing the line current and the predetermined threshold current.
  • the power system protection system may selectively operate the first distance relay and the second distance relay through a contact switch. By operating the contact switch by comparison, it is possible to selectively operate the first distance relay and the second distance relay. Accordingly, the first distance relay may operate when the superconducting cable is in the superconducting state, and the second distance relay may operate when the superconducting cable is in the quench state. If the line current exceeds the threshold current as a result of the determination in step S120, control is passed to step S130. Otherwise control passes to step S140.
  • Step S130 is a step of calculating the impedance of the superconducting cable by the second distance relay
  • step S140 is a step of calculating the impedance of the superconducting cable by the first distance relay.
  • the impedance is calculated by the distance relays based on the obtained line current and the line voltage, and the position of the failure point can be determined based on the result of the calculation and the corresponding action can be performed.
  • Steps S150 to S170 are steps of determining whether the location of the failure point is a Zone 1 point, a Zone 2 point, and a Zone 3 point.
  • the determination made in steps S150 to S170 may be determined based on different criteria, that is, different correction values, through the first distance relay or the second distance relay.
  • different correction values that is, different correction values, through the first distance relay or the second distance relay.
  • Step S155 is performed when it is determined that the location of the failure point is the Zone 1 point, and the step of tripping the breaker instantaneously.
  • Step S165 is a step performed when it is determined that the location of the failure point is a Zone 2 point, and is a step of tripping the circuit breaker 20 cycles.
  • Step S175 is performed when it is determined that the location of the failure point is Zone 3 point, and is a step of tripping the breaker for 30 cycles.
  • the protection system and its operation method according to an embodiment of the present invention is characterized in that it is made in consideration of the quench phenomenon of the transmission system is installed superconducting cable.
  • FIGS. 8A and 8B an example of a power system protection system and a method for operating the power system according to an embodiment of the present invention are shown in FIGS. 8A and 8B.
  • FIGS. 8A and 8B are schematic diagrams illustrating an example in which a protection system of a power system according to an embodiment of the present invention is applied to a superconducting cable application system.
  • a protection system and a method of operating the power system according to an embodiment of the present invention may be connected to a superconducting cable line and its adjacent line and adjacent line, as shown in FIGS. 8A and 8B. It can be configured and operated on the trailing track.
  • the protection system of the power system and an operation method thereof according to an embodiment of the present invention can more accurately determine the location of the failure point through the two correction values described with reference to Table 2 above.
  • the line impedance is Z3 [ ⁇ ] in the superconducting state and Z3 '[ ⁇ ] in the quench state.
  • the distance relays that operate the circuit breakers CB (3R) and CB (4L) of the line where the superconducting cable is installed are affected by the superconducting cable impedance change in all Zone1, Zone2, and Zone3 areas, and the circuit breakers CB (2R) and CB (5L)
  • the distance relay to operate is affected by the superconducting cable impedance change in the Zone2 and Zone3 areas, and the distance relay operating the breakers CB (1R) and CB (6L) is affected by the superconducting cable impedance changes only in the Zone3 area.
  • 9 and 14 are impedance complex plan views for setting an operating region of a distance relay of a superconducting cable installation section line substation, a distance relay operating region of an adjacent line section substation, and a distance relay operating region of a trailing line section substation.
  • 9A and 9B show an impedance complex plan view applied to a distance relay for a S3 substation CB (3R) breaker.
  • 10A and 10B show an impedance complex top view applied to a distance relay for a S4 substation CB (4L) breaker.
  • 11A and 11B show an impedance complex plan view applied to a distance relay for an S2 substation CB (2R) breaker.
  • 12A and 12B show an impedance complex top view applied to a distance relay for a S5 substation CB (5L) breaker.
  • 13A and 13B show an impedance complex top view applied to a distance relay for an S1 substation CB (1R) breaker.
  • 14A and 14B show an impedance complex plan view applied to a distance relay for a S6 substation CB (6L) breaker.
  • the selection of both substations of the line where the superconducting cable is installed and the two substations of the adjacent line and the two substations of the adjacent line are affected by the characteristics of the line impedance changed by the quench phenomenon of the superconducting cable.
  • the power system protection system and its operation method according to an embodiment of the present invention can be applied to the protection system.
  • the correction using two distance relays in the superconducting cable application system protection system the superconducting cable threshold when the superconducting cable quench phenomenon occurs
  • the breaker trip signal of the distance relay reflecting the quench phenomenon By using a switch, so that the fault point of the system can be accurately identified even if the line impedance changes, and the fault section can be separated without malfunction. There is this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

본 발명은 전력 계통의 보호 시스템 및 이의 동작 방법에 관한 것이다. 이를 위한 본 발명의 초전도 케이블이 적용된 전력 계통의 보호 시스템은 일측이 모선에 연결되고, 타측이 차단기에 연결된 제 1 거리 계전기; 일측이 모선에 연결된 제 2 거리 계전기; 타측이 제 2 거리 계전기의 타측과 차단기에 연결된 접점 스위치; 및 일측이 모선에 연결되고, 타측이 접점 스위치에 연결되며, 초전도 케이블의 선로 전류 및 선로 전압을 입력 받고, 선로 전류의 크기에 따라 접점 스위치의 동작을 제어하는 과전류 계전기를 포함하고, 제 1 거리 계전기와 제 2 거리 계전기는 각각 상이한 정정치들이 적용되어 차단기의 동작 여부를 결정하는 것을 특징으로 한다.

Description

전력 계통의 보호 시스템 및 이의 동작 방법
본 발명은 전력 계통의 보호 시스템 및 이의 동작 방법(SYSTEM FOR PROTRECTING POWER SYSTEM AND METHOD FOR OPERATING THE SAME)에 관한 것이고, 보다 상세하게 초전도케이블 적용계통에서 초전도 케이블의 상태를 고려하여 계통 고장을 적절히 제거할 수 있는 시스템 및 이의 동작 방법에 관한 것이다.
송전선로에 고장이 발생하였을 경우에 고장 위치를 판별하고 고장선로를 자동으로 계통에서 분리하여 계통을 보호하기 위하여 고장 발생과 거의 동시(이하 순시)에 보호하는 방법으로 전류 차동 계전기를 이용한 보호 방식이 주로 채택되고 있다. 여기서, 이러한 전류 차동 계전기는 주보호 계전기라 불린다. 주보호 계전기에 의해 정상적으로 고장선로를 계통에서 분리하지 못하는 경우에 고장구간을 차단할 수 있도록 후비보호 계전기를 설치하여 운영하고 있는데, 국내 송전선로에서는 주로 거리 계전기를 이용하고 있다.
도 1은 송전선로 보호를 위해 사용되는 3단계 한시 거리 계전 방식의 개념을 설명하기 위한 계통도이다. S1 변전소에서 S6 변전소까지 송전선로로 연결되어 운전할 경우, S3 변전소와 S4 변전소 사이에 설치된 송전선로에서 고장(F3)이 발생한 상황을 가정한다. 여기서, 주보호인 전류차동 계전기가 동작하지 않으면 후비보호로서 거리계전기인 21Ry(3R)과 21Ry(4L)이 동작하여, 차단기 CB(3R)과 CB(4L)을 순시로 트립(trip) 시킴으로써 고장구간을 순시로 차단한다. 이것을 거리계전기의 Zone1 동작이라고 한다. 거리계전기 21Ry(3R)과 21Ry(4L)이 동작하지 않으면, 21Ry(2R)과 21Ry(5L)이 동작하여 약 20사이클 후에 CB(2R)과 CB(5L)을 Trip시키며, 이것을 Zone2 동작이라고 한다. 21Ry(2R)과 21Ry(5L)이 동작하지 않으면 마지막으로 21Ry(1R)과 21Ry(6L)이 동작하여 CB(2R)과 CB(5L)을 약 100사이클 후에 트립 시키며, 이것을 Zone3 동작이라고 한다. 거리계전기 21Ry(3R)의 관점에서 후비보호를 설명하면, 자기보호 구간에서의 고장인 F3 지점에서의 고장이 발생하면 거리계전기 21Ry(3R)은 순시 차단인 Zone1으로 동작하고, 인접 선로에서의 고장인 F4 지점에서의 고장에서는 20사이클 지연 차단인 Zone2로 동작하며, 그 후단의 F5 지점에서의 고장은 100사이클 지연 차단인 Zone3로 동작한다
계통고장의 확대를 방지하는 거리계전기의 후비보호 동작을 위해서는 계전기가 적절히 동작할 수 있도록 Zone1, Zone2, Zone3 동작을 위한 계전기 정정(세팅)을 수행하여야 한다. 송전선로는 도 1에 도시된 것처럼, 거리에 따라 임피던스가 Z1, Z2, Z3, Z4, Z5[Ω] 등으로 결정된다. 또한 계전기의 입력 요소인 송전선로의 전압과 전류로서 고장점의 임피던스를 계산할 수 있으므로 이 값으로 고장위치를 판별할 수 있다. 따라서 각 거리계전기에는 자기 보호구간의 임피던스를 Zone1 정정치, 인접 구간까지의 임피던스를 Zone2 정정치, 그 후단 구간까지의 임피던스를 Zone3 정정치로 설정하여 운전하게 된다.
도 1과 같은 송전선로 계통에서 거리계전기 21Ry(3R)의 정정치는 도 2와 같이 자기 보호구간 Zone1의 송전선로 임피던스는 Z3[Ω], Zone2 구간은 Z3[Ω]+Z4[Ω], Zone3는 Z3[Ω]+Z4[Ω]+Z5[Ω]이 되며, 계전기 및 송전선로 임피던스의 오차를 고려하여 적절한 기준1) 에 따라 계전기를 정정(세팅)하여 운전한다. 예를 들어, Zone1 정정치는 자기 구간 선로 임피던스의 85%, Zone 2 정정치는 자기 구간 선로 임피던스에 다음 구간 선로 임피던스의 50%를 더한 값, Zone3 정정치는 자기 구간 선로 임피던스에 다음 구간 선로 임피던스의 125%를 더한 값 등이다.
도 1의 계통에서 S3 변전소와 S4 변전소 사이에서 발생하는 고장 F3를 기준으로 후비보호용 계전기들의 보호구간별 임피던스는 표 1과 같다.
Figure PCTKR2016013418-appb-T000001
표 1에 도시된 바와 같이 F3 고장점은 21Ry(3R)과 21Ry(4L) 계전기의 Zone1 구간 선로 임피던스, 21Ry(2R)과 21Ry(5L) 계전기의 Zone2 구간 선로 임피던스, 21Ry(1R)과 21Ry(6L) 계전기의 Zone3 구간 선로 임피던스의 영향하에 있으므로, 이것을 고려하여 계전기 정정치를 입력하여 계통을 보호하고 있다.
위에서 설명된 바와 같이 송전선로의 후비보호용 거리계전기는 송전선로의 임피던스를 기준으로 고장점을 판별하여 고장 위치에 따라 계전기 동작시간에 차이를 줌으로써 계통에서 고장선로를 효과적으로 분리하는 방식이다.
초전도 케이블은 저항이 0을 유지하는 임계전류가 존재하는데, 이 임계전류를 초과하면 초전도 성질을 잃게 되어 큰 저항값을 갖는 성질을 갖게 된다. 이러한 성질은 퀜치 형상이라 불린다.
기존의 송전선로에 초전도케이블을 적용하는 경우에 정상상태에서는 초전도케이블의 저항은 0이 되고, 계통 고장시에 고장전류 크기가 임계전류 이하이면 저항은 0을 유지한다. 그러나 초전도 케이블에 임계전류보다 큰 고장전류가 흐르면 퀜치 현상에 의해 계통 임피던스는 변하게 된다.
예를 들어, 도 1과 같은 계통의 S3 변전소와 S4 변전소 사이에 도 3과 같이 초전도케이블을 설치하여 운전하는 경우에 초전도상태의 선로 임피던스를 Z3[Ω], 퀜치 상태의 선로 임피던스를 Z3'[Ω]이라고 가정하면, 거리계전기 21Ry(3R)의 경우에 보호구간은 도 4a 및 도 4b와 같이 초전도케이블의 상태에 따라 2개의 거리계전기 보호구간이 존재하게 되며, 고장 발생시 초전도 케이블의 상태를 고려하지 않고 어느 1개의 보호구간 설정방법으로는 오동작이 발생할 수 있다.
이에 관련하여, 한국등록특허 제0961186호(명칭: 배전계통에 초전도 전류제한기 적용시 새로운 보호협조방법)가 존재한다.
본 발명은 초전도케이블 적용계통에서 초전도케이블이 초전도 상태로 운전되었을 때 퀜치 현상 유무에 따른 오동작 및 부동작이 없이 계통 고장을 적절히 제거할 수 있는 전력 계통의 보호 시스템 및 이의 동작 방법을 제공하는데 그 목적이 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 초전도 케이블이 적용된 전력 계통의 보호 시스템은 일측이 모선에 연결되고, 타측이 차단기에 연결된 제 1 거리 계전기; 일측이 모선에 연결된 제 2 거리 계전기; 타측이 제 2 거리 계전기의 타측과 차단기에 연결된 접점 스위치; 및 일측이 모선에 연결되고, 타측이 접점 스위치에 연결되며, 초전도 케이블의 선로 전류 및 선로 전압을 입력 받고, 선로 전류의 크기에 따라 접점 스위치의 동작을 제어하는 과전류 계전기를 포함하고, 제 1 거리 계전기와 제 2 거리 계전기는 각각 상이한 정정치들이 적용되어 차단기의 동작 여부를 결정하는 것을 특징으로 한다.
또한, 과전류 계전기는 선로 전류가 임계 전류를 초과할 때 퀜치 상태가 발생한 것으로 판단하고, 접점 스위치를 동작시킬 수 있다.
또한, 제 1 거리 계전기와 제 2 거리 계전기는 접점 스위치의 동작에 따라 선택적으로 동작될 수 있다.
또한, 제 1 거리 계전기는 초전도 케이블이 초전도 상태일 때 동작되고, 제 2 거리 계전기는 초전도 케이블이 퀜치 상태일 때 동작될 수 있다.
또한, 제 1 거리 계전기에는 제 1 정정치가 적용되고, 제 2 거리 계전기에는 제 2 정정치가 적용되며, 제 2 정정치는 제 1 정정치보다 클 수 있다.
또한, 제 2 거리 계전기는 초전도 케이블의 임피던스를 계산하고, 초전도 케이블의 임피던스와, 제 2 정정치를 비교함으로써 고장점을 판단할 수 있다.
또한, 제 1 거리 계전기는 초전도 케이블의 임피던스를 계산하고, 초전도 케이블의 임피던스와, 제 1 정정치를 비교함으로써 고장점을 판단할 수 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 일측이 모선에 연결되고, 타측이 차단기에 연결된 제 1 거리 계전기, 일측이 모선에 연결된 제 2 거리 계전기, 타측이 제 2 거리 계전기의 타측과 차단기에 연결된 접점 스위치 및 일측이 모선에 연결되고, 타측이 접점 스위치에 연결되는 과전류 계전기를 포함하는 초전도 케이블이 적용된 전력 계통의 보호 시스템의 동작 방법은 제 1 거리 계전기에 의해, 제 1 정정치를 설정하는 단계; 제 2 거리 계전기에 의해, 제 2 정정치를 설정하는 단계; 과전류 계전기에 의해, 초전도 케이블의 선로 전류 및 선로 전압을 입력 받는 단계; 및 과전류 계전기에 의해, 선로 전류의 크기에 따라 접점 스위치의 동작을 제어하는 단계를 포함하고, 제 1 정정치와 제 2 정정치는 서로 다른 것을 특징으로 한다.
또한, 접점 스위치의 동작을 제어하는 단계는 선로 전류가 임계 전류를 초과할 때 퀜치 상태가 발생한 것으로 판단하는 단계; 및 퀜치 상태가 발생한 것으로 판단할 때 접점 스위치를 동작시키는 단계를 포함할 수 있다.
또한, 제 1 거리 계전기와 제 2 거리 계전기는 접점 스위치의 동작에 따라 선택적으로 동작될 수 있다.
또한, 제 1 거리 계전기는 초전도 케이블이 초전도 상태일 때 동작되고, 제 2 거리 계전기는 초전도 케이블이 퀜치 상태일 때 동작될 수 있다.
또한, 본 발명의 일 실시예에 따른 전력 계통 보호 시스템의 동작 방법은 제 2 거리 계전기에 의해, 초전도 케이블의 임피던스를 계산하는 단계; 및 초전도 케이블의 임피던스와 제 2 정정치를 비교함으로써 고장점을 판단하는 단계를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 전력 계통 보호 시스템의 동작 방법은 제 1 거리 계전기에 의해, 초전도 케이블의 임피던스를 계산하는 단계; 및 초전도 케이블의 임피던스와 제 1 정정치를 비교함으로써 고장점을 판단하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법에 따르면, 초전도케이블의 상태(예를 들어, 초전도 상태 및 퀜치 상태)에 따라 서로 다른 정정치가 적용된 거리 계전기를 선택적으로 동작시킴으로써, 계통 고장을 정확히 제거하고, 고장점을 정확히 판단할 수 있는 효과가 있다.
또한, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법에 따르면, 송전계통 보호 방안으로 적용할 경우 초전도케이블이 적용된 계통 고장 시 거리계전기의 오동작 및 부동작을 방지할 수 있고, 기존 보호시스템과 동일하게 계통 고장을 차단할 수 있으므로 대규모 정전으로의 고장파급을 예방할 수 있고, 초전도케이블 확대 사용에 기여할 수 있는 효과가 있다.
도 1은 송전선로 보호를 위해 사용되는 3단계 한시 거리계전방식의 개념을 설명하기 위한 계통도이다.
도 2는 3단계 한시 거리계전방식의 보호구간 정정치를 설정하는 방법에 대한 개념도이다.
도 3은 초전도케이블이 설치된 계통의 예시를 나타내는 계통도이다.
도 4a 및 도 4b는 초전도케이블이 적용된 계통의 3단계 한시 거리계전방식의 개념을 설명하기 위한 개념도이다.
도 5는 일반적인 송전선로 후비보호 시스템에 대한 구성도이다.
도 6은 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템에 대한 구성도이다.
도 7은 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템의 동작 방법에 대한 흐름도이다.
도 8a 및 도 8b는 초전도케이블 적용 계통에 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템이 적용된 예시를 나타내는 계통도이다.
도 9 내지 도 14는 초전도케이블 적용 계통의 후비보호용 거리 계전기의 Zone1, Zone2, Zone3 동작 영역 정정의 예시를 설명하기 위한 선로 임피던스 복소 평면도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
본 발명의 일 실시예에 따른 전력 계통의 보호 시스템에 대한 설명을 하기 앞서, 종래기술에 따른 후비보호 시스템에 대해 먼저 설명된다.
도 5는 종래의 송전선로 후비보호 시스템(12)에 대한 구성도이다. 도 5에 도시된 것처럼, 종래의 송전선로 후비보호 시스템(12)은 거리 계전기를 포함하여 구성될 수 있고, 거리 계전기는 선로 전압 및 선로 전류에 따라 동작될 수 있다. 구체적으로, 거리 계전기는 PT(potential transformer)와 CT(current transformer)를 통해 측정된 선로 전압과 선로 전류를 근거로 임피던스를 계산하고, 임피던스를 이용하여 고장점의 위치를 추정하며, 고장점의 위치에 따라 차단기를 제어한다. 즉, 위에서 설명된 것처럼 거리 계전기는 고장점의 위치를 추정하되, 고장점의 위치가 Zone1 구간이면 순시 트립, Zone2 구간이면 20사이클 지연 트립, Zone3 구간이면 100사이클 지연 트립하도록 구성되어 있다.
하지만, 위에서 설명한 바와 같이, 초전도케이블이 설치된 계통에서는 초전도케이블 선로의 임피던스가 초전도 상태일 경우에 퀜치 상태일 경우의 임피던스가 다르고, 고장전류의 크기에 따라 초전도케이블이 초전도상태를 유지하거나 퀜치 상태로 변하므로 종래의 후비보호 시스템(12) 만으로는 고장점 위치를 판별하는데 오류가 발생하여, 이에 따른 적합한 제어도 어려운 문제가 존재한다.
이에 따라, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)은 이러한 종래 기술의 문제점을 해소하기 위해, 퀜치 상태와 초전도 상태를 각각 구분하여 정정치를 설정하고, 초전도 케이블의 상태에 따라 상이하게 설정된 정정치를 근거로 고장점을 찾는 것을 특징으로 한다. 이제, 도 6을 참조로 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)에 대한 설명이 이루어진다.
도 6은 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)에 대한 구성도이다. 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)은 상술한 기능을 수행하기 위해 제 1 거리 계전기(110), 제 2 거리 계전기(120), 과전류 계전기(130) 및 접점 스위치(140)를 포함하여 구성될 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)은 초전도케이블의 상태(즉, 초전도 상태 또는 퀜치 상태)에 따라 제 1 거리 계전기(110)와 제 2 거리 계전기(120)를 선택적으로 동작시키고, 선택적으로 동작되는 제 1 거리 계전기(110)와 제 2 거리 계전기(120)를 이용하여 고장점의 위치를 판단하는 것을 특징으로 한다. 이제, 도 6을 참조로, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)에 대한 설명이 이루어진다.
제 1 거리 계전기(110)는 일측이 모선 즉, 초전도 케이블에 연결되고, 타측이 차단기(미도시)에 연결될 수 있다. 제 2 거리 계전기(120)는 일측이 모선에 연결되고, 타측이 접점 스위치(140)를 통해 차단기(미도시)에 연결될 수 있다. 즉, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)은 2개의 거리 계전기를 포함하여 구성될 수 있는데 여기서, 제 1 거리 계전기(110)는 초전도 상태일 때 동작되고, 제 2 거리 계전기(120)는 퀜치 상태일 때 동작되는 것을 특징으로 한다. 이를 위해 제 1 거리 계전기(110)와 제 2 거리 계전기(120)는 각각 상이한 정정치들이 적용되어 차단기의 동작 여부를 결정할 수 있다. 구체적으로, 제 1 거리 계전기(110)에는 제 1 정정치가 적용될 수 있고, 제 2 거리 계전기(120)는 제 2 정정치가 적용될 수 있다. 위에서 설명된 것처럼 퀜치 상태가 발생할 경우, 초전도 상태에 비해 모선에 발생되는 임피던스 값이 높으므로 제 2 정정치는 제 1 정정치 보다 높게 설정된다.
여기서, 제 1 거리 계전기(110)와 제 2 거리 계전기(120)가 선택적으로 동작되도록, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템(100)은 접점 스위치(140)를 포함하는 것을 특징으로 한다. 여기서, 접점 스위치(140)는 일측이 제 2 거리 계전기(120)의 타측에 연결되고, 타측이 차단기에 연결되며 초전도 상태일 때는 접점 스위치(140)가 개방되어 있다. 즉, 도 6에 도시된 것처럼 초전도 상태에는 접점 스위치(140)가 개방되어, 차단기는 제 1 거리 계전기(110)를 통한 제어만 받게 된다.
과전류 계전기(130)는 일측이 모선에 연결되고, 타측이 접점 스위치(140)에 연결되며, 초전도 케이블의 선로 전류 및 선로 전압을 측정함으로써, 초전도 케이블이 퀜치 상태인지 판단하는 기능을 한다. 판단 결과, 초전도 케이블이 퀜치 상태인 경우 접점 스위치가 동작되도록 신호를 전달함으로써 접점 스위치가 닫히게 된다. 이에 따라, 퀜치 상태가 발생할 경우, 차단기는 제 2 거리 계전기(120)의 제어에 따라 동작될 수 있다. 즉, 과전류 계전기(130)는 선로 전류가 임계 전류를 초과할 때 퀜치 상태가 발생한 것으로 판단하고, 접점 스위치(140)를 동작시키는 것을 특징으로 한다.
즉, 본 발명의 일 실시예에 따른 전력 계통 보호 시스템(100)은 과전류 계전기(130)를 통해 접점 스위치(140)를 동작시킴으로써 제 1 거리 계전기(110)와 제 2 거리 계전기(120)를 선택적으로 동작시킬 수 있다. 또한, 각 거리 계전기는 서로 다른 정정치를 근거로 고장점을 판단할 수 있으므로, 종래기술 대비 정확한 고장점의 판단이 가능해지며, 이로 인해 보다 정확한 고장 대처가 가능해진다.
도 7은 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템의 동작 방법에 대한 흐름도이다. 이제, 도 7을 참조로 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템의 동작 방법에 대한 설명이 이루어진다.
S110 단계는 각 거리 계전기에 임피던스 즉, 정정치를 설정하는 단계이다. 위에서 설명된 것처럼, 제 1 거리 계전기에는 제 1 정정치가 설정될 수 있고, 제 2 거리 계전기에는 제 2 정정치가 설정될 수 있다. 여기서, 제 1 거리 계전기는 모선이 초전도 상태일 때 동작되고, 제 2 거리 계전기는 모선이 퀜치 상태일 때 동작된다. 여기서, 각 거리 계전기에 설정되는 제 1 정정치와 제 2 정정치에 대한 예시는 아래의 표 2에 도시된다.
Figure PCTKR2016013418-appb-T000002
표 2를 참조하면, 하나의 차단기 당 2개의 거리 계전기가 연결됨을 알 수 있고, 각 차단기별로 첫번째 거리 계전기는 제 1 거리 계전기(즉, 초전도 상태일 때 동작되는 거리 계전기)를 나타내고, 두번째 거리 계전기는 제 2 거리 계전기(즉, 퀜치 상태일 때 동작되는 거리 계전기)를 나타낸다.
S120 단계는 과전류 계전기에 의해, 초전도 케이블의 선로 전압을 입력 받고, 선로 전류의 크기에 따라 접점 스위치의 동작을 제어하는 단계이다. 구체적으로, S120 단계는 선로 전류와 미리 설정된 임계 전류를 비교함으로써 접점 스위치의 동작을 제어하는 단계이다. 도 6을 참조로 설명한 것처럼 본 발명의 일 실시예에 따른 전력 계통 보호 시스템은 접점 스위치를 통해 제 1 거리 계전기와 제 2 거리 계전기를 선택적으로 동작시킬 수 있고, S120 단계는 선로 전류와 임계 전류의 비교를 통해 접점 스위치를 동작시킴으로써, 제 1 거리 계전기와 제 2 거리 계전기를 선택적으로 동작시킬 수 있다. 이에 따라, 초전도 케이블이 초전도 상태일 때에는 제 1 거리 계전기가 동작할 수 있고, 초전도 케이블이 퀜치 상태일 때에는 제 2 거리 계전기가 동작할 수 있다. S120 단계에서의 판단 결과 선로 전류가 임계 전류를 초과할 경우, 제어는 S130 단계로 전달된다. 그렇지 않을 경우 제어는 S140 단계로 전달된다.
S130 단계는 제 2 거리 계전기에 의해, 초전도 케이블의 임피던스를 계산하는 단계이고, S140 단계는 제 1 거리 계전기에 의해 초전도 케이블의 임피던스를 계산하는 단계이다. S130 단계와 S140 단계는 각 거리 계전기에 의해, 획득한 선로 전류 및 선로 전압을 근거로 임피던스를 계산하는 단계이고, 이러한 계산 결과를 근거로 고장점의 위치 판단과 이에 따른 대처가 가능해진다.
S150 단계 내지 S170 단계는 고장점의 위치가 Zone 1 지점, Zone 2 지점 및 Zone 3 지점 중 어느 지점인지 판단하는 단계이다. S150 단계 내지 S170 단계에서 이루어지는 판단은 제 1 거리 계전기 또는 제 2 거리 계전기를 통해 각각 상이한 기준 즉, 상이한 정정치를 근거로 판단이 이루어질 수 있다. 여기서, 정정치에 대한 예시는 위에서 표 2를 참조로 설명되었으므로 중복되는 설명은 생략한다.
S155 단계는 고장점의 위치가 Zone 1 지점인 것으로 판단될 때 수행되는 단계로서, 차단기를 순시 트립시키는 단계이다. S165 단계는 고장점의 위치가 Zone 2 지점인 것으로 판단될 때 수행되는 단계로서, 차단기를 20사이클 지연 트립시키는 단계이다. S175 단계는 고장점의 위치가 Zone 3 지점인 것으로 판단될 때 수행되는 단계로서, 차단기를 30사이클 지연 트립시키는 단계이다.
이처럼, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법은 초전도케이블이 설치된 송전계통의 퀜치 현상을 고려하여, 이루어지는 것을 특징으로 한다. 여기서, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법이 적용된 전력 계통에 대한 예시는 도 8a 및 도 8b에 도시된다.
도 8a 및 도 8b는 초전도케이블 적용 계통에 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템이 적용된 예시를 나타내는 계통도이다. 도 8a 및 도 8b에 도시된 것처럼, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법은 도 8a 및 도 8b에 도시된 것처럼, 초전도케이블 선로와 그 인접선로 및 인접선로에 접해있는 후단 선로에 구성하여 운영될 수 있다. 또한, 본 발명의 일 실시예에 따른 전력 계통의 보호 시스템 및 이의 동작 방법은 위에서 표 2를 참조로 설명된 2개의 정정치를 통해 보다 정확히 고장점의 위치를 판단할 수 있다.
예를 들어, 도 8a 및 도 8b에 도시된 것처럼, S3 변전소와 S4 변전소 사이에 초전도케이블이 설치되었을 경우에 초전도상태에서 선로 임피던스가 Z3[Ω], 퀜치 상태에서 Z3'[Ω]이라고 가정하면, 초전도케이블이 설치된 선로의 차단기 CB(3R)과 CB(4L)을 동작시키는 거리계전기는 Zone1, Zone2, Zone3 영역 모두에서 초전도케이블 임피던스 변화에 영향을 받고, 차단기 CB(2R)과 CB(5L)을 동작시키는 거리계전기는 Zone2, Zone3 영역에서 초전도케이블 임피던스 변화에 영향을 받으며, 차단기CB(1R)과 CB(6L)을 동작시키는 거리계전기는 Zone3 영역에서만 초전도케이블 임피던스 변화에 영향을 받는다. 초전도케이블 설치구간 선로 변전소의 거리계전기의 동작영역, 인접선로 구간변전소의 거리계전기 동작영역 및 후단선로 구간 변전소의 거리계전기 동작영역 설정을 위한 임피던스 복소평면도는 도 9 내지 도 14에 도시된다.
여기서, 도 9a 및 도 9b는 S3 변전소 CB(3R) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다. 도 10a 및 도 10b는 S4 변전소 CB(4L) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다. 도 11a 및 도 11b는 S2 변전소 CB(2R) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다. 도 12a 및 도 12b는 S5 변전소 CB(5L) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다. 도 13a 및 도 13b는 S1 변전소 CB(1R) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다. 도 14a 및 도 14b는 S6 변전소 CB(6L) 차단기용 거리 계전기에 적용되는 임피던스 복소평면도를 나타낸다.
위에서 설명한 바와 같이, 초전도케이블 적용계통에서 초전도케이블의 퀜치 현상에 의해 선로 임피던스가 변하는 특성에 영향을 받는 초전도케이블이 설치된 선로의 양단 변전소와 인접선로의 2개 변전소 및 후단 선로의 2개 변전소의 후비보호시스템에 본 발명의 일 실시예에 따른 전력 계통 보호 시스템 및 이의 동작 방법이 적용될 수 있다. 즉, 본 발명의 일 실시예에 따른 전력 계통 보호 시스템 및 이의 동작 방법을 적용함으로써, 초전도케이블 적용 계통 후비보호 시스템 내부의 2대의 거리 계전기를 이용해 정정하고, 초전도케이블 퀜치 현상 발생 시에는 초전도케이블 임계전류를 과전류 계전기에 의해 검출하여 퀜치 현상을 반영한 거리계전기의 차단기 Trip신호를 스위치를 이용하여 동작할 수 있도록 함으로써 선로 임피던스 변화에도 계통의 고장점을 정확히 판별하여 고장구간을 오동작 없이 분리할 수 있는 장점이 있다.
이상에서와 같이 도면과 명세서에서 최적의 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (13)

  1. 초전도 케이블이 적용된 전력 계통의 보호 시스템으로서,
    일측이 모선에 연결되고, 타측이 차단기에 연결된 제 1 거리 계전기;
    일측이 모선에 연결된 제 2 거리 계전기;
    타측이 상기 제 2 거리 계전기의 타측과 상기 차단기에 연결된 접점 스위치; 및
    일측이 모선에 연결되고, 타측이 상기 접점 스위치에 연결되며, 상기 초전도 케이블의 선로 전류 및 선로 전압을 입력 받고, 상기 선로 전류의 크기에 따라 상기 접점 스위치의 동작을 제어하는 과전류 계전기를 포함하고,
    상기 제 1 거리 계전기와 상기 제 2 거리 계전기는 각각 상이한 정정치들이 적용되어 상기 차단기의 동작 여부를 결정하는 것을 특징으로 하는 전력 계통 보호 시스템.
  2. 제1항에 있어서,
    상기 과전류 계전기는 상기 선로 전류가 임계 전류를 초과할 때 퀜치 상태가 발생한 것으로 판단하고, 상기 접점 스위치를 동작시키는 것을 특징으로 하는 전력 계통 보호 시스템.
  3. 제2항에 있어서,
    상기 제 1 거리 계전기와 상기 제 2 거리 계전기는 상기 접점 스위치의 동작에 따라 선택적으로 동작되는 것을 특징으로 하는 전력 계통 보호 시스템.
  4. 제2항에 있어서,
    상기 제 1 거리 계전기는 상기 초전도 케이블이 초전도 상태일 때 동작되고, 상기 제 2 거리 계전기는 상기 초전도 케이블이 퀜치 상태일 때 동작되는 것을 특징으로 하는 전력 계통 보호 시스템.
  5. 제1항에 있어서,
    상기 제 1 거리 계전기에는 제 1 정정치가 적용되고, 상기 제 2 거리 계전기에는 제 2 정정치가 적용되며, 상기 제 2 정정치는 상기 제 1 정정치보다 큰 것을 특징으로 하는 전력 계통 보호 시스템.
  6. 제5항에 있어서,
    상기 제 2 거리 계전기는 상기 초전도 케이블의 임피던스를 계산하고, 상기 초전도 케이블의 임피던스와, 상기 제 2 정정치를 비교함으로써 고장점을 판단하는 것을 특징으로 하는 전력 계통 보호 시스템.
  7. 제5항에 있어서,
    상기 제 1 거리 계전기는 상기 초전도 케이블의 임피던스를 계산하고, 상기 초전도 케이블의 임피던스와, 상기 제 1 정정치를 비교함으로써 고장점을 판단하는 것을 특징으로 하는 전력 계통 보호 시스템.
  8. 일측이 모선에 연결되고, 타측이 차단기에 연결된 제 1 거리 계전기, 일측이 모선에 연결된 제 2 거리 계전기, 타측이 상기 제 2 거리 계전기의 타측과 상기 차단기에 연결된 접점 스위치 및 일측이 모선에 연결되고, 타측이 상기 접점 스위치에 연결되는 과전류 계전기를 포함하는 초전도 케이블이 적용된 전력 계통의 보호 시스템의 동작 방법으로서,
    제 1 거리 계전기에 의해, 제 1 정정치를 설정하는 단계;
    제 2 거리 계전기에 의해, 제 2 정정치를 설정하는 단계;
    과전류 계전기에 의해, 상기 초전도 케이블의 선로 전류 및 선로 전압을 입력 받는 단계; 및
    상기 과전류 계전기에 의해, 상기 선로 전류의 크기에 따라 상기 접점 스위치의 동작을 제어하는 단계를 포함하고,
    상기 제 1 정정치와 상기 제 2 정정치는 서로 다른 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
  9. 제8항에 있어서,
    상기 접점 스위치의 동작을 제어하는 단계는,
    상기 선로 전류가 임계 전류를 초과할 때 퀜치 상태가 발생한 것으로 판단하는 단계; 및
    상기 퀜치 상태가 발생한 것으로 판단할 때 상기 접점 스위치를 동작시키는 단계를 포함하는 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
  10. 제9항에 있어서,
    상기 제 1 거리 계전기와 상기 제 2 거리 계전기는 상기 접점 스위치의 동작에 따라 선택적으로 동작되는 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
  11. 제9항에 있어서,
    상기 제 1 거리 계전기는 상기 초전도 케이블이 초전도 상태일 때 동작되고, 상기 제 2 거리 계전기는 상기 초전도 케이블이 퀜치 상태일 때 동작되는 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
  12. 제11항에 있어서,
    상기 제 2 거리 계전기에 의해, 상기 초전도 케이블의 임피던스를 계산하는 단계; 및
    상기 초전도 케이블의 임피던스와 상기 제 2 정정치를 비교함으로써 고장점을 판단하는 단계를 더 포함하는 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
  13. 제11항에 있어서,
    상기 제 1 거리 계전기에 의해, 상기 초전도 케이블의 임피던스를 계산하는 단계; 및
    상기 초전도 케이블의 임피던스와 상기 제 1 정정치를 비교함으로써 고장점을 판단하는 단계를 더 포함하는 것을 특징으로 하는 전력 계통 보호 시스템의 동작 방법.
PCT/KR2016/013418 2016-11-04 2016-11-21 전력 계통의 보호 시스템 및 이의 동작 방법 WO2018084354A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0146986 2016-11-04
KR1020160146986A KR101890035B1 (ko) 2016-11-04 2016-11-04 전력 계통의 보호 시스템 및 이의 동작 방법

Publications (1)

Publication Number Publication Date
WO2018084354A1 true WO2018084354A1 (ko) 2018-05-11

Family

ID=62075524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013418 WO2018084354A1 (ko) 2016-11-04 2016-11-21 전력 계통의 보호 시스템 및 이의 동작 방법

Country Status (2)

Country Link
KR (1) KR101890035B1 (ko)
WO (1) WO2018084354A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880735A (zh) * 2019-12-20 2020-03-13 深圳供电局有限公司 一种中压配电网超导电缆自启动的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055685A (ja) * 2009-09-04 2011-03-17 Railway Technical Res Inst 超電導直流き電システム、および故障検出方法
KR101074324B1 (ko) * 2008-10-07 2011-10-17 창원대학교 산학협력단 초전도 전력케이블의 고장 검출방법
KR20130011810A (ko) * 2011-07-22 2013-01-30 엘에스산전 주식회사 보호협조 시스템
KR20130053184A (ko) * 2011-11-15 2013-05-23 한국전력공사 초전도케이블 보호용 열동계전기 보호협조 시스템
KR20160000209A (ko) * 2014-06-24 2016-01-04 숭실대학교산학협력단 전력계통에서 거리 계전기의 동작 협조 방법, 이를 수행하기 위한 기록 매체 및 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961186B1 (ko) 2008-05-20 2010-06-09 숭실대학교산학협력단 배전계통에 초전도 전류제한기 적용시 새로운 보호협조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074324B1 (ko) * 2008-10-07 2011-10-17 창원대학교 산학협력단 초전도 전력케이블의 고장 검출방법
JP2011055685A (ja) * 2009-09-04 2011-03-17 Railway Technical Res Inst 超電導直流き電システム、および故障検出方法
KR20130011810A (ko) * 2011-07-22 2013-01-30 엘에스산전 주식회사 보호협조 시스템
KR20130053184A (ko) * 2011-11-15 2013-05-23 한국전력공사 초전도케이블 보호용 열동계전기 보호협조 시스템
KR20160000209A (ko) * 2014-06-24 2016-01-04 숭실대학교산학협력단 전력계통에서 거리 계전기의 동작 협조 방법, 이를 수행하기 위한 기록 매체 및 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880735A (zh) * 2019-12-20 2020-03-13 深圳供电局有限公司 一种中压配电网超导电缆自启动的方法

Also Published As

Publication number Publication date
KR101890035B1 (ko) 2018-08-21
KR20180050155A (ko) 2018-05-14

Similar Documents

Publication Publication Date Title
TWI399898B (zh) 三相電力系統之接地故障電路斷流器系統
KR100709980B1 (ko) 비접지 배전계통에서 영상전류 위상차와 크기 비교에 의한고장구간 검출방법 및 시스템
US8233254B2 (en) Method of ensuring the coordinated arc fault protection in a heirarchial power distribution system
Tziouvaras et al. Protecting mutually coupled transmission lines: Challenges and solutions
US11217412B2 (en) Low-voltage circuit breaker device
WO2011037288A1 (ko) 배전 보호협조 시스템 및 운영방법
US5566082A (en) Method of detecting a fault section of busbar
US9954352B2 (en) Power system including a circuit providing smart zone selective interlocking communication
WO2018084354A1 (ko) 전력 계통의 보호 시스템 및 이의 동작 방법
CN107516877B (zh) 小电阻接地系统故障保护装置、系统和方法
CN103036219A (zh) 低压微电网综合保护方法
CN105098736A (zh) 一种带出线电抗器的母联保护方法
CN112039031B (zh) 一种配电网单相接地故障差异化处理与故障区域隔离方法
CN103560501A (zh) 可控型小电阻消弧装置和方法
CN107317309A (zh) 一种基于goose的接地方式协同控制转换方法及系统
KR20090107644A (ko) 실계통에서의 초전도 한류기 적용방법
CN111181126A (zh) 一种基于输电系统拓扑动态调整短路电流的方法及系统
RU2695643C1 (ru) Способ трансформации систем электроснабжения TN-C-S и ТТ и система электроснабжения для осуществления способа с защитным вводным разнономинальным коммутационным аппаратом (ВРКА)
JP2020167774A (ja) 保護装置
GB2521143A (en) An improved ring main unit
WO2021235607A1 (ko) 다회로 직류 차단 시스템
Guo et al. Fast Communication-Based Protection and Isolation Schemes
WO2020022674A1 (ko) 전류 제한 장치 및 이를 포함하는 직류 차단 시스템
KR20180033007A (ko) 전력 계통의 보호 장치
CN105958452A (zh) 电网分布式网络保护方法及保护装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920881

Country of ref document: EP

Kind code of ref document: A1