WO2018082681A1 - 一种用于数据传输的方法和装置 - Google Patents

一种用于数据传输的方法和装置 Download PDF

Info

Publication number
WO2018082681A1
WO2018082681A1 PCT/CN2017/109424 CN2017109424W WO2018082681A1 WO 2018082681 A1 WO2018082681 A1 WO 2018082681A1 CN 2017109424 W CN2017109424 W CN 2017109424W WO 2018082681 A1 WO2018082681 A1 WO 2018082681A1
Authority
WO
WIPO (PCT)
Prior art keywords
crs
terminal device
network device
index
indication information
Prior art date
Application number
PCT/CN2017/109424
Other languages
English (en)
French (fr)
Inventor
王婷
李元杰
钱锋
楼群芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22163152.6A priority Critical patent/EP4084387A1/en
Priority to KR1020197016073A priority patent/KR102210603B1/ko
Priority to EP17866579.0A priority patent/EP3528577B1/en
Priority to BR112019008942A priority patent/BR112019008942A2/pt
Priority to JP2019523824A priority patent/JP2019536353A/ja
Publication of WO2018082681A1 publication Critical patent/WO2018082681A1/zh
Priority to US16/403,150 priority patent/US10944529B2/en
Priority to US17/194,785 priority patent/US11784773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for data transmission.
  • Coordinated Multi-Point (CoMP) technology utilizes geographically separated multiple networks.
  • the cooperation between the elements communicates with the user equipment (UE), thereby reducing the interference of the cell edge UE and improving the cell edge throughput and improving the reliability.
  • UE user equipment
  • a plurality of network devices respectively transmit a Cell Reference Signal (CRS) to the terminal device for channel estimation when transmitting data to the terminal device.
  • CRS Cell Reference Signal
  • the serving network device for example, the network device A
  • the serving network device is carried in the DCI to indicate the serving cell (ie, the serving network device) Corresponding cell) CRS configuration information, so that the terminal device receives data based on the CRS configuration information.
  • each network device sends a CRS
  • the terminal device only knows the time-frequency resources occupied by the CRS of the serving cell, and the coordinated cell (for example, the network device B corresponds to
  • the time-frequency resource occupied by the CRS of the cell for example, referred to as time-frequency resource A
  • the time-frequency resource occupied by the CRS of the serving cell for example, recorded as time-frequency resource B
  • the network device sends the CRS on the time-frequency resource B, and still receives data on the time-frequency resource B, thereby causing data decoding errors and degrading data reception performance.
  • the present application provides a method and apparatus for data transmission to enable a terminal device to correctly receive data by indicating resource configuration conditions of at least two groups of CRSs to a terminal device, thereby improving data reception performance.
  • a method for data transmission comprising:
  • the terminal device receives the indication information sent by the network device, where the indication information is used to determine resources occupied by the N groups of cell reference signals CRS, where N is a natural number greater than or equal to 2;
  • the network device may be any one of the at least one network device, or may not be any one of the at least one network device, which is not specifically limited in this application.
  • the indication information may be used to directly or indirectly indicate the number of CRS antenna ports and the CRS frequency offset.
  • the number of CRS antenna ports corresponding to any two groups of the resources occupied by the N groups of CRSs is different, or may be arbitrary.
  • the CRS frequency offsets of the two groups are different, or the number and frequency offset of the CRS antenna ports corresponding to any two groups are different.
  • the method for data transmission in the embodiment of the present application by sending the indication information to the terminal device, is used by the terminal device to determine the resources occupied by the N groups of CRSs, so that the terminal device can consider the CRS resources of the network devices when receiving the data. Therefore, the data is correctly received and the receiving performance is improved.
  • the indication information corresponds to at least one of the following: a codeword corresponding to the data, a layer to which the codeword is mapped, or an antenna port to which the codeword is mapped (ie, a data antenna port).
  • the terminal device receives the indication information sent by the network device, including:
  • the terminal device receives downlink control information DCI sent by the network device, where the DCI includes the indication information.
  • the indication information is carried in the DCI by modifying or expanding the fields of the DCI in the existing protocol, so that the terminal device can receive the physical downlink control channel (PDCCH) according to the physical downlink control channel (PDCCH).
  • the DCI can determine the resources occupied by the N groups of CRSs, so that the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) can accurately receive data, and the data receiving performance is improved.
  • PDSCH Physical Downlink Shared Channel
  • the indication information includes first indication information for indicating an antenna port number and a frequency offset of the N sets of CRSs, and
  • the terminal device includes:
  • the terminal device receives the first indication information sent by the network device.
  • the first indication information for directly indicating the number of antenna ports and the frequency offset of the CRS is sent to the terminal device, so that the terminal device can directly determine resources occupied by the N sets of CRSs according to the first indication information, so as to correctly receive data. Improve reception performance.
  • the first indication information is an index of N first physical downlink control channel resource element mappings and quasi-co-location indication PQIs corresponding to the N groups of CRSs, and is included in each first PQI. a set of CRS antenna port number and frequency offset information, and,
  • Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the first mapping relationship and the indexes of the N first PQIs, where the first mapping relationship is used to indicate an index of the multiple first PQIs The mapping relationship between multiple high-level parameter groups.
  • the index of the first PQI is used to indicate a physical downlink shared channel resource element mapping and a pseudo-co-location (PDSCH-RE-mapping QCL-Config) parameter set used by the terminal device for current data transmission.
  • PDSCH-RE-mapping QCL-Config pseudo-co-location
  • the PDSCH-RE-mapping QCL-Config parameter set is carried in a Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the first PQI is a high-level parameter.
  • the first indication information is an index of S second PQIs corresponding to the N groups of CRSs, and each second PQI includes an antenna port number and a frequency offset of at least one group of CRSs.
  • Information where S ⁇ [1,N), and S is a natural number, and,
  • the terminal device receives an index of the S second PQIs sent by the network device, and the terminal device determines, according to the indication information, resources occupied by the N groups of CRSs, including:
  • the terminal device Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the second mapping relationship and the index of the S second PQIs, where the second mapping relationship is used to indicate multiple second PQIs and multiple The mapping relationship between sets of high-level parameter groups.
  • the first indication information is an index of a second PQI
  • the second PQI includes information about an antenna port number and a frequency offset of the N sets of CRSs.
  • the index of the second PQI is used to indicate a PDSCH-RE-mapping QCL-Config parameter set used by the terminal device for current data transmission.
  • the PDSCH-RE-mapping QCL-Config parameter set is carried in RRC signaling.
  • the second PQI is a high level parameter.
  • the first indication information includes: an index of N CRS antenna port numbers corresponding to the N groups of CRSs, and an index of N CRS frequency offsets corresponding to the N groups of CRSs,
  • the number of CRS antenna ports indicates the number of antenna ports transmitting the CRS
  • the CRS frequency offset indicates the location of the resource unit RE of the CRS mapping on the frequency domain resource
  • the third mapping relationship is used to indicate a mapping relationship between multiple indexes and a plurality of CRS antenna port numbers
  • the fourth mapping relationship is used to indicate a mapping relationship between multiple indexes and multiple CRS frequency offsets.
  • the first indication information is an index of N CRS antenna port numbers and frequency offsets corresponding to the N groups of CRSs
  • the CRS antenna port number and frequency offset indication an antenna transmitting a CRS The number of ports, and the location of the CRS mapped RE on the frequency domain resources, and,
  • the terminal device Determining, by the terminal device, the resources occupied by the N sets of CRSs according to the fifth mapping relationship, and the index of the number of the N CRS antenna ports and the frequency offset, where the fifth mapping relationship is used to indicate multiple indexes and A mapping relationship between the number of multiple CRS antenna ports and frequency offset information.
  • the first indication information is an index of configuration information, where the configuration information indicates an index of an antenna port number and a frequency offset of each group of CRSs in the N groups of CRSs, and the number of the CRS antenna ports And frequency offset indication: the number of antenna ports transmitting the CRS, and the location of the CRS mapped RE on the frequency domain resource, and
  • the terminal device Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the sixth mapping relationship and the index of the configuration information, where the sixth mapping relationship is used to indicate an index of multiple configuration information and multiple groups of CRSs
  • the mapping relationship between the number of antenna ports and the index of the frequency offset, or the sixth mapping relationship is used to indicate a mapping relationship between an index of the plurality of configuration information and an index of the plurality of groups of PQIs.
  • the indication information includes: an index of a cell identifier of the at least one cell and a CRS antenna port number information of the at least one cell, where the cell identifier is For determining a CRS frequency offset, where the CRS frequency offset indicates a location of a CRS mapped RE on a frequency domain resource, and,
  • the terminal device includes:
  • the terminal device Determining, by the terminal device, the resources occupied by the N sets of CRSs according to the seventh mapping relationship, the index of the at least one cell identifier, and the CRS antenna port number information of the at least one target cell, where the seventh mapping
  • the relationship is used to indicate a mapping relationship between an index of a plurality of cell identifiers and a cell identifier of a plurality of cells.
  • the index of the cell identifier may be the cell identifier itself, or may be an index value for uniquely indicating the cell identifier, which is not specifically limited in this application.
  • the CRS frequency offset can be indirectly indicated, and according to the CRS antenna port number information of the cell, resources occupied by the N groups of CRSs can be determined, thereby correctly receiving data and improving reception performance.
  • the indication information is at least one index corresponding to CRS antenna port configuration information of the at least one cell, where the CRS antenna port configuration information includes: a cell The identifier and the number of corresponding CRS antenna ports, or the number of CRS antenna ports of the cell and the CRS frequency offset of the cell, or the cell identifier and the corresponding CRS antenna port number and CRS frequency offset, and
  • the terminal device includes:
  • the terminal device receives an index of the at least one cell identifier sent by the network device, and the terminal device determines, according to the indication information, resources occupied by the N groups of CRSs, including:
  • the eighth mapping relationship Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the eighth mapping relationship and the at least one index corresponding to the CRS antenna port configuration information of the at least one cell, where the eighth mapping relationship is used to indicate A mapping relationship between multiple indexes and indexes of multiple CRS antenna port configuration information.
  • the CRS frequency offset can be indirectly indicated, so that the terminal device can determine the CRS antenna port number and the frequency offset information according to the mapping relationship between the pre-acquired cell identifier and the CRS antenna port configuration information of the cell, and further The resources occupied by the N groups of CRSs are determined, so that the data is correctly received and the receiving performance is improved.
  • mapping relationships including the first mapping relationship to the eighth mapping relationship
  • RRC Radio Resource Control
  • a method for data transmission comprising:
  • the network device sends the indication information to the terminal device, where the indication information is used to determine the resources occupied by the N groups of CRSs, and the resources occupied by the N groups of CRSs are used to indicate that the terminal device receives the data sent by the at least one network device, where Medium, N is a natural number greater than or equal to 2.
  • the network device may be any one of the at least one network device, or may not be any one of the at least one network device, which is not specifically limited in this application.
  • the indication information may be used to directly or indirectly indicate the number of CRS antenna ports and the CRS frequency offset.
  • the number of CRS antenna ports corresponding to any two groups of the resources occupied by the N groups of CRSs is different, or may be arbitrary.
  • the CRS frequency offsets of the two groups are different, or the number and frequency offset of the CRS antenna ports corresponding to any two groups are different.
  • the method for data transmission in the embodiment of the present application by sending the indication information to the terminal device, is used by the terminal device to determine the resources occupied by the N groups of CRSs, so that the terminal device can consider the CRS resources of the network devices when receiving the data. Therefore, the data is correctly received and the receiving performance is improved.
  • the indication information corresponds to at least one of the following: a codeword corresponding to the data, a layer to which the codeword is mapped, or an antenna port to which the codeword is mapped (ie, a data antenna port).
  • the network device sends the indication information to the terminal device, including:
  • the network device sends downlink control information DCI to the terminal device, where the indication information is included in the DCI.
  • the indicator information is carried in the DCI by modifying or expanding the fields of the DCI in the existing protocol, so that the terminal device can determine the resources occupied by the N groups of CRSs according to the received DCI in the PDCCH, thereby The physical downlink shared channel PDSCH accurately receives data, improving data reception performance.
  • the indication information includes first indication information for indicating an antenna port number and a frequency offset of the N sets of CRSs, and
  • the network device sends the first indication information to the terminal device according to the number of antenna ports and the frequency offset of the N sets of CRSs.
  • the first indication information for directly indicating the number of antenna ports and the frequency offset of the CRS is sent to the terminal device, so that the terminal device can directly determine resources occupied by the N sets of CRSs according to the first indication information, so as to correctly receive data. Improve reception performance.
  • the first indication information is an index of N first physical downlink control channel resource element mappings and quasi-co-location indication PQIs corresponding to the N groups of CRSs, and is included in each first PQI. a set of CRS antenna port number and frequency offset information, and,
  • the network device sends an index of the N first PQIs to the terminal device.
  • the index of the first PQI is used to indicate a PDSCH-RE-mapping QCL-Config parameter set adopted by the terminal device for current data transmission.
  • the PDSCH-RE-mapping QCL-Config parameter set is carried in RRC signaling.
  • the first PQI is a high-level parameter.
  • the first indication information is an index of S second PQIs
  • each second PQI includes information about an antenna port number and a frequency offset of at least one group of CRSs, where S ⁇ [1 , N), and S is a natural number, and,
  • the network device sends an index of the S second PQIs to the terminal device.
  • the first indication information is an index of a second PQI
  • the second PQI includes information about an antenna port number and a frequency offset of the N sets of CRSs.
  • the index of the second PQI is used to indicate a PDSCH-RE-mapping QCL-Config parameter set used by the terminal device for current data transmission.
  • the PDSCH-RE-mapping QCL-Config parameter set is carried in RRC signaling.
  • the second PQI is a high level parameter.
  • the first indication information includes: an index of N CRS antenna port numbers corresponding to the N groups of CRSs, and an index of N CRS frequency offsets corresponding to the N groups of CRSs, where The number of CRS antenna ports indicates the number of antenna ports transmitting the CRS, and the CRS frequency offset indicates the location of the resource unit RE of the CRS mapping on the frequency domain resource, and
  • the network device sends an index of the number of the N CRS antenna ports and an index of the N CRS frequency offsets to the terminal device.
  • the first indication information is an index of N CRS antenna port numbers and frequency offsets corresponding to the N groups of CRSs
  • the CRS antenna port number and frequency offset indication an antenna transmitting a CRS The number of ports, and the location of the CRS mapped RE on the frequency domain resources, and,
  • the network device sends an index of the number of the N CRS antenna ports and a frequency offset to the terminal device.
  • the first indication information is an index of configuration information, where the configuration information indicates an index of an antenna port number and a frequency offset of each group of CRSs in the N groups of CRSs, and the number of the CRS antenna ports And frequency offset indication: the number of antenna ports transmitting the CRS, and the location of the CRS mapped RE on the frequency domain resource, and
  • the network device sends an index of the configuration information to the terminal device.
  • the indication information includes: an index of a cell identifier of the at least one cell, and a CRS antenna port number information of the at least one cell, where the cell identifier is For determining a CRS frequency offset, where the CRS frequency offset indicates a location of a CRS mapped RE on a frequency domain resource, and,
  • the index of the cell identifier may be the cell identifier itself, or may be an index value for uniquely indicating the cell identifier, which is not specifically limited in this application.
  • the CRS frequency offset can be indirectly indicated, and according to the antenna port number configuration information of the cell, resources occupied by the N groups of CRSs can be determined, thereby correctly receiving data and improving reception performance.
  • the indication information is at least one index corresponding to CRS antenna port configuration information of the at least one cell, where the CRS antenna port configuration information includes: a cell The identifier and the number of corresponding CRS antenna ports, or the number of CRS antenna ports of the cell and the CRS frequency offset of the cell, or the cell identifier and the corresponding CRS antenna port number and CRS frequency offset, and
  • the network device determines to transmit the at least one index corresponding to the CRS antenna port configuration information of the at least one cell to the terminal device.
  • the CRS frequency offset can be indirectly indicated, so that the terminal device can determine the CRS antenna port number and the frequency offset information according to the mapping relationship between the pre-acquired cell identifier and the CRS antenna port configuration information of the cell, and further The resources occupied by the N groups of CRSs are determined, so that the data is correctly received and the receiving performance is improved.
  • a terminal device for performing the method of the first aspect and any possible implementation of the first aspect.
  • the terminal device may comprise means for performing the method of the first aspect and any possible implementation of the first aspect.
  • a network device for performing the method of the second aspect and any possible implementation of the second aspect.
  • the network device may comprise means for performing the method of the second aspect and any possible implementation of the second aspect.
  • a fifth aspect provides a terminal device, including: a transceiver, a processor, a memory, and a bus system, wherein the transceiver, the processor, and the memory are connected by the bus system, wherein the memory is used by In the storage instruction, the processor is configured to execute the memory stored instruction, and execution of the instruction stored in the memory causes the processor to execute according to the first aspect and any possible implementation manner of the first aspect Methods.
  • a network device including: a transceiver, a processor, a memory, and a bus system, wherein the transceiver, the processor, and the memory are connected by the bus system, wherein the memory is used
  • the processor is configured to execute the memory stored instruction, and execution of the instruction stored in the memory causes the processor to perform any of the possible implementations according to the second aspect and the second aspect above Methods.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect and any possible implementation of the first aspect.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect and any possible implementation of the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the first aspect and the first aspect described above The method in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform any of the above second and second aspects The method in the implementation.
  • the network device provided by the present application has a function of implementing the behavior of the network device in the above method aspect, and includes means for performing the steps or functions described in the above method aspect.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the network device described above includes one or more processors and communication units.
  • the one or more processors are configured to support the network device to perform corresponding functions in the above methods. For example, generate indication information.
  • the communication unit is configured to support the network device to communicate with other devices to implement receiving and/or transmitting functions. For example, the indication information generated by the processor is transmitted.
  • the network device may further include one or more memories for coupling with the processor, which save program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the network device may be a base station, a gNB or a TRP, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the network device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the present application also provides an apparatus having a function for implementing terminal behavior in aspects of the above method, including means for performing the steps or functions described in the above method aspects.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the respective functions of the methods described above. For example, the resources occupied by the N sets of CRSs are determined.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, receiving indication information or receiving data.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • a chip system comprising a processor for supporting a terminal device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing the method involved in the above method Data and / or information.
  • the chip system further comprises a memory for storing the necessary program instructions and data of the terminal device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing the method involved in the above method Data and / or information.
  • the chip system further comprises a memory for storing the necessary program instructions and data of the terminal device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • FIG. 1 is a schematic diagram of a wireless communication system suitable for use in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scenario of CoMP transmission applicable to an embodiment of the present application.
  • FIG 3 is a RE mapping position diagram of a CRS under different antenna port numbers in the case of a conventional Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • FIG. 4 is a schematic flowchart of a method for data transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a network device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 illustrates a wireless communication system 100 suitable for use with embodiments of the present application.
  • the wireless communication system 100 can include at least one network device, such as the first network device 110 and the second network device 120 shown in FIG. Both the first network device 110 and the second network device 120 can communicate with the terminal device 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a particular geographic area and can communicate with terminal devices located within the coverage area.
  • the first network device 110 or the second network device 120 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an evolution in an LTE system.
  • BTS Base Transceiver Station
  • NodeB base station
  • a type of base station (Evolutional Node B, eNB or eNodeB), or a network device in a future 5G network, such as a Transmission Point (TP), a Transmission Reception Point (TRP), a 5G base station (gNB), and a base station.
  • TP Transmission Point
  • TRP Transmission Reception Point
  • gNB 5G base station
  • the embodiment of the present application is not particularly limited.
  • the first network device 110 or the second network device 120 may be an evolved Node B (eNB), a Radio Network Controller (RNC), and a Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BBU) , Wireless Fidelity (WIFI), Access Point (AP), transmission and receiver point (TRP or transmission point, TP), etc., can also be 5G, such as new radio (new radio, NR), gNB in the system, or transmission point (TRP or TP), or, may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a data unit (DU, data unit), etc. .
  • eNB evolved Node B
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BBU Baseband Unit
  • WIFI Wireless Fide
  • the gNB can include a control unit (CU) and a data unit (DU).
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements a radio resource control (RRC), a packet data convergence protocol (PDCP) layer function, and the DU implements a wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements a wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture. It is considered to be sent by the DU or sent by the DU+RU.
  • the wireless communication system 100 further includes one or more User Equipments (UEs) 130 located within the coverage of the first network device 110 and the second network device 120.
  • the terminal device 130 can be mobile or fixed.
  • the terminal device 130 can communicate with one or more cores via a Radio Access Network (RAN) Network (Core Network) for communication, terminal equipment can be called access terminal, terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User agent or user device.
  • the terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • the wireless communication system 100 can support Coordinated Multipoint (CoMP) transmission, that is, multiple cells or multiple transmission points can cooperate to transmit data to the same terminal device on the same time-frequency resource or when partially overlapping Send data to the same terminal device on the frequency resource.
  • CoMP Coordinated Multipoint
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instructions, and the like.
  • the terminal device 130 in the wireless communication system 100 can support multipoint transmission, that is, the terminal device 130 can communicate with the first network device 110 or with the second network device 120, wherein the first network device 110 can serve as A service network device, which is a network device that provides an RRC connection, a non-access stratum (NAS) mobility management, and a security input for a terminal device through a wireless air interface protocol, or a service network.
  • a service network device which is a network device that provides an RRC connection, a non-access stratum (NAS) mobility management, and a security input for a terminal device through a wireless air interface protocol, or a service network.
  • the device may be a network device that provides at least one of an RRC connection, a NAS mobility management, and a security input to the terminal device through a wireless air interface protocol.
  • the first network device may be a serving network device, and the second network device may be a cooperative network device; or the first network device may be a cooperative network device, and the second network device is a serving network device.
  • the service network device may send control signaling to the terminal device, where the cooperative network device may send data to the terminal device; or the service network device may send control signaling to the terminal device, the service network device and the cooperative network device
  • the data may be sent to the terminal device at the same time; or the service network device and the cooperative network device may simultaneously send control signaling to the terminal device, and the service network device and the cooperative network device may simultaneously send data to the terminal device; or
  • the cooperative network device may send control signaling to the terminal device, and at least one of the serving network device and the cooperative network device may send data to the terminal device; or the cooperative network device may simultaneously send control signaling and data to the terminal device.
  • This embodiment of the present application is not particularly limited.
  • the number of the second network device may be one or more, and the first network device meets different quasi-co-locations (Quasi- Co-Location, QCL) network equipment.
  • QCL quasi-co-locations
  • the antenna port QCL is defined as the signal transmitted from the QCL antenna port will undergo the same large-scale fading, and the large-scale fading includes delay spread, Doppler spread, Doppler shift, average channel gain, and average delay.
  • first network device and the second network device can both be serving network devices, for example in a scenario without cell non-cell.
  • the embodiment of the present application is also applicable to the same network device having an antenna port other than QCL. That is, the network device may be configured with different antenna panels.
  • the antenna ports belonging to different antenna panels in the same network device may be non-QCL, and the corresponding CRS resource configurations may also be different.
  • mapping relationship between the codeword to the layer and the layer to the antenna port is first introduced.
  • the data processed at the physical layer is the Protocol Data Unit (PDU) of the MAC layer, that is, the data stream.
  • PDU Protocol Data Unit
  • the data stream from the upper layer is codeword after channel coding. Different codewords distinguish different data streams. Since the number of codewords is inconsistent with the number of transmit antennas, the codewords can be mapped to different transmit antennas, so layer mapping and precoding are required.
  • Layer mapping can be understood as re-mapping a codeword to multiple layers according to certain rules; precoding can be understood as mapping data mapped to multiple layers to different antenna ports (for ease of distinction and description, The antenna port to which the codeword is mapped is recorded as the data antenna port).
  • the network device encodes the data to obtain a codeword, maps the codeword to the layer, maps to the data antenna port, sends the data to the terminal device through the corresponding data antenna port, and sends a demodulation reference signal through the corresponding data antenna port, so as to facilitate
  • the terminal device demodulates the received data according to a Demodulation Reference Signal (DMRS) to obtain original data.
  • DMRS Demodulation Reference Signal
  • an antenna port can be understood as a transmitting antenna that can be recognized by a receiving end device or a spatially distinguishable transmitting antenna.
  • the antenna port can be defined in accordance with a reference signal (or a pilot signal, such as a DMRS or CRS, etc.) associated with the antenna port.
  • An antenna port can be a physical antenna on the transmitting device or a weighted combination of multiple physical antennas on the transmitting device. In the embodiment of the present application, one antenna port corresponds to one reference signal without special explanation.
  • the CRS and the DMRS may be separately sent to the terminal device, where the CRS may be used for channel estimation, and the DMRS may be used for demodulating data.
  • the antenna port ie, the data antenna port
  • the antenna port can be understood as a transmitting antenna that is recognized by the receiving device or a spatially distinguishable transmitting antenna.
  • the antenna port can be defined in accordance with an associated reference signal.
  • the network device can send the CRS and the DMRS to the terminal device through the same physical antenna or multiple physical antennas. Therefore, the antenna port that the network device sends the DMRS to the terminal device corresponds to the antenna port that sends the CRS.
  • the antenna port that sends the DMRS is used to transmit data, so the antenna port that transmits the data is different from the antenna port that sends the CRS, but corresponds.
  • FIG. 2 is a schematic diagram of a scenario suitable for CoMP transmission in the embodiment of the present application.
  • FIG. 2 shows a scene of multi-point multi-stream.
  • a codeword eg, denoted CW1
  • a layer eg, referred to as layer 1
  • a data antenna port eg, port 1
  • the antenna port belongs to TP or TRP (for example, referred to as TP1, that is, an example of a network device). That is, the data corresponding to CW1 is sent by the TP1 to the terminal device through port 1.
  • another codeword (eg, denoted CW2) may be mapped to a layer (eg, referred to as layer 2) via layer mapping and then mapped to a data antenna port (eg, port 2), the data antenna
  • the port belongs to another TP (for example, referred to as TP2, that is, another example of a network device). That is, the data corresponding to CW2 is sent by the TP2 to the terminal device through port 2. That is, different TPs transmit different codewords.
  • the codeword corresponds to the layer
  • the layer corresponds to the data antenna port
  • the data antenna port corresponds to the TP.
  • a codeword (eg, CW1) can be mapped to two layers (eg, Layer 1 and Layer 2) through layer mapping and then mapped to different data antenna ports (eg, Port 1 and Port 2).
  • Port 1 and Port 2 belong to different TPs (for example, TP1 and TP2).
  • TP1 and TP2 The corresponding data is sent by TP1 and TP2 to the terminal device through port 1 and port 2, respectively. That is, different TPs transmit different layers of the same codeword.
  • the layer corresponds to the data antenna port
  • the data antenna port corresponds to the TP.
  • FIG. 2 shows a scene of a Single Frequency Network (SFN).
  • a codeword eg, CW1
  • layers eg, Layer 1 and Layer 2
  • the data mapped to each antenna port can be transmitted to the terminal device through different TPs (for example, TP1 and TP2). That is, different TPs jointly transmit the same layer of the same codeword.
  • the layer corresponds to the data antenna port.
  • scenario shown in (c) of FIG. 2 can also correspond to a joint transmission (JT) scenario, that is, multiple antennas of multiple TPs jointly perform precoding to transmit data to the terminal device.
  • JT joint transmission
  • FIG. 2 shows a scenario of Multiple Point Block Code (MPBC).
  • a codeword eg, CW1
  • a layer eg, Layer 1
  • different data antenna ports via different encodings (eg, port 1 and port) 2)
  • Different data antenna ports belong to different TPs (for example, TP1 and TP2) and are sent to the terminal device. That is, different TPs transmit different coded information of the same data of the same layer of the same codeword.
  • the data antenna port corresponds to the TP.
  • scenario shown in (d) of FIG. 2 can also correspond to a scenario of a Space Frequency Block Code (SFBC), that is, multiple TPs can be pre-coded separately, and then jointly perform SFBC directions.
  • SFBC Space Frequency Block Code
  • the same terminal device when it receives data, it may receive data transmitted by one or more TPs through one or more data antenna ports.
  • the terminal device In the case where there are multiple TPs or multiple data antenna ports, if the terminal device only knows the resources occupied by the CRS used by the serving TP, the performance of the terminal device receiving data is degraded.
  • resource element Resource Element, RE
  • mapping location map or a pilot pattern of a CRS under different antenna ports (specifically, CRS antenna ports) is briefly described below with reference to FIG. ).
  • FIG. 3 shows a RE mapping position map of a CRS under different antenna port numbers (the number of antenna ports is 1, 2, and 4, respectively) in the case of a conventional Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • the pilot pattern shown in FIG. 3 is only an example for ease of understanding, and should not be construed as limiting the embodiment of the present application.
  • the pilot pattern of the CRS also includes a RE mapping location map of the CRS of different antenna ports in the case of extending the CP, and even a RE mapping location map of the CRS that may be extended to more antenna port numbers in future protocols. .
  • the resources occupied by the CRSs of different antenna ports are different in the location of the REs mapped in a pair of resource blocks (RBs), that is, the time-frequency resources occupied by the CRSs of different antenna ports are different.
  • RBs resource blocks
  • the network device sends data through one or more data antenna ports, it needs to consider the interference of the resources occupied by the CRS sent by other cooperative network devices on the data transmission of the network device, which may cause the terminal device to decode errors.
  • the network device when the network device sends data through one or more data antenna ports, the resources occupied by the CRSs sent by the network devices are avoided, and the data is not transmitted on the time-frequency resources corresponding to the multiple groups of CRS-mapped REs, that is, No data mapping or mapping is performed on the plurality of sets of CRS resources.
  • FIG. 3 shows the RE mapping position of the CRS when the number of antenna ports of the CRS is 1, 2, and 4, respectively. It can be seen that when the number of antenna ports is 1 (for example, antenna port #0), only one group of CRS RE mapping positions needs to be considered; when the number of antenna ports is 2 (for example, antenna port #0 and antenna port #1) It is necessary to consider not only the RE mapping position of the CRS of the antenna port #0 but also the RE mapping position of the CRS of the antenna port #1, that is, the picture shown in the figure with No data is transmitted on the corresponding time-frequency resources; when the number of antenna ports is 4 (for example, antenna port #0, antenna port #1, antenna port #2, and antenna port #3), not only antenna port #0 needs to be considered.
  • the RE mapping position of the CRS also needs to consider the RE mapping positions of the CRSs of the antenna port #1, the antenna port #2, and the antenna port #3.
  • the antenna port number used for transmitting the CRS is one or more of 0, 1, 2, and 3, but this should not constitute any limitation to the present application, and the present application does not exclude future.
  • the protocol defines more or fewer antenna port numbers and antenna port numbers for transmitting CRS.
  • the terminal devices respectively need to know the resources of the CRS used by each TP to transmit data through each data antenna port. Therefore, the present application provides a method for data transmission, which indicates, by a network device, a resource configuration of at least two groups of CRSs to a terminal device, so that the terminal device can correctly receive data and improve data receiving performance.
  • FIG. 4 is a schematic flowchart of a method for data transmission according to an embodiment of the present application, showing detailed communication steps or operations of the method, but the steps or operations are merely examples, and the embodiment of the present application further Other operations or variations of the various operations in FIG. 4 may be performed. Moreover, the various steps in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed.
  • the method 200 can be used in a communication system for communicating over a wireless air interface, the communication system can include at least one network device and at least one terminal device.
  • the communication system can be the wireless communication system 200 shown in FIG.
  • the network device may be a transmission point (TP), a base station, or may be another network device used for the Downlink Control Information (DCI), which is not specifically limited in this embodiment of the present application.
  • TP transmission point
  • DCI Downlink Control Information
  • the method 200 will be described in detail by taking the interaction between the first network device (referred to as the first network device for convenience of distinction and description) and the terminal device as an example.
  • the first network device may be any one of the at least one network device, for example, the first network device may be a serving network device of the terminal device, or may be a cooperative network device of the terminal device.
  • the first network device may also be located in any one of the at least one network device, which is not specifically limited in this embodiment of the present application.
  • the "first" is only used to distinguish the description, and should not be construed as limiting the embodiment of the present application.
  • the terminal device may be in communication with the first network device, and may also perform data communication with another one or more network devices (for example, the second network device), which is not specifically limited in this embodiment of the present application. .
  • the method 200 includes the following steps:
  • the first network device sends the indication information to the terminal device.
  • the network device When transmitting data to the terminal device, the network device first needs to send a CRS for channel estimation, and the data antenna port used by the network device to transmit data corresponds to a resource used for transmitting the CRS, that is, the resource for transmitting the CRS will not be mapped. Data, or punctured after mapping.
  • the data is data obtained by mapping at least one network device to at least one data antenna port by the at least one network device.
  • the at least one network device sends data to the terminal device, specifically Corresponding to the scene shown in Fig. 2 (specifically, (b) to (d) in Fig. 2).
  • the codeword may correspond to CW1 as exemplified above
  • the first network device may correspond to TP1 as exemplified above
  • the second network device may correspond to TP2 as exemplified above.
  • the first network device may also be a network device other than TP1 and TP2 shown in FIG. 2, that is, the first network device may be included in at least one network device that sends data to the terminal device, or The first network device is not included.
  • the time-frequency resources used by the at least one network device to transmit the N sets of CRSs are different from the time-frequency resources used to transmit the data, that is, on each RB, the REs of the CRS mapping and the REs of the data mapping do not overlap.
  • the first network device may send indication information to the terminal device according to resources configured by the network devices for the N groups of CRSs, where the indication information is used by the terminal device to determine resources occupied by the N groups of CRSs.
  • the first network device may carry the indication information in the DCI sent to the terminal device, so that the terminal device may determine the N according to the indication information carried in the DCI when receiving the DCI.
  • the resources of the group CRS are further prohibited from receiving data on the corresponding resources.
  • S210 may specifically include:
  • the first network device sends a DCI to the terminal device, where the indication information is carried in the DCI.
  • the method for carrying the indication information in the DCI is only one possible implementation method, and should not be limited to the embodiment of the present application.
  • the indication information may also be carried in other messages or signaling.
  • the application example is not particularly limited.
  • the method 200 further includes:
  • the first network device determines configuration information of resources of the N sets of CRSs.
  • the configuration information of the resources of the N sets of CRSs needs to be acquired from each network device to generate the indication information.
  • each of the at least one network device may determine configuration information of the CRS when transmitting data. Moreover, each network device may send configuration information of each determined CRS to the first network device through an interface between the network devices (for example, an X2 interface).
  • each network device can determine configuration information of a corresponding P group CRS for each of the M data antenna ports, where M represents the number of data antenna ports corresponding to the data transmitted by the network device, and P is less than or equal to N, M, P is a natural number, and M and P have different values depending on the network device. That is, in the N sets of CRSs corresponding to the data, the CRS corresponding to each data antenna port (ie, the P group CRS described above) is part or all of the N sets of CRSs.
  • the configuration information may include: an antenna port number and frequency offset information of the CRS.
  • the frequency offset information of the CRS can be understood as the offset of the RE of the CRS mapping with respect to the preset pilot pattern (for example, as shown in FIG. 3) on the frequency domain resource.
  • a set of CRSs represents a set of CRSs having the same position of the CRS mapped REs on the frequency domain resources according to the number of antenna ports of the CRS and the frequency offset. That is to say, at least one of the number of antenna ports and the frequency offset of any two sets of CRSs is different.
  • the resources occupied by the CRS may include airspace resources, time domain resources, and frequency domain resources.
  • the offset of the time domain resource relative to the preset pilot pattern is zero, that is, the time domain resource is still unchanged with reference to the preset pilot pattern.
  • Calculating the frequency offset according to the cell identifier in the frequency domain specifically, Where v shift represents the frequency offset, Indicates the cell identity, and mod indicates the remainder.
  • v shift represents the frequency offset
  • mod indicates the remainder.
  • neighbor cell interference can be reduced.
  • the airspace resources can understand the difference of the antenna ports.
  • the embodiments of the present application are mainly described in detail for the frequency domain resources used by the CRSs of different network devices, but this should not be limited to the embodiments of the present application, for example, the time domain resources used by the CRSs of different network devices.
  • the method may also be used to indicate the offset (ie, time offset) of the CRS relative to the pilot pattern in the time domain.
  • pilot pattern shown in FIG. 3 is used as a preset pilot pattern as an example, but this is merely an exemplary description, and should not be construed as limiting the embodiment of the present application.
  • the embodiments of the present application do not preclude the possibility of deleting or modifying the resources of the configured CRS under different antenna port numbers in the future protocol, and configuring the CRS under more or fewer CRS antenna port numbers.
  • the resources are possible to define.
  • the at least one network device sends the data and the indication information of the N sets of CRS occupied resources.
  • the at least one network device may include the first network device and the second network device. After determining the antenna port for transmitting data and the resource for transmitting the CRS, each network device can transmit data and N sets of CRSs to the terminal device.
  • the indication information corresponds to at least one of the following: a codeword corresponding to the data, a layer to which the codeword is mapped, or a data antenna port to which the codeword is mapped.
  • the resource occupied by the CRS corresponding to each codeword, each layer or each data antenna port is part or all of the resources occupied by the above-mentioned N groups of CRSs.
  • the data is obtained by the at least one network device mapping a codeword to the number of the data antenna ports.
  • the steps of the first network device and the second network device shown in FIG. 4 for transmitting data to the terminal device are merely exemplary, and at least one network device that transmits data to the terminal device may be only the first The network device is only the second network device, or may be one or more other network devices.
  • the application is not particularly limited to the at least one network device that sends data to the terminal device.
  • each of the at least one network device can learn the resources occupied by the CRS by each network device before sending the data to the terminal device (that is, the N groups of CRSs described above). Therefore, in the data mapping process, the resources occupied by the CRSs can be avoided by the network devices, that is, the data mapping is not performed on the REs of the N sets of CRS mappings, and the data mapping is performed after the data is mapped.
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, and receives data according to resources occupied by the N groups of CRSs.
  • the terminal device may determine to avoid the N sets of CRS mapped REs when receiving data, and prohibit receiving data on the REs.
  • the first network device indicates information through different fields in the DCI to instruct the terminal device to determine resources of the N groups of CRSs is described in detail.
  • the indication information includes: first indication information used to indicate an antenna port number and a frequency offset of the CRS.
  • the frequency offset may be used to determine the location of the CRS mapped RE on the frequency domain resource.
  • the S210 may specifically include:
  • the first network device sends the first indication information to the terminal device, where the first indication information is used to indicate the number of antenna ports and the frequency offset of the N sets of CRSs.
  • the specific method for the first network device to send the first indication information to the terminal device includes the following four types (ie, method one to method four).
  • the first indication information may be specifically carried by the PQI, that is, indirectly indicated by the PQI.
  • the PQI is usually a PDSCH resource mapping and a Quasi-Co-Location Indicator.
  • the PQI may be a PDSCH-RE-mapping QCL-Config parameter set, and the PDSCH-RE-mapping QCL-Config parameter set may be a high-level parameter, and the high-level parameter may be carried in the RRC signaling, PQI.
  • the index can be used to indicate the PDSCH-RE-mapping QCL-Config parameter set. That is, the index of the PQI in the embodiment of the present application may have the same or similar function as the PQI defined in the LTE protocol.
  • the description of the same or similar cases will be omitted for the sake of brevity.
  • an indication field of a Transport Block may be extended in an existing DCI. That is, the indication field of the TB defined in the existing protocol only carries an index (or a value) of the first PQI.
  • the indication field of the TB is extended, and the indication of the TB is The field carries an index of N PQIs.
  • the first indication information includes an index of the N first physical downlink control channel resource element mapping and the quasi-co-location indication PQI, where each first PQI includes a group of CRS antenna port numbers and frequency offset information. .
  • the first network device sends the first indication information to the terminal device, including:
  • the first network device sends an index of the N first PQIs to the terminal device.
  • the indexes of the N first PQIs are in one-to-one correspondence with the N groups of CRSs.
  • the i-th first PQI is used to determine the resource occupied by the i-th group CRS, i ⁇ [1, N], and i is a natural number.
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the terminal device Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the first mapping relationship and the indexes of the N first PQIs, where the first mapping relationship is used to indicate the indexes of the multiple first PQIs and the multiple high-level parameters The mapping relationship between groups.
  • the first PQI is only distinguished from the second PQI described later, and should not be construed as limiting the application.
  • the first PQI can be understood as the same PQI as in the prior art (the specific content included in the first PQI will be described in detail later).
  • the number of antenna ports of the CRS is 1, 2, and 4 respectively, and it is assumed that each network device sends a CRS through one, two, or four of the antenna ports 0, 1, 2, and 3.
  • the corresponding frequency offsets can be 6, 3, or 3, respectively, and can be configured in total:
  • the network device may configure the foregoing multiple PDSCH-RE-mappingQCL-Config parameter sets (or higher layer parameters) through RRC signaling, or the network device and the terminal device may pre-negotiate.
  • the plurality of PDSCH-RE-mapping QCL-Config parameter sets (or higher layer parameters) are saved.
  • the PDCCH is transmitted, the DCI is sent on the PDSCH, and the indexes of the N first PQIs in the DCI are used to indicate which PDSCH-RE-mapping QCL-Config parameter set is adopted by the terminal device for the current data transmission, so as to facilitate the terminal.
  • the device performs rate matching based on the PDSCH-RE-mapping QCL-Config parameter set.
  • the DCI may indicate the corresponding PDSCH-RE-mapping QCL-Config parameter set by using information bits (ie, an index of the first PQI).
  • Table 1 shows the mapping relationship (i.e., the first mapping relationship) between a plurality of information bits and a plurality of PDSCH-RE-mapping QCL-Config parameter sets.
  • the high-level parameter can be understood as a parameter that is configured through a high-level configuration and sent through RRC signaling.
  • the high level parameters can include the following:
  • CRS configuration (including the number of antenna ports and frequency offset of CRS);
  • the CRS configuration can be used to determine pilot information required for PDSCH RE mapping. Therefore, in the embodiment of the present application, an index of the first PQI is sent for the antenna port of each group of CRSs, so that the terminal device determines the resources occupied by the CRS according to the index of each first PQI.
  • the i-th CRS in the N sets of CRSs may be sent by at least one network device (eg, referred to as a first set of network devices), the first set of network devices being sent as described above
  • the at least one network device (eg, referred to as the second set of network devices) of the data may be the same set of network devices, or may be a different set of network devices.
  • the first network device set and the second network device set are different network device sets
  • the first network device set includes the second network device set, or the second network device set is the first network A subset of device collections.
  • the two data antenna ports to which the same codeword is mapped are from the same network
  • the device for example, the second network device
  • the antenna port number and the frequency offset of the CRS sent by the second network device are the same, that is, the first network device may send only one first for the second network device.
  • the index of the PQI That is to say, the N sets of CRSs are not consistent with the number of data antenna ports, and may be equal to or smaller than the number of data antenna ports.
  • the frequency offset values obtained by the different cell identifiers after the modulo operation are the same. If the number of antenna ports used by the two network devices for transmitting the CRS is the same and the frequency offset is the same, the two network devices correspond to a set of CRSs, that is, only the same first PQI is needed to determine the CRS. Occupied resources.
  • the case where the cell identifiers are different but the frequency offset is the same is not considered, but it should be understood that this should not be construed as limiting the present application.
  • FIG. 2 shows a case where two layers of the same data (corresponding to two data antenna ports) are respectively transmitted through two different network devices, that is, a layer. 1 corresponds to antenna port 1, antenna port 1 corresponds to TP1, layer 2 corresponds to antenna port 2, and antenna port 2 corresponds to TP2.
  • the first network device sends two first PQI indexes to the terminal device, that is, the first first PQI corresponds to TP1, the second first PQI corresponds to TP2, or the second first PQI Corresponding to TP1, the first first PQI corresponds to TP2; or the first first PQI corresponds to antenna port 1, the second first PQI corresponds to antenna port 2; or the first first PQI and antenna port 2 Correspondingly, the second first PQI corresponds to the antenna port 1; or the first first PQI corresponds to the layer 1, or the second first PQI corresponds to the layer 2; or the first first PQI corresponds to the layer 2, Or the second first PQI corresponds to layer 1.
  • (c) of FIG. 2 shows that each of the two layers of the same data (corresponding to two data antenna ports) are respectively sent through two different network devices.
  • layer 1 corresponds to antenna port 1
  • antenna port 1 corresponds to TP1 and TP2
  • layer 2 corresponds to antenna port 2
  • antenna port 2 corresponds to TP1 and TP2.
  • the first network device sends two first PQI indexes to the terminal device, that is, the first first PQI corresponds to TP1, the second first PQI corresponds to TP2, or the second first PQI Corresponding to TP1, the first first PQI corresponds to TP2; or the first first PQI and the second first PQI correspond to antenna port 1, the first first PQI and the second first PQI and the antenna port 2 corresponds; or the first first PQI and the second first PQI correspond to layer 1, and the first first PQI and the second first PQI correspond to layer 2.
  • layer 1 corresponds to antenna port 1
  • antenna port 1 corresponds to TP1 and TP2
  • layer 2 corresponds to antenna port 2
  • antenna port 2 corresponds to TP3 and TP4.
  • the first network device sends four first PQI indexes to the terminal device, corresponding to TP1, TP2, TP3, and TP4, respectively; or, the first first PQI and the second first PQI and the antenna port.
  • the third first PQI and the fourth first PQI correspond to the antenna port 2; or, the first first PQI and the second first PQI correspond to the layer 1, the third first PQI and the first The four first PQIs correspond to layer 2.
  • (d) in FIG. 2 shows that the same layer of the same data is encoded by two different network devices and transmitted through different antenna ports, that is, Layer 1 corresponds to antenna port 1 and antenna port 2, antenna port 1 corresponds to TP1, and antenna port 2 corresponds to TP2.
  • the first network device sends two first PQI indexes to the terminal device, where the first first PQI corresponds to TP1, and the second first PQI Corresponding to TP2; or the first first PQI and the second first PQI correspond to antenna port 1, the first first PQI and the second first PQI correspond to antenna port 2; or the first first PQI And the second first PQI corresponds to layer 1.
  • the indication field of the TB can be extended in the existing DCI. That is, the indication field of the TB defined in the existing protocol carries an index of a PQI (ie, may correspond to the first PQI in the embodiment of the present application), and the PQI indicates a set of high-level parameters, which is in the embodiment of the present application.
  • the PQI is extended, and the plurality of high-level parameters are indicated by the PQI (ie, may correspond to the second PQI in the embodiment of the present application).
  • the first indication information includes an index of the S second PQIs, where each second PQI includes information about an antenna port number and a frequency offset of the at least one group of CRSs, where S ⁇ [1,N), And S is a natural number, and,
  • the first network device sends the first indication information to the terminal device, including:
  • the first network device sends an index of the S second PQIs to the terminal device.
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the information of the number of N CRS antenna ports and the frequency offset may be indicated by a second PQI.
  • the index of the number of N CRS antenna ports and the N CRS frequency offset may be included in the second PQI.
  • Index, or an index of N CRS antenna port numbers and frequency offsets; information of N CRS antenna port numbers and frequency offsets may also be indicated by multiple second PQIs, in which case each second PQI may include at least one An index of the number of CRS antenna ports and an index of at least one CRS frequency offset, or an index of at least one CRS antenna port number and frequency offset.
  • the at least one set of CRSs corresponding to the configuration information of the at least one CRS is a subset of the N sets of CRSs.
  • the network device when it sends data, it needs to consider the N groups of CRS-mapped REs. When receiving the data, the terminal device also needs to consider the N groups of CRS-mapped REs. Therefore, each group of CRSs in the N groups of CRSs The occupied resources may not be carefully studied, and only the locations of all REs of the N sets of CRS mappings need to be known. Hereinafter, the description of the same or similar cases will be omitted for the sake of brevity.
  • the first indication information may be information about a number of CRS antenna ports and a CRS frequency offset corresponding to the N sets of CRSs. That is, the number of CRS antenna ports and the CRS frequency offset are directly indicated.
  • the first indication information includes an index of the number of N CRS antenna ports corresponding to the N sets of CRSs and an index of N CRS frequency offsets corresponding to the N sets of CRSs.
  • the first network device sends the first indication information to the terminal device, including:
  • the first network device sends an index of the number of the N CRS antenna ports and an index of the N CRS frequency offsets to the terminal device.
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the terminal device Determining, by the terminal device, the resources occupied by the N groups of CRSs according to the third mapping relationship and the fourth mapping relationship, and the indexes of the N CRS antenna port numbers and the indexes of the N CRS frequency offsets, where the third mapping relationship is used by the terminal device. And indicating a mapping relationship between the plurality of indexes and the number of the plurality of CRS antenna ports, where the fourth mapping relationship is used to indicate a mapping relationship between the plurality of indexes and the plurality of CRS frequency offsets.
  • the index of the number of the N CRS antenna ports is one-to-one corresponding to the N groups of CRSs, and the indexes of the N CRS frequency offsets are in one-to-one correspondence with the N groups of CRSs.
  • the index of the number of the i-th CRS antenna port is used to determine the number of antenna ports that send the ith group CRS, and the index of the ith CRS frequency offset is used to indicate that the RE occupied by the ith group CRS is relative to the preset guide.
  • the offset of the frequency pattern (eg, the pilot pattern shown in Figure 3) on the frequency domain resource, i ⁇ [1, N], and i is a natural number.
  • Table 2 shows the mapping relationship between the index of the number of multiple CRS antenna ports and the number of multiple antenna ports (ie, the third mapping relationship), and Table 3 shows the index of multiple CRS frequency offsets and multiple CRS frequencies.
  • the mapping relationship between the partial biases ie, the fourth mapping relationship).
  • any two groups of CRS mapped REs corresponding to multiple antenna ports correspond to The relative position in the RB is constant.
  • R0 and R1 differ by two subcarriers in the frequency domain.
  • the relative position of the CRSs of the different antenna ports in the RBs may be determined according to the preset rule (ie, the preset pilot pattern).
  • the frequency domain resources occupied by the CRSs of the multiple antenna ports in the RB may be further determined according to the frequency offset.
  • the first CRS corresponding to R0 and the first CRS corresponding to R1 form a Overall (for ease of explanation, recorded as a CRS unit). It can be understood that the position of the corresponding two groups of CRS mappings in the RB can be derived from the position of the one CRS unit mapped in the RB.
  • the frequency offset is 0, it indicates that the frequency domain resource occupied by the CRS unit in the RB is the same as that shown in the pilot pattern; if the frequency offset is 1, it indicates the frequency domain occupied by the CRS unit in the RB.
  • the resource and the pilot pattern are different by one subcarrier, that is, one subcarrier is moved upward; if the frequency offset is 2, it indicates that the two groups of CRS are in the frequency domain resource and pilot pattern occupied by the RB.
  • the two subcarriers are shown to be different, ie two subcarriers are shifted up.
  • the CRS (or CRS unit, the CRS unit includes only one CRS) frequency offset may have a maximum value of 5, and in the case of two or four antenna ports, the CRS unit (The CRS unit may include two or four CRSs) The maximum value of the frequency offset may be two.
  • N 2.
  • the indication information sent by the first network device to the terminal device may include an index of two CRS antenna port numbers and two The index of the CRS frequency offset corresponds to two TPs (or two data antenna ports).
  • the indication information sent by the first network device to the terminal device may include an index of two CRS antenna port numbers and two The index of the CRS frequency offset corresponds to two TPs respectively.
  • the indication information sent by the first network device to the terminal device may include an index of two CRS antenna port numbers and two The index of the CRS frequency offset corresponds to two TPs (or two data antenna ports).
  • the CRS antenna port number and the CRS frequency offset are separately indicated, that is, two CRS antenna port numbers and one CRS frequency offset are respectively indicated by two indexes; in the third method,
  • the CRS antenna port number and the CRS frequency offset joint indication that is, an index indicates a CRS antenna port number and a CRS frequency offset.
  • the first indication information includes an index of N CRS antenna port numbers and frequency offsets corresponding to the N groups of CRSs.
  • the first network device sends the first indication information to the terminal device, including:
  • the first network device sends an index of the number of the N CRS antenna ports and the frequency offset to the terminal device.
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the N-group CRS occupies the resource, where the fifth mapping relationship is used to indicate a mapping relationship between the plurality of indexes and the number of CRS antenna ports and the frequency offset information.
  • the index of the number of the i-th CRS antenna port and the frequency offset is used to indicate the number of antenna ports transmitting the i-th group CRS and the position of the RE of the i-th group CRS mapping on the frequency domain resource, i ⁇ [1, N], And i is a natural number.
  • Table 4 shows the mapping relationship between the index of the plurality of CRS antenna ports and the frequency offset and the number of sets of CRS antenna ports and the frequency offset (i.e., the fifth mapping relationship).
  • the number of antenna ports and frequency offsets for transmitting the CRS can be simultaneously determined according to the index of the CRS antenna port number and the frequency offset. For example, when the number of CRS antenna ports and the index of the frequency offset of the i-th group CRS is 1 to 6, the number of antenna ports for transmitting the i-th group CRS is 1, and the frequency offset is 0 to 5; When the CRS antenna port number and the frequency offset index of the CRS are 7 to 9, the number of antenna ports for transmitting the i-th group CRS is 2, and the frequency offset is 0 to 2 respectively; when the number of CRS antenna ports of the i-th group CRS is When the index of the frequency offset is 10 to 11, the number of antenna ports used to transmit the i-th CRS is 4, and the frequency offset is 0 to 2.
  • the first indication information includes an index of configuration information indicating an index of an antenna port number and a frequency offset of each group of CRSs in the N groups of CRSs.
  • the network device sends the first indication information to the terminal device, including:
  • the network device sends an index of the configuration information to the terminal device.
  • the terminal device receives the first indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the terminal device Determining, by the terminal device, the resources occupied by the N sets of CRSs according to the sixth mapping relationship and the index of the configuration information, where the sixth mapping relationship is used to indicate the index of the multiple configuration information and the number of antenna ports of the multiple sets of CRSs.
  • the mapping relationship between the indexes of the frequency offsets, or the sixth mapping relationship is used to indicate a mapping relationship between the indexes of the plurality of configuration information and the indexes of the plurality of groups of PQIs.
  • the configuration information includes: a mapping relationship between an antenna port (ie, a data antenna port) used for transmitting data, a number of CRS antenna ports, and a frequency offset, or a layer for transmitting data and a number and frequency of CRS antenna ports.
  • the parameter set included in the multiple sets of possible configuration information may be configured in the RRC signaling of the PDSCH transmission for the content that is specifically included in the configuration information, or the network device and the terminal device may be configured in advance.
  • the DCI is sent on the PDSCH, and the index of the configuration information in the DCI is used to indicate which set of parameters is adopted by the terminal device for the current data transmission.
  • an index of configuration information can be passed.
  • the index of the configuration information is used to indicate the number of antenna ports and frequency offset information of the CRS corresponding to the N sets of CRSs.
  • Table 5 shows a mapping relationship between an index of a plurality of pieces of configuration information and resources of a plurality of sets of CRSs (that is, an example of a sixth mapping relationship).
  • the first network device can connect the antenna ports of the CRS corresponding to each layer (or each data antenna port).
  • the number and frequency offset information are sent to the terminal device in the form of CRS antenna port number and frequency offset information.
  • the terminal device may determine the resources occupied by the CRS according to the number of antenna ports and the frequency offset information of the CRS corresponding to each layer, and further prohibit receiving data on the corresponding resources.
  • the number of antenna ports and the frequency offset information of the CRS may be indicated by using an index of the CRS antenna port number and the frequency offset, that is, the fifth mapping relationship may be further converted into an index of multiple configuration information and an antenna of multiple groups of CRSs.
  • the mapping relationship between the number of ports and the index of the frequency offset (hereinafter referred to as CRS).
  • Table 6 shows a mapping relationship between an index of a plurality of pieces of configuration information and an index of a plurality of sets of CRSs (that is, another example of the sixth mapping relationship).
  • the index of the CRS may refer to the mapping between multiple CRS indexes and multiple CRS antenna port numbers and frequency offsets shown in Table 4. That is, Table 6 is based on Table 4. That is, if the foregoing method is used to instruct the terminal device to determine the resources of the CRS, the two mapping relationship information needs to be saved or acquired at the same time (ie, the number of multiple CRS antenna port numbers and frequency offsets and the number of multiple CRS antenna ports) A mapping relationship with a frequency offset, and a mapping relationship between an index of a plurality of configuration information and an index of a plurality of sets of CRSs).
  • the index of the configuration information when the index of the configuration information is 0, it indicates that the data is transmitted through two layers, wherein the number of antenna ports and the frequency offset information of the CRS corresponding to layer 1 correspond to the number of CRS antenna ports in Table 4 and When the index of the frequency offset is 10, the CRS is transmitted through the number of four antenna ports, and the frequency offset of the unit composed of the CRS corresponding to the number of the four antenna ports is zero. That is, it may correspond to the pilot pattern corresponding to the number of antenna ports in FIG.
  • the number of antenna ports and the frequency offset information correspond to the case where the number of CRS antenna ports and the index of the frequency offset in Table 4 are 11, that is, the CRS is transmitted through the number of four antenna ports, and the unit composed of CRSs corresponding to the number of the four antenna ports
  • the information about the CRS antenna port number and the CRS frequency offset may be indicated by the first PQI.
  • the indication fields of the antenna port, the scrambling identity and the number of layers may be extended in the DCI defined by the existing protocol. That is, the indication field of the antenna port, the scrambling code identifier, and the layer number defined in the existing protocol is extended, and the indication field of the first PQI is added.
  • the index of the configuration information is used to indicate that the resources of the N sets of CRSs used by the current data transmission are in the multiple sets of parameter sets (including the antenna port, the scrambling code identifier, the number of layers, and the first PQI). Which group.
  • Table 7 shows a mapping relationship between an index of a plurality of configuration information and an antenna port, a scrambling code identifier, a layer number, and a plurality of sets of parameters that may be configured by an indication field of the first PQI (ie, another example of the sixth mapping relationship) ).
  • the index of the PQI may refer to the mapping relationship between the indexes of the multiple groups of PQIs shown in Table 1 and the indexes of the plurality of groups of high-level parameters, and further determine the number of CRS antenna ports and the frequency offset of the N groups of CRSs according to the corresponding high-level parameters. That is, Table 7 is based on Table 1.
  • the mapping relationship between the two mapping relationship information (that is, the index of the multiple groups of PQIs and the indexes of the plurality of groups of high-level parameters) needs to be saved or acquired at the same time, and The mapping between the multiple configuration information and the antenna port, the scrambling code identifier, the number of layers, and the set of parameters that may be configured by the indication field of the first PQI).
  • an indication field may be added to the DCI defined by the existing protocol, for example, it may be an indication field of the PQI, where the indication field of the PQI is used to indicate the number of antenna port antenna ports and the first The PQI mapping relationship, or the mapping relationship between the layer and the first PQI, or the mapping relationship between the number of antenna ports and the layer and the first PQI.
  • the index of the configuration information is used to indicate the N sets of CRSs used for the current data transmission.
  • the resource is which of the plurality of sets of parameters (including the data antenna port (or DMRS antenna port) and the first PQI, or the layer and the first PQI, or the data antenna port, the layer and the first PQI).
  • Table 8 Table 9, and Table 10 show the mapping relationship between the index of the plurality of configuration information and the sets of parameters that may be configured by the indication field of the PQI (ie, another example of the sixth mapping relationship).
  • the index of the PQI may refer to the mapping relationship between the indexes of the multiple groups of PQIs shown in Table 1 and the indexes of the plurality of groups of high-level parameters, and further determine the number of CRS antenna ports and the frequency offset of the N groups of CRSs according to the corresponding high-level parameters. That is, Table 1, Table 9, and Table 10 are based on Table 1. That is to say, if the foregoing method is used to instruct the terminal device to determine the resources of the CRS, the corresponding mapping relationship information needs to be saved or acquired at the same time.
  • the specific processing method has been described in detail above, and is not described here for brevity.
  • the indication information includes: a cell identifier of the at least one target cell, or at least one index corresponding to the cell identifier and the antenna port number information of the at least one target cell.
  • method 5 The method of indicating the resource of the CRS by using an index of the cell identity of at least one cell (method 5) or at least one index (method 6) corresponding to the cell identity and antenna port configuration information of at least one cell is described in detail below.
  • the indication information includes an index of a cell identifier of the at least one target cell and an antenna port number information of the at least one target cell.
  • the first network device sends the indication information to the terminal device, including:
  • the first network device Determining, by the first network device, at least one target cell corresponding to the at least one network device that sends the data to the terminal device, where the at least one target cell is determined from a plurality of coordinated cells, and the multiple coordinated cells are available for Corresponding to multiple network devices that send data by the terminal device;
  • the first network device sends, to the terminal device, a cell identifier of the at least one target cell and antenna port number information of the at least one target cell.
  • the terminal device receives the indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the first network device may configure antenna configuration information of multiple coordinated cells by using RRC signaling, or the terminal device may pre-save antenna configuration information of the multiple coordinated cells.
  • the cooperative cell referred to herein can be understood as a cell corresponding to a network device that can be used to transmit data (ie, for CoMP transmission) to the terminal device.
  • the terminal device may determine the number of antenna ports of the target cell according to the number of antenna ports of the target cell sent by the first network device, and according to the The frequency offset is calculated to determine the number of antenna ports and frequency offset corresponding to the N sets of CRSs.
  • the indication information includes at least one index corresponding to antenna port configuration information of the at least one target cell, where the CRS antenna port configuration information includes: a cell identifier and a corresponding CRS antenna port number, or a cell The number of CRS antenna ports and the CRS frequency offset of the cell, or the cell identity and the corresponding CRS antenna port number and CRS frequency offset.
  • the first network device sends the indication information to the terminal device, including:
  • the first network device Determining, by the first network device, at least one target cell corresponding to the at least one network device that sends the data to the terminal device, and an antenna port number of each target cell, where the at least one target cell is determined from multiple coordinated cells And the plurality of coordinated cells correspond to a plurality of network devices that can be used to send data to the terminal device;
  • the first network device sends the at least one index corresponding to the antenna port configuration information of the at least one target cell to the terminal device.
  • the terminal device receives the indication information sent by the network device, including:
  • the terminal device determines resources occupied by the N groups of CRSs according to the indication information, including:
  • the terminal device Determining, by the terminal device, the resources occupied by the N sets of CRSs according to the eighth mapping relationship and the at least one index corresponding to the antenna port configuration information of the at least one cell, where the eighth mapping relationship is used to indicate multiple indexes and multiple The mapping relationship between the CRS antenna port configuration information of the coordinated cells.
  • the first network device may configure a mapping relationship between CRS antenna port configuration information of multiple coordinated cells and multiple indexes by using RRC signaling, or the terminal device may pre-save the coordinated cells of the multiple coordinated cells.
  • the first network device may directly directly input the CRS antenna port configuration information of the target cell corresponding to the current data transmission.
  • the terminal device sends the cell identifier of the cell corresponding to the received index and the number of antenna ports of the cell according to the mapping relationship between the pre-acquired cell identifier and the number of CRS antenna ports.
  • the frequency offset is calculated to determine the number of antenna ports and frequency offset corresponding to the N sets of CRSs.
  • Table 11 shows the mapping relationship (i.e., the eighth mapping relationship) between the plurality of indexes and the antenna configuration information of the plurality of coordinated cells.
  • the coordinated cell ID can be understood as an index of a mapping relationship between the cell identifier and the number of CRS antenna ports. It can be seen that, after receiving the indication information sent by the first network device, the terminal device may determine, according to the index, the coordinated cell ID corresponding to each layer or each antenna port, and further according to the coordinated cell and the antenna port configuration information. a mapping relationship between the number of antenna ports of the target cell and according to The frequency offset is calculated to determine the number of antenna ports and frequency offset corresponding to the N sets of CRSs.
  • the first network device may directly send the CRS antenna port configuration information of the target cell corresponding to the current data transmission as an index.
  • the terminal device can determine the number of CRS antenna ports and the CRS frequency offset of the cell corresponding to the received index according to the mapping relationship between the number of pre-acquired CRS antenna ports and the CRS frequency offset, so that the terminal device can determine and The number of antenna ports and frequency offset corresponding to the N sets of CRSs.
  • the cooperative cell IDs in Table 11, Table 12, and Table 13 above can be understood as the number of CRS antenna ports.
  • An index of the mapping relationship with the CRS frequency offset is an index of the mapping relationship with the CRS frequency offset.
  • the first network device may directly directly input the CRS antenna port configuration information of the target cell corresponding to the current data transmission.
  • the terminal device may determine the CRS antenna port number and the CRS frequency offset of the cell corresponding to the received index according to the mapping relationship between the pre-acquired cell identifier and the CRS antenna port number and the CRS frequency offset. Thereby, the number of antenna ports and the frequency offset corresponding to the N sets of CRSs can be determined.
  • the coordinated cell IDs in Table 11, Table 12, and Table 13 above can be understood as an index of the mapping relationship between the cell identity and the number of CRS antenna ports and CRS frequency offset.
  • the specific method for the first network device to instruct the terminal device to determine the resources occupied by the N groups of CRSs by using the indication information is described in detail by using the method 1 to the method 6. It should be understood that the above-described methods are merely illustrative and should not be construed as limiting the application, and the application should not be limited thereto.
  • the indication information of the resource for indicating the CRS is sent to the terminal device by using the first network device, so that the terminal device determines the resource of the CRS according to the indication information, and receives the data according to the resource of the CRS, and all fall within the protection scope of the present application. Inside.
  • the method for data transmission in the embodiment of the present application by sending the indication information to the terminal device, is used by the terminal device to determine the resources occupied by the N groups of CRSs, so that the terminal device can consider the CRS resources of the network devices when receiving the data. Therefore, the data is correctly received and the receiving performance is improved.
  • each mapping relationship in the above example includes an index corresponding to the N groups of CRSs (for example, an index of the first PQI, an index of the second PQI, an index of the number of CRS antenna ports, and an index of the CRS frequency offset). , CRS antenna port number and frequency offset index, index of configuration information, index of cell identity, index of antenna port configuration information of the cell, and the like.
  • FIG. 5 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application. As shown in FIG. 5, the terminal device 500 includes a transceiver unit 510 and a determining unit 520.
  • the transceiver unit 510 is configured to receive indication information that is sent by the network device, where the indication information is used to determine resources occupied by the N groups of cell reference signals CRS, where N is a natural number greater than or equal to 2;
  • the determining unit 520 is configured to determine, according to the indication information, resources occupied by the N sets of CRSs;
  • the transceiver unit 510 is further configured to receive data according to resources occupied by the N sets of CRSs.
  • the indication information corresponds to at least one of: a codeword corresponding to the data, a layer to which the codeword is mapped, or an antenna port to which the codeword is mapped.
  • the transceiver unit 510 is configured to receive first indication information that is sent by the network device, where the first indication information indicates an antenna port number and a frequency offset of the N sets of CRSs, where the frequency offset indicates a resource unit RE of the CRS mapping. The location on the frequency domain resource.
  • the transceiver unit 510 is configured to receive an index of the N first PQIs corresponding to the N groups of CRSs sent by the network device, where each first PQI includes information about the number of antenna ports and frequency offsets for transmitting one CRS. .
  • the transceiver unit 510 is configured to receive an index of the S second PQIs corresponding to the N groups of CRSs sent by the network device, where the second PQI includes the number of antenna ports and the frequency offset of the at least one group of CRSs.
  • Information where S ⁇ [1, N), and S is a natural number.
  • the first indication information is an index of a second PQI corresponding to the N sets of CRSs, where the second PQI includes information about an antenna port number and a frequency offset of the N sets of CRSs.
  • the index of the second PQI is used to indicate a physical downlink shared channel resource element mapping and a quasi-co-location configuration PDSCH-RE-mapping-QCL-Config parameter set used by the terminal device for current data transmission.
  • the PDSCH-RE-mapping-QCL-Config parameter set is carried in the radio resource control RRC signaling.
  • the second PQI is a high level parameter.
  • the transceiver unit 510 is configured to receive an index of the number of N CRS antenna ports corresponding to the N groups of CRSs and an index of N CRS frequency offsets corresponding to the N groups of CRSs sent by the network device.
  • the transceiver unit 510 is configured to receive an index of the number of N CRS antenna ports and frequency offsets corresponding to the N groups of CRSs sent by the network device.
  • the transceiver unit 510 is specifically configured to receive an index of the configuration information sent by the network device, where the configuration information includes an index of an antenna port number and a frequency offset of each group of CRSs in the N groups of CRSs.
  • the transceiver unit 510 is configured to receive an index of a cell identifier of the at least one cell that is sent by the network device, and a CRS antenna port number information of the at least one cell, where the cell identifier is used to determine a CRS frequency offset, and the CRS frequency is used.
  • the partial indicates the location of the RE of the CRS mapping on the frequency domain resource.
  • the transceiver unit 510 is configured to receive, by the network device, at least one index corresponding to CRS antenna port configuration information of the at least one cell, where the CRS antenna port configuration information includes: a cell identifier and a corresponding number of CRS antenna ports. Or, the number of CRS antenna ports of the cell and the CRS frequency offset of the cell, or the cell identifier and the corresponding CRS antenna port number and CRS frequency offset.
  • the transceiver unit 510 is specifically configured to receive downlink control information DCI sent by the network device, where the DCI includes the indication information.
  • the part of the resource occupied by the N group of cell reference signals CRS corresponds to the resource occupied by the CRS corresponding to one codeword.
  • the terminal device 500 may correspond to a terminal device in a method for data transmission according to an embodiment of the present application, and each module in the terminal device 500 and the other operations and/or functions described above are respectively implemented The corresponding flow of the method in FIG. 4 is not repeated here for brevity.
  • the terminal device in the embodiment of the present application determines the resources occupied by the N groups of CRSs according to the indication information by receiving the indication information sent by the network device, so that the terminal device can consider the CRS resources of each network device when receiving the data, thereby correctly Receive data and improve reception performance.
  • FIG. 6 is a schematic block diagram of a network device 600 in accordance with an embodiment of the present application.
  • the terminal device 600 includes: a transceiver unit 610.
  • the transceiver unit 610 is configured to send, to the terminal device, the indication information, where the indication information is used to determine resources occupied by the N groups of CRSs, where the resources occupied by the N groups of CRSs are used to indicate that the terminal device receives data, where N is greater than or A natural number equal to 2.
  • the indication information corresponds to at least one of: a codeword corresponding to the data, a layer to which the codeword is mapped, or an antenna port to which the codeword is mapped.
  • the network device further includes a determining unit 620, configured to determine an antenna port number and a frequency offset for transmitting the N groups of CRSs;
  • the transceiver unit 620 is configured to send, according to the number of antenna ports and the frequency offset of the N sets of CRSs, first indication information for indicating the number of antenna ports and the frequency offset of the N sets of CRSs, where the frequency offset is used for Indicates the location of the resource unit RE of the CRS mapping on the frequency domain resource.
  • the transceiver unit 620 is configured to send, to the terminal device, an index of N first PQIs corresponding to the N groups of CRSs, where each first PQI includes information about an antenna port number and a frequency offset for transmitting one CRS. .
  • the transceiver unit 620 is configured to send, to the terminal device, an index of S second PQIs corresponding to the N groups of CRSs, where each second PQI includes an antenna port number and a frequency offset of the at least one group of CRSs.
  • Information where S ⁇ [1, N), and S is a natural number.
  • the first indication information is an index of a second PQI corresponding to the N sets of CRSs, where the second PQI includes information about an antenna port number and a frequency offset of the N sets of CRSs.
  • the index of the second PQI is used to indicate a physical downlink shared channel resource element mapping and a quasi-co-location configuration PDSCH-RE-mapping-QCL-Config parameter set used by the terminal device for current data transmission.
  • the PDSCH-RE-mapping-QCL-Config parameter set is carried in the radio resource control RRC signaling.
  • the second PQI is a high level parameter.
  • the transceiver unit 620 is specifically configured to send, to the terminal device, an index of N CRS antenna port numbers corresponding to the N groups of CRSs and an index of N CRS frequency offsets corresponding to the N groups of CRSs.
  • the transceiver unit 620 is specifically configured to send, to the terminal device, an index of N CRS antenna port numbers and frequency offsets corresponding to the N groups of CRSs.
  • the transceiver unit 620 is specifically configured to send an index of the configuration information to the terminal device, where the configuration information includes an index of an antenna port number and a frequency offset of each group of CRSs in the N groups of CRSs.
  • the transceiver unit 620 is configured to send, to the terminal device, an index of a cell identifier of the at least one cell identifier and an antenna port number information of the at least one cell, where the cell identifier is used to determine a CRS frequency offset, and the CRS frequency offset Indicates the location of the RE of the CRS mapping on the frequency domain resource.
  • the transceiver unit 620 is configured to send, to the terminal device, the at least one index corresponding to the CRS antenna port configuration information of the at least one cell, where the CRS antenna port configuration information includes: a cell identifier and a corresponding number of CRS antenna ports. Or, the number of CRS antenna ports of the cell and the CRS frequency offset of the cell, or the cell identifier and the corresponding CRS antenna port number and CRS frequency offset.
  • the transceiver unit 620 is specifically configured to send downlink control information DCI to the terminal device, where the DCI includes the indication information.
  • the part of the resource occupied by the N group of cell reference signals CRS corresponds to the resource occupied by the CRS corresponding to one codeword.
  • the network device 600 may correspond to a first network device in a method for data transmission according to an embodiment of the present application, and each module in the network device 600 and the other operations and/or functions described above are respectively In order to implement the corresponding process of the method in FIG. 4, for brevity, no further details are provided herein.
  • the network device in the embodiment of the present application sends the indication information to the terminal device, so that the terminal device determines the resources occupied by the N groups of CRSs according to the indication information, and the CRS resources of each network device can be considered when receiving the data, thereby Receive data correctly and improve reception performance.
  • FIG. 7 is another exemplary block diagram of a terminal device 700 in accordance with an embodiment of the present application.
  • the terminal is set
  • the device 700 includes a transceiver 710, a processor 720, a memory 730, and a bus system 740.
  • the transceiver 710, the processor 720, and the memory 730 are connected by a bus system 540 for storing instructions for the processor 720.
  • the instructions stored by the memory 730 are executed to control the transceiver 710 to send and receive signals.
  • the transceiver unit 510 in the terminal device 500 shown in FIG. 5 may correspond to the transceiver 710.
  • the determining unit 520 in the terminal device 500 shown in FIG. 5 may correspond to the processor 720.
  • FIG. 8 is another exemplary block diagram of a network device 800 in accordance with an embodiment of the present application.
  • the terminal device 800 includes a transceiver 810, a processor 820, a memory 830, and a bus system 840.
  • the transceiver 810, the processor 820, and the memory 830 are connected by a bus system 540 for storing
  • the processor 820 is configured to execute instructions stored by the memory 830 to control the transceiver 810 to send and receive signals.
  • the transceiver unit 610 in the network device 600 shown in FIG. 6 can correspond to the transceiver 810.
  • the determining unit 620 in the network device 600 shown in FIG. 6 can correspond to the processor 820.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种用于数据传输的方法,能够通过向终端设备指示至少两组CRS的资源配置情况,使得终端设备能够正确地接收数据,提高数据的接收性能。该方法包括:终端设备接收网络设备发送的指示信息,该指示信息用于确定N组小区参考信号CRS占用的资源,N为大于或等于2的自然数;该终端设备根据该指示信息,确定该N组CRS占用的资源,并根据该N组CRS占用的资源接收数据。

Description

一种用于数据传输的方法和装置
本申请要求于2016年11月4日提交中国专利局、申请号为201610962416.0、申请名称为“一种用于数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于数据传输的方法和装置。
背景技术
第三代合作伙伴计划(3rd Generation Partner Project,3GPP)高级长期演进(Long Term Evolution Advanced,LTE-A)中,协作多点(Coordinated Multi-Point,CoMP)技术利用地理位置上分离的多个网元间的协作与用户设备(user equipment,UE)进行通信,从而降低小区边缘UE的干扰并提高小区边缘吞吐量(cell edge throughput),提高可靠性。
多个网络设备(例如,记作网络设备A和网络设备B)在向终端设备发送数据时,都会分别向终端设备发送小区参考信号(Cell Reference Signal,CRS)以用于信道估计。当前技术中,服务网络设备(例如,网络设备A)在向终端设备发送下行控制信息(Downlink Control Information,DCI)时,会在该DCI中携带用于指示服务小区(即,该服务网络设备所对应的小区)的CRS配置信息,以便于终端设备基于该CRS配置信息接收数据。
然而,当多个网络设备同时向该终端设备发送数据时,每个网络设备都会发送CRS,而终端设备只知道服务小区的CRS占用的时频资源,而协作小区(例如,网络设备B对应的小区)的CRS占用的时频资源(例如,记作时频资源A)和服务小区的CRS占用的时频资源(例如,记作时频资源B)可能是不同的,但是终端设备并不知道网络设备在时频资源B发送CRS,仍然在该时频资源B上接收数据,从而造成数据解码错误,数据的接收性能下降。
发明内容
本申请提供一种用于数据传输的方法和装置,以通过向终端设备指示至少两组CRS的资源配置情况,使得终端设备能够正确地接收数据,提高数据的接收性能。
第一方面,提供了一种用于数据传输的方法,包括:
终端设备接收网络设备发送的指示信息,所述指示信息用于确定N组小区参考信号CRS占用的资源,N为大于或等于2的自然数;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,并根据所述N组CRS占用的资源接收至少一个网络设备发送的数据。
其中,该网络设备可以为该至少一个网络设备中的任意一个,也可以不为该至少一个网络设备中的任意一个,本申请对此并未特别限定。
需要说明的是,该指示信息可用于直接或间接地指示CRS天线端口数和CRS频偏的信息,该N组CRS占用的资源中,任意两组所对应的CRS天线端口数不同,或者,任意两组所对应的CRS频偏不同,或者,任意两组所对应的CRS天线端口数和频偏都不同。
因此,本申请实施例的用于数据传输的方法,通过向终端设备发送指示信息以用于终端设备确定N组CRS占用的资源,使得终端设备在接收数据时可以考虑到各网络设备的CRS资源,从而正确地接收数据,提高接收性能。
进一步地,所述指示信息与以下至少一项对应:所述数据对应的码字,所述码字映射至的层,或者,所述码字映射至的天线端口(即,数据天线端口)。
可选地,所述终端设备接收网络设备发送的指示信息,包括:
所述终端设备接收所述网络设备发送的下行控制信息DCI,所述DCI中包括所述指示信息。
因此,通过对现有协议中的DCI的各字段进行修改或扩展,将该指示信息承载于该DCI中,以便于终端设备根据接收到物理下行控制信信道(Physical Downlink Control Channel,PDCCH)中的DCI,可确定N组CRS占用的资源,从而在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)准确地接收数据,提高了数据接收性能。
结合第一方面,在第一方面的第一种可能的实现方式中,所述指示信息包括用于指示所述N组CRS的天线端口数和频偏的第一指示信息,以及,
所述终端设备接收网络设备发送的指示信息,包括:
所述终端设备接收所述网络设备发送的所述第一指示信息。
因此,通过向终端设备发送用于直接指示CRS的天线端口数和频偏的第一指示信息,使得终端设备可以直接根据该第一指示信息确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
在一种可能的设计中,所述第一指示信息为与所述N组CRS对应的N个第一物理下行控制信道资源元素映射和准共址指示PQI的索引,每个第一PQI中包括一组CRS的天线端口数和频偏的信息,以及,
所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述N个第一PQI的索引;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第一映射关系,以及所述N个第一PQI的索引,确定所述N组CRS占用的资源,其中,所述第一映射关系用于指示多个第一PQI的索引与多个高层参数组之间的映射关系。
可选地,所述第一PQI的索引用于指示终端设备当前数据传输采用的物理下行共享信道资源元素映射和准共址配置(PDSCH-RE-mapping QCL-Config)参数集合。
可选地,所述PDSCH-RE-mapping QCL-Config参数集合携带在无线资源控制(Radio Resource Control,RRC)信令中。
可选地,所述第一PQI为高层参数。
在一种可能的设计中,所述第一指示信息为与所述N组CRS对应的S个第二PQI的索引,每个第二PQI中包括至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数,以及,
所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述S个第二PQI的索引;所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第二映射关系,以及所述S个第二PQI的索引,确定所述N组CRS占用的资源,其中,所述第二映射关系用于指示多个第二PQI与多个高层参数组的集合之间的映射关系。
可选地,所述第一指示信息为一个第二PQI的索引,所述第二PQI包括N组CRS的天线端口数和频偏的信息。
可选地,所述第二PQI的索引用于指示终端设备当前数据传输采用的PDSCH-RE-mapping QCL-Config参数集合。
可选地,所述PDSCH-RE-mapping QCL-Config参数集合携带在RRC信令中。
可选地,所述第二PQI为高层参数。
在一种可能的设计中,所述第一指示信息包括:与所述N组CRS对应的N个CRS天线端口数的索引,以及与所述N组CRS对应的N个CRS频偏的索引,所述CRS天线端口数指示发送CRS的天线端口数,所述CRS频偏指示CRS映射的资源单元RE在频域资源上的位置,以及,
所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述N个CRS天线端口数的索引和所述N个CRS频偏的索引;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第三映射关系和第四映射关系,以及所述N个CRS天线端口数的索引和N个CRS频偏的索引,确定所述N组CRS占用的资源,其中,所述第三映射关系用于指示多个索引与多个CRS天线端口数之间的映射关系,所述第四映射关系用于指示多个索引与多个CRS频偏之间的映射关系。
在一种可能的设计中,所述第一指示信息为与所述N组CRS对应的N个CRS天线端口数与频偏的索引,所述CRS天线端口数与频偏指示:发送CRS的天线端口数,以及CRS映射的RE在频域资源上的位置,以及,
所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述N个CRS天线端口数与频偏的索引;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第五映射关系,以及所述N个CRS天线端口数与频偏的索引,确定所述N组CRS占用的资源,其中,所述第五映射关系用于指示多个索引与多个CRS天线端口数与频偏信息之间的映射关系。
在一种可能的设计中,所述第一指示信息为配置信息的索引,所述配置信息指示所述N组CRS中每组CRS的天线端口数和频偏的索引,所述CRS天线端口数与频偏指示:发送CRS的天线端口数,以及CRS映射的RE在频域资源上的位置,以及,
所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
所述终端设备接收所述网络设备发送的所述配置信息的索引;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第六映射关系,以及所述配置信息的索引,确定所述N组CRS占用的资源,其中,所述第六映射关系用于指示多个配置信息的索引与多组CRS的天线端口数和频偏的索引之间的映射关系,或者,所述第六映射关系用于指示多个配置信息的索引与多组PQI的索引之间的映射关系。
结合第一方面,在第一方面的第二种可能的实现方式中,所述指示信息包括:至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息,所述小区标识用于确定CRS频偏,所述CRS频偏指示CRS映射的RE在频域资源上的位置,以及,
所述终端设备接收网络设备发送的指示信息,包括:
所述终端设备接收所述网络设备发送的所述至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息;
所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第七映射关系,以及所述至少一个小区标识的索引和所述至少一个目标小区的CRS天线端口数信息,确定所述N组CRS占用的资源,其中,所述第七映射关系用于指示多个小区标识的索引与多个小区的小区标识之间的映射关系。
其中,小区标识的索引可以为小区标识本身,也可以为用于唯一地指示该小区标识的索引值,本申请对此并未特别限定。
因此,通过指示小区标识,可以间接地指示CRS频偏,同时根据小区的CRS天线端口数信息,可以确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
结合第一方面,在第一方面的第三种可能的实现方式中,所述指示信息为与至少一个小区的CRS天线端口配置信息对应的至少一个索引,所述CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏,以及,
所述终端设备接收网络设备发送的指示信息,包括:
所述终端设备接收所述网络设备发送的所述与至少一个小区的CRS天线端口配置信息对应的至少一个索引;
所述终端设备接收所述网络设备发送的所述至少一个小区标识的索引;所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,包括:
所述终端设备根据第八映射关系,以及所述与至少一个小区的CRS天线端口配置信息对应的至少一个索引,确定所述N组CRS占用的资源,其中,所述第八映射关系用于指示多个索引与多个CRS天线端口配置信息的索引之间的映射关系。
因此,通过指示小区标识,可以间接地指示CRS频偏,使得终端设备可以根据预先获取的小区标识与小区的CRS天线端口配置信息之间的映射关系,确定CRS天线端口数与频偏信息,进而确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
可以理解的是,上述各种映射关系(包括第一映射关系至第八映射关系)可以通过无线资源控制(Radio Resource Control,RRC)信令配置给终端设备,也可以由网络设备与终端设备预先协商并保存在各设备中。
第二方面,提供了一种用于数据传输的方法,包括:
网络设备向终端设备发送指示信息,所述指示信息用于确定N组CRS占用的资源,所述N组CRS占用的资源用于指示所述终端设备接收至少一个网络设备发送的数据,其 中,N为大于或等于2的自然数。
其中,该网络设备可以为该至少一个网络设备中的任意一个,也可以不为该至少一个网络设备中的任意一个,本申请对此并未特别限定。
需要说明的是,该指示信息可用于直接或间接地指示CRS天线端口数和CRS频偏的信息,该N组CRS占用的资源中,任意两组所对应的CRS天线端口数不同,或者,任意两组所对应的CRS频偏不同,或者,任意两组所对应的CRS天线端口数和频偏都不同。
因此,本申请实施例的用于数据传输的方法,通过向终端设备发送指示信息以用于终端设备确定N组CRS占用的资源,使得终端设备在接收数据时可以考虑到各网络设备的CRS资源,从而正确地接收数据,提高接收性能。
进一步地,所述指示信息与以下至少一项对应:所述数据对应的码字,所述码字映射至的层,或者,所述码字映射至的天线端口(即,数据天线端口)。
可选地,所述网络设备向终端设备发送指示信息,包括:
所述网络设备向所述终端设备发送下行控制信息DCI,所述DCI中包括所述指示信息。
因此,通过对现有协议中的DCI的各字段进行修改或扩展,将该指示信息承载于该DCI中,以便于终端设备根据接收到PDCCH中的DCI,可确定N组CRS占用的资源,从而在物理下行共享信道PDSCH准确地接收数据,提高了数据接收性能。
结合第二方面,在第二方面的第一种可能的实现方式中,所述指示信息包括用于指示所述N组CRS的天线端口数和频偏的第一指示信息,以及,
所述网络设备向终端设备发送指示信息,包括:
所述网络设备确定发送所述N组CRS的天线端口数和频偏;
所述网络设备根据所述N组CRS的天线端口数和频偏,向所述终端设备发送所述第一指示信息。
因此,通过向终端设备发送用于直接指示CRS的天线端口数和频偏的第一指示信息,使得终端设备可以直接根据该第一指示信息确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
在一种可能的设计中,所述第一指示信息为与所述N组CRS对应的N个第一物理下行控制信道资源元素映射和准共址指示PQI的索引,每个第一PQI中包括一组CRS的天线端口数和频偏的信息,以及,
所述网络设备向所述终端设备发送所述第一指示信息,包括:
所述网络设备向所述终端设备发送所述N个第一PQI的索引。
可选地,所述第一PQI的索引用于指示终端设备当前数据传输采用的PDSCH-RE-mapping QCL-Config参数集合。
可选地,所述PDSCH-RE-mapping QCL-Config参数集合携带在RRC信令中。
可选地,所述第一PQI为高层参数。
在一种可能的设计中,所述第一指示信息为S个第二PQI的索引,每个第二PQI中包括至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数,以及,
所述网络设备向所述终端设备发送所述第一指示信息,包括:
所述网络设备向所述终端设备发送所述S个第二PQI的索引。
可选地,所述第一指示信息为一个第二PQI的索引,所述第二PQI包括N组CRS的天线端口数和频偏的信息。
可选地,所述第二PQI的索引用于指示终端设备当前数据传输采用的PDSCH-RE-mapping QCL-Config参数集合。
可选地,所述PDSCH-RE-mapping QCL-Config参数集合携带在RRC信令中。
可选地,所述第二PQI为高层参数。
在一种可能的设计中,所述第一指示信息包括:与所述N组CRS对应的N个CRS天线端口数的索引,以及与N组CRS对应的N个CRS频偏的索引,所述CRS天线端口数指示发送CRS的天线端口数,所述CRS频偏指示CRS映射的资源单元RE在频域资源上的位置,以及,
所述网络设备向所述终端设备发送所述第一指示信息,包括:
所述网络设备向所述终端设备发送所述N个CRS天线端口数的索引和所述N个CRS频偏的索引。
在一种可能的设计中,所述第一指示信息为与所述N组CRS对应的N个CRS天线端口数与频偏的索引,所述CRS天线端口数与频偏指示:发送CRS的天线端口数,以及CRS映射的RE在频域资源上的位置,以及,
所述网络设备向所述终端设备发送所述第一指示信息,包括:
所述网络设备向所述终端设备发送所述N个CRS天线端口数与频偏的索引。
在一种可能的设计中,所述第一指示信息为配置信息的索引,所述配置信息指示所述N组CRS中每组CRS的天线端口数和频偏的索引,所述CRS天线端口数与频偏指示:发送CRS的天线端口数,以及CRS映射的RE在频域资源上的位置,以及,
所述网络设备向所述终端设备发送所述第一指示信息,包括:
所述网络设备向所述终端设备发送所述配置信息的索引。
结合第二方面,在第二方面的第二种可能的实现方式中,所述指示信息包括:至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息,所述小区标识用于确定CRS频偏,所述CRS频偏指示CRS映射的RE在频域资源上的位置,以及,
所述网络设备向终端设备发送指示信息,包括:
所述网络设备确定向所述终端设备发送所述至少一个小区标识的小区标识的索引和所述至少一个小区的CRS天线端口数信息。
其中,小区标识的索引可以为小区标识本身,也可以为用于唯一地指示该小区标识的索引值,本申请对此并未特别限定。
因此,通过指示小区标识,可以间接地指示CRS频偏,同时根据小区的天线端口数配置信息,可以确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
结合第二方面,在第二方面的第三种可能的实现方式中,所述指示信息为与至少一个小区的CRS天线端口配置信息对应的至少一个索引,所述CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏,以及,
所述网络设备向终端设备发送指示信息,包括:
所述网络设备确定向所述终端设备发送所述与至少一个小区的CRS天线端口配置信息对应的至少一个索引。
因此,通过指示小区标识,可以间接地指示CRS频偏,使得终端设备可以根据预先获取的小区标识与小区的CRS天线端口配置信息之间的映射关系,确定CRS天线端口数与频偏信息,进而确定N组CRS占用的资源,从而正确地接收数据,提高接收性能。
第三方面,提供了一种终端设备,用于执行第一方面及第一方面的任意可能的实现方式中的方法。具体地,该终端设备可以包括用于执行第一方面及第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行第二方面及第二方面的任意可能的实现方式中的方法。具体地,该网络设备可以包括用于执行第二方面及第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,包括:收发器、处理器、存储器和总线系统,所述收发器、所述处理器和所述存储器通过所述总线系统相连,其中,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行根据上述第一方面及第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,包括:收发器、处理器、存储器和总线系统,所述收发器、所述处理器和所述存储器通过所述总线系统相连,其中,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行根据上述第二方面及第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面及第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第二方面及第二方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面及第二方面的任意可能的实现方式中的方法。
本申请提供的网络设备具有实现上述方法方面中网络设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述网络设备包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述网络设备执行上述方法中相应的功能。例如,生成指示信息。所述通信单元用于支持所述网络设备与其他设备通信,实现接收和/或发送功能。例如,发送所述处理器生成的指示信息。
可选的,所述网络设备还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述网络设备可以为基站,gNB或TRP等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述网络设备还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
本申请还提供一种装置,该装置具有实现上述方法方面中终端行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中相应的功能。例如,确定N组CRS占用的资源。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收指示信息,或者,接收数据。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
第十一方面,提供了一种芯片系统,所述芯片系统包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存终端设备必要的程序指令和数据。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,提供了一种芯片系统,所述芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存终端设备必要的程序指令和数据。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是适用于本申请实施例的无线通信系统的示意图。
图2是适用于本申请实施例的CoMP传输的场景示意图。
图3是常规循环前缀(Cyclic Prefix,CP)情况下不同天线端口数下的CRS的RE映射位置图。
图4是根据本申请实施例的用于数据传输的方法的示意性流程图。
图5是根据本申请实施例的终端设备的示意性框图。
图6是根据本申请实施例的网络设备的示意性框图。
图7是根据本申请实施例的终端设备的另一示意性框图。
图8是根据本申请实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G等。
图1示出了适用于本申请实施例的无线通信系统100。该无线通信系统100可以包括至少一个网络设备,例如,图1所示的第一网络设备110和第二网络设备120。第一网络设备110和第二网络设备120均可以与终端设备130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。该第一网络设备110或第二网络设备120可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的网络设备,如传输点(Transmission Point,TP)、传输接收点(Transmission Reception Point,TRP)、5G基站(gNB)、基站、小基站设备等,本申请实施例对此并未特别限定。
举例而言,该第一网络设备110或第二网络设备120可以是可以为演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、无线保真(Wireless Fidelity,WIFI)、接入点(Access Point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)等,还可以为5G,如新无线(new radio,NR),系统中的gNB,或,传输点(TRP或TP),或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,数据单元(DU,data unit)等。
在一些部署中,gNB可以包括控制单元(control unit,CU)和数据单元(DU)。gNB还可以包括射频单元(RU,radio unit)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。
该无线通信系统100还包括位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端设备(User Equipment,UE)130。该终端设备130可以是移动的或固定的。终端设备130可以经无线接入网(Radio Access Network,RAN)与一个或多个核心 网(Core Network)进行通信,终端设备可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
该无线通信系统100可以支持协作多点(Coordinated Multipoint,CoMP)传输,即,多个小区或多个传输点可以协作以在同一时频资源上向同一个终端设备发送数据或者在部分重叠的时频资源上向同一个终端设备发送数据。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
该无线通信系统100中的终端设备130可以支持多点传输,即,该终端设备130可以与第一网络设备110通信,也可以与第二网络设备120通信,其中,第一网络设备110可以作为服务网络设备,服务网络设备是指该通过无线空口协议为终端设备提供RRC连接、非接入层(Non-access Stratum,NAS)移动性管理和安全性输入等服务的网络设备,或者,服务网络设备可以为通过无线空口协议为终端设备提供RRC连接、NAS移动性管理和安全性输入中至少一项服务的网络设备。
可选地,该第一网络设备可以为服务网络设备,该第二网络设备可以为协作网络设备;或者,第一网络设备可以为协作网络设备,第二网络设备为服务网络设备。其中,该服务网络设备可以向终端设备发送控制信令,该协作网络设备可以向终端设备发送数据;或者,该服务网络设备可以向终端设备发送控制信令,该服务网络设备和该协作网络设备可以同时向该终端设备发送数据;或者,该服务网络设备和该协作网络设备可以同时向终端设备发送控制信令,并且该服务网络设备和该协作网络设备可以同时向该终端设备发送数据;或者,该协作网络设备可以向终端设备发送控制信令,该服务网络设备和协作网络设备中至少一个可以向终端设备发送数据;或者,该协作网络设备可以同时向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
以第一网络设备为服务网络设备,第二网络设备为协作网络设备为例,该第二网络设备的数量可以是一个或多个,且与第一网络设备为满足不同准共址(Quasi-Co-Location,QCL)的网络设备。其中,天线端口QCL定义为从QCL的天线端口发送出的信号会经过相同的大尺度衰落,大尺度衰落包括时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延。
可以理解的是,第一网络设备和第二网络设备可以都为服务网络设备,例如在无小区non-cell的场景中。
还需要说明的是,本申请实施例同样也适用于具有非QCL的天线端口的同一网络设备。即,该网络设备可以配置有不同的天线面板,同一网络设备中归属不同的天线面板的天线端口可能是非QCL的,其对应的CRS资源配置也可能是不同的。
为便于理解本申请实施例,在描述本申请实施例的用于数据传输的方法之前,首先简单介绍码字到层、层到天线端口的映射关系。
用户面数据以及信令消息在到物理层由空口发送出去之前,需经PDCP/RLC/MAC层 的处理。在物理层处理的数据即MAC层的协议数据单元(Protocol Data Unit,PDU),即,数据流。来自上层的数据流进行信道编码之后即为码字。不同的码字区分不同的数据流。由于码字的数量与发送天线数量不一致,可以将码字映射到不同的发射天线上,因此需要进行层映射和预编码。其中,层映射可以理解为,按一定的规则将码字重新映射到多个层;预编码可以理解为,将映射到多个层的数据映射到不同的天线端口(为便于区分和说明,将码字映射至的天线端口记作数据天线端口)上。
网络设备将数据进行编码获得码字,将码字映射到层,再映射到数据天线端口,通过相应的数据天线端口向终端设备发送,并通过相应的数据天线端口发送解调参考信号,以便于终端设备根据解调参考信号(Demodulation Reference Signal,DMRS)对接收到的数据进行解调处理,获得原始数据。
需要说明的是,天线端口可以理解为,可以被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。天线端口可以根据与该天线端口相关联的参考信号(或者说,导频信号,例如,DMRS或者CRS等)进行定义。一个天线端口可以是发射端设备上的一根物理天线,也可以是发射端设备上多根物理天线的加权组合。在本申请实施例中,在未作出特别说明的情况下,一个天线端口对应一个参考信号。
当前技术中,服务网络设备和协作网络设备在向终端设备发送数据时,可以分别向终端设备发送CRS和DMRS,其中,CRS可以用于信道估计,DMRS可以用于解调数据。本领域技术人员可以理解,网络设备向终端设备发送DMRS的天线端口(即,数据天线端口)和发送CRS的天线端口是相对应的。这是因为,天线端口可以理解为被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。天线端口可以根据相关联的参考信号来定义。实际上,网络设备可以通过同一个或多个物理天线向终端设备发送CRS和DMRS,因此,网络设备向终端设备发送DMRS的天线端口和发送CRS的天线端口是相对应的。
应注意,通常情况下,发送DMRS的天线端口用于发送数据,故发送数据的天线端口与发送CRS的天线端口是不同的,但是相对应的。
为便于理解本申请实施例,以下结合图2详细说明CoMP传输的具体场景。图2是适用于本申请实施例的CoMP传输的场景的示意图。
具体地,图2中的(a)示出了多点多流的一场景。如图所示,一个码字(例如,记作CW1)经过层映射,可以映射到一个层(例如,记作层1),然后映射到数据天线端口(例如,记作端口1),该数据天线端口属于TP或者TRP(例如,记作TP1,即,网络设备的一例)。即,CW1对应的数据由该TP1通过端口1发送给终端设备。相似地,另一个码字(例如,记作CW2)经过层映射,可以映射到一个层(例如,记作层2),然后映射到数据天线端口(例如,记作端口2),该数据天线端口属于另一个TP(例如,记作TP2,即,网络设备的另一例)。即,CW2对应的数据由该TP2通过端口2发送给终端设备。也就是说,不同的TP传输不同的码字。此情况下,码字与层是对应的,层与数据天线端口是对应的,数据天线端口与TP也是对应的。
图2中的(b)示出了多点多流的又一场景。如图所示,一个码字(例如,CW1)经过层映射,可以映射到两个层(例如,层1和层2),然后映射到不同的数据天线端口(例如,端口1和端口2),端口1和端口2属于不同的TP(例如,TP1和TP2)。即,CW1 对应的数据由TP1和TP2分别通过端口1和端口2发送给终端设备。也就是说,不同的TP传输同一码字的不同层。此情况下,层与数据天线端口是对应的,数据天线端口与TP也是对应的。
图2中的(c)示出了单频网(Single Frequency Network,SFN)的场景。如图所示,一个码字(例如,CW1)经过层映射,可以映射到两个层(例如,层1和层2),然后映射到不同的数据天线端口(例如,端口1和端口2),映射到每个天线端口的数据可以分别通过不同的TP(例如,TP1和TP2)发送给终端设备。也就是说,不同的TP联合传输同一码字的同一层。此情况下,层与数据天线端口是对应的。
应理解,图2中的(c)示出的场景同样可对应于相干联合传输(Joint Transmission,JT)的场景,即,多个TP的多根天线联合做预编码向终端设备传输数据。
图2中的(d)示出了多点块编码(Multiple Point Block Code,MPBC)的场景。如图所示,一个码字(例如,CW1)经过层映射,可以映射到一个层(例如,层1),然后经过不同的编码方式可以映射到不同的数据天线端口(例如,端口1和端口2),不同的数据天线端口属于不同的TP(例如,TP1和TP2)发送给终端设备。即,不同的TP传输同一码字的相同层的相同数据的不同编码信息。此情况下,数据天线端口与TP是对应的。
应理解,图2中的(d)示出的场景同样可对应于空频码块(Space Frequency Block Code,SFBC)的场景,即,多个TP可以先各自做预编码,然后联合做SFBC向终端设备传输数据。
由上文中示出的场景可以看到,同一终端设备在接收数据时,可能接收到的是一个或多个TP通过一个或多个数据天线端口发送的数据。在存在多个TP或者多个数据天线端口的情况下,若终端设备仅知道服务TP使用的CRS占用的资源,就会造成该终端设备接收数据的性能下降。
为便于理解本申请实施例,以下结合图3简单说明不同天线端口(具体地,CRS天线端口)数下的CRS的一种资源元素(Resource Element,RE)映射位置图(或者说,导频图样)。
图3示出了常规循环前缀(Cyclic Prefix,CP)情况下不同天线端口数(天线端口数分别为1、2和4)下的CRS的RE映射位置图。应理解,图3示出的导频图样仅为便于理解而示出的一例,不应对本申请实施例构成任何限定。例如,该CRS的导频图样还包括扩展CP情况下不同天线端口数的CRS的RE映射位置图,甚至还有可能在未来的协议中扩展到更多天线端口数下的CRS的RE映射位置图。
如图3所示,图中
Figure PCTCN2017109424-appb-000001
表示CRS的RE映射位置,其中,R0、R1、R2和R3分别表示不同天线端口的CRS的RE映射位置。可以看到,不同天线端口的CRS占用的资源在一对资源块(Resource Block,RB)中所映射的RE的位置是不同的,即,不同天线端口的CRS占用的时频资源不同。网络设备在通过一个或多个数据天线端口发送数据时,需要考虑到其他协作网络设备发送的CRS所占用的资源对该网络设备的数据传输的干扰,否则可能会导致终端设备解码错误。因此,网络设备在通过一个或多个数据天线端口发送数据时,要避开各网络设备发送的CRS占用的资源,在多组CRS映射的RE所对应的时频资源上不传输数据,即,在该多组CRS资源上不进行数据映射或者映射后打孔。
图3示出了在CRS的天线端口数分别为1、2、4时的CRS的RE映射位置。可以看 到,当天线端口数为1时(例如,天线端口#0),仅需考虑一组CRS的RE映射位置;当天线端口数为2时(例如,天线端口#0和天线端口#1),不仅需要考虑天线端口#0的CRS的RE映射位置,还需要考虑天线端口#1的CRS的RE映射位置,即,在图中示出的
Figure PCTCN2017109424-appb-000002
Figure PCTCN2017109424-appb-000003
所对应的时频资源上均不传输数据;当天线端口数为4时(例如,天线端口#0、天线端口#1、天线端口#2和天线端口#3),不仅需要考虑天线端口#0的CRS的RE映射位置,还需要同时考虑天线端口#1、天线端口#2和天线端口#3的CRS的RE映射位置。
需要说明的是,通常情况下,用于发送CRS的天线端口号为0、1、2、3中的一个或多个,但这不应对本申请构成任何限定,本申请并不排除在未来的协议中定义更多或更少用于发送CRS的天线端口数和天线端口号。
再参考图2中示出的各个场景,终端设备分别需要知道每个TP通过每个数据天线端口发送数据时所使用的CRS的资源。由此,本申请提供了一种用于数据传输的方法,通过网络设备向终端设备指示至少两组CRS的资源配置情况,使得终端设备能够正确地接收数据,提高数据的接收性能。
以下,结合图4详细说明根据本申请实施例的用于数据传输的方法。
应理解,图4是本申请实施例的用于数据传输的方法的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图4中的各种操作的变形。此外,图4中的各个步骤可以分别按照与图4所呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。
图4是从设备交互的角度示出的根据本申请实施例的用于数据传输的方法200的示意性流程图。该方法200可以用于通过无线空口进行通信的通信系统,该通信系统可以包括至少一个网络设备和至少一个终端设备。例如,该通信系统可以为图1中所示的无线通信系统200。
可选地,该网络设备可以为传输点(TP)、基站,或者,也可以为其他用于下行控制信息(Downlink Control Information,DCI)的网络设备,本申请实施例对此并未特别限定。
以下,不失一般性,以第一网络设备(为便于区分和说明,记作第一网络设备)和终端设备之间的交互为例,详细说明该方法200。应理解,第一网络设备可以为上述至少一个网络设备中的任意一个,例如,该第一网络设备可以为该终端设备的服务网络设备,也可以为该终端设备的协作网络设备。该第一网络设备也可以部位上述至少一个网络设备中的任意一个,本申请实施例对此并未特别限定。其中,“第一”仅用于区分说明,而不应对本申请实施例构成任何限定。还应理解,该终端设备可以与该第一网络设备通信连接,还可以与其他一个或更多个网络设备(例如,第二网络设备)进行数据通信,本申请实施例对此并未特别限定。
如图4所示,该方法200包括以下步骤:
S210,第一网络设备向终端设备发送指示信息。
网络设备在向终端设备发送数据时,首先需要发送CRS以进行信道估计,网络设备发送数据所使用的数据天线端口与发送CRS所使用的资源是相对应的,即,发送CRS的资源将不映射数据,或者映射后打孔。
在本申请实施例中,假设该数据是由上述至少一个网络设备将一个码字映射到至少一个数据天线端口得到的数据。具体地,该至少一个网络设备向终端设备发送数据具体可以 对应于图2(具体地,图2中的(b)至(d))中所示的场景。在本申请实施例中,该码字可以对应于上文中所示例的CW1,该第一网络设备可以对应于上文中所示例的TP1,该第二网络设备可以对应于上文中所示例的TP2。
应理解,图2所示的场景仅为便于理解而示出,不应对本申请构成任何限定,本申请也不应限于此。例如,该第一网络设备也可以为除了图2中示出的TP1和TP2之外的网络设备,即,向该终端设备发送数据的至少一个网络设备中可以包括该第一网络设备,也可以不包括该第一网络设备。
该至少一个网络设备发送N组CRS所使用的时频资源与发送数据所使用的时频资源不同,即,在每个RB上,CRS映射的RE和数据映射的RE是不重叠的。
因此,该第一网络设备可以根据各网络设备针对N组CRS所配置的资源,向该终端设备发送指示信息,该指示信息用于该终端设备确定该N组CRS占用的资源。作为一种可能的实现方式,该第一网络设备可以将该指示信息携带在发送给该终端设备的DCI中,以便于该终端设备在接收到DCI时,可以根据其中携带的指示信息,确定N组CRS的资源,进而在相对应的资源上禁止接收数据。
可选地,S210可以具体包括:
该第一网络设备向该终端设备发送DCI,该DCI中携带该指示信息。
应理解,这里所列举的将指示信息携带在DCI中的方法仅为一种可能的实现方法,不应对本申请实施例构成任何限定,该指示信息也可以携带在其他消息或信令中,本申请实施例对此并未特别限定。
可选地,在S210之前,该方法200还包括:
S220,该第一网络设备确定该N组CRS的资源的配置信息。
换句话说,在第一网络设备向该终端设备发送该指示信息之前,需要从各网络设备获取该N组CRS的资源的配置信息,以生成该指示信息。
在一种可能的实现方式中,该至少一个网络设备中的每个网络设备在发送数据时,可以确定CRS的配置信息。并且,各网络设备可以通过网络设备之间的接口(例如,X2接口)将各自确定的CRS的配置信息发送给第一网络设备。
可以理解的是,在通过不同的数据天线端口发送数据时,对应的发送CRS的资源位置也可能是不同的。因此,每个网络设备可以针对M个数据天线端口,分别确定对应的P组CRS的配置信息,其中,M表示一个网络设备发送数据所对应的数据天线端口数,P小于或等于N,M、P为自然数,并且,M、P因网络设备的不同而取值不同。也就是说,在与数据对应的N组CRS中,每个数据天线端口所对应的CRS(即,上述P组CRS)为N组CRS中的部分或全部。
作为示例而非限定,该配置信息可以包括:CRS的天线端口数和频偏信息。其中,CRS的频偏信息可以理解为该CRS映射的RE相对于预设的导频图样(例如,图3中所示),在频域资源上的偏移量。
这里,一组CRS表示根据CRS的天线端口数和频偏确定的CRS映射的RE在频域资源上的位置相同的CRS的集合。也就是说,任意两组CRS的天线端口数和频偏中至少有一项不同。
这里,需要说明的是,CRS占用的资源可以包括空域资源、时域资源和频域资源。在 本申请实施例中,可以假设时域资源相对于预设的导频图样偏移量为零,即,时域资源仍参照预设的导频图样不变。频域上根据小区标识计算频偏,具体地,
Figure PCTCN2017109424-appb-000004
其中,vshift表示频偏,
Figure PCTCN2017109424-appb-000005
表示小区标识,mod表示取余。通过引入频偏,可以降低邻小区干扰。另外,空域资源即可以理解天线端口的不同。
应理解,本申请实施例主要针对不同网络设备的CRS所使用的频域资源进行了详细说明,但这不应对本申请实施例构成任何限定,例如,不同网络设备的CRS所使用的时域资源也可以是不同的,也同样可以采用本申请实施例的方法来指示CRS相对于导频图样在时域上的偏移量(即,时偏)。
还应理解,本申请实施例中仅以图3示出的导频图样作为预设的导频图样为例来说明,但这仅为示例性说明,不应对本申请实施例构成任何限定。本申请实施例并不排除在未来的协议中对不同天线端口数下对配置的CRS的资源进行删减或修改的可能,以及,在更多或更少的CRS天线端口数下对配置的CRS的资源进行定义的可能。
S230,该至少一个网络设备发送数据和N组CRS占用资源的指示信息。
在本申请实施例中,假设该至少一个网络设备可以包括第一网络设备和第二网络设备。各网络设备在确定了用于发送数据的天线端口和用于发送CRS的资源后,便可以向终端设备发送数据和N组CRS。
其中,该指示信息与以下至少一项对应:该数据对应的码字、该码字映射至的层或者该码字映射至的数据天线端口。每个码字、每个层或者每个数据天线端口所对应的CRS占用的资源为上述N组CRS占用的资源的部分或全部。其中,该数据是由该至少一个网络设备将一个码字映射到该数据天线端口数得到的。
应理解,网络设备发送数据和CRS的具体过程与现有技术中的具体过程相似,为了简洁,这里省略对该具体过程的详细说明。
还应理解,图4中示出的第一网络设备和第二网络设备向该终端设备发送数据的步骤仅为示例性说明,向该终端设备发送数据的至少一个网络设备可以仅为该第一网络设备或者仅为该第二网络设备,或者还可以为一个或多个其他网络设备,本申请对向该终端设备发送数据的至少一个网络设备并未特别限定。
这里,需要说明的是,该至少一个网络设备中的每个网络设备在向该终端设备发送数据之前,都可以获知各网络设备发送CRS所占用的资源(即,上文中所述的N组CRS的资源),因此,在数据映射过程中,可以避开各网络设备发送CRS所占用的资源,即,在该N组CRS映射的RE上不进行数据映射或者对数据映射后进行打孔。
S240,该终端设备根据该指示信息,确定该N组CRS占用的资源,并根据该N组CRS占用的资源,接收数据。
具体来说,终端设备在根据指示信息确定N组CRS占用的资源后,便可以确定在接收数据时,避开该N组CRS映射的RE,在这些RE上禁止接收数据。
以下,结合图2中所示出的各场景,详细说明该第一网络设备通过DCI中的不同字段指示信息,以指示终端设备确定N组CRS的资源的具体方法。
可选地,该指示信息包括:用于指示CRS的天线端口数和频偏的第一指示信息。
其中,频偏可以用于确定CRS映射的RE在频域资源上的位置。
其中,S210可以具体包括:
该第一网络设备确定发送该N组CRS的天线端口数和频偏;
该第一网络设备向该终端设备发送该第一指示信息,该第一指示信息用于指示该N组CRS的天线端口数和频偏。
具体地,该第一网络设备向该终端设备发送第一指示信息的具体方法包括以下四种(即,方法一至方法四)。
方法一:
该第一指示信息可以具体由PQI来承载,即,通过PQI间接指示。
需要说明的是,在现有的LTE协议中,PQI通常为PDSCH资源映射和准共址指示(RE Mapping and Quasi-Co-Location Indicator)。在本申请实施例中,PQI可以为PDSCH-RE-mapping QCL-Config参数集合,该PDSCH-RE-mapping QCL-Config参数集合可以为高层参数,且该高层参数可以携带在RRC信令中,PQI的索引可用于指示PDSCH-RE-mapping QCL-Config参数集合。也就是说,本申请实施例中的PQI的索引可具有与LTE协议中定义的PQI相同或相似的功能。以下,为了简洁,省略对相同或相似情况的说明。
在一种可能的设计中,可以在现有的DCI中扩展传输块(Transport Block,TB)的指示字段。即,现有协议中定义的TB的指示字段只携带了一个第一PQI的索引(或者说,值(Value)),本申请实施例中,对该TB的指示字段进行扩展,在TB的指示字段携带N个PQI的索引。
可选地,该第一指示信息包括与N个第一物理下行控制信道资源元素映射和准共址指示PQI的索引,每个第一PQI中包括一组CRS的天线端口数和频偏的信息。
其中,该第一网络设备向该终端设备发送该第一指示信息,包括:
该第一网络设备向该终端设备发送该N个第一PQI的索引。
具体地,该N个第一PQI的索引与N组CRS一一对应。其中,第i个第一PQI用于确定第i组CRS占用的资源,i∈[1,N],且i为自然数。
相对应地,该终端设备接收该网络设备发送的该第一指示信息,包括:
该终端设备接收该网络设备发送的该N个第一PQI的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第一映射关系,以及该N个第一PQI的索引,确定该N组CRS占用的资源,其中,该第一映射关系用于指示多个第一PQI的索引与多个高层参数组之间的映射关系。
这里,需要说明的是,第一PQI仅为与后文中所描述的第二PQI区分,而不应对本申请构成任何限定。在本申请实施例中,第一PQI可以理解为与现有技术中相同的PQI(后文中会详细说明第一PQI所包含的具体内容)。
在本申请实施例中,以CRS的天线端口数分别为1、2、4为例,假设每个网络设备通过天线端口0、1、2、3中的1个、2个或4个发送CRS,所对应的频偏分别可以有6、3、3种选择,则可以一共配置有:
Figure PCTCN2017109424-appb-000006
个PDSCH-RE-mappingQCL-Config参数集合。
在PDSCH传输时,网络设备可以通过RRC信令配置上述多个PDSCH-RE-mappingQCL-Config参数集合(或者说,高层参数),或者,网络设备和终端设备可以预先协商 保存上述多个PDSCH-RE-mapping QCL-Config参数集合(或者说,高层参数)。在PDCCH传输时,在PDSCH上发送DCI,该DCI中的N个第一PQI的索引用于指示终端设备当前数据传输采用的具体是哪个PDSCH-RE-mapping QCL-Config参数集合,以便于该终端设备基于该PDSCH-RE-mapping QCL-Config参数集合进行速率匹配。
具体地,DCI可以通过信息比特(即,第一PQI的索引)来指示所对应的PDSCH-RE-mapping QCL-Config参数集合。表1示出了多个信息比特与多个PDSCH-RE-mapping QCL-Config参数集合之间的映射关系(即,第一映射关系)。
表1
第一PQI的信息比特 高层参数的索引
00 1
01 2
10 3
11 4
其中,高层参数可以理解为通过高层配置并通过RRC信令所下发的参数。该高层参数可以包括以下内容:
1、CRS配置(包括CRS的天线端口数和频偏);
2、PDSCH起始点;
3、多播/组播单频网络(Multimedia Broadcast Multicast Service Single Frequency Network,MBSFN)子帧配置;
4、零功率CSI-RS配置;
5、用于波束管理的导频(RS for beam management)配置;
6、发送数据时使用的天线端口的端口号;
7、加扰标识(scrambling identity);
8、码字与层之间的映射关系。
其中,CRS配置可用于确定PDSCH RE mapping所需要的导频信息。因此,本申请实施例中针对每组CRS的天线端口发送一个第一PQI的索引,以便于终端设备根据每个第一PQI的索引,确定CRS占用的资源。
应理解,上述所列举的高层参数所包括的具体内容仅为示例性说明,不应对本申请实施例构成任何限定,本申请实施例并不排除在未来标准中对高层参数的具体内容进行删除、修改或扩展的可能。
另外,还需要注意的是,该N组CRS中的第i组CRS可以由至少一个网络设备(例如,记作第一网络设备集合)发送,该第一网络设备集合与上文中所描述的发送数据(或者说,发送N组CRS)的至少一个网络设备(例如,记作第二网络设备集合)可以为相同的网络设备集合,也可以为不同的网络设备集合。在第一网络设备集合和第二网络设备集合为不同的网络设备集合的情况下,该第一网络设备集合包括该第二网络设备集合,或者说,该第二网络设备集合为该第一网络设备集合的子集。以下,为了简洁,省略对相同或相似情况的说明。
这里,还需要说明的是,当同一个码字所映射至的两个数据天线端口均来自同一网络 设备(例如,第二网络设备),该第二网络设备发送的CRS的天线端口号数和频偏都是相同的,即,该第一网络设备可以只针对该第二网络设备发送一个第一PQI的索引。也就是说,该N组CRS并不是与数据天线端口的数量一致,有可能等于或者小于数据天线端口的数量。
还需要说明的是,由于频偏
Figure PCTCN2017109424-appb-000007
因此不排除不同的小区标识进行取模运算后得到的频偏值相同。若用于发送CRS的两个网络设备所使用的天线端口数相同,且频偏相同,此时,该两个网络设备对应了一组CRS,即,只需要同一个第一PQI来确定该CRS占用的资源。以下,为便于理解和说明,在未作出特别说明的情况下,不考虑小区标识不同,但频偏相同的情况,但应理解,这不应对本申请构成任何限定。
下面结合图2中的(b)至(d)中示出的场景详细说明通过N个第一PQI的索引指示的方法。即,N=2。
应理解,图2中的(a)示出的场景下,对CRS资源的指示方法与现有技术相似,这里为了简洁,省略对具体过程的详细说明。
再参看图2中的(b),图2中的(b)示出了同一数据的两个层(与两个数据天线端口对应)分别通过两个不同的网络设备发送的情况,即,层1对应天线端口1,天线端口1对应TP1,层2对应天线端口2,天线端口2对应TP2。此情况下,该第一网络设备向终端设备发送两个第一PQI的索引,即,第一个第一PQI与TP1对应,第二个第一PQI与TP2对应,或者第二个第一PQI与TP1对应,第一个第一PQI与TP2对应;或者第一个第一PQI与天线端口1对应,第二个第一PQI与天线端口2对应;或者第一个第一PQI与天线端口2对应,第二个第一PQI与天线端口1对应;或者第一个第一PQI与层1对应,或者第二个第一PQI与层2对应;或者第一个第一PQI与层2对应,或者第二个第一PQI与层1对应。
再参看图2中的(c),图2中的(c)示出了同一数据的两个层(与两个数据天线端口对应)中的每个层都分别通过两个不同的网络设备发送的情况,即,层1对应天线端口1,天线端口1对应TP1和TP2,层2对应天线端口2,天线端口2对应TP1和TP2。此情况下,该第一网络设备向终端设备发送两个第一PQI的索引,即,第一个第一PQI与TP1对应,第二个第一PQI与TP2对应,或者第二个第一PQI与TP1对应,第一个第一PQI与TP2对应;或者第一个第一PQI和第二个第一PQI与天线端口1对应,第一个第一PQI和第二个第一PQI与天线端口2对应;或者第一个第一PQI和第二个第一PQI与层1对应,第一个第一PQI和第二个第一PQI与层2对应。
再例如,层1对应天线端口1,天线端口1对应TP1和TP2,层2对应天线端口2,天线端口2对应TP3和TP4。此情况下,该第一网络设备向终端设备发送四个第一PQI的索引,分别与TP1、TP2、TP3和TP4对应;或者,第一个第一PQI和第二个第一PQI与天线端口1对应,第三个第一PQI和第四个第一PQI与天线端口2对应;或者,第一个第一PQI和第二个第一PQI与层1对应,第三个第一PQI和第四个第一PQI与层2对应。
再参看图2中的(d),图2中的(d)示出了同一数据的同一个层经过两个不同的网络设备采用不同的编码方式编码并通过不同的天线端口发送的情况,即,层1对应天线端口1和天线端口2,天线端口1对应TP1,天线端口2对应TP2。此情况下,该第一网络设备向终端设备发送两个第一PQI的索引,第一个第一PQI与TP1对应,第二个第一PQI 与TP2对应;或者第一个第一PQI和第二个第一PQI与天线端口1对应,第一个第一PQI和第二个第一PQI与天线端口2对应;或者第一个第一PQI和第二个第一PQI与层1对应。
在另一种可能的设计中,可以在现有的DCI中扩展TB的指示字段。即,现有协议中定义的TB的指示字段携带了一个PQI(即,可对应于本申请实施例中的第一PQI)的索引,该PQI指示了一组高层参数,在本申请实施例中,对该PQI进行扩展,通过该PQI(即,可对应于本申请实施例中的第二PQI)指示多组高层参数。
可选地,第一指示信息包括该S个第二PQI的索引,每个第二PQI中包括该至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数,以及,
该第一网络设备向该终端设备发送该第一指示信息,包括:
该第一网络设备向该终端设备发送该S个第二PQI的索引。
相对应地,该终端设备接收该网络设备发送的该第一指示信息,包括:
该终端设备接收该网络设备发送的该S个第二PQI的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第二映射关系,以及该S个第二PQI的索引,确定该N组CRS占用的资源,其中,该第二映射关系用于指示多个第二PQI与多个高层参数组的集合之间的映射关系。
也就是说,可以通过一个第二PQI指示N个CRS天线端口数和频偏的信息,此情况下,该一个第二PQI中可以包含N个CRS天线端口数的索引和N个CRS频偏的索引,或者N个CRS天线端口数与频偏的索引;也可以通过多个第二PQI指示N个CRS天线端口数和频偏的信息,此情况下,每个第二PQI中可以包含至少一个CRS天线端口数的索引和至少一个CRS频偏的索引,或者至少一个CRS天线端口数与频偏的索引。与该至少一个CRS的配置信息(即,CRS的天线端口数和频偏)对应的至少一组CRS即为该N组CRS的子集。
应理解,通过S个第二PQI来指示N组CRS的天线端口数和频偏的信息的具体方法与通过N个第一PQI来指示的具体方法相似,为了简洁,这里不再赘述。
可以理解的是,网络设备在发送数据的时候,需要考虑到N组CRS映射的RE,终端设备在接收数据的时候,也需要考虑N组CRS映射的RE,因此,N组CRS中每组CRS占用的资源情况可以不作细究,只需要知道N组CRS映射的全部RE的位置即可。以下,为了简洁,省略对相同或相似情况的说明。
方法二:
该第一指示信息可以为与N组CRS对应的CRS天线端口数和CRS频偏的信息。即,直接指示CRS天线端口数和CRS频偏。
可选地,该第一指示信息包括与该N组CRS对应的N个CRS天线端口数的索引和与该N组CRS对应的N个CRS频偏的索引。
其中,该第一网络设备向该终端设备发送该第一指示信息,包括:
该第一网络设备向该终端设备发送该N个CRS天线端口数的索引和该N个CRS频偏的索引。
相对应地,该终端设备接收该网络设备发送的该第一指示信息,包括:
该终端设备接收该网络设备发送的该N个CRS天线端口数的索引和该N个CRS频偏的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第三映射关系和第四映射关系,以及该N个CRS天线端口数的索引和N个CRS频偏的索引,确定该N组CRS占用的资源,其中,该第三映射关系用于指示多个索引与多个CRS天线端口数之间的映射关系,该第四映射关系用于指示多个索引与多个CRS频偏之间的映射关系。
具体地,该N个CRS天线端口数的索引与N组CRS一一对应,N个CRS频偏的索引与N组CRS一一对应。其中,第i个CRS天线端口数的索引用于确定发送第i组CRS的天线端口的数量,第i个CRS频偏的索引用于指示该第i组CRS占用的RE相对于预设的导频图样(例如,图3所示的导频图样)在频域资源上的偏移量,i∈[1,N],且i为自然数。
表2示出了多个CRS天线端口数的索引与多个天线端口数之间的映射关系(即,第三映射关系),表3示出了多个CRS频偏的索引与多个CRS频偏之间的映射关系(即,第四映射关系)。
表2
CRS天线端口数的索引 CRS天线端口数
0 0
1 1
2 2
3 4
表3
CRS频偏的索引 CRS频偏
0 0
1 1
2 2
3 3
4 4
5 5
这里,需要说明的是,在图3示出的导频图样中可以看到,当多个天线端口同时发送CRS时,与多个天线端口对应的多组CRS中任意两组CRS映射的RE在RB中的相对位置是不变的。例如,在天线端口数为2的情况下,在第一个OFDM符号上,R0和R1在频域上相差了两个子载波。换句话说,当多个天线端口用于同时发送CRS时,多个天线端口对应的多组CRS映射的RE在RB中的相对位置是满足预设的规则的。
在本申请实施例中,通过指示发送第i组CRS的天线端口数,便可以根据该预设的规则(即,预设的导频图样)确定不同天线端口的CRS在RB中的相对位置。
另一方面,在确定了多个天线端口的CRS在RB中的相对位置之后,还可以进一步根据频偏确定该多个天线端口的CRS在RB中占用的频域资源。
仍以图3中示出的两个天线端口的导频图样为例,在第一个OFDM符号上,从下往上看,R0对应的第一个CRS和R1对应的第一个CRS组成一个整体(为便于说明,记作一个CRS单元)。可以理解,由该一个CRS单元映射在RB中的位置可以推导出所对应的两组CRS映射在RB中的位置。
具体地,若频偏为0,则表示该CRS单元在RB中占用的频域资源与导频图样中示出的相同;若频偏为1,则表示该CRS单元在RB中占用的频域资源与导频图样中示出的相差了一个子载波,即,往上移了一个子载波;若频偏为2,则表示该两组CRS在RB中占用的频域资源与导频图样中示出的相差了两个子载波,即,往上移了两个子载波。
可以理解,在一个天线端口的情况下,CRS(或者说,CRS单元,该CRS单元仅包括一个CRS)频偏的最大值可以为5,在两个或四个天线端口的情况下,CRS单元(该CRS单元可以包括两个或四个CRS)频偏的最大值可以为2。
下面结合图2中的(b)至(d)中示出的场景详细说明通过N组PQI指示的方法。即,N=2。
再参看图2中的(b),在图2中的(b)所示出的情况下,该第一网络设备向该终端设备发送的指示信息可以包括两个CRS天线端口数的索引和两个CRS频偏的索引,分别与两个TP(或者两个数据天线端口)对应。
再参看图2中的(c),在图2中的(c)所示出的情况下,该第一网络设备向该终端设备发送的指示信息可以包括两个CRS天线端口数的索引和两个CRS频偏的索引,分别与两个TP对应。
再参看图2中的(d),在图2中的(d)所示出的情况下,该第一网络设备向该终端设备发送的指示信息可以包括两个CRS天线端口数的索引和两个CRS频偏的索引,分别与两个TP(或者两个数据天线端口)对应。
应理解,方法一和方法二中示出的N=2仅为本申请实施例的一个示例,而不应对本申请实施例构成任何限定,只要该至少一个网络设备在发送数据所使用的CRS的组数N大于或等于2,第一网络设备向终端设备发送用于确定该N组CRS的资源的指示信息,均应落入本申请的保护范围内。
方法三:
与方法二不同的是,在方法二中,对CRS天线端口数和CRS频偏分开指示,即,通过两个索引来分别指示一个CRS天线端口数和一个CRS频偏;在方法三中,对CRS天线端口数和CRS频偏联合指示,即,通过一个索引来指示一个CRS天线端口数和一个CRS频偏。
可选地,该第一指示信息包括与该N组CRS对应的N个CRS天线端口数与频偏的索引。
其中,该第一网络设备向该终端设备发送该第一指示信息,包括:
该第一网络设备向该终端设备发送该N个CRS天线端口数与频偏的索引。
相对应地,该终端设备接收该网络设备发送的该第一指示信息,包括:
该终端设备接收该网络设备发送的该N个CRS天线端口数与频偏的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第五映射关系,以及该N个CRS天线端口数与频偏的索引,确定该 N组CRS占用的资源,其中,该第五映射关系用于指示多个索引与多个CRS天线端口数与频偏信息之间的映射关系。
其中,第i个CRS天线端口数与频偏的索引用于指示发送第i组CRS的天线端口数和第i组CRS映射的RE在频域资源上的位置,i∈[1,N],且i为自然数。
表4示出了多个CRS天线端口数和频偏的索引与多组CRS天线端口数与频偏之间的映射关系(即,第五映射关系)。
表4
索引 CRS天线端口数 CRS频偏 索引 CRS天线端口数 CRS频偏
0 0 / 7 2 0
1 1 0 8 2 1
2 1 1 9 2 2
3 1 2 10 4 0
4 1 5 11 4 1
5 1 4 12 4 2
6 1 5      
可以看到,根据CRS天线端口数与频偏的索引便可以同时确定发送CRS的天线端口数与频偏。例如,当第i组CRS的CRS天线端口数与频偏的索引为1~6时,用于发送该第i组CRS的天线端口数为1,频偏分别为0~5;当第i组CRS的CRS天线端口数与频偏的索引为7~9时,用于发送该第i组CRS的天线端口数为2,频偏分别为0~2;当第i组CRS的CRS天线端口数与频偏的索引为10~11时,用于发送第i组CRS的天线端口数为4,频偏分别为0~2。
方法四:
该第一指示信息包括配置信息的索引,该配置信息指示该N组CRS中每组CRS的天线端口数和频偏的索引。
其中,该网络设备向该终端设备发送该第一指示信息,包括:
该网络设备向该终端设备发送该配置信息的索引。
相对应地,该终端设备接收该网络设备发送的该第一指示信息,包括:
该终端设备接收该网络设备发送的该配置信息的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第六映射关系,以及该配置信息的索引,确定该N组CRS占用的资源,其中,该第六映射关系用于指示多个配置信息的索引与多组CRS的天线端口数和频偏的索引之间的映射关系,或者,该第六映射关系用于指示多个配置信息的索引与多组PQI的索引之间的映射关系。
具体地,该配置信息包括:发送数据所使用的天线端口(即,数据天线端口)数和CRS天线端口数与频偏之间的映射关系,或者,发送数据的层和CRS天线端口数与频偏之间的映射关系,或者,发送数据所使用的天线端口数、层和CRS天线端口数与频偏之间的映射关系。
在本申请实施例中,可以针对该配置信息具体包括的内容,在PDSCH传输的RRC信令中配置多组可能的配置信息所包括的参数集合,或者,网络设备和终端设备可以预先 协商保存该多组可能的配置信息所包括的参数集合。在PDCCH传输,在PDSCH上发送DCI,该DCI中的配置信息的索引用于指示终端设备当前数据传输采用的具体是哪组参数集合。
因此,在方法四中,无论发送数据所使用的天线端口数和网络设备的数量是一个或是多个,或者说,无论N为1或者为大于1的自然数,都可以通过一个配置信息的索引来指示。具体地,该配置信息的索引用于指示该N组CRS所对应的CRS的天线端口数和频偏信息。
表5示出了多个配置信息的索引与多组CRS的资源之间的映射关系(即,第六映射关系的一例)。
表5
Figure PCTCN2017109424-appb-000008
可以看到,当网络设备将一个码字映射至多层(或者,通过多个数据天线端口发送)时,该第一网络设备可以将各层(或,各数据天线端口)对应的CRS的天线端口数和频偏信息用CRS天线端口数与频偏信息的形式发送给终端设备。该终端设备可以根据每个层对应的CRS的天线端口数和频偏信息确定CRS占用的资源,进而在相应的资源上禁止接收数据。
进一步地,该CRS的天线端口数和频偏信息可以采用CRS天线端口数与频偏的索引来指示,即,第五映射关系可以进一步转化为,多个配置信息的索引与多组CRS的天线端口数与频偏(以下简称CRS)的索引之间的映射关系。
表6示出了多个配置信息的索引与多组CRS的索引之间的映射关系(即,第六映射关系的另一例)。
表6
Figure PCTCN2017109424-appb-000009
其中,CRS的索引可以参考表4中示出的多组CRS的索引与多个CRS天线端口数与频偏之间的映射关系。即,表6是建立在表4的基础上。也就是说,若采用上述方法来指示终端设备确定CRS的资源,则需要同时保存或获取上述两个映射关系信息(即,多个CRS天线端口数和频偏的索引与多组CRS天线端口数与频偏之间的映射关系,以及多个配置信息的索引与多组CRS的索引之间的映射关系)。
参看表6,例如,当配置信息的索引为0时,表示该数据通过两个层传输,其中,层1对应的CRS的天线端口数和频偏信息对应于表4中的CRS天线端口数与频偏的索引为10的情况,即通过4个天线端口数发送CRS,该4个天线端口数对应的CRS组成的单元的频偏为0。即,可以对应于图3中天线端口数=4时对应的导频图样;层2对应的CRS 的天线端口数和频偏信息对应于表4中的CRS天线端口数与频偏的索引为11的情况,即通过4个天线端口数发送CRS,该四个天线端口数对应的CRS组成的单元的频偏为1。即,可以对应于图3中天线端口数=4时导频图样向上偏移一个子载波。以此类推,为了简洁,这里不再对表6中的各个索引详细说明。
可选地,该CRS天线端口数与CRS频偏的信息可以通过第一PQI来指示。在一种可能的设计中,可以在现有协议定义的DCI中扩展天线端口、扰码标识和层数(Antenna port(s),scrambling identity and number of layers)的指示字段。即,对现有协议中定义的天线端口、扰码标识和层数的指示字段进行扩展,增加第一PQI的指示字段。在本申请实施例中,配置信息的索引即用于指示当前数据传输所使用的N组CRS的资源为上述多组参数集合(包括天线端口、扰码标识、层数和第一PQI)中的哪一组。
表7示出了多个配置信息的索引与天线端口、扰码标识、层数和第一PQI的指示字段可能配置的多组参数集合之间的映射关系(即,第六映射关系的又一例)。
表7
Figure PCTCN2017109424-appb-000010
其中,PQI的索引可以参考表1中示出的多组PQI的索引与多组高层参数的索引的映射关系,进而根据所对应的高层参数,确定N组CRS的CRS天线端口数和频偏。即,表7建立的表1的基础上。也就是说,若采用上述方法来指示终端设备确定CRS的资源,则需要同时保存或获取上述两个映射关系信息(即,多组PQI的索引与多组高层参数的索引的映射关系,以及,多个配置信息的索引与天线端口、扰码标识、层数和第一PQI的指示字段可能配置的多组参数集合之间的映射关系)。
在另一种可能的设计中,可以在现有协议定义的DCI中,新增一个指示字段,例如,可以为PQI的指示字段,该PQI的指示字段用于指示天线端口天线端口数与第一PQI的映射关系,或者,层与第一PQI的映射关系,或者,天线端口数、层与第一PQI的映射关系。在本申请实施例中,配置信息的索引即用于指示当前数据传输所使用的N组CRS的 资源为上述多组参数集合(包括数据天线端口(或者说,DMRS天线端口)与第一PQI,或者,层与第一PQI,或者数据天线端口、层与第一PQI)中的哪一组。
表8、表9和表10示出了多个配置信息的索引与PQI的指示字段可能配置的多组参数集合之间的映射关系(即,第六映射关系的再一例)。
表8
Figure PCTCN2017109424-appb-000011
表9
Figure PCTCN2017109424-appb-000012
表10
Figure PCTCN2017109424-appb-000013
Figure PCTCN2017109424-appb-000014
其中,PQI的索引可以参考表1中示出的多组PQI的索引与多组高层参数的索引的映射关系,进而根据所对应的高层参数,确定N组CRS的CRS天线端口数和频偏。即,表8、表9和表10建立的表1的基础上。也就是说,若采用上述方法来指示终端设备确定CRS的资源,则需要同时保存或获取所对应的映射关系信息。具体处理方法在上文中已经详细说明,这里为了简洁,不再赘述。
可选地,该指示信息包括:至少一个目标小区的小区标识,或者,与该至少一个目标小区的小区标识和天线端口数信息对应的至少一个索引。
下面详细说明通过至少一个小区的小区标识的索引(方法五)或者与至少一个小区的小区标识和天线端口配置信息对应的至少一个索引(方法六)来指示CRS的资源的方法。
方法五:
可选地,该指示信息包括至少一个目标小区的小区标识的索引和至少一个目标小区的天线端口数信息。
其中,第一网络设备向终端设备发送指示信息,包括:
该第一网络设备确定向该终端设备发送该数据的该至少一个网络设备对应的至少一个目标小区,该至少一个目标小区是从多个协作小区中确定的,该多个协作小区与可用于向该终端设备发送数据的多个网络设备对应;
该第一网络设备向该终端设备发送该至少一个目标小区的小区标识和该至少一个目标小区的天线端口数信息。
相对应地,该终端设备接收网络设备发送的指示信息,包括:
该终端设备接收该网络设备发送的该至少一个目标小区的小区标识的索引和该至少一个目标小区的天线端口数信息;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第七映射关系,以及该至少一个目标小区的小区标识的索引和该至少一个目标小区的天线端口数信息,确定该N组CRS占用的资源,其中,该第七映射关系用于指示多个小区标识的索引与多个小区的小区标识之间的映射关系。
在本申请实施例中,该第一网络设备可以通过RRC信令配置多个协作小区的天线配置信息,或者,该终端设备可以预先保存该多个协作小区的天线配置信息。这里所说的协作小区可以理解为:可用于向该终端设备发送数据(即,用于CoMP传输)的网络设备对应的小区。
该终端设备在接收到该第一网络设备发送的目标小区的小区标识后,便可以根据该第一网络设备发送的该目标小区的天线端口数信息,确定该目标小区的天线端口数,并根据
Figure PCTCN2017109424-appb-000015
计算频偏,从而确定与N组CRS对应的天线端口数和频偏。
方法六:
可选地,该指示信息包括与至少一个目标小区的天线端口配置信息对应的至少一个索引,该CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区 的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏。
其中,该第一网络设备向终端设备发送指示信息,包括:
该第一网络设备确定向该终端设备发送该数据的该至少一个网络设备对应的至少一个目标小区,以及每个目标小区的天线端口数,该至少一个目标小区是从多个协作小区中确定的,该多个协作小区与可用于向该终端设备发送数据的多个网络设备对应;
该第一网络设备向该终端设备发送该与至少一个目标小区的天线端口配置信息对应的至少一个索引。
相对应地,该终端设备接收网络设备发送的指示信息,包括:
该终端设备接收该网络设备发送的该与至少一个小区的天线端口配置信息对应的至少一个索引;
该终端设备接收该网络设备发送的该至少一个小区标识的索引;
该终端设备根据该指示信息,确定该N组CRS占用的资源,包括:
该终端设备根据第八映射关系,以及该与至少一个小区的天线端口配置信息对应的至少一个索引,确定该N组CRS占用的资源,其中,该第八映射关系用于指示多个索引与多个协作小区的CRS天线端口配置信息之间的映射关系。
在本申请实施例中,该第一网络设备可以通过RRC信令配置多个协作小区的CRS天线端口配置信息与多个索引的映射关系,或者,该终端设备可以预先保存该多个协作小区的小区标识和天线配置信息与多个索引的映射关系。
具体地,在该CRS天线端口配置信息表示小区标识以及对应的CRS天线端口数的情况下,该第一网络设备可以直接将当前数据传输所对应的目标小区的CRS天线端口配置信息以索引的形式发送给该终端设备,该终端设备可以根据预先获取的小区标识和CRS天线端口数之间的映射关系,确定接收到的索引所对应的小区的小区标识,以及该小区的天线端口数。并根据
Figure PCTCN2017109424-appb-000016
计算频偏,从而确定与N组CRS对应的天线端口数和频偏。
表11、表12和表13示出了多个索引与多个协作小区的天线配置信息之间的映射关系(即,第八映射关系)。
表11
Figure PCTCN2017109424-appb-000017
Figure PCTCN2017109424-appb-000018
表12
Figure PCTCN2017109424-appb-000019
表13
Figure PCTCN2017109424-appb-000020
其中,协作小区ID可以理解为小区标识与CRS天线端口数之间的映射关系的索引。可以看到,当终端设备在接收到该第一网络设备发送的指示信息后,便可以根据索引确定每一层或每一个天线端口所对应的协作小区ID,进而根据协作小区与天线端口配置信息之间的映射关系,确定目标小区的天线端口数,并根据
Figure PCTCN2017109424-appb-000021
计算频偏,从而确定与N组CRS对应的天线端口数和频偏。
在该天线端口配置信息指示小区的CRS天线端口数与小区的CRS频偏的情况下,该第一网络设备可以直接将当前数据传输所对应的目标小区的CRS天线端口配置信息以索引的形式发送给该终端设备,该终端设备可以根据预先获取的CRS天线端口数与CRS频偏之间的映射关系,确定接收到的索引所对应的小区的CRS天线端口数和CRS频偏,从而可以确定与N组CRS对应的天线端口数和频偏。
在此情况下,上述表11、表12和表13中的协作小区ID可以理解为CRS天线端口数 与CRS频偏之间的映射关系的索引。
在该天线端口配置信息指示小区标识以及对应的CRS天线端口数和CRS频偏的情况下,该第一网络设备可以直接将当前数据传输所对应的目标小区的CRS天线端口配置信息以索引的形式发送给该终端设备,该终端设备可以根据预先获取的小区标识与CRS天线端口数、CRS频偏之间的映射关系,确定接收到的索引所对应的小区的CRS天线端口数和CRS频偏,从而可以确定与N组CRS对应的天线端口数和频偏。
在此情况下,上述表11、表12和表13中的协作小区ID可以理解为小区标识与CRS天线端口数、CRS频偏之间的映射关系的索引。
以上,分别通过方法一至方法六详细说明了该第一网络设备通过指示信息指示终端设备确定N组CRS占用的资源的具体方法。应理解,以上示出的方法仅为示例性说明,而不应对本申请构成任何限定,本申请也不应限于此。只要通过第一网络设备向终端设备发送用于指示CRS的资源的指示信息,以使得终端设备根据该指示信息确定CRS的资源,并根据该CRS的资源接收数据,均落入本申请的保护范围内。
因此,本申请实施例的用于数据传输的方法,通过向终端设备发送指示信息以用于终端设备确定N组CRS占用的资源,使得终端设备在接收数据时可以考虑到各网络设备的CRS资源,从而正确地接收数据,提高接收性能。
应理解,以上示出的各映射关系表仅为示例性说明,不应对本申请构成任何限定。可以理解的是,上述示例的各映射关系中均包含了与该N组CRS对应的索引(例如,第一PQI的索引、第二PQI的索引、CRS天线端口数的索引、CRS频偏的索引、CRS天线端口数与频偏的索引、配置信息的索引、小区标识的索引、小区的天线端口配置信息的索引等等)。
以上,结合图2至图4详细说明了本申请实施例的用于数据传输的方法。以下,结合图5至图8详细说明根据本申请实施例的用于数据传输的装置。
图5是根据本申请实施例的终端设备500的示意性框图。如图5所示,该终端设备500包括:收发单元510和确定单元520。
其中,该收发单元510用于接收网络设备发送的指示信息,该指示信息用于确定N组小区参考信号CRS占用的资源,N为大于或等于2的自然数;
该确定单元520用于根据该指示信息,确定该N组CRS占用的资源;
该收发单元510还用于根据该N组CRS占用的资源接收数据。
可选地,该指示信息与以下至少一项对应:数据对应的码字,该码字映射至的层,或者,该码字映射至的天线端口。
可选地,该收发单元510具体用于接收该网络设备发送的第一指示信息,该第一指示信息指示该N组CRS的天线端口数和频偏,该频偏指示CRS映射的资源单元RE在频域资源上的位置。
可选地,该收发单元510具体用于接收该网络设备发送的与N组CRS对应的N个第一PQI的索引,每个第一PQI中包括发送一个CRS的天线端口数和频偏的信息。
可选地,该收发单元510具体用于接收该网络设备发送的与N组CRS对应的S个第二PQI的索引,该个第二PQI中包括该至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数。
可选地,该第一指示信息为与该N组CRS对应的一个第二PQI的索引,该第二PQI包括N组CRS的天线端口数和频偏的信息。
可选地,该第二PQI的索引用于指示终端设备当前数据传输采用的物理下行共享信道资源元素映射和准共址配置PDSCH-RE-mapping-QCL-Config参数集合。
可选地,该PDSCH-RE-mapping-QCL-Config参数集合携带在无线资源控制RRC信令中。
可选地,该第二PQI为高层参数。
可选地,该收发单元510具体用于接收该网络设备发送的与N组CRS对应的N个CRS天线端口数的索引和与该N组CRS对应的N个CRS频偏的索引。
可选地,该收发单元510具体用于接收所述网络设备发送的与N组CRS对应的N个CRS天线端口数与频偏的索引。
可选地,该收发单元510具体用于接收网络设备发送的该配置信息的索引,配置信息包括该N组CRS中每组CRS的天线端口数和频偏的索引。
可选地,该收发单元510具体用于接收该网络设备发送的至少一个小区的小区标识的索引和该至少一个小区的CRS天线端口数信息,该小区标识用于确定CRS频偏,该CRS频偏指示CRS映射的RE在频域资源上的位置。
可选地,该收发单元510具体用于接收该网络设备发送的与至少一个小区的CRS天线端口配置信息对应的至少一个索引,该CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏。
可选地,该收发单元510具体用于接收该网络设备发送的下行控制信息DCI,该DCI中包括该指示信息。
可选地,该N组小区参考信号CRS占用的资源的部分对应一个码字所对应的CRS占用的资源。
根据本申请实施例的终端设备500可对应于根据本申请实施例的用于数据传输的方法中的终端设备,并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图4中方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备通过接收网络设备发送的指示信息,根据该指示信息确定N组CRS占用的资源,使得终端设备在接收数据时可以考虑到各网络设备的CRS资源,从而正确地接收数据,提高接收性能。
图6是根据本申请实施例的网络设备600的示意性框图。如图6所示,该终端设备600包括:收发单元610。
其中,该收发单元610用于向终端设备发送指示信息,该指示信息用于确定N组CRS占用的资源,该N组CRS占用的资源用于指示该终端设备接收数据,其中,N为大于或等于2的自然数。
可选地,该指示信息与以下至少一项对应:数据对应的码字,该码字映射至的层,或者,该码字映射至的天线端口。
可选地,该网络设备还包括确定单元620,用于确定发送该N组CRS的天线端口数和频偏;
该收发单元620具体用于根据该N组CRS的天线端口数和频偏,向该终端设备发送用于指示该N组CRS的天线端口数和频偏的第一指示信息,该频偏用于指示CRS映射的资源单元RE在频域资源上的位置。
可选地,该收发单元620具体用于向该终端设备发送与该N组CRS对应的N个第一PQI的索引,每个第一PQI中包括发送一个CRS的天线端口数和频偏的信息。
可选地,该收发单元620具体用于向该终端设备发送与该N组CRS对应的S个第二PQI的索引,每个第二PQI中包括该至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数。
可选地,该第一指示信息为与该N组CRS对应的一个第二PQI的索引,该第二PQI包括N组CRS的天线端口数和频偏的信息。
可选地,该第二PQI的索引用于指示终端设备当前数据传输采用的物理下行共享信道资源元素映射和准共址配置PDSCH-RE-mapping-QCL-Config参数集合。
可选地,该PDSCH-RE-mapping-QCL-Config参数集合携带在无线资源控制RRC信令中。
可选地,该第二PQI为高层参数。
可选地,该收发单元620具体用于向该终端设备发送与该N组CRS对应的N个CRS天线端口数的索引和与该N组CRS对应的N个CRS频偏的索引。
可选地,该收发单元620具体用于向该终端设备发送与该N组CRS对应的N个CRS天线端口数与频偏的索引。
可选地,该收发单元620具体用于向该终端设备发送该配置信息的索引,该配置信息包括该N组CRS中每组CRS的天线端口数和频偏的索引。
可选地,该收发单元620具体用于向该终端设备发送至少一个小区标识的小区标识的索引和该至少一个小区的天线端口数信息,该小区标识用于确定CRS频偏,该CRS频偏指示CRS映射的RE在频域资源上的位置。
可选地,该收发单元620具体用于向该终端设备发送该与至少一个小区的CRS天线端口配置信息对应的至少一个索引,该CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏。
可选地,该收发单元620具体用于向该终端设备发送下行控制信息DCI,该DCI包括该指示信息。
可选地,该N组小区参考信号CRS占用的资源的部分对应一个码字所对应的CRS占用的资源。
根据本申请实施例的网络设备600可对应于根据本申请实施例的用于数据传输的方法中的第一网络设备,并且,该网络设备600中的各模块和上述其他操作和/或功能分别为了实现图4中方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的网络设备,通过向终端设备发送指示信息,以使该终端设备根据该指示信息确定N组CRS占用的资源,在接收数据时可以考虑到各网络设备的CRS资源,从而正确地接收数据,提高接收性能。
图7是根据本申请实施例的终端设备700的另一示例性框图。如图7所示,该终端设 备700包括:收发器710、处理器720、存储器730和总线系统740其中,收发器710、处理器720和存储器730通过总线系统540相连,该存储器730用于存储指令,该处理器720用于执行该存储器730存储的指令,以控制收发器710收发信号。
其中,图5所示的终端设备500中的收发单元510可以对应该收发器710,图5所示的终端设备500中的确定单元520可以对应该处理器720。
图8是根据本申请实施例的网络设备800的另一示例性框图。如图8所示,该终端设备800包括:收发器810、处理器820、存储器830和总线系统840其中,收发器810、处理器820和存储器830通过总线系统540相连,该存储器830用于存储指令,该处理器820用于执行该存储器830存储的指令,以控制收发器810收发信号。
其中,图6所示的网络设备600中的收发单元610可以对应该收发器810,图6所示的网络设备600中的确定单元620可以对应该处理器820。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程 构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种用于数据传输的方法,其特征在于,包括:
    终端设备接收网络设备发送的指示信息,所述指示信息用于确定N组小区参考信号CRS占用的资源,N为大于或等于2的自然数;
    所述终端设备根据所述指示信息,确定所述N组CRS占用的资源,并根据所述N组CRS占用的资源接收数据。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息与以下至少一项对应:所述数据对应的码字,所述码字映射至的层,或者,所述码字映射至的天线端口。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备接收网络设备发送的指示信息,包括:
    所述终端设备接收所述网络设备发送的所述第一指示信息,所述第一指示信息用于指示所述N组CRS的天线端口数和频偏,所述频偏指示CRS映射的资源单元RE在频域资源上的位置。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的N个第一PQI的索引,每个第一PQI中包括一组CRS的天线端口数和频偏的信息,以及,
    所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述N个第一PQI的索引。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的S个第二PQI的索引,每个第二PQI中包括至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数,以及,
    所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述S个第二PQI的索引。
  6. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的一个第二PQI的索引,所述第二PQI包括N组CRS的天线端口数和频偏的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第二PQI的索引用于指示终端设备当前数据传输采用的物理下行共享信道资源元素映射和准共址配置PDSCH-RE-mapping-QCL-Config参数集合。
  8. 根据权利要求7所述的方法,其特征在于,所述PDSCH-RE-mapping-QCL-Config参数集合携带在无线资源控制RRC信令中。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述第二PQI为高层参数。
  10. 根据权利要求3所述的方法,其特征在于,所述第一指示信息包括:与所述N组CRS对应的N个CRS天线端口数的索引,以及与所述N组CRS对应的N个CRS频偏的索引,以及,
    所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述N个CRS天线端口数的索引和所述N个 CRS频偏的索引。
  11. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的N个CRS天线端口数与频偏的索引,以及,
    所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述N个CRS天线端口数与频偏的索引。
  12. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为配置信息的索引,所述配置信息指示所述N组CRS中每组CRS的天线端口数和频偏的索引,以及,
    所述终端设备接收所述网络设备发送的所述第一指示信息,包括:
    所述终端设备接收所述网络设备发送的所述配置信息的索引。
  13. 根据权利要求1或2所述的方法,其特征在于,所述指示信息包括:至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息,所述小区标识用于确定CRS频偏,所述CRS频偏指示CRS映射的RE在频域资源上的位置,以及,
    所述终端设备接收网络设备发送的指示信息,包括:
    所述终端设备接收所述网络设备发送的所述至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息。
  14. 根据权利要求1或2所述的方法,其特征在于,所述指示信息为与至少一个小区的CRS天线端口配置信息对应的至少一个索引,所述CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏,以及,
    所述终端设备接收网络设备发送的指示信息,包括:
    所述终端设备接收所述网络设备发送的所述与至少一个小区的CRS天线端口配置信息对应的至少一个索引。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端设备接收网络设备发送的指示信息,包括:
    所述终端设备接收所述网络设备发送的下行控制信息DCI,所述DCI中包括所述指示信息。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述N组小区参考信号CRS占用的资源的部分对应一个码字所对应的CRS占用的资源。
  17. 一种用于数据传输的方法,其特征在于,包括:
    网络设备向终端设备发送指示信息,所述指示信息用于确定N组CRS占用的资源,所述N组CRS占用的资源用于指示所述终端设备接收数据,其中,N为大于或等于2的自然数。
  18. 根据权利要求17所述的方法,其特征在于,所述指示信息与以下至少一项对应:所述数据对应的码字,所述码字映射至的层,或者,所述码字映射至的天线端口。
  19. 根据权利要求17或18所述的方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备确定发送所述N组CRS的天线端口数和频偏;
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述N组CRS的天线端口数和频偏,所述频偏指示CRS映射的资源单元RE在频域资源上的位 置。
  20. 根据权利要求19所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的N个第一PQI的索引,每个第一PQI中包括一组CRS的天线端口数和频偏的信息,以及,
    所述网络设备向所述终端设备发送所述第一指示信息,包括:
    所述网络设备向所述终端设备发送所述N个第一PQI的索引。
  21. 根据权利要求19所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的S个第二PQI的索引,每个第二PQI中包括至少一组CRS的天线端口数和频偏的信息,其中,S∈[1,N),且S为自然数,以及,
    所述网络设备向所述终端设备发送所述第一指示信息,包括:
    所述网络设备向所述终端设备发送所述S个第二PQI的索引。
  22. 根据权利要求19所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的一个第二PQI的索引,所述第二PQI包括N组CRS的天线端口数和频偏的信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第二PQI的索引用于指示终端设备当前数据传输采用的物理下行共享信道资源元素映射和准共址配置PDSCH-RE-mapping-QCL-Config参数集合。
  24. 根据权利要求23所述的方法,其特征在于,所述PDSCH-RE-mapping-QCL-Config参数集合携带在无线资源控制RRC信令中。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述第二PQI为高层参数。
  26. 根据权利要求19所述的方法,其特征在于,所述第一指示信息包括:与所述N组CRS对应的N个CRS天线端口数的索引,以及与所述N组CRS对应的N个CRS频偏的索引,以及,
    所述网络设备向所述终端设备发送所述第一指示信息,包括:
    所述网络设备向所述终端设备发送所述N个CRS天线端口数的索引和所述N个CRS频偏的索引。
  27. 根据权利要求19所述的方法,其特征在于,所述第一指示信息为与所述N组CRS对应的N个CRS天线端口数与频偏的索引,以及,
    所述网络设备向所述终端设备发送所述第一指示信息,包括:
    所述网络设备向所述终端设备发送所述N个CRS天线端口数与频偏的索引。
  28. 根据权利要求19所述的方法,其特征在于,所述第一指示信息为配置信息的索引,所述配置信息指示所述N组CRS中每组CRS的天线端口数和频偏的索引,以及,
    所述网络设备向所述终端设备发送所述第一指示信息,包括:
    所述网络设备向所述终端设备发送所述配置信息的索引。
  29. 根据权利要求17或18所述的方法,其特征在于,所述指示信息包括至少一个小区的小区标识的索引和所述至少一个小区的CRS天线端口数信息,所述小区标识用于确定CRS频偏,所述CRS频偏指示CRS映射的RE在频域资源上的位置,以及,
    所述网络设备向终端设备发送指示信息,包括:
    所述网络设备确定向所述终端设备发送所述至少一个小区标识的小区标识的索引和 所述至少一个小区的CRS天线端口数信息。
  30. 根据权利要求17或18所述的方法,其特征在于,所述指示信息为与至少一个小区的CRS天线端口配置信息对应的至少一个索引,所述CRS天线端口配置信息包括:小区标识以及对应的CRS天线端口数,或者,小区的CRS天线端口数和小区的CRS频偏,或者,小区标识以及对应的CRS天线端口数和CRS频偏,以及,
    所述网络设备向终端设备发送指示信息,包括:
    所述网络设备确定向所述终端设备发送所述与至少一个小区的CRS天线端口配置信息对应的至少一个索引。
  31. 根据权利要求17至30中任一项所述的方法,其特征在于,所述网络设备向终端设备发送指示信息,包括:
    所述网络设备向所述终端设备发送下行控制信息DCI,所述DCI包括所述指示信息。
  32. 根据权利要求17至31中任一项所述的方法,其特征在于,所述N组小区参考信号CRS占用的资源的部分对应一个码字所对应的CRS占用的资源。
  33. 一种终端设备,其特征在于,包括:收发器、处理器、存储器和总线系统,所述收发器、所述处理器和所述存储器通过所述总线系统相连,
    其中,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行根据权利要求1至16中任一项所述的方法。
  34. 一种网络设备,其特征在于,包括:收发器、处理器、存储器和总线系统,所述收发器、所述处理器和所述存储器通过所述总线系统相连,
    其中,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行根据权利要求17至32中任一项所述的方法。
  35. 一种终端设备,其特征在于,用于执行如权利要求1至16中任意一项所述的方法。
  36. 一种网络设备,其特征在于,用于执行如权利要求17至32中任意一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至32中任意一项所述的方法。
  38. 一种芯片,其特征在于,所述芯片存储有计算机程序,当所述芯片在计算机上运行时,使得所述计算机执行如权利要求1至32中任意一项所述的方法。
PCT/CN2017/109424 2016-11-04 2017-11-03 一种用于数据传输的方法和装置 WO2018082681A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22163152.6A EP4084387A1 (en) 2016-11-04 2017-11-03 Data transmission method and apparatus
KR1020197016073A KR102210603B1 (ko) 2016-11-04 2017-11-03 데이터 전송 방법 및 장치
EP17866579.0A EP3528577B1 (en) 2016-11-04 2017-11-03 Method and apparatus for data transmission
BR112019008942A BR112019008942A2 (pt) 2016-11-04 2017-11-03 método e aparelho para transmissão de dados
JP2019523824A JP2019536353A (ja) 2016-11-04 2017-11-03 データ送信方法および装置
US16/403,150 US10944529B2 (en) 2016-11-04 2019-05-03 Data transmission method and apparatus
US17/194,785 US11784773B2 (en) 2016-11-04 2021-03-08 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610962416.0A CN108024375B (zh) 2016-11-04 2016-11-04 一种用于数据传输的方法和装置
CN201610962416.0 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/403,150 Continuation US10944529B2 (en) 2016-11-04 2019-05-03 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018082681A1 true WO2018082681A1 (zh) 2018-05-11

Family

ID=62076681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109424 WO2018082681A1 (zh) 2016-11-04 2017-11-03 一种用于数据传输的方法和装置

Country Status (7)

Country Link
US (2) US10944529B2 (zh)
EP (2) EP3528577B1 (zh)
JP (2) JP2019536353A (zh)
KR (1) KR102210603B1 (zh)
CN (1) CN108024375B (zh)
BR (1) BR112019008942A2 (zh)
WO (1) WO2018082681A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278113A (zh) * 2018-12-05 2020-06-12 成都华为技术有限公司 一种数据传输方法和设备
EP3826370A4 (en) * 2018-08-10 2021-09-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION PROCESS AND APPARATUS

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024375B (zh) * 2016-11-04 2020-12-15 华为技术有限公司 一种用于数据传输的方法和装置
CN110691389B (zh) * 2018-07-06 2022-03-04 维沃移动通信有限公司 上行数据速率匹配方法、配置方法、终端及网络设备
CN113365328A (zh) * 2018-09-15 2021-09-07 华为技术有限公司 一种通信方法及装置
CN111065160B (zh) * 2018-10-17 2022-12-02 中兴通讯股份有限公司 资源的分配方法及装置、存储介质和电子装置
CN115225125A (zh) * 2018-10-27 2022-10-21 华为技术有限公司 指示和确定预编码向量的方法以及通信装置
CN111132320B (zh) * 2018-11-01 2022-08-16 北京紫光展锐通信技术有限公司 一种通信方法、终端设备和网络侧设备
CN111148232B (zh) * 2018-11-02 2021-10-22 维沃移动通信有限公司 信息传输方法及通信设备
US11419133B2 (en) * 2018-11-30 2022-08-16 Qualcomm Incorporated Flexible control information for wireless communications
CN113302861B (zh) * 2018-12-24 2023-08-08 上海诺基亚贝尔股份有限公司 用于分集传输的方法、设备和计算机可读介质
CN110535604B (zh) * 2019-03-29 2024-04-30 中兴通讯股份有限公司 一种速率匹配方法和装置
WO2021147106A1 (zh) * 2020-01-23 2021-07-29 华为技术有限公司 一种dmrs配置方法及装置
US20230413282A1 (en) * 2020-09-30 2023-12-21 Beijing Xiaomi Mobile Software Co., Ltd. Method for transmitting information, apparatus, terminal, device and medium
US20230413075A1 (en) * 2022-06-17 2023-12-21 Qualcomm Incorporated Reference signal power allocation for cellular-based radio frequency (rf) sensing
KR102696563B1 (ko) * 2022-07-11 2024-08-21 아서스 테크놀러지 라이센싱 아이엔씨. 무선 통신 시스템에서 qos(quality of service) 플로우 설정을 위한 방법 및 장치
WO2024182988A1 (en) * 2023-03-07 2024-09-12 Qualcomm Incorporated Joint communications and radio frequency sensing based on cell-specific and wideband reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036640A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种数据资源映射位置的处理方法和装置
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备
CN103959730A (zh) * 2011-09-30 2014-07-30 三星电子株式会社 在无线通信系统中用于发送和接收数据的方法和装置
US8902842B1 (en) * 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455626B (zh) * 2009-06-22 2014-10-01 Htc Corp 處理定位量測的方法
CN102036264B (zh) * 2009-09-30 2013-12-04 华为技术有限公司 对小区进行信道测量的方法和装置
WO2011160100A1 (en) * 2010-06-18 2011-12-22 Qualcomm Incorporated Channel quality reporting for different types of subframes
CN102348163B (zh) * 2010-08-04 2016-06-22 电信科学技术研究院 多媒体广播多播业务单频网子帧指示方法、系统和设备
US8576742B2 (en) * 2010-10-06 2013-11-05 Qualcomm Incorporated Dynamic switching between common reference signal interference cancellation and resource element puncturing in a co-channel heterogeneous network
CN102223722B (zh) * 2011-06-10 2013-11-20 电信科学技术研究院 下行传输方法和设备
WO2013066205A1 (en) * 2011-11-04 2013-05-10 Intel Corporation Transmission point indication in coordinated multi-point system
US20140045510A1 (en) * 2012-07-25 2014-02-13 Nec Laboratories America, Inc. Coordinated Multipoint Transmission and Reception (CoMP)
CN103634899B (zh) * 2012-08-20 2018-04-27 华为技术有限公司 终端定位方法、基站及用户设备
CN104704754B (zh) 2012-10-04 2018-06-26 Lg电子株式会社 在无线通信系统中通过考虑天线端口关系收发下行链路信号的方法和设备
CN104871447B (zh) * 2013-01-17 2018-02-23 英特尔Ip公司 在无线通信网络中映射特殊子帧
US9906344B2 (en) * 2015-02-23 2018-02-27 Intel Corporation Methods, apparatuses, and systems for multi-point, multi-cell single-user based multiple input and multiple output transmissions
JP6936253B2 (ja) * 2016-05-12 2021-09-15 華為技術有限公司Huawei Technologies Co.,Ltd. リソース指示方法および関連デバイスおよびシステム
US10326566B2 (en) * 2016-08-08 2019-06-18 Lg Electronics Inc. Reference signal transmission using multiple numerology
CN108024375B (zh) * 2016-11-04 2020-12-15 华为技术有限公司 一种用于数据传输的方法和装置
CN109803320A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 资源配置方法、装置和系统
US10880900B2 (en) * 2018-09-28 2020-12-29 Qualcomm Incorporated Noise tracking within transmission time intervals in wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036640A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种数据资源映射位置的处理方法和装置
CN103959730A (zh) * 2011-09-30 2014-07-30 三星电子株式会社 在无线通信系统中用于发送和接收数据的方法和装置
US8902842B1 (en) * 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
CN103874207A (zh) * 2012-12-14 2014-06-18 华为技术有限公司 资源映射的方法、基站和用户设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826370A4 (en) * 2018-08-10 2021-09-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION PROCESS AND APPARATUS
US12016043B2 (en) 2018-08-10 2024-06-18 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN111278113A (zh) * 2018-12-05 2020-06-12 成都华为技术有限公司 一种数据传输方法和设备

Also Published As

Publication number Publication date
US20190260545A1 (en) 2019-08-22
BR112019008942A2 (pt) 2019-07-16
US11784773B2 (en) 2023-10-10
JP2019536353A (ja) 2019-12-12
US10944529B2 (en) 2021-03-09
KR20190075122A (ko) 2019-06-28
EP3528577A1 (en) 2019-08-21
EP4084387A1 (en) 2022-11-02
JP7267344B2 (ja) 2023-05-01
US20210266130A1 (en) 2021-08-26
KR102210603B1 (ko) 2021-02-01
JP2021168477A (ja) 2021-10-21
EP3528577B1 (en) 2022-04-20
EP3528577A4 (en) 2019-10-02
CN108024375B (zh) 2020-12-15
CN108024375A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018082681A1 (zh) 一种用于数据传输的方法和装置
US11025316B2 (en) Method and apparatus used for data transmission
US11128416B2 (en) Feedback information transmission method and apparatus
US11101948B2 (en) Data transmission method, terminal, and network device
US11184090B2 (en) Method and device for determining QCL relationship between antenna ports
US10932208B2 (en) Power configuration method and device
US10778287B2 (en) Multipoint data transmission method and apparatus
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
US11581993B2 (en) Reception timing configuration method and communications device
WO2019028707A1 (zh) 通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008942

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017866579

Country of ref document: EP

Effective date: 20190516

ENP Entry into the national phase

Ref document number: 20197016073

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019008942

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190502