WO2018082141A1 - 一种异构网络的通信架构及通信方法 - Google Patents

一种异构网络的通信架构及通信方法 Download PDF

Info

Publication number
WO2018082141A1
WO2018082141A1 PCT/CN2016/107722 CN2016107722W WO2018082141A1 WO 2018082141 A1 WO2018082141 A1 WO 2018082141A1 CN 2016107722 W CN2016107722 W CN 2016107722W WO 2018082141 A1 WO2018082141 A1 WO 2018082141A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet format
user equipment
data
cellular network
service data
Prior art date
Application number
PCT/CN2016/107722
Other languages
English (en)
French (fr)
Inventor
张奇勋
戴凤林
冯志勇
刘梦媛
曹鹏飞
董光喆
张宇然
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2018082141A1 publication Critical patent/WO2018082141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication architecture and communication method for a heterogeneous network.
  • WLAN Wireless Local Area Networks
  • WLAN has been widely used as a high-bandwidth, low-cost, and easy-to-use mobile radio access network.
  • WLAN can provide users with high-speed data transmission services by using unlicensed frequency bands.
  • the use of resources has formed a major advantage, so the convergence of LTE and WLAN networks has become the focus of 5G architecture research.
  • 5G wireless networks In addition to the convergence of different standard access networks, 5G wireless networks also consider deploying various base stations with different coverage, different transmission power, and different service carrying capabilities to form a heterogeneous network with complex network components.
  • the application of heterogeneous networks has greatly increased the density of access networks in an area. How to effectively manage and coordinate different networks and give full play to the advantages of each access network has become a major difficulty.
  • SDN Software Defined Network
  • One of the core ideas of SDN is to separate control from service. Centralized control can perform unified scheduling on different access networks to achieve virtualization. Only network devices responsible for services complete data forwarding according to the signaling requirements of the central controller.
  • the use of SDN technology not only facilitates the management of heterogeneous networks, but also reduces the service response time of the network.
  • the existing LTE-WLAN convergence technology moves the connection points of the two networks from the core network and is closer to the access network side, including the following three specific convergence architectures:
  • the first one is the EPC-WLAN convergence architecture, and the MME (Mobility Management Entity) in the EPC (Evolved Packet Core) is used as the control between the Home Evolved Node B (HeNB) and the WLAN.
  • the connection point of the layer, the S-GW (Serving Gateway) in the EPC serves as the connection point of the service level.
  • the cellular network access network is an LTE access network
  • the core network is an EPC.
  • Dotted b will MME and WLAN AN
  • the WLAN Access Network (WLAN access network) is connected to implement communication between the MME and the WLAN AN, and the dotted line a is connected to the S-GW and the WLAN AN to implement communication between the S-GW and the WLAN AN.
  • the second type is the LTE-WLAN convergence architecture.
  • the ISW-GW Integrated Small Cell and Wi-Fi Gateway
  • the cellular access network is an LTE access network
  • an ISW-GW module is added between the LTE core network and the access network.
  • the IWF (Interworking Function) in the ISW-GW module is responsible for The data sent by the core network is offloaded to the HeNB and the WLAN AN.
  • the dotted line c is used to connect the WLAN AN to the LTE network, and the control layer and the service layer of the WLAN are simultaneously controlled by one interface, and the convergence of LTE and WLAN is realized.
  • an enhanced interface that directly connects a WLAN AP (WLAN Access Point) and a HeNB is proposed.
  • the dashed line d allows signaling and data to be transmitted directly between the HeNB and the WLAN, avoiding the complexity of the backhaul link.
  • the HeNB is a cellular network access network, that is, an LTE access network, and implements convergence of LTE and WLAN.
  • the dense deployment of the heterogeneous network meets the increasing service requirements of the user, but inevitably causes frequent handover of the user equipment (UE), and the signaling overhead is relatively large.
  • UE user equipment
  • the present application provides a communication architecture and communication method for a heterogeneous network, which can greatly reduce signaling overhead.
  • the specific technical solutions are as follows:
  • the embodiment of the present application discloses a communication architecture of a heterogeneous network, including: a macro cell integrated controller, a micro cell wireless local area network access point, a micro cell cellular network base station, and user equipment;
  • the user equipment is configured to send first control signaling of a cellular network packet format to the macro cell integrated controller;
  • the macro cell integration controller is configured to process the first control signaling, obtain and send the second control signaling to the core network, so that the core network parses the second control signaling and feeds back The third control signaling or the first service data; when the third control signaling is received, processing the third control signaling, or after processing the third control signaling, obtaining and sending And ninth control signaling to the user equipment, wherein the third control signaling has a cellular network packet format or a wireless local area network data packet format, and the first service data has a cellular network packet format and/or a wireless local area network Packet format
  • the micro-area WLAN access point is configured to process, according to the third control signaling, when receiving the third control signaling, or receive the first service data, and identify the location When the first service data is in the WLAN data packet format, performing service processing according to the first service data in the WLAN data packet format sent by the core network, and obtaining and transmitting the second service data in the WLAN data packet format to the User equipment
  • the micro cell cellular network base station is configured to perform processing according to the third control signaling when receiving the third control signaling; or, after receiving the first service data, and identifying the first
  • the service data is in the format of the cellular network data packet, performing service processing according to the first service data in the format of the cellular network data packet sent by the core network, and obtaining and transmitting the second service data in the format of the data packet of the cellular network to the user equipment ;
  • the user equipment is further configured to integrate the received second service data in the WLAN data packet format and the second service data in the cellular network packet format into a first integrated service data in a cellular network packet format. And performing service processing, or receiving the ninth control signaling for processing;
  • the user equipment is configured to encapsulate third service data in a cellular network packet format into fourth service data in a wireless local area network data packet format and fourth service data in a cellular network data packet format, and respectively send the wireless local area network data. And transmitting, by the packet formatted fourth service data, the micro cell WLAN access point and the fourth service data of the cellular network packet format to the micro cell cellular network base station;
  • the micro area WLAN access point is configured to perform service processing according to the fourth service data of the WLAN data packet format, and obtain and send the fifth service data in a WLAN data packet format to the core network;
  • the micro cell cellular network base station is configured to perform service processing according to the fourth service data of the cellular network packet format, and obtain and send the fifth service data in a cellular network packet format to the core network.
  • the embodiment of the present application further discloses a communication method for a heterogeneous network, including:
  • the macro cell integration controller processes the first control signaling, obtains and sends the second control signaling to the core network, so that the core network parses the second control signaling and feeds back the third control signaling And the first service data; when the third control signaling is received, processing the third control signaling, or after processing the third control signaling, obtaining and sending the ninth control Signaling to the user equipment, wherein the third control signaling has a cellular network packet format or a wireless local area network data packet format, and the first service data has a cellular network packet format and/or a wireless local area network data packet format ;
  • the third control signaling receives, by the micro-area WLAN access point, the third control signaling, according to the third control signaling; or receiving the first service data, and identifying the first
  • the service data is in the WLAN data packet format, performing service processing according to the first service data in the WLAN data packet format sent by the core network, and obtaining and transmitting the second service data in the WLAN data packet format to the user equipment;
  • the micro cell cellular network base station When receiving the third control signaling, the micro cell cellular network base station performs processing according to the third control signaling; or receives the first service data, and identifies the first service data.
  • the cellular network packet format performing service processing according to the first service data in the cellular network packet format sent by the core network, and obtaining and transmitting the second service data in the cellular network packet format to the user equipment;
  • the user equipment integrates the received second service data in the WLAN data packet format and the second service data in the cellular network packet format into a first integrated service data in a cellular network packet format and performs service processing. Or receiving the ninth control signaling for processing;
  • the user equipment encapsulates the third service data in a cellular network packet format into a fourth service data in a wireless local area network data packet format and a fourth service data in a cellular network data packet format, and respectively sends the wireless local area network data packet format And transmitting, by the fourth service data, the micro area WLAN access point and the fourth service data of the cellular network packet format to the micro cell cellular network base station;
  • the micro area WLAN access point performs service processing according to the fourth service data of the WLAN data packet format, and obtains and sends a fifth service data in a WLAN data packet format to the core network;
  • the micro cell-based cellular network base station performs service processing according to the fourth service data in the cellular network packet format, and obtains and transmits the fifth service data in the cellular network packet format to the core network.
  • an embodiment of the present application discloses a control device, including: a processor, a memory, a communication interface, and a bus;
  • the processor, the memory, and the communication interface are connected by the bus and complete communication with each other;
  • the memory stores executable program code
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for executing the communication method.
  • an embodiment of the present application discloses an application program for executing the communication method at runtime.
  • the embodiment of the present application discloses a storage medium for storing executable code, and the executable code is used to execute the communication method.
  • the communication architecture and the communication method of the heterogeneous network integrate the micro-area wireless local area network access point and the micro-area cellular network base station, and propose a macro cell integrated controller, where The macro cell integrated controller is responsible for control, and the micro cell WLAN access point and the micro cell cellular network base station are responsible for service processing, realizing the separation of control and service, implementing more flexible control over the network, and making service transmission more efficient and effectively avoiding Due to the frequent handover problems caused by dense deployment, the signaling overhead is greatly reduced.
  • implementing any of the products or methods of the present application necessarily does not necessarily require all of the advantages described above to be achieved at the same time.
  • FIG. 1 is a schematic diagram of an EPC-WLAN fusion architecture in the prior art
  • FIG. 2 is a schematic diagram of an LTE-WLAN convergence architecture in the prior art
  • FIG. 3 is a schematic diagram of a HeNB-WLAN convergence architecture in the prior art
  • FIG. 4 is a schematic diagram of a communication architecture of a heterogeneous network according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a communication architecture of a heterogeneous network according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a protocol stack of a macro cell integrated controller according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for communicating a heterogeneous network according to an embodiment of the present application.
  • FIG. 8 is another flowchart of a method for communicating a heterogeneous network according to an embodiment of the present application.
  • FIG. 9 is a structural diagram of micro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application.
  • FIG. 10 is a structural diagram of macro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application
  • FIG. 11 is a flowchart of micro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application.
  • FIG. 12 is a flowchart of macro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application.
  • the embodiment of the present application discloses a communication architecture and a communication method for a heterogeneous network, which are applied to the field of wireless communication technologies, and combine multiple WLANs and multiple LTE networks to solve the coordination problem between different access networks.
  • the problem of frequent handover due to dense deployment is avoided, the signaling overhead is greatly reduced, and the network can be more flexibly controlled to make service transmission more efficient.
  • the communication architecture of the heterogeneous network in the embodiment of the present application is first described in detail below.
  • a Ma-IC Ma-IC Integrated Controller
  • a Ma-IC covers multiple Mi-WAPs (Microcell Wi-Fi Access Point) and multiple Mi-LBSs (Microcell LTE BaseStation).
  • a microcell cellular network base station and a plurality of UEs, and communicate with a plurality of Mi-WAPs, a plurality of Mi-LBSs, and a plurality of UEs.
  • FIG. 4 is a communication architecture of a heterogeneous network according to an embodiment of the present application.
  • a schematic diagram, a coverage area of a Ma-IC 401 includes two micro cells: a micro cell 1 and a micro cell 2, wherein the micro cell 1 includes: a first Mi-LBS 402, a first Mi-WAP 403, and a first The UE 404, the first UE 404 performs processing of the sixth service data 411 and the seventh service data 405 with the first Mi-LBS 402 and the first Mi-WAP 403, respectively, and the Ma-IC 401 sends the sixth control signaling 412, respectively. Seven control signaling 409 and eighth control signaling 410 to the first A UE 404, a first Mi-LBS 402, and a first Mi-WAP 403.
  • the micro cell 2 includes: a second Mi-LBS 406, a second Mi-WAP 408, and a second UE 407. Only a limited number of Mi-WAPs, Mi-LBSs, and UEs are illustrated in FIG. 4, and a heterogeneous network communication architecture is provided.
  • a plurality of Ma-ICs may be included, and one Ma-IC may include a plurality of micro cells, and of course, there may be a plurality of Mi-WAPs, a plurality of Mi-LBSs, and a plurality of UEs in each of the micro cells.
  • only one Ma-IC covers a Mi-WAP, a Mi-LBS, and a UE, and the communication architecture and communication method of the heterogeneous network including multiple network elements are similar. Let me repeat.
  • FIG. 5 is another schematic diagram of a communication architecture of a heterogeneous network according to an embodiment of the present application, including:
  • the user equipment 501 is configured to send the first control signaling of the cellular network packet format to the Ma-IC.
  • the macro cell integration controller 504 is configured to process the first control signaling, obtain and send the second control signaling to the core network, to enable the core network to parse the second control signaling, and feed back the third control signaling or the first Service data; when receiving the third control signaling, processing the third control signaling, or obtaining and transmitting the ninth control signaling to the user equipment after processing the third control signaling, where the third control
  • the signaling has a cellular network packet format or a wireless local area network data packet format
  • the first service data has a cellular network packet format and/or a wireless local area network data packet format.
  • the micro-cell WLAN access point 502 is configured to: when receiving the third control signaling, process according to the third control signaling; or, after receiving the first service data, and identify the first service data as the WLAN data In the packet format, the service processing is performed according to the first service data in the WLAN packet format sent by the core network, and the second service data in the WLAN packet format is obtained and sent to the user equipment.
  • a micro-cell cellular network base station 503 configured to perform processing according to the third control signaling when receiving the third control signaling; or, after receiving the first service data, and identifying the first service data as a cellular network packet format
  • the service processing is performed according to the first service data of the cellular network packet format sent by the core network, and the second service data in the format of the cellular network packet is obtained and sent to the user equipment.
  • the Ma-IC after receiving the first control signaling sent by the UE, performs processing according to the first control signaling, and obtains and sends the second control signaling to the core network, and the core network controls the second control signaling. Perform analysis and then feed back the third control signaling or the first service data.
  • the core network feeds back the third control signaling or the first service data is determined by the first control signaling, and the data format of the third control signaling and the first service data is determined according to the type of the receiver network.
  • the receiver of the third control signaling is one of Ma-IC, Mi-WAP, and Mi-LBS, and the receiver of the first service data is one or two of Mi-WAP and Mi-LBS.
  • the data packet format of the third control signaling is the WLAN packet format (wireless LAN packet format); if the receiver network For Mi-LBS, then the data packet format of the third control signaling is the LTE packet format (cellular network packet format).
  • the data packet format of the first service data is a WLAN packet format and an LTE packet format.
  • the Mi-WAP or the Mi-LBS performs corresponding processing according to the third control signaling, or when the Mi-WAP and/or the Mi-LBS receives the first service data. , responding according to the specific content of the first business data.
  • the UE when the micro cell handover is performed, after receiving the signaling of the handover request, the UE sends the first control signaling, that is, the handover confirmation signaling to the Ma-IC.
  • the Ma-IC sends signaling to the source Mi-WAP and/or the Mi-LBS, notifying the UE that the handover is about to be performed, while signaling that the target Mi-WAP and/or the Mi-LBS are ready to receive the UE.
  • the UE will send synchronization information to the target Mi-WAP and/or Mi-LBS during the process of accessing the target Mi-WAP and/or Mi-LBS, and the target Mi-WAP and/or Mi-LBS will send feedback information to The UE performs an access procedure.
  • the Ma-IC then sends the second control signaling to the core network, wherein the second control signaling includes information of the target Mi-WAP and/or Mi-LBS.
  • the core network After receiving the second control signaling, the core network sends a third control signaling, that is, connection signaling, to the target Mi-WAP and/or the Mi-LBS to prepare for subsequent data forwarding.
  • the UE sends the first control signaling of the service request to the Ma-IC, and the Ma-IC determines the split ratio according to the current connection state of the UE, and sends the second control request of the split ratio to the core network.
  • the core network sends the request data of the UE, that is, the first service data, to the Mi-WAP and/or Mi-LBS currently connected by the UE according to the split ratio.
  • the Mi-WAP and/or the Mi-LBS processes the service request of the UE according to the first service data, and feeds back the data request result of the UE to the UE.
  • the user equipment 501 is further configured to integrate the second service data in the received WLAN data packet format and the second service data in the cellular network packet format into the first integrated service data in the cellular network packet format, and perform service processing. Or receive the ninth control signaling for processing.
  • the UE communicates with the Mi-WAP and the Mi-LBS respectively, and the format of the data packets sent by the Mi-WAP and the Mi-LBS to the UE is different. Therefore, the protocol stack of the UE and the Ma-IC are the same, and all need to be new.
  • the CTRL layer control layer
  • the protocol stack of the Ma-IC will be described in detail below. Therefore, the protocol stack of the UE is not here. Repeatedly. Specifically, the first integrated data does not change the content of the data, but only converts the format of the data.
  • the second data of the WLAN data packet format and the second data of the LTE data packet format are video data packets of different standards, and the UE needs to integrate the video data packets of the two standards into the LTE data.
  • Complete video data in package format when the UE receives the downlink data of the video, the second data of the WLAN data packet format and the second data of the LTE data packet format are video data packets of different standards, and the UE needs to integrate the video data packets of the two standards into the LTE data.
  • Complete video data in package format is
  • the UE may also communicate with the Ma-IC.
  • the Ma-IC parses the third control signaling, and when determining that the third control signaling needs the UE to complete, The obtained ninth control signaling is sent to the UE, and the UE performs corresponding processing according to the ninth control signaling.
  • the core network needs to determine the target Ma-IC in its home subscriber server and send it to the source Ma-IC through control signaling, while the source Ma-IC needs to target the Ma-IC.
  • the information and the handover command are sent to the UE through control signaling, and then the UE sends the signal to the source Ma-IC. Control signaling for handover response.
  • the user equipment 501 is configured to encapsulate the third service data in a cellular network packet format into a fourth service data in a wireless local area network data packet format and a fourth service data in a cellular network data packet format, and respectively send the wireless local area network data packet format.
  • the fourth service data is sent to the Mi-LBS and the fourth service data in the cellular network packet format to the Mi-LBS.
  • the micro-cell WLAN access point 502 is configured to perform service processing according to the fourth service data of the WLAN data packet format, and obtain and send the fifth service data in the WLAN data packet format to the core network.
  • the micro-cell cellular network base station 503 is configured to perform service processing according to the fourth service data in the cellular network packet format, and obtain and send the fifth service data in the cellular network packet format to the core network.
  • the UE encapsulates the third service data in the LTE packet format into the fourth data in the WLAN packet format and the fourth service data in the LTE packet format, and only changes the format of the data, and does not change the data.
  • the UE when the UE performs real-time video service, the UE generates uplink third service data, which can be sent to the core network through the connected Mi-WAP and/or Mi-LBS.
  • the third service data is sent to the Mi-WAP and/or the Mi-LBS, the third service data needs to be encapsulated.
  • the third service data in the LTE packet format is encapsulated into the fourth service data in the WLAN packet format; if the UE is currently connected to the Mi-WAP and the Mi-LBS, then the LTE packet
  • the formatted third service data is encapsulated into fourth service data in a WLAN packet format and fourth service data in an LTE packet format.
  • the fourth service data in the WLAN packet format and the fourth service data in the LTE packet format are video service data.
  • the Mi-WAP and the Mi-LBS respectively process the corresponding video service data to generate a corresponding first. Five business data to the core network.
  • the communication architecture of the heterogeneous network combines multiple Mi-WAPs and multiple Mi-LBSs to implement convergence of multiple LTEs and multiple WLANs.
  • Ma-IC is proposed, Ma-IC is responsible for control, Mi-WAP and Mi-LBS are responsible for business processing, which realizes the separation of control and service, implements more flexible control over the network, and makes service transmission more efficient, effectively avoiding The problem of frequent handover caused by dense deployment greatly reduces the signaling overhead.
  • the Ma-IC is further configured to send the fourth control signaling of the WLAN packet format generated by the Ma-IC to the Mi-WAP, and send the Ma- The fourth control signaling of the LTE packet format generated by the IC is sent to the Mi-LBS or the UE;
  • the Mi-WAP performs processing according to the fourth control signaling of the WLAN packet format
  • the Mi-LBS performs processing according to the fourth control signaling of the LTE packet format, or the UE performs processing according to the fourth control signaling of the LTE packet format.
  • the UE is further configured to send the fifth control signaling of the WLAN data packet format generated by the UE to the Mi-WAP, and send the fifth control signaling of the LTE data packet format generated by the UE to the Mi-LBS;
  • the Mi-WAP performs processing according to the fifth control signaling of the WLAN packet format
  • the Mi-LBS performs processing according to the fifth control signaling of the LTE packet format.
  • the Mi-WAP is further configured to send the WLAN packet format signaling or WLAN packet format service data to the core network, or send the WLAN packet format signaling or the WLAN packet format service data to the UE, where the WLAN The data in the packet format or the service data in the WLAN packet format is generated or fed back by the Mi-WAP;
  • the core network processes according to the signaling of the WLAN packet format or the service data of the WLAN packet format; or
  • the UE performs processing according to signaling of the WLAN packet format or service data of the WLAN packet format.
  • the Mi-LBS is further configured to send the LTE data packet format signaling or the LTE data packet format service data to the core network, or send the LTE data packet format signaling or the LTE data packet format service data to the UE, where LTE The signaling of the packet format or the service data of the LTE packet format is generated or fed back by the Mi-LBS.
  • the core network performs processing according to signaling in the LTE packet format or service data in the LTE packet format; or
  • the UE performs processing according to signaling of the LTE packet format or service data of the LTE packet format.
  • the Ma-IC in addition to communicating with the UE, the Ma-IC communicates with the Mi-WAP and the Mi-LBS, and in the process of communicating between the Ma-IC and the Mi-WAP, the format of the data is a WLAN packet. Format, in the process of communication between Ma-IC and Mi-LBS, the format of the data is LTE packet format.
  • the Ma-IC sends the fourth control signaling to the source Mi-WAP and/or the Mi-LBS, where the fourth control signaling is signaling to notify the UE of the upcoming handover, and simultaneously sends the signaling.
  • the signaling informs the target Mi-WAP and/or Mi-LBS that it is ready to receive the UE.
  • the UE sends the fifth control signaling, that is, the synchronization information, to the target Mi-WAP and/or the Mi-LBS, and the target Mi-WAP and/or The Mi-LBS sends feedback information to the UE to perform an access procedure.
  • the Ma-IC communicates with the Mi-WAP and the Mi-LBS respectively, and is mainly responsible for the transmission of the control signaling. Therefore, the protocol stack of the Ma-IC needs to be modified. See FIG. 6 and FIG. 6 A schematic diagram of a protocol stack of an embodiment macro macro integrated controller is applied. All the protocols of the WLAN are added to the original protocol stack of the LTE, namely, a PHY (Physical) layer, a MAC (Media Access Control) layer, and an LLC (Logical Link Control) layer. PHY layer, MAC layer, RLC (Radio Link Control) layer, PDCP (Packet Data Convergence Protocol) layer and RRC (Radio Resource Control) layer in the cellular protocol stack constant.
  • PHY Physical
  • MAC Media Access Control
  • LLC Logical Link Control
  • the CTRL layer is added, that is, the control layer, and the control layer is mainly responsible for the upper layer.
  • the data packets are encapsulated into identifiable data of LTE and WLAN systems.
  • the packet is sent to the corresponding underlying protocol; and the data packet sent from the underlying layer is data in the LTE packet format and transmitted to the upper layer protocol.
  • This design can satisfy Ma-IC's control of Mi-WAP and Mi-LBS, as well as the connection to the core network.
  • the protocol stack of the UE is a cellular network protocol stack. Therefore, in the process of communication between the UE and the Ma-IC, the control of the UE by the Ma-IC is directly implemented through the cellular network protocol stack to achieve Changes to the original system are minimized.
  • the Ma-IC covers one or more of the Mi-WAP, the Mi-LBS, and the UE, and performs with the Mi-WAP, the Mi-LBS, and the UE.
  • Communication the UE communicates with the Mi-WAP and/or the Mi-LBS, wherein the number of Mi-WAPs covered by the Ma-IC is one or more, and the number of Mi-LBSs covered by the Ma-IC is one or more The number of UEs covered by the Ma-IC is one or more.
  • the network elements of different heterogeneous networks have different types of network elements.
  • Ma-IC can cover Mi-WAP and UE, and can cover Mi-LBS and Mi-WAP, or cover Mi-LBS. , Mi-WAP and UE.
  • the number of network elements may also be different.
  • the Ma-IC may cover one Mi-WAP and two UEs, and may also cover one Mi-WAP and two UEs.
  • the Ma-IC can simultaneously communicate with multiple Mi-WAPs, multiple Mi-LBSs, and multiple UEs, and the UE and one of the multiple Mi-WAPs are Mi-WAPs. Communicating, or communicating with one of the plurality of Mi-LBSs, or the UE simultaneously performing with one of the plurality of Mi-WAPs and one of the plurality of Mi-LBSs Communication.
  • large-area control and cell services can be realized, and control and service separation can be realized, and more flexible control and control can be implemented on the network. Make business transmissions more efficient.
  • the Ma-IC is further configured to acquire the first change of the Mi-WAP when the Mi-WAP, the Mi-LBS, and the UE covered by the Ma-IC change.
  • the access device information table includes at least: Mi-WAP information covered by the Ma-IC, information of the Mi-LBS, information of the UE, and information of the Ma-IC.
  • the Mi-WAP, the Mi-LBS, and the UE respectively send a broadcast message to the Ma-IC, and the Ma-IC establishes the access through the broadcast channel.
  • a device information table that stores information of Mi-WAP, Mi-LBS, and UE.
  • the information of the Mi-WAP includes: the downlink rate of the Mi-WAP, the network occupancy rate of the Mi-WAP, and the like;
  • the information of the Mi-LBS includes: the downlink rate of the Mi-LBS, the network occupancy of the Mi-LBS, and the like;
  • the information includes: location information of the UE, configuration information of the UE, and connection information of the UE, for example, a network standard supported by the UE, The rate supported by the UE, the network information of the UE connection, the connection rate of the UE, etc.;
  • the information of the Ma-IC includes: configuration information of the Ma-IC and load information of the Ma-IC.
  • the first change data, the second change data, and the third change data only represent information of Mi-WAP, Mi-LBS, and UE added, deleted, or changed by the Ma-IC, and are independent of each other. There is a relationship.
  • the newly added Mi-WAP information is added to the access device information table.
  • the Ma-IC does not communicate with a Mi-LBS, The Mi-LBS information is deleted from the access device information table.
  • the Ma-IC also uploads the access device information table to the core network, wherein the time uploaded to the core network may be automatically uploaded in a fixed time period, or may be Manual upload, there is no limit here.
  • the Ma-IC selects an optimal Mi-WAP and/or according to Mi-WAP information, Mi-LBS information, UE information, and the like in the access device information table.
  • Mi-LBS switches.
  • the home subscriber server in the core network selects an optimal Ma-IC to perform handover according to the configuration information of the Ma-IC in the access device information table and the load information of the Ma-IC.
  • the configuration information of the Ma-IC includes: power, support frequency band, etc.
  • the load information of the Ma-IC includes: the number of Mi-WAPs connected by the Ma-IC, the number of Mi-LBSs connected by the Ma-IC, and the Ma-IC connection. The number of UEs, etc.
  • the Ma-IC is further configured to: when the UE sends the service request to the Ma-IC, obtain the network currently connected by the UE according to the access device information table;
  • the current state of the network determines the traffic offload ratio of the service, and sends the traffic splitting ratio and the service request data of the UE to the core network, so that the core network separately sends the service request data of the UE to the Mi-LBS and/or currently connected by the UE according to the split ratio.
  • Mi-WAP wherein the current state of the connected network includes at least: the occupancy rate of the network and the rate of the network;
  • the Mi-LBS and/or Mi-WAP transmits the service request data received from the core network to the UE.
  • the UE is currently connected to Mi-LBS and Mi-WAP respectively, and the UE needs to acquire a 150M video.
  • the UE needs to send the service request data of the video to the Ma-IC connected to the UE, and the Ma-IC obtains the network status information of the Mi-LBS and the Mi-WAP connected to the UE in the local access device information table.
  • the network occupancy rate u1 of the Mi-LBS is 30%
  • the downlink rate v1 of the Mi-LBS is 6 Mbps
  • the network occupancy rate u2 of the Mi-WAP is 80%
  • the downlink rate v2 of the Mi-WAP is 8 Mbps, according to the following Relationship:
  • ⁇ and ⁇ can be adjusted according to parameters such as network occupancy rate and network rate.
  • the Ma-IC After determining the split ratio, the Ma-IC sends the split ratio and the user's service request to the core network.
  • the core network sends 44% of the video service request data to the Mi-LBS, and 56% of the video service request data is sent. Give Mi-WAP.
  • the core network labels the data that is distributed to the Mi-WAP and the Mi-LBS in the order of sending, so that the UE can be encapsulated after receiving the data transmitted by the Mi-WAP and the Mi-LBS. Ensure that if the user interrupts the switch during the process of receiving data, the tag can ensure continuous data transmission. In addition, when transmitting data, Mi-WAP and Mi-LBS record that the UE successfully receives the feedback data label, which facilitates data retransmission.
  • the Ma-IC is further used, when the Mi-WAP, the Mi-LBS, and the UE covered by the Ma-IC are increased,
  • connection between the base station and the mobility management entity is connected with the newly added Mi-LBS, and after the connection is successful, the communication is performed with the newly added Mi-LBS through the cellular network protocol;
  • the air interface is connected to the newly added UE, and after the connection is successful, the newly added UE is communicated through the cellular network protocol.
  • the Ma-IC controls the Mi-WAP through the WLAN protocol (the WLAN protocol in the protocol stack of the macro cell integrated controller in FIG. 6); the interface used by the original base station and the mobility management entity and the Mi-IC
  • the LBS is connected to facilitate the signaling transmission of session management and mobility management, which ensures that the Ma-IC can be dynamically adjusted according to the user requirements and service characteristics of the area in which the user can deploy Mi-WAP and Mi-LBS.
  • the demand for Mi-WAP is relatively large, and more Mi-WAPs can be connected to the Ma-IC to meet the needs of users.
  • FIG. 7 is a flowchart of a communication method of a heterogeneous network according to an embodiment of the present application, including the following steps. :
  • Step 701 The user equipment sends the first control signaling in a cellular network packet format to the macro cell integrated controller.
  • Step 702 The macro cell integrated controller processes the first control signaling, and obtains and sends the second control signaling to the core network, so that the core network parses the second control signaling and feeds back the third control signaling or the first service. Data; when receiving the third control signaling, processing the third control signaling, or obtaining and transmitting the ninth control signaling to the user equipment after processing the third control signaling.
  • Step 703 The micro cell WLAN access point performs processing according to the third control signaling when receiving the third control signaling, or receives the first service data, and identifies the first service data as a WLAN data packet.
  • the first service data in the WLAN data packet format sent by the core network is used for service processing, and the second service data in the WLAN data packet format is obtained and sent to the user equipment.
  • Step 704 When receiving the third control signaling, the micro cell cellular network base station performs processing according to the third control signaling; or, when receiving the first service data, and identifies that the first service data is the cellular network data packet format, And performing service processing according to the first service data in the format of the cellular network packet sent by the core network, and obtaining and transmitting the second service data in the format of the data packet of the cellular network to the user equipment.
  • Step 705 The user equipment integrates the received second service data in the WLAN data packet format and the second service data in the cellular network packet format into the first integrated service data in the cellular network packet format, and performs service processing, or receives the service.
  • the ninth control signaling is processed.
  • FIG. 8 is another flowchart of a method for communicating a heterogeneous network according to an embodiment of the present application, including the following steps:
  • Step 801 The user equipment encapsulates the third service data in the format of the cellular network packet into the fourth service data in the wireless local area network data packet format and the fourth service data in the cellular network data packet format, and respectively sends the wireless local area network data packet format.
  • the fourth service data is sent to the micro cell WLAN access point and the fourth service data of the cellular network packet format to the micro cell cellular network base station.
  • Step 802 The micro-area WLAN access point performs service processing according to the fourth service data in the WLAN data packet format, and obtains and sends the fifth service data in the WLAN data packet format to the core network.
  • Step 803 The micro cell cellular network base station performs service processing according to the fourth service data in the cellular network packet format, and obtains and sends the fifth service data in the cellular network packet format to the core network.
  • the communication method of the heterogeneous network integrates multiple WLAN networks with multiple LTE networks and is controlled by the proposed Ma-IC to implement the wide-area coverage control layer of the macro cell.
  • Uniformity facilitates coordination and cooperation among network elements; dense deployment of micro cells can be freely designed according to the distribution characteristics of users in a small range, enabling fast transmission of high-density traffic.
  • the problem of frequent handover caused by network dense deployment can be effectively avoided, and the signaling overhead is greatly reduced.
  • the control and the business are separated, and the network is more flexibly controlled, and the service transmission is more efficient.
  • the method for communicating the heterogeneous network in the embodiment of the present application further includes:
  • FIG. 9 is a structural diagram of micro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application. Only a limited number of Mi-WAPs and Mi-LBSs are indicated in the Ma-IC, and multiple Mis may be included in the actual application. -WAP and Mi-LBS, MiHO occurs in the UE cross-micro cell handover, but the Ma-IC connected by the UE does not change.
  • FIG. 10 is a structural diagram of macro cell handover in a communication method of a heterogeneous network according to an embodiment of the present disclosure, including: a macro cell 1 and a macro cell 2.
  • Mi-WAPs and Mi-LBSs are indicated in the Ma-IC 101 and the Ma-IC 102 in the macro cell 1 and the macro cell 2, and the actual application may include multiple Mi-WAPs and Mi-LBSs, MaHO. It occurs when the UE crosses the macro cell handover, that is, it needs to reselect the Ma-IC on the basis of MiHO.
  • the UE can connect to a Mi-WAP, can connect to a Mi-LBS, or can connect a Mi-WAP and a Mi-LBS respectively.
  • the micro-cell handover is taken as an example.
  • the UE is currently connected to a Mi-WAP.
  • the handover can be switched to the Mi-WAP or Mi covered by the current Mi-WAP connection.
  • -LBS specifically which Mi-WAP or Mi-LBS is switched to is set according to the access device information table stored locally by Ma-IC.
  • the condition for triggering the micro-cell handover is that the signal strength of the UE is lower than the first preset threshold, where the first preset threshold and the second preset threshold may be the same or different, and may be in the range of -45dbm to -55dbm. Any value within, for example, may be -50 dbm, which is not limited herein.
  • the macro cell handover which of the Ma-ICs is specifically switched to which Mi-WAP or Mi-LBS is set according to the access device information table stored in the home user server of the core network, specifically triggering the handover. The process is not repeated here.
  • FIG. 11 is a flowchart of a micro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application, including the following steps:
  • the Ma-IC determines the target MiCP according to the locally stored access device information table, and prepares the handover according to the information of the target MiCP.
  • the Ma-IC sends the handover preparation signaling to the UE, where the handover preparation signaling includes at least: the target MiCP.
  • the access mode and the ID information of the target MiCP are examples of the target MiCP.
  • the Ma-IC finds the most according to the Mi-WAP information, the Mi-LBS information, the UE location information, the UE configuration information, and the UE connection information stored in the locally stored access device information table.
  • the excellent MiCP is used as the target MiCP, and the access mode, ID information, and the like of the target MiCP are sent to the UE.
  • the access mode may be TDD (Time Division Duplexing) or FDD (Frequency Division Duplexing).
  • Step 1102 The UE returns a handover preparation response to the Ma-IC according to the handover preparation signaling.
  • Step 1103 The Ma-IC prepares a response according to the returned handover, and triggers the uploading of the information of the target MiCP to the core network, so that the core network separately sends the data currently requested by the UE to the source MiCP and the target MiCP, where the information of the target MiCP includes at least : ID information of the target MiCP and access mode of the target MiCP.
  • Step 1104 The Ma-IC sends the handover request signaling and the information of the UE to the target MiCP, where the information of the UE includes at least: location information, configuration information, and connection information.
  • Step 1105 after the Ma-IC sends the handover request signaling for the UE and the information of the UE to the target MiCP, the UE sends an access request to the target MiCP, and receives the access request response information of the target MiCP in step 1105', the UE and the UE
  • the target MiCP establishes communication and receives data that the core network forwards to the target MiCP.
  • the access request may include: synchronization information, where the synchronization information is an uplink synchronization between the MiCP and the UE.
  • the UE Before establishing the uplink synchronization, the UE must first establish downlink synchronization with the MiCP, and the UE may send the synchronization information before performing the service request.
  • uplink signals sent by UEs using different locations in the same time slot arrive at the MiCP receiving antenna at the same time, that is, signals of different UEs in the same time slot are synchronized when they arrive at the MiCP receiving antenna.
  • the purpose is to reduce uplink multiple access interference and multipath interference between UEs in a cell, and to increase cell capacity and cell radius.
  • step 1106 the target MiCP sends a handover confirmation to the Ma-IC to complete the micro cell handover.
  • the source MiCP releases the resources and data of the UE according to the resource release signaling sent by the Ma-IC, and the core network does not send data to the source MiCP.
  • the Ma-IC sends the resource release signaling to the source MiCP, and the source MiCP releases the resources and data of the UE.
  • Step 1108 The Ma-IC sends resource release signaling to the core network, and the core network does not send data to the source MiCP.
  • FIG. 12 is a flowchart of macro cell handover in a communication method of a heterogeneous network according to an embodiment of the present application, including the following steps:
  • step 1201 the source Ma-IC sends the handover signaling that triggers the macro cell handover to the core network.
  • Step 1202 The core network determines the target Ma-IC according to the access device information table stored in the home subscriber server, and sends the information of the target Ma-IC to the source Ma-IC, where the information of the target Ma-IC includes at least: the target Ma - ID information of the IC and access mode of the target Ma-IC.
  • the handover decision is determined by the core network, and the core network configures the Ma-IC according to the stored multiple access device information table.
  • the information, the load information of the Ma-IC selects the optimal Ma-IC as the target Ma-IC, and transmits the information of the target Ma-IC to the source Ma-IC.
  • Step 1203 The source Ma-IC sends the handover request signaling for the UE and the information of the UE to the target Ma-IC, where the information of the UE includes at least: location information, configuration information, and connection information.
  • Step 1204 After the target Ma-IC receives the handover request signaling and the information of the UE, determine the target MiCP according to the locally stored access device information table, and send the information of the target MiCP and the handover request response to the source Ma-IC, where the target The MiCP information includes at least: the ID information of the target MiCP and the access mode of the target MiCP.
  • the method for determining the target MiCP in this step is similar to the method for micro cell switching, and is not described here.
  • Step 1205 The source Ma-IC sends the information of the target Ma-IC and the information of the target MiCP to the core network according to the handover request response, so that the core network sends the data currently requested by the UE to the source MiCP and the target MiCP.
  • the source Ma-IC transmits the information of the target Ma-IC, the information of the target MiCP, and the handover preparation signaling to the UE.
  • Step 1207 The UE sends a handover preparation response to the source Ma-IC.
  • Step 1208 The UE sends an access request to the target Ma-IC and the target MiCP for the information of the target Ma-IC, the information of the target MiCP, and the handover preparation signaling, and accepts the connection of the target Ma-IC and the target MiCP in step 1208'.
  • the UE establishes communication with the target MiCP and receives data forwarded by the core network to the target MiCP.
  • the access request sent in this step is the same as step 1105 in the micro cell handover, and details are not described herein again.
  • step 1209 the target Ma-IC sends a handover confirmation to the source Ma-IC to complete the macro cell handover.
  • the UE and the source MiCP no longer communicate.
  • the source MiCP releases the resources and data of the UE according to the resource release signaling sent by the Ma-IC, and the core network does not send data to the source Ma-IC.
  • Step 1210 The source Ma-IC sends the resource release signaling to the source MiCP, so that the source MiCP releases the resources and data of the UE.
  • step 1211 the source Ma-IC sends resource release signaling to the core network, and the core network does not send data to the source Ma-IC.
  • the UE may receive duplicate data before and after the handover. Therefore, after the handover is completed, the data needs to be processed to delete the duplicate data.
  • processor a memory, a communication interface, and a bus
  • the processor, the memory, and the communication interface are connected by the bus and complete communication with each other;
  • the memory stores executable program code
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for execution:
  • the UE sends the first control signaling of the cellular network packet format to the Ma-IC;
  • the Ma-IC processes the first control signaling, and obtains and sends the second control signaling to the core network, so that the core network parses the second control signaling and feeds back the third control signaling or the first service data;
  • the third control signaling is performed, the third control signaling is processed, or after the third control signaling is processed, the ninth control signaling is obtained and sent to the UE;
  • the Mi-WAP When receiving the third control signaling, the Mi-WAP performs processing according to the third control signaling; or, when the first service data is received, and the first service data is identified as a WLAN data packet format, the Mi-WAP sends the data according to the core network.
  • the first service data of the WLAN data packet format performs service processing, and obtains and sends the second service data in the WLAN data packet format to the UE.
  • the Mi-LBS When receiving the third control signaling, the Mi-LBS performs processing according to the third control signaling; or, when the first service data is received, and the first service data is identified as a cellular network packet format, the Mi-LBS sends according to the core network.
  • the first service data of the cellular network packet format is processed by the service, and the second service data in the format of the cellular network packet is obtained and sent to the UE.
  • the UE integrates the received second service data in the WLAN data packet format and the second service data in the cellular network packet format into the first integrated service data in the cellular network packet format and performs service processing, or receives the ninth control signaling. Process it.
  • the UE encapsulates the third service data in the cellular network packet format into the fourth service data in the wireless local area network data packet format and the fourth service data in the cellular network data packet format, and respectively sends the fourth service data in the wireless local area network data packet format to
  • the micro cell WLAN access point and the fourth service data of the cellular network packet format are provided to the micro cell cellular network base station.
  • the Mi-WAP performs service processing according to the fourth service data of the WLAN packet format, and obtains and transmits the fifth service data in the WLAN packet format to the core network.
  • the Mi-LBS performs service processing according to the fourth service data of the cellular network packet format, and obtains and transmits the fifth service data in the cellular network packet format to the core network.
  • the processor proposes a Ma-IC, a plurality of Mi-WAPs, and a plurality of Mi-s by reading the executable program code stored in the memory.
  • the LBS is fused to achieve convergence of multiple LTEs and multiple WLANs.
  • the Ma-IC is responsible for control
  • Mi-WAP and Mi-LBS are responsible for business processing, realizing the separation of control and services, implementing more flexible management and control of the network, and making service transmission more efficient, effectively avoiding frequent due to intensive deployment.
  • the problem of handover greatly reduces the signaling overhead.
  • a specific embodiment of the application provided by the embodiment of the present application is used to perform the communication method of the method embodiment of the present application at the time of operation.
  • For the specific process refer to the description of the method embodiment, and the description is not repeated here.
  • the control device passes the enforcement
  • a Ma-IC is proposed to fuse multiple Mi-WAPs and multiple Mi-LBSs to achieve integration of multiple LTEs and multiple WLANs.
  • the Ma-IC is responsible for control
  • Mi-WAP and Mi-LBS are responsible for business processing, realizing the separation of control and services, implementing more flexible management and control of the network, and making service transmission more efficient, effectively avoiding frequent due to intensive deployment.
  • the problem of handover greatly reduces the signaling overhead.
  • a specific embodiment of the storage medium provided by the embodiment of the present application is used to store executable code, and the executable code is used to execute the communication method described in the embodiment of the present application.
  • the specific process refer to the description of the method embodiment. The description will not be repeated.
  • the control device proposes a Ma-IC by performing executable code stored in the foregoing storage medium, and combines multiple Mi-WAPs and multiple Mi-LBSs to implement multiple Convergence of LTE and multiple WLANs.
  • the Ma-IC is responsible for control
  • Mi-WAP and Mi-LBS are responsible for business processing, realizing the separation of control and services, implementing more flexible management and control of the network, and making service transmission more efficient, effectively avoiding frequent due to intensive deployment.
  • the problem of handover greatly reduces the signaling overhead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种异构网络的通信架构及通信方法,应用于无线通信技术领域,所述通信架构包括:宏小区集成控制器、微小区无线局域网接入点、微小区蜂窝网基站和用户设备;提出宏小区集成控制器,并将多个微小区无线局域网接入点和多个微小区蜂窝网基站进行融合,其中,宏小区集成控制器负责控制,微小区无线局域网接入点和微小区蜂窝网基站负责业务处理,实现了控制和业务的分离,使得对网元功能的划分更加明确,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。

Description

一种异构网络的通信架构及通信方法
本申请要求于2016年11月7日提交中国专利局、申请号为201610975231.3发明名称为“一种异构网络的通信架构及通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种异构网络的通信架构及通信方法。
背景技术
近年来,大量多媒体设备涌入市场,使得人们对于高速率无线通信的需求急剧增长。虽然采用了一些先进的技术,比如MIMO(Multiple-Input Multiple-Output,多入多出)、OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)等来提高用户体验,但是LTE(Long Term Evolution,长期演进)网络采用的传统网络结构不能灵活应对用户的需求,在一定程度上限制了网络性能的提升。因此,5G需要针对该问题研究一种更加智能的网络结构。此外,用户业务的多样性以及业务量的激增,给原本就资源紧缺的LTE网络系统提出了很大的挑战。而WLAN(Wireless Local Area Networks,无线局域网)作为一种高带宽、低成本、部署方便的移动无线接入网络,已经被广泛应用,WLAN可以利用非授权频段为用户提供高速的数据传输业务,在资源利用方面形成了一大优势,所以LTE和WLAN网络的融合成为了5G架构研究的重点。
除了不同制式接入网络的融合,5G无线网络还考虑部署覆盖范围不同、发射功率不同以及业务承载能力不同的各种基站,形成网络成分复杂的异构网络。异构网络的应用,使得一个区域内的接入网络密度大幅度上升。如何有效的管理以及协调不同网络,充分发挥各接入网的优势成为了一大难点。SDN(Software Defined Network,软件定义网络)的提出为这一难点的解决提供了思路。SDN的核心思想之一为将控制与业务分离,集中控制可以对不同接入网络进行统一调度,从而实现虚拟化;只负责业务的网络设备,则根据中心控制器的信令要求完成数据转发。采用SDN技术,既方便了异构网络的管理,也可以降低网络的业务响应时间。
现有的LTE-WLAN融合技术,将两种网络的联结点从核心网下移,更靠近接入网侧,包括以下三种具体融合架构:
第一种是EPC-WLAN融合架构,EPC(Evolved Packet Core,4G核心网络)中的MME(Mobility Management Entity,移动性管理实体)作为HeNB(Home Evolved Node B,家庭演进基站)和WLAN之间控制层面的联结点,EPC中的S-GW(Serving Gateway,服务网关)作为业务层面的联结点。如图1所示,蜂窝网接入网为LTE的接入网,核心网即EPC。虚线b将MME和WLAN AN (WLAN Access Network,WLAN接入网)连通,实现了MME和WLAN AN的通信,虚线a则连接了S-GW和WLAN AN,实现了S-GW和WLAN AN的通信。
第二种是LTE-WLAN融合架构,在3GPP HeNB Gateway的基础上,提出了ISW-GW(Integrated Small Cell and Wi-Fi Gateway,融合接入网关)同时作为控制层面和业务层面的联结点。如图2所示,蜂窝网接入网为LTE的接入网,在LTE的核心网和接入网之间增加ISW-GW模块,ISW-GW模块中IWF(Interworking Function,互通功能)负责将核心网下发的数据分流给HeNB和WLAN AN。虚线c用来将WLAN AN连入LTE网络,用一个接口同时管控了WLAN的控制层面和业务层面,实现了LTE和WLAN的融合。
第三种架构中,提出了一种直接连接WLAN AP(WLAN Access Point,WLAN接入点)和HeNB的增强型接口。如图3所示,虚线d使得信令和数据可以直接在HeNB和WLAN之间传输,避免了回传链路的复杂性。HeNB为蜂窝网接入网,即LTE的接入网,实现了LTE和WLAN的融合。
然而,异构网络的密集部署虽然满足了用户日益增长的业务需求,但是不可避免的会造成UE(User Equipment,用户设备)频繁切换的问题,信令开销会比较大。
发明内容
本申请提供了一种异构网络的通信架构及通信方法,可以很大程度上降低了信令开销。具体技术方案如下:
为达到上述目的,本申请实施例公开了一种异构网络的通信架构,包括:宏小区集成控制器、微小区无线局域网接入点、微小区蜂窝网基站和用户设备;
对于控制信令,
所述用户设备,用于发送蜂窝网数据包格式的第一控制信令给所述宏小区集成控制器;
所述宏小区集成控制器,用于对所述第一控制信令进行处理,得到并发送第二控制信令给核心网;以使所述核心网解析所述第二控制信令并反馈第三控制信令或第一业务数据;当接收到所述第三控制信令时,对所述第三控制信令进行处理、或在对所述第三控制信令进行处理之后,得到并发送第九控制信令给所述用户设备,其中,所述第三控制信令具有蜂窝网数据包格式或无线局域网数据包格式,所述第一业务数据具有蜂窝网数据包格式和/或无线局域网数据包格式;
所述微小区无线局域网接入点,用于当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为无线局域网数据包格式时,根据所述核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给所述用户设备;
所述微小区蜂窝网基站,用于当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为蜂窝网数据包格式时,根据所述核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给所述用户设备;
所述用户设备,还用于将接收的所述无线局域网数据包格式的第二业务数据和所述蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收所述第九控制信令进行处理;
对于业务数据,
所述用户设备,用于将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送所述无线局域网数据包格式的第四业务数据给所述微小区无线局域网接入点、和所述蜂窝网数据包格式的第四业务数据给所述微小区蜂窝网基站;
所述微小区无线局域网接入点,用于根据所述无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给所述核心网;
所述微小区蜂窝网基站,用于根据所述蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给所述核心网。
为达到上述目的,本申请实施例还公开了一种异构网络的通信方法,包括:
对于控制信令,
所述用户设备发送蜂窝网数据包格式的第一控制信令给所述宏小区集成控制器;
所述宏小区集成控制器对所述第一控制信令进行处理,得到并发送第二控制信令给核心网;以使所述核心网解析所述第二控制信令并反馈第三控制信令或第一业务数据;当接收到所述第三控制信令时,对所述第三控制信令进行处理、或在对所述第三控制信令进行处理之后,得到并发送第九控制信令给所述用户设备,其中,所述第三控制信令具有蜂窝网数据包格式或无线局域网数据包格式,所述第一业务数据具有蜂窝网数据包格式和/或无线局域网数据包格式;
所述微小区无线局域网接入点当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为无线局域网数据包格式时,根据所述核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给所述用户设备;
所述微小区蜂窝网基站当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为蜂窝网数据包格式时,根据所述核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给所述用户设备;
所述用户设备将接收的所述无线局域网数据包格式的第二业务数据和所述蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收所述第九控制信令进行处理;
对于业务数据,
所述用户设备将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送所述无线局域网数据包格式的第四业务数据给所述微小区无线局域网接入点、和所述蜂窝网数据包格式的第四业务数据给所述微小区蜂窝网基站;
所述微小区无线局域网接入点根据所述无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给所述核心网;
所述微小区蜂窝网基站根据所述蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给所述核心网。
为达到上述目的,本申请实施例公开了一种控制设备,包括:处理器、存储器、通信接口和总线;
所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
所述存储器存储可执行程序代码;
所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行所述的通信方法。
为达到上述目的,本申请实施例公开了一种应用程序,用于在运行时执行所述的通信方法。
为达到上述目的,本申请实施例公开了一种存储介质,用于存储可执行代码,所述可执行代码用于执行所述的通信方法。
由上述的技术方案可见,本申请实施例提供的异构网络的通信架构和通信方法,将微小区无线局域网接入点和微小区蜂窝网基站进行融合,并提出宏小区集成控制器,其中,宏小区集成控制器负责控制,微小区无线局域网接入点和微小区蜂窝网基站负责业务处理,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。当然,实施本申请的任一产品或方法必不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中EPC-WLAN融合架构示意图;
图2为现有技术中LTE-WLAN融合架构示意图;
图3为现有技术中HeNB-WLAN融合架构示意图;
图4为本申请实施例异构网络的通信架构的一种示意图;
图5为本申请实施例异构网络的通信架构的另一种示意图;
图6为本申请实施例宏小区集成控制器的协议栈示意图;
图7为本申请实施例异构网络的通信方法的一种流程图;
图8为本申请实施例异构网络的通信方法的另一种流程图;
图9为本申请实施例异构网络的通信方法的微小区切换的结构图;
图10为本申请实施例异构网络的通信方法的宏小区切换的结构图;
图11为本申请实施例异构网络的通信方法的微小区切换的流程图;
图12为本申请实施例异构网络的通信方法的宏小区切换的流程图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例公开了一种异构网络的通信架构及通信方法,应用于无线通信技术领域,将多个WLAN和多个LTE网络相融合,解决了不同接入网之间的协调问题,有效避免了由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销,同时对网络可以实行更加灵活的管控,让业务传输更高效。下面首先对本申请实施例的异构网络的通信架构进行详细说明。
一般的,一个Ma-IC(Macrocell Integrated Controller,宏小区集成控制器)覆盖多个Mi-WAP(Microcell Wi-Fi Access Point,微小区无线局域网接入点)、多个Mi-LBS(Microcell LTE BaseStation,微小区蜂窝网基站)和多个UE,并与多个Mi-WAP、多个Mi-LBS和多个UE进行通信,参见图4,图4为本申请实施例异构网络的通信架构的一种示意图,一个Ma-IC 401的覆盖范围中包括两个微小区:微小区1和微小区2,其中,微小区1中包括:第一Mi-LBS402、第一Mi-WAP 403和第一UE 404,第一UE 404分别与第一Mi-LBS 402和第一Mi-WAP 403进行第六业务数据411和第七业务数据405的处理,Ma-IC401分别发送第六控制信令412、第七控制信令409和第八控制信令410给第 一UE 404、第一Mi-LBS 402和第一Mi-WAP 403。微小区2中包括:第二Mi-LBS 406、第二Mi-WAP 408和第二UE 407,图4中仅仅标示出有限个Mi-WAP、Mi-LBS和UE,一个异构网络的通信架构可以包括多个Ma-IC,一个Ma-IC可以包括多个微小区,每个微小区中当然也可以有多个Mi-WAP、多个Mi-LBS和多个UE。
本申请实施例中,仅仅对一个Ma-IC覆盖一个Mi-WAP、一个Mi-LBS和一个UE进行详细描述,含有多个网元的异构网络的通信架构及通信方法与此类似,这里不再赘述。
参见图5,图5为本申请实施例异构网络的通信架构的另一种示意图,包括:
对于控制信令,
用户设备501,用于发送蜂窝网数据包格式的第一控制信令给Ma-IC。
宏小区集成控制器504,用于对第一控制信令进行处理,得到并发送第二控制信令给核心网;以使核心网解析第二控制信令并反馈第三控制信令或第一业务数据;当接收到第三控制信令时,对第三控制信令进行处理、或在对第三控制信令进行处理之后得到并发送第九控制信令给用户设备,其中,第三控制信令具有蜂窝网数据包格式或无线局域网数据包格式,第一业务数据具有蜂窝网数据包格式和/或无线局域网数据包格式。
微小区无线局域网接入点502,用于当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为无线局域网数据包格式时,根据核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给用户设备。
微小区蜂窝网基站503,用于当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为蜂窝网数据包格式时,根据核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给用户设备。
本申请实施例中,Ma-IC接收到UE发送的第一控制信令之后,根据第一控制信令进行处理,得到并发送第二控制信令给核心网,核心网对第二控制信令进行分析,然后反馈第三控制信令或第一业务数据。其中,核心网反馈第三控制信令还是第一业务数据由第一控制信令决定,而第三控制信令和第一业务数据的数据包格式根据接收方网络类型决定。其中,第三控制信令的接收方为Ma-IC、Mi-WAP和Mi-LBS中的一种,第一业务数据的接收方为Mi-WAP和Mi-LBS中的一种或两种。例如,在核心网反馈第三控制信令时,如果接收方网络为Mi-WAP,那么,第三控制信令的数据包格式为WLAN数据包格式(无线局域网数据包格式);如果接收方网络为Mi-LBS,那么,第三控制信令的数据包格式为LTE数据包格式(蜂窝网数据包格式)。在核心网反馈 第一业务数据时,如果接收方网络为Mi-WAP和Mi-LBS,第一业务数据的数据包格式为WLAN数据包格式和LTE数据包格式。进一步地,Mi-WAP或Mi-LBS在接收到第三控制信令时,根据第三控制信令做相应的处理,或,Mi-WAP和/或Mi-LBS在接收到第一业务数据时,根据第一业务数据的具体内容作出响应。
举例而言,在实行微小区切换时,UE接收到切换要求的信令后,发送第一控制信令,即切换确认信令给Ma-IC。Ma-IC发送信令给源Mi-WAP和/或Mi-LBS,通知该UE即将切换,同时发送信令告知目标Mi-WAP和/或Mi-LBS准备接收UE。UE在接入目标Mi-WAP和/或Mi-LBS的过程中会给目标Mi-WAP和/或Mi-LBS发送同步信息等,同时目标Mi-WAP和/或Mi-LBS会发送反馈信息给UE以执行接入过程。Ma-IC继而向核心网发送该第二控制信令,其中,该第二控制信令中包括目标Mi-WAP和/或Mi-LBS的信息。核心网接收到该第二控制信令后向目标Mi-WAP和/或Mi-LBS发送第三控制信令,即连接信令,为后续的数据转发做准备。
在UE数据请求的过程中,UE发送业务请求的第一控制信令给Ma-IC,Ma-IC根据UE当前的连接状态等确定分流比例,将分流比例的第二控制请求发送给核心网,核心网根据分流比例将UE的请求数据,也就是第一业务数据发送给UE当前连接的Mi-WAP和/或Mi-LBS。Mi-WAP和/或Mi-LBS根据该第一业务数据处理UE的业务请求,并将UE的数据请求结果反馈给UE。
用户设备501,还用于将接收的无线局域网数据包格式的第二业务数据和蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收第九控制信令进行处理。
一般的,UE分别与Mi-WAP和Mi-LBS进行通信,Mi-WAP和Mi-LBS发送给UE的数据包的格式是不同的,因此,UE与Ma-IC的协议栈相同,都需要新增CTRL层(控制层)将从两种制式网络接收来的数据封装为LTE数据包格式的数据进行业务处理,Ma-IC的协议栈在下文中将进行详细描述,因此,UE的协议栈这里不再进行赘述。具体的,第一整合数据并不改变数据的内容,仅仅是对数据的格式进行转换。
例如,UE在接收视频的下行数据时,WLAN数据包格式的第二数据和LTE数据包格式的第二数据为不同制式的视频数据包,UE需要将两种制式的视频数据包整合为LTE数据包格式的完整视频数据。
除此之外,UE还可以和Ma-IC进行通信,在核心网反馈第三控制信令时,Ma-IC解析该第三控制信令,在判断该第三控制信令需要UE完成时,将得到的第九控制信令发送给UE,UE根据第九控制信令进行相应的处理。
例如,当UE发生宏小区切换的时候,核心网需要在其归属用户服务器中确定目标Ma-IC,并通过控制信令发送给源Ma-IC,同时源Ma-IC需要将目标Ma-IC的信息和切换命令通过控制信令下发给UE,然后,UE向源Ma-IC发送 切换响应的控制信令。
对于业务数据,
用户设备501,用于将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送无线局域网数据包格式的第四业务数据给Mi-WAP和蜂窝网数据包格式的第四业务数据给Mi-LBS。
微小区无线局域网接入点502,用于根据无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给核心网。
微小区蜂窝网基站503,用于根据蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给核心网。
需要说明的是,UE将LTE数据包格式的第三业务数据,分别封装成WLAN数据包格式的第四数据和LTE数据包格式的第四业务数据,仅仅是改变数据的格式,并不改变数据的内容。例如,在UE进行实时视频业务时,UE会产生上行的第三业务数据,可以通过所连的Mi-WAP和/或Mi-LBS发送到核心网。在将该第三业务数据发送给Mi-WAP和/或Mi-LBS时,需要对第三业务数据进行封装。如果UE当前连接Mi-WAP,那么,LTE数据包格式的第三业务数据会被封装成WLAN数据包格式的第四业务数据;如果UE当前连接Mi-WAP和Mi-LBS,那么,LTE数据包格式的第三业务数据会被封装成WLAN数据包格式的第四业务数据和LTE数据包格式的第四业务数据。显然,WLAN数据包格式的第四业务数据和LTE数据包格式的第四业务数据都是视频业务数据,进一步地,Mi-WAP和Mi-LBS分别根据对应的视频业务数据进行处理生成对应的第五业务数据给核心网。
可见,本申请实施例提供的异构网络的通信架构,将多个Mi-WAP和多个Mi-LBS进行融合,实现了多个LTE和多个WLAN的融合。并提出Ma-IC,Ma-IC负责控制,Mi-WAP和Mi-LBS负责业务处理,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免了由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。
可选的,本申请实施例的异构网络的通信架构中,Ma-IC,还用于发送该Ma-IC产生的WLAN数据包格式的第四控制信令给Mi-WAP,发送该Ma-IC产生的LTE数据包格式的第四控制信令给Mi-LBS或UE;
Mi-WAP根据WLAN数据包格式的第四控制信令进行处理;
Mi-LBS根据LTE数据包格式的第四控制信令进行处理,或UE根据LTE数据包格式的第四控制信令进行处理。
UE,还用于发送该UE产生的WLAN数据包格式的第五控制信令给Mi-WAP,发送该UE产生的LTE数据包格式的第五控制信令给Mi-LBS;
Mi-WAP根据WLAN数据包格式的第五控制信令进行处理,Mi-LBS根据LTE数据包格式的第五控制信令进行处理。
Mi-WAP,还用于发送WLAN数据包格式的信令或WLAN数据包格式的业务数据给核心网,或发送WLAN数据包格式的信令或WLAN数据包格式的业务数据给UE,其中,WLAN数据包格式的信令或WLAN数据包格式的业务数据是由该Mi-WAP产生或反馈的;
核心网根据WLAN数据包格式的信令或WLAN数据包格式的业务数据进行处理;或,
UE根据WLAN数据包格式的信令或WLAN数据包格式的业务数据进行处理。
Mi-LBS,还用于发送LTE数据包格式的信令或LTE数据包格式的业务数据给核心网,或发送LTE数据包格式的信令或LTE数据包格式的业务数据给UE,其中,LTE数据包格式的信令或LTE数据包格式的业务数据是由该Mi-LBS产生或反馈的。
核心网根据LTE数据包格式的信令或LTE数据包格式的业务数据进行处理;或,
UE根据LTE数据包格式的信令或LTE数据包格式的业务数据进行处理。
本申请实施例中,Ma-IC除了与UE进行通信之外,还与Mi-WAP和Mi-LBS进行通信,并且,Ma-IC与Mi-WAP通信的过程中,数据的格式为WLAN数据包格式,Ma-IC与Mi-LBS通信的过程中,数据的格式为LTE数据包格式。
举例而言,在UE进行微小区切换时,Ma-IC发送第四控制信令给源Mi-WAP和/或Mi-LBS,该第四控制信令为通知UE即将切换的信令,同时发送信令告知目标Mi-WAP和/或Mi-LBS准备接收UE。UE在接入目标Mi-WAP和/或Mi-LBS的过程中,UE给目标Mi-WAP和/或Mi-LBS发送第五控制信令,即同步信息等,同时目标Mi-WAP和/或Mi-LBS发送反馈信息给UE以执行接入过程。
需要说明的是,Ma-IC分别和Mi-WAP和Mi-LBS进行通信,且重点负责控制信令的发送,因此,需要对Ma-IC的协议栈进行修改,参见图6,图6为本申请实施例宏小区集成控制器的协议栈示意图。在LTE原本的协议栈中加入了WLAN的全部协议,即PHY(Physical,物理)层、MAC(Media Access Control,介质访问控制)层和LLC(Logical Link Control,逻辑链路控制)层,对应的蜂窝网协议栈中的PHY层、MAC层、RLC(Radio Link Control,无线链路控制)层、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层和RRC(Radio Resource Control,无线资源控制)层保持不变。在这些层之上,原本蜂窝网协议栈的TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/因特网互联协议)层之下,新加入CTRL层,即控制层,控制层主要负责将上层传来的数据包,分别封装成LTE和WLAN系统可识别的数据 包,并下发给对应的底层协议;以及封装底层传来的数据包成为LTE数据包格式的数据,传给上层协议。这样的设计可以满足Ma-IC对Mi-WAP和Mi-LBS的控制,以及与核心网的连接。在现有技术中,UE的协议栈为蜂窝网协议栈,因此,在UE与Ma-IC进行通信的过程中,Ma-IC对UE的控制则直接通过蜂窝网协议栈来实现,以达到对原有系统的改动最小化。
可选的,本申请实施例的异构网络的通信架构中,Ma-IC覆盖Mi-WAP、Mi-LBS和UE中的一种或多种,并与Mi-WAP、Mi-LBS和UE进行通信,UE与、Mi-WAP和/或Mi-LBS进行通信,其中,Ma-IC覆盖的Mi-WAP的数目为一个或多个,Ma-IC覆盖的Mi-LBS的数目为一个或多个,Ma-IC覆盖的UE的数目为一个或多个。
实际应用中,不同的异构网络的通信架构中,网元的种类是不同的,Ma-IC可以覆盖Mi-WAP和UE,也可以覆盖Mi-LBS和Mi-WAP,也可以覆盖Mi-LBS、Mi-WAP和UE。当然,每种通信架构中,网元的数量也是可以不同的,例如,Ma-IC可以覆盖1个Mi-WAP和2个UE,也可以覆盖1个Mi-WAP和2个UE等。异构网络的通信架构中网元的组成可以有很多种,在此不一一列举。在本申请实施例的一种网络架构中,Ma-IC可以同时和多个Mi-WAP、多个Mi-LBS和多个UE进行通信,UE与该多个Mi-WAP中的一个Mi-WAP进行通信,或该多个Mi-LBS中的一个Mi-LBS进行通信,或UE同时与该多个Mi-WAP中的一个Mi-WAP、以及该多个Mi-LBS中的一个Mi-LBS进行通信。在Ma-IC与多个Mi-WAP、多个Mi-LBS和多个UE通信过程中,可以实现大区控制,小区业务,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效。
可选的,本申请实施例的异构网络的通信架构中,Ma-IC还用于,当Ma-IC覆盖的Mi-WAP、Mi-LBS和UE变化时,获取Mi-WAP的第一变化数据、Mi-LBS的第二变化数据和UE的第三变化数据;
根据第一变化数据、第二变化数据和第三变化数据,更新预先建立的接入设备信息表;
其中,接入设备信息表至少包括:Ma-IC覆盖的Mi-WAP的信息、Mi-LBS的信息、UE的信息和该Ma-IC的信息。
具体的,在Ma-IC与Mi-WAP、Mi-LBS和UE通信的过程中,Mi-WAP、Mi-LBS和UE分别向Ma-IC发送广播消息,Ma-IC通过广播信道,建立接入设备信息表,存储Mi-WAP、Mi-LBS和UE的信息。当Ma-IC覆盖的Mi-WAP、Mi-LBS和UE变化时,分别获取Ma-IC当前覆盖的变化的Mi-WAP、Mi-LBS和UE的信息,生成第一变化数据、第二变化数据和第三变化数据。其中,Mi-WAP的信息包括:Mi-WAP的下行速率、Mi-WAP的网络占用率等;Mi-LBS的信息包括:Mi-LBS的下行速率、Mi-LBS的网络占用率等;UE的信息包括:UE的位置信息、UE的配置信息和UE的连接信息等,例如:UE支持的网络制式、 UE支持的速率、UE连接的网络信息、UE的连接速率等;Ma-IC的信息包括:Ma-IC的配置信息和Ma-IC的负载信息等。
需要说明的是,第一变化数据、第二变化数据和第三变化数据仅仅表示Ma-IC新增、删除或更改的Mi-WAP、Mi-LBS和UE的信息,它们之间相互独立并不存在先后关系。
举例而言,当有新增Mi-WAP接入Ma-IC时,将新增的Mi-WAP的信息加入接入设备信息表,在Ma-IC不与某个Mi-LBS进行通信时,将该Mi-LBS的信息从接入设备信息表中删除。
需要强调的是,Ma-IC除了本地存储接入设备信息表外,还将接入设备信息表上传给核心网,其中,上传给核心网的时间可以是以固定时间周期自动上传,也可以是手动上传,这里不进行限定。
在本申请实施例的一种切换方式中,Ma-IC根据接入设备信息表中的Mi-WAP的信息、Mi-LBS的信息、UE的信息等,选择最优的Mi-WAP和/或Mi-LBS进行切换。
在本申请实施例的另一种切换方式中,核心网中的归属用户服务器根据接入设备信息表中的Ma-IC的配置信息和Ma-IC的负载信息选择最优的Ma-IC进行切换。其中,Ma-IC的配置信息包括:功率、支持频段等,Ma-IC的负载信息包括:Ma-IC连接的Mi-WAP的数量、Ma-IC连接的Mi-LBS的数量、Ma-IC连接的UE的数量等。
可选的,本申请实施例的异构网络的通信架构中,Ma-IC还用于,当UE发送业务请求到Ma-IC时,根据接入设备信息表获取UE当前连接的网络;根据连接的网络的当前状态确定业务的分流比例,将分流比例和UE的业务请求数据发送给核心网,以使核心网根据分流比例,分别发送UE的业务请求数据给UE当前连接的Mi-LBS和/或Mi-WAP,其中,连接的网络的当前状态至少包括:网络的占用率和网络的速率;
Mi-LBS和/或Mi-WAP发送从核心网接收的业务请求数据给UE。
举例而言,UE当前分别连接到Mi-LBS和Mi-WAP,UE需要获取一个150M的视频。首先,UE需要将该视频的业务请求数据发送到UE连接的Ma-IC上,Ma-IC在本地的接入设备信息表中获取该UE所连接的Mi-LBS和Mi-WAP的网络状况信息,例如,Mi-LBS的网络占用率u1为30%,Mi-LBS的下行速率v1为6Mbps,Mi-WAP的网络占用率u2为80%,Mi-WAP的下行速率v2为8Mbps,则根据以下关系式:
Figure PCTCN2016107722-appb-000001
确定DR为0.44,其中,α=0.6,β=0.4。
实际应用中,α和β可以根据网络占用率、网络的速率等参数进行调整。在确定分流比例之后,Ma-IC将分流比例和用户的业务请求发送给核心网,核心网将44%的该视频的业务请求数据发送给Mi-LBS,56%的该视频的业务请求数据发送给Mi-WAP。
本申请实施例中,核心网将分发给Mi-WAP和Mi-LBS的数据按发送顺序打上标签,这样可以保证UE在接收到Mi-WAP和Mi-LBS传来的数据后进行封装,也可以保证用户在接收数据过程中如果发生切换等中断行为,利用标签可以保证数据的连续传输。另外,Mi-WAP和Mi-LBS在发送数据时,记录UE成功接收反馈的数据标签,方便数据的重传。
可选的,本申请实施例的异构网络的通信架构中,Ma-IC还用于,当Ma-IC覆盖的Mi-WAP、Mi-LBS和UE增加时,
通过广域网接口与新增加的Mi-WAP连接,连接成功之后通过预设无线局域网协议与新增加的Mi-WAP进行通信;
通过基站与移动性管理实体所用接口与新增的Mi-LBS连接,连接成功之后通过蜂窝网协议与新增的Mi-LBS进行通信;
通过空口与新增加的UE连接,连接成功之后通过蜂窝网协议与新增加的UE进行通信。
本申请实施例中,Ma-IC通过WLAN协议(图6中宏小区集成控制器的协议栈中的WLAN协议)对Mi-WAP进行控制;通过原始的基站与移动性管理实体所用接口与Mi-LBS进行连接,方便会话管理和移动性管理等的信令传输,这就保证了Ma-IC可以根据所处区域的用户需求以及业务特征进行动态调整,用户可以自行部署Mi-WAP和Mi-LBS以提升用户体验。例如,Ma-IC所处区域中用户对Mi-WAP的需求比较大,可以将更多的Mi-WAP接入该Ma-IC以满足用户的需求。
相应于上述通信架构实施例,本申请实施例还提供了一种异构网络的通信方法,参见图7,图7为本申请实施例异构网络的通信方法的一种流程图,包括如下步骤:
步骤701,用户设备发送蜂窝网数据包格式的第一控制信令给宏小区集成控制器。
步骤702,宏小区集成控制器对第一控制信令进行处理,得到并发送第二控制信令给核心网;以使核心网解析第二控制信令并反馈第三控制信令或第一业务数据;当接收到第三控制信令时,对第三控制信令进行处理、或在对第三控制信令进行处理之后得到并发送第九控制信令给用户设备。
步骤703,微小区无线局域网接入点当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为无线局域网数据包格式时,根据核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给用户设备。
步骤704,微小区蜂窝网基站当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为蜂窝网数据包格式时,根据核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给用户设备。
步骤705,用户设备将接收的无线局域网数据包格式的第二业务数据和蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收第九控制信令进行处理。
参见图8,图8为本申请实施例异构网络的通信方法的另一种流程图,包括如下步骤:
步骤801,用户设备将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送无线局域网数据包格式的第四业务数据给微小区无线局域网接入点、和蜂窝网数据包格式的第四业务数据给微小区蜂窝网基站。
步骤802,微小区无线局域网接入点根据无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给核心网。
步骤803,微小区蜂窝网基站根据蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给核心网。
可见,本申请实施例提供的异构网络的通信方法,通过将多个WLAN网络与多个LTE网络相融合,并由提出的Ma-IC进行控制,实现了宏小区的广域覆盖内控制层面统一,方便了各网元之间的协调合作;微小区的密集部署则可以根据其小范围内用户的分布特性等自由设计,实现高密度流量的快速传输。另外,可有效避免由于网络密集部署带来的频繁切换的问题,大大降低了信令开销。同时,将控制和业务分离,对网络实行更加灵活的管控,同时让业务传输更高效。
可选的,本申请实施例的异构网络的通信方法,还包括:
当UE当前连接的MiCP(Microcell Connection Point,微小区连接点)的信号强度低于第一预设阈值时,该MiCP连接的Ma-IC触发MiHO(Microcell Handover,微小区切换),MiHO发生在连接到同一个Ma-IC的源MiCP和目标MiCP之间,其中,MiCP为Mi-WAP和/或Mi-LBS。参见图9,图9为本申请实施例异构网络的通信方法的微小区切换的结构图,Ma-IC中仅仅标示出有限个Mi-WAP和Mi-LBS,实际应用中可以包括多个Mi-WAP和Mi-LBS,MiHO发生在UE跨微小区切换,但是UE连接的Ma-IC不变。
本申请实施例中,当UE当前连接的源Ma-IC的信号强度低于第二预设阈值时,源Ma-IC触发MaHO(Macrocell Handover,宏小区切换),MaHO发生在源Ma-IC和目标Ma-IC、以及源Ma-IC对应的源MiCP和目标Ma-IC对应的目标MiCP之间。参见图10,图10为本申请实施例异构网络的通信方法的宏小区切换的结构图,包括:宏小区1和宏小区2。同样的,宏小区1和宏小区2中的Ma-IC 101和Ma-IC 102中仅仅标示出有限个Mi-WAP和Mi-LBS,实际应用中可以包括多个Mi-WAP和Mi-LBS,MaHO发生在UE跨宏小区切换,即在MiHO的基础上还需要重新选择Ma-IC。
实际应用中,UE可以连接一个Mi-WAP,可以连接一个Mi-LBS,也可以分别连接一个Mi-WAP和一个Mi-LBS。以微小区切换为例进行说明,UE当前连接一个Mi-WAP,当UE的信号强度低于第一预设阈值时,可切换至当前Mi-WAP连接的Ma-IC覆盖的Mi-WAP或Mi-LBS,具体切换至哪一个Mi-WAP或Mi-LBS是根据Ma-IC本地存储的接入设备信息表进行设定的。本申请实施 例中,触发微小区切换的条件是UE的信号强度低于第一预设阈值,其中,第一预设阈值和第二预设阈值可以相同,也可以不同,可以是-45dbm~-55dbm范围内的任意值,例如,可以是-50dbm,这里不做限定。而宏小区切换中,具体切换至哪一个Ma-IC中的哪一个Mi-WAP或Mi-LBS,是根据核心网的归属用户服务器中存储的接入设备信息表进行设定的,具体触发切换的过程这里不再赘述。
参见图11,图11为本申请实施例异构网络的通信方法的微小区切换的流程图,包括如下步骤:
步骤1101,Ma-IC根据本地存储的接入设备信息表,确定目标MiCP,根据目标MiCP的信息准备切换;Ma-IC发送切换准备信令给UE,其中,切换准备信令至少包括:目标MiCP的接入模式和目标MiCP的ID信息。
本步骤中,Ma-IC根据本地存储的接入设备信息表中存储的Mi-WAP的信息、Mi-LBS的信息、UE的位置信息、UE的配置信息、UE的连接信息等,查找到最优的MiCP作为目标MiCP,并将目标MiCP的接入模式、ID信息等发送给UE。其中,接入模式可以是TDD(Time Division Duplexing,时分双工)或FDD(Frequency Division Duplexing,频分双工)等。
步骤1102,UE根据切换准备信令,返回切换准备响应给Ma-IC。
步骤1103,Ma-IC根据返回的切换准备响应,触发将目标MiCP的信息上传给核心网,以使核心网分别发送UE当前请求的数据给源MiCP和目标MiCP,其中,目标MiCP的信息至少包括:目标MiCP的ID信息和目标MiCP的接入模式。
步骤1104,Ma-IC发送针对UE的切换请求信令和UE的信息给目标MiCP,其中,UE的信息至少包括:位置信息、配置信息、连接信息。
步骤1105,在Ma-IC发送针对UE的切换请求信令和UE的信息给目标MiCP之后,UE发送接入请求给目标MiCP,并接受步骤1105'中目标MiCP的接入请求响应信息,UE与目标MiCP建立通信,并接收核心网转发到目标MiCP的数据。
接入请求可以包括:同步信息,其中,同步信息为MiCP和UE之间的上行同步,在建立上行同步之前UE首先必须与MiCP建立下行同步,UE发送同步信息之后才可以进行业务请求。在同一小区中,使用同一时隙的不同位置的UE发送的上行信号同时到达MiCP接收天线,即同一时隙不同UE的信号到达MiCP接收天线时保持同步。目的是为了减小小区内UE间的上行多址干扰和多径干扰,增加小区容量和小区半径。
步骤1106,目标MiCP向Ma-IC发送切换确认,完成微小区切换。
在切换成功之后,UE与源MiCP不再进行通信,源MiCP根据Ma-IC发送的资源释放信令释放UE的资源和数据,核心网也不再发送数据给源MiCP。
步骤1107,Ma-IC发送资源释放信令给源MiCP,源MiCP释放UE的资源和数据。
步骤1108,Ma-IC发送资源释放信令给核心网,核心网不发送数据给源MiCP。
参见图12,图12为本申请实施例异构网络的通信方法的宏小区切换的流程图,包括如下步骤:
步骤1201,源Ma-IC将触发宏小区切换的切换信令发送给核心网。
步骤1202,核心网根据归属用户服务器中存储的接入设备信息表确定目标Ma-IC,将目标Ma-IC的信息发送给源Ma-IC,其中,目标Ma-IC的信息至少包括:目标Ma-IC的ID信息和目标Ma-IC的接入模式。
不同于微小区切换,由于宏小区切换发生在不同的Ma-IC之间,因此切换决策是由核心网确定的,核心网根据存储的多个接入设备信息表中存储的Ma-IC的配置信息、Ma-IC的负载信息,选择最优的Ma-IC作为目标Ma-IC,并将目标Ma-IC的信息发送给源Ma-IC。
步骤1203,源Ma-IC发送针对UE的切换请求信令和UE的信息给目标Ma-IC,其中,UE的信息至少包括:位置信息、配置信息、连接信息。
步骤1204,在目标Ma-IC接收切换请求信令和UE的信息之后,根据本地存储的接入设备信息表确定目标MiCP,发送目标MiCP的信息和切换请求响应给源Ma-IC,其中,目标MiCP的信息至少包括:目标MiCP的ID信息和目标MiCP的接入模式。
本步骤中确定目标MiCP的方法与微小区切换的方法类似,这里不再赘述。
步骤1205,源Ma-IC根据切换请求响应,发送目标Ma-IC的信息和目标MiCP的信息给核心网;以使核心网将UE当前请求的数据分别发送给源MiCP和目标MiCP。
步骤1206,源Ma-IC发送目标Ma-IC的信息、目标MiCP的信息和切换准备信令给UE。
步骤1207,UE发送切换准备响应给源Ma-IC。
步骤1208,UE针对目标Ma-IC的信息、目标MiCP的信息和切换准备信令,发送接入请求给目标Ma-IC和目标MiCP,并接受步骤1208'中目标Ma-IC和目标MiCP的接入请求响应信息,UE与目标MiCP建立通信,并接收核心网转发到目标MiCP的数据。
本步骤中发送的接入请求和微小区切换中步骤1105相同,这里不再赘述。
步骤1209,目标Ma-IC向源Ma-IC发送切换确认,完成宏小区切换。
在切换成功之后,UE与源MiCP不再进行通信,源MiCP根据Ma-IC发送的资源释放信令释放UE的资源和数据,核心网也不再发送数据给源Ma-IC。
步骤1210,源Ma-IC发送资源释放信令给源MiCP,使得源MiCP释放UE的资源和数据。
步骤1211,源Ma-IC发送资源释放信令给核心网,核心网不发送数据给源Ma-IC。
由于微小区切换和宏小区切换的流程都是软切换,UE在切换前后可能会接收到重复的数据,因此,在切换完成后需要对数据进行处理,删除重复的数据。
控制设备实施例一
本申请实施例提供的控制设备的一种具体实施例,包括:
处理器、存储器、通信接口和总线;
所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
所述存储器存储可执行程序代码;
所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行:
对于控制信令,
UE发送蜂窝网数据包格式的第一控制信令给Ma-IC;
Ma-IC对第一控制信令进行处理,得到并发送第二控制信令给核心网;以使核心网解析第二控制信令并反馈第三控制信令或第一业务数据;当接收到第三控制信令时,对第三控制信令进行处理、或在对第三控制信令进行处理之后得到并发送第九控制信令给UE;
Mi-WAP当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为无线局域网数据包格式时,根据核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给UE。
Mi-LBS当接收到第三控制信令时,根据第三控制信令进行处理;或,在接收到第一业务数据,且识别第一业务数据为蜂窝网数据包格式时,根据核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给UE。
UE将接收的无线局域网数据包格式的第二业务数据和蜂窝网数据包格式的第二业务数据整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收第九控制信令进行处理。
对于业务数据,
UE将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送无线局域网数据包格式的第四业务数据给微小区无线局域网接入点、和蜂窝网数据包格式的第四业务数据给微小区蜂窝网基站。
Mi-WAP根据无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给核心网。
Mi-LBS根据蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给核心网。
具体过程参见方法实施例的描述,这里不再重复说明。
由以上可见,本申请控制设备实施例一提供的方案中,所述处理器通过读取所述存储器中存储的可执行程序代码,提出Ma-IC,将多个Mi-WAP和多个Mi-LBS进行融合,实现了多个LTE和多个WLAN的融合。使Ma-IC负责控制,Mi-WAP和Mi-LBS负责业务处理,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。
应用程序实施例一
本申请实施例提供的应用程序的一种具体实施例,用于在运行时执行本申请方法实施例的通信方法,具体过程参见方法实施例的描述,这里不再重复说明。
由以上可见,本申请应用程序实施例一提供的方案中,控制设备通过执 行上述应用程序,提出Ma-IC,将多个Mi-WAP和多个Mi-LBS进行融合,实现了多个LTE和多个WLAN的融合。使Ma-IC负责控制,Mi-WAP和Mi-LBS负责业务处理,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。
存储介质实施例一
本申请实施例提供的存储介质的一种具体实施例,用于存储可执行代码,所述可执行代码用于执行本申请实施例所述的通信方法,具体过程参见方法实施例的描述,这里不再重复说明。
本申请存储介质实施例一提供的方案中,控制设备通过执行上述存储介质中存储的可执行代码,提出Ma-IC,将多个Mi-WAP和多个Mi-LBS进行融合,实现了多个LTE和多个WLAN的融合。使Ma-IC负责控制,Mi-WAP和Mi-LBS负责业务处理,实现了控制和业务的分离,对网络实行更加灵活的管控,同时让业务传输更高效,有效避免由于密集部署带来的频繁切换的问题,很大程度上降低了信令开销。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (13)

  1. 一种异构网络的通信架构,其特征在于,包括:宏小区集成控制器、微小区无线局域网接入点、微小区蜂窝网基站和用户设备;
    对于控制信令,
    所述用户设备,用于发送蜂窝网数据包格式的第一控制信令给所述宏小区集成控制器;
    所述宏小区集成控制器,用于对所述第一控制信令进行处理,得到并发送第二控制信令给核心网;以使所述核心网解析所述第二控制信令并反馈第三控制信令或第一业务数据;当接收到所述第三控制信令时,对所述第三控制信令进行处理、或在对所述第三控制信令进行处理之后,得到并发送第九控制信令给所述用户设备,其中,所述第三控制信令具有蜂窝网数据包格式或无线局域网数据包格式,所述第一业务数据具有蜂窝网数据包格式和/或无线局域网数据包格式;
    所述微小区无线局域网接入点,用于当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为无线局域网数据包格式时,根据所述核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给所述用户设备;
    所述微小区蜂窝网基站,用于当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为蜂窝网数据包格式时,根据所述核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给所述用户设备;
    所述用户设备,还用于将接收的所述无线局域网数据包格式的第二业务数据和所述蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收所述第九控制信令进行处理;
    对于业务数据,
    所述用户设备,用于将蜂窝网数据包格式的第三业务数据,封装成无线局域网数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送所述无线局域网数据包格式的第四业务数据给所述微小区无线局域网接入点、和所述蜂窝网数据包格式的第四业务数据给所述微小区蜂窝网基站;
    所述微小区无线局域网接入点,用于根据所述无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给所述核心网;
    所述微小区蜂窝网基站,用于根据所述蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给所述核心网。
  2. 根据权利要求1所述的异构网络的通信架构,其特征在于,还包括:
    所述宏小区集成控制器,还用于发送所述宏小区集成控制器产生的无线局域网数据包格式的第四控制信令给所述微小区无线局域网接入点,发送所述宏小区集成控制器产生的蜂窝网数据包格式的第四控制信令给所述微小区蜂窝网基站或所述用户设备;
    所述用户设备,还用于发送所述用户设备产生的无线局域网数据包格式的第五控制信令给所述微小区无线局域网接入点,发送所述用户设备产生的蜂窝网数据包格式的第五控制信令给所述微小区蜂窝网基站;
    所述微小区无线局域网接入点,还用于发送无线局域网数据包格式的信令或无线局域网数据包格式的业务数据给所述核心网,或发送无线局域网数据包格式的信令或无线局域网数据包格式的业务数据给所述用户设备,其中,所述无线局域网数据包格式的信令或无线局域网数据包格式的业务数据是由所述微小区无线局域网接入点产生或反馈的;
    所述微小区蜂窝网基站,还用于发送蜂窝网数据包格式的信令或蜂窝网数据包格式的业务数据给所述核心网,或发送蜂窝网数据包格式的信令或蜂窝网数据包格式的业务数据给所述用户设备,其中,所述蜂窝网数据包格式的信令或蜂窝网数据包格式的业务数据是由所述微小区蜂窝网基站产生或反馈的。
  3. 根据权利要求1所述的异构网络的通信架构,其特征在于,所述宏小区集成控制器覆盖微小区无线局域网接入点、微小区蜂窝网基站和用户设备中的一种或多种,并与所述微小区无线局域网接入点、所述微小区蜂窝网基站和所述用户设备进行通信,所述用户设备与、所述微小区无线局域网接入点和/或微小区蜂窝网基站进行通信,其中,所述宏小区集成控制器覆盖的微小区无线局域网接入点的数目为一个或多个,所述宏小区集成控制器覆盖的微小区蜂窝网基站的数目为一个或多个,所述宏小区集成控制器覆盖的用户设备的数目为一个或多个。
  4. 根据权利要求1所述的异构网络的通信架构,其特征在于,所述宏小区集成控制器还用于,当所述宏小区集成控制器覆盖的微小区无线局域网接入点、微小区蜂窝网基站和用户设备变化时,获取所述微小区无线局域网接入点的第一变化数据、微小区蜂窝网基站的第二变化数据和用户设备的第三变化数据;
    根据所述第一变化数据、所述第二变化数据和所述第三变化数据,更新预先建立的接入设备信息表;
    所述宏小区集成控制器还用于,发送所述接入设备信息表给核心网;
    其中,所述接入设备信息表至少包括:所述宏小区集成控制器覆盖的微小区无线局域网接入点的信息、微小区蜂窝网基站的信息、用户设备的信息和所述宏小区集成控制器的信息。
  5. 根据权利要求4所述的异构网络的通信架构,其特征在于,所述宏小区集成控制器还用于,当用户设备发送业务请求到所述宏小区集成控制器时,根据所述接入设备信息表获取所述用户设备当前连接的网络;根据所述连接的网络的当前状态确定业务的分流比例,将所述分流比例和所述用户设备的业务请求数据发送给核心网,以使所述核心网根据所述分流比例,分别发送 所述用户设备的业务请求数据给用户设备当前连接的微小区无线局域网接入点和/或微小区蜂窝网基站,其中,所述连接的网络的当前状态至少包括:网络的占用率和网络的速率;
    所述微小区无线局域网接入点和/或微小区蜂窝网基站发送从核心网接收的业务请求数据给所述用户设备。
  6. 根据权利要求5所述的异构网络的通信架构,其特征在于,所述宏小区集成控制器还用于,当所述宏小区集成控制器覆盖的微小区无线局域网接入点、微小区蜂窝网基站和用户设备增加时,
    通过广域网接口与新增加的微小区无线局域网接入点连接,连接成功之后通过预设无线局域网协议与所述新增加的微小区无线局域网接入点进行通信;
    通过基站与移动性管理实体所用接口与新增的微小区蜂窝网基站连接,连接成功之后通过蜂窝网协议与所述新增的微小区蜂窝网基站进行通信;
    通过空口与新增加的用户设备连接,连接成功之后通过蜂窝网协议与所述新增加的用户设备进行通信。
  7. 一种异构网络的通信方法,其特征在于,包括:
    对于控制信令,
    所述用户设备发送蜂窝网数据包格式的第一控制信令给所述宏小区集成控制器;
    所述宏小区集成控制器对所述第一控制信令进行处理,得到并发送第二控制信令给核心网;以使所述核心网解析所述第二控制信令并反馈第三控制信令或第一业务数据;当接收到所述第三控制信令时,对所述第三控制信令进行处理、或在对所述第三控制信令进行处理之后,得到并发送第九控制信令给所述用户设备,其中,所述第三控制信令具有蜂窝网数据包格式或无线局域网数据包格式,所述第一业务数据具有蜂窝网数据包格式和/或无线局域网数据包格式;
    所述微小区无线局域网接入点当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收所述第一业务数据,且识别所述第一业务数据为无线局域网数据包格式时,根据所述核心网发送的无线局域网数据包格式的第一业务数据进行业务处理,得到并发送无线局域网数据包格式的第二业务数据给所述用户设备;
    所述微小区蜂窝网基站当接收到所述第三控制信令时,根据所述第三控制信令进行处理;或,在接收到所述第一业务数据,且识别所述第一业务数据为蜂窝网数据包格式时,根据所述核心网发送的蜂窝网数据包格式的第一业务数据进行业务处理,得到并发送蜂窝网数据包格式的第二业务数据给所述用户设备;
    所述用户设备将接收的所述无线局域网数据包格式的第二业务数据和所述蜂窝网数据包格式的第二业务数据、整合成蜂窝网数据包格式的第一整合业务数据并进行业务处理,或接收所述第九控制信令进行处理;
    对于业务数据,
    所述用户设备将蜂窝网数据包格式的第三业务数据,封装成无线局域网 数据包格式的第四业务数据和蜂窝网数据包格式的第四业务数据,分别发送所述无线局域网数据包格式的第四业务数据给所述微小区无线局域网接入点、和所述蜂窝网数据包格式的第四业务数据给所述微小区蜂窝网基站;
    所述微小区无线局域网接入点根据所述无线局域网数据包格式的第四业务数据进行业务处理,得到并发送无线局域网数据包格式的第五业务数据给所述核心网;
    所述微小区蜂窝网基站根据所述蜂窝网数据包格式的第四业务数据进行业务处理,得到并发送蜂窝网数据包格式的第五业务数据给所述核心网。
  8. 根据权利要求7所述的异构网络的通信方法,其特征在于,所述的异构网络的通信方法还包括:
    当用户设备当前连接的微小区连接点的信号强度低于第一预设阈值时,所述微小区连接点连接的宏小区集成控制器触发微小区切换,所述微小区切换发生在连接到同一个宏小区集成控制器的源微小区连接点和目标微小区连接点之间,其中,所述微小区连接点为微小区无线局域网接入点和/或微小区蜂窝网基站;
    当用户设备当前连接的源宏小区集成控制器的信号强度低于第二预设阈值时,所述源宏小区集成控制器触发宏小区切换,所述宏小区切换发生在所述源宏小区集成控制器和所述目标宏小区集成控制器、以及所述源宏小区集成控制器对应的源微小区连接点和所述目标宏小区集成控制器对应的目标微小区连接点之间。
  9. 根据权利要求8所述的异构网络的通信方法,其特征在于,所述微小区切换的步骤,包括:
    所述宏小区集成控制器根据本地存储的接入设备信息表,确定目标微小区连接点;
    所述宏小区集成控制器发送切换准备信令给所述用户设备,其中,所述切换准备信令至少包括:所述目标微小区连接点的接入模式和所述目标微小区连接点的ID信息;
    所述用户设备根据所述切换准备信令,返回切换准备响应给所述宏小区集成控制器;
    所述宏小区集成控制器根据返回的切换准备响应,触发将所述目标微小区连接点的信息上传给核心网,以使所述核心网发送所述用户设备当前请求的数据给所述源微小区连接点和所述目标微小区连接点,其中,所述目标微小区连接点的信息至少包括:所述目标微小区连接点的ID信息和所述目标微小区连接点的接入模式;并且
    所述宏小区集成控制器发送针对所述用户设备的切换请求信令和所述用户设备的信息给所述目标微小区连接点,其中,所述用户设备的信息至少包括:位置信息、配置信息、连接信息;
    在所述宏小区集成控制器发送针对所述用户设备的切换请求信令和所述用户设备的信息给所述目标微小区连接点之后,所述用户设备发送接入请求给所述目标微小区连接点,并接受所述目标微小区连接点的响应信息,所述用户设备与所述目标微小区连接点建立通信,并接收核心网转发到所述目标微小区连接点的数据;
    所述目标微小区连接点向所述宏小区集成控制器发送切换确认,完成所述微小区切换。
  10. 根据权利要求8所述的异构网络的通信方法,其特征在于,所述宏小区切换的步骤,包括:
    源宏小区集成控制器将触发宏小区切换的切换信令发送给核心网,以使所述核心网根据归属用户服务器中存储的接入设备信息表确定目标宏小区集成控制器,将所述目标宏小区集成控制器的信息发送给所述源宏小区集成控制器,其中,所述目标宏小区集成控制器的信息至少包括:所述目标宏小区集成控制器的ID信息和所述目标宏小区集成控制器的接入模式;
    所述源宏小区集成控制器发送针对所述用户设备的切换请求信令和所述用户设备的信息给所述目标宏小区集成控制器,其中,所述用户设备的信息至少包括:位置信息、配置信息、连接信息;
    在所述目标宏小区集成控制器接收所述切换请求信令和所述用户设备的信息之后,所述目标宏小区集成控制器根据本地存储的接入设备信息表确定目标微小区连接点,发送所述目标微小区连接点的信息和切换请求响应给所述源宏小区集成控制器,其中,所述目标微小区连接点的信息至少包括:所述目标微小区连接点的ID信息和所述目标微小区连接点的接入模式;
    所述源宏小区集成控制器根据所述切换请求响应,发送所述目标宏小区集成控制器的信息和所述目标微小区连接点的信息给所述核心网,以使所述核心网将所述用户设备当前请求的数据,分别发送给所述源微小区连接点和所述目标微小区连接点;
    所述源宏小区集成控制器发送所述目标宏小区集成控制器的信息、所述目标微小区连接点的信息和切换准备信令给所述用户设备;
    所述用户设备返回切换准备响应信令给所述源宏小区集成控制器;
    然后,所述用户设备针对所述目标宏小区集成控制器的信息和所述目标微小区连接点的信息,发送接入请求给所述目标宏小区集成控制器和所述目标微小区连接点,所述用户设备与所述目标宏小区集成控制器和所述目标微小区连接点建立通信,并接收核心网转发到所述目标微小区连接点的数据;
    所述目标宏小区集成控制器向所述源宏小区集成控制器发送切换确认,完成所述宏小区切换。
  11. 一种控制设备,其特征在于,包括:处理器、存储器、通信接口和总线;
    所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
    所述存储器存储可执行程序代码;
    所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行权利要求7-10中任一项所述的通信方法。
  12. 一种应用程序,其特征在于,所述应用程序用于在运行时执行权利要求7-10中任一项所述的通信方法。
  13. 一种存储介质,其特征在于,所述存储介质用于存储可执行代码,所述可执行代码用于执行权利要求7-10中任一项所述的通信方法。
PCT/CN2016/107722 2016-11-07 2016-11-29 一种异构网络的通信架构及通信方法 WO2018082141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610975231.3 2016-11-07
CN201610975231.3A CN106358211B (zh) 2016-11-07 2016-11-07 一种异构网络的通信架构及通信方法

Publications (1)

Publication Number Publication Date
WO2018082141A1 true WO2018082141A1 (zh) 2018-05-11

Family

ID=57864896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107722 WO2018082141A1 (zh) 2016-11-07 2016-11-29 一种异构网络的通信架构及通信方法

Country Status (2)

Country Link
CN (1) CN106358211B (zh)
WO (1) WO2018082141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887200A (zh) * 2021-03-09 2021-06-01 北京科技大学 一种适用于多源异构物联网的网关设备及其实现方法
US11765052B1 (en) 2022-03-11 2023-09-19 T-Mobile Usa, Inc. User equipment hosting for customizable 5G services

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662275B (zh) * 2018-06-29 2021-10-15 中国电信股份有限公司 选网方法、基站和计算机可读存储介质
CN110582104B (zh) * 2019-09-14 2021-11-30 上海掘谜实业有限公司 化妆品检测信息传输方法及传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404048A (zh) * 2011-06-03 2013-11-20 Sk电信有限公司 用于在异构网络中的同时数据传输服务的系统和方法
CN103401929A (zh) * 2013-08-05 2013-11-20 北京邮电大学 基于大规模处理能力基带和业务自适应的组网方法
CN103686763A (zh) * 2013-12-19 2014-03-26 京信通信系统(中国)有限公司 Femto和WLAN双模无线覆盖系统
US20150257013A1 (en) * 2014-03-04 2015-09-10 Qualcomm Incorporated Inter-radio access technology advertising in a multi-radio access technology deployment
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640157B (zh) * 2013-11-06 2018-04-17 上海宽带技术及应用工程研究中心 一种异构网络融合的方法及系统
CN104022859A (zh) * 2014-05-28 2014-09-03 北京邮电大学 一种基于own的自适应流量分载技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404048A (zh) * 2011-06-03 2013-11-20 Sk电信有限公司 用于在异构网络中的同时数据传输服务的系统和方法
CN103401929A (zh) * 2013-08-05 2013-11-20 北京邮电大学 基于大规模处理能力基带和业务自适应的组网方法
CN103686763A (zh) * 2013-12-19 2014-03-26 京信通信系统(中国)有限公司 Femto和WLAN双模无线覆盖系统
US20150257013A1 (en) * 2014-03-04 2015-09-10 Qualcomm Incorporated Inter-radio access technology advertising in a multi-radio access technology deployment
CN105682150A (zh) * 2016-02-25 2016-06-15 努比亚技术有限公司 多链路智能分流方法及移动终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887200A (zh) * 2021-03-09 2021-06-01 北京科技大学 一种适用于多源异构物联网的网关设备及其实现方法
CN112887200B (zh) * 2021-03-09 2022-02-25 北京科技大学 一种适用于多源异构物联网的网关设备及其实现方法
US11765052B1 (en) 2022-03-11 2023-09-19 T-Mobile Usa, Inc. User equipment hosting for customizable 5G services

Also Published As

Publication number Publication date
CN106358211B (zh) 2019-08-02
CN106358211A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
US11690026B2 (en) Method and device for efficient communication in next generation mobile communication system
US20210120463A1 (en) Method and apparatus for communication in wireless mobile communication system
US20220225264A1 (en) Apparatus and method for service subscription through e2 interface in radio access network communication system
KR102327208B1 (ko) 이동통신 시스템에서 셀 재선택을 수행하는 방법 및 장치
US11838978B2 (en) NR PDCP preservation upon RRC resume/suspend
JP6017733B2 (ja) 複数のキャリアを支援する移動通信システムで信号送受信方法及び装置
EP2879432B1 (en) Method, base station, and user equipment for handover between wireless networks
KR102376115B1 (ko) 차세대 이동 통신 시스템에서 pdcp 버전 변경에 따른 재설정 방법 및 장치
JP7290193B2 (ja) 無線端末及び無線端末における方法
US11265892B2 (en) Data transmission method and device
KR20170128758A (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
KR20230141800A (ko) 롱 텀 에볼루션 통신 시스템을 위한 다중-기술 집적아키텍처
US20210352522A1 (en) Method and device for transmitting and receiving data in wireless communication system
WO2018082141A1 (zh) 一种异构网络的通信架构及通信方法
EP3357297B1 (en) Access agnostic control plane
KR20220117763A (ko) 무선 액세스 네트워크에서 셀 정보와 e2 인터페이스 셋업을 위한 장치 및 방법
EP2991409B1 (en) Wireless communication device, processor, and communication control method
US20220232508A1 (en) Device and method for relaying service registration event via e2 interface in wireless access network communication system
WO2024032451A1 (zh) 通信的方法、装置和系统
WO2024001993A9 (en) Method and apparatus for enabling relaying for a remote ue using an ideal backhaul link
US20230142231A1 (en) Terminal and communication method
WO2023207732A1 (zh) 漫游方法、设备及通信系统
US20240179600A1 (en) Service-dynamic user equipment (ue) handover
US20240187951A1 (en) Method and device which minimize interrupt during handover in integrated access backhaul system and which are for first connection in multiple mobile terminals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16920570

Country of ref document: EP

Kind code of ref document: A1