WO2018082415A1 - 用于资源管理装置、数据库和对象的电子设备和方法 - Google Patents

用于资源管理装置、数据库和对象的电子设备和方法 Download PDF

Info

Publication number
WO2018082415A1
WO2018082415A1 PCT/CN2017/103303 CN2017103303W WO2018082415A1 WO 2018082415 A1 WO2018082415 A1 WO 2018082415A1 CN 2017103303 W CN2017103303 W CN 2017103303W WO 2018082415 A1 WO2018082415 A1 WO 2018082415A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource management
management object
information
usage behavior
Prior art date
Application number
PCT/CN2017/103303
Other languages
English (en)
French (fr)
Inventor
郭欣
孙晨
Original Assignee
索尼公司
郭欣
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 郭欣, 孙晨 filed Critical 索尼公司
Priority to CN201780068042.0A priority Critical patent/CN109923920B/zh
Priority to CN202310829609.9A priority patent/CN116916328A/zh
Priority to US16/345,725 priority patent/US10925074B2/en
Publication of WO2018082415A1 publication Critical patent/WO2018082415A1/zh
Priority to US17/144,167 priority patent/US11589367B2/en
Priority to US18/098,151 priority patent/US11903016B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and more particularly to coexistence management of multiple communication systems, and more particularly to electronic devices and methods for resource management devices, electronic devices and methods for resource management databases, and Electronic devices and methods for resource management objects.
  • next-generation networks are coexistence of multiple wireless technologies to form heterogeneous wireless access networks.
  • NTN Next Generation Network
  • IP Internet Protocol
  • An important feature of next-generation networks is the coexistence of multiple wireless technologies to form heterogeneous wireless access networks.
  • a network operating in a television band includes a primary system and a secondary system.
  • the primary system has the license to use the working frequency band, and the secondary system does not have the license right to the frequency band.
  • the secondary system can use the licensed spectrum together with the primary system if the interference to the same frequency primary system is within the allowable range.
  • the secondary system may be set with multiple priority levels.
  • a high priority system includes a primary system and a system in the secondary system that has a higher priority than the target system.
  • QoS Quality of Service
  • an electronic device for a resource management apparatus comprising: processing circuitry configured to: determine a resource usage behavior pattern of a resource management object within a specific time range and a specific spatial range; The resource usage behavior mode allocates radio resources to resource management objects.
  • a method for a resource management apparatus includes: determining a resource usage behavior pattern of a resource management object within a specific time range and a specific spatial scope; and managing the resource according to a resource usage behavior pattern The object allocates wireless resources.
  • an electronic device for a resource management database comprising: processing circuitry configured to: acquire information related to a resource usage behavior mode of a resource management object; and a memory configured to: The resource management object is stored in association with the information.
  • a method for a resource management database comprising: obtaining information related to a resource usage behavior pattern of a resource management object; and storing the resource management object in association with the information.
  • an electronic device for a resource management object comprising: processing circuitry configured to: perform measurement of a resource usage behavior pattern according to a measurement request from a resource management device; and generate a measurement result according to the measurement result The measured response to the measurement request.
  • a method for resource management object comprising: performing measurement of a resource usage behavior pattern according to a measurement request from a resource management device; and generating a measurement response to the measurement request according to the measurement result.
  • the electronic device and method according to an embodiment of the present invention can optimize the allocation of wireless resources by performing resource allocation behavior patterns based on resource management objects, for example, prolonging the sustainable use time of resource management objects for resource usage, and reducing the system The consumption of reconfiguration, etc., thereby improving resource utilization efficiency.
  • FIG. 1 is a functional block diagram showing an electronic device for a resource management device according to an embodiment of the present application
  • FIG. 2 is a schematic view showing a measurement object and a measurement time window
  • Figure 3 is a schematic view showing a measurement area
  • FIG. 4 is a schematic diagram showing an information flow between a resource management database, a resource management device, and a resource management object;
  • FIG. 5 is a schematic diagram showing an information flow of exchange of resource usage behavior pattern information based on a request between the resource management device A and the resource management device B;
  • FIG. 6 is a functional block diagram showing an electronic device for a resource management device according to another embodiment of the present application.
  • FIG. 7 is an example showing a resource allocation result of a resource management object
  • FIG. 8 is a schematic diagram showing an information flow between a resource management database, a resource management device, and a resource management object;
  • FIG. 9 is a functional block diagram showing an electronic device for a resource management database in accordance with one embodiment of the present application.
  • FIG. 10 is a functional block diagram showing an electronic device for a resource management object according to an embodiment of the present application.
  • FIG. 11 is a flow chart showing a method for a resource management device in accordance with one embodiment of the present application.
  • Figure 12 is a flow chart showing the sub-steps of step S12 in Figure 11;
  • FIG. 13 is a flowchart showing a method for a resource management device according to an embodiment of the present application.
  • FIG. 14 is a flow chart showing a method for a resource management database in accordance with one embodiment of the present application.
  • 15 is a flow chart showing a method for resource management objects in accordance with one embodiment of the present application.
  • 16 is a schematic diagram showing an information flow between respective logical entities in an ETSI RRS system
  • 17 is a schematic diagram showing the flow of information between respective logical entities in the IEEE P802.19.1a system
  • Figure 18 is a flow chart showing the operation of various logical entities in the IEEE P802.19.1a system
  • 19 is a schematic diagram showing the relationship between logical entities in a SAS 3.5 GHz system
  • Figure 20 is a diagram showing an example of a proximity service communication system
  • 21 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology of the present disclosure can be applied;
  • 22 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 23 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 24 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • the electronic device 100 includes a determining unit 101 configured to determine that a specific measurement is to be performed. a resource management object whose resource uses behavior mode information in a space and a specific time range; and a generating unit 101 configured to generate a measurement request to instruct the resource management object to perform measurement of the resource usage behavior mode information.
  • the determining unit 101 and the generating unit 102 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 100 may be disposed in the resource management device or communicably connected to the resource management device.
  • the resource management object is, for example, a wireless communication system to use wireless resources, and the wireless communication system may be fixed or mobile.
  • the wireless communication system described herein may be a communication system including a network control terminal such as a base station and a network node such as a user equipment.
  • a resource management device can be set up to manage the use of resources.
  • the resource management device can coordinate the common use of wireless resources by the various wireless communication systems.
  • the radio resource may include at least one of the following: a frequency domain resource, a time domain resource, a code domain resource, a resource involved in some new wireless technologies, such as a code in a sparse code multiple access system.
  • An interleaver or the like in the present or interleaved multiple access system will use spectrum resources as an example of radio resources, in which case the measurement requests generated by the electronic device 100 are used to measure behavioral mode information for the use of spectrum resources. However, it should be understood that this is not limiting, and embodiments of the present application are similarly applicable to other types of wireless resources.
  • the resource usage behavior pattern is a distribution of resource usage events of a resource management object at a particular time and/or within a particular spatial extent. In one example, the resource usage behavior pattern is a distribution of the usage behavior of the resource management object to the wireless resource and the distribution of the usage result in time and space.
  • the usage behavior may include, for example, use, sensing, calculation, learning, querying a database, and switching between behaviors, etc. of the spectrum. The use of the spectrum will be described below as an example of the usage behavior, but it should be understood that this is not limitative, and the description is similarly applicable to other usage behaviors.
  • the resource usage behavior pattern may include a distribution of durations during which data management objects use wireless resources for data transmission at a particular time and within a particular spatial extent.
  • the resource usage behavior pattern may further include the number of times the resource management object uses the wireless resource at a specific time and a specific spatial extent or the interval between adjacent events, where the event may include an attempt to use, Successful transfer or transfer failed.
  • Successful transmission for example, refers to a certain or a group of resource management objects performing transmissions on the radio resources that satisfy the required QoS and the transmission duration exceeds a certain threshold, otherwise the transmission fails.
  • satisfying the required QoS may mean that the actual packet error rate of the resource management object is lower than the required packet error rate.
  • the above attempted use event, successful transmission event, and transmission failure event are respectively denoted as u, s, and And define the random variables N u , N s and To indicate the number of occurrences of three events, respectively defining the random variables TI u , TI s and To represent the interval between three events, respectively defining the random variables TD u , TD s and To indicate the duration of the three events.
  • the above distribution can be expressed as the mean, standard deviation, joint variance, probability, and conditional probability of the above random variables at a specific time and/or a specific space.
  • the resource usage behavior pattern information is a kind of statistical measurement for the resource management object's use behavior and results of the wireless resource, and provides simple and effective representation, measurement and calculation, thereby improving resource efficiency.
  • the information of the resource usage behavior mode is obtained and reported by the resource management object.
  • the determining unit 101 determines a resource management object to perform measurement of resource management behavior mode information and the generating unit 102 generates a corresponding measurement request.
  • the setting of the resource management object to be measured may be default, such as setting all resource management objects managed by the resource management device or resource management objects within a specific scope, etc., in this case, The determining operation may be performed without the determining unit 101, in other words, the determining unit 101 in the electronic device 100 is optional.
  • the determined resource management object performs measurement in response to the received measurement request to obtain information of the resource usage behavior pattern, and provides it as a measurement response to the resource management device.
  • the electronic device 100 further includes: a transceiver unit 103 configured to send the measurement request to the resource management object determined by the determining unit 101 and receive the measurement from the resource management object The measured response of the result.
  • the transceiver unit 103 can be implemented as a transceiver or a transceiver circuit.
  • the resource management device also uses the measurement response to update the resource management database.
  • the resource management object can also report the measurement response directly to the resource management database.
  • the measurement request may include, for example, at least one of a measurement object, a measurement time window, and a measurement area.
  • the measurement request may include the following parameters: a radio resource range (or identification), a measurement object, a measurement time window, a measurement area, and the like.
  • the radio resource range or identifier specifies a radio resource to be measured, such as a spectrum range to be measured, and the measurement object is a parameter corresponding to a specific type of the resource usage behavior mode, such as each random variable described above or
  • the measurement time window is the above specific time range, for example, may include a window start time and a window end time, and the window start time may be any time without limitation; the measurement area is the above specific spatial range. It should be noted that each of the above parameters may have multiple values, correspondingly indicating that multiple and/or multiple measurements are to be made.
  • the measurement request may further include a parameter value field for storing the measurement result obtained after the measurement is completed.
  • This field can be set to a reference value or set to empty when a measurement request is sent.
  • the measurement result can be included in the reference value field (other parameters remain unchanged) to generate a measurement response and provide it to the resource management device.
  • the measurement request may include, for example, a successful transmission duration threshold or the like.
  • the specific settings of the measurement request depend on The context and needs depend on the body.
  • Figure 2 shows a schematic diagram of a measurement object and a measurement time window.
  • the duration threshold T i th for successful transmission is set for each spectrum F i , and the thresholds for different spectrums may be the same or different.
  • the available spectrum of the resource management object RMO 1 includes F 1 and F 2 ;
  • the measurement time window T EW defines the start time point and duration of the measurement;
  • the resource management object is in the measurement window T EW
  • the behavior and results of the spectrum usage within the figure are as shown in the figure.
  • TD 1 1 and TD 1 2 respectively represent the duration of the first transmission of the resource management object RMO 1 on the spectrums F 1 and F 2
  • TI 1 represents the adjacent two.
  • the interval duration between secondary transmissions, TI 1 1 and TI 1 2 represent the interval duration between adjacent transmissions on the spectra F 1 and F 2 , respectively.
  • (b) of Figure 2 shows the behavior and results of the spectrum usage of RMO 2 over the available spectrums F 1 and F 3 within the measurement time window T EW .
  • the measurement time window settings may be the same or different for different resource management objects.
  • Figure 3 shows a schematic view of the measurement area.
  • the measurement area may be a two-dimensional plane in which the management objects RMO 1 to RMO 3 are located; as shown in (b) of FIG. 3, the measurement area may also be the management objects RMO 1 to RMO 3 .
  • the measurement area settings may be the same or different for different resource management objects.
  • the distribution range of the resource usage event may be one of the following: 1) a plurality of spatial distributions at a certain time, and the plurality of spaces may refer to, for example, a plurality of spatial dimensions or a plurality of spatial regions; 2) a certain space Distribution over multiple times; 3) distribution within a certain space and at a certain time.
  • the electronic device 100 may periodically generate and transmit the above measurement request, and may also generate and transmit the above measurement request in response to a specific trigger condition.
  • periodic generation and transmission of measurement requests can be achieved by setting a timer.
  • the timer may be maintained by the resource management device, or may be maintained by the resource management database and notified to the resource management device upon expiration.
  • the determining unit 101 is further configured to determine whether the timer expires, and the generating unit 102 generates a measurement request if the timer expires.
  • the determining unit 101 is configured to determine whether a predetermined trigger condition is satisfied.
  • the expiration of the timer can also be regarded as a kind of trigger condition.
  • examples of the trigger condition include: a. the network communication quality drops by more than a predetermined degree; b. receives the resource from other resources. The device's request for resource usage behavior mode information, and so on.
  • the resource management device can determine whether the trigger condition is satisfied based on its own data.
  • the trigger condition can be determined based on the network quality measurement report sent by the resource management object.
  • the measurement report may be periodically measured and transmitted by the resource management object, or may be sent by the resource management object to the resource management device when its communication quality drops by more than a predetermined level.
  • the network quality measurement report can also be derived from network measurement reports from other high priority systems, such as reports from authorized user detection (Incumbent Detection) devices for authorized user protection in the SAS 3.5 GHz system.
  • the determining unit 101 also checks whether the information in the resource management database satisfies the demand, for example, whether the information content and its timeliness satisfy the demand. If the demand is met, the information of the resource management database is used to respond; otherwise, the resource management object to be measured, such as its identifier, etc., is determined, and the generating unit 102 generates a corresponding measurement request.
  • the determination of the resource management object depends on the trigger conditions that are met. For example, in the case where the trigger condition a is satisfied, the resource management object to be measured may include a resource management object whose communication quality is degraded or the like. In the case where the trigger condition b is satisfied, the resource management object to be measured may include the resource management object in the target area for which the requesting resource management device is directed.
  • FIG. 4 shows a schematic diagram of information flow between a resource management database, a resource management device, and a resource management object when the resource management device operates in response to a trigger condition.
  • a certain trigger condition such as when the timer expires, a network quality measurement report is received, or a request for resource usage behavior mode information of another resource management device is received
  • the resource management device first checks resource management. Whether the information in the database meets the requirements, it is assumed in Figure 4 that the information does not meet the requirements.
  • the resource management apparatus generates a measurement request including a measurement object, a measurement time window, a measurement area, and the like, and transmits the measurement request to the resource management object on which the measurement is to be performed.
  • the resource management object as the transmission destination can be determined by the determination unit 101 in accordance with the trigger condition.
  • the resource management object After receiving the measurement request, the resource management object performs corresponding measurement according to the parameters included in the measurement request, and provides the measurement result to the resource management device through the measurement response.
  • the resource management apparatus performs an operation corresponding to the trigger condition using the measurement response, and further updates the information in the resource management database as appropriate.
  • operations corresponding to the triggering conditions a and b are, for example, system reconfiguration, resource usage behavior mode information, and the like to other resource management devices, respectively.
  • the transceiving unit 103 in response to the request for the resource usage behavior mode information from the other resource management device, is further configured to transmit the measured information of the resource usage behavior mode of the resource management object to the other resource management device.
  • Such information interaction can be used to exchange information of resource management objects located in overlapping areas of the management area of the resource management device to achieve coexistence management between regions and regions.
  • FIG. 5 is a schematic diagram showing an information flow of exchange of resource usage behavior pattern information based on a request between the resource management device A and the resource management device B. Since the resource management apparatus is peer-to-peer, the operations between the two are symmetric, and for the sake of brevity, only the case where the resource management apparatus B acquires information from the resource management apparatus A is shown.
  • the resource management device B requests the resource management device A for the resource usage behavior pattern information of the resource management object in the target time segment and in the target region, and the target region is, for example, an overlapping region of the region under the jurisdiction of the two resource management devices.
  • the resource management device A acquires information of the resource use behavior pattern of the resource management object in the target time period and in the target area from the resource management database.
  • the resource management apparatus A may also check whether the information satisfies requirements such as whether its content and/or timeliness meet the requirements, instructs the corresponding resource management object to perform measurement if the requirements are not met, and provides the measured information to the resources.
  • the device B is managed, and the resource management database can also be updated as indicated by the dotted line.
  • the resource management device B can store it for resource management.
  • the resource management apparatus A may process the information of the resource usage behavior mode to be converted into a form suitable for the resource management apparatus B, for example, by the electronic device 100.
  • the generating unit 102 executes. Further, the generating unit 102 may also aggregate information of the resource usage behavior mode, and the transceiver unit 103 transmits the aggregated information to other resource management devices (ie, the resource management device B).
  • the successful transmission frequency is the number of successful transmissions using the spectrum per unit time.
  • the arithmetic mean of the successful transmission frequency of each resource management object in each spectrum can be calculated; the weighted average number of successful transmission frequencies of each resource management object in each spectrum can also be calculated, and the weight can represent each resource management.
  • the degree to which the object affects the spectrum usage of users in a specific area For example, the closer the distance is to a specific area, the higher the degree of influence, and the higher the weight; the sum of the successful transmission frequencies of each resource management object in each spectrum can also be calculated in the target area.
  • the mean value per unit area It should be understood that only non-limiting examples of resource usage behavior patterns and aggregation methods are shown herein for illustrative purposes only.
  • the resource management apparatus may provide resource usage behavior pattern information to other resource management apparatuses, for example, after a predetermined time and resource usage behavior pattern information, if certain conditions are met. The change is more than a predetermined level, and so on.
  • the electronic device 100 generates a measurement request of the resource usage behavior mode to instruct the resource management object to measure the resource usage behavior mode in a specific time and a specific spatial range to obtain the resource usage behavior mode.
  • the information can be used by the resource management device for resource allocation, for example, and can effectively extend the resource management object's duration of resource usage, reduce system reconfiguration consumption, and improve resource utilization efficiency.
  • a resource management object when a resource management object requires a radio resource, it sends a request to the resource management device, and in response to the request, the resource management device allocates a radio resource based on various factors that need to be considered. It should be understood that this allocation operation may also involve the use of wireless resources by other resource management objects.
  • FIG. 6 shows a functional block diagram of the electronic device 200.
  • the electronic device 200 includes: a determining unit 201 configured To determine resource management objects at specific time frames and specific A resource usage behavior pattern within a spatial scope; and an allocation unit 202 configured to allocate a radio resource to the resource management object according to the resource usage behavior pattern.
  • the determining unit 201 and the allocating unit 202 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 200 may be disposed in the resource management device or communicably connected to the resource management device.
  • the determining unit 201 may acquire information of a resource usage behavior pattern from a resource management database.
  • the information of the resource management object and its resource usage behavior pattern is saved by the resource management database and appropriately provided to the resource management device for resource allocation.
  • the determination unit 201 can also acquire the resource usage behavior pattern information, for example, according to the measurement response obtained in the first embodiment, which is not limitative.
  • the allocating unit 202 allocates the radio resource to the resource management object according to the resource usage behavior pattern. For example, the allocating unit 202 may sort the respective radio resources to be allocated according to the resource usage behavior mode for allocation of the radio resources.
  • wireless resources with a high probability of being successfully used according to resource usage behavior patterns may be prioritized or have a higher priority.
  • the resource management object can preferentially select the higher priority wireless resource for data transmission, which can effectively extend the sustainable use time of the resource, reduce the consumption of system reconfiguration, and thereby improve resource utilization efficiency.
  • the resource management apparatus may simultaneously instruct the resource management object to perform measurement and resource allocation for the resource management object, or may not indicate at the same time. There is no interrelated relationship between the two.
  • the determining unit 201 may be further configured to determine expected interference between resource management objects, and the allocating unit 202 is configured to also allocate radio resources to the resource management object according to expected interference.
  • the determining unit 201 can obtain resource allocation or re-division from the resource management database.
  • the information about the resource management object to be involved and the resource usage behavior pattern information are allocated, and the expected interference between the resource management objects is calculated based on the information of the resource management object. Since the resource management device may affect other resource management objects when allocating resources for the resource management object that issues the request, the resource management device also needs to consider resource allocation of all affected resource management objects.
  • the allocating unit 202 performs allocation of radio resources based on both the expected interference and the resource usage behavior mode information.
  • the information of the resource management object includes, for example, geographical location information of the resource management object, priority information, a list of available spectrum (including available spectrum, available time, maximum power, etc.) or a resource pool or the like.
  • the allocation unit 202 may also use some existing system parameters, such as an upper limit of resource management objects that can be accommodated in each spectrum, etc., and will not be described in detail herein.
  • the allocating unit 202 is configured to operate to divide the resource management object into a plurality of management object sets based on expected interference, wherein the resource management objects in each of the management object sets can share the same wireless resource; Optimizing the target, determining, according to the division of the management object set and the resource usage behavior pattern of each resource management object, the radio resources that can be used by each resource management object; and merging the resources of the resource management object available for the radio resource for each radio resource The behavioral pattern is used and the wireless resources are ordered based on the results of the merging for allocation of wireless resources.
  • the radio resource to be allocated is a spectrum resource
  • the resource usage behavior mode is the successful transmission frequency described above, but it should be understood that these settings are non-limiting and are only for illustrative purposes.
  • the resource management device can establish an interference graph in which one vertex of the interference graph represents a related resource management object.
  • the vertices are weighted, including the priority level of the resource management object corresponding to the vertex, the list of available spectrum, and the resource usage behavior pattern. information.
  • an edge is connected between their corresponding vertices. If the interference is symmetric, it can be represented by an undirected edge; if the interference is asymmetric, then the use is To the edge, the tail vertex of the directed edge corresponds to the transmitting node, and the head vertex corresponds to the target node.
  • the edge can also be assigned a weight, including the calculated expected interference signal strength, or its quantized level.
  • the graph can also contain an upper limit on the number of resource management objects that can be accommodated on each available spectrum.
  • the allocation of the radio resources may be performed according to a predetermined optimization target such as a minimum total number of spectrums used or a maximum average throughput of the resource management objects. The following is described by taking the minimum number of total spectrums used as an example.
  • the partitioning of the set of management objects is performed using a dyeing algorithm based on the above-described interference graph, wherein the set of management objects is a subset of the interference graphs, and no edges are connected between any two vertices in the set of management objects.
  • the priority of the resource management object corresponding to the vertex can be preferentially selected.
  • each of the resource management objects is allocated an available spectrum resource according to the division of the management object set.
  • each management object set can be considered in order of the number of vertices in the management object set from the most to the least. Specifically, a subset of the set of management objects is selected, and the resource management objects corresponding to the vertices of the subset have a common available spectrum, and the common available spectrum is allocated to the vertices in the subset. If the number of vertices of the subset exceeds the number of resource management objects that are carried by the available spectrum, the allocation is performed in descending order of vertex priority; in the same priority, for example, the frequency value can be successfully transmitted according to the vertex. The allocation is made in order of largest to smallest.
  • the available spectrum that each resource management object can use is determined.
  • each spectrum For each spectrum, the information of the resource usage behavior pattern of the resource management object available for the spectrum is combined, and in this example, the average of the successful transmission frequencies of the resource management objects available for the spectrum can be calculated. Then, in descending order of the average value, each spectrum is sequentially assigned in order from 1 to n.
  • Fig. 7 shows an example of resource allocation results of resource management objects RMO i , i ⁇ [1, m], each column representing a resource allocation result of a spectrum F j , j ⁇ [1, n], elements in the matrix
  • a positive number indicates the priority of spectrum usage. The smaller the value, the higher the priority. -1 indicates that the spectrum is not available to the resource management object.
  • the spectrum is arranged in descending order of the average of the successful transmission frequencies as ⁇ F 1 , F 3 , F 2 , F n ⁇ .
  • the resource usage behavior pattern information is also considered in the division of the management object set, and accordingly, the allocation unit 202 is configured to operate according to the order determined according to the resource usage behavior patterns of the respective resource management objects, based on The expected interference divides the resource management object into a plurality of management object sets, wherein the resource management objects in each management object set can share the same wireless resource; for the predetermined optimization target, according to the division of the management object set and the resources of each resource management object Using the behavior mode, respectively determining the radio resources that each resource management object can use; and, for each radio resource, merging the resource usage behavior patterns of the resource management objects that can use the radio resources, and sorting the radio resources based on the merged results to use For the allocation of wireless resources.
  • the order of considering the vertices is determined by the resource usage behavior pattern of each resource management object, so that the division of the management object set may include the resource usage behavior pattern. Impact. For example, each vertex and each spectrum can be examined in descending order of the frequency of successful transmission of the vertices on the spectrum. After the management object set is obtained in this way, the allocation and sorting of the radio resources can be performed by a method similar to the previous example, and is not repeated here.
  • the allocating unit 202 may also generate information about the allocation of the wireless resources to indicate the resource management object.
  • the information about the allocation of the wireless resource may include the identification information of the resource management object and the ranking information of the wireless resource available to the resource management object.
  • the electronic device 200 further includes a transceiving unit 203 configured to transmit information about the allocation of radio resources to the resource management object.
  • the transceiver unit 203 can be implemented as a transceiver or a transceiver circuit.
  • allocation unit 202 generates a reconfiguration request including identification information for the resource management object and an ordered sequence of available wireless resources.
  • the transceiver unit 203 transmits the reconfiguration request to the related resource management object.
  • the resource management object After receiving the reconfiguration request, the resource management object performs corresponding reconfiguration and updates the resource usage behavior mode information.
  • the reconfiguration of the resource management object is, for example, re-selecting resources according to the received sequence of available radio resources, and the radio resources may be selected in order from highest to lowest priority.
  • the number of events For example, for the selected radio resource, try to use the number of events to increase the corresponding number of attempts; if If the QoS requirement of the resource management object is successfully met and the duration exceeds a certain threshold, the number of successful transmission events is increased by a corresponding number of times; otherwise, the transmission failure event is increased by a corresponding number of times. Or, according to the actual application, update other types of resource usage behavior mode information in other appropriate manners.
  • the resource management object may also report the reconfiguration result and the updated resource usage behavior mode information to the resource management database.
  • FIG. 8 is a schematic diagram showing an information flow of information exchange between a resource management device, a resource management database, and a resource management object when performing system resource reconfiguration.
  • the resource management object RMO sends a resource request to the resource management device RM, and the resource management device acquires related resource management object information and resource usage behavior pattern information from the resource management database, wherein the related resource management object information and resources
  • the usage behavior mode information includes corresponding information of the resource management object that issues the request, and also includes corresponding information of other resource management objects that are affected due to resource allocation for the resource management object.
  • the resource management device calculates expected interference between the resource management objects based on the resource management object information, and calculates a coexistence scheme based on the expected interference and resource usage behavior pattern information, such as the ordered available spectrum sequence described above.
  • the resource management device transmits a reconfiguration request based on the coexistence scheme to the resource management object.
  • the resource management object performs system reconfiguration based on the reconfiguration request and updates its resource usage behavior mode information. Then, the resource management object reports the reconfiguration result and the resource usage behavior mode information to the resource management database. Alternatively, the resource management object may also report the reconfiguration result and the resource usage behavior mode information to the resource management device, and the resource management device updates the resource management database.
  • coexistence management based on frequency usage mode information can give higher priority to future use of resource management objects within the interval for frequencies that are more efficiently utilized within a given time and/or spatial interval.
  • the electronic device 200 allocates radio resources to the resource management object according to the resource usage behavior mode of the resource management object at a specific time and a specific spatial range, thereby effectively extending the sustainable use time of the resource management object to the resource usage, and reducing The cost of system reconfiguration increases the efficiency of resource usage.
  • FIG. 9 shows a functional block diagram of an electronic device 300 for a resource management database according to an embodiment of the present application.
  • the electronic device 300 includes an obtaining unit 301 configured to acquire and manage a resource.
  • the resource usage behavior mode related information; and the storage unit 302 is configured to store the resource management object in association with the information.
  • the acquisition unit 301 and the storage unit 302 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the obtaining unit 301 may acquire the above information from the resource management object, or the obtaining unit 301 may also acquire the above information from the resource management device. In addition, the obtaining unit 301 may also receive information related to a resource usage behavior mode of the resource management object.
  • the acquired information about the resource usage behavior mode may include the content of the measurement response in the first embodiment, and specifically, for example, may include: a range (or identifier) of the radio resource, a measurement object, a measurement time window, Measurement area, measurement parameter values, etc.
  • the obtaining unit 301 may update the above information in response to the reporting operation of the resource management object, the update operation of the resource management device, or periodically, and accordingly, the storage unit 202 updates the stored content.
  • the electronic device 300 further includes: a transceiver unit 303 configured to send information of a resource usage behavior mode of the resource management object to the resource management apparatus.
  • the transceiver unit 303 can be implemented, for example, as a transceiver or a transceiver circuit or the like.
  • the electronic device 300 can save the resource usage behavior mode information associated with the resource management object for the resource management device to perform resource allocation, and can effectively extend the resource management object's sustainable use time for the resource usage, and reduce the system. Re-use of consumption, thereby improving resource utilization efficiency.
  • FIG. 10 illustrates a functional block diagram of an electronic device 400 for a resource management object, the electronic device 400 including a measurement unit 401 configured to perform resources according to a measurement request from a resource management device, in accordance with an embodiment of the present application.
  • Use behavioral mode measurements ;
  • And generating unit 402 is configured to generate a measurement response to the measurement request based on the measurement result.
  • the measuring unit 401 and the generating unit 402 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the measurement request may include, for example, at least one of a measurement object, a measurement time window, and a measurement area.
  • a measurement object for example, at least one of a measurement object, a measurement time window, and a measurement area.
  • the measurement unit 401 measures the resource usage behavior pattern of the resource management object in accordance with each parameter in the measurement request, for example, within the measurement time window and in the measurement region for the measurement object.
  • the generating unit 402 may, for example, populate the corresponding result of the measurement request into the corresponding field of the measurement request to generate a measurement response.
  • this is not limiting, and the generating unit 402 may generate the measurement response in other manners.
  • the electronic device 400 may further include: a storage unit 403 configured to store information of a resource usage behavior mode.
  • the storage unit 403 may update the stored information after the measurement unit 401 completes the measurement.
  • the electronic device 400 may further include: a transceiver unit 404 configured to receive a measurement request from the resource management device and transmit the measurement response to the resource management device.
  • the transceiver unit 404 can also send the measurement response to the resource management database.
  • the electronic device 400 can further include an execution unit 405 configured to perform selection and use of wireless resources based on information from the resource management device regarding wireless resource allocation. Accordingly, in the presence of the storage unit 403, the storage unit 403 can be configured to update the information of the resource usage behavior mode of the resource management object according to the behavior of the selection and use and the result of the behavior.
  • the transceiving unit 404 can also be configured to transmit information of a resource usage behavior pattern to the resource management database. This transmission can be performed periodically or when the information of the resource usage behavior mode is updated.
  • the transceiver unit 404 may also send a resource request to the resource management device when the resource management object needs to request the resource.
  • the electronic device 400 can measure information of a resource usage behavior mode in response to the measurement request, the information can be used for resource allocation of the resource management device to effectively extend the resource management object's sustainable use time for the resource, Reduce the cost of system reconfiguration, Thereby improving the efficiency of resource use.
  • FIG. 11 shows a flowchart of a method for a resource management apparatus according to an embodiment of the present application, the method comprising: determining a resource usage behavior pattern of a resource management object within a specific time range and a specific spatial scope (S11); And allocating radio resources to the resource management object according to the resource usage behavior pattern (S12).
  • the resource usage behavior pattern is a distribution of the usage behavior of the resource management object to the wireless resource and the distribution of the usage result in time and space.
  • the resource usage behavior pattern includes a distribution of durations in which resource management objects use wireless resources for data transmission over a specific time and space.
  • the resource usage behavior pattern may further include the number of times the resource management object uses the wireless resource in a specific time and space or the interval between adjacent events, for example, including attempted use, successful transmission, or transmission failure. .
  • information of the resource usage behavior pattern can be obtained from the resource management database in S11.
  • each radio resource to be allocated according to the resource usage behavior mode may be sorted for allocation of radio resources.
  • the above method further includes step S13: determining expected interference between the resource management objects, and also assigning the radio resource to the resource management object according to the expected interference in step S12.
  • step S12 may include the following sub-steps: dividing the resource management object into a plurality of management object sets (S121), wherein each of the management object sets is Resource management objects can share the same radio resource, wherein the partitioning can be performed based on expected interference, or based on expected interference according to an order determined according to a resource usage behavior pattern of each resource management object; for a predetermined optimization target, according to a management object set Dividing and resource usage behavior patterns of respective resource management objects, respectively determining radio resources that can be used by each resource management object (S122); and merging resource usage behavior patterns of resource management objects available for the radio resources for each radio resource, and The radio resources are sorted based on the result of the combining for allocation of radio resources (S123).
  • the above method may further include step S14: generating information about allocation of radio resources to indicate a resource management object, and information about allocation of radio resources includes, for example, an identifier of a resource management object. Information and resource management object sorting information of available wireless resources. Accordingly, although not shown in the figures, the above method may further comprise the step of transmitting information about the allocation of the wireless resources to the resource management object.
  • the above method may further comprise the step of transmitting to the other resource management device at least a portion of the information of the resource usage behavior mode of the resource management object, the step being executable, for example, periodically, in response to a request by another resource management device, or Executed when the change in the information of the resource usage behavior mode exceeds a predetermined level.
  • the information can be converted and/or aggregated prior to transmission.
  • FIG. 13 shows a flowchart of a method for a resource management apparatus according to another embodiment of the present application, the method comprising: determining a resource management object to measure a resource usage behavior pattern information in a specific space and a specific time range ( S21); and generating a measurement request to instruct the resource management object to perform measurement of the resource usage behavior mode information (S22).
  • the measurement request includes, for example, at least one of a measurement object, a measurement time window, and a measurement area.
  • the above method may further include the step of determining whether the trigger condition is satisfied (S23).
  • the operations of steps S21 and S22 are performed when the trigger condition is satisfied.
  • the triggering condition may include at least one of the following: the timer expires, the network communication quality decreases by more than a predetermined degree, and a request for resource usage behavior mode information from another resource management device is received.
  • the above method may further include step S24: determining whether the information from the resource management database meets requirements such as information content and timeliness. begging. The operations of steps S21 and S22 are performed without satisfying the requirements, otherwise the information from the resource management database can be used for response.
  • the above method may further include steps S25 and S26: transmitting a measurement request; receiving a measurement response from the resource management object.
  • the resource management device may also update the information of the resource management database based on the measurement response.
  • FIG. 14 shows a flowchart of a method for a resource management database according to an embodiment of the present application, the method comprising: acquiring information related to a resource usage behavior pattern of a resource management object (S31); and managing the resource management object It is stored in association with this information (S32).
  • the method further includes responding to the reporting operation of the resource management object or periodically updating the above information. Moreover, the above method further includes transmitting, to the resource management device, information related to a resource usage behavior mode of the resource management object.
  • FIG. 15 shows a flowchart of a method for resource management object according to an embodiment of the present application, the method comprising: performing measurement of a resource usage behavior mode according to a measurement request from a resource management device (S41); and The result generates a measured response to the measurement request (S42).
  • the method may further comprise the steps of: selecting and using the wireless resource based on the information about the wireless resource allocation from the resource management device; updating the resource according to the behavior of the selection and use and the result of the behavior Manages the resource usage behavior information of an object.
  • the update also includes reporting to the resource management database for updating.
  • the European Telecommunication Standards Institute (ETSI) Reconfigurable Radio System (RRS) studies how effective the television system as the primary system and the cognitive radio system (CRS) as the secondary system Share TV bands.
  • the logical entities involved include a Geolocation Database (GLDB) and a Spectrum Coordinator (SC).
  • the resource management database of the present application is equivalent to the GLDB therein, the resource management device is equivalent to the SC therein, and the resource management object is equivalent to the CRS therein.
  • the technical solution of the present application can be applied to the ETSI RRS system, for example, for coexistence management or the like.
  • the signaling flow for allocating resources to the CRS in the ETSI RRS system is slightly different from the flow described in the second embodiment due to the difference in the definition of the logical entity function, see FIG.
  • the main difference is that the CRS sends the resource request to the GLDB through the SC; the GLDB allocates the available spectrum list to the CRS according to the request, and sends the response to the SC through the response; the CRS reports the reconfiguration result to the SC and the GLDB, and the result includes the resource usage behavior mode information. . Therefore, after applying the flow shown in FIG. 16 of the present application, the CRS can optimize the use of the available spectrum.
  • the signaling interaction process between the SCs is the same as the signaling interaction process between the resource management devices in this application, and is not repeated here.
  • the IEEE P802.19.1a standard study uses coexistence management to solve the problem of inefficient resource utilization.
  • the logical entities involved include: coexistence managers (CMs): the entity is used to provide coexistence management and coexistence discovery and information server (CDIS): the entity is responsible for storing system information for the CM; Geolocation Capability Object (GCO): This entity represents a single device or a network of multiple devices that work based on the acquired geolocation capabilities, acquire coexistence services from the CM, and coexistence enabler (coexistence enabler, CE): This entity is used to exchange information between the coexistence system and the GCO.
  • coexistence managers coexistence managers
  • CDIS coexistence discovery and information server
  • GCO Geolocation Capability Object
  • CE coexistence enabler
  • the resource management database in this application is equivalent to CDIS
  • the resource management device is equivalent to CM
  • the resource management object is equivalent to GCO. Due to differences in the definition of logical entity functions, the workflow for providing coexistence management for GCOs in the IEEE 802.19.1a system is slightly different, see Figure 17. The main difference is that the CE sends a reconfiguration request to the corresponding GCO, and then reports the resource usage behavior mode information updated after the GCO configuration is completed to the CM, and the CM updates the resource usage behavior mode information of the corresponding GCO in the CDIS. This is because CE provides an interface to the coexistence management system for the GCO.
  • FIG. 18 shows a flow chart of the operation of each logical entity in the IEEE P802.19.1a system, in which the frequency usage mode is taken as an example of the resource usage behavior mode.
  • step S51 is performed by CDIS, in which coexistence discovery is performed; steps S52-S54 are performed by the CM, and in step S52, the CM acquires frequency usage mode information from the CDIS and calculates the expected interference level.
  • the CM may also provide such information to the CDIS for updating the CDIS; in step S53, the CM calculates an ordered operational spectrum sequence based on the obtained frequency usage mode information and expected interference; in step S54, the CM is based on The ordered operational spectrum sequence generates a reconfiguration request, and further, in step S54, a new estimation request, such as the measurement request described in the first embodiment, may be generated; step S55 is operated by the CE, in this step, The CE sends a reconfiguration request to the GCO and reports the reconfiguration result to the CM. In addition, the CE can also report the estimated frequency usage mode information to the CM.
  • Coexistence management based on frequency usage patterns can give higher priority to frequencies that are used more efficiently by GCOs within the interval for frequencies that are more efficiently utilized within a given time and/or spatial interval.
  • the signaling interaction process between the CMs is the same as the signaling interaction process between the resource management devices in this application, and is not repeated here.
  • the Spectrum Access System studies the secondary coexistence management between multiple systems in the 3.5 GHz band.
  • the 3.5 GHz band has been used in the Department of Defense (DoD) radar system, and the Federal Communications Commission (FCC) is currently discussing the use of this band for commercial sharing through spectrum sharing.
  • the shared system is part of the SAS and consists of three levels: the incumbent user represents the highest level and needs to be protected from harmful interference from the Citizens Broadband Radio Service Device (CBSD).
  • DoD radar system fixed satellite service (Fixed Satellite Service, FSS) and privileged terrestrial wireless operations (CFD); citizen broadband wireless services, further including priority access license (PAL) and General Authorized Access (GAA)
  • PAL needs to be protected from harmful interference from the GAA.
  • Priority access licenses can use spectrum in the range of 3550-3650MHz, and are distributed in 10MHz units for a period of 3 years. All PALs in each census area The total spectrum does not exceed 70MHz, and the spectrum of each PAL does not exceed 40MHz. GAA can use the spectrum in the range of 3550-3700MHz without guaranteeing harmful interference to high-level users.
  • the logical entities used for resource management mainly include SAS and domain proxy (Domain Proxy), wherein the domain proxy interacts with the SAS on behalf of the individual CBSD or the network CBSD to obtain the service for the CBSD.
  • CBSD can also directly access the SAS to obtain services without using a domain proxy.
  • the SAS is equivalent to the resource management database and the resource management device in the present application.
  • the CBSD is equivalent to the resource management object in the present application, and a domain proxy may exist between the partial CBSD and the SAS, as shown in FIG.
  • the SAS provides a coexistence service for the CBSD according to the resource usage behavior mode information and the expected interference, and the CBSD reports the reconfiguration result to the SAS, including the updated resource usage behavior mode information. If there is a domain proxy between SAS and CBSD, the information interaction between them is done through the domain proxy.
  • the signaling interaction process between the instance SAS is the same as the signaling interaction process between the resource management devices in this application, and is not repeated here.
  • the fifth-generation communication system supports the growing number of user devices and service types, and Proximity Service (ProSe) has recently received widespread attention from industry and academia.
  • Proximity services include Device to Device (D2D), Vehicle Network (Vehicle to X, V2X, X refers to vehicles, network infrastructure, or pedestrians), Machine to Machine (M2M), Internet of Things ( Internet of Things, IoT).
  • D2D Device to Device
  • V2X Vehicle Network
  • M2M Machine to Machine
  • IoT Internet of Things
  • the technical solution of the present application is also suitable for a scenario of a proximity service.
  • the following is an example of 3GPP LTE-V2X. It should be understood that this is only for illustrative purposes. Not limited.
  • the base station (BS) or the roadside device (RSU) as the network infrastructure is equivalent to the resource management database and the resource management device of the present application, and the vehicle device is equivalent to the resource management object, as shown in FIG.
  • the BS or the RSU allocates resources to the vehicle device.
  • the BS or the RSU may provide resource allocation for the vehicle device according to the resource usage behavior mode information and the expected interference, for example, may be generated in the resource pool of the vehicle device.
  • An ordered sequence of resources thereby improving resource utilization efficiency of vehicle equipment by reducing the time spent on resource selection, increasing effective information transmission time, and ensuring information transmission quality.
  • the vehicle device measures and updates its resource usage behavior pattern information on the resource pool and reports the information to the BS or RSU to assist in subsequent resource allocation.
  • the vehicle device may select a resource by itself, for example, the vehicle device measures and updates the resource usage behavior mode information on the resource pool during the work process, and uses the information to perform resource selection.
  • the resource usage mode information may be exchanged between the BS or the RSU and the other BSs or the RSUs.
  • the signaling interaction process is the same as the signaling interaction process between the resource management devices in this application, and is not repeated here.
  • the electronic devices 100-400 can each be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the electronic device 100-400 may be a control module mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the electronic devices 100-400 can also be implemented as various types of base stations, respectively, for example, the base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; One or more remote wireless headends (RRHs) that are placed in a different location than the main body.
  • RRHs remote wireless headends
  • various types of terminals can operate as base stations by performing base station functions temporarily or semi-persistently.
  • Server 700 includes a processor 701, a memory 702, a storage device 703, a network interface 704, and a bus 706.
  • the processor 701 can be, for example, a central processing unit (CPU) or a digital signal processor (DSP) and controls the functionality of the server 700.
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701.
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 704 is a communication interface for connecting server 700 to communication network 705.
  • Communication network 705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • Bus 706 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • the described measurement unit 401, generation unit 402, execution unit 405, and the like can be implemented by the processor 701.
  • the storage unit 302 described with reference to FIG. 9 and the storage unit 403 described with reference to FIG. 10 may be implemented by the storage device 703.
  • the processor 701 can perform generation of a measurement request for a resource management object by performing functions of the determination unit 101 and the generation unit 102; the processor 701 can perform resource-based usage behavior by performing functions of the determination unit 201 and the allocation unit 202 The allocation of the wireless resources of the mode information; the processor 701 can perform the acquisition and update of the resource usage behavior information of the resource management object by executing the function of the acquisition unit 301; the processor 701 can execute the measurement unit 401, the generation unit 402, and the execution unit
  • the function of 405 is to perform measurement of the resource usage behavior pattern and generation of measurement responses and perform reconfiguration.
  • FIG. 22 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • MIMO multiple input multiple output
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 22 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • Wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and is provided via antenna 810 to the end located in the cell of eNB 800. Wireless connection at the end.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP))
  • layers eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • controller 821 BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 22 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 23 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 22 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 23 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the described transceiving unit 404 can be implemented by the wireless communication interface 825 as well as the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851. Referring to the determination unit 101, the generation unit 102 described with reference to FIG. 1, the determination unit 201, the allocation unit 202 described with reference to FIG. 6, the acquisition unit 301 described with reference to FIG.
  • the execution unit 405 or the like can be implemented by the controller 821 and the controller 851.
  • controller 821 The controller 851 can perform generation of the measurement request for the resource management object by performing the functions of the determination unit 101 and the generation unit 102; the controller 821 and the controller 851 can perform execution based on the functions of the determination unit 201 and the allocation unit 202
  • the resource uses the allocation of the wireless resource of the behavior mode information; the controller 821 and the controller 851 can perform the acquisition and update of the resource usage behavior information of the resource management object by executing the function of the acquisition unit 301; the controller 821 and the controller 851 can pass
  • the functions of the measurement unit 401, the generation unit 402, and the execution unit 405 are performed to perform measurement of the resource usage behavior pattern and generation of the measurement response and perform reconfiguration.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2400 shown in FIG. 24), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2401 executes various processes in accordance with a program stored in a read only memory (ROM) 2402 or a program loaded from a storage portion 2408 to a random access memory (RAM) 2403.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2401 performs various processes and the like is also stored as needed.
  • the CPU 2401, the ROM 2402, and the RAM 2403 are connected to each other via a bus 2404.
  • Input/output interface 2405 is also coupled to bus 2404.
  • the following components are connected to the input/output interface 2405: an input portion 2406 (including a keyboard, a mouse, etc.), an output portion 2407 (including a display such as a cathode ray tube (CRT), A liquid crystal display (LCD) or the like, and a speaker, etc.), a storage portion 2408 (including a hard disk or the like), a communication portion 2409 (including a network interface card such as a LAN card, a modem, etc.). The communication section 2409 performs communication processing via a network such as the Internet.
  • the driver 2410 can also be connected to the input/output interface 2405 as needed.
  • a removable medium 2411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2410 as needed, so that the computer program read therefrom is installed into the storage portion 2408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2411.
  • such a storage medium is not limited to the removable medium 2411 shown in FIG. 24 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2411 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2402, a hard disk included in the storage portion 2408, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Abstract

本发明公开了用于资源管理装置的电子设备和方法,用于资源管理数据库的电子设备和方法以及用于资源管理对象的电子设备和方法。所述用于资源管理装置的电子设备包括:处理电路,被配置为:确定资源管理对象在特定时间范围和特定空间范围内的资源使用行为模式;以及根据资源使用行为模式为资源管理对象分配无线资源。

Description

用于资源管理装置、数据库和对象的电子设备和方法
本申请要求于2016年11月3日提交中国专利局、申请号为201610973538.X、发明名称为“用于资源管理装置、数据库和对象的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及多通信系统的共存管理,更具体地涉及用于资源管理装置的电子设备和方法、用于资源管理数据库的电子设备和方法、以及用于资源管理对象的电子设备和方法。
背景技术
随着计算机和通信技术的迅猛发展,全球信息网络正在快速向以互联网协议(Internet Protocol,IP)为基础的下一代网络(Next Generation Network,NGN)演进。下一代网络的一个重要特征是多种无线技术并存而形成异构无线接入网络。在异构无线接入网中,就频谱资源的使用而言,不同的系统间存在优先级的差异,例如工作在电视频段的网络包含主系统和次系统两部分。主系统拥有对工作频段的许可使用权,次系统对该频段不具有许可使用权,次系统当且仅当对同频主系统的干扰在允许的范围内时可以和主系统共同使用许可频谱,并且进一步地,次系统可能被设置有多个优先等级。
为异构无线接入网络中的目标系统分配资源时,主要考虑两个因素。首先,是对高优先级系统的保护,即保证其资源使用权利不受损害,换言之,使其所受干扰在允许的范围内。高优先级系统包括主系统、以及次系统中优先级高于目标系统的系统。其次,如果目标系统所在优先级中的系统需要得到服务质量(Quality of Service,QoS)保证,则还需考虑该优先级中各系统间的干扰控制。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本发明的一个方面,提供了一种用于资源管理装置的电子设备,包括:处理电路,被配置为:确定资源管理对象在特定时间范围和特定空间范围内的资源使用行为模式;以及根据资源使用行为模式为资源管理对象分配无线资源。
根据本发明的另一个方面,提供了一种用于资源管理装置的方法,包括:确定资源管理对象在特定时间范围和特定空间范围内的资源使用行为模式;以及根据资源使用行为模式为资源管理对象分配无线资源。
根据本发明的一个方面,提供了一种用于资源管理数据库的电子设备,包括:处理电路,被配置为:获取与资源管理对象的资源使用行为模式有关的信息;以及存储器,被配置为:将资源管理对象与所述信息相关联地存储。
根据本发明的另一个方面,提供了一种用于资源管理数据库的方法,包括:获取与资源管理对象的资源使用行为模式有关的信息;以及将资源管理对象与所述信息相关联地存储。
根据本发明的一个方面,提供了一种用于资源管理对象的电子设备,包括:处理电路,被配置为:根据来自资源管理装置的测量请求进行资源使用行为模式的测量;以及根据测量结果生成对测量请求的测量响应。
根据本发明的一个方面,提供了一种用于资源管理对象的方法,包括:根据来自资源管理装置的测量请求进行资源使用行为模式的测量;以及根据测量结果生成对测量请求的测量响应。
依据本发明的其它方面,还提供了用于电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现这些方法的计算机程序代码的计算机可读存储介质。
根据本发明的实施例的电子设备和方法通过基于资源管理对象的资源使用行为模式来进行无线资源的分配,能够优化无线资源的分配,例如延长资源管理对象对资源使用的可持续时间,降低系统重配置的消耗等,从而提高资源使用效率。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于资源管理装置的电子设备的功能模块框图;
图2是示出了测量对象和测量时间窗口的示意图;
图3是示出了测量区域的示意图;
图4是示出了资源管理数据库、资源管理装置与资源管理对象之间的信息流程的一个示意图;
图5是示出了资源管理装置A与资源管理装置B之间基于请求进行的资源使用行为模式信息的交换的信息流程的示意图;
图6是示出了根据本申请的另一个实施例的用于资源管理装置的电子设备的功能模块框图;
图7是示出了资源管理对象的资源分配结果的一个示例;
图8是示出了资源管理数据库、资源管理装置与资源管理对象之间的信息流程的一个示意图;
图9是示出了根据本申请的一个实施例的用于资源管理数据库的电子设备的功能模块框图;
图10是示出了根据本申请的一个实施例的用于资源管理对象的电子设备的功能模块框图;
图11是示出了根据本申请的一个实施例的用于资源管理装置的方法的流程图;
图12是示出了图11中的步骤S12的子步骤的流程图;
图13是示出了根据本申请的一个实施例的用于资源管理装置的方法的流程图;
图14是示出了根据本申请的一个实施例的用于资源管理数据库的方法的流程图;
图15是示出了根据本申请的一个实施例的用于资源管理对象的方法的流程图;
图16是示出了ETSI RRS系统中各个逻辑实体之间的信息流程的示意图;
图17是示出了IEEE P802.19.1a系统中各个逻辑实体之间的信息流程的示意图;
图18是示出了IEEE P802.19.1a系统中各个逻辑实体的操作的流程图;
图19是示出了SAS3.5GHz系统中的逻辑实体之间的关系的示意图;
图20示出了邻近服务通信系统的一个示例的示意图;
图21是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图;
图22是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;以及
图24是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于资源管理装置的电子设备100的功能模块框图,如图1所示,该电子设备100包括:确定单元101,被配置为确定要测量特定空间和特定时间范围内其资源使用行为模式信息的资源管理对象;以及生成单元101,被配置为生成测量请求,以指示所述资源管理对象进行所述资源使用行为模式信息的测量。
其中,确定单元101和生成单元102例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备100可以设置在资源管理装置中,或者可通信地连接到资源管理装置。
资源管理对象例如为要使用无线资源的无线通信系统,该无线通信系统可以是固定的,也可以是移动的。这里所述的无线通信系统可以为包括网络控制端比如基站和网络节点比如用户设备等的通信系统。如前所述,在异构无线接入网络中,在多个通信系统间进行资源分配时需要考虑各种因素。例如,可以设置资源管理装置来对资源的使用进行管理。资源管理装置可以协调各个无线通信系统对于无线资源的共同使用。
无线资源可以包括如下中的至少一种:频域资源、时域资源、码域资源、一些新型无线技术中涉及的资源比如稀疏码多址接入系统中的码 本或者交织多址系统中的交织器等。为了便于描述,下文中的一些部分中将以频谱资源作为无线资源的示例,在这种情况下,电子设备100所生成的测量请求用于测量对于频谱资源的使用的行为模式信息。但是应该理解,这并不是限制性的,本申请的实施例类似地适用于其他类型的无线资源。
在一个示例中,资源使用行为模式是资源管理对象的资源使用事件在特定时间和/或特定空间范围内的分布。在一个示例中,资源使用行为模式为资源管理对象对无线资源的使用行为及使用结果在时间和空间上的分布。在无线资源为频谱资源的情况下,使用行为例如可以包括频谱的使用、感知、计算、学习、查询数据库、以及行为之间的切换等。以下将以对频谱的使用作为使用行为的示例进行描述,但是应该理解,这并不是限制性的,这些描述类似地适用于其他使用行为。
示例性地,资源使用行为模式可以包括在特定时间和特定空间范围内资源管理对象使用无线资源进行数据传输的持续时间的分布。
作为其他示例,资源使用行为模式还可以包括在特定时间和特定空间范围内资源管理对象使用无线资源的事件的次数或者相邻两次事件之间间隔时间的分布,这里的事件可以包括尝试使用、进行成功传输或者传输失败。成功传输例如指的是某一个或某一组资源管理对象在无线资源上进行满足所需的QoS的传输并且该传输持续时间超过一定的阈值,否则为传输失败。其中,满足所需的QoS可以指资源管理对象的实际的误包率低于要求的误包率。
更具体地,将以上尝试使用事件、成功传输事件及传输失败事件分别记作u、s和
Figure PCTCN2017103303-appb-000001
并分别定义随机变量Nu、Ns
Figure PCTCN2017103303-appb-000002
来表示三个事件发生的次数,分别定义随机变量TIu、TIs
Figure PCTCN2017103303-appb-000003
来表示三个事件的间隔时间,分别定义随机变量TDu、TDs
Figure PCTCN2017103303-appb-000004
来表示三个事件的持续时间。则上述分布可以表示为以上随机变量在特定时间和/或特定空间内的均值、标准方差、联合方差、概率、以及条件概率等等。
因此,资源使用行为模式信息是一种对于资源管理对象对无线资源的使用行为及其结果的统计计量,提供了简单有效的表示、测量和计算,从而提高了资源效率。
其中,资源使用行为模式的信息是由资源管理对象获取并上报的。在该实施例中,确定单元101确定要进行资源管理行为模式信息的测量的资源管理对象并且生成单元102生成相应的测量请求。应该注意,在一些变型中,要测量的资源管理对象的设置可以是默认的,比如设置为资源管理装置所管理的所有资源管理对象或特定范围内的资源管理对象等,在这种情况下,可以不用确定单元101执行确定操作,换言之,电子设备100中的确定单元101是可选的。所确定的资源管理对象响应于接收到的测量请求进行测量以获得资源使用行为模式的信息,并将其作为测量响应提供给资源管理装置。
相应地,如图1中的虚线框所示,电子设备100还包括:收发单元103,被配置为向所述确定单元101确定的资源管理对象发送所述测量请求以及从资源管理对象接收包含测量结果的测量响应。收发单元103可以实现为收发器或收发电路。在一个示例中,资源管理装置还使用该测量响应来更新资源管理数据库。可替选地/附加地,资源管理对象还可以将测量响应直接上报给资源管理数据库。
测量请求例如可以包括测量对象、测量时间窗口和测量区域中的至少一个。示例性地,该测量请求可以包括如下参数:无线资源范围(或标识)、测量对象、测量时间窗口、测量区域等等。其中,无线资源范围或标识指定了要进行测量的无线资源,比如要测量的频谱范围等;测量对象为资源使用行为模式具体的类型所对应的参数,比如上文所述的各个随机变量或其分布等;测量时间窗口为上述特定时间范围,比如可以包括窗口起始时间和窗口结束时间,窗口起始时间可以为任何时间,并不受限制;测量区域为上述特定空间范围。应该注意,上述每一个参数可以有多个值,相应地表示要进行多次和/或多种测量。
此外,该测量请求中还可以包括参数值字段,该参数值字段用于存储测量完成后获得的测量结果。在发送测量请求时,该字段可以设置为参考值或设置为空等。资源管理对象在完成测量后可以将测量结果包含在该参考值字段中(其他参数保持不变)从而生成测量响应,并提供给资源管理装置。
在无线资源为频谱资源的情况下,除了上述参数外,测量请求例如还可以包括成功传输持续时间阈值等等。测量请求的具体设置取决于具 体的场景和需求而定。
图2示出了测量对象和测量时间窗口的示意图。为每个频谱Fi设定成功传输的持续时间阈值Ti th,针对不同频谱的阈值可以相同也可以不同。如图2的(a)所示,资源管理对象RMO1的可用频谱包括F1和F2;测量时间窗口TEW定义了测量的起始时间点以及持续时间;资源管理对象在测量窗口TEW内的频谱使用的行为和结果如图所示,例如TD1 1和TD1 2分别表示资源管理对象RMO1在频谱F1和F2上第一次传输的持续时长,TI1表示相邻两次传输之间的间隔时长,TI1 1和TI1 2分别表示在频谱F1和F2上相邻两次传输之间的间隔时长。类似地,图2的(b)示出了RMO2在测量时间窗口TEW内在可用频谱F1和F3上的频谱使用的行为和结果。针对不同的资源管理对象,测量时间窗口的设定可以相同也可以不同。
图3示出了测量区域的示意图。如图3的(a)所示,测量区域可以是管理对象RMO1~RMO3所在的一个二维平面;如图3的(b)所示,测量区域也可以是管理对象RMO1~RMO3所在的一个三维空间。针对不同的资源管理对象,测量区域的设定可以相同也可以不同。
因此,资源使用事件的分布范围可以是如下中的一种:1)某一时间内多个空间上的分布,多个空间例如可以指多个空间维度或者多个空间区域;2)某一空间内多个时间上的分布;3)某一空间内以及某一时间内的分布。
电子设备100可以定期地生成和发送上述测量请求,也可以响应于特定触发条件来生成和发送上述测量请求。
在前一种情形下,可以通过设置定时器来实现测量请求的定期生成和发送。其中,该定时器可以由资源管理装置维持,也可以由资源管理数据库维持并在到期时通知资源管理装置。确定单元101还被配置为确定定时器是否到期,并且生成单元102在定时器到期的情况下生成测量请求。
在后一种情形下,确定单元101被配置为确定是否满足预定的触发条件。定时器到期也可以看作触发条件的一种,此外,触发条件的示例还包括:a.网络通信质量下降超过预定程度;b.接收到来自其他资源管 理装置的对资源使用行为模式信息的请求,等等。
针对触发条件a,如果由资源管理装置检测网络通信质量,则资源管理装置可以基于其自身的数据来判断是否满足该触发条件。另一方面,可以基于资源管理对象发送的网络质量测量报告来判断满足了该触发条件。该测量报告可以由资源管理对象定期测量和发送,也可以由资源管理对象在其通信质量下降超过预定程度时向资源管理装置发送。此外,网络质量测量报告还可以来自其它高优先级系统的网络测量报告,比如在SAS3.5GHz系统中的来自授权用户检测(Incumbent Detection)装置的关于授权用户保护所需的报告。
此外,可替选地,在满足上述条件中的至少一个时,确定单元101还检查资源管理数据库中的信息是否满足需求,例如,信息内容及其时效性是否满足需求。如果满足需求,则使用资源管理数据库的信息进行响应;否则确定要进行测量的资源管理对象比如其标识符等,并且生成单元102生成相应的测量请求。资源管理对象的确定取决于所满足的触发条件。例如,在满足触发条件a的情况下,要进行测量的资源管理对象可能包括通信质量下降的资源管理对象等。在满足触发条件b的情况下,要进行测量的资源管理对象可能包括发出请求的资源管理装置所针对的目标区域中的资源管理对象。
为了便于理解,图4示出了在资源管理装置响应于触发条件来动作时,资源管理数据库、资源管理装置与资源管理对象之间的信息流程的示意图。如图4所示,在满足某一触发条件时,比如定时器到期、收到网络质量测量报告或者收到其他资源管理装置的资源使用行为模式信息的请求时,资源管理装置首先检查资源管理数据库中的信息是否满足要求,图4中假设该信息不满足要求。在这种情况下,资源管理装置生成测量请求,其中包括测量对象、测量时间窗口和测量区域等,并将该测量请求发送给要执行测量的资源管理对象。如前所述,作为发送目标的资源管理对象可以由确定单元101根据触发条件来决定。资源管理对象在接收到测量请求后,根据测量请求中包括的参数进行相应的测量,并且通过测量响应将测量结果提供给资源管理装置。接下来,资源管理装置使用该测量响应执行对应于触发条件的操作,此外还适当地对资源管理数据库中的信息进行更新。
作为示例,对应于触发条件a和b的操作例如分别为进行系统重配置,向其他资源管理装置提供资源使用行为模式信息等。
其中,在响应来自其他资源管理装置的资源使用行为模式信息的请求的情况下,收发单元103还被配置为向其他资源管理装置发送所测量的资源管理对象的资源使用行为模式的信息。这种信息的交互可用于交换处在资源管理装置的管理区域的交叠区域中的资源管理对象的信息,以实现区域与区域间的共存管理。图5示出了资源管理装置A与资源管理装置B之间基于请求进行的资源使用行为模式信息的交换的信息流程的示意图。由于资源管理装置是对等的,所以二者之间的操作均是对称的,为了简洁,仅示出了资源管理装置B从资源管理装置A获取信息的情形。
首先,资源管理装置B向资源管理装置A请求目标时间段上及目标区域内的资源管理对象的资源使用行为模式信息,目标区域例如为两个资源管理装置所辖区域的交叠区域。资源管理装置A在接收到该请求后,从资源管理数据库获取目标时间段上及目标区域内的资源管理对象的资源使用行为模式的信息。例如,资源管理装置A还可以检查该信息是否满足要求比如其内容和/或时效性是否满足要求,在不满足要求的情况下指示相应的资源管理对象进行测量,将测量获得的信息提供给资源管理装置B,同时如虚线所示还可以更新资源管理数据库。在接收到资源管理装置A发送的资源使用行为模式的信息之后,资源管理装置B可以对其进行存储,以用于资源管理。
此外,如图5中的虚线框所示,资源管理装置A在进行发送之前可以对资源使用行为模式的信息进行处理,以转换为适合资源管理装置B的形式,该操作例如可以由电子设备100的生成单元102来执行。进一步地,生成单元102还可以对资源使用行为模式的信息进行聚合,并且收发单元103将聚合的信息发送给其他资源管理装置(即,资源管理装置B)。
这是因为,在有些场景下,比如需要对资源管理对象进行保护,在资源管理装置之间的信息交互需要隐藏资源管理对象的特征信息。通过上述聚合,可以使得在交互资源使用行为模式信息时,不是以单独每个资源管理对象在各频谱上的资源使用行为模式信息进行交互,而是以目 标区域内的资源管理对象在各频谱上的资源使用行为模式信息的聚合结果进行交互。
以成功传输频度作为资源使用行为模式的示例,可以采用如下聚合方式,其中,成功传输频度为单位时间内使用频谱进行成功传输的次数。例如,可以计算每个频谱上各个资源管理对象的成功传输频度的算术平均数;也可以计算每个频谱上各个资源管理对象的成功传输频度的加权平均数,权值可以表示各个资源管理对象对特定区域的用户的频谱使用影响程度,例如距离特定区域越近影响程度越高,权值也越高;还可以计算每个频谱上各个资源管理对象的成功传输频度之和在目标区域单位面积上的均值。应该理解,这里仅示出了资源使用行为模式和聚合方式的非限制性示例,仅是为了说明的目的。
此外,除了上述基于请求的交互之外,资源管理装置还可以在满足特定条件的情况下向其他资源管理装置提供资源使用行为模式信息,这些特定条件例如为经过了预定时间、资源使用行为模式信息的变化超过预定程度,等等。
综上所述,在本实施例中,电子设备100生成资源使用行为模式的测量请求,以指示资源管理对象对特定时间和特定空间范围内的资源使用行为模式进行测量从而获取资源使用行为模式的信息。该信息例如可以由资源管理装置用于进行资源分配,可以有效地延长资源管理对象对资源使用的可持续时间,降低系统重配置的消耗,从而提高资源使用效率。
<第二实施例>
在异构无线接入网络中,在资源管理对象需要无线资源时,其向资源管理装置发送请求,资源管理装置响应于该请求,基于需要考虑的各种因素为其分配无线资源。应该理解,该分配操作可能还会涉及其他资源管理对象对无线资源的使用。
本申请的该实施例提供了一种用于资源管理装置的电子设备200,图6示出了电子设备200的功能模块框图,如图6所示,电子设备200包括:确定单元201,被配置为确定资源管理对象在特定时间范围和特定 空间范围内的资源使用行为模式;以及分配单元202,被配置为根据资源使用行为模式为资源管理对象分配无线资源。
其中,确定单元201和分配单元202例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备200可以设置在资源管理装置中,或者可通信地连接到资源管理装置。
例如,确定单元201可以从资源管理数据库来获取资源使用行为模式的信息。换言之,由资源管理数据库来保存资源管理对象及其资源使用行为模式的信息,并适当地提供给资源管理装置,以用于资源分配。此外,确定单元201例如还可以根据第一实施例中所获得的测量响应来获取资源使用行为模式信息,这并不是限制性的。
有关资源使用行为模式的详细描述已经在第一实施例中给出,在此不再重复。注意,本实施例的电子设备200和第一实施例的电子设备100可以单独地使用,也可以结合使用。
在确定单元201确定了资源使用行为模式的信息之后,分配单元202根据该资源使用行为模式为资源管理对象分配无线资源。例如,分配单元202可以根据资源使用行为模式对待分配的各个无线资源进行排序,以用于无线资源的分配。
在一个示例中,可以将根据资源使用行为模式而估计为被成功使用的概率高的无线资源排序在前或具有较高的优先级。这样,资源管理对象可以优先选择优先级较高的无线资源进行数据传输,可以有效地延长资源使用的可持续时间,降低系统重配置的消耗,从而提高资源使用效率。
应该理解,在将电子设备100和电子设备200结合时,分配单元202的操作与生成单元102的操作是相互独立的。换言之,资源管理装置可以同时指示资源管理对象进行测量以及为资源管理对象进行资源分配,也可以不同时指示。二者之间不存在相互关联的关系。
此外,确定单元201还可以被配置为确定资源管理对象之间的预期干扰,并且分配单元202被配置为还根据预期干扰来为资源管理对象分配无线资源。
具体地,确定单元201可以从资源管理数据库获得资源分配或重分 配将涉及的资源管理对象的信息以及资源使用行为模式信息,并且基于资源管理对象的信息来计算资源管理对象之间的预期干扰。由于资源管理装置在为发出请求的资源管理对象分配资源时,可能影响到其他资源管理对象,因此,资源管理装置还需要考虑所有受影响的资源管理对象的资源分配。
分配单元202基于该预期干扰和资源使用行为模式信息两者来进行无线资源的分配。资源管理对象的信息例如包括资源管理对象的地理位置信息、优先级信息、可用频谱列表(包含可用频谱、可用时间和最大功率等)或者资源池等。此外,分配单元202在操作过程中还可能用到一些现有的系统参数,比如每个频谱上可容纳的资源管理对象的上限等,在此不再详述。
在一个示例中,分配单元202被配置为如下进行操作:基于预期干扰将资源管理对象划分为多个管理对象集合,其中,每一个管理对象集合中的资源管理对象能够共用相同无线资源;针对预定优化目标,根据管理对象集合的划分以及各个资源管理对象的资源使用行为模式,分别确定各个资源管理对象能够使用的无线资源;以及针对每一个无线资源,合并可用该无线资源的资源管理对象的资源使用行为模式,并且基于合并的结果对无线资源排序,以用于无线资源的分配。
为了便于理解,以下给出基于干扰图进行管理对象集合划分的示例,但是应该理解,管理对象集合的获得并不限于此。并且在该示例中,要分配的无线资源为频谱资源,资源使用行为模式为上文所述的成功传输频度,但是应该理解,这些设定都是非限制性的,仅是为了说明的需要。
干扰计算可以基于具体网络的信道模型,例如基于路径损耗的信道模型。假设发射节点的发射功率p(该信息可包含在资源管理对象的可用频谱信息中),到目标节点的距离为d(该信息可以由发射节点和目标节点的位置信息计算得到),信道系数为h以及路损指数为α(这两个信息作为环境参数由网络系统给出)。则目标节点接收到的来自发射节点的预期干扰信号强度为I=phd
在得到预期干扰后,资源管理装置可以建立干扰图,其中干扰图的一个顶点代表一个涉及的资源管理对象。顶点赋予权值,包含该顶点对应的资源管理对象的优先等级、可用频谱列表、以及资源使用行为模式 信息。当资源管理对象间的干扰超过一定的阈值时,认为干扰较强,则在它们对应的顶点之间连接一条边,如果干扰是对称的可以用无向边表示;如果干扰是非对称的则使用有向边表示,有向边的尾顶点对应发射节点,头顶点对应目标节点。边上也可以赋予权值,包含计算所得的预期干扰信号强度,或者其量化的等级。此外,该图还可以包含每个可用频谱上可以容纳的资源管理对象个数上限。
在获得干扰图之后,可以根据预定优化目标比如使用的总的频谱数目最少或者资源管理对象的平均吞吐量最大等等,来进行无线资源的分配。以下以使用的总的频谱数目最少为例进行描述。
基于上述干扰图使用染色算法来进行管理对象集合的划分,其中,管理对象集合为干扰图的子集,在管理对象集合中任何两个顶点之间没有边相连。在划分管理对象集合时可以优先选取顶点对应的资源管理对象的优先级高的。
接下来根据管理对象集合的划分为每个顶点即每个资源管理对象分配可用频谱资源。例如可以按照管理对象集合中顶点的个数从多到少的顺序来考虑各个管理对象集合。具体地,在一个管理对象集合中选取一个子集,该子集的顶点对应的资源管理对象拥有一个共同的可用频谱,将该共同的可用频谱分配给该子集中的顶点。如果该子集的顶点个数超过了该可用频谱最大承载的资源管理对象数,则按照顶点优先级从高到低的顺序进行分配;在相同优先级内,例如可以按照顶点成功传输频度值从大到小的顺序进行分配。如果该子集的顶点个数低于可用频谱最大承载的资源管理对象数,则在其它可以使用该频谱的顶点中挑选不违反顶点间干扰约束条件的顶点分配使用该可用频谱,直到达到该承载的资源管理对象数或者系统中再也没有符合条件的资源管理对象。经过上述操作后,确定了每个资源管理对象能够使用的可用频谱。
对于每一个频谱,合并可用该频谱的资源管理对象的资源使用行为模式的信息,在该示例中可以计算可用该频谱的资源管理对象的成功传输频度的平均值。然后,按该平均值的降序排列,依次给每个频谱按照从1到n的顺序赋值。
图7示出了资源管理对象RMOi,i∈[1,m]的资源分配结果的一个示例,每一列表示一个频谱Fj,j∈[1,n]的资源分配结果,矩阵中的元素正数表示 频谱使用的优先级,数值越小优先级越高,-1表示该频谱对该资源管理对象不可用。在图7所示的矩阵中,频谱按照成功传输频度的平均值降序排列为{F1,F3,F2,Fn}。
在另一个示例中,在管理对象集合的划分中还考虑资源使用行为模式信息,相应地,分配单元202被配置为如下进行操作:按照根据各个资源管理对象的资源使用行为模式确定的顺序,基于预期干扰将资源管理对象划分为多个管理对象集合,其中,每一个管理对象集合中的资源管理对象能够共用相同无线资源;针对预定优化目标,根据管理对象集合的划分以及各个资源管理对象的资源使用行为模式,分别确定各个资源管理对象能够使用的无线资源;以及针对每一个无线资源,合并可用该无线资源的资源管理对象的资源使用行为模式,并且基于合并的结果对无线资源排序,以用于无线资源的分配。
可以看出,在该示例中,在干扰图上划分管理对象集合时,对顶点进行考虑的顺序由各个资源管理对象的资源使用行为模式决定,从而使得管理对象集合的划分可以包含资源使用行为模式的影响。例如,可以按照顶点在频谱上成功传输频度的降序来考察各个顶点以及各个频谱。在这样获得管理对象集合后,可以采用与前一示例类似的方法来进行无线资源的分配和排序,在此不再重复。
随后,分配单元202还可以生成关于无线资源的分配的信息来指示资源管理对象。例如,关于无线资源的分配的信息可以包括资源管理对象的标识信息和该资源管理对象可用的无线资源的排序信息。相应地,如图6中的虚线框所示,电子设备200还包括收发单元203,被配置为向资源管理对象发送关于无线资源的分配的信息。收发单元203可以实现为收发器或收发电路。
在一个示例中,分配单元202生成重配置请求,其中包括资源管理对象的标识信息以及有序的可用无线资源序列。收发单元203将该重配置请求发送给相关的资源管理对象。资源管理对象在接收到该重配置请求之后,进行相应的重配置,并且更新资源使用行为模式信息。资源管理对象的重配置例如为根据收到的有序的可用无线资源序列重新进行资源选择,可以按照优先级从高到低的顺序依次选用无线资源。例如,对于被选择的无线资源,尝试使用事件次数增加相应的尝试次数;如果该 选择成功满足资源管理对象的QoS要求并且持续时间还超过一定阈值,则成功传输事件次数增加相应次数;否则传输失败事件增加相应次数。或者,根据实际应用,以其他适当的方式更新其他类型的资源使用行为模式信息。
此外,资源管理对象还可以将重配置结果和更新的资源使用行为模式信息上报给资源管理数据库。
为了便于理解,图8示出了在进行系统资源重配置时资源管理装置、资源管理数据库和资源管理对象之间的信息交换的信息流程的示意图。
如图8所示,资源管理对象RMO向资源管理装置RM发送资源请求,资源管理装置从资源管理数据库获取相关的资源管理对象信息以及资源使用行为模式信息,其中,相关的资源管理对象信息以及资源使用行为模式信息包括发出请求的资源管理对象的相应信息,还包括由于针对该资源管理对象的资源分配受到影响的其他资源管理对象的相应信息。接着,资源管理装置基于资源管理对象信息来计算资源管理对象间的预期干扰,基于该预期干扰和资源使用行为模式信息来计算共存方案,例如上文所述的有序的可用频谱序列。资源管理装置将基于该共存方案的重配置请求发送给资源管理对象。资源管理对象基于该重配置请求进行系统重配置,并且更新其资源使用行为模式信息。随后,资源管理对象向资源管理数据库上报该重配置结果和资源使用行为模式信息。或者,资源管理对象也可以向资源管理装置上报重配置结果和资源使用行为模式信息,并且由资源管理装置对资源管理数据库进行更新。
例如,基于频率使用模式信息的共存管理能够为在给定时间和/或空间间隔内被更高效地利用的频率赋予被该间隔内的资源管理对象在未来使用的更高的优先级。
综上所述,电子设备200根据资源管理对象在特定时间和特定空间范围内的资源使用行为模式来为资源管理对象分配无线资源,可以有效地延长资源管理对象对资源使用的可持续时间,降低系统重配置的消耗,从而提高资源使用效率。
<第三实施例>
图9示出了根据本申请的一个实施例的用于资源管理数据库的电子设备300的功能模块框图,如图9所示,电子设备300包括:获取单元301,被配置为获取与资源管理对象的资源使用行为模式有关的信息;以及存储单元302,被配置为将资源管理对象与信息相关联地存储。
其中,获取单元301和存储单元302例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
作为示例,获取单元301可以从资源管理对象获取上述信息,或者,获取单元301也可以从资源管理装置获取上述信息。此外,所述获取单元301也可以接收与资源管理对象的资源使用行为模式有关的信息。
有关资源使用行为模式的描述已经在第一实施例中详细给出了,在此不再重复。示例性地,所获取的与资源使用行为模式有关的信息可以包括第一实施例中测量响应的内容,具体地,例如可以包括:无线资源的范围(或标识)、测量对象、测量时间窗口、测量区域、测量参数值等。
获取单元301可以响应于资源管理对象的上报操作、资源管理装置的更新操作或者定期地来更新上述信息,相应地,存储单元202更新所存储的内容。
此外,如图中的虚线框所示,电子设备300还包括:收发单元303,被配置为向资源管理装置发送资源管理对象的资源使用行为模式的信息。
该收发单元303例如可以实现为收发器或收发电路等。
根据该实施例的电子设备300能够保存与资源管理对象关联的资源使用行为模式信息,以供资源管理装置用于进行资源分配,可以有效地延长资源管理对象对资源使用的可持续时间,降低系统重配置的消耗,从而提高资源使用效率。
<第四实施例>
图10示出了根据本申请的一个实施例的用于资源管理对象的电子设备400的功能模块框图,该电子设备400包括:测量单元401,被配置为根据来自资源管理装置的测量请求进行资源使用行为模式的测量;以 及生成单元402,被配置为根据测量结果生成对测量请求的测量响应。
其中,测量单元401和生成单元402例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
示例性地,测量请求例如可以包括测量对象、测量时间窗口和测量区域中的至少一个。有关测量请求的描述在第一实施例中已经详细给出,在此不再重复。
测量单元401按照测量请求中的各个参数例如在测量时间窗口内并且在测量区域中针对测量对象,对资源管理对象的资源使用行为模式进行测量。生成单元402例如可以将测量的结果填充到测量请求的相应字段中生成测量响应,当然,这并不是限制性的,生成单元402可以以其他方式来生成测量响应。
此外,如图10中的虚线框所示,电子设备400还可以包括:存储单元403,被配置为存储资源使用行为模式的信息。在这种情况下,存储单元403可以在测量单元401完成测量后,对存储的信息进行更新。
如图10中的另一个虚线框所示,电子设备400还可以包括:收发单元404,被配置为从资源管理装置接收测量请求以及将测量响应发送给资源管理装置。另外,收发单元404还可以将测量响应发送给资源管理数据库。
另一方面,电子设备400还可以包括:执行单元405,被配置为根据来自资源管理装置的有关无线资源分配的信息进行无线资源的选择和使用。相应地,在存在存储单元403的情况下,存储单元403可以被配置为根据选择和使用的行为以及该行为的结果,来更新资源管理对象的资源使用行为模式的信息。
此外,收发单元404还可以被配置为向资源管理数据库发送资源使用行为模式的信息。该发送可以定时地进行,或者在资源使用行为模式的信息发生更新时进行。在资源管理对象需要请求资源时,收发单元404还可以向资源管理装置发送资源请求。
在该实施例中,电子设备400可以响应于测量请求来测量资源使用行为模式的信息,该信息可以用于资源管理装置的资源分配,以有效地延长资源管理对象对资源使用的可持续时间,降低系统重配置的消耗, 从而提高资源使用效率。
<第五实施例>
在上文的实施方式中描述电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用电子设备的硬件和/或固件。
图11示出了根据本申请的一个实施例的用于资源管理装置的方法的流程图,该方法包括:确定资源管理对象在特定时间范围和特定空间范围内的资源使用行为模式(S11);以及根据该资源使用行为模式为资源管理对象分配无线资源(S12)。
在一个示例中,资源使用行为模式为资源管理对象对无线资源的使用行为及使用结果在时间和空间上的分布。例如,资源使用行为模式包括在特定时间和空间范围内资源管理对象使用无线资源进行数据传输的持续时间的分布。资源使用行为模式还可以包括在特定时间和空间范围内资源管理对象使用无线资源的事件的次数或者相邻两次事件之间间隔时间的分布,事件例如包括尝试使用、进行成功传输、或者传输失败。
例如,在S11中可以从资源管理数据库获取资源使用行为模式的信息。
在步骤S12中可以根据资源使用行为模式对待分配的各个无线资源进行排序,以用于无线资源的分配。
此外,如图11中的虚线框所示,上述方法还包括步骤S13:确定资源管理对象之间的预期干扰,并且在步骤S12中还根据预期干扰来为资源管理对象分配无线资源。
作为示例,如图12所示,步骤S12可以包括以下子步骤:将资源管理对象划分为多个管理对象集合(S121),其中,每一个管理对象集合中 的资源管理对象能够共用相同无线资源,其中,该划分可以基于预期干扰进行,或者按照根据各个资源管理对象的资源使用行为模式确定的顺序基于预期干扰进行;针对预定优化目标,根据管理对象集合的划分以及各个资源管理对象的资源使用行为模式,分别确定各个资源管理对象能够使用的无线资源(S122);以及针对每一个无线资源,合并可用该无线资源的资源管理对象的资源使用行为模式,并且基于合并的结果对无线资源排序,以用于无线资源的分配(S123)。
此外,如图11中的另一个虚线框所示,上述方法还可以包括步骤S14:生成关于无线资源的分配的信息以指示资源管理对象,关于无线资源的分配的信息例如包括资源管理对象的标识信息和资源管理对象可用的无线资源的排序信息。相应地,虽然图中未示出,上述方法还可以包括向资源管理对象发送关于无线资源的分配的信息的步骤。
此外,上述方法还可以包括向其他资源管理装置发送至少一部分所述资源管理对象的所述资源使用行为模式的信息的步骤,该步骤例如可以定时地执行、响应于其他资源管理装置的请求执行或者在资源使用行为模式的信息的改变超过预定程度时执行。并且,该信息在发送之前还可以进行转换以及/或者聚合。
图13示出了根据本申请的另一个实施例的用于资源管理装置的方法的流程图,该方法包括:确定要测量特定空间和特定时间范围内其资源使用行为模式信息的资源管理对象(S21);以及生成测量请求,以指示资源管理对象进行所述资源使用行为模式信息的测量(S22)。
其中,测量请求例如包括测量对象、测量时间窗口和测量区域中的至少一个。
此外,如图13中的虚线框所示,上述方法还可以包括如下步骤:确定是否满足触发条件(S23)。在满足触发条件时执行步骤S21和S22的操作。其中,触发条件可以包括以下中的至少一个:定时器到期,网络通信质量下降超过预定程度,接收到来自其他资源管理装置的资源使用行为模式信息的请求。
如图13中的另一个虚线框所示,上述方法还可以包括步骤S24:判断来自资源管理数据库的信息是否符合要求比如信息内容和时效性的要 求。在不满足要求的情况下执行步骤S21和S22的操作,否则可以使用来自资源管理数据库的信息进行响应。
上述方法还可以包括步骤S25和S26:发送测量请求;接收来自资源管理对象的测量响应。此外,资源管理装置还可以基于该测量响应更新资源管理数据库的信息。
图14示出了根据本申请的一个实施例的用于资源管理数据库的方法的流程图,该方法包括:获取与资源管理对象的资源使用行为模式有关的信息(S31);以及将资源管理对象与该信息相关联地存储(S32)。
虽然图中未示出,该方法还包括响应于资源管理对象的上报操作或者定期地更新上述信息。并且,上述方法还包括向资源管理装置发送与资源管理对象的资源使用行为模式有关的信息。
图15示出了根据本申请的一个实施例的用于资源管理对象的方法的流程图,该方法包括:根据来自资源管理装置的测量请求进行资源使用行为模式的测量(S41);以及根据测量结果生成对测量请求的测量响应(S42)。
虽然图中未示出,该方法还可以包括如下步骤:根据来自资源管理装置的有关无线资源分配的信息进行无线资源的选择和使用;根据选择和使用的行为以及该行为的结果,来更新资源管理对象的资源使用行为模式的信息。其中,该更新还包括上报给资源管理数据库以进行更新。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
<第六实施例>
在本实施例中,将给出前述电子设备100-400以及前述各个方法在不同的共存管理系统中的应用场景示例。应该理解,这些应用示例仅是为了说明的目的,并不是限制性的。前述电子设备100-400以及前述各个方法可以应用于其他各种适当的场景。
示例一 ETSI RRS系统
欧洲电信标准协会(European Telecommunication Standards Institute,ETSI)的可重配置无线系统标准(Reconfigurable Radio System,RRS)研究作为主系统的电视设备与作为次系统的感知无线电系统(Cognitive Radio System,CRS)如何有效共享电视频段。其中涉及的逻辑实体包括地理位置数据库(Geolocation Database,GLDB),以及频谱管理器(Spectrum Coordinator,SC)。
本申请的资源管理数据库相当于其中的GLDB,资源管理装置相当于其中的SC,而资源管理对象相当于其中的CRS。本申请的技术方案可以应用于该ETSI RRS系统中,例如可以用于共存管理等。
由于逻辑实体功能定义的差异,ETSI RRS系统中给CRS分配资源的信令流程与第二实施例中所述的流程略有差异,参见图16。主要差异在于CRS通过SC将资源请求发给GLDB;GLDB根据请求为CRS分配可用频谱列表,并通过响应发给SC;CRS将重配置结果上报给SC以及GLDB,该结果中包含资源使用行为模式信息。因此,在应用本申请如图16所示的流程后,CRS能够优化可用频谱的使用。
此外,该实例中,SC之间的信令交互流程与本申请中资源管理装置之间的信令交互流程相同,在此不再重复。
示例二 IEEE P802.19.1a系统
IEEE P802.19.1a标准研究利用共存管理解决资源利用率低效的问题。其中涉及的逻辑实体包括:共存管理器(coexistence managers,CMs):该实体用来提供共存管理;共存发现与信息服务器(coexistence discovery and information server,CDIS):该实体负责为CM存储系统信息;地理位置能力对象(Geolocation Capability Object,GCO):该实体表示单一设备或由多个设备构成的网络,这些设备基于获得认证的地理位置能力进行工作,从CM获取共存服务;共存使能(coexistence enabler,CE):该实体用来在共存系统和GCO之间进行信息交互。
本申请中的资源管理数据库相当于CDIS,资源管理装置相当于CM,资源管理对象相当于GCO。由于逻辑实体功能定义的差异,IEEE 802.19.1a系统中给GCO提供共存管理的工作流程略有差异,参见图17。 主要差异在于CE发送重配置请求给对应GCO,再将GCO配置完成后更新的资源使用行为模式信息上报给CM,由CM更新CDIS中的对应GCO的资源使用行为模式信息。这是因为CE为GCO提供与共存管理系统的接口。
此外,图18示出了IEEE P802.19.1a系统中各个逻辑实体的操作的流程图,其中,以频率使用模式作为资源使用行为模式的示例。如图18中所示,步骤S51由CDIS执行,在该步骤中进行共存发现;步骤S52~S54由CM执行,在步骤S52中,CM从CDIS获取频率使用模式信息和计算预期干扰水平所需的信息,此外,CM还可以向CDIS提供这些信息以用于更新CDIS;在步骤S53中,CM基于获得的频率使用模式信息和预期干扰来计算有序的操作频谱序列;在步骤S54中,CM基于该有序的操作频谱序列生成重配置请求,此外,在步骤S54中,还可以生成新的估计请求,例如第一实施例中所述的测量请求;步骤S55由CE操作,在该步骤中,CE向GCO发送重配置请求,以及向CM报告重配置结果,此外,CE还可以向CM报告估计的频率使用模式信息。
基于频率使用模式的共存管理能够为在给定时间和/或空间间隔内被更高效地利用的频率赋予被该间隔内的GCO在未来使用的更高的优先级。
此外,该实例中,CM之间的信令交互流程与本申请中资源管理装置之间的信令交互流程相同,在此不再重复。
示例三 SAS 3.5GHz系统
频谱访问系统(Spectrum Access System,SAS))研究3.5GHz频段上多系统间的次共存管理。在美国,3.5GHz频带一直用于国防部(Department of Defense,DoD)雷达系统,目前联邦通信委员会(Federal Communications Commission,FCC)在讨论将该频段通过频谱共享的方式用于商用。该共享系统是SAS的一部分,包含三个等级:授权用户(incumbent user)代表最高等级,需要保护其不受公民宽带无线服务用户(Citizens Broadband Radio Service Device,CBSD)的有害干扰,授权用户包含上述DoD雷达系统;固定卫星服务(Fixed Satellite Service, FSS)以及有限时间内的特权陆地无线业务(grandfathered terrestrial wireless operations);公民宽带无线服务,进一步包含优先访问许可证(priority access license,PAL)以及普通授权访问(General Authorized Access,GAA)两个等级,需要保护PAL不受到来自GAA的有害干扰。公民宽带无线服务以人口普查区为单位进行资源分配,优先访问许可证(PAL)可以使用3550-3650MHz范围内的频谱,以10MHz为单位以3年为期限发放,每个人口普查区的所有PAL所占总频谱不超过70MHz,其中每个PAL的频谱不超过40MHz。GAA在保证不对高级别用户产生有害干扰的前提下,可以使用3550-3700MHz范围内的频谱。用于资源管理的逻辑实体主要包括SAS以及域代理(Domain Proxy),其中域代理代表个体CBSD或者网络CBSD与SAS进行交互为CBSD获得服务。当然,CBSD也可以不通过域代理直接与SAS进行交互获得服务。
SAS相当于本申请中的资源管理数据库和资源管理装置,CBSD相当于本申请中的资源管理对象,在部分CBSD和SAS之间可能存在域代理,如图19所示。
该实施例中SAS根据资源使用行为模式信息和预期干扰为CBSD提供共存服务,CBSD向SAS上报重配置结果,包括更新的资源使用行为模式信息。若SAS与CBSD之间存在域代理,则它们之间的信息交互通过域代理进行。
该实例SAS之间的信令交互流程与本申请中资源管理装置之间的信令交互流程相同,在此不再重复。
示例四 邻近服务通信系统
第五代通信系统(5G)支持不断增长的用户设备个数以及业务类型,其中邻近服务(Proximity Service,ProSe)近来受到工业界和学术界的广泛关注。邻近服务包括设备间通信(Device to Device,D2D)、车联网(Vehicle to X,V2X,X指车辆、网络基础设施、或者行人等)、机器间网络(Machine to Machine,M2M)、物联网(Internet of Things,IoT)。本申请的技术方案同样适合邻近服务的场景。
以下以3GPP LTE-V2X为例,应该理解,这仅是为了说明的需要, 并不是限制性的。其中,基站(BS)或者作为网络基础设施的路边设备(Roadside Unit,RSU)相当于本申请的资源管理数据库和资源管理装置,车辆设备相当于资源管理对象,如图20所示。
在该场景下,例如,BS或者RSU为车辆设备分配资源,具体地,BS或者RSU可以根据资源使用行为模式信息和预期干扰为车辆设备提供资源分配,例如可以为在车辆设备的资源池中生成有序的资源序列,从而通过减少资源选择所用时间、增大有效信息传输时间以及保证信息传输质量等提高车辆设备的资源使用效率。此外,车辆设备测量和更新其在资源池上的资源使用行为模式信息,并向BS或RSU上报该信息,以帮助进行后续的资源分配。
或者,车辆设备可以自行选择资源,例如车辆设备在工作过程中测量和更新在资源池上的资源使用行为模式信息,利用该信息进行资源选择。
此外,BS或RSU与其它BS或RSU之间也可以交互资源使用行为模式信息,其信令交互流程与本申请中资源管理装置之间的信令交互流程相同,在此不再重复。
可以理解,以上虽然给出了四种应用场景作为示例,但是本申请的应用范围并不受此限制,本申请的技术可以适当地应用于任何需要对资源使用行为模式信息进行测量和使用的场合。
本公开内容的技术能够应用于各种产品。例如,电子设备100-400分别可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备100-400可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。此外,电子设备100-400还可以分别被实现为各种类型的基站,例如,基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及 设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于服务器的应用示例]
图21是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图。服务器700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到通信网络705的通信接口。通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图21所示的服务器700中,参照图1所描述的确定单元101、生成单元102,参照图6所描述的确定单元201、分配单元202,参照图9描述的获取单元301以及参照图10描述的测量单元401、生成单元402、执行单元405等可以由处理器701实现。参照图9描述的存储单元302和参照图10描述的存储单元403可以由存储装置703实现。例如,处理器701可以通过执行确定单元101和生成单元102的功能来执行针对资源管理对象的测量请求的生成;处理器701可以通过执行确定单元201和分配单元202的功能来执行基于资源使用行为模式信息的无线资源的分配;处理器701可以通过执行获取单元301的功能来执行资源管理对象的资源使用行为信息的获得和更新;处理器701可以通过执行测量单元401、生成单元402和执行单元405的功能来执行资源使用行为模式的测量和测量响应的生成以及执行重配置。
[关于基站的应用示例]
(第一应用示例)
图22是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图22所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图22示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终 端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图22所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图22所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图22示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图23所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图23示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图22描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图22描述的BB处理器826相同。如图23所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图23示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图23所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图23示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图22和图23所示的eNB 800和eNB 830中,参照图1所描述的收发单元103、参照图6所描述的收发单元203、参照图9所描述的收发单元303以及参照图10所描述的收发单元404可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。参照图1所描述的确定单元101、生成单元102,参照图6所描述的确定单元201、分配单元202,参照图9描述的获取单元301以及参照图10描述的测量单元401、生成单元402、执行单元405等可以由控制器821和控制器851实现。例如,控制器821 和控制器851可以通过执行确定单元101和生成单元102的功能来执行针对资源管理对象的测量请求的生成;控制器821和控制器851可以通过执行确定单元201和分配单元202的功能来执行基于资源使用行为模式信息的无线资源的分配;控制器821和控制器851可以通过执行获取单元301的功能来执行资源管理对象的资源使用行为信息的获得和更新;控制器821和控制器851可以通过执行测量单元401、生成单元402和执行单元405的功能来执行资源使用行为模式的测量和测量响应的生成以及执行重配置。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图24所示的通用计算机2400)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图24中,中央处理单元(CPU)2401根据只读存储器(ROM)2402中存储的程序或从存储部分2408加载到随机存取存储器(RAM)2403的程序执行各种处理。在RAM 2403中,也根据需要存储当CPU 2401执行各种处理等等时所需的数据。CPU 2401、ROM 2402和RAM 2403经由总线2404彼此连接。输入/输出接口2405也连接到总线2404。
下述部件连接到输入/输出接口2405:输入部分2406(包括键盘、鼠标等等)、输出部分2407(包括显示器,比如阴极射线管(CRT)、 液晶显示器(LCD)等,和扬声器等)、存储部分2408(包括硬盘等)、通信部分2409(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2409经由网络比如因特网执行通信处理。根据需要,驱动器2410也可连接到输入/输出接口2405。可移除介质2411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2410上,使得从中读出的计算机程序根据需要被安装到存储部分2408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2411安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图24所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2411。可移除介质2411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2402、存储部分2408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利 要求及其等效含义来限定。

Claims (21)

  1. 一种用于资源管理装置的电子设备,包括:
    处理电路,被配置为:
    确定资源管理对象在特定时间范围和特定空间范围内的资源使用行为模式;以及
    根据所述资源使用行为模式为所述资源管理对象分配无线资源。
  2. 根据权利要求1所述的电子设备,其中,所述资源使用行为模式为所述资源管理对象对无线资源的使用行为及使用结果在时间和空间上的分布。
  3. 根据权利要求2所述的电子设备,其中,所述资源使用行为模式包括在所述特定时间和空间范围内所述资源管理对象使用所述无线资源进行数据传输的持续时间的分布。
  4. 根据权利要求2所述的电子设备,其中,所述资源使用行为模式包括在所述特定时间和空间范围内所述资源管理对象使用所述无线资源的事件的次数或者相邻两次事件之间间隔时间的分布,所述事件包括尝试使用、进行成功传输、或者传输失败。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为根据所述资源使用行为模式对待分配的各个无线资源进行排序,以用于所述无线资源的分配。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为确定所述资源管理对象之间的预期干扰,并且还根据所述预期干扰来为所述资源管理对象分配无线资源。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为:
    将所述资源管理对象划分为多个管理对象集合,其中,每一个管理对象集合中的资源管理对象能够共用相同无线资源,其中,所述划分基于所述预期干扰进行,或者所述划分按照特定顺序基于所述预期干扰进行,其中所述特定顺序根据各个资源管理对象的所述资源使用行为模式确定;
    根据所述管理对象集合的划分以及各个资源管理对象的所述资源使用行为模式,分别确定各个资源管理对象能够使用的无线资源;以及
    针对每一个无线资源,合并可用该无线资源的资源管理对象的所述资源使用行为模式,并且基于合并的结果对无线资源排序,以用于所述无线资源的分配。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为生成关于所述无线资源的分配的信息以指示所述资源管理对象,所述关于所述无线资源的分配的信息包括所述资源管理对象的标识信息和所述资源管理对象可用的无线资源的排序信息。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为从资源管理数据库获取所述资源使用行为模式的信息。
  10. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为生成测量请求,以用于指示所述资源管理对象中的至少一部分进行所述特定时间和特定空间范围内的资源使用行为模式的测量。
  11. 根据权利要求8所述的电子设备,还包括:
    收发器,被配置为向所述资源管理对象发送所述关于所述无线资源的分配的信息。
  12. 根据权利要求10所述的电子设备,其中,所述收发器还被配置为向其他资源管理装置发送至少一部分所述资源管理对象的所述资源使用行为模式的信息。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为对所述至少一部分资源管理对象的资源使用行为模式进行聚合,并且所述收发器被配置为将聚合的信息发送给所述其他资源管理装置。
  14. 一种用于资源管理数据库的电子设备,包括:
    处理电路,被配置为:
    获取与资源管理对象的资源使用行为模式有关的信息;以及
    存储器,被配置为:
    将所述资源管理对象与所述信息相关联地存储。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为响应于所述资源管理对象的上报操作或定期地来更新所述信息,并且所述存储器相应地更新所存储的内容。
  16. 一种用于资源管理对象的电子设备,包括:
    处理电路,被配置为:
    根据来自资源管理装置的测量请求进行资源使用行为模式的测量;以及
    根据测量结果生成对所述测量请求的测量响应。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为根据来自资源管理装置的有关无线资源分配的信息进行无线资源的选择和使用;以及
    基于所述选择和使用的行为和所述行为的结果,来更新该资源管理对象的资源使用行为模式的信息。
  18. 根据权利要求16所述的电子设备,其中,所述测量请求包括测量对象、测量时间窗口和测量区域中至少之一。
  19. 一种用于资源管理装置的方法,包括:
    确定资源管理对象在特定空间范围和特定时间范围内的资源使用行为模式;以及
    根据所述资源使用行为模式为所述资源管理对象分配无线资源。
  20. 一种用于资源管理数据库的方法,包括:
    获取与资源管理对象的资源使用行为模式有关的信息;以及
    将所述资源管理对象与所述信息相关联地存储。
  21. 一种用于资源管理对象的方法,包括:
    根据来自资源管理装置的测量请求进行资源使用行为模式的测量;以及
    根据测量结果生成对所述测量请求的测量响应。
PCT/CN2017/103303 2016-11-03 2017-09-26 用于资源管理装置、数据库和对象的电子设备和方法 WO2018082415A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780068042.0A CN109923920B (zh) 2016-11-03 2017-09-26 用于资源管理装置、数据库和对象的电子设备和方法
CN202310829609.9A CN116916328A (zh) 2016-11-03 2017-09-26 用于资源管理装置、用户设备的电子设备和方法
US16/345,725 US10925074B2 (en) 2016-11-03 2017-09-26 Electronic devices and method for use in resource management devices, databases and objects
US17/144,167 US11589367B2 (en) 2016-11-03 2021-01-08 Electronic devices and method for use in resource management devices, databases and objects
US18/098,151 US11903016B2 (en) 2016-11-03 2023-01-18 Electronic devices and method for use in resource management devices, databases and objects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610973538.XA CN108024352A (zh) 2016-11-03 2016-11-03 用于资源管理装置、数据库和对象的电子设备和方法
CN201610973538.X 2016-11-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/345,725 A-371-Of-International US10925074B2 (en) 2016-11-03 2017-09-26 Electronic devices and method for use in resource management devices, databases and objects
US17/144,167 Continuation US11589367B2 (en) 2016-11-03 2021-01-08 Electronic devices and method for use in resource management devices, databases and objects

Publications (1)

Publication Number Publication Date
WO2018082415A1 true WO2018082415A1 (zh) 2018-05-11

Family

ID=62075723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103303 WO2018082415A1 (zh) 2016-11-03 2017-09-26 用于资源管理装置、数据库和对象的电子设备和方法

Country Status (3)

Country Link
US (3) US10925074B2 (zh)
CN (3) CN108024352A (zh)
WO (1) WO2018082415A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930663A (zh) * 2018-08-24 2021-06-08 上海诺基亚贝尔股份有限公司 用于处理5g网络中的管理对象优先级的装置和方法
CN113676989A (zh) * 2020-05-13 2021-11-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP3902306A4 (en) * 2018-12-21 2022-05-25 Sony Group Corporation ELECTRONIC DEVICE AND WIRELESS COMMUNICATION METHOD, AND COMPUTER READABLE STORAGE MEDIA

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024352A (zh) * 2016-11-03 2018-05-11 索尼公司 用于资源管理装置、数据库和对象的电子设备和方法
CN110475259A (zh) * 2018-05-10 2019-11-19 索尼公司 频谱管理装置和方法、无线网络管理装置和方法以及介质
CN111246485B (zh) * 2020-02-27 2022-09-20 华南理工大学 一种高密度车载通信环境下的车联网资源分配方法
US11582055B2 (en) 2020-08-18 2023-02-14 Charter Communications Operating, Llc Methods and apparatus for wireless device attachment in a managed network architecture
US11563593B2 (en) 2020-08-19 2023-01-24 Charter Communications Operating, Llc Methods and apparatus for coordination between wireline backhaul and wireless systems
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087675A1 (en) * 2000-12-28 2002-07-04 Fujitsu Limited Media-distribution-resource management apparatus and storage medium
CN101023646A (zh) * 2004-08-21 2007-08-22 艾利森电话股份有限公司 资源管理
CN102843696A (zh) * 2011-06-21 2012-12-26 中国移动通信集团设计院有限公司 一种无线系统间共用频谱资源的方法、装置及系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8914494B2 (en) * 2000-06-28 2014-12-16 Clinton D. Bunch System and method for user behavioral management in a computing environment
CN1526225B (zh) * 2002-05-08 2010-05-12 诺基亚有限公司 无线电资源的动态分配
WO2004064441A1 (en) * 2003-01-14 2004-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation management
US20050183143A1 (en) * 2004-02-13 2005-08-18 Anderholm Eric J. Methods and systems for monitoring user, application or device activity
KR100963551B1 (ko) * 2005-07-08 2010-06-16 후지쯔 가부시끼가이샤 무선 자원 할당 방법, 통신 장치
US8155659B2 (en) * 2006-03-21 2012-04-10 Telefonaktiebolaget L M Ericsson (Publ) Measurement-assisted dynamic frequency-reuse in cellular telecommunications networks
RU2009110150A (ru) * 2006-08-21 2010-09-27 Интердиджитал Текнолоджи Корпорейшн (Us) Распределение ресурсов, планирование и сигнализация для группирования услуг реального масштаба времени
EP2299753B1 (en) * 2009-09-18 2015-08-26 Alcatel Lucent Adaptive traffic and interference aware radio resource management
CN104618915B (zh) * 2009-11-17 2019-05-14 索尼公司 资源管理方法和系统、资源管理系统的测量装置和方法
US9237483B2 (en) * 2010-12-30 2016-01-12 Motorola Solutions, Inc. Methods for managing resource utilization in a long term evolution communication system
US9526031B2 (en) * 2011-08-15 2016-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for handling measurements under dynamically configured patterns
CN104145517B (zh) * 2012-02-15 2018-08-31 Nec实验室欧洲有限公司 时分双工蜂窝通信网络中的资源管理方法及资源管理系统
US9526092B2 (en) * 2012-05-14 2016-12-20 Industrial Technology Research Institute Method of allocating resources for scheduling request and user equipment using the same and a control node using the same
US9392477B2 (en) * 2012-06-14 2016-07-12 Nokia Solutions And Networks Oy Neighbor cell interference estimation
US20150208410A1 (en) * 2012-07-30 2015-07-23 Telefonaktiebolaget L M Ericsson (Publ) Nodes and Methods Therein for Managing Time-Frequency Resources
EP2709415A1 (en) * 2012-09-18 2014-03-19 Panasonic Corporation Maximization of scheduling opportunities in In-Device Coexistence interference scenarios
WO2015022029A1 (en) * 2013-08-15 2015-02-19 Telefonaktiebolaget L M Ericsson (Publ) Determining an adapted resource pattern for an access node
CN104811943A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 认知无线电系统频谱资源配置方法和装置
JP6424230B2 (ja) * 2014-01-29 2018-11-14 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス発見またはデバイスツーデバイス通信のためのリソース選択
US10044438B2 (en) * 2014-02-17 2018-08-07 Qualcomm, Incorporated Carrier sense adaptive transmission (CSAT) measurements in shared spectrum
US20160006500A1 (en) * 2014-07-02 2016-01-07 At&T Intellectual Property I, L.P. Satellite packet network for cellular backhaul of access point devices
US9883426B2 (en) * 2014-07-31 2018-01-30 Microsoft Technology Licensing, Llc. Enhanced reporting for handover in device-to-device communication
CN107211282B (zh) * 2014-10-01 2021-04-20 Abb瑞士股份有限公司 用于关于网络间干扰向无线计算机网络提出建议的系统和方法
CA2964810C (en) * 2014-10-20 2023-03-28 Ipcom Gmbh & Co. Kg Resource controller for resource management in a telecommunication network
US9729562B2 (en) * 2015-03-02 2017-08-08 Harris Corporation Cross-layer correlation in secure cognitive network
US10218589B1 (en) * 2015-12-17 2019-02-26 Innovium, Inc. Efficient resource status reporting apparatuses
CN108781437B (zh) * 2016-03-18 2021-01-05 华为技术有限公司 用于无线通信系统中无线通信的无线通信设备和基站
WO2017162262A1 (en) * 2016-03-21 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Target carrier radio predictions using source carrier measurements
US9913278B2 (en) * 2016-06-06 2018-03-06 Google Llc Systems and methods for dynamically allocating wireless service resources consonant with service demand density
CN108024352A (zh) * 2016-11-03 2018-05-11 索尼公司 用于资源管理装置、数据库和对象的电子设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087675A1 (en) * 2000-12-28 2002-07-04 Fujitsu Limited Media-distribution-resource management apparatus and storage medium
CN101023646A (zh) * 2004-08-21 2007-08-22 艾利森电话股份有限公司 资源管理
CN102843696A (zh) * 2011-06-21 2012-12-26 中国移动通信集团设计院有限公司 一种无线系统间共用频谱资源的方法、装置及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930663A (zh) * 2018-08-24 2021-06-08 上海诺基亚贝尔股份有限公司 用于处理5g网络中的管理对象优先级的装置和方法
CN112930663B (zh) * 2018-08-24 2024-04-19 上海诺基亚贝尔股份有限公司 用于处理5g网络中的管理对象优先级的装置和方法
EP3902306A4 (en) * 2018-12-21 2022-05-25 Sony Group Corporation ELECTRONIC DEVICE AND WIRELESS COMMUNICATION METHOD, AND COMPUTER READABLE STORAGE MEDIA
CN113676989A (zh) * 2020-05-13 2021-11-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113676989B (zh) * 2020-05-13 2023-02-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN108024352A (zh) 2018-05-11
US20210136782A1 (en) 2021-05-06
CN109923920A (zh) 2019-06-21
US11589367B2 (en) 2023-02-21
US20190268916A1 (en) 2019-08-29
US11903016B2 (en) 2024-02-13
US20230156773A1 (en) 2023-05-18
CN109923920B (zh) 2023-08-04
US10925074B2 (en) 2021-02-16
CN116916328A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2018082415A1 (zh) 用于资源管理装置、数据库和对象的电子设备和方法
US11863996B2 (en) Centralized coordination for shared spectrum systems
JP6442763B2 (ja) 共同電力制御及びチャネル割り当てを用いた空白帯域におけるスペクトル共有
US20180084429A1 (en) Frequency spectrum coordination device and method, and device and method in wireless communication system
WO2019129169A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质
WO2019206073A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11700630B2 (en) Electronic device and method for the electronic device
US11284269B2 (en) Electronic device and method for wireless communication and computer readable storage medium
CN112930663B (zh) 用于处理5g网络中的管理对象优先级的装置和方法
Singh et al. Dynamic frequency resource allocation in heterogeneous cellular networks
US9094836B2 (en) Method for calculating fairness index and method for allocating resources based on the fairness index in coexistence management system
US11277752B2 (en) Electronic device and method for the electronic device for clustering of high priority level secondary systems
US11589240B2 (en) Spectrum management apparatus and method, wireless network management apparatus and method, and medium
Jamali et al. Improving performance of association control in IEEE 802.11 ah-based massive IoT networks
US10694420B1 (en) Traffic deprioritization by using dynamically indicated invalid subframes
US20230040563A1 (en) Supporting cbrs operation using non-real time ran intelligent controller (non-rt ric) applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866789

Country of ref document: EP

Kind code of ref document: A1