WO2018084116A1 - ユーザ装置及びリソース選択方法 - Google Patents

ユーザ装置及びリソース選択方法 Download PDF

Info

Publication number
WO2018084116A1
WO2018084116A1 PCT/JP2017/039160 JP2017039160W WO2018084116A1 WO 2018084116 A1 WO2018084116 A1 WO 2018084116A1 JP 2017039160 W JP2017039160 W JP 2017039160W WO 2018084116 A1 WO2018084116 A1 WO 2018084116A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
period
received power
window
user apparatus
Prior art date
Application number
PCT/JP2017/039160
Other languages
English (en)
French (fr)
Inventor
真平 安川
聡 永田
チュン ジョウ
ホワン ワン
ジン ワン
リュー リュー
アンシン リ
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2018084116A1 publication Critical patent/WO2018084116A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a user device and a resource selection method.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • 4G Long Term Evolution Advanced
  • FRA Full Radio Access
  • 5G 5th Generation
  • Non-Patent Document 1 D2D (Device-to-Device) technology for performing communication has been studied (for example, Non-Patent Document 1).
  • D2D reduces the traffic between the user apparatus and the base station, and enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
  • D2D includes D2D discovery (D2D discovery, also called D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between user devices. And so on).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, D2D communication, direct communication between terminals
  • D2D signal A signal transmitted and received in D2D is referred to as a D2D signal.
  • V2X Vehicle to Everything
  • ITS Intelligent Transport Systems
  • V2V Vehicle Transport Vehicle
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to
  • V2P Vehicle to Pedestrian
  • V2X especially V2V
  • user devices eg, automobiles
  • V2V user devices
  • a transmission resource including reselection
  • the user equipment performs resource sensing in the background, and selects a resource from resources that are not used or reserved (may be referred to as occupancy) or resources with low interference.
  • occupancy may be referred to as occupancy
  • resources with low interference A resource selection scheme has been proposed.
  • the user equipment transmits V2X packets at intervals of n ⁇ 100 ms (n is an arbitrary integer from 1 to 10). Therefore, when performing sensing by measuring the received power of resources, the user apparatus obtains a sensing result that is performed at 100 ms intervals in the past time direction starting from a resource that is a selection candidate for transmitting a V2X packet. Based on this, the study was undertaken on the premise of grasping the occupancy status of the resource as a selection candidate.
  • the disclosed technique has been made in view of the above, and an object of the present invention is to provide a technique that enables sensing in consideration of signal transmission in a short cycle.
  • the user apparatus of the disclosed technology is a user apparatus that selects a resource for periodically transmitting a signal based on a sensing result, and corresponds to a resource that is a candidate for transmitting a signal in a past time direction And a selection unit that selects a resource for periodically transmitting a signal based on a measurement result, and the measurement unit is a candidate for transmitting the signal.
  • the received power of the resource is measured in the first period
  • the second time window before the first time window, or the first time window and the In the second time window the received power of the resource is measured in a second period longer than the first period.
  • a technique that enables sensing in consideration of signal transmission in a short cycle.
  • V2X It is a figure for demonstrating D2D. It is a figure for demonstrating D2D. It is a figure for demonstrating MAC PDU used for D2D communication. It is a figure for demonstrating the format of SL-SCH subheader. It is a figure which shows the structural example of the radio
  • LTE corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense, including the 5th generation (5G) communication system.
  • 5G 5th generation
  • the present embodiment is mainly intended for V2X
  • the technology according to the present embodiment is not limited to V2X and can be widely applied to D2D in general.
  • D2D includes V2X as its meaning.
  • the term “D2D” is not limited to D2D in LTE but refers to communication between terminals in general.
  • D2D is not only a procedure for transmitting / receiving D2D signals between user apparatuses UE, but also a procedure for receiving (monitoring) D2D signals by the base station, and a connection with the base station 10 in the case of RRC idle.
  • the user apparatus UE is used in a broad sense including a processing procedure for transmitting an uplink signal to the base station 10.
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery As shown in FIG. 2A, for each Discovery period (also referred to as PSDCH (Physical Sidelink Discovery Channel) period), a resource pool for the Discovery message is secured, and the user apparatus UE within the resource pool A Discovery message (discovery signal) is transmitted. More specifically, there are Type 1 and Type 2b. In Type1, the user apparatus UE autonomously selects a transmission resource from the resource pool. In Type 2b, a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
  • RRC Radio Resource Control
  • D2D communication As shown in FIG. 2B, a resource pool for SCI (Sidelink Control Information) / data transmission is periodically secured.
  • the user apparatus UE on the transmission side notifies the reception side of the data transmission resource and the like by SCI with the resource selected from the Control resource pool (PSCCH (Physical Sidelink Control Channel) resource pool), and transmits the data with the data transmission resource.
  • PSCCH Physical Sidelink Control Channel
  • D2D communication includes Mode1 and Mode2.
  • resources are dynamically allocated by (E) PDCCH ((Enhanced) Physical Downlink Control Channel) sent from the base station 10 to the user apparatus UE.
  • PDCCH Physical Downlink Control Channel
  • the user apparatus UE autonomously selects transmission resources from the resource pool.
  • the resource pool is notified by SIB (System Information Block) or a predefined one is used.
  • SIB System Information Block
  • PSDCH Physical Downlink Control Information
  • PSCCH Physical Downlink Control Information
  • PSSCH PhysicalSSidelink Shared Channel
  • a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D communication includes at least a MAC header, a MAC Control element, a MAC SDU (Service Data Unit), and padding.
  • the MAC PDU may contain other information.
  • the MAC header is composed of one SL-SCH (Sidelink Shared Channel) subheader and one or more MAC PDU subheaders.
  • the SL-SCH subheader includes a MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like.
  • V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus UE.
  • Information relating to the transmission source is set in the transmission source information.
  • An identifier related to the ProSe UE ID may be set in the transmission source information.
  • Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
  • FIG. 5 is a diagram illustrating a configuration example of a wireless communication system according to the embodiment.
  • the radio communication system according to the present embodiment includes a base station 10, a user apparatus UE1, and a user apparatus UE2.
  • the user apparatus UE1 is intended for the transmission side and the user apparatus UE2 is intended for the reception side, but both the user apparatus UE1 and the user apparatus UE2 have both the transmission function and the reception function.
  • the user apparatus UE1 and the user apparatus UE2 are not particularly distinguished, they are simply described as “user apparatus UE”.
  • the user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 5 each have a function of cellular communication as the user apparatus UE in LTE (5G), and a D2D function including signal transmission / reception on the above-described channel. Moreover, user apparatus UE1 and user apparatus UE2 have a function which performs the operation
  • the user apparatus UE may be any apparatus having a D2D function.
  • the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function), or the like. is there.
  • the base station 10 includes an RSU (eNB type RSU having an eNB function).
  • sensing means, for example, a method using a measurement result of received power (may be referred to as reception energy or reception intensity), a method using a decoding result of D2D control information, or a combination thereof. Is done.
  • the “resource” includes a time resource (eg, subframe) or a time and frequency resource (eg, subchannel) unless otherwise specified.
  • the “D2D signal” may be referred to as a D2D communication signal (may be D2D control information, data, or a combination of D2D control information and data). It may be referred to as a V2X sidelink communication signal.
  • FIG. 6 is a diagram for explaining an outline of sensing and resource candidate detection methods.
  • the “sensing window” is a time window determined in advance that the user apparatus UE should perform sensing, and is set to 1000 ms at the maximum in the current 3GPP regulations.
  • the “selection window” is a time window determined in advance as a period during which the user apparatus UE should select a resource based on the sensing result.
  • the user apparatus UE selects a resource to be used for transmission of the D2D signal from resource candidates included in the selection window among resource candidates detected by sensing.
  • the start timing of the selection window is a timing at which the user apparatus UE selects (including reselection) a resource for transmitting the D2D signal or later.
  • the timing at which the user apparatus UE selects a resource for transmitting a D2D signal is, for example, data to be transmitted in an upper layer (for example, a V2V application) in the user apparatus UE, and the data selects a resource. This is the timing at which the layer arrives (for example, the MAC layer or the physical layer).
  • the sensing described above is an operation of detecting in advance a resource candidate capable of transmitting a D2D signal in a future resource. That is, when the selection window is visited, the user apparatus UE performs sensing in the background in advance so that the resource for transmitting the D2D signal can be selected from the resource candidates detected in advance. deep.
  • a method for detecting a resource candidate capable of transmitting a D2D signal by sensing for example, excludes a reserved resource grasped by decoding D2D control information received by sensing from a future resource, and remaining resources.
  • a resource candidate a method in which an average value of received power of resources measured by sensing is equal to or greater than a predetermined threshold is excluded from future resources, and a remaining resource as a resource candidate, and a method of combining these Etc.
  • the correspondence relationship between the resources in the sensing window and future resources is explicitly indicated by the reservation information included in the D2D control signal, or a quasi-static correspondence relationship (for example, sensing If the average received power of a resource with a period of 100 ms in the window is equal to or greater than a predetermined threshold, it is implicitly indicated based on, for example, estimating that the resource with the period after the next 100 ms is occupied.
  • FIG. 6 shows the received power measurement target resources (R1 to R10) corresponding to the resource candidate C1 in the selection window.
  • the resources R1 to R10 are arranged at an interval of 100 ms starting from the resource candidate C1, and the frequency resources of the resources R1 to R10 are the same as the frequency resource of the resource candidate C1.
  • the user apparatus UE measures the received power (S-RSSI (Sidelink Received Signal Strength Indicator)) of each of the resources R1 to R10, and when the average value of each S-RSSI is equal to or greater than a predetermined threshold, It is estimated that the resource candidate C1 is occupied. Further, for example, the user apparatus UE estimates that the resource candidate C1 is not occupied when the average value of each S-RSSI is less than a predetermined threshold value and no reservation is made by reservation information. become. It is estimated whether or not resources other than C1 in the selection window (for example, resources having a frequency different from C1, resources in subframes different from C1, etc.) are occupied by the same method.
  • S-RSSI Servicelink Received Signal Strength Indicator
  • the user equipment UE in order to reduce battery consumption of the user equipment UE, the user equipment UE does not perform sensing in all subframes in the sensing window, but is called “partial sensing” in which sensing is performed only in limited subframes. Sensing methods are also being studied. In partial sensing, the user apparatus UE cannot estimate whether all the resources in the selection window are occupied, and whether only the resource candidates corresponding to the limited subframe are occupied. Will be estimated.
  • the user apparatus UE has a function of transmitting a D2D signal at an interval shorter than a 100 ms cycle, more specifically, at a cycle of 20 ms and 50 ms.
  • a resource pool for example, a resource pool for V2X
  • the shortest period for example, any of 100 ms, 50 ms, 20 ms, etc.
  • the user apparatus UE periodically transmits the D2D signal within the allowable transmission period.
  • the user apparatus UE may have a function of executing all or only a part of the sensing methods described below. Also, among the sensing method (part 1) to sensing method (part 4), the base station 10 may instruct (set) the sensing method from the base station 10, or the user device UE selects itself. You may do it.
  • the user apparatus UE uses a method similar to the reception power measurement method described in FIG. 6, but measures the reception power for a resource having the same cycle as the transmission cycle of the D2D signal. .
  • the transmission cycle of the D2D signal is 20 ms
  • the user apparatus UE measures the reception power at intervals of 20 ms
  • the transmission cycle of the D2D signal is 50 ms
  • the user apparatus UE measures the reception power at intervals of 50 ms.
  • the transmission cycle of the D2D signal is 100 ms or more, the received power is measured for a resource having a cycle of 100 ms as in the example of FIG.
  • the user apparatus UE measures the received power at a cycle of 20 ms or 50 ms in the latter half of the sensing window, and 100 ms other than the latter half of the sensing window. The received power is measured at intervals.
  • FIG. 7 is a diagram illustrating a measurement example when the transmission period is 20 ms in the sensing method (part 2).
  • the sensing window is 1000 ms
  • the time length (X) of the latter half window is set to 200 ms.
  • the user apparatus UE measures the received power of each of the resources R1 to R8 corresponding to the resource candidate C1 in a period of 100 ms in the 800 ms period other than the latter window in the sensing window, and in the latter window, the 20 ms period. Then, the received power of each of the resources R9 to R18 corresponding to the resource candidate C1 is measured.
  • FIG. 8 is a diagram showing a measurement example when the transmission period is 50 ms in the sensing method (part 2).
  • the sensing window is 1000 ms
  • the time length (X) of the latter half window is set to 500 ms.
  • the user apparatus UE measures the received power of each of the resources R1 to R5 corresponding to the resource candidate C1 in a period of 100 ms during a period of 500 ms other than the latter window in the sensing window, and in a 50 ms period in the latter window. Then, the received power of each of the resources R6 to R15 corresponding to the resource candidate C1 is measured.
  • the time length (X) of the second half window may be set to a different value for each transmission cycle. For example, when the transmission period is 20 ms, the time length (X) of the second half window is set to 100 ms or 200 ms, and when the transmission period is 50 ms, the time length (X) of the second half window is 100 ms or 500 ms. May be set. For example, it may be set to a positive integer multiple of the transmission period (but not more than the time length of the sensing window). Also, the time length (X) of the latter half window may be fixedly set regardless of the transmission cycle. For example, the time length (X) of the latter half window may be fixedly set to 100 ms or 200 ms. For example, it may be fixedly set to a positive integer multiple of 100 ms (but not more than the time length of the sensing window).
  • the time length (X) of the latter half window may be determined in the standard specification, may be preconfigured in the user equipment UE, or may be base in higher layers (broadcast information, RRC signaling, etc.)
  • the station 10 may set the user apparatus UE.
  • the user apparatus UE estimates whether or not the resource candidate is occupied based on the average value of all measured received powers.
  • the present invention is not limited to this, for example, based on the average value of received power measured in a period other than the latter window and the average received power measured in the latter window period. Thus, it may be estimated whether the resource candidate is occupied.
  • the sensing method (part 2) has been described. If the received power measured with a short period (20 ms, 50 ms, etc.) is averaged over the entire sensing window, other user apparatuses UE transmit D2D signals with a short period (20 ms, 50 ms, etc.) in the first half of the sensing window. When the user equipment UE performs the resource reselection and the like is canceled, the received power of the D2D signal transmitted so far will be averaged. On the other hand, in the sensing method (part 2), since the measurement is performed in a short period focusing on the second half of the sensing window, the influence when another user apparatus UE performs resource reselection in the sensing window is partially considered. In addition, the received power can be measured more appropriately. In addition, since the number of received powers to be averaged is reduced, it is possible to reduce the processing load on the user apparatus UE.
  • the user apparatus UE measures the received power in the 100 ms cycle in the entire sensing window, and the 20 ms cycle, 50 ms cycle, or 20 ms cycle in the latter half of the sensing window. And the received power is measured at a cycle of 50 ms.
  • the received power is measured at a 20 ms period, the received power is measured at a 50 ms period, or the received power is measured at both a 20 ms and 50 ms period May be determined based on the shortest period allowed as the transmission period of the D2D signal. For example, when the allowable period is 20 ms, the user apparatus UE may measure the received power at a 20 ms period, or at a 20 ms period and a 50 ms period. For example, when the allowable period is 50 ms, the user apparatus UE may measure the received power at a period of 50 ms.
  • You may determine based on the transmission period of the D2D signal in the user apparatus UE.
  • the user apparatus UE whose transmission cycle is 20 ms measures reception power at a 20 ms period, or 20 ms period and 50 ms period, and the user apparatus UE whose transmission period is 50 ms receives reception power at a 50 ms period. Measurement may be performed.
  • FIG. 9 is a diagram illustrating a measurement example when the received power is measured at a 100 ms cycle over the entire sensing window in the sensing method (part 3).
  • the user apparatus UE measures the received power of each of the resources R1 to R10 corresponding to the resource candidate C1 in a 100 ms cycle in the sensing window.
  • FIGS. 10 and 11 are diagrams showing measurement examples when the received power is measured in a 20 ms cycle in the latter half window in the sensing method (part 3).
  • the time length (X) of the latter half window is set to 100 ms
  • the selection window is set to 20 ms.
  • the time length (X) of the latter half window is set to 100 ms
  • the selection window is set to 50 ms.
  • the user apparatus UE measures the received power of each of the resources R1 to R5 corresponding to the resource candidate C1 in a period of 20 ms during the 100 ms period of the latter half window.
  • FIG. 12 is a diagram showing a measurement example when the received power is measured at a period of 50 ms in the latter half window in the sensing method (part 3).
  • the time length (X) of the latter half window is set to 100 ms.
  • the user apparatus UE measures the received power of each of the resources R1 to R2 corresponding to the resource candidate C1 in a period of 50 ms during the 100 ms period of the latter half window.
  • FIGS. 13 and 14 are diagrams showing a measurement example (variation example) when the received power is measured in a 20 ms cycle in the latter half window in the sensing method (part 3).
  • the time length (X) of the latter half window is set to 100 ms
  • the end timing of the latter half window is set to the subframe of the candidate resource C1
  • the selection window is set to 20 ms.
  • the time length (X) of the latter half window is set to 100 ms
  • the end timing of the latter half window is set to the subframe of the candidate resource C1
  • the selection window is set to 50 ms.
  • the user apparatus UE measures the received power of each of the resources R1 to R5 corresponding to the resource candidate C1 in a period of 20 ms during the 100 ms period of the latter half window.
  • there are two resource candidates C1 (C1 indicated by a solid line and C1 indicated by a dotted line) in the lower diagram. This is because resources R1 to R5 are one of the two resource candidates C1. It is also intended to support.
  • FIG. 15 is a diagram illustrating a measurement example (variation example) in the case where the received power is measured at a period of 50 ms in the latter half window in the sensing method (part 3).
  • the time length (X) of the latter half window is set to 100 ms
  • the end timing of the latter half window is set to the subframe of the candidate resource C1.
  • the user apparatus UE measures the received power of each of the resources R1 to R2 corresponding to the resource candidate C1 in a period of 50 ms during the 100 ms period of the latter half window.
  • the time length (X) of the latter half window may be fixedly set regardless of the transmission cycle.
  • the time length (X) of the latter half window may be fixedly set to 100 ms or 200 ms.
  • the present invention is not limited to this, and the time length (X) of the latter half window may be set to, for example, a positive integer multiple of 100 ms (however, less than the time length of the sensing window).
  • the sensing method (part 2) when the transmission cycle is 20 ms, the time length (X) of the latter half window is set to 100 ms or 200 ms, and when the transmission cycle is 50 ms, the time of the latter half window is set.
  • the length (X) may be set to 100 ms or 500 ms. Further, the time length (X) of the latter half window may be set to a positive integer multiple of the transmission cycle (but not more than the time length of the sensing window).
  • the time length (X) of the latter half window may be determined in the standard specification, may be preconfigured in the user equipment UE, or may be base in higher layers (broadcast information, RRC signaling, etc.)
  • the station 10 may set the user apparatus UE.
  • the end timing of the latter half of the window (whether the sensing window end timing or the resource candidate subframe is matched) may be defined in the standard specification, or preset in the user apparatus UE ( It may be preconfigured) or may be set from the base station 10 to the user apparatus UE in an upper layer (broadcast information, RRC signaling, etc.).
  • the user apparatus UE obtains the average of received power (first S-RSSI) measured in the entire sensing window (that is, 100 ms period) and the received power (first (S-RSSI of 2) is estimated based on a value having a large average value, whether or not the resource candidate is occupied. If the received power is measured at a 20 ms period and a 50 ms period in the latter half window, the user apparatus UE averages the received power (first S-RSSI) measured in the entire sensing window (that is, 100 ms period).
  • the present invention is not limited to this, and the user apparatus UE estimates whether or not the resource candidate is occupied based on the average value of all measured received powers as in the sensing method (part 2). May be.
  • the sensing method (part 3) has been described above. Even in the sensing method (part 3), since the measurement is performed in a short period focusing on the second half of the sensing window, the received power can be measured more appropriately. In addition, since the number of received powers to be averaged is reduced, it is possible to reduce the processing load on the user apparatus UE.
  • sensing method (4) In the sensing methods (part 2 and part 3) described above, it is assumed that the user apparatus UE performs reception power measurement in a 20 ms or 50 ms cycle in the background. On the other hand, in the sensing method (part 4), the user apparatus UE measures the received power at a cycle of 100 ms until the timing for selecting (reselecting) the resource for transmitting the D2D signal arrives.
  • the received power may be additionally measured in a 20 ms cycle and / or a 50 ms cycle for a predetermined period (Y).
  • the predetermined period (Y) may be referred to as an added sensing window.
  • FIG. 16 is a diagram illustrating a measurement example in the case of additionally measuring the received power at a cycle of 20 ms in the sensing method (part 4).
  • the predetermined period (Y) is set to 100 ms.
  • the user apparatus UE measures the received power of the resource R1 having a 100 ms cycle corresponding to the resource candidate C1 in the background. Subsequently, when the selection (reselection) of the resource is triggered, the received power of the resource R2 having a 20 ms period corresponding to the resource candidate C1 is measured for a predetermined period (Y).
  • the received power is measured at a 20 ms period, the received power is measured at a 50 ms period, or the received power is measured at both a 20 ms and 50 ms period in the latter half of the window.
  • it may be determined based on the shortest period allowed as the transmission period of the D2D signal in the resource pool.
  • the “predetermined period (Y)” indicates the start timing of the “second window time length (X)” described in the sensing method (part 2), and the user apparatus UE uses the resource. It can be considered that it matches the timing of selection (reselection).
  • the user apparatus UE may perform estimation of whether the resource candidate is occupied by a method similar to the sensing method (part 2) or the sensing method (part 3). . That is, the user apparatus UE occupies resource candidates based on an average value obtained by averaging the received power measured in the sensing window and the received power measured in the added sensing window (predetermined period (Y)). You may make it estimate whether it exists. Moreover, the user apparatus UE is based on the value with the largest average value among the average of the received power measured in the sensing window and the average of the received power measured in the added sensing window (predetermined period (Y)). Alternatively, it may be estimated whether the resource candidate is occupied.
  • the sensing method (part 4) since the resource cannot be selected until the “predetermined period (Y)” elapses, the user apparatus UE receives the D2D signal until the “predetermined period (Y)” elapses. (For example, when a V2X packet to be transmitted with a low delay occurs), the resource may be selected at random and the D2D signal may be transmitted, or the D2D signal may be transmitted using the selected resource. May be transmitted. So far, the sensing method (part 4) has been described. By using the sensing method (part 4), until the user apparatus UE selects (reselects) a resource (that is, when a D2D signal to be transmitted is generated), sensing is performed with a long cycle. Therefore, it becomes possible to reduce the battery consumption of the user apparatus UE. Moreover, it becomes possible to implement
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the user apparatus according to the embodiment.
  • the user apparatus UE includes a signal transmission unit 101, a signal reception unit 102, a measurement unit 103, and a selection unit 104.
  • FIG. 17 shows only functional units that are particularly related to the embodiment of the present invention in the user apparatus UE, and has at least a function (not shown) for performing an operation based on LTE (5G).
  • LTE LTE
  • the functional configuration illustrated in FIG. 17 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 101 includes a function of generating various types of physical layer signals from a D2D signal to be transmitted to another user apparatus UE or the base station 10 and wirelessly transmitting them.
  • the signal transmission unit 101 includes a D2D signal transmission function and a cellular communication transmission function.
  • the signal transmission unit 101 has a function of transmitting a D2D signal using the resource selected by the selection unit 104.
  • the signal receiving unit 102 includes a function of wirelessly receiving various signals from other user apparatuses UE or the base station 10 and acquiring higher layer signals from the received physical layer signals.
  • the signal receiving unit 102 includes a D2D signal reception function and a cellular communication reception function.
  • the measuring unit 103 has a function of measuring received power of a plurality of resources in the past time direction corresponding to a resource (resource candidate) that is a candidate for transmitting a D2D signal.
  • the measurement unit performs the first time window (“time length (X) of the latter half window (X)” or “predetermined period (Y)” in the above-described embodiment)) before the resource candidate for transmitting the D2D signal.
  • the first time window and the second time window have a function of measuring the received power of the resource at a second period (such as 100 ms) longer than the first period.
  • the first time window may be set to a time length that is a positive integer multiple of the transmission cycle of the D2D signal in the user apparatus UE.
  • the start timing of the first time window may be a timing at which the selection unit 104 performs resource selection or resource reselection.
  • FIG. 18 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • the base station 10 includes a signal transmission unit 201, a signal reception unit 202, and a notification unit 203.
  • FIG. 18 shows only functional units that are particularly related to the embodiment of the present invention in the base station 10 and has at least a function (not shown) for performing an operation compliant with LTE.
  • the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating various types of physical layer signals from the upper layer signals to be transmitted from the base station 10 and wirelessly transmitting the signals.
  • the signal receiving unit 202 includes a function of wirelessly receiving various signals from the user apparatus UE and acquiring a higher layer signal from the received physical layer signal.
  • the notification unit 203 notifies the user apparatus UE of various information used for the user apparatus UE to perform the operation according to the present embodiment using broadcast information (for example, SIB) or RRC signaling.
  • the various information includes, for example, information indicating resource pool settings, The length of the sensing window, the shortest period allowed as the transmission period of the D2D signal in the resource pool (for example, the resource pool for V2X), “the time length of the second half window (X)”, or “predetermined period (Y ) ".
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the base station 10 and the user apparatus UE in an embodiment of the present invention may function as a computer that performs processing of the resource selection method of the present invention.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of the base station and the user apparatus according to the embodiment.
  • the base station 10 and the user apparatus UE described above may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the base station 10 and the user apparatus UE may be configured to include one or a plurality of the apparatuses illustrated in the figure, or may be configured not to include some apparatuses.
  • Each function in the base station 10 and the user apparatus UE is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculation, communication by the communication apparatus 1004, and memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the signal transmission unit 201, the signal reception unit 202, and the notification unit 203 of the base station 10 and the signal transmission unit 101, the signal reception unit 102, the measurement unit 103, and the selection unit 104 of the user apparatus UE are realized by the processor 1001. Also good.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 201, the signal reception unit 202, and the notification unit 203 of the base station 10 and the signal transmission unit 101, the signal reception unit 102, the measurement unit 103, and the selection unit 104 of the user apparatus UE are stored in the memory 1002. It may be realized by a control program that operates on the processor 1001, and may be realized similarly for other functional blocks.
  • processor 1001 may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the resource selection method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the signal transmission unit 201 and the signal reception unit 202 of the base station 10 and the signal transmission unit 101 and the signal reception unit 102 of the user apparatus UE may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the base station 10 and the user equipment UE include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a past time corresponding to a resource that is a candidate for transmitting a signal which is a user apparatus that selects a resource for periodically transmitting a signal based on a sensing result
  • the measurement unit is a candidate for transmitting the signal
  • the received power of the resource is measured in the first period, and the second time window before the first time window, or the first time window and
  • a user equipment is provided that measures received power of a resource in a second period longer than the first period in the second time window.
  • the measurement unit measures the received power of the resource in the first period in the first time window, and is longer than the first period in the first time window and the second time window.
  • the reception power of the resource is measured at a cycle of the measurement, and the selection unit obtains a measurement result of measuring the reception power of the resource at the first cycle and a measurement result of measuring the reception power of the resource at the second cycle.
  • Resources may be selected based on the averaged average value. As a result, in the first half of the sensing window, measurement is not performed in a short cycle, and thus reception power can be measured more appropriately.
  • the number of received powers to be averaged is reduced, it is possible to reduce the processing load on the user apparatus UE.
  • the measurement unit measures the received power of a resource in a first period in the first time window, and measures the received power of a resource in a second period longer than the first period in the second time window.
  • the selection unit is configured to calculate an average value among an average value of measurement results obtained by measuring the received power of resources in the first cycle and an average value of measurement results obtained by measuring the received power of resources in the second cycle.
  • a resource may be selected based on a large value. As a result, in the first half of the sensing window, measurement is not performed in a short cycle, and thus reception power can be measured more appropriately. In addition, since the number of received powers to be averaged is reduced, it is possible to reduce the processing load on the user apparatus UE.
  • the first time window may be set to a time length that is a positive integer multiple of the signal transmission period in the user apparatus. It is possible to set the length of the first time window to various lengths.
  • the start timing of the first time window may be a timing at which the selection unit performs resource selection. Accordingly, until the user apparatus UE selects (reselects) a resource, sensing is performed with a long cycle, and thus it is possible to reduce battery consumption of the user apparatus UE.
  • a resource selection method executed by a user apparatus that selects a resource for periodically transmitting a signal based on a result of singing, which is a resource to be a candidate for signal transmission
  • a method is provided. According to this resource selection method, a technique is provided that enables sensing in consideration of signal transmission performed in a short cycle.
  • the D2D control information may be referred to as SCI (Sidelink Control Information).
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the user equipment UE is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • the base station 10 may be referred to as “eNB (enhanced NodeB)”, “NR (New Radio) node”, “gNB”, “eLTE eNB (evolution LTE enhanced NodeB)”, and the like.
  • eNB enhanced NodeB
  • NR New Radio
  • gNB New Radio
  • eLTE eNB evolution LTE enhanced NodeB
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • UE user apparatus 10 base station 101 signal transmission unit 102 signal reception unit 103 measurement unit 104 selection unit 201 signal transmission unit 202 signal reception unit 203 notification unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

センシングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置であって、信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定部と、測定結果に基づいて信号を周期的に送信するリソースを選択する選択部と、を有し、前記測定部は、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する、ユーザ装置を提供する。

Description

ユーザ装置及びリソース選択方法
 本発明は、ユーザ装置及びリソース選択方法に関する。
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、4G、FRA(Future Radio Access)、5Gなどともいう)では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている(例えば、非特許文献1)。
 D2Dは、ユーザ装置と基地局との間のトラヒックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。
 また、3GPP(3rd Generation Partnership Project)では、D2D機能を拡張することでV2X(Vehicle to Everything)を実現することが検討されている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
"Key drivers for LTE success:Services Evolution"、2011年9月、3GPP、インターネットURL:http://www.3gpp.org/ftp/Information/presentations/presentations_2011/2011_09_LTE_Asia/2011_LTE-Asia_3GPP_Service_evolution.pdf 3GPP TS36.300 V14.0.0(2016-09)
 V2X、特に、V2Vでは、ユーザ装置(例:自動車)は高密度に存在し、高速に移動するので、ダイナミックにリソースを割り当てる方式では非効率であることから、ユーザ装置が自律的にリソースを選択する方式が用いられることが検討されている。複数のユーザ装置が自律的に送信リソースを選択(再選択を含む)する方式において、各ユーザ装置が自由にリソースを選択するとなると、リソースの衝突が生じ、受信側のユーザ装置は信号を適切に受信できなくなる。そこで、3GPPでは、ユーザ装置はバックグラウンドでリソースのセンシングを行っておき、使用ないし予約(占有と呼んでもよい)されていないリソース又は干渉の少ないリソースの中からリソースの選択を行う、センシングベースのリソース選択方式が提案されている。
 これまでの3GPPの検討では、ユーザ装置は、n×100ms間隔(nは1~10の任意の整数)の周期でV2Xパケットを送信することが前提であった。そのため、リソースの受信電力を測定することでセンシングを行う場合において、ユーザ装置は、V2Xパケットを送信するための選択候補となるリソースを起点として、過去の時間方向に100ms間隔で行われるセンシング結果に基づいて、選択候補となるリソースの占有状況を把握する前提で検討が進められていた。
 ここで、最近の3GPPの検討では、ユーザ装置は、100msよりも短い間隔の周期でV2Xパケットを送信したいという要望がなされている。しかしながら、これまでの3GPPの検討では、ユーザ装置は、センシングを100ms間隔で行う前提であり、100msよりも短い間隔の周期でV2Xパケットの送信が行われることを考慮したセンシング方法については規定されていない。
 開示の技術は上記に鑑みてなされたものであって、短い周期で信号の送信が行われることを考慮したセンシングを行うことを可能にする技術を提供することを目的とする。
 開示の技術のユーザ装置は、センシングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置であって、信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定部と、測定結果に基づいて信号を周期的に送信するリソースを選択する選択部と、を有し、前記測定部は、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する。
 開示の技術によれば、短い周期で信号の送信が行われることを考慮したセンシングを行うことを可能にする技術が提供される。
V2Xを説明するための図である。 D2Dを説明するための図である。 D2Dを説明するための図である。 D2D通信に用いられるMAC PDUを説明するための図である。 SL-SCH subheaderのフォーマットを説明するための図である。 実施の形態に係る無線通信システムの構成例を示す図である。 センシング及びリソース候補の検出方法の概要を説明するための図である。 センシング方法(その2)において送信周期が20msの場合の測定例を示す図である。 センシング方法(その2)において送信周期が50msの場合の測定例を示す図である。 センシング方法(その3)において100ms周期で測定を行う場合の測定例を示す図である。 センシング方法(その3)において20ms周期で受信電力の測定を行う場合の測定例を示す図である。 センシング方法(その3)において20ms周期で受信電力の測定を行う場合の測定例を示す図である。 センシング方法(その3)において50ms周期で受信電力の測定を行う場合の測定例を示す図である。 センシング方法(その3)において20ms周期で受信電力の測定を行う場合の測定例(変形例)を示す図である。 センシング方法(その3)において20ms周期で受信電力の測定を行う場合の測定例(変形例)を示す図である。 センシング方法(その3)において50ms周期で受信電力の測定を行う場合の測定例(変形例)を示す図である。 センシング方法(その4)において20ms周期で追加的に受信電力の測定を行う場合の測定例を示す図である。 実施の形態に係るユーザ装置の機能構成の一例を示す図である。 実施の形態に係る基地局の機能構成の一例を示す図である。 実施の形態に係る基地局及びユーザ装置のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代(5G)の通信方式も含む広い意味で使用する。
 また、本実施の形態は、主にV2Xを対象としているが、本実施の形態に係る技術は、V2Xに限らず、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含むものである。また、「D2D」の用語は、LTEにおけるD2Dに限らず、端末間通信全般を指すものである。
 また、「D2D」は、ユーザ装置UE間でD2D信号を送受信する処理手順のみならず、D2D信号を基地局が受信(モニタ)する処理手順、及び、RRC idleの場合若しくは基地局10とコネクションを確立していない場合に、ユーザ装置UEが基地局10に上り信号を送信する処理手順を含む広い意味で使用する。
 <D2Dの概要>
 まず、LTEで規定されているD2Dの概要について説明する。なお、V2Xにおいても、ここで説明するD2Dの技術を使用することは可能であるが、必ずしもこれに限定されるものではない。
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図2Aに示すように、Discovery period(PSDCH(Physical Sidelink Discovery Channel) periodとも呼ばれる)毎に、Discoveryメッセージ用のリソースプールが確保され、ユーザ装置UEはそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、ユーザ装置UEが自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。
 「D2Dコミュニケーション」についても、図2Bに示すように、SCI(Sidelink Control Information)/データ送信用のリソースプールが周期的に確保される。送信側のユーザ装置UEはControlリソースプール(PSCCH(Physical Sidelink Control Channel)リソースプール)から選択されたリソースでSCIによりデータ送信用リソース等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、基地局10からユーザ装置UEに送られる(E)PDCCH((Enhanced)Physical Downlink Control Channel)によりダイナミックにリソースが割り当てられる。Mode2では、ユーザ装置UEはリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIB(System Information Block)で通知されたり、予め定義されたものが使用される。
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCHと称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCHと称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される。
 D2D通信に用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、図3に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。
 図4に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、ユーザ装置UEが用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。
 <システム構成>
 図5は、実施の形態に係る無線通信システムの構成例を示す図である。図5に示すように、本実施の形態に係る無線通信システムは、基地局10、ユーザ装置UE1、及びユーザ装置UE2を有する。図5において、ユーザ装置UE1は送信側、ユーザ装置UE2は受信側を意図しているが、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2を特に区別しない場合、単に「ユーザ装置UE」と記述する。
 図5に示すユーザ装置UE1及びユーザ装置UE2は、それぞれ、LTE(5G)におけるユーザ装置UEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、ユーザ装置UE1、ユーザ装置UE2は、本実施の形態で説明する動作を実行する機能を有している。
 また、ユーザ装置UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、ユーザ装置UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。
 また、基地局10については、LTE(5G)における基地局10としてのセルラ通信の機能、及び、本実施の形態におけるユーザ装置UEの通信を可能ならしめるための機能(設定情報通知機能等)を有している。また、基地局10はRSU(eNBの機能を有するeNBタイプRSU)を含む。
 以下の説明において、「センシング」とは、例えば、受信電力(受信エネルギ、受信強度と称してもよい)の測定結果を用いる方法、D2D制御情報のデコード結果を用いる方法、又はこれらを組み合わせることなどにより行われる。また、「リソース」とは、特に断りの無い限り、時間リソース(例:サブフレーム)、若しくは、時間及び周波数リソース(例:サブチャネル)を含む。また「D2D信号」は、D2Dコミュニケーションの信号(D2D制御情報であってもよいし、データであってもよいし、D2D制御情報とデータの組であってもよい)と称してもよいし、V2Xサイドリンクコミュニケーション(V2X sidelink communication)の信号と称してもよい。
 <3GPPで検討されているセンシング及びリソース候補の検出方法について>
 ここで、現在3GPPで検討されている、センシング及びリソース候補の検出方法について説明する。本実施の形態に係るユーザ装置UEは、以下に示す処理を実行する機能を備えている。図6は、センシング及びリソース候補の検出方法の概要を説明するための図である。「センシングウィンドウ」とは、ユーザ装置UEがセンシングを行うべきとして予め定められた時間ウィンドウであり、現状の3GPPの規定では最大で1000msに設定される。
 「選択ウィンドウ」とは、センシング結果に基づき、ユーザ装置UEがリソースを選択すべき期間として予め定められた時間ウィンドウである。ユーザ装置UEは、センシングにより検出されたリソース候補のうち、選択ウィンドウ内に含まれるリソース候補の中からD2D信号の送信に用いるリソースを選択する。選択ウィンドウの開始タイミングは、ユーザ装置UEがD2D信号を送信するためのリソースを選択(再選択を含む)するタイミングまたはそれ以降である。ユーザ装置UEがD2D信号を送信するためのリソースを選択するタイミングとは、例えば、ユーザ装置UE内の上位レイヤ(例えばV2Vアプリケーション)で送信すべきデータが生成され、当該データが、リソースの選択を行うレイヤ(例えばMACレイヤ、物理レイヤ)に到着したタイミングである。
 上述したセンシングは、将来のリソースにおいてD2D信号の送信が可能なリソース候補を事前に検出しておく動作と言うことができる。つまり、ユーザ装置UEは、選択ウィンドウが訪れた際に、事前に検出しているリソース候補の中からD2D信号を送信するリソースの選択を行うことができるように、予めバックグラウンドでセンシングを行っておく。
 センシングにより、D2D信号の送信が可能なリソース候補を検出する方法は、例えば、センシングにより受信されたD2D制御情報をデコードすることで把握される予約済みリソースを将来のリソースから除外し、残ったリソースをリソース候補とする方法、センシングにより測定したリソースの受信電力の平均値が所定の閾値以上であるリソースを将来のリソースから除外し、残ったリソースをリソース候補とする方法、及び、これらを組み合わせる方法などにより行われる。なお、センシングウィンドウ内のリソースと将来のリソースとの間の対応関係は、D2D制御信号に含まれる予約情報により明示的に示されるか、又は、準静的に定められた対応関係(例えば、センシングウィンドウ内で100ms周期のリソースの受信電力の平均が所定の閾値以上であった場合、次の100ms後の周期のリソースは占有されていると推定する等)に基づき暗示的に示される。
 図6の例は、選択ウィンドウにおけるリソース候補C1に対応する、受信電力の測定対象リソース(R1~R10)を示している。リソースR1~R10は、リソース候補C1を起点として100ms間隔で並んでおり、リソースR1~R10の周波数リソースは、リソース候補C1の周波数リソースと同一である。
 例えば、ユーザ装置UEは、リソースR1~R10の各々の受信電力(S-RSSI(Sidelink Received Signal Strength Indicator))を測定し、各々のS-RSSIの平均値が所定の閾値以上である場合に、リソース候補C1は占有されていると推定する。また、例えば、ユーザ装置UEは、各々のS-RSSIの平均値が所定の閾値未満であり、かつ、予約情報による予約もなされていない場合に、リソース候補C1は占有されていないと推定することになる。選択ウィンドウ内のC1以外のリソース(例えば、C1とは周波数が異なるリソース、C1とは異なるサブフレームのリソースなど)についても、同様の方法により占有されているか否かの推定がなされる。
 3GPPでは、ユーザ装置UEのバッテリー消費を削減するため、ユーザ装置UEがセンシングウィンドウ内の全てのサブフレームでセンシングを行うのではなく、限定されたサブフレームのみでセンシングを行う"パーシャルセンシング"と呼ばれるセンシング方法も検討されている。パーシャルセンシングでは、ユーザ装置UEは、選択ウィンドウ内の全てのリソースについて占有されているか否かの推定をすることはできず、限定されたサブフレームに対応するリソース候補のみについて、占有されているか否かの推定を行うことになる。
 <本実施の形態に係るセンシング方法について>
 続いて、実施の形態に係るユーザ装置UEが行うセンシング方法について具体的に説明する。本実施の形態に係るユーザ装置UEは、100ms周期よりも短い間隔、より具体的には、20ms及び50ms周期でD2D信号を送信する機能を有している。リソースプール(例えば、V2X用のリソースプール)において、D2D信号の送信周期として許容される最も短い周期(例えば、100ms、50ms、20msのいずれかなど)は、ブロードキャスト情報又はRRCシグナリング等により基地局10からユーザ装置UEに設定(通知)されるようにしてもよいし、ユーザ装置UE自身の能力として予め定められていてもよい。ユーザ装置UEは、許容される送信周期の範囲内でD2D信号を周期的に送信する。
 以下、上述したセンシング方法のうち、特に受信電力を測定する際のセンシング方法について具体的に説明する。ユーザ装置UEは、以下に説明するセンシング方法のうち、全てを実行する機能を備えていてもよいし、一部のみを実行する機能を備えていてもよい。また、センシング方法(その1)~センシング方法(その4)のうち、センシングを行う方法を基地局10からユーザ装置UEに指示(設定)するようにしてもよいし、ユーザ装置UEが自ら選択するようにしてもよい。
 (センシング方法(その1))
 センシング方法(その1)では、ユーザ装置UEは、図6で説明した受信電力の測定方法と同様の方法を用いるが、D2D信号の送信周期と同一周期のリソースに対して受信電力の測定を行う。例えば、ユーザ装置UEは、D2D信号の送信周期が20msである場合、20ms間隔で受信電力の測定を行い、D2D信号の送信周期が50msである場合、50ms間隔で受信電力の測定を行う。ただし、D2D信号の送信周期が100ms以上である場合は、図6の例と同様に100ms周期のリソースについて受信電力の測定を行う。
 (センシング方法(その2))
 D2D信号の送信周期が20ms又は50msである場合、ユーザ装置UEは、センシングウィンドウのうち後半のウィンドウでは、20ms又は50ms周期で受信電力の測定を行い、センシングウィンドウのうち後半のウィンドウ以外では、100ms周期で受信電力の測定を行う。
 図7は、センシング方法(その2)において送信周期が20msの場合の測定例を示す図である。図7の例では、センシングウィンドウは1000msであり、後半のウィンドウの時間長(X)が200msに設定されている。ユーザ装置UEは、センシングウィンドウのうち、後半のウィンドウ以外の800msの期間では、100ms周期で、リソース候補C1に対応するリソースR1~R8の各々の受信電力を測定し、後半のウィンドウでは、20ms周期で、リソース候補C1に対応するリソースR9~R18の各々の受信電力を測定する。
 図8は、センシング方法(その2)において送信周期が50msの場合の測定例を示す図である。図8の例では、センシングウィンドウは1000msであり、後半のウィンドウの時間長(X)が500msに設定されている。ユーザ装置UEは、センシングウィンドウのうち、後半のウィンドウ以外の500msの期間では、100ms周期で、リソース候補C1に対応するリソースR1~R5の各々の受信電力を測定し、後半のウィンドウでは、50ms周期で、リソース候補C1に対応するリソースR6~R15の各々の受信電力を測定する。
 後半のウィンドウの時間長(X)は、送信周期ごとに異なる値に設定されてもよい。例えば、送信周期が20msである場合、後半のウィンドウの時間長(X)は、100ms又は200msに設定され、送信周期が50msである場合、後半のウィンドウの時間長(X)は、100ms又は500msに設定されてもよい。これに限定されず、例えば、送信周期の正の整数倍(ただしセンシングウィンドウの時間長以下)に設定されてもよい。また、後半のウィンドウの時間長(X)は、送信周期に関わらず固定的に設定されてもよい。例えば、後半のウィンドウの時間長(X)は、100ms又は200msに固定的に設定されてもよい。これに限定されず、例えば、100msの正の整数倍(ただしセンシングウィンドウの時間長以下)に固定的に設定されてもよい。
 後半のウィンドウの時間長(X)は、標準仕様で定められていてもよいし、ユーザ装置UEに事前設定(preconfigured)されていてもよいし、上位レイヤ(ブロードキャスト情報、RRCシグナリングなど)で基地局10からユーザ装置UEに設定されてもよい。
 センシング方法(その2)の場合、ユーザ装置UEは、測定した全ての受信電力の平均値に基づいて、リソース候補が占有されているか否かの推定を行う。ただし、これに限定されず、例えば、後半のウィンドウ以外の期間で測定された受信電力の平均と、後半のウィンドウの期間で測定された受信電力の平均とのうち、平均値が大きい値に基づいて、リソース候補が占有されているか否かの推定を行うようにしてもよい。
 以上、センシング方法(その2)ついて説明した。仮に、センシングウィンドウ全体で短い周期(20ms、50msなど)で測定した受信電力を平均化すると、他のユーザ装置UEが、センシングウィンドウの前半で短い周期(20ms、50msなど)でのD2D信号の送信を中止してリソース再選択等を行った場合、ユーザ装置UEは、それまでに送信されたD2D信号の受信電力についても平均化してしまうことになる。一方で、センシング方法(その2)では、センシングウィンドウの後半に絞って短い周期で測定を行うことから、センシングウィンドウ内で他のユーザ装置UEがリソース再選択を行った際の影響を一部考慮した上でより適切に受信電力の測定を行うことが可能になる。また、平均化する受信電力の数が削減されることから、ユーザ装置UEの処理負荷を軽減することも可能になる。
 (センシング方法(その3))
 D2D信号の送信周期が20ms又は50msである場合、ユーザ装置UEは、センシングウィンドウ全体では100ms周期で受信電力の測定を行い、センシングウィンドウのうち後半のウィンドウでは20ms周期、50ms周期、又は、20ms周期及び50ms周期で受信電力の測定を行う。
 なお、後半のウィンドウで、20ms周期で受信電力の測定を行うのか、50ms周期で受信電力の測定を行うのか、又は、20ms及び50ms周期の両方で受信電力の測定を行うのかについては、リソースプールにおいてD2D信号の送信周期として許容される最も短い周期に基づいて決定されるようにしてもよい。例えば、許容される周期が20msの場合、ユーザ装置UEは、20ms周期、又は、20ms周期及び50ms周期で受信電力の測定を行うようにしてもよい。また、例えば、許容される周期が50msの場合、ユーザ装置UEは、50ms周期で受信電力の測定を行うようにしてもよい。また、これに限定されず、ユーザ装置UEにおけるD2D信号の送信周期に基づいて決定されてもよい。例えば、送信周期が20msであるユーザ装置UEは、20ms周期、又は、20ms周期及び50ms周期で受信電力の測定を行うようにして、送信周期が50msであるユーザ装置UEは、50ms周期で受信電力の測定を行うようにしてもよい。
 図9は、センシング方法(その3)において、センシングウィンドウ全体で、100ms周期で受信電力の測定を行う場合の測定例を示す図である。ユーザ装置UEは、センシングウィンドウにおいて、100ms周期で、リソース候補C1に対応するリソースR1~R10の各々の受信電力を測定する。
 図10及び図11は、センシング方法(その3)において、後半のウィンドウで、20ms周期で受信電力の測定を行う場合の測定例を示す図である。図10の例では、後半のウィンドウの時間長(X)が100msに設定されており、選択ウィンドウが20msに設定されている。図11の例では、後半のウィンドウの時間長(X)が100msに設定されており、選択ウィンドウが50msに設定されている。ユーザ装置UEは、後半のウィンドウの100msの期間では、20ms周期でリソース候補C1に対応するリソースR1~R5の各々の受信電力を測定する。なお、図11の例では、下段の図にリソース候補C1が2つ(実線で示すC1と点線で示すC1)存在しているが、これは、リソースR1~R5が2つのリソース候補C1のいずれにも対応していることを意図している。
 図12は、センシング方法(その3)において、後半のウィンドウで、50ms周期で受信電力の測定を行う場合の測定例を示す図である。図12の例では、後半のウィンドウの時間長(X)が100msに設定されている。ユーザ装置UEは、後半のウィンドウの100msの期間では、50ms周期でリソース候補C1に対応するリソースR1~R2の各々の受信電力を測定する。
 図10乃至図12の例では、後半のウィンドウの終了タイミングと、センシングウィンドウの終了タイミングとは同一である前提であったが、後半のウィンドウの終了タイミングを、リソース候補のサブフレームに合わせるようにしてもよい。この場合の具体例を図13乃至図15に示す。
 図13及び図14は、センシング方法(その3)において、後半のウィンドウで、20ms周期で受信電力の測定を行う場合の測定例(変形例)を示す図である。図13の例では、後半のウィンドウの時間長(X)が100msに設定され、後半のウィンドウの終了タイミングは候補リソースC1のサブフレームに設定され、選択ウィンドウが20msに設定されている。図14の例では、後半のウィンドウの時間長(X)が100msに設定され、後半のウィンドウの終了タイミングは候補リソースC1のサブフレームに設定され、選択ウィンドウが50msに設定されている。
 ユーザ装置UEは、後半のウィンドウの100msの期間では、20ms周期で、リソース候補C1に対応するリソースR1~R5の各々の受信電力を測定する。なお、図14の例では、下段の図にリソース候補C1が2つ(実線で示すC1と点線で示すC1)存在しているが、これは、リソースR1~R5が2つのリソース候補C1のいずれにも対応していることを意図している。
 図15は、センシング方法(その3)において、後半のウィンドウで、50ms周期で受信電力の測定を行う場合の測定例(変形例)を示す図である。図15の例では、後半のウィンドウの時間長(X)が100msに設定され、後半のウィンドウの終了タイミングは候補リソースC1のサブフレームに設定されている。ユーザ装置UEは、後半のウィンドウの100msの期間では、50ms周期で、リソース候補C1に対応するリソースR1~R2の各々の受信電力を測定する。
 後半のウィンドウの時間長(X)は、送信周期に関わらず固定的に設定されてもよい。例えば、後半のウィンドウの時間長(X)は、100ms又は200msに固定的に設定されてもよい。ただし、これに限定されず、後半のウィンドウの時間長(X)は、例えば、100msの正の整数倍(ただしセンシングウィンドウの時間長以下)に設定されてもよい。また、センシング方法(その2)と同様、送信周期が20msである場合、後半のウィンドウの時間長(X)は、100ms又は200msに設定され、送信周期が50msである場合、後半のウィンドウの時間長(X)は、100ms又は500msに設定されてもよい。また、後半のウィンドウの時間長(X)は、送信周期の正の整数倍(ただしセンシングウィンドウの時間長以下)に設定されてもよい。
 後半のウィンドウの時間長(X)は、標準仕様で定められていてもよいし、ユーザ装置UEに事前設定(preconfigured)されていてもよいし、上位レイヤ(ブロードキャスト情報、RRCシグナリングなど)で基地局10からユーザ装置UEに設定されてもよい。また、後半のウィンドウの終了タイミング(センシングウィンドウの終了タイミングにするか、又は、リソース候補のサブフレームに合わせるか)についても、標準仕様で定められていてもよいし、ユーザ装置UEに事前設定(preconfigured)されていてもよいし、上位レイヤ(ブロードキャスト情報、RRCシグナリングなど)で基地局10からユーザ装置UEに設定されてもよい。
 センシング方法(その3)の場合、ユーザ装置UEは、センシングウィンドウ全体(つまり、100ms周期)で測定した受信電力(第1のS-RSSI)の平均と、後半のウィンドウで測定した受信電力(第2のS-RSSI)の平均とのうち、平均値が大きい値に基づいて、リソース候補が占有されているか否かの推定を行う。もし、後半のウィンドウで20ms周期及び50ms周期で受信電力の測定を行った場合、ユーザ装置UEは、センシングウィンドウ全体(つまり、100ms周期)で測定した受信電力(第1のS-RSSI)の平均と、後半のウィンドウにおいて20ms周期で測定した受信電力(第2のS-RSSI)の平均と、後半のウィンドウにおいて50ms周期で測定した受信電力(第3のS-RSSI)の平均とのうち、平均値が最も大きい値に基づいて、リソース候補が占有されているか否かの推定を行う。ただし、これに限定されず、ユーザ装置UEは、センシング方法(その2)と同様、測定した全ての受信電力の平均値に基づいて、リソース候補が占有されているか否かの推定を行うようにしてもよい。
 以上、センシング方法(その3)ついて説明した。センシング方法(その3)でも、センシングウィンドウの後半に絞って短い周期で測定を行うことから、より適切に受信電力の測定を行うことが可能になる。また、平均化する受信電力の数が削減されることから、ユーザ装置UEの処理負荷を軽減することも可能になる。
 (センシング方法(その4))
 以上説明したセンシング方法(その2及びその3)では、ユーザ装置UEは、20ms又は50ms周期での受信電力の測定を、バックグラウンドで行う前提であった。一方、センシング方法(その4)では、ユーザ装置UEは、D2D信号を送信するためのリソースを選択(再選択)するタイミングが到来するまでの間は、100ms周期で受信電力の測定を行っておき、リソースの選択(再選択)を行う際に、更に、所定の期間(Y)の間、追加的に20ms周期及び/又は50ms周期で受信電力の測定を行うようにしてもよい。所定の期間(Y)は、追加されたセンシングウィンドウと呼ばれてもよい。
 図16は、センシング方法(その4)において、20ms周期で追加的に受信電力の測定を行う場合の測定例を示す図である。図16の例では、所定の期間(Y)が100msに設定されている。ユーザ装置UEは、バックグラウンドで、リソース候補C1に対応する100ms周期のリソースR1の受信電力を測定しておく。続いて、リソースを選択(再選択)がトリガされた場合、所定の期間(Y)の間、リソース候補C1に対応する20ms周期のリソースR2の受信電力を測定する。
 なお、後半のウィンドウで、20ms周期で受信電力の測定を行うのか、50ms周期で受信電力の測定を行うのか、又は、20ms及び50ms周期の両方で受信電力の測定を行うのかについては、センシング方法(その3)と同様、リソースプールにおいてD2D信号の送信周期として許容される最も短い周期に基づいて決定されるようにしてもよい。また、センシング方法(その2)と同様、ユーザ装置UEにおけるD2D信号の送信周期に基づいて決定されてもよい。
 センシング方法(その4)において、「所定の期間(Y)」は、センシング方法(その2)で説明した、「後半のウィンドウの時間長(X)」の開始タイミングを、ユーザ装置UEがリソースを選択(再選択)するタイミングに合わせたものとみなすことができる。
 センシング方法(その4)では、ユーザ装置UEは、リソース候補が占有されているか否かの推定を、センシング方法(その2)又はセンシング方法(その3)と同様の方法で行うようにしてもよい。すなわち、ユーザ装置UEは、センシングウィンドウで測定した受信電力と、追加されたセンシングウィンドウ(所定の期間(Y))で測定した受信電力とを平均した平均値に基づいて、リソース候補が占有されているか否かの推定を行うようにしてもよい。また、ユーザ装置UEは、センシングウィンドウで測定した受信電力の平均と、追加されたセンシングウィンドウ(所定の期間(Y))で測定した受信電力の平均のうち、平均値が最も大きい値に基づいて、リソース候補が占有されているか否かの推定を行うようにしてもよい。
 センシング方法(その4)において、「所定の期間(Y)」が経過するまではリソースの選択ができないため、ユーザ装置UEは、「所定の期間(Y)」が経過するまでの間にD2D信号を送信したい場合(例えば低遅延で送信すべきV2Xパケットが生じた場合など)、ランダムにリソースの選択を行ってD2D信号を送信するようにしてもよいし、選択済みのリソースを用いてD2D信号を送信するようにしてもよい。 以上、センシング方法(その4)ついて説明した。センシング方法(その4)を用いることで、ユーザ装置UEがリソースを選択(再選択)する(つまり、送信すべきD2D信号が生じたタイミング)までの間は、長い周期でセンシングを行うことになるため、ユーザ装置UEのバッテリー消費を軽減することが可能になる。また、センシング方法(その4)は、パーシャルセンシングを行うユーザ装置UEに適用することで、更なるバッテリー消費の軽減を実現することが可能になる。
 <機能構成>
 (ユーザ装置)
 図17は、実施の形態に係るユーザ装置の機能構成の一例を示す図である。図17に示すように、ユーザ装置UEは、信号送信部101と、信号受信部102と、測定部103と、選択部104とを有する。なお、図17は、ユーザ装置UEにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTE(5G)に準拠した動作を行うための図示しない機能も有するものである。また、図17に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 信号送信部101は、他のユーザ装置UE又は基地局10に送信すべきD2D信号から物理レイヤの各種信号を生成し、無線送信する機能を含む。また、信号送信部101は、D2D信号の送信機能とセルラ通信の送信機能を含む。また、信号送信部101は、選択部104で選択されたリソースでD2D信号を送信する機能を有する。
 信号受信部102は、他のユーザ装置UE又は基地局10から各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。また、信号受信部102は、D2D信号の受信機能とセルラ通信の受信機能を含む。
 測定部103は、D2D信号を送信する候補になるリソース(リソース候補)に対応する、過去の時間方向における複数のリソースの受信電力を測定する機能を有する。また、測定部は、D2D信号を送信するリソース候補より前の第一の時間ウィンドウ(前述の実施の形態における「後半のウィンドウの時間長(X)」又は「所定の期間(Y)」)では第一の周期(20ms又は50ms等)でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ(例えばセンシングウィンドウから第一の時間ウィンドウを除いた期間)、若しくは、第一の時間ウィンドウ及び第二の時間ウィンドウ(例えばセンシングウィンドウ全体)では第一の周期より長い第二の周期(100ms等)でリソースの受信電力を測定する機能を有する。また、第一の時間ウィンドウは、当該ユーザ装置UEにおけるD2D信号の送信周期を正の整数倍した時間長に設定されてもよい。また、第一の時間ウィンドウの開始タイミングは、選択部104がリソース選択又はリソース再選択を行うタイミングであってもよい。
 (基地局)
 図18は、実施の形態に係る基地局の機能構成の一例を示す図である。図18に示すように、基地局10は、信号送信部201と、信号受信部202と、通知部203とを有する。なお、図18は、基地局10において本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図18に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 信号送信部201は、基地局10から送信されるべき上位のレイヤの信号から、物理レイヤの各種信号を生成し、無線送信する機能を含む。信号受信部202は、ユーザ装置UEから各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。
 通知部203は、ユーザ装置UEが本実施の形態に係る動作を行うために用いる各種情報を、ブロードキャスト情報(例えばSIB)又はRRCシグナリングを用いてユーザ装置UEに通知する。なお、当該各種情報は、例えば、リソースプールの設定を示す情報、
センシングウィンドウの長さ、リソースプール(例えば、V2X用のリソースプール)においてD2D信号の送信周期として許容される最も短い周期、「後半のウィンドウの時間長(X)」、又は「所定の期間(Y)」などである。
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図17及び図18)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における基地局10、ユーザ装置UEは、本発明のリソース選択方法の処理を行うコンピュータとして機能してもよい。図19は、実施の形態に係る基地局及びユーザ装置のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ装置UEは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ装置UEのハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及びユーザ装置UEにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、基地局10の信号送信部201、信号受信部202、及び通知部203、ユーザ装置UEの信号送信部101、信号受信部102、測定部103及び選択部104は、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局10の信号送信部201、信号受信部202、及び通知部203、ユーザ装置UEの信号送信部101、信号受信部102、測定部103及び選択部104は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係るリソース選択方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、基地局10の信号送信部201、及び、信号受信部202、ユーザ装置UEの信号送信部101、及び、信号受信部102は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、基地局10及びユーザ装置UEは、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 <まとめ>
 以上、実施の形態によれば、センシングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置であって、信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定部と、測定結果に基づいて信号を周期的に送信するリソースを選択する選択部と、を有し、前記測定部は、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する、ユーザ装置が提供される。このユーザ装置UEによれば、短い周期で信号の送信が行われることを考慮したセンシングを行うことを可能にする技術が提供される。
 また、前記測定部は、前記第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定し、前記選択部は、前記第一の周期でリソースの受信電力を測定した測定結果と、前記第二の周期でリソースの受信電力を測定した測定結果とを平均した平均値に基づいてリソースを選択するようにしてもよい。これにより、センシングウィンドウの前半では、短い周期では測定を行わないことから、より適切に受信電力の測定を行うことが可能になる。また、平均化する受信電力の数が削減されることから、ユーザ装置UEの処理負荷を軽減することも可能になる。
 前記測定部は、前記第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定し、前記選択部は、前記第一の周期でリソースの受信電力を測定した測定結果の平均値と、前記第二の周期でリソースの受信電力を測定した測定結果の平均値とのうち、平均値が大きい値に基づいてリソースを選択するようにしてもよい。これにより、センシングウィンドウの前半では、短い周期では測定を行わないことから、より適切に受信電力の測定を行うことが可能になる。また、平均化する受信電力の数が削減されることから、ユーザ装置UEの処理負荷を軽減することも可能になる。
 また、前記第一の時間ウィンドウは、当該ユーザ装置における信号の送信周期を正の整数倍した時間長に設定されるようにしてもよい。第一の時間ウィンドウの長さを、様々な長さに設定することが可能になる。
 また、前記第一の時間ウィンドウの開始タイミングは、前記選択部がリソース選択を行うタイミングであるようにしてもよい。これにより、ユーザ装置UEがリソースを選択(再選択)するまでの間は、長い周期でセンシングを行うことになるため、ユーザ装置UEのバッテリー消費を軽減することが可能になる。
 また、実施の形態によれば、シングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置が実行するリソース選択方法であって、信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定ステップと、測定結果に基づいて信号を周期的に送信するリソースを選択する選択ステップと、を有し、前記測定ステップは、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する、リソース選択方法が提供される。このリソース選択方法によれば、短い周期で信号の送信が行われることを考慮したセンシングを行うことを可能にする技術が提供される。
 <実施形態の補足>
 D2D制御情報は、SCI(Sidelink Control Information)と呼ばれてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順などは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。
 ユーザ装置UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局10は、「eNB(enhanced NodeB)」、「NR(New Radio)ノード」、「gNB」、「eLTE eNB(evolution LTE enhanced NodeB)」などと呼ばれてもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本特許出願は2016年11月2日に出願した日本国特許出願第2016-215709号に基づきその優先権を主張するものであり、日本国特許出願第2016-215709号の全内容を本願に援用する。
UE ユーザ装置
10 基地局
101 信号送信部
102 信号受信部
103 測定部
104 選択部
201 信号送信部
202 信号受信部
203 通知部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置

Claims (6)

  1.  センシングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置であって、
     信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定部と、
     測定結果に基づいて信号を周期的に送信するリソースを選択する選択部と、
     を有し、
     前記測定部は、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する、
     ユーザ装置。
  2.  前記測定部は、前記第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定し、
     前記選択部は、前記第一の周期でリソースの受信電力を測定した測定結果と、前記第二の周期でリソースの受信電力を測定した測定結果とを平均した平均値に基づいてリソースを選択する、
     請求項1に記載のユーザ装置。
  3.  前記測定部は、前記第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定し、
     前記選択部は、前記第一の周期でリソースの受信電力を測定した測定結果の平均値と、前記第二の周期でリソースの受信電力を測定した測定結果の平均値とのうち、平均値が大きい値に基づいてリソースを選択する、
     請求項1に記載のユーザ装置。
  4.  前記第一の時間ウィンドウは、当該ユーザ装置における信号の送信周期を正の整数倍した時間長に設定される、
     請求項1乃至3のいずれか一項に記載のユーザ装置。
  5.  前記第一の時間ウィンドウの開始タイミングは、前記選択部がリソース選択又はリソース再選択を行うタイミングである、
     請求項1乃至4のいずれか一項に記載のユーザ装置。
  6.  センシングの結果に基づいて、信号を周期的に送信するためのリソースを選択するユーザ装置が実行するリソース選択方法であって、
     信号を送信する候補になるリソースに対応する、過去の時間方向における複数のリソースの受信電力を測定する測定ステップと、
     測定結果に基づいて信号を周期的に送信するリソースを選択する選択ステップと、
     を有し、
     前記測定ステップは、前記信号を送信する候補になるリソースより前の第一の時間ウィンドウでは第一の周期でリソースの受信電力を測定し、該第一の時間ウィンドウより更に前の第二の時間ウィンドウ、若しくは、前記第一の時間ウィンドウ及び前記第二の時間ウィンドウでは前記第一の周期より長い第二の周期でリソースの受信電力を測定する、
     リソース選択方法。
PCT/JP2017/039160 2016-11-02 2017-10-30 ユーザ装置及びリソース選択方法 WO2018084116A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215709 2016-11-02
JP2016215709A JP2020017778A (ja) 2016-11-02 2016-11-02 ユーザ装置及びリソース選択方法

Publications (1)

Publication Number Publication Date
WO2018084116A1 true WO2018084116A1 (ja) 2018-05-11

Family

ID=62076172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039160 WO2018084116A1 (ja) 2016-11-02 2017-10-30 ユーザ装置及びリソース選択方法

Country Status (2)

Country Link
JP (1) JP2020017778A (ja)
WO (1) WO2018084116A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170419A (zh) * 2018-11-22 2021-07-23 富士通株式会社 通信装置和无线通信系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161482A1 (ja) * 2020-02-13 2021-08-19 株式会社Nttドコモ 端末及び通信方法
WO2021205610A1 (ja) * 2020-04-09 2021-10-14 富士通株式会社 通信装置、通信方法、および通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Support for smaller resource reservation periods in V2X", 3GPP TSG-RAN WG1 MEETING #86BIS RL-1609734, 14 October 2016 (2016-10-14), XP051149767 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170419A (zh) * 2018-11-22 2021-07-23 富士通株式会社 通信装置和无线通信系统

Also Published As

Publication number Publication date
JP2020017778A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
US11956759B2 (en) User equipment and signal transmission method
JP6912457B2 (ja) ユーザ装置及び信号送信方法
JP6413021B2 (ja) ユーザ装置、信号送信方法及び信号受信方法
WO2017026543A1 (ja) ユーザ装置、及びd2d信号送信方法
WO2018084094A1 (ja) ユーザ装置及び信号送信方法
WO2017026545A1 (ja) ユーザ装置、及びデータ送信方法
WO2017026542A1 (ja) 中継装置、及び中継方法
US10728881B2 (en) User equipment and signal transmission method
JP2022071153A (ja) 端末、通信システム、及び送信方法
JP7169400B2 (ja) 端末、及び通信方法
WO2017195538A1 (ja) ユーザ装置及び信号送信方法
JPWO2017026495A1 (ja) 制御装置、ユーザ装置、無線リソース割当て方法及び通信方法
WO2019130556A1 (ja) ユーザ装置、及びリソース選択方法
JPWO2017026463A1 (ja) ユーザ装置及び信号送信方法
WO2018084116A1 (ja) ユーザ装置及びリソース選択方法
WO2019207660A1 (ja) 通信装置
WO2018203412A1 (ja) ユーザ装置、及び通信方法
WO2018203415A1 (ja) ユーザ装置
WO2018030397A1 (ja) ユーザ装置、及び通信方法
WO2018203414A1 (ja) ユーザ装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17868349

Country of ref document: EP

Kind code of ref document: A1