WO2018083906A1 - Scanning endoscope and scanning endoscope production method - Google Patents

Scanning endoscope and scanning endoscope production method Download PDF

Info

Publication number
WO2018083906A1
WO2018083906A1 PCT/JP2017/034118 JP2017034118W WO2018083906A1 WO 2018083906 A1 WO2018083906 A1 WO 2018083906A1 JP 2017034118 W JP2017034118 W JP 2017034118W WO 2018083906 A1 WO2018083906 A1 WO 2018083906A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning endoscope
ferrule
holder
mold
irradiation
Prior art date
Application number
PCT/JP2017/034118
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 崇
雄偉 王
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018083906A1 publication Critical patent/WO2018083906A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a scanning endoscope and a method for manufacturing a scanning endoscope.
  • a scanning endoscope that scans a subject along a predetermined scanning path and obtains an observation image by swinging an irradiation optical fiber in a distal end portion of an insertion portion and irradiating light from an irradiation end of the irradiation optical fiber.
  • a rectangular column-shaped ferrule is provided on the outer periphery of an irradiation optical fiber, and one end side of the ferrule is held by a device holder to vibrate a piezoelectric element provided on the outer periphery of the ferrule.
  • an optical scanning actuator that scans a subject by swinging the irradiation end via a ferrule is disclosed.
  • a scanning endoscope does not have an image sensor at the distal end portion of the insertion portion, the diameter of the insertion portion can be reduced.
  • a circular hole is formed in the center of the holder, a square columnar ferrule is inserted into the circular hole, and an adhesive is filled in the gap between the inserted ferrule and the circular hole, The ferrule is fixed to the holder.
  • the ferrule when the adhesive is filled, the ferrule may move in the gap with the holder, and it is difficult to increase the coaxiality of the holder and the ferrule.
  • an object of the present invention is to provide a scanning endoscope and a manufacturing method of the scanning endoscope that can further increase the coaxiality between the ferrule and the holder that holds the ferrule.
  • the scanning endoscope according to one aspect of the present invention is formed in an irradiation optical fiber that irradiates irradiation light from an irradiation end in accordance with light incident from an incident end, a prismatic shape, and provided on the outer periphery of the irradiation optical fiber
  • a holding hole having a shape along the outer periphery of the ferrule, and a holder for holding the ferrule by the holding hole.
  • a method for manufacturing a scanning endoscope includes a ferrule formed in a prism shape, a driving element that swings an irradiation end by applying a driving force to an irradiation optical fiber, and a mold that molds a holder.
  • the ferrule is arranged at a predetermined position in the mold, and after the arrangement at the predetermined position is performed, the mold is filled with a resin material, and after the filling is performed,
  • the drive element is attached to the outer periphery of the ferrule.
  • FIG. 1 is a block diagram showing a configuration example of a scanning endoscope system 1 according to an embodiment of the present invention.
  • the scanning endoscope system 1 includes an endoscope processor 2, a scanning endoscope 3, and a display device 4.
  • the scanning endoscope 3 and the display device 4 are detachably connected to the endoscope processor 2.
  • the endoscope processor 2 includes a light source unit 11, a driver unit 21, a detection unit 31, an operation unit 41, and a control unit 51.
  • the light source unit 11 Based on the control signal input from the control unit 51, the light source unit 11 uses laser light generated from the red, green, and blue laser light sources 12 r, 12 g, and 12 b as irradiation light through the multiplexer 13. Sequentially output to the irradiation optical fiber P.
  • the irradiation optical fiber P has an incident end Pi where the irradiation light is incident and an irradiation end Po that irradiates the subject with the irradiation light.
  • the irradiation optical fiber P irradiates the subject with irradiation light from the irradiation end Po according to the light incident from the incident end Pi.
  • the driver unit 21 is a circuit that drives an actuator 74, which will be described later, and swings the irradiation end Po of the irradiation optical fiber P.
  • the driver unit 21 includes a signal generator 22, D / A converters 23a and 23b, and amplifiers 24a and 24b.
  • the signal generator 22 generates drive signals Dx and Dy for driving the actuator 74 based on the control signal input from the control unit 51, and outputs them to the D / A converters 23a and 23b.
  • the drive signal Dx is output so that the irradiation end Po of the irradiation optical fiber P can be moved in the X-axis direction to be described later.
  • the drive signal Dx is defined by the following mathematical formula (1), for example.
  • X (t) is the signal level of the drive signal Dx at time t
  • Ax is an amplitude value that does not depend on time t
  • G (t) is a predetermined value that modulates the sine wave sin (2 ⁇ ft). Is a function of
  • X (t) Ax ⁇ G (t) ⁇ sin (2 ⁇ ft) (1)
  • the drive signal Dy is output so that the irradiation end Po of the irradiation optical fiber P can be moved in the Y-axis direction described later.
  • the drive signal Dy is defined by the following mathematical formula (2), for example.
  • Y (t) is the signal level of the drive signal Dy at time t
  • Ay is an amplitude value independent of time t
  • G (t) is a predetermined value for modulating the sine wave sin (2 ⁇ ft + ⁇ ).
  • is the phase.
  • Y (t) Ay ⁇ G (t) ⁇ sin (2 ⁇ ft + ⁇ ) (2)
  • the D / A converters 23a and 23b convert the drive signals Dx and Dy input from the signal generator 22 from digital signals to analog signals, respectively, and output them to the amplifiers 24a and 24b.
  • the amplifiers 24a and 24b amplify the drive signals Dx and Dy input from the D / A converters 23a and 23b, and pass the amplified drive signals Dx and Dy through the signal line D in the scanning endoscope 3. To the actuator 74.
  • the detection unit 31 is a circuit that detects return light returning from the subject and outputs a detection signal corresponding to the return light to the control unit 51.
  • the detection unit 31 includes a photodetector 32 and an A / D converter 33.
  • the photodetector 32 includes a photoelectric conversion element, converts the return light of the subject input via the light receiving fiber R into red, green, and blue detection signals and outputs them to the A / D converter 33. To do.
  • the A / D converter 33 converts the detection signal input from the photodetector 32 into a digital signal and outputs the digital signal to the control unit 51.
  • the operation unit 41 is connected to the control unit 51 and configured to output a user instruction input to the control unit 51.
  • the control unit 51 is configured to be able to control the operation of each unit in the scanning endoscope system 1.
  • the control unit 51 includes a central processing unit (hereinafter referred to as “CPU”) 52, a memory 53 including a ROM and a RAM, and an image processing unit 54.
  • the function of the control unit 51 is realized by the CPU 52 executing various programs stored in the memory 53.
  • the memory 53 stores a program for controlling the operation of each unit in the scanning endoscope system 1.
  • the image processing unit 54 is a circuit that generates an observation image based on the digitized detection signal output from the detection unit 31. More specifically, the image processing unit 54 performs a mapping process based on a mapping table (not shown) on the red, green, and blue detection signals acquired along a predetermined scanning path, so that a raster-type observation image is obtained. Is generated and output to the display device 4.
  • the display device 4 is connected to the control unit 51 and configured to display an observation image output from the image processing unit 54.
  • FIG. 2 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention.
  • FIG. 3 is a front view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention.
  • FIG. 4 is a perspective view showing a configuration example of the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention.
  • 5 and 6 are explanatory diagrams for explaining examples of scanning paths of the scanning endoscope system 1 according to the embodiment of the present invention.
  • the scanning endoscope 3 has an elongated insertion portion 3a that can be inserted into a subject.
  • the insertion part 3 a includes an outer skin 61, an outer cylinder 62, a light receiving fiber R, and a light irradiation part 71.
  • the outer skin 61 is made of a flexible material such as rubber and is formed in an elongated tube shape.
  • the outer skin 61 accommodates the irradiation optical fiber P and the light receiving fiber R inside.
  • the proximal end is attached to the endoscope processor 2 and the distal end is attached to the outer cylinder 62.
  • the outer cylinder 62 is made of stainless steel or the like.
  • the outer cylinder 62 is attached to the tip of the outer skin 61.
  • the light receiving fiber R is configured to receive the return light of the subject by the light receiving end Ri.
  • the light receiving fiber R is disposed inside the outer cylinder 62.
  • the light receiving fiber R is connected to the detection unit 31, guides the light received by the light receiving end Ri, and outputs the light to the detection unit 31.
  • the light irradiation unit 71 is configured to irradiate the subject with irradiation light.
  • the light irradiation unit 71 includes a protection pipe 72, an optical system 73, an actuator 74, and a holder 75.
  • the protective pipe 72 is made of a conductive material such as metal and is formed in a cylindrical shape.
  • the protection pipe 72 is disposed so as to surround the drive elements 74x and 74y and the irradiation end Po.
  • the optical system 73 is configured to collect the irradiation light and irradiate the subject with the irradiation light.
  • the optical system 73 includes two plano-convex lenses.
  • the optical system 73 is mounted in the protection pipe 72, but it may be mounted on a lens frame (not shown) and may be mounted on the protection pipe 72 by a lens frame.
  • the optical system 73 is configured by two plano-convex lenses, but is not limited thereto, and may be configured by other lenses.
  • the actuator 74 is configured to swing the irradiation end Po and move the irradiation position of the irradiation light along a predetermined scanning path.
  • the predetermined scanning path is, for example, a spiral scanning path described later.
  • the actuator 74 includes a ferrule 74f and drive elements 74x and 74y.
  • the ferrule 74f is made of metal or the like, is formed in a prismatic shape, and is provided on the outer periphery of the irradiation optical fiber P. In FIG. 3, the ferrule 74f is formed in a quadrangular prism shape.
  • the drive elements 74x and 74y are provided on the outer periphery of the ferrule 74f, and drive the irradiation optical fiber P to swing the irradiation end Po.
  • the drive elements 74x and 74y have piezoelectric elements, are connected to the driver unit 21, vibrate according to the drive signals Dx and Dy input from the driver unit 21, and swing the irradiation end Po.
  • the irradiation end Po is oscillated in the X-axis direction by the drive element 74x, and is oscillated in the Y-axis direction by the drive element 74y.
  • the driver unit 21 When the driver unit 21 outputs the drive signals Dx and Dy while increasing the signal level, the irradiation optical fiber P is rocked by the actuator 74, and the irradiation position of the irradiation optical fiber P is indicated by Z2 to Z1 in FIG. Move along a spiral scan path that gradually moves away from the center. Thereafter, when the driver unit 21 outputs the drive signals Dx and Dy while decreasing the signal level, the irradiation position of the irradiation optical fiber P gradually approaches the center as shown by Z1 to Z2 in FIG. Move along.
  • the red, green, and blue laser lights sequentially generated by the light source unit 11 are spirally irradiated onto the subject, the return light of the subject is received by the light receiving fiber R, and the subject is scanned in a spiral.
  • the holder 75 is made of a resin material, is formed in a columnar shape, has a cylindrical body 75a having a first diameter, and has a second diameter smaller than the first diameter, and is adjacent to the cylindrical body 75a in the axial direction.
  • a small cylindrical body 75b provided as described above.
  • the proximal end side of the protective pipe 72 is fitted on the small cylindrical body 75b.
  • the holder 75 has a holding hole 75c having a shape along the outer periphery of the ferrule 74f in a direction along the central axis Ah of the holder 75, and holds the ferrule 74f by the holding hole 75c.
  • the holder 75 has a signal line insertion hole 75d for inserting the signal line D connected to the drive elements 74x and 74y. In the signal line D, the strand Da in the sheath is connected to the drive elements 74x and 74y.
  • the holder 75 includes a column having a first width, and a small column having a second width smaller than the first width and provided adjacent to the column in the axial direction. Have. The base end of the protective pipe 72 is fitted on the small column body.
  • FIG. 7 is an explanatory diagram for explaining a configuration example of a mold K for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention.
  • the holder 75 is molded so as to be integrated with the ferrule 74f by insert molding in which a resin material is poured into the mold K.
  • the mold K is divided in a direction along the central axis Ah of the holder 75. More specifically, the mold K is divided on the outer peripheral edge 75e of the cylindrical body 75a so that burrs are not generated on the outer peripheral surfaces of the cylindrical body 75a and the small cylindrical body 75b. That is, the mold K is divided on the outer edge of the end of the column. In the embodiment, the mold K is divided on the outer peripheral edge 75e of the cylindrical body 75a, but may be divided on the outer peripheral surface of the cylindrical body 75a or the small cylindrical body 75b.
  • the ferrule 74f is arranged at a predetermined position in the divided mold K. Further, the pin N is disposed at a position where the signal line insertion hole 75d is formed. After the ferrule 74f and the pin N are arranged, the mold K is closed, and the mold K is filled with the resin material through the channel Kc. After the resin material is solidified, the mold K is opened, the integrated ferrule 74f and the holder 75 are taken out, and the pin N is removed from the holder 75. Subsequently, drive elements 74x and 74y are attached to the outer periphery of the ferrule 74f, and the irradiation optical fiber P is inserted into the inner side of the ferrule 74f. After the irradiation optical fiber P is attached, the protective pipe 72 is fitted on the small cylindrical body 75b.
  • the ferrule 74f is arranged at a predetermined position in the mold K, and after the arrangement at the predetermined position, the mold K is filled with a resin material, After filling, the drive elements 74x and 74y are attached to the outer periphery of the ferrule 74f. Furthermore, after filling, the irradiation optical fiber P is attached to the ferrule 74f, and after the irradiation optical fiber P is attached, the protective pipe 72 is externally fitted to the small column body.
  • the mold K can be divided in the direction along the central axis Ah of the holder 75, and the arrangement of the ferrule 74f is performed by dividing the mold K in the direction along the central axis Ah of the holder 75.
  • the ferrule 74f is arranged at a predetermined position in the mold K, and the holder 75 integrated by insert molding is formed at a predetermined position on the outer periphery of the ferrule 74f.
  • the coaxiality between the ferrule 74f and the holder 75 holding the ferrule 74f can be further increased.
  • the small cylindrical body 75b does not have the crushing margin 175c, but the small cylindrical body 175b may have the crushing margin 175c.
  • FIG. 8 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 1 of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the first modification of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the holder 75 has a small cylindrical body 175b having a second diameter smaller than the first diameter provided adjacent to the cylindrical body 75a in the axial direction.
  • a crushing margin 175c is provided on the distal end side of the small cylindrical body 175b.
  • the protective pipe 72 has a tapered inner peripheral surface 172a having a base end side larger than the diameter of the small cylindrical body 175b and a distal end side smaller than the diameter of the small cylindrical body 175b.
  • the protective pipe 72 has a tapered inner peripheral surface 172a having a proximal end side formed larger than a predetermined inner width and a distal end side formed smaller than a predetermined inner width.
  • the predetermined inner width is the same as the width of the small cylindrical body 175b.
  • the scanning endoscope 3 can more easily fit the proximal end side of the protective pipe 72 to the holder 75.
  • the signal line D is inserted into the signal line insertion hole 75d of the holder 75 and connected to the drive elements 74x and 74y. , 74y may be connected.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to the second modification of the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to the second modification of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the holder 75 has a small cylindrical body 275b having a second diameter smaller than the first diameter provided adjacent to the cylindrical body 75a in the axial direction.
  • the protective pipe 72 has a tapered inner peripheral surface 272a formed so that the proximal end side is larger than the diameter of the small cylindrical body 275b and the distal end side is smaller than the diameter of the small cylindrical body 275b.
  • the scanning endoscope 3 can more easily connect the signal line D to the drive elements 74x and 74y.
  • the holder 75 does not include the conductive portion 375 that conducts the ferrule 74f and the protective pipe 72, but may include the conductive portion 375.
  • FIGS. 12 and 13 are perspective views showing a configuration example of the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the third modification of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the holder 75 has a conductive portion 375.
  • the conductive portion 375 is formed of a molded circuit component disposed on the holder 75, and electrically connects the ferrule 74f and the protective pipe 72.
  • the ferrule 74f is connected to the GND potential via the endoscope processor 2.
  • the scanning endoscope 3 can more easily connect the protective pipe 72 to the GND potential.
  • the ferrule 74f is formed in a quadrangular prism shape, but the outer peripheral surface may have irregularities.
  • FIG. 14 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification 4 of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the ferrule 74f has a first locking portion 474f formed in an uneven shape in the direction along the central axis Ah of the holder 75 on the outer peripheral surface.
  • the holder 75 has a second locking portion 474g formed in a shape along the locking portion 474f in the holding hole 75c, and locks the first locking portion 474f by the second locking portion 474g.
  • the ferrule 74f is more firmly locked by the holder 75.
  • the signal line insertion hole 75d has the same width from the proximal end portion 575a to the distal end portion 575b, but may be formed so that the width decreases from the proximal end portion 575a toward the distal end portion 575b.
  • FIG. 15 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 5 of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the signal line insertion hole 575d is configured to have a width that decreases from the base end portion 575a toward the front end portion 575b. More specifically, in the signal line insertion hole 75d, the base end portion 575a side is formed to have a larger diameter than the covering of the signal line D, while the distal end portion 575b side has a diameter larger than the covering of the signal line D. Is formed to be small.
  • the signal line D is covered with the inner periphery of the signal line insertion hole 575d and the signal line insertion hole 575d side of the signal line insertion hole 575d side.
  • the strand Da protrudes by a predetermined protrusion length.
  • the protruding length of the strand Da of the signal line D can be adjusted by the signal line insertion hole 575d.
  • the signal line insertion hole 75d is formed in a direction along the central axis Ah of the holder 75, but may be formed obliquely.
  • FIG. 16 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification 6 of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the base end side opening 675a is disposed on the outer peripheral side with respect to the front end side opening 675b, and the signal line insertion hole 675d is disposed obliquely.
  • the signal line D can be more easily connected to the drive elements 74x and 74y.
  • FIG. 17 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 7 of the embodiment of the present invention.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the signal line insertion hole 775d is configured so that the inner width becomes narrower from the base end toward the distal end, and in the seventh modification of the embodiment, the signal line insertion hole 775d is arranged obliquely. As shown in FIG. 17, the modified examples 6 and 7 may be combined and arranged so that the inner width becomes narrower from the proximal end toward the distal end and obliquely.
  • the signal line D can be more easily connected to the drive elements 74x and 74y.
  • the mold K is divided in a direction along the central axis Ah of the holder 75, but may be divided in a direction orthogonal to the central axis Ah of the holder 75.
  • FIG. 18 is a diagram for explaining a configuration example of a mold Ka for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the eighth modification of the embodiment of the present invention.
  • FIG. in the present modification the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • the mold Ka can be divided in a direction orthogonal to the central axis Ah of the holder 75.
  • the arrangement of the ferrule 74f is performed by dividing the mold Ka in a direction along the central axis Ah of the holder 75.
  • the ferrule 74f is laid flat on the mold Ka, and the ferrule 74f is more easily arranged on the mold Ka.
  • Modification 9 of embodiment A plurality of molds Ka of Modification 8 of the embodiment may be used side by side.
  • FIG. 19 is a diagram illustrating a configuration example of a mold Ka for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the ninth modification of the embodiment of the present invention.
  • FIG. 19 for explanation, only one of the divided molds Ka is shown.
  • the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
  • a plurality of molds Ka are arranged side by side so that the channels Kc are connected to each other.
  • the plurality of ferrules 74f arranged on the plurality of molds Ka are held by the jig J and arranged on the mold Ka.
  • the resin material can be filled into the plurality of molds Ka from one channel Kc, and the productivity is improved.
  • the present invention it is possible to provide a scanning endoscope and a manufacturing method of the scanning endoscope that can further increase the coaxiality between the ferrule and the holder that holds the ferrule.

Abstract

A scanning endoscope 3 comprises: an irradiating optical fiber P; a ferrule 74f formed in a square rod shape and provided on the outside of the irradiating optical fiber; driving elements 74x and 74y provided on the outside of the ferrule 74f for oscillating the irradiating end Po; and a holder 75, which is configured from a resin material, is formed in a rod shape, has a holding hole 75c with a shape that conforms to the circumference of the ferrule 74f in the direction along the center axis line Ah, and holds the ferrule 74f.

Description

走査型内視鏡および走査型内視鏡の製造方法Scanning endoscope and method of manufacturing scanning endoscope
 本発明は、走査型内視鏡および走査型内視鏡の製造方法に関する。 The present invention relates to a scanning endoscope and a method for manufacturing a scanning endoscope.
 従来、挿入部の先端部内において照射光ファイバを搖動させ、照射光ファイバの照射端から照射する照射光により、所定の走査経路に沿って被写体を走査し、観察画像を取得する走査型内視鏡がある。 Conventionally, a scanning endoscope that scans a subject along a predetermined scanning path and obtains an observation image by swinging an irradiation optical fiber in a distal end portion of an insertion portion and irradiating light from an irradiation end of the irradiation optical fiber. There is.
 例えば、日本国特開2016-9121号公報では、照射光ファイバの外周に四角柱状のフェルールが設けられ、フェルールの一端側がデバイス保持具によって保持され、フェルールの外周に設けられた圧電素子を振動させることにより、フェルールを介して照射端を搖動させ、被写体を走査する光走査用アクチュエータが開示される。 For example, in Japanese Patent Application Laid-Open No. 2016-9121, a rectangular column-shaped ferrule is provided on the outer periphery of an irradiation optical fiber, and one end side of the ferrule is held by a device holder to vibrate a piezoelectric element provided on the outer periphery of the ferrule. Thus, an optical scanning actuator that scans a subject by swinging the irradiation end via a ferrule is disclosed.
 一般に、走査型内視鏡は、挿入部の先端部に撮像素子を有しないため、挿入部を細径化可能である。細径化された走査型内視鏡では、ホルダの中央に、円形孔が穿たれ、円形孔に四角柱状のフェルールが挿通され、挿通されたフェルールと円形孔の間隙に接着剤が充填され、フェルールは、ホルダに固定される。 Generally, since a scanning endoscope does not have an image sensor at the distal end portion of the insertion portion, the diameter of the insertion portion can be reduced. In the scanning endoscope having a reduced diameter, a circular hole is formed in the center of the holder, a square columnar ferrule is inserted into the circular hole, and an adhesive is filled in the gap between the inserted ferrule and the circular hole, The ferrule is fixed to the holder.
 しかし、従来の走査型内視鏡では、接着剤充填時にフェルールがホルダとの間隙内を動くことがあり、ホルダとフェルールの互いの同軸度を高めることが難しい。 However, in the conventional scanning endoscope, when the adhesive is filled, the ferrule may move in the gap with the holder, and it is difficult to increase the coaxiality of the holder and the ferrule.
 そこで、本発明は、フェルールと、フェルールを保持するホルダとの互いの同軸度をより高めることができる走査型内視鏡および走査型内視鏡の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a scanning endoscope and a manufacturing method of the scanning endoscope that can further increase the coaxiality between the ferrule and the holder that holds the ferrule.
 本発明の一態様の走査型内視鏡は、入射端から入射した光に応じて照射端から照射光を照射する照射光ファイバと、角柱状に形成され、前記照射光ファイバの外周に設けられたフェルールと、前記フェルールの外周に設けられ、前記照射光ファイバに駆動力を与えて前記照射端を搖動させる駆動素子と、樹脂材料によって構成され、柱状に形成され、中心軸線に沿う方向に前記フェルールの外周に沿った形状の保持孔を有し、前記保持孔によって前記フェルールを保持するホルダと、を有する。 The scanning endoscope according to one aspect of the present invention is formed in an irradiation optical fiber that irradiates irradiation light from an irradiation end in accordance with light incident from an incident end, a prismatic shape, and provided on the outer periphery of the irradiation optical fiber A ferrule, a drive element that is provided on the outer periphery of the ferrule, drives the irradiation optical fiber to swing the irradiation end, and is formed of a resin material, is formed in a columnar shape, and extends in the direction along the central axis. A holding hole having a shape along the outer periphery of the ferrule, and a holder for holding the ferrule by the holding hole.
 本発明の一態様の走査型内視鏡の製造方法は、角柱状に形成されたフェルールと、照射光ファイバに駆動力を与えて照射端を搖動させる駆動素子と、ホルダを成形する金型と、を用意し、前記金型内の所定位置への前記フェルールの配置を行い、前記所定位置への配置が行った後、前記金型に樹脂材料の充填を行い、前記充填が行った後、前記フェルールの外周への前記駆動素子の取付けを行う。 A method for manufacturing a scanning endoscope according to an aspect of the present invention includes a ferrule formed in a prism shape, a driving element that swings an irradiation end by applying a driving force to an irradiation optical fiber, and a mold that molds a holder. The ferrule is arranged at a predetermined position in the mold, and after the arrangement at the predetermined position is performed, the mold is filled with a resin material, and after the filling is performed, The drive element is attached to the outer periphery of the ferrule.
本発明の実施形態に係わる、走査型内視鏡システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the scanning endoscope system concerning embodiment of this invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning embodiment of this invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す正面図である。It is a front view showing an example of composition of a scanning endoscope of a scanning endoscope system concerning an embodiment of the present invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査型内視鏡のホルダの構成例を示す斜視図である。It is a perspective view showing an example of composition of a holder of a scanning endoscope of a scanning endoscope system concerning an embodiment of the present invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査経路の例を説明する説明図である。It is explanatory drawing explaining the example of the scanning path | route of the scanning endoscope system concerning embodiment of this invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査経路の例を説明する説明図である。It is explanatory drawing explaining the example of the scanning path | route of the scanning endoscope system concerning embodiment of this invention. 本発明の実施形態に係わる、走査型内視鏡システムの走査型内視鏡のホルダを成形するための金型の構成例を説明するための説明図である。It is explanatory drawing for demonstrating the structural example of the metal mold | die for shape | molding the holder of the scanning endoscope of the scanning endoscope system concerning embodiment of this invention. 本発明の実施形態の変形例1に係わる、走査型内視鏡システムの走査型内視鏡の光照射部の構成例を示す断面図である。It is sectional drawing which shows the structural example of the light irradiation part of the scanning endoscope of the scanning endoscope system concerning the modification 1 of embodiment of this invention. 本発明の実施形態の変形例1に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning the modification 1 of embodiment of this invention. 本発明の実施形態の変形例2に係わる、走査型内視鏡システムの走査型内視鏡の光照射部の構成例を示す断面図である。It is sectional drawing which shows the structural example of the light irradiation part of the scanning endoscope of the scanning endoscope system concerning the modification 2 of embodiment of this invention. 本発明の実施形態の変形例2に係わる、走査型内視鏡システムの走査型内視鏡の光照射部の構成例を示す断面図である。It is sectional drawing which shows the structural example of the light irradiation part of the scanning endoscope of the scanning endoscope system concerning the modification 2 of embodiment of this invention. 本発明の実施形態の変形例3に係わる、走査型内視鏡システムの走査型内視鏡のホルダの構成例を示す斜視図である。It is a perspective view which shows the structural example of the holder of the scanning endoscope of the scanning endoscope system concerning the modification 3 of embodiment of this invention. 本発明の実施形態の変形例3に係わる、走査型内視鏡システムの走査型内視鏡のホルダの構成例を示す斜視図である。It is a perspective view which shows the structural example of the holder of the scanning endoscope of the scanning endoscope system concerning the modification 3 of embodiment of this invention. 本発明の実施形態の変形例4に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning the modification 4 of embodiment of this invention. 本発明の実施形態の変形例5に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning the modification 5 of embodiment of this invention. 本発明の実施形態の変形例6に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning the modification 6 of embodiment of this invention. 本発明の実施形態の変形例7に係わる、走査型内視鏡システムの走査型内視鏡の構成例を示す断面図である。It is sectional drawing which shows the structural example of the scanning endoscope of the scanning endoscope system concerning the modification 7 of embodiment of this invention. 本発明の実施形態の変形例8に係わる、走査型内視鏡システムの走査型内視鏡のホルダを成形するための金型の構成例を説明するための説明図である。It is explanatory drawing for demonstrating the structural example of the metal mold | die for shape | molding the holder of the scanning endoscope of the scanning endoscope system concerning the modification 8 of embodiment of this invention. 本発明の実施形態の変形例9に係わる、走査型内視鏡システムの走査型内視鏡のホルダを成形するための金型の構成例を説明するための説明図である。It is explanatory drawing for demonstrating the structural example of the metal mold | die for shape | molding the holder of the scanning endoscope of the scanning endoscope system concerning the modification 9 of embodiment of this invention.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (構成)
 (実施形態)
 以下、図面を参照して実施形態を説明する。
(Constitution)
(Embodiment)
Hereinafter, embodiments will be described with reference to the drawings.
 図1は、本発明の実施形態に係わる、走査型内視鏡システム1の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of a scanning endoscope system 1 according to an embodiment of the present invention.
 走査型内視鏡システム1は、内視鏡プロセッサ2と、走査型内視鏡3と、表示装置4と、を有して構成される。走査型内視鏡3及び表示装置4は、内視鏡プロセッサ2に、着脱自在に接続される。 The scanning endoscope system 1 includes an endoscope processor 2, a scanning endoscope 3, and a display device 4. The scanning endoscope 3 and the display device 4 are detachably connected to the endoscope processor 2.
 内視鏡プロセッサ2は、光源ユニット11と、ドライバユニット21と、検出ユニット31と、操作部41と、制御部51と、を有して構成される。 The endoscope processor 2 includes a light source unit 11, a driver unit 21, a detection unit 31, an operation unit 41, and a control unit 51.
 光源ユニット11は、制御部51から入力される制御信号に基づいて、赤色、緑色及び青色の各レーザー光源12r、12g、12bから発生するレーザー光を、合波器13を介し、照射光として、順次、照射光ファイバPに出力する。 Based on the control signal input from the control unit 51, the light source unit 11 uses laser light generated from the red, green, and blue laser light sources 12 r, 12 g, and 12 b as irradiation light through the multiplexer 13. Sequentially output to the irradiation optical fiber P.
 照射光ファイバPは、照射光が入射される入射端Piと、照射光を被写体に照射する照射端Poとを有する。照射光ファイバPは、入射端Piから入射した光に応じて照射端Poから照射光を被写体に照射する。 The irradiation optical fiber P has an incident end Pi where the irradiation light is incident and an irradiation end Po that irradiates the subject with the irradiation light. The irradiation optical fiber P irradiates the subject with irradiation light from the irradiation end Po according to the light incident from the incident end Pi.
 ドライバユニット21は、後述するアクチュエータ74を駆動し、照射光ファイバPの照射端Poを搖動させる回路である。ドライバユニット21は、信号発生器22と、D/A変換器23a、23bと、アンプ24a、24bとを有して構成される。 The driver unit 21 is a circuit that drives an actuator 74, which will be described later, and swings the irradiation end Po of the irradiation optical fiber P. The driver unit 21 includes a signal generator 22, D / A converters 23a and 23b, and amplifiers 24a and 24b.
 信号発生器22は、制御部51から入力される制御信号に基づいて、アクチュエータ74を駆動させる駆動信号Dx、Dyを生成し、D/A変換器23a、23bに出力する。 The signal generator 22 generates drive signals Dx and Dy for driving the actuator 74 based on the control signal input from the control unit 51, and outputs them to the D / A converters 23a and 23b.
 駆動信号Dxは、照射光ファイバPの照射端Poを後述するX軸方向へ搖動できるように、出力される。駆動信号Dxは、例えば、下記の数式(1)によって規定される。数式(1)において、X(t)は時刻tにおける駆動信号Dxの信号レベルであり、Axは時刻tに依存しない振幅値であり、G(t)は正弦波sin(2πft)を変調する所定の関数である。 The drive signal Dx is output so that the irradiation end Po of the irradiation optical fiber P can be moved in the X-axis direction to be described later. The drive signal Dx is defined by the following mathematical formula (1), for example. In Equation (1), X (t) is the signal level of the drive signal Dx at time t, Ax is an amplitude value that does not depend on time t, and G (t) is a predetermined value that modulates the sine wave sin (2πft). Is a function of
 X(t)=Ax×G(t)×sin(2πft)…(1)
 駆動信号Dyは、照射光ファイバPの照射端Poを、後述するY軸方向へ搖動できるように出力される。駆動信号Dyは、例えば、下記の数式(2)によって規定される。数式(2)において、Y(t)は時刻tにおける駆動信号Dyの信号レベルであり、Ayは時刻tに依存しない振幅値であり、G(t)は正弦波sin(2πft+φ)を変調する所定の関数であり、φは位相である。
X (t) = Ax × G (t) × sin (2πft) (1)
The drive signal Dy is output so that the irradiation end Po of the irradiation optical fiber P can be moved in the Y-axis direction described later. The drive signal Dy is defined by the following mathematical formula (2), for example. In Equation (2), Y (t) is the signal level of the drive signal Dy at time t, Ay is an amplitude value independent of time t, and G (t) is a predetermined value for modulating the sine wave sin (2πft + φ). Where φ is the phase.
 Y(t)=Ay×G(t)×sin(2πft+φ)…(2)
 D/A変換器23a、23bは、信号発生器22から入力される駆動信号Dx、Dyを、それぞれデジタル信号からアナログ信号に変換し、アンプ24a、24bに出力する。
Y (t) = Ay × G (t) × sin (2πft + φ) (2)
The D / A converters 23a and 23b convert the drive signals Dx and Dy input from the signal generator 22 from digital signals to analog signals, respectively, and output them to the amplifiers 24a and 24b.
 アンプ24a、24bは、D/A変換器23a、23bから入力される駆動信号Dx、Dyを増幅し、信号線Dを介して、増幅された駆動信号Dx、Dyを走査型内視鏡3内のアクチュエータ74に出力する。 The amplifiers 24a and 24b amplify the drive signals Dx and Dy input from the D / A converters 23a and 23b, and pass the amplified drive signals Dx and Dy through the signal line D in the scanning endoscope 3. To the actuator 74.
 検出ユニット31は、被写体から戻る戻り光を検出し、戻り光に応じた検出信号を制御部51に出力する回路である。検出ユニット31は、光検出器32と、A/D変換器33とを有して構成される。 The detection unit 31 is a circuit that detects return light returning from the subject and outputs a detection signal corresponding to the return light to the control unit 51. The detection unit 31 includes a photodetector 32 and an A / D converter 33.
 光検出器32は、光電変換素子を有して構成され、受光ファイバRを介して入力される被写体の戻り光を赤色、緑色及び青色の検出信号に変換し、A/D変換器33に出力する。 The photodetector 32 includes a photoelectric conversion element, converts the return light of the subject input via the light receiving fiber R into red, green, and blue detection signals and outputs them to the A / D converter 33. To do.
 A/D変換器33は、光検出器32から入力される検出信号をデジタル信号に変換し、制御部51に出力する。 The A / D converter 33 converts the detection signal input from the photodetector 32 into a digital signal and outputs the digital signal to the control unit 51.
 操作部41は、制御部51に接続され、ユーザの指示入力を制御部51に出力できるように構成される。 The operation unit 41 is connected to the control unit 51 and configured to output a user instruction input to the control unit 51.
 制御部51は、走査型内視鏡システム1内の各部の動作を制御できるように構成される。制御部51は、中央処理装置(以下「CPU」という)52と、ROM及びRAMを含むメモリ53と、画像処理部54と、を有する。制御部51の機能は、CPU52によってメモリ53に記憶された各種プログラムが実行されることによって実現される。 The control unit 51 is configured to be able to control the operation of each unit in the scanning endoscope system 1. The control unit 51 includes a central processing unit (hereinafter referred to as “CPU”) 52, a memory 53 including a ROM and a RAM, and an image processing unit 54. The function of the control unit 51 is realized by the CPU 52 executing various programs stored in the memory 53.
 メモリ53には、走査型内視鏡システム1内の各部の動作を制御するプログラムが記憶される。 The memory 53 stores a program for controlling the operation of each unit in the scanning endoscope system 1.
 画像処理部54は、検出ユニット31から出力されるデジタル化された検出信号に基づいて、観察画像を生成する回路である。より具体的には、画像処理部54は、所定の走査経路に沿って取得された赤色、緑色及び青色の検出信号に対して、図示しないマッピングテーブルに基づくマッピング処理を行い、ラスター形式の観察画像を生成し、表示装置4に出力する。 The image processing unit 54 is a circuit that generates an observation image based on the digitized detection signal output from the detection unit 31. More specifically, the image processing unit 54 performs a mapping process based on a mapping table (not shown) on the red, green, and blue detection signals acquired along a predetermined scanning path, so that a raster-type observation image is obtained. Is generated and output to the display device 4.
 表示装置4は、制御部51に接続され、画像処理部54から出力された観察画像を表示することができるように構成される。 The display device 4 is connected to the control unit 51 and configured to display an observation image output from the image processing unit 54.
 図2は、本発明の実施形態に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。図3は、本発明の実施形態に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す正面図である。図4は、本発明の実施形態に係わる、走査型内視鏡システム1の走査型内視鏡3のホルダ75の構成例を示す斜視図である。図5及び図6は、本発明の実施形態に係わる、走査型内視鏡システム1の走査経路の例を説明する説明図である。 FIG. 2 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention. FIG. 3 is a front view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention. FIG. 4 is a perspective view showing a configuration example of the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention. 5 and 6 are explanatory diagrams for explaining examples of scanning paths of the scanning endoscope system 1 according to the embodiment of the present invention.
 走査型内視鏡3は、被写体に挿入可能な細長状の挿入部3aを有する。挿入部3aは、図2に示すように、外皮61と、外筒62と、受光ファイバRと、光照射部71と、を有する。 The scanning endoscope 3 has an elongated insertion portion 3a that can be inserted into a subject. As shown in FIG. 2, the insertion part 3 a includes an outer skin 61, an outer cylinder 62, a light receiving fiber R, and a light irradiation part 71.
 外皮61は、ゴム等の柔軟性を有する材質によって構成され、細長のチューブ状に形成される。外皮61は、内方に、照射光ファイバPと受光ファイバRを収容する。外皮61では、基端が内視鏡プロセッサ2に取り付けられ、先端が外筒62に取り付けられる。 The outer skin 61 is made of a flexible material such as rubber and is formed in an elongated tube shape. The outer skin 61 accommodates the irradiation optical fiber P and the light receiving fiber R inside. In the outer skin 61, the proximal end is attached to the endoscope processor 2 and the distal end is attached to the outer cylinder 62.
 外筒62は、ステンレス等を材質として構成される。外筒62は、外皮61の先端に取り付けられる。 The outer cylinder 62 is made of stainless steel or the like. The outer cylinder 62 is attached to the tip of the outer skin 61.
 受光ファイバRは、受光端Riによって被写体の戻り光を受光できるように構成される。受光ファイバRは、外筒62の内方に配置される。受光ファイバRは、検出ユニット31に接続され、受光端Riによって受光された光を、導光し、検出ユニット31に出力する。 The light receiving fiber R is configured to receive the return light of the subject by the light receiving end Ri. The light receiving fiber R is disposed inside the outer cylinder 62. The light receiving fiber R is connected to the detection unit 31, guides the light received by the light receiving end Ri, and outputs the light to the detection unit 31.
 光照射部71は、被写体に照射光を照射できるように構成される。光照射部71は、保護パイプ72と、光学系73と、アクチュエータ74と、ホルダ75と、を有する。 The light irradiation unit 71 is configured to irradiate the subject with irradiation light. The light irradiation unit 71 includes a protection pipe 72, an optical system 73, an actuator 74, and a holder 75.
 保護パイプ72は、金属等の導電性を有する材質によって構成され、筒状に形成される。保護パイプ72は、駆動素子74x、74y及び照射端Poを取り囲むように配置される。 The protective pipe 72 is made of a conductive material such as metal and is formed in a cylindrical shape. The protection pipe 72 is disposed so as to surround the drive elements 74x and 74y and the irradiation end Po.
 光学系73は、照射光を集光し、照射光を被写体に照射できるように構成される。光学系73は、2枚の平凸レンズによって構成される。なお、図2では、光学系73は、保護パイプ72内に取り付けられるが、図示しない鏡枠に取り付けられ、鏡枠によって保護パイプ72に取り付けられても構わない。また、図2では、光学系73は、2枚の平凸レンズによって構成されるが、これに限定されるものではなく他のレンズによって構成されても構わない。 The optical system 73 is configured to collect the irradiation light and irradiate the subject with the irradiation light. The optical system 73 includes two plano-convex lenses. In FIG. 2, the optical system 73 is mounted in the protection pipe 72, but it may be mounted on a lens frame (not shown) and may be mounted on the protection pipe 72 by a lens frame. In FIG. 2, the optical system 73 is configured by two plano-convex lenses, but is not limited thereto, and may be configured by other lenses.
 アクチュエータ74は、照射端Poを搖動させ、照射光の照射位置を所定の走査経路に沿って移動させることができるように構成される。所定の走査経路は、例えば、後述する渦巻き状の走査経路である。図3に示すように、アクチュエータ74は、フェルール74fと、駆動素子74x、74yとを有する。 The actuator 74 is configured to swing the irradiation end Po and move the irradiation position of the irradiation light along a predetermined scanning path. The predetermined scanning path is, for example, a spiral scanning path described later. As shown in FIG. 3, the actuator 74 includes a ferrule 74f and drive elements 74x and 74y.
 フェルール74fは、金属等を材質とし、角柱状に形成され、照射光ファイバPの外周に設けられる。なお、図3では、フェルール74fは、四角柱状に形成される。 The ferrule 74f is made of metal or the like, is formed in a prismatic shape, and is provided on the outer periphery of the irradiation optical fiber P. In FIG. 3, the ferrule 74f is formed in a quadrangular prism shape.
 駆動素子74x、74yは、フェルール74fの外周に設けられ、照射光ファイバPに駆動力を与えて照射端Poを搖動させる。駆動素子74x、74yは、圧電素子を有し、ドライバユニット21に接続され、ドライバユニット21から入力される駆動信号Dx、Dyに応じて振動し、照射端Poを搖動させる。照射端Poは、駆動素子74xによってX軸方向へ搖動し、駆動素子74yによってY軸方向へ搖動する。 The drive elements 74x and 74y are provided on the outer periphery of the ferrule 74f, and drive the irradiation optical fiber P to swing the irradiation end Po. The drive elements 74x and 74y have piezoelectric elements, are connected to the driver unit 21, vibrate according to the drive signals Dx and Dy input from the driver unit 21, and swing the irradiation end Po. The irradiation end Po is oscillated in the X-axis direction by the drive element 74x, and is oscillated in the Y-axis direction by the drive element 74y.
 ドライバユニット21が信号レベルを増加させながら駆動信号Dx、Dyを出力すると、照射光ファイバPは、アクチュエータ74により搖動され、図5のZ2からZ1に示すように、照射光ファイバPの照射位置は、漸次中心から遠ざかる渦巻き状の走査経路に沿って移動する。その後、ドライバユニット21が信号レベルを減少させながら駆動信号Dx、Dyを出力すると、図6のZ1からZ2に示すように、照射光ファイバPの照射位置は、漸次中心へ近づく渦巻き状の走査経路に沿って移動する。光源ユニット11によって順次発生する赤色、緑色及び青色の各レーザー光が、渦巻き状に被写体に照射され、被写体の戻り光が受光ファイバRに受光され、被写体は、渦巻き状に走査される。 When the driver unit 21 outputs the drive signals Dx and Dy while increasing the signal level, the irradiation optical fiber P is rocked by the actuator 74, and the irradiation position of the irradiation optical fiber P is indicated by Z2 to Z1 in FIG. Move along a spiral scan path that gradually moves away from the center. Thereafter, when the driver unit 21 outputs the drive signals Dx and Dy while decreasing the signal level, the irradiation position of the irradiation optical fiber P gradually approaches the center as shown by Z1 to Z2 in FIG. Move along. The red, green, and blue laser lights sequentially generated by the light source unit 11 are spirally irradiated onto the subject, the return light of the subject is received by the light receiving fiber R, and the subject is scanned in a spiral.
 ホルダ75は、樹脂材料によって構成され、柱状に形成され、第1の径を有する円柱体75aと、第1の径よりも小さい第2の径を有し、円柱体75aと軸方向に隣り合うように設けられた小円柱体75bと、を有する。小円柱体75bには、保護パイプ72の基端側が外嵌めされる。ホルダ75は、ホルダ75の中心軸線Ahに沿う方向にフェルール74fの外周に沿った形状の保持孔75cを有し、保持孔75cによってフェルール74fを保持する。ホルダ75は、駆動素子74x、74yに接続される信号線Dを挿通するための信号線挿通孔75dを有する。信号線Dでは、被覆内の素線Daが駆動素子74x、74yに接続される。 The holder 75 is made of a resin material, is formed in a columnar shape, has a cylindrical body 75a having a first diameter, and has a second diameter smaller than the first diameter, and is adjacent to the cylindrical body 75a in the axial direction. A small cylindrical body 75b provided as described above. The proximal end side of the protective pipe 72 is fitted on the small cylindrical body 75b. The holder 75 has a holding hole 75c having a shape along the outer periphery of the ferrule 74f in a direction along the central axis Ah of the holder 75, and holds the ferrule 74f by the holding hole 75c. The holder 75 has a signal line insertion hole 75d for inserting the signal line D connected to the drive elements 74x and 74y. In the signal line D, the strand Da in the sheath is connected to the drive elements 74x and 74y.
 すなわち、ホルダ75は、第1の幅を有する柱体と、第1の幅よりも小さい第2の幅を有し、柱体と軸方向に隣り合うように設けられた小柱体と、を有する。小柱体には、保護パイプ72の基端が外嵌めされる。 That is, the holder 75 includes a column having a first width, and a small column having a second width smaller than the first width and provided adjacent to the column in the axial direction. Have. The base end of the protective pipe 72 is fitted on the small column body.
 (ホルダ75の成形方法)
 ホルダ75の成形方法について説明をする。
(Method for forming holder 75)
A method for forming the holder 75 will be described.
 図7は、本発明の実施形態に係わる、走査型内視鏡システム1の走査型内視鏡3のホルダ75を成形するための金型Kの構成例を説明するための説明図である。 FIG. 7 is an explanatory diagram for explaining a configuration example of a mold K for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the embodiment of the present invention.
 ホルダ75は、金型Kに樹脂材料を流し込むインサート成形によってフェルール74fと一体化するように成形される。 The holder 75 is molded so as to be integrated with the ferrule 74f by insert molding in which a resin material is poured into the mold K.
 図7に示すように、金型Kは、ホルダ75の中心軸線Ahに沿う方向に分割される。より具体的には、円柱体75a及び小円柱体75bの外周面上にバリが生じないように、金型Kは、円柱体75aの先端外縁75e上において分割される。すなわち、金型Kは、柱体の端部外縁上において分割される。なお、実施形態では、金型Kは、円柱体75aの先端外縁75e上において分割されるが、円柱体75a又は小円柱体75bの外周面上において分割されても構わない。 As shown in FIG. 7, the mold K is divided in a direction along the central axis Ah of the holder 75. More specifically, the mold K is divided on the outer peripheral edge 75e of the cylindrical body 75a so that burrs are not generated on the outer peripheral surfaces of the cylindrical body 75a and the small cylindrical body 75b. That is, the mold K is divided on the outer edge of the end of the column. In the embodiment, the mold K is divided on the outer peripheral edge 75e of the cylindrical body 75a, but may be divided on the outer peripheral surface of the cylindrical body 75a or the small cylindrical body 75b.
 分割された金型K内の所定位置にフェルール74fが配置される。また、信号線挿通孔75dが成形される位置に、ピンNが配置される。フェルール74f及びピンNが配置された後、金型Kを閉じ、チャネルKcを介して金型Kに樹脂材料が充填される。樹脂材料が固化した後、金型Kを開け、一体化したフェルール74f及びホルダ75が取り出され、ホルダ75からピンNが除去される。続いて、フェルール74fの外周に駆動素子74x、74yが取り付けられ、また、フェルール74fの内方に照射光ファイバPが挿通される。照射光ファイバPの取付けの後、小円柱体75bに保護パイプ72を外嵌めする。 The ferrule 74f is arranged at a predetermined position in the divided mold K. Further, the pin N is disposed at a position where the signal line insertion hole 75d is formed. After the ferrule 74f and the pin N are arranged, the mold K is closed, and the mold K is filled with the resin material through the channel Kc. After the resin material is solidified, the mold K is opened, the integrated ferrule 74f and the holder 75 are taken out, and the pin N is removed from the holder 75. Subsequently, drive elements 74x and 74y are attached to the outer periphery of the ferrule 74f, and the irradiation optical fiber P is inserted into the inner side of the ferrule 74f. After the irradiation optical fiber P is attached, the protective pipe 72 is fitted on the small cylindrical body 75b.
 すなわち、走査型内視鏡3の製造方法は、金型K内の所定位置へのフェルール74fの配置を行い、所定位置への配置を行った後、金型Kに樹脂材料の充填を行い、充填を行った後、フェルール74fの外周への駆動素子74x、74yの取付けを行う。さらに、充填を行った後、フェルール74fへの照射光ファイバPの取付けを行い、照射光ファイバPの取付けの後、小柱体への保護パイプ72の外嵌めを行う。 That is, in the method for manufacturing the scanning endoscope 3, the ferrule 74f is arranged at a predetermined position in the mold K, and after the arrangement at the predetermined position, the mold K is filled with a resin material, After filling, the drive elements 74x and 74y are attached to the outer periphery of the ferrule 74f. Furthermore, after filling, the irradiation optical fiber P is attached to the ferrule 74f, and after the irradiation optical fiber P is attached, the protective pipe 72 is externally fitted to the small column body.
 金型Kは、ホルダ75の中心軸線Ahに沿う方向に分割可能であり、フェルール74fの配置は、金型Kをホルダ75の中心軸線Ahに沿う方向に分割して行われる。 The mold K can be divided in the direction along the central axis Ah of the holder 75, and the arrangement of the ferrule 74f is performed by dividing the mold K in the direction along the central axis Ah of the holder 75.
 これにより、金型K内の所定位置にフェルール74fが配置され、フェルール74fの外周の所定位置にインサート成形によって一体化されたホルダ75が成形される。 Thereby, the ferrule 74f is arranged at a predetermined position in the mold K, and the holder 75 integrated by insert molding is formed at a predetermined position on the outer periphery of the ferrule 74f.
 上述の実施形態によれば、走査型内視鏡3では、フェルール74fと、フェルール74fを保持するホルダ75との互いの同軸度をより高めることができる。 According to the above-described embodiment, in the scanning endoscope 3, the coaxiality between the ferrule 74f and the holder 75 holding the ferrule 74f can be further increased.
 (実施形態の変形例1)
 実施形態では、小円柱体75bに潰し代175cを有しないが、小円柱体175bに潰し代175cを有しても構わない。
(Modification 1 of embodiment)
In the embodiment, the small cylindrical body 75b does not have the crushing margin 175c, but the small cylindrical body 175b may have the crushing margin 175c.
 図8は、本発明の実施形態の変形例1に係わる、走査型内視鏡システム1の走査型内視鏡3の光照射部71の構成例を示す断面図である。図9は、本発明の実施形態の変形例1に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 8 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 1 of the embodiment of the present invention. FIG. 9 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to the first modification of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 図8に示すように、ホルダ75は、円柱体75aと軸方向に隣り合うように設けられた第1の径よりも小さい第2の径を有する小円柱体175bを有する。小円柱体175bの先端側には、潰し代175cが設けられる。 As shown in FIG. 8, the holder 75 has a small cylindrical body 175b having a second diameter smaller than the first diameter provided adjacent to the cylindrical body 75a in the axial direction. A crushing margin 175c is provided on the distal end side of the small cylindrical body 175b.
 保護パイプ72は、基端側が小円柱体175bの径よりも大きく、かつ先端側が小円柱体175bの径よりも小さく形成されたテーパ状内周面172aを有する。 The protective pipe 72 has a tapered inner peripheral surface 172a having a base end side larger than the diameter of the small cylindrical body 175b and a distal end side smaller than the diameter of the small cylindrical body 175b.
 すなわち、保護パイプ72は、基端側が所定の内幅よりも大きく形成され、かつ先端側が所定の内幅よりも小さく形成された、テーパ状内周面172aを有する。所定の内幅は、小円柱体175bの幅と同じ幅である。 That is, the protective pipe 72 has a tapered inner peripheral surface 172a having a proximal end side formed larger than a predetermined inner width and a distal end side formed smaller than a predetermined inner width. The predetermined inner width is the same as the width of the small cylindrical body 175b.
 図9に示すように、保護パイプ72の基端側がホルダ75に外挿されると、潰し代175cは、テーパ状内周面172aに沿って潰される。 As shown in FIG. 9, when the proximal end side of the protective pipe 72 is extrapolated to the holder 75, the crushing margin 175c is crushed along the tapered inner peripheral surface 172a.
 これにより、走査型内視鏡3は、より簡便に、保護パイプ72の基端側をホルダ75に外嵌めすることができる。 Thereby, the scanning endoscope 3 can more easily fit the proximal end side of the protective pipe 72 to the holder 75.
 (実施形態の変形例2)
 実施形態及び実施形態の変形例1では、信号線Dは、ホルダ75の信号線挿通孔75dに挿通して駆動素子74x、74yに接続されるが、ホルダ75の周壁によって押され、駆動素子74x、74yに接続されても構わない。
(Modification 2 of embodiment)
In the embodiment and the modified example 1 of the embodiment, the signal line D is inserted into the signal line insertion hole 75d of the holder 75 and connected to the drive elements 74x and 74y. , 74y may be connected.
 図10は、本発明の実施形態の変形例2に係わる、走査型内視鏡システム1の走査型内視鏡3の光照射部71の構成例を示す断面図である。図11は、本発明の実施形態の変形例2に係わる、走査型内視鏡システム1の走査型内視鏡3の光照射部71の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 10 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to the second modification of the embodiment of the present invention. FIG. 11 is a cross-sectional view illustrating a configuration example of the light irradiation unit 71 of the scanning endoscope 3 of the scanning endoscope system 1 according to the second modification of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示すように、ホルダ75は、円柱体75aと軸方向に隣り合うように設けられた第1の径よりも小さい第2の径を有する小円柱体275bを有する。 As shown in FIG. 10, the holder 75 has a small cylindrical body 275b having a second diameter smaller than the first diameter provided adjacent to the cylindrical body 75a in the axial direction.
 保護パイプ72は、基端側が小円柱体275bの径よりも大きくなるように、かつ先端側が小円柱体275bの径よりも小さくなるように形成されたテーパ状内周面272aを有する。 The protective pipe 72 has a tapered inner peripheral surface 272a formed so that the proximal end side is larger than the diameter of the small cylindrical body 275b and the distal end side is smaller than the diameter of the small cylindrical body 275b.
 図11に示すように、保護パイプ72の基端側がホルダ75に外嵌めされると、小円柱体275bの周壁がテーパ状内周面272aによって内方に押され、小円柱体275bの周壁が信号線Dを押し、信号線Dは、駆動素子74x、74yに接続される。 As shown in FIG. 11, when the proximal end side of the protective pipe 72 is fitted on the holder 75, the peripheral wall of the small cylindrical body 275b is pushed inward by the tapered inner peripheral surface 272a, and the peripheral wall of the small cylindrical body 275b is The signal line D is pushed, and the signal line D is connected to the drive elements 74x and 74y.
 すなわち、小柱体は、周壁の外側がテーパ状内周面272aに押し動かされると、周壁の内側が信号線Dを押し動かし、信号線Dをフェルール74fに当てる。 That is, when the outside of the peripheral wall is pushed and moved by the tapered inner peripheral surface 272a, the inside of the peripheral wall pushes and moves the signal line D and hits the signal line D against the ferrule 74f.
 これにより、走査型内視鏡3は、より簡便に、信号線Dを駆動素子74x、74yに接続可能である。 Thereby, the scanning endoscope 3 can more easily connect the signal line D to the drive elements 74x and 74y.
 (実施形態の変形例3)
 実施形態では、ホルダ75は、フェルール74fと保護パイプ72を導通させる導電部375を有しないが、導電部375を有しても構わない。
(Modification 3 of embodiment)
In the embodiment, the holder 75 does not include the conductive portion 375 that conducts the ferrule 74f and the protective pipe 72, but may include the conductive portion 375.
 図12及び図13は、本発明の実施形態の変形例3に係わる、走査型内視鏡システム1の走査型内視鏡3のホルダ75の構成例を示す斜視図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 12 and 13 are perspective views showing a configuration example of the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the third modification of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 図12及び図13に示すように、ホルダ75は、導電部375を有する。 As shown in FIGS. 12 and 13, the holder 75 has a conductive portion 375.
 導電部375は、ホルダ75上に配置された成形回路部品によって構成され、フェルール74fと保護パイプ72を電気的に接続する。フェルール74fは、内視鏡プロセッサ2を介し、GND電位に接続される。 The conductive portion 375 is formed of a molded circuit component disposed on the holder 75, and electrically connects the ferrule 74f and the protective pipe 72. The ferrule 74f is connected to the GND potential via the endoscope processor 2.
 これにより、走査型内視鏡3は、より簡便に、保護パイプ72をGND電位に接続可能である。 Thereby, the scanning endoscope 3 can more easily connect the protective pipe 72 to the GND potential.
 (実施形態の変形例4)
 実施形態では、フェルール74fは、四角柱状に形成されるが、外周面に凹凸を有しても構わない。
(Modification 4 of embodiment)
In the embodiment, the ferrule 74f is formed in a quadrangular prism shape, but the outer peripheral surface may have irregularities.
 図14は、本発明の実施形態の変形例4に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 14 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification 4 of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 フェルール74fは、外周面に、ホルダ75の中心軸線Ahに沿う方向に凹凸状に形成された第1係止部474fを有する。 The ferrule 74f has a first locking portion 474f formed in an uneven shape in the direction along the central axis Ah of the holder 75 on the outer peripheral surface.
 ホルダ75は、保持孔75cに、係止部474fに沿った形状に形成された第2係止部474gを有し、第2係止部474gによって第1係止部474fを係止する。 The holder 75 has a second locking portion 474g formed in a shape along the locking portion 474f in the holding hole 75c, and locks the first locking portion 474f by the second locking portion 474g.
 これにより、走査型内視鏡3では、より強固に、ホルダ75によってフェルール74fが係止される。 Thereby, in the scanning endoscope 3, the ferrule 74f is more firmly locked by the holder 75.
 (実施形態の変形例5)
 実施形態では、信号線挿通孔75dは、基端部575aから先端部575bまで同一幅であるが、基端部575aから先端部575bに向かって幅が小さくなるように形成しても構わない。
(Modification 5 of embodiment)
In the embodiment, the signal line insertion hole 75d has the same width from the proximal end portion 575a to the distal end portion 575b, but may be formed so that the width decreases from the proximal end portion 575a toward the distal end portion 575b.
 図15は、本発明の実施形態の変形例5に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 15 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 5 of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 信号線挿通孔575dは、基端部575aから先端部575b方向に幅が小さくなるように構成される。より具体的には、信号線挿通孔75dでは、基端部575a側が、信号線Dの被覆よりも径が大きくなるように形成され、一方、先端部575b側が、信号線Dの被覆よりも径が小さくなるように形成される。 The signal line insertion hole 575d is configured to have a width that decreases from the base end portion 575a toward the front end portion 575b. More specifically, in the signal line insertion hole 75d, the base end portion 575a side is formed to have a larger diameter than the covering of the signal line D, while the distal end portion 575b side has a diameter larger than the covering of the signal line D. Is formed to be small.
 信号線挿通孔575dの基端部575a側から挿通されると、信号線Dでは、信号線挿通孔575dの内周面に信号線Dの被覆が当たり、信号線挿通孔575dの先端部575b側から所定の突出長だけ素線Daが突出する。 When the signal line insertion hole 575d is inserted from the base end portion 575a side, the signal line D is covered with the inner periphery of the signal line insertion hole 575d and the signal line insertion hole 575d side of the signal line insertion hole 575d side. The strand Da protrudes by a predetermined protrusion length.
 これにより、走査型内視鏡3では、信号線挿通孔575dによって信号線Dの素線Daの突出長を調整可能である。 Thereby, in the scanning endoscope 3, the protruding length of the strand Da of the signal line D can be adjusted by the signal line insertion hole 575d.
 (実施形態の変形例6)
 実施形態では、信号線挿通孔75dは、ホルダ75の中心軸線Ahに沿う方向に形成されるが、斜めに形成されても構わない。
(Modification 6 of embodiment)
In the embodiment, the signal line insertion hole 75d is formed in a direction along the central axis Ah of the holder 75, but may be formed obliquely.
 図16は、本発明の実施形態の変形例6に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 16 is a cross-sectional view showing a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification 6 of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 本変形例では、先端側開口675bよりも基端側開口675aが外周側に配置され、信号線挿通孔675dは、斜めに配置される。 In this modification, the base end side opening 675a is disposed on the outer peripheral side with respect to the front end side opening 675b, and the signal line insertion hole 675d is disposed obliquely.
 これにより、走査型内視鏡3では、より簡便に、信号線Dを駆動素子74x、74yに接続可能である。 Thereby, in the scanning endoscope 3, the signal line D can be more easily connected to the drive elements 74x and 74y.
 (実施形態の変形例7)
 図17は、本発明の実施形態の変形例7に係わる、走査型内視鏡システム1の走査型内視鏡3の構成例を示す断面図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。
(Modification 7 of embodiment)
FIG. 17 is a cross-sectional view illustrating a configuration example of the scanning endoscope 3 of the scanning endoscope system 1 according to Modification Example 7 of the embodiment of the present invention. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 実施形態の変形例6では、信号線挿通孔775dは、基端から先端に向かって内幅が狭くなるように構成され、また、実施形態の変形例7では、斜めに配置されるが、図17に示すように、変形例6と7を組み合わせ、基端から先端に向かって内幅が狭くなるように、かつ斜めに配置しても構わない。 In the sixth modification of the embodiment, the signal line insertion hole 775d is configured so that the inner width becomes narrower from the base end toward the distal end, and in the seventh modification of the embodiment, the signal line insertion hole 775d is arranged obliquely. As shown in FIG. 17, the modified examples 6 and 7 may be combined and arranged so that the inner width becomes narrower from the proximal end toward the distal end and obliquely.
 これにより、走査型内視鏡3では、より簡便に、信号線Dを駆動素子74x、74yに接続可能である。 Thereby, in the scanning endoscope 3, the signal line D can be more easily connected to the drive elements 74x and 74y.
 (実施形態の変形例8)
 実施形態では、金型Kは、ホルダ75の中心軸線Ahに沿う方向に分割されるが、ホルダ75の中心軸線Ahと直交する方向に分割されても構わない。
(Modification 8 of embodiment)
In the embodiment, the mold K is divided in a direction along the central axis Ah of the holder 75, but may be divided in a direction orthogonal to the central axis Ah of the holder 75.
 図18は、本発明の実施形態の変形例8に係わる、走査型内視鏡システム1の走査型内視鏡3のホルダ75を成形するための金型Kaの構成例を説明するための説明図である。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 18 is a diagram for explaining a configuration example of a mold Ka for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the eighth modification of the embodiment of the present invention. FIG. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 金型Kaは、ホルダ75の中心軸線Ahと直交する方向に分割可能である。 The mold Ka can be divided in a direction orthogonal to the central axis Ah of the holder 75.
 フェルール74fの配置は、金型Kaをホルダ75の中心軸線Ahに沿う方向に分割して行われる。 The arrangement of the ferrule 74f is performed by dividing the mold Ka in a direction along the central axis Ah of the holder 75.
 これにより、走査型内視鏡3では、フェルール74fが金型Kaに平置きされ、より簡便に、フェルール74fが金型Kaに配置される。 Thereby, in the scanning endoscope 3, the ferrule 74f is laid flat on the mold Ka, and the ferrule 74f is more easily arranged on the mold Ka.
 (実施形態の変形例9)
 実施形態の変形例8の金型Kaは、複数並べて使用されても構わない。
(Modification 9 of embodiment)
A plurality of molds Ka of Modification 8 of the embodiment may be used side by side.
 図19は、本発明の実施形態の変形例9に係わる、走査型内視鏡システム1の走査型内視鏡3のホルダ75を成形するための金型Kaの構成例を説明するための説明図である。なお、図19では、説明のため、分割された金型Kaの一方のみを表す。本変形例では、実施形態及び他の変形例と同じ構成については、図面に同じ符号を付し、説明を省略する。 FIG. 19 is a diagram illustrating a configuration example of a mold Ka for molding the holder 75 of the scanning endoscope 3 of the scanning endoscope system 1 according to the ninth modification of the embodiment of the present invention. FIG. In FIG. 19, for explanation, only one of the divided molds Ka is shown. In the present modification, the same components as those in the embodiment and other modifications are denoted by the same reference numerals, and the description thereof is omitted.
 本変形例では、複数の金型Kaが、互いのチャネルKcが接続されるように、複数並べて配置される。 In this modification, a plurality of molds Ka are arranged side by side so that the channels Kc are connected to each other.
 複数の金型Kaに配置される複数のフェルール74fは、治具Jによって保持され、金型Kaに配置される。 The plurality of ferrules 74f arranged on the plurality of molds Ka are held by the jig J and arranged on the mold Ka.
 これにより、走査型内視鏡3では、複数の金型Kaに対して1つのチャネルKcから樹脂材料を充填でき、生産性が向上される。 Thereby, in the scanning endoscope 3, the resin material can be filled into the plurality of molds Ka from one channel Kc, and the productivity is improved.
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.
 本発明によれば、フェルールと、フェルールを保持するホルダとの互いの同軸度をより高めることができる走査型内視鏡および走査型内視鏡の製造方法を提供することができる。 According to the present invention, it is possible to provide a scanning endoscope and a manufacturing method of the scanning endoscope that can further increase the coaxiality between the ferrule and the holder that holds the ferrule.
 本出願は、2016年11月1日に日本国に出願された特願2016-214562号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2016-214562 filed in Japan on November 1, 2016, and the above disclosure is included in the present specification and claims. Shall be quoted.

Claims (18)

  1.  入射端から入射した光に応じて照射端から照射光を照射する照射光ファイバと、
     角柱状に形成され、前記照射光ファイバの外周に設けられたフェルールと、
     前記フェルールの外周に設けられ、前記照射光ファイバに駆動力を与えて前記照射端を搖動させる駆動素子と、
     樹脂材料によって構成され、柱状に形成され、中心軸線に沿う方向に前記フェルールの外周に沿った形状の保持孔を有し、前記保持孔によって前記フェルールを保持するホルダと、
     を有する、走査型内視鏡。
    An irradiation optical fiber that irradiates irradiation light from the irradiation end according to light incident from the incident end;
    A ferrule formed in a prismatic shape and provided on the outer periphery of the irradiation optical fiber;
    A driving element that is provided on an outer periphery of the ferrule, and that drives the irradiation optical fiber to swing the irradiation end;
    A holder made of a resin material, formed in a columnar shape, having a holding hole having a shape along the outer periphery of the ferrule in a direction along the central axis, and holding the ferrule by the holding hole;
    A scanning endoscope.
  2.  前記照射端および前記駆動素子を取り囲むように配置された保護パイプを有し、
     前記ホルダは、第1の幅を有する柱体と、前記第1の幅よりも小さい第2の幅を有し、前記柱体と軸方向に隣り合うように設けられた小柱体と、を有し、
     前記小柱体には、前記保護パイプの基端側が外嵌めされる、
     請求項1に記載の走査型内視鏡。
    A protective pipe arranged to surround the irradiation end and the drive element;
    The holder includes: a column having a first width; and a small column having a second width smaller than the first width and provided adjacent to the column in the axial direction. Have
    The base end side of the protective pipe is fitted on the small column body,
    The scanning endoscope according to claim 1.
  3.  前記保護パイプは、基端部に、基端側が所定の内幅よりも大きくなるように、かつ先端側が前記所定の内幅よりも小さくなるように形成されたテーパ状内周面を有する、請求項2に記載の走査型内視鏡。 The protective pipe has a tapered inner peripheral surface formed at a proximal end portion so that a proximal end side is larger than a predetermined inner width and a distal end side is smaller than the predetermined inner width. Item 3. The scanning endoscope according to Item 2.
  4.  前記小柱体は、前記中心軸線に沿う方向に溝状に形成された潰し代を先端側に有する、請求項3に記載の走査型内視鏡。 The scanning endoscope according to claim 3, wherein the small columnar body has a crushing margin formed in a groove shape in a direction along the central axis at a distal end side.
  5.  前記ホルダは、前記フェルールと前記保護パイプを導通させるための導電部を有する、請求項2に記載の走査型内視鏡。 The scanning endoscope according to claim 2, wherein the holder has a conductive portion for conducting the ferrule and the protective pipe.
  6.  前記フェルールは、外周面に、前記中心軸線に沿う方向に凹凸状に形成された第1係止部を有し、
     前記ホルダは、前記保持孔に、前記係止部に沿った形状に形成された第2係止部を有し、前記第2係止部によって前記第1係止部を係止する、
     請求項2に記載の、走査型内視鏡。
    The ferrule has, on the outer peripheral surface, a first locking portion formed in an uneven shape in the direction along the central axis.
    The holder has a second locking portion formed in the holding hole in a shape along the locking portion, and locks the first locking portion by the second locking portion.
    The scanning endoscope according to claim 2.
  7.  前記ホルダは、前記駆動素子に接続される信号線を挿通するための信号線挿通孔を有する、請求項3に記載の走査型内視鏡。 4. The scanning endoscope according to claim 3, wherein the holder has a signal line insertion hole for inserting a signal line connected to the drive element.
  8.  前記小柱体は、周壁の外側が前記テーパ状内周面に押し動かされると、前記周壁の内側が前記信号線を押し動かし、前記信号線を前記フェルールに当てる、請求項7に記載の走査型内視鏡。 8. The scanning according to claim 7, wherein when the outer side of the peripheral wall is pushed and moved by the tapered inner peripheral surface, the inner side of the peripheral wall pushes and moves the signal line to hit the signal line against the ferrule. Type endoscope.
  9.  前記信号線挿通孔は、基端から先端方向へ幅が小さくなるように形成される、請求項7に記載の走査型内視鏡。 The scanning endoscope according to claim 7, wherein the signal line insertion hole is formed so that a width decreases from a proximal end toward a distal end.
  10.  前記信号線挿通孔は、先端側開口よりも基端側開口が外周側に配置される、請求項7に記載の走査型内視鏡。 The scanning endoscope according to claim 7, wherein the signal line insertion hole has a proximal end side opening disposed on an outer peripheral side rather than a distal end side opening.
  11.  前記ホルダは、金型に前記樹脂材料を流し込むインサート成形によって前記フェルールと一体化された、請求項2に記載の走査型内視鏡。 3. The scanning endoscope according to claim 2, wherein the holder is integrated with the ferrule by insert molding in which the resin material is poured into a mold.
  12.  前記金型は、前記中心軸線に沿う方向に分割される、請求項11に記載の走査型内視鏡。 12. The scanning endoscope according to claim 11, wherein the mold is divided in a direction along the central axis.
  13.  前記金型は、前記中心軸線と直交する方向に分割される、請求項11に記載の走査型内視鏡。 12. The scanning endoscope according to claim 11, wherein the mold is divided in a direction orthogonal to the central axis.
  14.  前記金型は、前記柱体の端部外縁上において分割される、請求項11に記載の走査型内視鏡。 The scanning endoscope according to claim 11, wherein the mold is divided on an outer edge of the end of the pillar.
  15.  角柱状に形成されたフェルールと、
     照射光ファイバに駆動力を与えて照射端を搖動させる駆動素子と、
     ホルダを成形する金型と、
     を用意し、
     前記金型内の所定位置への前記フェルールの配置を行い、
     前記所定位置への配置を行った後、前記金型に樹脂材料の充填を行い、
     前記充填を行った後、前記フェルールの外周への前記駆動素子の取付けを行う、
     走査型内視鏡の製造方法。
    A ferrule formed in a prismatic shape,
    A driving element that applies a driving force to the irradiation optical fiber to swing the irradiation end;
    A mold for molding the holder;
    Prepare
    Place the ferrule at a predetermined position in the mold,
    After placing the predetermined position, filling the mold with a resin material,
    After performing the filling, the drive element is attached to the outer periphery of the ferrule.
    A manufacturing method of a scanning endoscope.
  16.  前記金型は、前記ホルダの中心軸線に沿う方向に分割可能であり、
     前記フェルールの配置は、前記金型を前記中心軸線に沿う方向に分割して行われる、
     請求項15に記載の走査型内視鏡の製造方法。
    The mold can be divided in a direction along the central axis of the holder,
    The arrangement of the ferrule is performed by dividing the mold in a direction along the central axis.
    The method for manufacturing a scanning endoscope according to claim 15.
  17.  前記金型は、前記ホルダの中心軸線と直交する方向に分割可能であり、
     前記フェルールの配置は、前記金型を前記中心軸線に沿う方向に分割して行われる、
     請求項15に記載の走査型内視鏡の製造方法。
    The mold can be divided in a direction perpendicular to the central axis of the holder,
    The arrangement of the ferrule is performed by dividing the mold in a direction along the central axis.
    The method for manufacturing a scanning endoscope according to claim 15.
  18.  前記金型は、第1の幅を有する柱体と、前記第1の幅よりも小さい第2の幅を有し、前記柱体と軸方向に隣り合うように設けられた小柱体と、を有する前記ホルダを成形可能、かつ前記柱体の端部外縁上において分割可能であり、
     入射端から入射した光に応じて前記照射端から照射光を照射する前記照射光ファイバと、
     筒状に形成された保護パイプと、
     をさらに用意し、
     前記充填を行った後、前記フェルールへの前記照射光ファイバの取付けを行い、
     前記照射光ファイバの取付けの後、前記小柱体への前記保護パイプの外嵌めを行う、
     請求項15に記載の走査型内視鏡の製造方法。
    The mold has a column having a first width, a small column having a second width smaller than the first width, and provided adjacent to the column in the axial direction; The holder can be molded and can be divided on the outer edge of the end of the column,
    The irradiation optical fiber that irradiates irradiation light from the irradiation end according to light incident from the incident end;
    A protective pipe formed in a cylindrical shape;
    Prepare more
    After performing the filling, attaching the irradiation optical fiber to the ferrule,
    After mounting the irradiation optical fiber, the protective pipe is externally fitted to the small column body,
    The method for manufacturing a scanning endoscope according to claim 15.
PCT/JP2017/034118 2016-11-01 2017-09-21 Scanning endoscope and scanning endoscope production method WO2018083906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214562A JP2018068834A (en) 2016-11-01 2016-11-01 Scanning type endoscope and method for manufacturing scanning type endoscope
JP2016-214562 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018083906A1 true WO2018083906A1 (en) 2018-05-11

Family

ID=62076021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034118 WO2018083906A1 (en) 2016-11-01 2017-09-21 Scanning endoscope and scanning endoscope production method

Country Status (2)

Country Link
JP (1) JP2018068834A (en)
WO (1) WO2018083906A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222653A (en) * 2019-08-22 2022-03-22 富士胶片株式会社 Method for forming vertical stand and endoscope
WO2021255929A1 (en) * 2020-06-19 2021-12-23 オリンパス株式会社 Optical unit, fiber scanning device, and method for manufacturing optical unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284261A (en) * 2009-06-10 2010-12-24 Hoya Corp Scanning type optical fiber
CN102401995A (en) * 2011-11-18 2012-04-04 无锡微奥科技有限公司 Micro optical probe of endoscope
JP2015080488A (en) * 2013-10-21 2015-04-27 オリンパス株式会社 Light-projecting probe for scanning endoscope, and scanning endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284261A (en) * 2009-06-10 2010-12-24 Hoya Corp Scanning type optical fiber
CN102401995A (en) * 2011-11-18 2012-04-04 无锡微奥科技有限公司 Micro optical probe of endoscope
JP2015080488A (en) * 2013-10-21 2015-04-27 オリンパス株式会社 Light-projecting probe for scanning endoscope, and scanning endoscope

Also Published As

Publication number Publication date
JP2018068834A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US9998641B2 (en) Image pickup unit provided in endoscope
JP5363688B1 (en) Light irradiation apparatus, scanning endoscope apparatus, method for manufacturing light irradiation apparatus, and method for manufacturing scanning endoscope
WO2018083906A1 (en) Scanning endoscope and scanning endoscope production method
US20170176742A1 (en) Optical fiber scanner, illuminating device, and observation apparatus
JP2015058118A (en) Endoscope
JP6345946B2 (en) Optical fiber scanner, illumination device and observation device
WO2015093286A1 (en) Imaging device and endoscope device
JP5617057B2 (en) Endoscope device
JP6420359B2 (en) Endoscope device
JP2008116861A (en) Optical module
WO2016079769A1 (en) Actuator for optical scanning and optical scanning device
JP5993537B1 (en) Scanning endoscope
JP5976454B2 (en) Optical scanning endoscope device
JP2017113079A (en) Objective optical unit
WO2016185787A1 (en) Optical-scanning-type observation system
WO2016075997A1 (en) Scanning endoscope
WO2015174444A1 (en) Image pickup device for endoscope, and method of assembling image pickup device for endoscope
WO2017158924A1 (en) Scanning type endoscope
JP6627144B2 (en) Dental endoscope holding device
JP2015230389A (en) Ferrule
US9877640B2 (en) Scanning endoscope having propagation portion with light absorbing portion or light reflecting portion on distal end face thereof
KR20160136549A (en) Apparatus for scanning oral cavity using microlens array
JPWO2015056568A1 (en) Endoscope
JPWO2017169555A1 (en) Illumination position adjustment method for scanning endoscope
WO2016084116A1 (en) Optical scanning actuator and optical scanning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868050

Country of ref document: EP

Kind code of ref document: A1