WO2018083986A1 - Adhesive sheet for stealth dicing - Google Patents

Adhesive sheet for stealth dicing Download PDF

Info

Publication number
WO2018083986A1
WO2018083986A1 PCT/JP2017/037739 JP2017037739W WO2018083986A1 WO 2018083986 A1 WO2018083986 A1 WO 2018083986A1 JP 2017037739 W JP2017037739 W JP 2017037739W WO 2018083986 A1 WO2018083986 A1 WO 2018083986A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
adhesive sheet
stealth dicing
sensitive adhesive
pressure
Prior art date
Application number
PCT/JP2017/037739
Other languages
French (fr)
Japanese (ja)
Inventor
茂之 山下
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020197009727A priority Critical patent/KR102481281B1/en
Priority to JP2018548616A priority patent/JP6980680B2/en
Priority to CN201780067347.XA priority patent/CN109906504B/en
Publication of WO2018083986A1 publication Critical patent/WO2018083986A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to an adhesive sheet for stealth dicing (registered trademark), and preferably to an adhesive sheet for stealth dicing using a semiconductor wafer having a through electrode as a workpiece.
  • a through hole is formed in a predetermined position of a semiconductor wafer by plasma or the like, a conductor such as copper is poured into the through hole, etching is performed, and then the surface of the semiconductor wafer And a method of providing a circuit and a through electrode. At this time, the wafer is heated.
  • ultra-thin wafers and TSV wafers are extremely fragile, and may be damaged in the back grinding process, the subsequent processing process, and the transfer process. Therefore, during these steps, the wafer is held on a hard support such as glass via an adhesive.
  • the wafer is transferred from the hard support onto the dicing sheet, the periphery of the dicing sheet is fixed by a ring frame, and then the wafer is diced into a plurality of chips. Thereafter, chips are picked up from the dicing sheet.
  • the dicing sheet to which the chip is attached is expanded. As a result, the chips are separated from each other, and it becomes easy to pick up the chips individually.
  • Such an expander supports the area of the dicing sheet to which the chip is adhered from the surface opposite to the surface to which the chip is adhered, and is adhered to the peripheral edge of the dicing sheet with respect to the height of the stage. This is done by relatively lowering the height of the ring frame.
  • the area between the area where the ring frame is affixed and the area where the chip is affixed in the dicing sheet A process (heat shrink) for heating and shrinking may be performed. Due to the shrinkage, in the dicing sheet, a force is generated to stretch the region where the chip is attached in the peripheral direction, and as a result, the chip is separated even after the dicing sheet is released from the suction by the suction table. Can be maintained.
  • Patent Document 1 shows a sufficient shrinkability in the heat shrinking process, and is provided with a predetermined base film as one of the problems that it does not cause problems due to looseness after the heat shrinking process, and according to a predetermined test.
  • a wafer processing tape is disclosed in which the maximum heat shrinkage stress is a predetermined value.
  • the dicing method includes a dicing method using a dicing blade, a dicing method (stealth dicing) including forming a modified portion inside the wafer by laser irradiation and dividing the wafer by the modified portion.
  • a dicing method (stealth dicing) including forming a modified portion inside the wafer by laser irradiation and dividing the wafer by the modified portion.
  • the pressure-sensitive adhesive sheet used also for stealth dicing is favorably contracted by heat shrink and can be maintained in a state where the chips are well separated (hereinafter, sometimes referred to as “excellent in heat shrinkability”). Is particularly required.
  • the conventional pressure-sensitive adhesive sheet such as the wafer processing tape disclosed in Patent Document 1 is not sufficiently heat-shrinkable, and in particular when stealth dicing is performed, it is not possible to keep the chips widely separated. As a result, the problem of pick-up failure is likely to occur.
  • the present invention has been made in view of such a situation, and an object thereof is to provide an adhesive sheet for stealth dicing that is excellent in heat shrinkability.
  • the present invention is a pressure-sensitive adhesive sheet for stealth dicing comprising a base material and an adhesive layer laminated on one side of the base material, wherein the base material is When the substrate is pulled with a load of 0.2 g while being heated from 25 ° C. to 120 ° C. at a temperature increase rate of 20 ° C./min using a thermomechanical analyzer, the length of the substrate at 60 ° C. Then, the amount of change in the length of the base material obtained by subtracting the initial length of the base material is ⁇ L 60 ° C., and the initial length of the base material from the length of the base material at 90 ° C.
  • the amount of change ⁇ L 90 ° C. and ⁇ L 60 ° C. of the length of the substrate measured using a thermomechanical analyzer has the relationship of the above formula (1).
  • invention 1 in the DSC curve about the said base material obtained by heating the said base material from 0 degreeC to 200 degreeC with a temperature increase rate of 10 degree-C / min using a differential scanning calorimeter,
  • the minimum measured value in the range of 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C.
  • the measured value at 25 ° C. is H 25 ° C.
  • the said base material is a DSC curve about the said base material obtained by heating from 0 degreeC to 200 degreeC with the temperature increase rate of 10 degree-C / min using a differential scanning calorimeter.
  • the minimum value of the measured value in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C. and the measured value at 25 ° C. is H 25 ° C.
  • the base material is a DSC curve for the base material obtained by heating from 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter.
  • the minimum value of the measured value in the range of 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C.
  • the minimum value of the measured value in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C.
  • the base material preferably has a tensile elastic modulus at 23 ° C. of 50 MPa or more and 450 MPa or less (Invention 5).
  • the stealth dicing pressure-sensitive adhesive sheet in which the workpieces are laminated is used in a method for manufacturing a semiconductor device including a step of shrinking a region in which the workpieces are not laminated by heating. (Invention 7)
  • the stealth dicing adhesive sheet according to the present invention is excellent in heat shrinkability.
  • the adhesive sheet for stealth dicing includes a base material and an adhesive layer laminated on one side of the base material.
  • the substrate is heated from 25 ° C. to 120 ° C. at a temperature rising rate of 20 ° C./min using a thermomechanical analyzer.
  • the amount of change in the length of the base material obtained by subtracting the initial length of the base material from the length of the base material at 60 ° C. is ⁇ L 60 ° C. ( ⁇ m)
  • the amount of change in the length of the base material obtained by subtracting the initial length of the base material from the length of the base material at 90 ° C. is ⁇ L 90 ° C. ( ⁇ m)
  • the following formula (1) ⁇ L 90 ° C. ⁇ L 60 ° C. ⁇ 0 ⁇ m (1) Satisfy the relationship.
  • the value of ⁇ L 90 ° C.- ⁇ L 60 ° C. is particularly preferably ⁇ 10 ⁇ m or less.
  • the lower limit value of ⁇ L 90 ° C. ⁇ ⁇ L 60 ° C. is not particularly limited, but is usually ⁇ 3000 ⁇ m or more, and preferably ⁇ 2000 ⁇ m or more.
  • the adhesive sheet for stealth dicing which concerns on this embodiment is used
  • glass members such as semiconductor members, such as a semiconductor wafer and a semiconductor package, a glass plate, etc.
  • the semiconductor wafer may be a semiconductor wafer (TSV wafer) having a through electrode.
  • TSV wafer semiconductor wafer having a through electrode.
  • the adhesive sheet for stealth dicing according to the present embodiment can suppress the collision between chips after heat shrinking, so that the workpiece is thin and thereby the chip is easily damaged by the collision. Even if it is used, the said damage can be suppressed effectively. Therefore, as a work for which the adhesive sheet for stealth dicing is used, a semiconductor wafer having a through electrode and having a very thin thickness is generally preferable.
  • the substrate is expressed by the following formula (2 ) H 30 ° C.-100 ° C./H 25 ° C. ⁇ 4.0 (2) It is preferable to satisfy the relationship.
  • the base material and the adhesive sheet for stealth dicing provided with the base material have excellent heat resistance.
  • the adhesive sheet for stealth dicing is placed on a heated adsorption table, adhesion to the adsorption table due to softening of the substrate is suppressed, and the adhesive sheet for stealth dicing can be satisfactorily removed from the adsorption table. Can be separated.
  • the details of the measurement method using the differential scanning calorimeter are as described in the test examples described later.
  • the value of H 30 ° C.-100 ° C./H 25 ° C. is particularly preferably 3.0 or less. Further, the lower limit value of the value of H 30 ° C.-100 ° C./H 25 ° C. is not particularly limited, but is usually preferably 0.1 or more.
  • a DSC curve for a base material obtained by heating from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter is 105 ° C.
  • the minimum value of the measured value (mW) in the range from 200 to 200 ° C. is H 105 ° C.-200 ° C.
  • the measured value (mW) at 25 ° C. is H 25 ° C.
  • the substrate is expressed by the following formula (3 ) H 105 ° C-200 ° C / H 25 ° C ⁇ 1.0 (3) It is preferable to satisfy the relationship.
  • the value of H 105 ° C.-200 ° C./H 25 ° C. is particularly preferably 1.1 or more from the viewpoint that the stealth dicing pressure-sensitive adhesive sheet exhibits further excellent heat resistance.
  • the upper limit of the value of H 105 ° C.-200 ° C./H 25 ° C. is not particularly limited, but is usually preferably 20 or less.
  • the stealth dicing pressure-sensitive adhesive sheet in a DSC curve for a base material obtained by heating from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter, 30 ° C.
  • the minimum value of the measured value (mW) in the range of 100 to 100 ° C. is H 30 ° C.-100 ° C.
  • the minimum value of the measured value (mW) in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C.
  • the base material is the following formula (4) H 105 ° C.-200 ° C./H 30 ° C.-100 ° C.
  • the base material and the adhesive sheet for stealth dicing provided with the base material have excellent heat resistance.
  • adhesion to the adsorption table due to softening of the substrate is suppressed, and the adhesive sheet for stealth dicing can be satisfactorily removed from the adsorption table. Can be separated.
  • the details of the measurement method using the differential scanning calorimeter are as described in the test examples described later.
  • the value of H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. is particularly preferably 0.7 or more, more preferably 1 .5 or more is preferable.
  • the upper limit value of the values of H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. is not particularly limited, but is usually preferably 20 or less.
  • the tensile elastic modulus at 23 ° C. of the substrate is preferably 450 MPa or less, particularly preferably 400 MPa or less, and further preferably 300 MPa or less. Further, the tensile elastic modulus is preferably 50 MPa or more, particularly preferably 70 MPa or more, and further preferably 100 MPa or more.
  • the base material is easily contracted by heating, and therefore, it is possible to effectively maintain the semiconductor chip and the glass chip in a separated state after the heat shrink. Become.
  • the base material has sufficient rigidity, and the stealth dicing pressure-sensitive adhesive sheet including the base material has excellent workability and handling properties.
  • the detail of the measuring method of the said tensile elasticity modulus is as describing in the test example mentioned later.
  • the material of the substrate is not particularly limited as long as it satisfies the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer and exhibits a desired function in the use process of the adhesive sheet for stealth dicing.
  • the pressure-sensitive adhesive layer is composed of an energy ray-curable pressure-sensitive adhesive
  • the material of the base material can exhibit good permeability to the energy rays irradiated for curing the pressure-sensitive adhesive layer. preferable.
  • the base material is preferably a resin film mainly composed of a resin-based material.
  • a resin film mainly composed of a resin-based material.
  • Specific examples thereof include a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, and an ethylene-norbornene copolymer.
  • Polyolefin film such as norbornene resin film
  • ethylene- (meth) acrylic acid copolymer film ethylene- (meth) acrylic acid methyl copolymer film, other ethylene- (meth) acrylic acid ester copolymer film
  • Ethylene copolymer films such as ethylene-vinyl acetate copolymer films
  • polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films
  • (meth) acrylic acid ester copolymer films polyurethane films Beam; polystyrene films; fluororesin film; polyimide film; and a polycarbonate film.
  • the polyolefin may be a block copolymer or a random copolymer.
  • the polyethylene film include a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film, and a high density polyethylene (HDPE) film.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • modified films such as these crosslinked films and ionomer films are also used.
  • the substrate may be a laminated film in which a plurality of the above-described films are laminated. In this laminated film, the material constituting each layer may be the same or different.
  • (meth) acrylic acid” in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • a low density polyethylene film As the substrate, among the above films, from the viewpoint of easily satisfying the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer, a low density polyethylene film, a linear low density polyethylene film, a polypropylene film of a random copolymer (random) Polypropylene film) or ethylene-methacrylic acid copolymer film is preferably used.
  • the substrate may contain various additives such as a flame retardant, a plasticizer, an antistatic agent, a lubricant, an antioxidant, a colorant, an infrared absorber, and an ion scavenger.
  • a flame retardant such as a flame retardant, a plasticizer, an antistatic agent, a lubricant, an antioxidant, a colorant, an infrared absorber, and an ion scavenger.
  • the content of these additives is not particularly limited, but is preferably in a range where the base material exhibits a desired function.
  • the surface of the base material on which the pressure-sensitive adhesive layer is laminated may be subjected to a surface treatment such as primer treatment, corona treatment, or plasma treatment in order to enhance the adhesion to the pressure-sensitive adhesive layer.
  • a surface treatment such as primer treatment, corona treatment, or plasma treatment in order to enhance the adhesion to the pressure-sensitive adhesive layer.
  • the thickness of the substrate is preferably 450 ⁇ m or less, particularly preferably 400 ⁇ m or less, and more preferably 350 ⁇ m or less.
  • the thickness is preferably 20 ⁇ m or more, particularly preferably 25 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the base material is easily heat-shrinked, and the semiconductor chips and the glass chips can be well separated and maintained.
  • the thickness of the base material is 20 ⁇ m or more, the base material has good rigidity, and the stealth dicing pressure-sensitive adhesive sheet can effectively support the workpiece.
  • the pressure-sensitive adhesive layer is not particularly limited as long as it exhibits a desired function in the use process of the pressure-sensitive adhesive sheet for stealth dicing.
  • the pressure-sensitive adhesive sheet for stealth dicing includes the pressure-sensitive adhesive layer, the workpiece can be easily adhered to the surface on the pressure-sensitive adhesive layer side.
  • the pressure-sensitive adhesive layer may be composed of a non-energy ray curable pressure sensitive adhesive or an energy ray curable pressure sensitive adhesive.
  • a non-energy ray curable pressure-sensitive adhesive those having desired adhesive strength and removability are preferable.
  • Polyvinyl ether-based pressure-sensitive adhesives can be used.
  • an acrylic pressure-sensitive adhesive that can effectively suppress dropping of a semiconductor chip or the like when the pressure-sensitive adhesive sheet for stealth dicing is stretched is preferable.
  • the energy ray curable adhesive is cured by energy ray irradiation and its adhesive strength decreases. Therefore, when it is desired to separate the semiconductor chip and the adhesive sheet for stealth dicing, it can be easily separated by irradiating energy rays. Can be made.
  • the energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may be mainly composed of a polymer having energy ray-curability, or a non-energy ray-curable polymer (polymer not having energy ray-curability). And a mixture of a monomer and / or an oligomer having at least one energy ray curable group. Further, it may be a mixture of a polymer having energy ray curable properties and a non-energy ray curable polymer, a polymer having energy ray curable properties and a monomer having at least one energy ray curable group and / or It may be a mixture with an oligomer or a mixture of these three.
  • the energy ray-curable pressure-sensitive adhesive is composed mainly of a polymer having energy ray-curability.
  • the polymer having energy ray curability is a (meth) acrylic acid ester (co) polymer (A) (hereinafter referred to as “energy ray”) in which a functional group having energy ray curability (energy ray curable group) is introduced into the side chain. It may be referred to as “curable polymer (A)”).
  • This energy beam curable polymer (A) reacts an acrylic copolymer (a1) having a functional group-containing monomer unit with an unsaturated group-containing compound (a2) having a functional group bonded to the functional group. It is preferable that it is obtained.
  • the acrylic copolymer (a1) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
  • the functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) contains a polymerizable double bond and a functional group such as a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group in the molecule. It is preferable that the monomer has
  • hydroxy group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( Examples thereof include meth) acrylate and 4-hydroxybutyl (meth) acrylate, and these are used alone or in combination of two or more.
  • carboxy group-containing monomer examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
  • carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
  • amino group-containing monomer or substituted amino group-containing monomer examples include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate. These may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) include an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms, and an alicyclic structure in the molecule, for example.
  • the monomer (alicyclic structure-containing monomer) is preferably used.
  • alkyl (meth) acrylate examples include alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate.
  • Dicyclopentenyloxyethyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the acrylic copolymer (a1) contains the structural unit derived from the functional group-containing monomer, preferably in an amount of 1% by mass or more, particularly preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the acrylic copolymer (a1) preferably contains a constituent unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, particularly preferably 30% by mass or less, and more preferably 25% by mass or less. To do.
  • the acrylic copolymer (a1) preferably contains 50% by mass or more, particularly preferably 60% by mass or more, and further preferably 70% by mass of a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof. It contains in the above ratio.
  • the acrylic copolymer (a1) preferably contains 99% by mass or less, particularly preferably 95% by mass or less, and more preferably 90% by mass of a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof. Contains in the following proportions.
  • the acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
  • an energy beam curable polymer (A ) Is obtained.
  • the functional group of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1).
  • the functional group of the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group
  • the functional group of the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group.
  • the functional group that the system copolymer (a1) has is an epoxy group
  • the functional group that the unsaturated group-containing compound (a2) has is preferably an amino group, a carboxy group, or an aziridinyl group.
  • the unsaturated group-containing compound (a2) contains at least one, preferably 1-6, more preferably 1-4, energy-polymerizable carbon-carbon double bonds in one molecule. ing.
  • Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth)
  • the unsaturated group-containing compound (a2) is preferably at least 50 mol%, particularly preferably at least 60 mol%, more preferably 70 mol, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). % Is used at a rate of at least%.
  • the unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, more preferably, relative to the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). It is used at a ratio of 90 mol% or less.
  • the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) Depending on the combination, the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected. As a result, the functional group present in the acrylic copolymer (a1) reacts with the functional group in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1). It introduce
  • the weight average molecular weight (Mw) of the energy ray curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 150,000 or more, and more preferably 200,000 or more. Is preferred.
  • the weight average molecular weight (Mw) is preferably 1.5 million or less, and particularly preferably 1 million or less.
  • the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the energy ray curable adhesive is mainly composed of an energy ray curable polymer such as an energy ray curable polymer (A)
  • the energy ray curable adhesive is an energy ray curable monomer.
  • oligomer (B) may further be contained.
  • the energy ray-curable monomer and / or oligomer (B) for example, an ester of a polyhydric alcohol and (meth) acrylic acid or the like can be used.
  • Examples of the energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, penta Erythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol Polyfunctional acrylic esters such as di (meth) acrylate and dimethyloltricyclodecane di (meth) acrylate, polyester oligo (meth) acrylate, polyurethane oligo (meta Acrylate, and the like.
  • monofunctional acrylic acid esters such as
  • the energy ray curable monomer (B) When the energy ray curable monomer (B) is blended with the energy ray curable polymer (A), the energy ray curable monomer and / or oligomer (B) in the energy ray curable adhesive is used.
  • Content is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, with respect to 100 parts by mass of the energy ray-curable polymer (A).
  • the content is preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less, with respect to 100 parts by mass of the energy beam curable polymer (A).
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-me Le-1- [4-
  • the photopolymerization initiator (C) is energy beam curable copolymer (A) (when energy beam curable monomer and / or oligomer (B) is blended, energy beam curable copolymer (A).
  • the total amount of the energy ray-curable monomer and / or oligomer (B) is 100 parts by mass) and is preferably used in an amount of 0.1 parts by mass or more, particularly 0.5 parts by mass or more with respect to 100 parts by mass.
  • the photopolymerization initiator (C) is energy beam curable copolymer (A) (when energy beam curable monomer and / or oligomer (B) is blended, energy beam curable copolymer (
  • the total amount of A) and energy ray-curable monomer and / or oligomer (B) is 100 parts by mass) and is preferably used in an amount of 10 parts by mass or less, particularly 6 parts by mass or less.
  • other components may be appropriately blended in addition to the above components.
  • other components include a non-energy ray curable polymer component or oligomer component (D), and a crosslinking agent (E).
  • non-energy ray curable polymer component or oligomer component (D) examples include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers or oligomers having a weight average molecular weight (Mw) of 3000 to 2.5 million. Is preferred.
  • Mw weight average molecular weight
  • strength after hardening, the adhesiveness with another layer, storage stability, etc. can be improved.
  • the compounding quantity of the said component (D) is not specifically limited, It determines suitably in the range of more than 0 mass part and 50 mass parts or less with respect to 100 mass parts of energy-beam curable copolymers (A).
  • crosslinking agent (E) a polyfunctional compound having reactivity with the functional group of the energy beam curable copolymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, A reactive phenol resin etc. can be mentioned.
  • the amount of the crosslinking agent (E) is preferably 0.01 parts by mass or more, particularly 0.03 parts by mass or more, with respect to 100 parts by mass of the energy ray curable copolymer (A). More preferably, it is 0.04 parts by mass or more.
  • the amount of the crosslinking agent (E) is preferably 8 parts by mass or less, particularly preferably 5 parts by mass or less, with respect to 100 parts by mass of the energy ray curable copolymer (A). Furthermore, it is preferable that it is 3.5 mass parts or less.
  • the energy beam curable pressure-sensitive adhesive is mainly composed of a mixture of a non-energy beam curable polymer component and a monomer and / or oligomer having at least one energy beam curable group will be described below. .
  • non-energy ray curable polymer component for example, the same components as the acrylic copolymer (a1) described above can be used.
  • the same one as the above-mentioned component (B) can be selected.
  • the blending ratio of the non-energy ray curable polymer component and the monomer and / or oligomer having at least one energy ray curable group is at least one or more with respect to 100 parts by mass of the non-energy ray curable polymer component.
  • the amount of the monomer and / or oligomer having an energy ray-curable group is preferably 1 part by mass or more, and particularly preferably 60 parts by mass or more.
  • the blending ratio is preferably not more than 200 parts by mass of monomers and / or oligomers having at least one energy ray-curable group with respect to 100 parts by mass of the non-energy ray-curable polymer component. It is preferably less than or equal to parts by mass.
  • the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the thickness is preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the adhesive sheet for stealth dicing exhibits a good adhesive force, and the peeling of the workpiece at an unintended stage can be effectively suppressed. .
  • production of a pick-up defect, etc. can be suppressed effectively.
  • a release sheet is laminated on the surface for the purpose of protecting the adhesive surface until the adhesive surface in the adhesive layer is applied to the workpiece. Also good.
  • the configuration of the release sheet is arbitrary, and examples include a release film of a plastic film with a release agent or the like.
  • Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable.
  • silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable.
  • the base material production method is as long as the obtained base material satisfies the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer.
  • a substrate can be produced by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method.
  • a melt extrusion method such as a T-die method or a round die method
  • a calendar method such as a dry method or a wet method.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited.
  • an adhesive sheet for stealth dicing can be obtained by transferring the pressure-sensitive adhesive layer formed on the release sheet to one side of the base material produced as described above.
  • a pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared, and a release-treated surface of the release sheet (hereinafter referred to as “release surface”) .)
  • release surface a release-treated surface of the release sheet
  • a coating film is formed by applying the coating solution with a die coater, curtain coater, spray coater, slit coater, knife coater, etc., and the coating film is dried to form an adhesive layer. be able to.
  • the properties of the coating liquid are not particularly limited as long as it can be applied, and may contain a component for forming the pressure-sensitive adhesive layer as a solute or a dispersoid.
  • the release sheet in this laminate may be peeled off as a process material, or may be used to protect the adhesive surface of the adhesive layer until the stealth dicing adhesive sheet is attached to a workpiece.
  • the coating liquid for forming the pressure-sensitive adhesive layer contains a cross-linking agent
  • the obtained pressure-sensitive adhesive sheet for stealth dicing is several times in an environment of, for example, 23 ° C. and a relative humidity of 50%. Curing may be performed such as standing for days.
  • the pressure-sensitive adhesive layer may be formed directly on the base material.
  • the pressure-sensitive adhesive layer is formed by applying the coating liquid for forming the pressure-sensitive adhesive layer described above to one side of the substrate to form a coating film and drying the coating film.
  • the stealth dicing adhesive sheet according to this embodiment can be used for stealth dicing. Moreover, the adhesive sheet for stealth dicing which concerns on this embodiment can be used for the manufacturing method of a semiconductor device provided with the process of stealth dicing.
  • the adhesive sheet for stealth dicing according to the present embodiment can suppress the collision between chips after heat shrinking, and thus is suitably used for a workpiece that is thin and thereby easily breaks the chip. can do.
  • the adhesive sheet for stealth dicing according to the present embodiment can be suitably used for a semiconductor wafer (TSV) having a through electrode.
  • a step of grinding (back grinding) one side of a work (semiconductor wafer) fixed to a hard support is performed.
  • the semiconductor wafer is fixed to the hard support with, for example, an adhesive.
  • the hard support for example, glass or the like is used.
  • the back grinding can be performed by a general method.
  • the semiconductor wafer on which back grinding has been completed is transferred from the hard support to the adhesive sheet for stealth dicing.
  • the surface on the adhesive layer side of the adhesive sheet for stealth dicing is attached to the back-ground surface of the semiconductor wafer, and then the hard support is separated from the semiconductor wafer.
  • Separation of the hard support from the semiconductor wafer can be performed by a method according to the type of adhesive used for fixing the hard support and the semiconductor wafer. For example, after softening the adhesive by heating, And a method of sliding a hard support from a semiconductor wafer, a method of decomposing an adhesive by laser light irradiation, and the like.
  • the peripheral part in the adhesive sheet for stealth dicing is affixed with respect to a ring frame.
  • a process of cleaning the semiconductor wafer laminated on the stealth dicing adhesive sheet with a solvent is performed.
  • the cleaning can be performed by a general method, for example, a method of immersing a laminate of an adhesive sheet for stealth dicing and a semiconductor wafer in a solvent, a frame slightly larger than the semiconductor wafer so as to surround the wafer. And a method of placing the solution on the adhesive sheet for stealth dicing and introducing a solvent into the frame.
  • the semiconductors can be fixed using an adhesive or the like, for example, can be fixed by a non-conductive adhesive film (NCF).
  • NCF non-conductive adhesive film
  • the stealth of a semiconductor wafer or a laminate of semiconductor wafers (hereinafter referred to as “semiconductor wafer” unless otherwise specified) on the stealth dicing adhesive sheet. Dicing is performed. In this step, the semiconductor wafer is irradiated with laser light to form a modified portion in the semiconductor wafer.
  • the laser light irradiation can be performed using an apparatus and conditions generally used in stealth dicing.
  • the semiconductor wafer is divided at a modified portion formed by stealth dicing to obtain a plurality of semiconductor chips.
  • the division can be performed, for example, by placing a laminate of an adhesive sheet for stealth dicing and a semiconductor wafer in an expanding apparatus and expanding in a 0 ° C. to room temperature environment.
  • the adhesive sheet for stealth dicing is expanded again.
  • the expansion is performed mainly for the purpose of separating the obtained semiconductor chips.
  • the adhesive sheet for stealth dicing is adsorbed by an adsorption table while maintaining the expanded state.
  • the expanding here can be performed at room temperature or in a heated state. Further, the expansion can be performed by a general method using a general apparatus, and the suction table used can also be performed using a general one.
  • the region of the stealth dicing adhesive sheet in which the obtained semiconductor chips are laminated is contracted by heating (heat shrink). .
  • the region between the region where the semiconductor chip is laminated in the stealth dicing adhesive sheet and the region where the ring frame is pasted in the stealth dicing adhesive sheet is heated to shrink the region.
  • the temperature of the stealth dicing pressure-sensitive adhesive sheet is preferably 90 ° C. or higher.
  • the temperature of the adhesive sheet for stealth dicing shall be 200 degrees C or less.
  • the amount of change ⁇ L 90 ° C. and ⁇ L 60 ° C. of the length of the substrate measured using the thermomechanical analyzer satisfies the relationship of the above-described formula (1).
  • the substrate can be favorably shrunk by heating.
  • the adhesive sheet for stealth dicing is released from the suction by the suction table described above.
  • the area between the area where the semiconductor chip is laminated in the pressure-sensitive adhesive sheet for stealth dicing and the area where the ring frame is affixed in the pressure-sensitive adhesive sheet for stealth dicing contracted, so that the pressure-sensitive adhesive sheet for stealth dicing.
  • region where the semiconductor chip was affixed in the peripheral part direction has arisen.
  • the stealth dicing pressure-sensitive adhesive sheet according to this embodiment can maintain the semiconductor chips in a well-separated state as a result of exhibiting excellent heat shrink properties, thereby improving the pickup. It can be carried out.
  • other layers may be provided between the substrate and the pressure-sensitive adhesive layer, or on the surface of the substrate opposite to the pressure-sensitive adhesive layer.
  • Example 1 (1) Preparation of substrate A resin composition containing low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen F-412-1”) is transferred to a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “ Extrusion was performed by a “laboplast mill”) to obtain a substrate having a thickness of 70 ⁇ m.
  • a resin composition containing low-density polyethylene manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen F-412-1”
  • T-die extruder manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “ Extrusion was performed by a “laboplast mill”
  • Example 2 Resin composition containing low-density polyethylene as a base material (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen F-723P”), small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) A stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 ⁇ m-thick base material obtained by extrusion molding was used.
  • Example 3 Resin composition containing low-density polyethylene as a base material (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen CE3506”) is extruded by a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”).
  • a stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a substrate having a thickness of 70 ⁇ m obtained by molding was used.
  • Example 4 Resin composition containing random polypropylene as a base material (manufactured by Prime Polymer Co., Ltd., product name “Prime TPO J-5710”) and small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”)
  • a stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 ⁇ m-thick base material obtained by extrusion molding was used.
  • Example 5 Resin composition containing random polypropylene as a base material (manufactured by Prime Polymer Co., Ltd., product name “Prime TPO F-3740”) and small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”)
  • a stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 ⁇ m-thick base material obtained by extrusion molding was used.
  • Example 6 Resin composition containing ethylene-methacrylic acid copolymer (product name “Nucleel NH903C” manufactured by Mitsui Dupont Polychemical Co., Ltd.) as a base material and a small T-die extruder (product name “Laboratory” manufactured by Toyo Seiki Seisakusho Co., Ltd.)
  • ethylene-methacrylic acid copolymer product name “Nucleel NH903C” manufactured by Mitsui Dupont Polychemical Co., Ltd.
  • a small T-die extruder product name “Laboratory” manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Example 1 An adhesive sheet for stealth dicing was produced in the same manner as in Example 1 except that a polybutylene terephthalate film having a thickness of 80 ⁇ m was used as the substrate.
  • the above-mentioned weight average molecular weight (Mw) is a polystyrene-reduced weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
  • GPC measurement device manufactured by Tosoh Corporation, HLC-8020 GPC column (passed in the following order): TSK guard column HXL-H manufactured by Tosoh Corporation TSK gel GMHXL ( ⁇ 2) TSK gel G2000HXL ⁇ Measurement solvent: Tetrahydrofuran ⁇ Measurement temperature: 40 ° C.
  • Test Example 1 Measurement of tensile modulus of base material
  • the base materials produced in Examples and Comparative Examples were cut into 15 mm ⁇ 140 mm test pieces, and the tensile modulus at a temperature of 23 ° C. and a relative humidity of 50% was measured according to JIS K7161: 2014. Specifically, the test piece was set to a distance between chucks of 100 mm with a tensile tester (manufactured by Orientec Co., Ltd., product name “Tensilon RTA-T-2M”), and then subjected to a tensile test at a speed of 200 mm / min. The tensile modulus (MPa) was measured.
  • Test Example 2 (Measurement with a differential scanning calorimeter) 4.0 mg was cut out from the base material produced in the Example and the comparative example, and it was set as the measurement sample.
  • the measurement sample was heated from 0 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter (TA Instruments, product name “Q2000”) to obtain a DSC curve.
  • the measured value (mW) at 25 ° C. is H 25 ° C.
  • the minimum measured value (mW) in the range from 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C.
  • the minimum value of the measured value (mW) was H 105 ° C.-200 ° C.
  • H 30 °C -100 °C ratio (H 30 °C -100 °C / H 25 °C) against H 25 ° C.
  • the ratio of H 105 ° C. -200 ° C. for H 25 °C (H 105 °C -200 °C / H 25 °C )
  • the ratio of H 105 ° C. -200 ° C. for H 30 °C -100 °C H 105 °C -200 °C / H 30 °C -100 °C
  • Test Example 3 (Measurement with a thermomechanical analyzer) The base material produced by the Example and the comparative example was cut into the size of 4.5 mm x 20 mm, and it was set as the measurement sample. The measurement sample was placed on a thermomechanical analyzer (manufactured by BRUKER, product name “TMA4000SA”) with a distance between chucks of 15 mm, and then heated from 25 ° C. to 120 ° C. at a heating rate of 20 ° C./min. It was pulled in the major axis direction with a load of 0.2 g. And the distance between chuck
  • TMA4000SA thermomechanical analyzer
  • the amount of change ⁇ L 60 ° C. ( ⁇ m) in the distance between the chucks of the measurement sample was calculated by subtracting the initial chuck distance from the distance between the chucks of the measurement sample at 60 ° C.
  • the amount of change ⁇ L 90 ° C. ( ⁇ m) in the distance between chucks of the measurement sample was calculated by subtracting the initial chuck distance from the distance between chucks of the measurement sample at 90 ° C.
  • a value ( ⁇ L 90 ° C. ⁇ ⁇ L 60 ° C. ) ( ⁇ m) obtained by subtracting ⁇ L 60 ° C. from ⁇ L 90 ° C. was calculated.
  • the silicon wafer affixed on the adhesive sheet for stealth dicing is irradiated with laser light having a wavelength of 1342 nm using a laser saw (manufactured by DISCO, product name “DFL7361”), and the resulting chip size is 8 mm.
  • a modified portion was formed in the silicon wafer so as to be 8 mm.
  • the silicon wafer and ring frame after the laser beam irradiation, to which the adhesive sheet for stealth dicing was attached were placed on a die separator (manufactured by Disco Corporation, product name “DDS2300”), and the withdrawal speed was 100 mm / Second (expanded) with an expanding amount of 10 mm.
  • the semiconductor wafer was divided at the modified portion, and a plurality of semiconductor chips each having a chip size of 8 mm ⁇ 8 mm were obtained.
  • an adhesive sheet for stealth dicing was expanded at a withdrawal speed of 1 mm / second and an expanding amount of 7 mm. Furthermore, after the adhesive sheet for stealth dicing was adsorbed by the adsorption table in the expanded state, the area between the area where the semiconductor chip was adhered and the area where the ring frame was adhered in the adhesive sheet for stealth dicing was heated. As heating conditions at this time, the set temperature of the IR heater was set to 600 ° C., the rotation speed was set to 1 deg / sec, and the distance between the adsorption table supporting the stealth dicing adhesive sheet and the heater was set to 13 mm. Thereby, the adhesive sheet for stealth dicing was heated to about 180 degreeC.
  • the stealth dicing adhesive sheets obtained in the examples were excellent in heat shrink properties.
  • the stealth dicing adhesive sheets obtained in Examples 1 to 3 were excellent in heat resistance.
  • the adhesive sheet for stealth dicing of the present invention can be suitably used when stealth dicing a semiconductor wafer having a through electrode.

Abstract

An adhesive sheet for stealth dicing, comprising a base material and an adhesive layer laminated on to one surface side of the base material. The adhesive sheet for stealth dicing fulfills the relationship indicated by formula (1) (∆L90°C–∆L60°C<0 µm … (1)) when the base material is heated using a thermomechanical analysis device from 25°C to 120°C at a temperature-increasing speed of 20°C/min and the base material is pulled under a load of 0.2 g, ∆L60°C being the amount of change in length of the base material obtained when the initial length of the base material is deducted from the length of the base material at 60°C, and ∆L90°C being the amount of change in the length of the base material obtained when the initial length of the base material is deducted from the length of the base material at 90°C. Said adhesive sheet for stealth dicing has excellent heat shrinking properties.

Description

ステルスダイシング用粘着シートStealth dicing adhesive sheet
 本発明は、ステルスダイシング(登録商標)用粘着シートに関するものであり、好ましくは貫通電極を有する半導体ウエハをワークとするステルスダイシング用粘着シートに関するものである。 The present invention relates to an adhesive sheet for stealth dicing (registered trademark), and preferably to an adhesive sheet for stealth dicing using a semiconductor wafer having a through electrode as a workpiece.
 電子回路の大容量化、高機能化に対応して、複数の半導体チップを立体的に積層した積層回路の開発が進んでいる。このような積層回路においては、従来は半導体チップの導電接続をワイヤボンディングにより行うことが一般的であったが、近年の小型化・高機能化の必要性により、ワイヤボンディングをすることなく、半導体チップに回路形成面から裏面に貫通する電極(TSV)を設けて、直接上下のチップ間を導電接続する方法が効果的な手法として開発されている。貫通電極付チップの製造方法としては、例えば、半導体ウエハの所定の位置にプラズマ等により貫通孔を設け、この貫通孔に銅等の導電体を流し込んだ後、エッチング等を施して半導体ウエハの表面に回路と貫通電極とを設ける方法等が挙げられる。この際、ウエハは加熱されることになる。 Developed multilayer circuits in which a plurality of semiconductor chips are three-dimensionally stacked in response to the increase in capacity and functionality of electronic circuits. Conventionally, in such a laminated circuit, the conductive connection of the semiconductor chip is generally performed by wire bonding. However, due to the recent need for miniaturization and high functionality, the semiconductor chip can be connected without wire bonding. An effective method has been developed in which a chip is provided with an electrode (TSV) penetrating from the circuit formation surface to the back surface to directly conduct conductive connection between the upper and lower chips. As a method for manufacturing a chip with a through electrode, for example, a through hole is formed in a predetermined position of a semiconductor wafer by plasma or the like, a conductor such as copper is poured into the through hole, etching is performed, and then the surface of the semiconductor wafer And a method of providing a circuit and a through electrode. At this time, the wafer is heated.
 このような極薄ウエハや、TSVウエハは、極めて割れやすいため、裏面研削(バックグラインド)工程や、その後の加工工程や移送工程で破損することがある。このため、これらの工程中、ウエハはガラスなどの硬質支持体上に接着剤を介して保持される。 Such ultra-thin wafers and TSV wafers are extremely fragile, and may be damaged in the back grinding process, the subsequent processing process, and the transfer process. Therefore, during these steps, the wafer is held on a hard support such as glass via an adhesive.
 ウエハの裏面研削および加工の終了後、ウエハは硬質支持体から、ダイシングシート上に転着され、ダイシングシートの周縁部をリングフレームにより固定した後、ウエハをダイシングして複数のチップに個片化し、その後ダイシングシートからチップがピックアップされる。 After the backside grinding and processing of the wafer are completed, the wafer is transferred from the hard support onto the dicing sheet, the periphery of the dicing sheet is fixed by a ring frame, and then the wafer is diced into a plurality of chips. Thereafter, chips are picked up from the dicing sheet.
 上記ダイシングによって得られたチップをピックアップする場合には、当該チップが貼付されたダイシングシートをエキスパンドすることが行われる。これにより、チップ同士が離間して、チップを個々にピックアップすることが容易となる。このようなエキスパンドは、ダイシングシートにおけるチップが貼付された領域を、そのチップが貼付された面とは反対の面からステージで支え、当該ステージの高さに対して、ダイシングシートの周縁部に貼付されたリングフレームの高さを相対的に下げることで行われる。 When picking up the chip obtained by the dicing, the dicing sheet to which the chip is attached is expanded. As a result, the chips are separated from each other, and it becomes easy to pick up the chips individually. Such an expander supports the area of the dicing sheet to which the chip is adhered from the surface opposite to the surface to which the chip is adhered, and is adhered to the peripheral edge of the dicing sheet with respect to the height of the stage. This is done by relatively lowering the height of the ring frame.
 また、上記エキスパンドを行う際には、エキスパンドした状態を維持したままダイシングシートを吸着テーブルで吸着した後、ダイシングシートにおけるリングフレームが貼付された領域とチップが貼付された領域との間の領域を加熱して収縮させる処理(ヒートシュリンク)が行われることもある。当該収縮に起因して、ダイシングシートでは、チップが貼付された領域を周縁部方向に引き伸ばす力が生じ、その結果、吸着テーブルによる吸着からダイシングシートを解放した後においても、チップ同士が離間した状態を維持することができる。 Also, when performing the above expansion, after adsorbing the dicing sheet with the adsorption table while maintaining the expanded state, the area between the area where the ring frame is affixed and the area where the chip is affixed in the dicing sheet A process (heat shrink) for heating and shrinking may be performed. Due to the shrinkage, in the dicing sheet, a force is generated to stretch the region where the chip is attached in the peripheral direction, and as a result, the chip is separated even after the dicing sheet is released from the suction by the suction table. Can be maintained.
 特許文献1には、加熱収縮工程において十分な収縮性を示し、加熱収縮工程の後に弛みによる不具合を引き起こすことがないことを課題の1つとして、所定の基材フィルムを備え、所定の試験による最大熱収縮応力が所定の値となるウエハ加工用テープが開示されている。 Patent Document 1 shows a sufficient shrinkability in the heat shrinking process, and is provided with a predetermined base film as one of the problems that it does not cause problems due to looseness after the heat shrinking process, and according to a predetermined test. A wafer processing tape is disclosed in which the maximum heat shrinkage stress is a predetermined value.
特許第5554118号Japanese Patent No. 5554118
 ところで、ダイシングの方法には、ダイシングブレードを用いたダイシング方法や、レーザ光の照射によってウエハ内部に改質部を形成し、当該改質部で分割することを含むダイシング方法(ステルスダイシング)等が存在する。このうち、ダイシングブレードを用いる方法では、ウエハにおけるダイシングブレードが接触する部分が切削されるため、得られるチップ同士は、エキスパンドを行わない状態においても、その切削された幅の分だけ離間することとなる。一方、ステルスダイシングでは、レーザ光の照射によりウエハ内に改質部を形成し、当該改質部においてウエハを分割することで、複数のチップを得る。そのため、ウエハにおいて上述したような切削される部分が生じることはなく、得られるチップ同士は、エキスパンドを行わない状態において殆ど接触するものとなる。 By the way, the dicing method includes a dicing method using a dicing blade, a dicing method (stealth dicing) including forming a modified portion inside the wafer by laser irradiation and dividing the wafer by the modified portion. Exists. Among these, in the method using a dicing blade, the portion of the wafer that contacts the dicing blade is cut, and thus the obtained chips are separated by the cut width even in a state where no expansion is performed. Become. On the other hand, in stealth dicing, a modified portion is formed in a wafer by laser beam irradiation, and a plurality of chips are obtained by dividing the wafer in the modified portion. Therefore, a portion to be cut as described above does not occur on the wafer, and the obtained chips are almost in contact with each other in a state where no expansion is performed.
 したがって、ダイシングブレードを用いるダイシングを行った場合よりも、ステルスダイシングを行った場合の方が、前述したヒートシュリンクを行う際に、チップ同士を広く離間した状態で維持することが困難となり、ピックアップ不良といった問題が生じ易くなる。そのため、ステルスダイシングにも使用される粘着シートでは、ヒートシュリンクによって粘着シートが良好に収縮し、チップ同士を良好に離間した状態で維持できる(以下「ヒートシュリンク性に優れる」という場合がある。)ことが特に求められる。 Therefore, when stealth dicing is performed rather than dicing using a dicing blade, it is difficult to maintain the chips in a state of being widely separated when performing the above-described heat shrink, resulting in poor pickup. Such a problem is likely to occur. Therefore, in the pressure-sensitive adhesive sheet used also for stealth dicing, the pressure-sensitive adhesive sheet is favorably contracted by heat shrink and can be maintained in a state where the chips are well separated (hereinafter, sometimes referred to as “excellent in heat shrinkability”). Is particularly required.
 しかしながら、特許文献1に開示されるウエハ加工用テープのような従来の粘着シートはヒートシュリンク性が十分ではなく、特にステルスダイシングを行う場合に、チップ同士を広く離間した状態で維持することが不十分となる結果、ピックアップ不良といった問題が生じ易い。 However, the conventional pressure-sensitive adhesive sheet such as the wafer processing tape disclosed in Patent Document 1 is not sufficiently heat-shrinkable, and in particular when stealth dicing is performed, it is not possible to keep the chips widely separated. As a result, the problem of pick-up failure is likely to occur.
 本発明は、このような実状に鑑みてなされたものであり、ヒートシュリンク性に優れるステルスダイシング用粘着シートを提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide an adhesive sheet for stealth dicing that is excellent in heat shrinkability.
 上記目的を達成するために、第1に本発明は、基材と、前記基材における片面側に積層された粘着剤層とを備えたステルスダイシング用粘着シートであって、前記基材が、熱機械分析装置を用いて、昇温速度20℃/分で25℃から120℃まで加熱しながら、前記基材を0.2gの荷重で引っ張る場合において、前記基材の60℃のときの長さから前記基材の初期の長さを減じて得られる前記基材の長さの変化量をΔL60℃とし、前記基材の90℃のときの長さから前記基材の初期の長さを減じて得られる前記基材の長さの変化量をΔL90℃としたときに、下記式(1)
 ΔL90℃-ΔL60℃<0μm …(1)
の関係を満たすことを特徴とするステルスダイシング用粘着シートを提供する(発明1)。
In order to achieve the above object, first, the present invention is a pressure-sensitive adhesive sheet for stealth dicing comprising a base material and an adhesive layer laminated on one side of the base material, wherein the base material is When the substrate is pulled with a load of 0.2 g while being heated from 25 ° C. to 120 ° C. at a temperature increase rate of 20 ° C./min using a thermomechanical analyzer, the length of the substrate at 60 ° C. Then, the amount of change in the length of the base material obtained by subtracting the initial length of the base material is ΔL 60 ° C., and the initial length of the base material from the length of the base material at 90 ° C. When the amount of change in the length of the substrate obtained by subtracting is ΔL 90 ° C. , the following formula (1)
ΔL 90 ° C. −ΔL 60 ° C. <0 μm (1)
A stealth dicing pressure-sensitive adhesive sheet characterized by satisfying the above relationship is provided (Invention 1).
 上記発明(発明1)に係るステルスダイシング用粘着シートは、熱機械分析装置を用いて測定される基材の長さの変化量ΔL90℃およびΔL60℃が、上記式(1)の関係を満たすことにより、優れたヒートシュリンク性を発揮することができ、それにより、チップ同士が離間した状態を良好に維持することができる結果、ピックアップ不良といった問題を抑制することができる。 In the stealth dicing pressure-sensitive adhesive sheet according to the invention (Invention 1), the amount of change ΔL 90 ° C. and ΔL 60 ° C. of the length of the substrate measured using a thermomechanical analyzer has the relationship of the above formula (1). By satisfy | filling, the outstanding heat shrink property can be exhibited, and, as a result, the state which the chip | tips separated can be maintained favorably, As a result, the problem of pick-up failure can be suppressed.
 上記発明(発明1)において、前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、30℃から100℃の範囲における測定値の最小値をH30℃-100℃とし、25℃のときの測定値をH25℃としたときに、下記式(2)
 H30℃-100℃/H25℃≦4.0 …(2)
の関係を満たすことが好ましい(発明2)。
In the said invention (invention 1), in the DSC curve about the said base material obtained by heating the said base material from 0 degreeC to 200 degreeC with a temperature increase rate of 10 degree-C / min using a differential scanning calorimeter, When the minimum measured value in the range of 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C. and the measured value at 25 ° C. is H 25 ° C. , the following formula (2)
H 30 ° C.-100 ° C./H 25 ° C. ≦ 4.0 (2)
It is preferable to satisfy the relationship (Invention 2).
 上記発明(発明1,2)において、前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、105℃から200℃の範囲における測定値の最小値をH105℃-200℃とし、25℃のときの測定値をH25℃としたときに、下記式(3)
 H105℃-200℃/H25℃≧1.0 …(3)
の関係を満たすことが好ましい(発明3)。
In the said invention (invention 1 and 2), the said base material is a DSC curve about the said base material obtained by heating from 0 degreeC to 200 degreeC with the temperature increase rate of 10 degree-C / min using a differential scanning calorimeter. When the minimum value of the measured value in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C. and the measured value at 25 ° C. is H 25 ° C. , the following formula (3)
H 105 ° C-200 ° C / H 25 ° C ≧ 1.0 (3)
It is preferable to satisfy the relationship (Invention 3).
 上記発明(発明1~3)において、前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、30℃から100℃の範囲における測定値の最小値をH30℃-100℃とし、105℃から200℃の範囲における測定値の最小値をH105℃-200℃としたときに、下記式(4)
 H105℃-200℃/H30℃-100℃≧0.1 …(4)
の関係を満たすことが好ましい(発明4)。
In the above inventions (Inventions 1 to 3), the base material is a DSC curve for the base material obtained by heating from 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter. When the minimum value of the measured value in the range of 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C. and the minimum value of the measured value in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C. Formula (4)
H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. ≧ 0.1 (4)
It is preferable to satisfy the relationship (Invention 4).
 上記発明(発明1~4)において、前記基材は、23℃における引張弾性率が50MPa以上、450MPa以下であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the base material preferably has a tensile elastic modulus at 23 ° C. of 50 MPa or more and 450 MPa or less (Invention 5).
 上記発明(発明1~5)においては、貫通電極を有する半導体ウエハをワークとすることが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), it is preferable to use a semiconductor wafer having a through electrode as a workpiece (Invention 6).
 上記発明(発明1~6)においては、ワークが積層された前記ステルスダイシング用粘着シートにおける、前記ワークが積層されていない領域を、加熱により収縮する工程を備える半導体装置の製造方法に使用されることが好ましい(発明7)。 In the above inventions (Inventions 1 to 6), the stealth dicing pressure-sensitive adhesive sheet in which the workpieces are laminated is used in a method for manufacturing a semiconductor device including a step of shrinking a region in which the workpieces are not laminated by heating. (Invention 7)
 本発明に係るステルスダイシング用粘着シートは、ヒートシュリンク性に優れる。 The stealth dicing adhesive sheet according to the present invention is excellent in heat shrinkability.
 以下、本発明の実施形態について説明する。
 本実施形態に係るステルスダイシング用粘着シートは、基材と、基材における片面側に積層された粘着剤層とを備える。
Hereinafter, embodiments of the present invention will be described.
The adhesive sheet for stealth dicing according to the present embodiment includes a base material and an adhesive layer laminated on one side of the base material.
1.ステルスダイシング用粘着シートの構成部材
(1)基材
 本実施形態に係るステルスダイシング用粘着シートでは、熱機械分析装置を用いて、基材を昇温速度20℃/分で25℃から120℃まで加熱しながら、0.2gの荷重で引っ張る場合において、基材の60℃のときの長さから基材の初期の長さを減じて得られる基材の長さの変化量をΔL60℃(μm)とし、基材の90℃のときの長さから基材の初期の長さを減じて得られる基材の長さの変化量をΔL90℃(μm)としたときに、基材が、下記式(1)
 ΔL90℃-ΔL60℃<0μm …(1)
の関係を満たす。
1. Components of Stealth Dicing Adhesive Sheet (1) Substrate In the stealth dicing adhesive sheet according to this embodiment, the substrate is heated from 25 ° C. to 120 ° C. at a temperature rising rate of 20 ° C./min using a thermomechanical analyzer. When pulling with a load of 0.2 g while heating, the amount of change in the length of the base material obtained by subtracting the initial length of the base material from the length of the base material at 60 ° C. is ΔL 60 ° C. ( μm), and when the amount of change in the length of the base material obtained by subtracting the initial length of the base material from the length of the base material at 90 ° C. is ΔL 90 ° C. (μm), The following formula (1)
ΔL 90 ° C. −ΔL 60 ° C. <0 μm (1)
Satisfy the relationship.
 基材が上記式(1)の関係を満たす場合、基材では、90℃のときの長さが、60℃のときの長さよりも短くなっていることを意味する。そのため、ヒートシュリンクの際に、基材を例えば90℃以上、200℃以下といった温度に加熱したときに、基材が良好に収縮することができる。これにより、当該基材を備えるステルスダイシング用粘着シートは、優れたヒートシュリンク性を有するものとなり、ヒートシュリンク後において、チップ同士が離間した状態を良好に維持することができ、チップ同士の衝突が抑制された良好なピックアップを行うことが可能となる。なお、上記変化量ΔL90℃およびΔL60℃の測定方法の詳細は、後述する試験例に記載する通りである。 When a base material satisfy | fills the relationship of said Formula (1), it means that the length in 90 degreeC is shorter than the length in 60 degreeC in a base material. Therefore, when the base material is heated to a temperature such as 90 ° C. or higher and 200 ° C. or lower during heat shrinkage, the base material can be satisfactorily shrunk. Thereby, the adhesive sheet for stealth dicing provided with the base material has excellent heat shrinkability, and after heat shrink, the state in which the chips are separated from each other can be well maintained, and collision between the chips occurs. It is possible to perform a good pickup that is suppressed. The details of the measuring methods of the above-mentioned variation ΔL 90 ° C. and ΔL 60 ° C. are as described in the test examples described later.
 また、ステルスダイシング用粘着シートがさらに優れたヒートシュリンク性を発揮するという観点から、ΔL90℃-ΔL60℃の値は、特に-10μm以下であることが好ましい。また、ΔL90℃-ΔL60℃の値の下限値については、特に限定されないものの、通常-3000μm以上であり、特に-2000μm以上であることが好ましい。 Further, from the viewpoint that the stealth dicing adhesive sheet exhibits further excellent heat shrinkability, the value of ΔL 90 ° C.- ΔL 60 ° C. is particularly preferably −10 μm or less. The lower limit value of ΔL 90 ° C.− ΔL 60 ° C. is not particularly limited, but is usually −3000 μm or more, and preferably −2000 μm or more.
 なお、本実施形態に係るステルスダイシング用粘着シートが使用されるワークとしては、例えば、半導体ウエハ、半導体パッケージ等の半導体部材、ガラス板等のガラス部材等が挙げられる。上記半導体ウエハは、貫通電極を有する半導体ウエハ(TSVウエハ)であってもよい。本実施形態に係るステルスダイシング用粘着シートは、上記の通り、ヒートシュリンク後におけるチップ同士の衝突を抑制することができるため、厚さが薄く、それにより上記衝突によるチップの破損が生じ易いワークを使用する場合であっても、当該破損を効果的に抑制することができる。そのためステルスダイシング用粘着シートが使用されるワークとしては、一般的に非常に薄い厚さを有する、貫通電極を有する半導体ウエハが好適である。 In addition, as a workpiece | work in which the adhesive sheet for stealth dicing which concerns on this embodiment is used, glass members, such as semiconductor members, such as a semiconductor wafer and a semiconductor package, a glass plate, etc. are mentioned, for example. The semiconductor wafer may be a semiconductor wafer (TSV wafer) having a through electrode. As described above, the adhesive sheet for stealth dicing according to the present embodiment can suppress the collision between chips after heat shrinking, so that the workpiece is thin and thereby the chip is easily damaged by the collision. Even if it is used, the said damage can be suppressed effectively. Therefore, as a work for which the adhesive sheet for stealth dicing is used, a semiconductor wafer having a through electrode and having a very thin thickness is generally preferable.
 本実施形態に係るステルスダイシング用粘着シートでは、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる基材についてのDSC曲線において、30℃から100℃の範囲における測定値(mW)の最小値をH30℃-100℃とし、25℃のときの測定値(mW)をH25℃としたときに、基材が、下記式(2)
 H30℃-100℃/H25℃≦4.0 …(2)
の関係を満たすことが好ましい。基材が上記式(2)を満たす場合、基材が、30℃から100℃という温度範囲に吸熱ピークを有しない傾向が高まり、基材の融点は比較的高いものとなる。そのため、基材、および当該基材を備えるステルスダイシング用粘着シートが優れた耐熱性を有するものとなる。特に、ステルスダイシング用粘着シートを、加熱された吸着テーブル上に載置する場合であっても、基材の軟化による吸着テーブルへの密着が抑制され、ステルスダイシング用粘着シートを吸着テーブルから良好に分離することができる。なお、上記示差走査熱量計を用いた測定方法の詳細は、後述する試験例に記載の通りである。
In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, in a DSC curve for a base material obtained by heating from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter, 30 ° C. When the minimum value of the measured value (mW) in the range from 100 to 100 ° C. is H 30 ° C.-100 ° C. and the measured value (mW) at 25 ° C. is H 25 ° C. , the substrate is expressed by the following formula (2 )
H 30 ° C.-100 ° C./H 25 ° C. ≦ 4.0 (2)
It is preferable to satisfy the relationship. When a base material satisfy | fills said Formula (2), the tendency for a base material not to have an endothermic peak in the temperature range of 30 degreeC to 100 degreeC increases, and melting | fusing point of a base material becomes a comparatively high thing. Therefore, the base material and the adhesive sheet for stealth dicing provided with the base material have excellent heat resistance. In particular, even when the adhesive sheet for stealth dicing is placed on a heated adsorption table, adhesion to the adsorption table due to softening of the substrate is suppressed, and the adhesive sheet for stealth dicing can be satisfactorily removed from the adsorption table. Can be separated. The details of the measurement method using the differential scanning calorimeter are as described in the test examples described later.
 ステルスダイシング用粘着シートがさらに優れた耐熱性を示すという観点から、H30℃-100℃/H25℃の値は、特に3.0以下であることが好ましい。また、H30℃-100℃/H25℃の値の下限値については、特に限定されないものの、通常0.1以上であることが好ましい。 In view of the fact that the stealth dicing adhesive sheet exhibits further excellent heat resistance, the value of H 30 ° C.-100 ° C./H 25 ° C. is particularly preferably 3.0 or less. Further, the lower limit value of the value of H 30 ° C.-100 ° C./H 25 ° C. is not particularly limited, but is usually preferably 0.1 or more.
 本実施形態に係るステルスダイシング用粘着シートでは、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる基材についてのDSC曲線において、105℃から200℃の範囲における測定値(mW)の最小値をH105℃-200℃とし、25℃のときの測定値(mW)をH25℃としたときに、基材が、下記式(3)
 H105℃-200℃/H25℃≧1.0 …(3)
の関係を満たすことが好ましい。基材が上記式(3)を満たす場合、基材が、前述した式(1)の関係を満たし易くなり、当該基材を備えるステルスダイシング用粘着シートは、優れたヒートシュリンク性を効果的に発揮するものとなる。その結果、ヒートシュリンク後において、チップ同士が離間した状態をより良好に維持することができ、チップ同士の衝突が抑制された良好なピックアップを効果的に行うことができる。なお、上記示差走査熱量計を用いた測定方法の詳細は、後述する試験例に記載の通りである。
In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, a DSC curve for a base material obtained by heating from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter is 105 ° C. When the minimum value of the measured value (mW) in the range from 200 to 200 ° C. is H 105 ° C.-200 ° C., and the measured value (mW) at 25 ° C. is H 25 ° C. , the substrate is expressed by the following formula (3 )
H 105 ° C-200 ° C / H 25 ° C ≧ 1.0 (3)
It is preferable to satisfy the relationship. When a base material satisfy | fills said Formula (3), it becomes easy for a base material to satisfy | fill the relationship of Formula (1) mentioned above, and the adhesive sheet for stealth dicing provided with the said base material effectively has the outstanding heat shrink property. It will be demonstrated. As a result, after heat shrink, the state where the chips are separated from each other can be better maintained, and a good pickup in which collision between the chips is suppressed can be effectively performed. The details of the measurement method using the differential scanning calorimeter are as described in the test examples described later.
 なお、ステルスダイシング用粘着シートがさらに優れた耐熱性を示すという観点から、H105℃-200℃/H25℃の値は、特に1.1以上であることが好ましい。また、H105℃-200℃/H25℃の値の上限値については、特に限定されないものの、通常20以下であることが好ましい。 The value of H 105 ° C.-200 ° C./H 25 ° C. is particularly preferably 1.1 or more from the viewpoint that the stealth dicing pressure-sensitive adhesive sheet exhibits further excellent heat resistance. The upper limit of the value of H 105 ° C.-200 ° C./H 25 ° C. is not particularly limited, but is usually preferably 20 or less.
 本実施形態に係るステルスダイシング用粘着シートでは、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる基材についてのDSC曲線において、30℃から100℃の範囲における測定値(mW)の最小値をH30℃-100℃とし、105℃から200℃の範囲における測定値(mW)の最小値をH105℃-200℃としたときに、基材が、下記式(4)
 H105℃-200℃/H30℃-100℃≧0.1 …(4)
の関係を満たすことが好ましい。基材が上記式(4)を満たす場合、基材が、前述した式(1)の関係を満たし易くなり、当該基材を備えるステルスダイシング用粘着シートは、優れたヒートシュリンク性を効果的に発揮するものとなる。その結果、ヒートシュリンク後において、チップ同士が離間した状態をより良好に維持することができ、チップ同士の衝突が抑制された良好なピックアップを効果的に行うことができる。さらに、基材が上記式(4)を満たす場合、基材が、30℃から100℃という温度範囲に吸熱ピークを有しない傾向が高まるとともに、105℃から200℃という温度範囲に吸熱ピークを有する傾向が高まり、基材の融点は比較的高いものとなる。その結果、基材、および当該基材を備えるステルスダイシング用粘着シートが優れた耐熱性を有するものとなる。特に、ステルスダイシング用粘着シートを、加熱された吸着テーブル上に載置する場合であっても、基材の軟化による吸着テーブルへの密着が抑制され、ステルスダイシング用粘着シートを吸着テーブルから良好に分離することができる。なお、上記示差走査熱量計を用いた測定方法の詳細は、後述する試験例に記載の通りである。
In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, in a DSC curve for a base material obtained by heating from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter, 30 ° C. When the minimum value of the measured value (mW) in the range of 100 to 100 ° C. is H 30 ° C.-100 ° C., and the minimum value of the measured value (mW) in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C. The base material is the following formula (4)
H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. ≧ 0.1 (4)
It is preferable to satisfy the relationship. When a base material satisfy | fills said Formula (4), it becomes easy for a base material to satisfy | fill the relationship of Formula (1) mentioned above, and the adhesive sheet for stealth dicing provided with the said base material effectively has the outstanding heat shrink property. It will be demonstrated. As a result, after heat shrink, the state where the chips are separated from each other can be better maintained, and a good pickup in which collision between the chips is suppressed can be effectively performed. Furthermore, when the substrate satisfies the above formula (4), the substrate tends to have no endothermic peak in the temperature range of 30 ° C. to 100 ° C., and has an endothermic peak in the temperature range of 105 ° C. to 200 ° C. The tendency increases and the melting point of the substrate becomes relatively high. As a result, the base material and the adhesive sheet for stealth dicing provided with the base material have excellent heat resistance. In particular, even when the adhesive sheet for stealth dicing is placed on a heated adsorption table, adhesion to the adsorption table due to softening of the substrate is suppressed, and the adhesive sheet for stealth dicing can be satisfactorily removed from the adsorption table. Can be separated. The details of the measurement method using the differential scanning calorimeter are as described in the test examples described later.
 なお、ステルスダイシング用粘着シートがさらに優れた耐熱性を示すという観点から、H105℃-200℃/H30℃-100℃の値は、特に0.7以上であることが好ましく、さらには1.5以上であることが好ましい。また、H105℃-200℃/H30℃-100℃の値の上限値については、特に限定されないものの、通常20以下であることが好ましい。 From the viewpoint that the pressure-sensitive adhesive sheet for stealth dicing exhibits further excellent heat resistance, the value of H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. is particularly preferably 0.7 or more, more preferably 1 .5 or more is preferable. The upper limit value of the values of H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. is not particularly limited, but is usually preferably 20 or less.
 本実施形態に係るステルスダイシング用粘着シートでは、基材の23℃における引張弾性率が、450MPa以下であることが好ましく、特に400MPa以下であることが好ましく、さらには300MPa以下であることが好ましい。また、当該引張弾性率は、50MPa以上であることが好ましく、特に70MPa以上であることが好ましく、さらには100MPa以上であることが好ましい。当該引張弾性率が450MPa以下であることで、基材は加熱により収縮し易いものとなり、そのため、ヒートシュリンク後において、半導体チップやガラスチップ間を離間した状態で効果的に維持することが可能となる。一方、当該引張弾性率が50MPa以上であることで、基材が十分な剛性を有するものとなり、当該基材を備えるステルスダイシング用粘着シートは、加工性やハンドリング性に優れたものとなる。なお、上記引張弾性率の測定方法の詳細は、後述する試験例に記載の通りである。 In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, the tensile elastic modulus at 23 ° C. of the substrate is preferably 450 MPa or less, particularly preferably 400 MPa or less, and further preferably 300 MPa or less. Further, the tensile elastic modulus is preferably 50 MPa or more, particularly preferably 70 MPa or more, and further preferably 100 MPa or more. When the tensile modulus is 450 MPa or less, the base material is easily contracted by heating, and therefore, it is possible to effectively maintain the semiconductor chip and the glass chip in a separated state after the heat shrink. Become. On the other hand, when the tensile elastic modulus is 50 MPa or more, the base material has sufficient rigidity, and the stealth dicing pressure-sensitive adhesive sheet including the base material has excellent workability and handling properties. In addition, the detail of the measuring method of the said tensile elasticity modulus is as describing in the test example mentioned later.
 基材の材料としては、熱機械分析装置による測定に関する上記式(1)の関係を満たすとともに、ステルスダイシング用粘着シートの使用工程における所望の機能を発揮するものである限り、特に限定されない。また、粘着剤層がエネルギー線硬化性粘着剤から構成される場合には、基材の材料が、粘着剤層の硬化のために照射されるエネルギー線に対して良好な透過性を発揮できることが好ましい。 The material of the substrate is not particularly limited as long as it satisfies the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer and exhibits a desired function in the use process of the adhesive sheet for stealth dicing. Further, when the pressure-sensitive adhesive layer is composed of an energy ray-curable pressure-sensitive adhesive, the material of the base material can exhibit good permeability to the energy rays irradiated for curing the pressure-sensitive adhesive layer. preferable.
 基材は、樹脂系の材料を主材とする樹脂フィルムであることが好ましく、その具体例としては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸メチル共重合体フィルム、その他のエチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;エチレン-酢酸ビニル共重合体フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;(メタ)アクリル酸エステル共重合体フィルム;ポリウレタンフィルム;ポリスチレンフィルム;フッ素樹脂フィルム;ポリイミドフィルム;ポリカーボネートフィルムなどが挙げられる。ポリオレフィン系フィルムにおいて、ポリオレフィンはブロックコポリマーまたはランダムコポリマーであってもよい。ポリエチレンフィルムの例としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等が挙げられる。また、これらの架橋フィルム、アイオノマーフィルムといった変性フィルムも用いられる。また、基材は、上述したフィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語についても同様である。 The base material is preferably a resin film mainly composed of a resin-based material. Specific examples thereof include a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, and an ethylene-norbornene copolymer. Film, polyolefin film such as norbornene resin film; ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) acrylic acid methyl copolymer film, other ethylene- (meth) acrylic acid ester copolymer film Ethylene copolymer films such as ethylene-vinyl acetate copolymer films; polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films; (meth) acrylic acid ester copolymer films; polyurethane films Beam; polystyrene films; fluororesin film; polyimide film; and a polycarbonate film. In the polyolefin-based film, the polyolefin may be a block copolymer or a random copolymer. Examples of the polyethylene film include a low density polyethylene (LDPE) film, a linear low density polyethylene (LLDPE) film, and a high density polyethylene (HDPE) film. In addition, modified films such as these crosslinked films and ionomer films are also used. The substrate may be a laminated film in which a plurality of the above-described films are laminated. In this laminated film, the material constituting each layer may be the same or different. In addition, “(meth) acrylic acid” in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
 基材としては、上記フィルムの中でも、熱機械分析装置による測定に関する上記式(1)の関係を満たし易いという観点から、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、ランダムコポリマーのポリプロピレンフィルム(ランダムポリプロピレンフィルム)またはエチレン-メタクリル酸共重合体フィルムを使用することが好ましい。 As the substrate, among the above films, from the viewpoint of easily satisfying the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer, a low density polyethylene film, a linear low density polyethylene film, a polypropylene film of a random copolymer (random) Polypropylene film) or ethylene-methacrylic acid copolymer film is preferably used.
 基材は、難燃剤、可塑剤、帯電防止剤、滑剤、酸化防止剤、着色剤、赤外線吸収剤、イオン捕捉剤等の各種添加剤を含んでいてもよい。これらの添加剤の含有量としては、特に限定されないものの、基材が所望の機能を発揮する範囲とすることが好ましい。 The substrate may contain various additives such as a flame retardant, a plasticizer, an antistatic agent, a lubricant, an antioxidant, a colorant, an infrared absorber, and an ion scavenger. The content of these additives is not particularly limited, but is preferably in a range where the base material exhibits a desired function.
 基材の粘着剤層が積層される面には、粘着剤層との密着性を高めるために、プライマー処理、コロナ処理、プラズマ処理等の表面処理が施されてもよい。 The surface of the base material on which the pressure-sensitive adhesive layer is laminated may be subjected to a surface treatment such as primer treatment, corona treatment, or plasma treatment in order to enhance the adhesion to the pressure-sensitive adhesive layer.
 基材の厚さは、450μm以下であることが好ましく、特に400μm以下であることが好ましく、さらには350μm以下であることが好ましい。また、当該厚さは、20μm以上であることが好ましく、特に25μm以上であることが好ましく、さらには50μm以上であることが好ましい。基材の厚さが450μm以下であることで、基材がヒートシュリンクし易いものとなり、半導体チップやガラスチップ間を良好に離間して維持することが可能となる。また、基材の厚さが20μm以上であることで、基材が良好な剛性を有するものとなり、ステルスダイシング用粘着シートがワークを効果的に支持することが可能となる。 The thickness of the substrate is preferably 450 μm or less, particularly preferably 400 μm or less, and more preferably 350 μm or less. The thickness is preferably 20 μm or more, particularly preferably 25 μm or more, and more preferably 50 μm or more. When the thickness of the base material is 450 μm or less, the base material is easily heat-shrinked, and the semiconductor chips and the glass chips can be well separated and maintained. Moreover, when the thickness of the base material is 20 μm or more, the base material has good rigidity, and the stealth dicing pressure-sensitive adhesive sheet can effectively support the workpiece.
(2)粘着剤層
 本実施形態に係るステルスダイシング用粘着シートにおいて、粘着剤層は、ステルスダイシング用粘着シートの使用工程における所望の機能を発揮するものである限り、特に限定されない。ステルスダイシング用粘着シートが粘着剤層を備えることで、当該粘着剤層側の面に対してワークを良好に貼付し易くなる。
(2) Pressure-sensitive adhesive layer In the pressure-sensitive adhesive sheet for stealth dicing according to the present embodiment, the pressure-sensitive adhesive layer is not particularly limited as long as it exhibits a desired function in the use process of the pressure-sensitive adhesive sheet for stealth dicing. When the pressure-sensitive adhesive sheet for stealth dicing includes the pressure-sensitive adhesive layer, the workpiece can be easily adhered to the surface on the pressure-sensitive adhesive layer side.
 粘着剤層は、非エネルギー線硬化性粘着剤から構成されてもよいし、エネルギー線硬化性粘着剤から構成されてもよい。非エネルギー線硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、ステルスダイシング用粘着シートを延伸した際に半導体チップ等の脱落を効果的に抑制することのできるアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive layer may be composed of a non-energy ray curable pressure sensitive adhesive or an energy ray curable pressure sensitive adhesive. As the non-energy ray curable pressure-sensitive adhesive, those having desired adhesive strength and removability are preferable. For example, acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive, silicone-based pressure-sensitive adhesive, urethane-based pressure-sensitive adhesive, and polyester-based pressure-sensitive adhesive Polyvinyl ether-based pressure-sensitive adhesives can be used. Among these, an acrylic pressure-sensitive adhesive that can effectively suppress dropping of a semiconductor chip or the like when the pressure-sensitive adhesive sheet for stealth dicing is stretched is preferable.
 一方、エネルギー線硬化性粘着剤は、エネルギー線照射により硬化して粘着力が低下するため、半導体チップとステルスダイシング用粘着シートとを分離させたいときに、エネルギー線照射することにより、容易に分離させることができる。 On the other hand, the energy ray curable adhesive is cured by energy ray irradiation and its adhesive strength decreases. Therefore, when it is desired to separate the semiconductor chip and the adhesive sheet for stealth dicing, it can be easily separated by irradiating energy rays. Can be made.
 粘着剤層を構成するエネルギー線硬化性粘着剤は、エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし、非エネルギー線硬化性ポリマー(エネルギー線硬化性を有しないポリマー)と少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とするものであってもよい。また、エネルギー線硬化性を有するポリマーと非エネルギー線硬化性ポリマーとの混合物であってもよいし、エネルギー線硬化性を有するポリマーと少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物であってもよいし、それら3種の混合物であってもよい。 The energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may be mainly composed of a polymer having energy ray-curability, or a non-energy ray-curable polymer (polymer not having energy ray-curability). And a mixture of a monomer and / or an oligomer having at least one energy ray curable group. Further, it may be a mixture of a polymer having energy ray curable properties and a non-energy ray curable polymer, a polymer having energy ray curable properties and a monomer having at least one energy ray curable group and / or It may be a mixture with an oligomer or a mixture of these three.
 最初に、エネルギー線硬化性粘着剤が、エネルギー線硬化性を有するポリマーを主成分とする場合について、以下説明する。 First, the case where the energy ray-curable pressure-sensitive adhesive is composed mainly of a polymer having energy ray-curability will be described below.
 エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。このエネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有するアクリル系共重合体(a1)と、その官能基に結合する官能基を有する不飽和基含有化合物(a2)とを反応させて得られるものであることが好ましい。 The polymer having energy ray curability is a (meth) acrylic acid ester (co) polymer (A) (hereinafter referred to as “energy ray”) in which a functional group having energy ray curability (energy ray curable group) is introduced into the side chain. It may be referred to as “curable polymer (A)”). This energy beam curable polymer (A) reacts an acrylic copolymer (a1) having a functional group-containing monomer unit with an unsaturated group-containing compound (a2) having a functional group bonded to the functional group. It is preferable that it is obtained.
 アクリル系共重合体(a1)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とを含むことが好ましい。 The acrylic copolymer (a1) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
 アクリル系共重合体(a1)の構成単位としての官能基含有モノマーは、重合性の二重結合と、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーであることが好ましい。 The functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) contains a polymerizable double bond and a functional group such as a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group in the molecule. It is preferable that the monomer has
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。 Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( Examples thereof include meth) acrylate and 4-hydroxybutyl (meth) acrylate, and these are used alone or in combination of two or more.
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the carboxy group-containing monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
 アミノ基含有モノマーまたは置換アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、n-ブチルアミノエチル(メタ)アクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the amino group-containing monomer or substituted amino group-containing monomer include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate. These may be used alone or in combination of two or more.
 アクリル系共重合体(a1)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレートの他、例えば、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)が好ましく用いられる。 Examples of the (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) include an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms, and an alicyclic structure in the molecule, for example. The monomer (alicyclic structure-containing monomer) is preferably used.
 アルキル(メタ)アクリレートとしては、特にアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the alkyl (meth) acrylate include alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type.
 脂環式構造含有モノマーとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. , Dicyclopentenyloxyethyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type.
 アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは1質量%以上、特に好ましくは5質量%以上、さらに好ましくは10質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは35質量%以下、特に好ましくは30質量%以下、さらに好ましくは25質量%以下の割合で含有する。 The acrylic copolymer (a1) contains the structural unit derived from the functional group-containing monomer, preferably in an amount of 1% by mass or more, particularly preferably 5% by mass or more, and more preferably 10% by mass or more. The acrylic copolymer (a1) preferably contains a constituent unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, particularly preferably 30% by mass or less, and more preferably 25% by mass or less. To do.
 さらに、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは50質量%以上、特に好ましくは60質量%以上、さらに好ましくは70質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは99質量%以下、特に好ましくは95質量%以下、さらに好ましくは90質量%以下の割合で含有する。 Furthermore, the acrylic copolymer (a1) preferably contains 50% by mass or more, particularly preferably 60% by mass or more, and further preferably 70% by mass of a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof. It contains in the above ratio. The acrylic copolymer (a1) preferably contains 99% by mass or less, particularly preferably 95% by mass or less, and more preferably 90% by mass of a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof. Contains in the following proportions.
 アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られるが、これらモノマーの他にもジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、スチレン等が共重合されてもよい。 The acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
 上記官能基含有モノマー単位を有するアクリル系共重合体(a1)を、その官能基に結合する官能基を有する不飽和基含有化合物(a2)と反応させることにより、エネルギー線硬化型重合体(A)が得られる。 By reacting the acrylic copolymer (a1) having the functional group-containing monomer unit with an unsaturated group-containing compound (a2) having a functional group bonded to the functional group, an energy beam curable polymer (A ) Is obtained.
 不飽和基含有化合物(a2)が有する官能基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、アクリル系共重合体(a1)が有する官能基がヒドロキシ基、アミノ基または置換アミノ基の場合、不飽和基含有化合物(a2)が有する官能基としてはイソシアネート基またはエポキシ基が好ましく、アクリル系共重合体(a1)が有する官能基がエポキシ基の場合、不飽和基含有化合物(a2)が有する官能基としてはアミノ基、カルボキシ基またはアジリジニル基が好ましい。 The functional group of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1). For example, when the functional group of the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group, the functional group of the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group. When the functional group that the system copolymer (a1) has is an epoxy group, the functional group that the unsaturated group-containing compound (a2) has is preferably an amino group, a carboxy group, or an aziridinyl group.
 また上記不飽和基含有化合物(a2)には、エネルギー線重合性の炭素-炭素二重結合が、1分子中に少なくとも1個、好ましくは1~6個、さらに好ましくは1~4個含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 The unsaturated group-containing compound (a2) contains at least one, preferably 1-6, more preferably 1-4, energy-polymerizable carbon-carbon double bonds in one molecule. ing. Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1 -Aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline and the like.
 上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは50モル%以上、特に好ましくは60モル%以上、さらに好ましくは70モル%以上の割合で用いられる。また、上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは95モル%以下、特に好ましくは93モル%以下、さらに好ましくは90モル%以下の割合で用いられる。 The unsaturated group-containing compound (a2) is preferably at least 50 mol%, particularly preferably at least 60 mol%, more preferably 70 mol, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). % Is used at a rate of at least%. In addition, the unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, more preferably, relative to the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). It is used at a ratio of 90 mol% or less.
 アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、アクリル系共重合体(a1)が有する官能基と不飽和基含有化合物(a2)が有する官能基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の官能基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、エネルギー線硬化型重合体(A)が得られる。 In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) Depending on the combination, the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected. As a result, the functional group present in the acrylic copolymer (a1) reacts with the functional group in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1). It introduce | transduces into a side chain and an energy-beam curable polymer (A) is obtained.
 このようにして得られるエネルギー線硬化型重合体(A)の重量平均分子量(Mw)は、1万以上であるのが好ましく、特に15万以上であるのが好ましく、さらには20万以上であるのが好ましい。また、当該重量平均分子量(Mw)は、150万以下であるのが好ましく、特に100万以下であるのが好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。 The weight average molecular weight (Mw) of the energy ray curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 150,000 or more, and more preferably 200,000 or more. Is preferred. The weight average molecular weight (Mw) is preferably 1.5 million or less, and particularly preferably 1 million or less. In addition, the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 エネルギー線硬化性粘着剤が、エネルギー線硬化型重合体(A)といったエネルギー線硬化性を有するポリマーを主成分とする場合であっても、エネルギー線硬化性粘着剤は、エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)をさらに含有してもよい。 Even when the energy ray curable adhesive is mainly composed of an energy ray curable polymer such as an energy ray curable polymer (A), the energy ray curable adhesive is an energy ray curable monomer. And / or the oligomer (B) may further be contained.
 エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。 As the energy ray-curable monomer and / or oligomer (B), for example, an ester of a polyhydric alcohol and (meth) acrylic acid or the like can be used.
 かかるエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。 Examples of the energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, penta Erythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol Polyfunctional acrylic esters such as di (meth) acrylate and dimethyloltricyclodecane di (meth) acrylate, polyester oligo (meth) acrylate, polyurethane oligo (meta Acrylate, and the like.
 エネルギー線硬化型重合体(A)に対し、エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合、エネルギー線硬化性粘着剤中におけるエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の含有量は、エネルギー線硬化型重合体(A)100質量部に対して、0質量部超であることが好ましく、特に60質量部以上であることが好ましい。また、当該含有量は、エネルギー線硬化型重合体(A)100質量部に対して、250質量部以下であることが好ましく、特に200質量部以下であることが好ましい。 When the energy ray curable monomer (B) is blended with the energy ray curable polymer (A), the energy ray curable monomer and / or oligomer (B) in the energy ray curable adhesive is used. ) Content is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, with respect to 100 parts by mass of the energy ray-curable polymer (A). In addition, the content is preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less, with respect to 100 parts by mass of the energy beam curable polymer (A).
 ここで、エネルギー線硬化性粘着剤を硬化させるためのエネルギー線として紫外線を用いる場合には、光重合開始剤(C)を添加することが好ましく、この光重合開始剤(C)の使用により、重合硬化時間および光線照射量を少なくすることができる。 Here, when using ultraviolet rays as energy rays for curing the energy ray-curable pressure-sensitive adhesive, it is preferable to add a photopolymerization initiator (C), and by using this photopolymerization initiator (C), The polymerization curing time and the amount of light irradiation can be reduced.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンなどが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (C) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-me Le-1- [4- (1-propenyl) phenyl] propanone}, and 2,2-dimethoxy-1,2-and the like. These may be used alone or in combination of two or more.
 光重合開始剤(C)は、エネルギー線硬化型共重合体(A)(エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合には、エネルギー線硬化型共重合体(A)およびエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の合計量100質量部)100質量部に対して0.1質量部以上、特に0.5質量部以上の量で用いられることが好ましい。また、光重合開始剤(C)は、エネルギー線硬化型共重合体(A)(エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合には、エネルギー線硬化型共重合体(A)およびエネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の合計量100質量部)100質量部に対して10質量部以下、特に6質量部以下の量で用いられることが好ましい。 The photopolymerization initiator (C) is energy beam curable copolymer (A) (when energy beam curable monomer and / or oligomer (B) is blended, energy beam curable copolymer (A). The total amount of the energy ray-curable monomer and / or oligomer (B) is 100 parts by mass) and is preferably used in an amount of 0.1 parts by mass or more, particularly 0.5 parts by mass or more with respect to 100 parts by mass. The photopolymerization initiator (C) is energy beam curable copolymer (A) (when energy beam curable monomer and / or oligomer (B) is blended, energy beam curable copolymer ( The total amount of A) and energy ray-curable monomer and / or oligomer (B) is 100 parts by mass) and is preferably used in an amount of 10 parts by mass or less, particularly 6 parts by mass or less.
 エネルギー線硬化性粘着剤においては、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、非エネルギー線硬化性ポリマー成分またはオリゴマー成分(D)、架橋剤(E)等が挙げられる。 In the energy ray-curable pressure-sensitive adhesive, other components may be appropriately blended in addition to the above components. Examples of other components include a non-energy ray curable polymer component or oligomer component (D), and a crosslinking agent (E).
 非エネルギー線硬化性ポリマー成分またはオリゴマー成分(D)としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000~250万のポリマーまたはオリゴマーが好ましい。当該成分(D)をエネルギー線硬化性粘着剤に配合することにより、硬化前における粘着性および剥離性、硬化後の強度、他の層との接着性、保存安定性などを改善し得る。当該成分(D)の配合量は特に限定されず、エネルギー線硬化型共重合体(A)100質量部に対して0質量部超、50質量部以下の範囲で適宜決定される。 Examples of the non-energy ray curable polymer component or oligomer component (D) include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers or oligomers having a weight average molecular weight (Mw) of 3000 to 2.5 million. Is preferred. By mix | blending the said component (D) with energy-beam curable adhesive, the adhesiveness and peelability before hardening, the intensity | strength after hardening, the adhesiveness with another layer, storage stability, etc. can be improved. The compounding quantity of the said component (D) is not specifically limited, It determines suitably in the range of more than 0 mass part and 50 mass parts or less with respect to 100 mass parts of energy-beam curable copolymers (A).
 架橋剤(E)としては、エネルギー線硬化型共重合体(A)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 As the crosslinking agent (E), a polyfunctional compound having reactivity with the functional group of the energy beam curable copolymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, A reactive phenol resin etc. can be mentioned.
 架橋剤(E)の配合量は、エネルギー線硬化型共重合体(A)100質量部に対して、0.01質量部以上であることが好ましく、特に0.03質量部以上であることが好ましく、さらには0.04質量部以上であることが好ましい。また、架橋剤(E)の配合量は、エネルギー線硬化型共重合体(A)100質量部に対して、8質量部以下であることが好ましく、特に5質量部以下であることが好ましく、さらには3.5質量部以下であることが好ましい。 The amount of the crosslinking agent (E) is preferably 0.01 parts by mass or more, particularly 0.03 parts by mass or more, with respect to 100 parts by mass of the energy ray curable copolymer (A). More preferably, it is 0.04 parts by mass or more. The amount of the crosslinking agent (E) is preferably 8 parts by mass or less, particularly preferably 5 parts by mass or less, with respect to 100 parts by mass of the energy ray curable copolymer (A). Furthermore, it is preferable that it is 3.5 mass parts or less.
 次に、エネルギー線硬化性粘着剤が、非エネルギー線硬化性ポリマー成分と少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とする場合について、以下説明する。 Next, the case where the energy beam curable pressure-sensitive adhesive is mainly composed of a mixture of a non-energy beam curable polymer component and a monomer and / or oligomer having at least one energy beam curable group will be described below. .
 非エネルギー線硬化性ポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。 As the non-energy ray curable polymer component, for example, the same components as the acrylic copolymer (a1) described above can be used.
 少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとしては、前述の成分(B)と同じものが選択できる。非エネルギー線硬化性ポリマー成分と少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの配合比は、非エネルギー線硬化性ポリマー成分100質量部に対して、少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマー1質量部以上であるのが好ましく、特に60質量部以上であるのが好ましい。また、当該配合比は、非エネルギー線硬化性ポリマー成分100質量部に対して、少なくとも1つ以上のエネルギー線硬化性基を有するモノマーおよび/またはオリゴマー200質量部以下であるのが好ましく、特に160質量部以下であるのが好ましい。 As the monomer and / or oligomer having at least one energy ray curable group, the same one as the above-mentioned component (B) can be selected. The blending ratio of the non-energy ray curable polymer component and the monomer and / or oligomer having at least one energy ray curable group is at least one or more with respect to 100 parts by mass of the non-energy ray curable polymer component. The amount of the monomer and / or oligomer having an energy ray-curable group is preferably 1 part by mass or more, and particularly preferably 60 parts by mass or more. The blending ratio is preferably not more than 200 parts by mass of monomers and / or oligomers having at least one energy ray-curable group with respect to 100 parts by mass of the non-energy ray-curable polymer component. It is preferably less than or equal to parts by mass.
 この場合においても、上記と同様に、光重合開始剤(C)や架橋剤(E)を適宜配合することができる。 Also in this case, the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above.
 粘着剤層の厚さは、1μm以上であることが好ましく、特に2μm以上であることが好ましく、さらには3μm以上であることが好ましい。また、当該厚さは、50μm以下であることが好ましく、特に30μm以下であることが好ましく、さらには20μm以下であることが好ましい。粘着剤層の厚さが1μm以上であることで、ステルスダイシング用粘着シートのワークに対して良好な粘着力を発揮するものとなり、意図しない段階におけるワークの剥がれを効果的に抑制することができる。また、粘着剤層の厚さが50μm以下であることで、ステルスダイシング用粘着シートの粘着力が過度に高くなることが抑制され、ピックアップ不良の発生等を効果的に抑制することができる。 The thickness of the pressure-sensitive adhesive layer is preferably 1 μm or more, particularly preferably 2 μm or more, and more preferably 3 μm or more. The thickness is preferably 50 μm or less, particularly preferably 30 μm or less, and further preferably 20 μm or less. When the thickness of the pressure-sensitive adhesive layer is 1 μm or more, the adhesive sheet for stealth dicing exhibits a good adhesive force, and the peeling of the workpiece at an unintended stage can be effectively suppressed. . Moreover, it is suppressed that the adhesive force of the adhesive sheet for stealth dicing becomes too high because the thickness of an adhesive layer is 50 micrometers or less, and generation | occurrence | production of a pick-up defect, etc. can be suppressed effectively.
(3)剥離シート
 本実施形態に係るステルスダイシング用粘着シートでは、粘着剤層における粘着面をワークに貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができ、これらの中で、安価で安定した性能が得られるシリコーン系が好ましい。剥離シートの厚さについては特に制限はないが、通常20μm以上、250μm以下である。
(3) Release sheet In the adhesive sheet for stealth dicing according to this embodiment, a release sheet is laminated on the surface for the purpose of protecting the adhesive surface until the adhesive surface in the adhesive layer is applied to the workpiece. Also good. The configuration of the release sheet is arbitrary, and examples include a release film of a plastic film with a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable. Although there is no restriction | limiting in particular about the thickness of a peeling sheet, Usually, they are 20 micrometers or more and 250 micrometers or less.
2.ステルスダイシング用粘着シートの製造方法
 本実施形態に係るステルスダイシング用粘着シートにおいて、基材の製造方法は、得られる基材が熱機械分析装置による測定に関する上記式(1)の関係を満たす限り、特に限定されない。例えば、前述した材料を使用して、Tダイ法、丸ダイ法等の溶融押出法;カレンダー法;乾式法、湿式法等の溶液法等によって基材を製造することができる。これらの製造方法の中でも、Tダイ法を使用することが好ましい。
2. Production method of stealth dicing pressure-sensitive adhesive sheet In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, the base material production method is as long as the obtained base material satisfies the relationship of the above formula (1) relating to measurement by a thermomechanical analyzer. There is no particular limitation. For example, using the materials described above, a substrate can be produced by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method. Among these manufacturing methods, it is preferable to use the T-die method.
 また、本実施形態に係るステルスダイシング用粘着シートにおいて、粘着剤層の形成方法は、特に限定されない。例えば、剥離シート上において形成した粘着剤層を、上記のように製造した基材の片面側に転写することで、ステルスダイシング用粘着シートを得ることができる。この場合、粘着剤層を構成する粘着性組成物、および所望によりさらに溶媒または分散媒を含有する塗工液を調製し、剥離シートの剥離処理された面(以下「剥離面」という場合がある。)上に、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、ナイフコーター等によりその塗工液を塗布して塗膜を形成し、当該塗膜を乾燥させることにより、粘着剤層を形成することができる。塗工液は、塗布を行うことが可能であればその性状は特に限定されず、粘着剤層を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。この積層体における剥離シートは工程材料として剥離してもよいし、ステルスダイシング用粘着シートをワークに貼付するまでの間、粘着剤層の粘着面を保護するために用いてもよい。 In the stealth dicing pressure-sensitive adhesive sheet according to this embodiment, the method for forming the pressure-sensitive adhesive layer is not particularly limited. For example, an adhesive sheet for stealth dicing can be obtained by transferring the pressure-sensitive adhesive layer formed on the release sheet to one side of the base material produced as described above. In this case, a pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared, and a release-treated surface of the release sheet (hereinafter referred to as “release surface”) .) On top, a coating film is formed by applying the coating solution with a die coater, curtain coater, spray coater, slit coater, knife coater, etc., and the coating film is dried to form an adhesive layer. be able to. The properties of the coating liquid are not particularly limited as long as it can be applied, and may contain a component for forming the pressure-sensitive adhesive layer as a solute or a dispersoid. The release sheet in this laminate may be peeled off as a process material, or may be used to protect the adhesive surface of the adhesive layer until the stealth dicing adhesive sheet is attached to a workpiece.
 粘着剤層を形成するための塗工液が架橋剤を含有する場合には、上記の乾燥の条件(温度、時間など)を変えることにより、または加熱処理を別途設けることにより、塗膜内のエネルギー線硬化型重合体(A)または非エネルギー線硬化性ポリマー成分と架橋剤(E)との架橋反応を進行させ、粘着剤層内に所望の存在密度で架橋構造を形成させればよい。この架橋反応を十分に進行させるために、上記の方法などによって基材に粘着剤層を積層させた後、得られたステルスダイシング用粘着シートを、例えば23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the coating liquid for forming the pressure-sensitive adhesive layer contains a cross-linking agent, it is possible to change the above drying conditions (temperature, time, etc.) What is necessary is just to advance the crosslinking reaction of an energy-beam curable polymer (A) or a non-energy-beam curable polymer component, and a crosslinking agent (E), and to form a crosslinked structure with a desired existing density in an adhesive layer. In order to sufficiently proceed with this crosslinking reaction, after the pressure-sensitive adhesive layer is laminated on the base material by the above-described method, the obtained pressure-sensitive adhesive sheet for stealth dicing is several times in an environment of, for example, 23 ° C. and a relative humidity of 50%. Curing may be performed such as standing for days.
 上述のように剥離シート上で形成した粘着剤層を基材の片面側に転写する代わりに、基材上で直接粘着剤層を形成してもよい。この場合、前述した粘着剤層を形成するための塗工液を基材の片面側に塗布して塗膜を形成し、当該塗膜を乾燥させることにより、粘着剤層を形成する。 Instead of transferring the pressure-sensitive adhesive layer formed on the release sheet as described above to one side of the base material, the pressure-sensitive adhesive layer may be formed directly on the base material. In this case, the pressure-sensitive adhesive layer is formed by applying the coating liquid for forming the pressure-sensitive adhesive layer described above to one side of the substrate to form a coating film and drying the coating film.
3.ステルスダイシング用粘着シートの使用方法
 本実施形態に係るステルスダイシング用粘着シートは、ステルスダイシングに使用することができる。また、本実施形態に係るステルスダイシング用粘着シートは、ステルスダイシングの工程を備える半導体装置の製造方法に使用することができる。
3. Method for Using Stealth Dicing Adhesive Sheet The stealth dicing adhesive sheet according to this embodiment can be used for stealth dicing. Moreover, the adhesive sheet for stealth dicing which concerns on this embodiment can be used for the manufacturing method of a semiconductor device provided with the process of stealth dicing.
 本実施形態に係るステルスダイシング用粘着シートは、前述の通り、ヒートシュリンク後におけるチップ同士の衝突を抑制することができるため、厚さが薄く、それによりチップの破損が生じ易いワークに好適に使用することができる。例えば、本実施形態に係るステルスダイシング用粘着シートは、貫通電極を有する半導体ウエハ(TSV)に好適に使用することができる。 As described above, the adhesive sheet for stealth dicing according to the present embodiment can suppress the collision between chips after heat shrinking, and thus is suitably used for a workpiece that is thin and thereby easily breaks the chip. can do. For example, the adhesive sheet for stealth dicing according to the present embodiment can be suitably used for a semiconductor wafer (TSV) having a through electrode.
 以下に、ステルスダイシングの工程を備える半導体装置の製造方法の一例を説明する。最初に、硬質支持体に固定されたワーク(半導体ウエハ)の片面を研削する(バックグラインド)工程が行われる。半導体ウエハは、硬質支持体に対して、例えば接着剤により固定されている。硬質支持体としては、例えばガラス等が使用される。バックグラインドは、一般的な方法により行うことができる。 Hereinafter, an example of a method for manufacturing a semiconductor device including a stealth dicing process will be described. First, a step of grinding (back grinding) one side of a work (semiconductor wafer) fixed to a hard support is performed. The semiconductor wafer is fixed to the hard support with, for example, an adhesive. As the hard support, for example, glass or the like is used. The back grinding can be performed by a general method.
 続いて、バックグラインドが完了した半導体ウエハを、硬質支持体からステルスダイシング用粘着シートに転写する。このとき、半導体ウエハのバックグラインドした面に対して、ステルスダイシング用粘着シートの粘着剤層側の面を貼付した後、硬質支持体を半導体ウエハから分離する。硬質支持体の半導体ウエハから分離は、硬質支持体と半導体ウエハとの固定に使用していた接着剤の種類に応じた方法により行うことができ、例えば、加熱により接着剤を軟化させた上で、硬質支持体を半導体ウエハからスライドさせる方法、レーザ光照射により接着剤を分解する方法等が挙げられる。なお、半導体ウエハから硬質支持体が分離された後、リングフレームに対して、ステルスダイシング用粘着シートにおける周縁部を貼付する。 Subsequently, the semiconductor wafer on which back grinding has been completed is transferred from the hard support to the adhesive sheet for stealth dicing. At this time, the surface on the adhesive layer side of the adhesive sheet for stealth dicing is attached to the back-ground surface of the semiconductor wafer, and then the hard support is separated from the semiconductor wafer. Separation of the hard support from the semiconductor wafer can be performed by a method according to the type of adhesive used for fixing the hard support and the semiconductor wafer. For example, after softening the adhesive by heating, And a method of sliding a hard support from a semiconductor wafer, a method of decomposing an adhesive by laser light irradiation, and the like. In addition, after a hard support body is isolate | separated from a semiconductor wafer, the peripheral part in the adhesive sheet for stealth dicing is affixed with respect to a ring frame.
 続いて、ステルスダイシング用粘着シート上に積層された半導体ウエハを、溶剤を用いて洗浄する工程が行われる。これにより、半導体ウエハに残存する接着剤を除去することができる。当該洗浄は、一般的な方法にて行うことができ、例えば、ステルスダイシング用粘着シートと半導体ウエハとの積層体を溶剤中に浸漬する方法、半導体ウエハよりやや大きな枠を、ウエハを囲繞するようにステルスダイシング用粘着シート上に配置し、枠内に溶剤を投入する方法等が挙げられる。 Subsequently, a process of cleaning the semiconductor wafer laminated on the stealth dicing adhesive sheet with a solvent is performed. Thereby, the adhesive agent remaining on the semiconductor wafer can be removed. The cleaning can be performed by a general method, for example, a method of immersing a laminate of an adhesive sheet for stealth dicing and a semiconductor wafer in a solvent, a frame slightly larger than the semiconductor wafer so as to surround the wafer. And a method of placing the solution on the adhesive sheet for stealth dicing and introducing a solvent into the frame.
 続いて、必要に応じて、ステルスダイシング用粘着シート上に積層された半導体ウエハに対して、別の半導体ウエハを積層してもよい。このとき、半導体同士は、接着剤等を用いて固定することができ、例えば非導電性接着フィルム(Nonconductive film;NCF)により固定することできる。半導体ウエハの積層は、必要な積層数となるまで繰り返してもよい。このような半導体ウエハの積層は、特に、半導体ウエハとしてTSVウエハを使用し、積層回路を製造する際に好適に行われる。 Subsequently, if necessary, another semiconductor wafer may be laminated on the semiconductor wafer laminated on the stealth dicing adhesive sheet. At this time, the semiconductors can be fixed using an adhesive or the like, for example, can be fixed by a non-conductive adhesive film (NCF). You may repeat the lamination | stacking of a semiconductor wafer until it becomes the required number of lamination | stacking. Such stacking of semiconductor wafers is preferably performed when a TSV wafer is used as a semiconductor wafer and a laminated circuit is manufactured.
 続いて、ステルスダイシング用粘着シート上において半導体ウエハまたは半導体ウエハの積層体(以下において「半導体ウエハ」という場合、特に言及しない限り、半導体ウエハまたは半導体ウエハの積層体をいうものとする。)のステルスダイシングが行われる。この工程では、半導体ウエハに対してレーザ光を照射して、半導体ウエハ内に改質部を形成する。レーザ光の照射は、ステルスダイシングにおいて一般的に使用される装置および条件を用いて行うことができる。 Subsequently, the stealth of a semiconductor wafer or a laminate of semiconductor wafers (hereinafter referred to as “semiconductor wafer” unless otherwise specified) on the stealth dicing adhesive sheet. Dicing is performed. In this step, the semiconductor wafer is irradiated with laser light to form a modified portion in the semiconductor wafer. The laser light irradiation can be performed using an apparatus and conditions generally used in stealth dicing.
 続いて、半導体ウエハを、ステルスダイシングにより形成された改質部において分割し、複数の半導体チップを得る。当該分割は、例えば、ステルスダイシング用粘着シートと半導体ウエハとの積層物をエキスパンド装置に設置し、0℃~室温環境下でエキスパンドすることで行うことができる。 Subsequently, the semiconductor wafer is divided at a modified portion formed by stealth dicing to obtain a plurality of semiconductor chips. The division can be performed, for example, by placing a laminate of an adhesive sheet for stealth dicing and a semiconductor wafer in an expanding apparatus and expanding in a 0 ° C. to room temperature environment.
 続いて、ステルスダイシング用粘着シートを再度エキスパンドする。当該エキスパンドは、得られた半導体チップ同士を離間させることを主な目的として行われる。さらに、エキスパンドした状態を維持したままステルスダイシング用粘着シートを吸着テーブルで吸着する。ここでのエキスパンドは、常温または加熱した状態で行うことができる。また、エキスパンドは、一般的な装置を用いて一般的な方法により行うことができ、また、使用される吸着テーブルも一般的なものを用いて行うことができる。 Subsequently, the adhesive sheet for stealth dicing is expanded again. The expansion is performed mainly for the purpose of separating the obtained semiconductor chips. Furthermore, the adhesive sheet for stealth dicing is adsorbed by an adsorption table while maintaining the expanded state. The expanding here can be performed at room temperature or in a heated state. Further, the expansion can be performed by a general method using a general apparatus, and the suction table used can also be performed using a general one.
 続いて、ステルスダイシング用粘着シートを吸着テーブルで吸着したまま、得られた半導体チップが積層されたステルスダイシング用粘着シートにおける、半導体チップが積層されていない領域を、加熱により収縮(ヒートシュリンク)する。具体的には、ステルスダイシング用粘着シートにおける半導体チップが積層された領域と、ステルスダイシング用粘着シートにおけるリングフレームが貼付された領域との間における領域を加熱し、当該領域を収縮させる。このときの加熱条件としては、ステルスダイシング用粘着シートの温度を、90℃以上とすることが好ましい。また、ステルスダイシング用粘着シートの温度を、200℃以下とすることが好ましい。本実施形態に係るステルスダイシング用粘着シートでは、熱機械分析装置を用いて測定される基材の長さの変化量ΔL90℃およびΔL60℃が前述した式(1)の関係を満たすことにより、基材が加熱により良好に収縮することができる。それにより、後述するように、ステルスダイシング用粘着シートを吸着テーブルによる吸着から解放した後においても、半導体チップ同士が離間した状態を良好に維持することができ、半導体チップのピックアップを良好に行うことができる。 Subsequently, with the stealth dicing adhesive sheet adsorbed on the adsorption table, the region of the stealth dicing adhesive sheet in which the obtained semiconductor chips are laminated is contracted by heating (heat shrink). . Specifically, the region between the region where the semiconductor chip is laminated in the stealth dicing adhesive sheet and the region where the ring frame is pasted in the stealth dicing adhesive sheet is heated to shrink the region. As heating conditions at this time, the temperature of the stealth dicing pressure-sensitive adhesive sheet is preferably 90 ° C. or higher. Moreover, it is preferable that the temperature of the adhesive sheet for stealth dicing shall be 200 degrees C or less. In the stealth dicing pressure-sensitive adhesive sheet according to the present embodiment, the amount of change ΔL 90 ° C. and ΔL 60 ° C. of the length of the substrate measured using the thermomechanical analyzer satisfies the relationship of the above-described formula (1). The substrate can be favorably shrunk by heating. Thereby, as will be described later, even after releasing the stealth dicing adhesive sheet from the suction by the suction table, the state where the semiconductor chips are separated from each other can be maintained well, and the semiconductor chip is picked up well. Can do.
 続いて、上述した吸着テーブルによる吸着からステルスダイシング用粘着シートを解放する。上記ヒートシュリンク工程において、ステルスダイシング用粘着シートにおける半導体チップが積層された領域と、ステルスダイシング用粘着シートにおけるリングフレームが貼付された領域との間における領域が収縮したことにより、ステルスダイシング用粘着シートでは、半導体チップが貼付された領域を周縁部方向に引き伸ばす力が生じている。その結果、吸着テーブルによる吸着から解放した後においても、半導体チップ同士が離間した状態を維持することができる。 Subsequently, the adhesive sheet for stealth dicing is released from the suction by the suction table described above. In the heat shrink process, the area between the area where the semiconductor chip is laminated in the pressure-sensitive adhesive sheet for stealth dicing and the area where the ring frame is affixed in the pressure-sensitive adhesive sheet for stealth dicing contracted, so that the pressure-sensitive adhesive sheet for stealth dicing Then, the force which stretches the area | region where the semiconductor chip was affixed in the peripheral part direction has arisen. As a result, it is possible to maintain a state where the semiconductor chips are separated from each other even after being released from the suction by the suction table.
 その後、個々の半導体チップを、隣接する半導体チップから離間した状態で、ステルスダイシング用粘着シートからピックアップする。このピックアップは、一般的な装置を使用して、一般的な方法にて行うことができる。上述したように、本実施形態に係るステルスダイシング用粘着シートは、優れたヒートシュリンク性を発揮する結果、半導体チップ同士を良好に離間した状態で維持することができ、それにより、ピックアップを良好に行うことができる。 Thereafter, individual semiconductor chips are picked up from the stealth dicing adhesive sheet in a state of being separated from the adjacent semiconductor chips. This pickup can be performed by a general method using a general apparatus. As described above, the stealth dicing pressure-sensitive adhesive sheet according to this embodiment can maintain the semiconductor chips in a well-separated state as a result of exhibiting excellent heat shrink properties, thereby improving the pickup. It can be carried out.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、基材と粘着剤層との間、または基材における粘着剤層とは反対側の面には、その他の層が設けられてもよい。 For example, other layers may be provided between the substrate and the pressure-sensitive adhesive layer, or on the surface of the substrate opposite to the pressure-sensitive adhesive layer.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
(1)基材の作成
 低密度ポリエチレンを含有する樹脂組成物(住友化学社製,製品名「スミカセンF-412-1」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形し、厚さ70μmの基材を得た。
[Example 1]
(1) Preparation of substrate A resin composition containing low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen F-412-1”) is transferred to a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “ Extrusion was performed by a “laboplast mill”) to obtain a substrate having a thickness of 70 μm.
(2)粘着剤組成物の調製
 アクリル酸n-ブチル(BA)62質量部と、メタクリル酸メチル(MMA)10質量部と、アクリル酸2-ヒドロキシエチル(HEA)28質量部とを反応させて得られたアクリル系共重合体(a1)と、当該アクリル系共重合体(a1)のHEAに対して80mol%のメタクリロイルオキシエチルイソシアネート(MOI)とを反応させて、エネルギー線硬化型重合体(A)を得た。このエネルギー線硬化型重合体(A)の分子量を後述する方法で測定したところ、重量平均分子量(Mw)は、50万であった。
(2) Preparation of pressure-sensitive adhesive composition 62 parts by mass of n-butyl acrylate (BA), 10 parts by mass of methyl methacrylate (MMA) and 28 parts by mass of 2-hydroxyethyl acrylate (HEA) were reacted. The obtained acrylic copolymer (a1) is reacted with 80 mol% of methacryloyloxyethyl isocyanate (MOI) with respect to the HEA of the acrylic copolymer (a1) to give an energy beam curable polymer ( A) was obtained. When the molecular weight of this energy beam curable polymer (A) was measured by the method described later, the weight average molecular weight (Mw) was 500,000.
 得られたエネルギー線硬化型重合体100質量部(固形分換算,以下同じ)と、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製,製品名「イルガキュア184」)3.0質量部と、架橋剤としてのトリレンジイソシアネート(東ソー社製,製品名「コロネートL」)1.0質量部とを溶媒中で混合し、粘着剤組成物を得た。 100 parts by mass of the obtained energy ray curable polymer (in terms of solid content, the same applies hereinafter) and 1-hydroxycyclohexyl phenyl ketone (product name “Irgacure 184” manufactured by BASF) as a photopolymerization initiator Part and 1.0 part by mass of tolylene diisocyanate (manufactured by Tosoh Corporation, product name “Coronate L”) as a crosslinking agent were mixed in a solvent to obtain a pressure-sensitive adhesive composition.
(3)粘着剤層の形成
 厚さ38μmのポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面に対して、上記粘着剤組成物を塗布し、加熱により乾燥させることで、剥離シート上に、厚さ20μmの粘着剤層を形成した。
(3) Formation of pressure-sensitive adhesive layer Release surface of a release sheet (product name “SP-PET381031”, manufactured by Lintec Corporation) in which a silicone release agent layer is formed on one side of a 38 μm-thick polyethylene terephthalate (PET) film On the other hand, the said adhesive composition was apply | coated and dried by heating, and the 20-micrometer-thick adhesive layer was formed on the peeling sheet.
(4)ステルスダイシング用粘着シートの作製
 上記工程(3)で形成した粘着剤層の剥離シートとは反対側の面と、上記工程(1)で作製した基材の片面とを貼り合わせることで、ステルスダイシング用粘着シートを得た。
(4) Manufacture of adhesive sheet for stealth dicing By sticking the surface opposite to the release sheet of the adhesive layer formed in the step (3) and one side of the substrate prepared in the step (1). Thus, an adhesive sheet for stealth dicing was obtained.
〔実施例2〕
 基材として、低密度ポリエチレンを含有する樹脂組成物(住友化学社製,製品名「スミカセンF-723P」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ70μmの基材を使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
[Example 2]
Resin composition containing low-density polyethylene as a base material (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen F-723P”), small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) A stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 μm-thick base material obtained by extrusion molding was used.
〔実施例3〕
 基材として、低密度ポリエチレンを含有する樹脂組成物(住友化学社製,製品名「スミカセンCE3506」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ70μmの基材を使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
Example 3
Resin composition containing low-density polyethylene as a base material (manufactured by Sumitomo Chemical Co., Ltd., product name “Sumikasen CE3506”) is extruded by a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”). A stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a substrate having a thickness of 70 μm obtained by molding was used.
〔実施例4〕
 基材として、ランダムポリプロピレンを含有する樹脂組成物(プライムポリマー社製,製品名「プライムTPO J-5710」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ70μmの基材を使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
Example 4
Resin composition containing random polypropylene as a base material (manufactured by Prime Polymer Co., Ltd., product name “Prime TPO J-5710”) and small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) A stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 μm-thick base material obtained by extrusion molding was used.
〔実施例5〕
 基材として、ランダムポリプロピレンを含有する樹脂組成物(プライムポリマー社製,製品名「プライムTPO F-3740」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ70μmの基材を使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
Example 5
Resin composition containing random polypropylene as a base material (manufactured by Prime Polymer Co., Ltd., product name “Prime TPO F-3740”) and small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name “Laboplast Mill”) A stealth dicing pressure-sensitive adhesive sheet was produced in the same manner as in Example 1 except that a 70 μm-thick base material obtained by extrusion molding was used.
〔実施例6〕
 基材として、エチレン-メタクリル酸共重合体を含有する樹脂組成物(三井デュポンポリケミカル社製,製品名「ニュクレルNH903C」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ70μmの基材を使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
Example 6
Resin composition containing ethylene-methacrylic acid copolymer (product name “Nucleel NH903C” manufactured by Mitsui Dupont Polychemical Co., Ltd.) as a base material and a small T-die extruder (product name “Laboratory” manufactured by Toyo Seiki Seisakusho Co., Ltd.) A pressure-sensitive adhesive sheet for stealth dicing was produced in the same manner as in Example 1 except that a substrate having a thickness of 70 μm obtained by extrusion molding using a plastmill ”) was used.
〔比較例1〕
 基材として、厚さ80μmのポリブチレンテレフタレートフィルムを使用する以外、実施例1と同様にしてステルスダイシング用粘着シートを製造した。
[Comparative Example 1]
An adhesive sheet for stealth dicing was produced in the same manner as in Example 1 except that a polybutylene terephthalate film having a thickness of 80 μm was used as the substrate.
 ここで、前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)したポリスチレン換算の重量平均分子量である。
<測定条件>
・GPC測定装置:東ソー社製,HLC-8020
・GPCカラム(以下の順に通過):東ソー社製
 TSK guard column HXL-H
 TSK gel GMHXL(×2)
 TSK gel G2000HXL
・測定溶媒:テトラヒドロフラン
・測定温度:40℃
Here, the above-mentioned weight average molecular weight (Mw) is a polystyrene-reduced weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
<Measurement conditions>
GPC measurement device: manufactured by Tosoh Corporation, HLC-8020
GPC column (passed in the following order): TSK guard column HXL-H manufactured by Tosoh Corporation
TSK gel GMHXL (× 2)
TSK gel G2000HXL
・ Measurement solvent: Tetrahydrofuran ・ Measurement temperature: 40 ° C.
〔試験例1〕(基材の引張弾性率の測定)
 実施例および比較例で作製した基材を15mm×140mmの試験片に裁断し、JIS K7161:2014に準拠して、温度23℃および相対湿度50%における引張弾性率を測定した。具体的には、上記試験片を、引張試験機(オリエンテック社製,製品名「テンシロンRTA-T-2M」)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、引張弾性率(MPa)を測定した。なお、測定は、基材の成形時の押出方向(MD)およびこれに直角の方向(CD)の双方で行い、これらの測定結果の平均値を引張弾性率破断伸度とした。結果を表1に示す。
[Test Example 1] (Measurement of tensile modulus of base material)
The base materials produced in Examples and Comparative Examples were cut into 15 mm × 140 mm test pieces, and the tensile modulus at a temperature of 23 ° C. and a relative humidity of 50% was measured according to JIS K7161: 2014. Specifically, the test piece was set to a distance between chucks of 100 mm with a tensile tester (manufactured by Orientec Co., Ltd., product name “Tensilon RTA-T-2M”), and then subjected to a tensile test at a speed of 200 mm / min. The tensile modulus (MPa) was measured. The measurement was performed in both the extrusion direction (MD) during molding of the substrate and the direction (CD) perpendicular to the extrusion direction, and the average value of these measurement results was taken as the tensile elastic modulus breaking elongation. The results are shown in Table 1.
〔試験例2〕(示差走査熱量計による測定)
 実施例および比較例で作製した基材から4.0mg分を切り出して、測定サンプルとした。当該測定サンプルを、示差走査熱量計(TAインスツルメンツ社製,製品名「Q2000」)を用いて、昇温速度10℃/分で0℃から200℃まで加熱して、DSC曲線を得た。
[Test Example 2] (Measurement with a differential scanning calorimeter)
4.0 mg was cut out from the base material produced in the Example and the comparative example, and it was set as the measurement sample. The measurement sample was heated from 0 ° C. to 200 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter (TA Instruments, product name “Q2000”) to obtain a DSC curve.
 得られたDSC曲線における、25℃のときの測定値(mW)をH25℃とし、30℃から100℃の範囲における測定値(mW)の最小値をH30℃-100℃とし、105℃から200℃の範囲における測定値(mW)の最小値をH105℃-200℃とした。これらの結果を表1に示す。 In the obtained DSC curve, the measured value (mW) at 25 ° C. is H 25 ° C., and the minimum measured value (mW) in the range from 30 ° C. to 100 ° C. is H 30 ° C.-100 ° C. To 200 ° C., the minimum value of the measured value (mW) was H 105 ° C.-200 ° C. These results are shown in Table 1.
 また、H25℃に対するH30℃-100℃の比(H30℃-100℃/H25℃)、H25℃に対するH105℃-200℃の比(H105℃-200℃/H25℃)、およびH30℃-100℃に対するH105℃-200℃の比(H105℃-200℃/H30℃-100℃)を算出した。これらの結果を表1に示す。 Also, H 30 ℃ -100 ℃ ratio (H 30 ℃ -100 ℃ / H 25 ℃) against H 25 ° C., the ratio of H 105 ° C. -200 ° C. for H 25 ℃ (H 105 ℃ -200 ℃ / H 25 ℃ ), and the ratio of H 105 ° C. -200 ° C. for H 30 ℃ -100 ℃ (H 105 ℃ -200 ℃ / H 30 ℃ -100 ℃) was calculated. These results are shown in Table 1.
〔試験例3〕(熱機械分析装置による測定)
 実施例および比較例で作製した基材を4.5mm×20mmのサイズにカットし、測定サンプルとした。当該測定サンプルを、熱機械分析装置(BRUKER社製,製品名「TMA4000SA」)に、チャック間距離を15mmとして設置した後、昇温速度20℃/分で25℃から120℃まで加熱しながら、0.2gの荷重で長軸方向に引っ張った。そして、60℃および90℃における測定サンプルのチャック間距離をそれぞれ測定した。
[Test Example 3] (Measurement with a thermomechanical analyzer)
The base material produced by the Example and the comparative example was cut into the size of 4.5 mm x 20 mm, and it was set as the measurement sample. The measurement sample was placed on a thermomechanical analyzer (manufactured by BRUKER, product name “TMA4000SA”) with a distance between chucks of 15 mm, and then heated from 25 ° C. to 120 ° C. at a heating rate of 20 ° C./min. It was pulled in the major axis direction with a load of 0.2 g. And the distance between chuck | zippers of the measurement sample in 60 degreeC and 90 degreeC was measured, respectively.
 そして、60℃における測定サンプルのチャック間距離から初期のチャック間距離を減じることで、測定サンプルのチャック間距離の変化量ΔL60℃(μm)を算出した。また、90℃における測定サンプルのチャック間距離から初期のチャック間距離を減じることで、測定サンプルのチャック間距離の変化量ΔL90℃(μm)を算出した。さらに、ΔL90℃からΔL60℃を減じて得られる値(ΔL90℃-ΔL60℃)(μm)を算出した。これらの結果を表1に示す。 Then, the amount of change ΔL 60 ° C. (μm) in the distance between the chucks of the measurement sample was calculated by subtracting the initial chuck distance from the distance between the chucks of the measurement sample at 60 ° C. Further, the amount of change ΔL 90 ° C. (μm) in the distance between chucks of the measurement sample was calculated by subtracting the initial chuck distance from the distance between chucks of the measurement sample at 90 ° C. Further, a value (ΔL 90 ° C.− ΔL 60 ° C. ) (μm) obtained by subtracting ΔL 60 ° C. from ΔL 90 ° C. was calculated. These results are shown in Table 1.
〔試験例4〕(耐熱性の評価)
 実施例および比較例で製造したステルスダイシング用粘着シートから剥離シートを剥離した後、当該ステルスダイシング用粘着シートにおける基材側の面を、マルチウエハマウンター(リンテック社製,製品名「RAD-2700 F/12」)が備える吸着テーブルに2分間吸着させた。当該吸着の間、吸着テーブルを70℃に加熱した。
[Test Example 4] (Evaluation of heat resistance)
After the release sheet was peeled from the stealth dicing adhesive sheet produced in the examples and comparative examples, the substrate side surface of the stealth dicing adhesive sheet was placed on a multi-wafer mounter (product name “RAD-2700 F, manufactured by Lintec Corporation”). / 12 ") was adsorbed for 2 minutes. During the adsorption, the adsorption table was heated to 70 ° C.
 2分間が経過後、吸着テーブルによる吸着を停止した後、ステルスダイシング用粘着シートが吸着テーブルから分離するように、上記マルチウエハマウンターが備える搬送手段を駆動させた。このとき、当該分離が良好に行われ、ステルスダイシング用粘着シートを問題なく搬送できたものを「○」、ステルスダイシング用粘着シートのポーラステーブルへの密着が少し生じたものの、ステルスダイシング用粘着シートを搬送することができたものを「△」、ステルスダイシング用粘着シートがポーラステーブルに完全に密着して、搬送ができなかったものを「×」として、ステルスダイシング用粘着シートの耐熱性を評価した。結果を表1に示す。 After the lapse of 2 minutes, the suction by the suction table was stopped, and then the transport means provided in the multi-wafer mounter was driven so that the stealth dicing adhesive sheet was separated from the suction table. At this time, the separation was performed satisfactorily, and "O" was able to convey the stealth dicing adhesive sheet without any problem, and the stealth dicing adhesive sheet was slightly adhered to the porous table, but the stealth dicing adhesive sheet “△” indicates that the material could be conveyed, and “×” indicates that the stealth dicing adhesive sheet was in close contact with the porous table and could not be conveyed, and the heat resistance of the stealth dicing adhesive sheet was evaluated. did. The results are shown in Table 1.
 以上の耐熱性の評価を、上記吸着テーブルを90℃に加熱した場合についても行った。その結果を表1に示す。 The above heat resistance evaluation was also performed when the adsorption table was heated to 90 ° C. The results are shown in Table 1.
〔試験例5〕(ヒートシュリンク性の評価)
 実施例および比較例で製造したステルスダイシング用粘着シートから剥離シートを剥離し、露出した粘着剤層の粘着面に対して、マルチウエハマウンター(リンテック社製,製品名「RAD-2700 F/12」)を用いて、シリコンウエハ(外径:8インチ,厚さ:100μm)およびリングフレーム(ステンレス製)に貼付した。
[Test Example 5] (Evaluation of heat shrinkability)
The release sheet was peeled from the stealth dicing adhesive sheet produced in the examples and comparative examples, and the multi-wafer mounter (product name “RAD-2700 F / 12”, manufactured by Lintec Corporation) was applied to the exposed adhesive surface of the adhesive layer. ) Was attached to a silicon wafer (outer diameter: 8 inches, thickness: 100 μm) and a ring frame (made of stainless steel).
 次いで、ステルスダイシング用粘着シート上に貼付された上記シリコンウエハに対して、レーザーソー(ディスコ社製,製品名「DFL7361」)を用いて波長1342nmのレーザ光を照射し、得られるチップサイズが8mm×8mmとなるように、シリコンウエハ内に改質部を形成した。 Next, the silicon wafer affixed on the adhesive sheet for stealth dicing is irradiated with laser light having a wavelength of 1342 nm using a laser saw (manufactured by DISCO, product name “DFL7361”), and the resulting chip size is 8 mm. A modified portion was formed in the silicon wafer so as to be 8 mm.
 次いで、ステルスダイシング用粘着シートが貼付された、レーザ光照射後のシリコンウエハおよびリングフレームを、ダイセパレーター(ディスコ社製,製品名「DDS2300」)に設置し、0℃にて、引き落とし速度100mm/秒、エキスパンド量10mmでエキスパンド(クールエキスパンド)した。これにより、半導体ウエハは改質部において分割され、それぞれのチップサイズが8mm×8mmである複数の半導体チップが得られた。 Next, the silicon wafer and ring frame after the laser beam irradiation, to which the adhesive sheet for stealth dicing was attached, were placed on a die separator (manufactured by Disco Corporation, product name “DDS2300”), and the withdrawal speed was 100 mm / Second (expanded) with an expanding amount of 10 mm. As a result, the semiconductor wafer was divided at the modified portion, and a plurality of semiconductor chips each having a chip size of 8 mm × 8 mm were obtained.
 続いて、引き落とし速度1mm/秒、エキスパンド量7mmで、ステルスダイシング用粘着シートをエキスパンドした。さらに、エキスパンドした状態のまま、ステルスダイシング用粘着シートを吸着テーブルで吸着した後、ステルスダイシング用粘着シートにおける、半導体チップが貼付された領域とリングフレームが貼付された領域との間を加熱した。このときの加熱条件としては、IRヒータの設定温度を600℃、回転速度を1deg/sec、ステルスダイシング用粘着シートを支持する吸着テーブルとヒータとの距離を13mmと設定した。これにより、ステルスダイシング用粘着シートは、約180℃に加熱された。 Subsequently, an adhesive sheet for stealth dicing was expanded at a withdrawal speed of 1 mm / second and an expanding amount of 7 mm. Furthermore, after the adhesive sheet for stealth dicing was adsorbed by the adsorption table in the expanded state, the area between the area where the semiconductor chip was adhered and the area where the ring frame was adhered in the adhesive sheet for stealth dicing was heated. As heating conditions at this time, the set temperature of the IR heater was set to 600 ° C., the rotation speed was set to 1 deg / sec, and the distance between the adsorption table supporting the stealth dicing adhesive sheet and the heater was set to 13 mm. Thereby, the adhesive sheet for stealth dicing was heated to about 180 degreeC.
 その後、吸着テーブルによる吸着からステルスダイシング用粘着シートを解放し、隣り合う半導体チップ間の距離を5点測定し、その平均値を算出した。そして、当該平均値が20μm以上である場合を「〇」、20μm未満である場合を「×」として、ヒートシュリンク性を評価した。結果を表1に示す。 Thereafter, the adhesive sheet for stealth dicing was released from the adsorption by the adsorption table, the distance between adjacent semiconductor chips was measured at five points, and the average value was calculated. And the case where the said average value is 20 micrometers or more was set to "(circle)", and the case where it is less than 20 micrometers was set to "x", and heat shrink property was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例で得られたステルスダイシング用粘着シートは、ヒートシュリンク性に優れていた。また、実施例1~3で得られたステルスダイシング用粘着シートは、耐熱性にも優れていた。 As can be seen from Table 1, the stealth dicing adhesive sheets obtained in the examples were excellent in heat shrink properties. In addition, the stealth dicing adhesive sheets obtained in Examples 1 to 3 were excellent in heat resistance.
 本発明のステルスダイシング用粘着シートは、貫通電極を有する半導体ウエハをステルスダイシングする際に好適に使用することができる。 The adhesive sheet for stealth dicing of the present invention can be suitably used when stealth dicing a semiconductor wafer having a through electrode.

Claims (7)

  1.  基材と、前記基材における片面側に積層された粘着剤層とを備えたステルスダイシング用粘着シートであって、
     前記基材が、熱機械分析装置を用いて、昇温速度20℃/分で25℃から120℃まで加熱しながら、前記基材を0.2gの荷重で引っ張る場合において、前記基材の60℃のときの長さから前記基材の初期の長さを減じて得られる前記基材の長さの変化量をΔL60℃とし、前記基材の90℃のときの長さから前記基材の初期の長さを減じて得られる前記基材の長さの変化量をΔL90℃としたときに、下記式(1)
     ΔL90℃-ΔL60℃<0μm …(1)
    の関係を満たすことを特徴とするステルスダイシング用粘着シート。
    A stealth dicing pressure-sensitive adhesive sheet comprising a base material and a pressure-sensitive adhesive layer laminated on one side of the base material,
    In the case where the substrate is pulled with a load of 0.2 g while being heated from 25 ° C. to 120 ° C. at a heating rate of 20 ° C./min using a thermomechanical analyzer, The amount of change in the length of the base material obtained by subtracting the initial length of the base material from the length at the time of ° C. is ΔL 60 ° C. , and the base material is calculated from the length of the base material at 90 ° C. When the amount of change in the length of the base material obtained by reducing the initial length is ΔL 90 ° C. , the following formula (1)
    ΔL 90 ° C. −ΔL 60 ° C. <0 μm (1)
    An adhesive sheet for stealth dicing characterized by satisfying the above relationship.
  2.  前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、30℃から100℃の範囲における測定値の最小値をH30℃-100℃とし、25℃のときの測定値をH25℃としたときに、下記式(2)
     H30℃-100℃/H25℃≦4.0 …(2)
    の関係を満たすことを特徴とする請求項1に記載のステルスダイシング用粘着シート。
    In the DSC curve for the base material obtained by heating from 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter, the base material is in the range of 30 ° C. to 100 ° C. When the minimum measured value is 30 ° C-100 ° C and the measured value at 25 ° C is 25 ° C , the following formula (2)
    H 30 ° C.-100 ° C./H 25 ° C. ≦ 4.0 (2)
    The adhesive sheet for stealth dicing according to claim 1, wherein the relationship is satisfied.
  3.  前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、105℃から200℃の範囲における測定値の最小値をH105℃-200℃とし、25℃のときの測定値をH25℃としたときに、下記式(3)
     H105℃-200℃/H25℃≧1.0 …(3)
    の関係を満たすことを特徴とする請求項1または2に記載のステルスダイシング用粘着シート。
    In the DSC curve for the base material obtained by heating from 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter, the base material is in the range of 105 ° C. to 200 ° C. When the minimum value of the measured value is H 105 ° C-200 ° C and the measured value at 25 ° C is H 25 ° C , the following formula (3)
    H 105 ° C-200 ° C / H 25 ° C ≧ 1.0 (3)
    The pressure-sensitive adhesive sheet for stealth dicing according to claim 1 or 2, wherein the relationship is satisfied.
  4.  前記基材は、示差走査熱量計を用いて、昇温速度10℃/分で0℃から200℃まで加熱することで得られる前記基材についてのDSC曲線において、30℃から100℃の範囲における測定値の最小値をH30℃-100℃とし、105℃から200℃の範囲における測定値の最小値をH105℃-200℃としたときに、下記式(4)
     H105℃-200℃/H30℃-100℃≧0.1 …(4)
    の関係を満たすことを特徴とする請求項1~3のいずれか一項に記載のステルスダイシング用粘着シート。
    In the DSC curve for the base material obtained by heating from 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter, the base material is in the range of 30 ° C. to 100 ° C. When the minimum value of the measured value is H 30 ° C.-100 ° C. and the minimum value of the measured value in the range of 105 ° C. to 200 ° C. is H 105 ° C.-200 ° C. , the following formula (4)
    H 105 ° C.-200 ° C./H 30 ° C.-100 ° C. ≧ 0.1 (4)
    The pressure-sensitive adhesive sheet for stealth dicing according to any one of claims 1 to 3, wherein the relationship is satisfied.
  5.  前記基材は、23℃における引張弾性率が50MPa以上、450MPa以下であることを特徴とする請求項1~4のいずれか一項に記載のステルスダイシング用粘着シート。 The adhesive sheet for stealth dicing according to any one of claims 1 to 4, wherein the base material has a tensile elastic modulus at 23 ° C of 50 MPa or more and 450 MPa or less.
  6.  貫通電極を有する半導体ウエハをワークとすることを特徴とする請求項1~5のいずれか一項に記載のステルスダイシング用粘着シート。 The adhesive sheet for stealth dicing according to any one of claims 1 to 5, wherein the workpiece is a semiconductor wafer having through electrodes.
  7.  ワークが積層された前記ステルスダイシング用粘着シートにおける、前記ワークが積層されていない領域を、加熱により収縮する工程を備える半導体装置の製造方法に使用されることを特徴とする請求項1~6のいずれか一項に記載のステルスダイシング用粘着シート。 7. The method of manufacturing a semiconductor device according to claim 1, wherein the stealth dicing pressure-sensitive adhesive sheet having a workpiece laminated thereon is used in a method for manufacturing a semiconductor device including a step of shrinking a region where the workpiece is not laminated by heating. The adhesive sheet for stealth dicing according to any one of the above.
PCT/JP2017/037739 2016-11-02 2017-10-18 Adhesive sheet for stealth dicing WO2018083986A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197009727A KR102481281B1 (en) 2016-11-02 2017-10-18 Adhesive sheet for stealth dicing
JP2018548616A JP6980680B2 (en) 2016-11-02 2017-10-18 Adhesive sheet for stealth dicing
CN201780067347.XA CN109906504B (en) 2016-11-02 2017-10-18 Adhesive sheet for stealth dicing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215205 2016-11-02
JP2016215205 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018083986A1 true WO2018083986A1 (en) 2018-05-11

Family

ID=62076545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037739 WO2018083986A1 (en) 2016-11-02 2017-10-18 Adhesive sheet for stealth dicing

Country Status (5)

Country Link
JP (1) JP6980680B2 (en)
KR (1) KR102481281B1 (en)
CN (1) CN109906504B (en)
TW (1) TWI727110B (en)
WO (1) WO2018083986A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521878A (en) * 2019-09-19 2021-03-19 日东电工株式会社 Adhesive tape

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2013100455A (en) * 2011-10-17 2013-05-23 Nitto Denko Corp Film for adhesive tape and adhesive tape
JP2015151453A (en) * 2014-02-13 2015-08-24 リンテック株式会社 Stretchable sheet and manufacturing method of multilayer chip
JP2016015456A (en) * 2014-07-03 2016-01-28 リンテック株式会社 Composite sheet for protection film formation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054219B2 (en) * 2002-05-22 2008-02-27 三井化学株式会社 Semiconductor wafer surface protecting adhesive film and semiconductor wafer protecting method using the adhesive film
JP2006203133A (en) * 2005-01-24 2006-08-03 Lintec Corp Manufacturing method of chip body, manufacturing method of device and adhesive sheet for fixing chip body
JP4549239B2 (en) * 2005-06-22 2010-09-22 日東電工株式会社 Dicing adhesive sheet
CN103797567B (en) * 2011-09-30 2018-05-11 琳得科株式会社 Manufacture method with the cambial cutting diaphragm of protective film and chip
JP6312498B2 (en) * 2014-03-31 2018-04-18 日東電工株式会社 Dicing film, dicing die-bonding film, and semiconductor device manufacturing method
JP6356582B2 (en) * 2014-11-25 2018-07-11 日東電工株式会社 Adhesive sheet, adhesive sheet with dicing sheet, and method for manufacturing semiconductor device
JP6445315B2 (en) * 2014-12-12 2018-12-26 日東電工株式会社 Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
MY181315A (en) * 2015-03-24 2020-12-21 Furukawa Electric Co Ltd Semiconductor processing tape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2013100455A (en) * 2011-10-17 2013-05-23 Nitto Denko Corp Film for adhesive tape and adhesive tape
JP2015151453A (en) * 2014-02-13 2015-08-24 リンテック株式会社 Stretchable sheet and manufacturing method of multilayer chip
JP2016015456A (en) * 2014-07-03 2016-01-28 リンテック株式会社 Composite sheet for protection film formation

Also Published As

Publication number Publication date
TWI727110B (en) 2021-05-11
JPWO2018083986A1 (en) 2019-09-19
KR102481281B1 (en) 2022-12-27
JP6980680B2 (en) 2021-12-15
CN109906504B (en) 2023-04-14
TW201818460A (en) 2018-05-16
CN109906504A (en) 2019-06-18
KR20190080862A (en) 2019-07-08

Similar Documents

Publication Publication Date Title
JP7162612B2 (en) Work processing sheet and manufacturing method for processed work
KR102382843B1 (en) Stealth dicing adhesive sheet and method for manufacturing semiconductor device using same
TWI791485B (en) Adhesive sheet for stealth dicing and method for manufacturing semiconductor device
JP2018113356A (en) Semiconductor processing sheet and method of manufacturing semiconductor device
CN113226754A (en) Sheet for processing workpiece
WO2020100491A1 (en) Workpiece processing sheet
JP6818612B2 (en) Manufacturing method for semiconductor processing sheets and semiconductor devices
JP6980680B2 (en) Adhesive sheet for stealth dicing
JP6719694B1 (en) Dicing sheet for plasma dicing
TWI791484B (en) Adhesive sheet for stealth dicing and method for manufacturing semiconductor device
JP7200260B2 (en) Work processing sheet and manufacturing method for processed work
KR102560374B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
WO2019008808A1 (en) Adhesive sheet for stealth dicing, and production method for semiconductor device
JP2023141976A (en) Sheet for processing workpiece

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548616

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009727

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867649

Country of ref document: EP

Kind code of ref document: A1