WO2018082113A1 - 转子永磁型磁通切换轮毂电机 - Google Patents

转子永磁型磁通切换轮毂电机 Download PDF

Info

Publication number
WO2018082113A1
WO2018082113A1 PCT/CN2016/105502 CN2016105502W WO2018082113A1 WO 2018082113 A1 WO2018082113 A1 WO 2018082113A1 CN 2016105502 W CN2016105502 W CN 2016105502W WO 2018082113 A1 WO2018082113 A1 WO 2018082113A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
motor
hub motor
switching hub
Prior art date
Application number
PCT/CN2016/105502
Other languages
English (en)
French (fr)
Inventor
花为
章恒亮
程明
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/345,734 priority Critical patent/US11043861B2/en
Publication of WO2018082113A1 publication Critical patent/WO2018082113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • H02K16/025Machines with one stator and two or more rotors with rotors and moving stators connected in a cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention belongs to the technical field of motor manufacturing, in particular to a rotor permanent magnet type motor based on the principle of flux switching.
  • the driving methods of electric vehicles represented by electric vehicles are mainly divided into two categories: one is direct drive of distributed hub motors, mainly used in electric bicycles, electric scooters, four-wheel independent drive electric vehicles, etc.
  • the other is a centralized motor with indirect transmission of the gearbox, mainly found in power-concentrated electric vehicles and hybrid vehicles.
  • wheel hub motor design solutions including surface mount permanent magnet brushless motor, alternating pole surface mount permanent magnet brushless motor, switched reluctance motor, magnetic gear motor, stator permanent magnet type flux switching motor Wait. Since the torque ripple of the switched reluctance motor is too large, the structure of the magnetic gear motor is too complicated, and the overload capability of the stator permanent magnet type flux switching motor is insufficient. Therefore, the surface mount permanent magnet motor is the most widely used hub motor.
  • the armature magnetic field of the surface-mounted permanent magnet motor directly passes through the permanent magnet, and the motor faces a high irreversible demagnetization risk; and the winding inductance of the surface-mounted motor is small, the weak magnetic field capability of the motor is insufficient, and the cross-axis inductance is very close. Under the condition of weak magnetic operation, the reluctance torque generated by the motor is small, and the weak tape load capacity is poor, which directly limits the speed regulation range of the surface mount type motor.
  • some solutions use a switched reluctance motor as the drive motor, the armature winding is wound on the inner stator core, the outer rotor is a simple salient pole structure, there is no permanent magnet and winding, and the outer rotor and the rim need to be welded or other mechanical means.
  • the coupling does not realize the integrated design and processing of the rotor and the rim.
  • the torque ripple of the solution is as high as 17%, which does not effectively solve the problem of large torque ripple of the switched reluctance motor.
  • the drive motor in this solution is a conventional surface-mount permanent magnet brushless motor, and the outer rotor is composed of The magnetic flux ring and the permanent magnet are composed, and the permanent magnet is attached to the surface of the magnetic conductive ring, and the fixing glue or the fixing ring is required to ensure that the permanent magnet cannot fall off when the motor is running.
  • the outer rotor and the rim need to be joined by welding or other mechanical means, and The integrated design and processing of the rotor and the rim are not realized.
  • the solution does not solve the problem that the surface-mounted permanent magnet motor has a narrow speed regulation range and weak magnetic field capability.
  • the output shaft of the driving motor and the rim are connected by a reduction gear, and the direct transmission of torque is not realized.
  • the existence of the reduction gear reduces the energy transmission efficiency, and the system structure is relatively complicated.
  • a rotor permanent magnet type magnetic flux switching hub motor is provided to solve the technical problems existing in the prior art, so that the motor has high power, strong anti-saturation and overload capability, large reluctance torque, good weak magnetic performance, Wide speed range, high manufacturing integration, and suitable for modular manufacturing processes.
  • a rotor permanent magnet type flux switching hub motor includes a rim, a stator core, an armature winding wound around the stator core, and a plurality of rotor units; the rotor unit is fixed in the In the rim, the rotor unit includes a permanent magnet and a rotor core disposed on both sides of the permanent magnet; the magnetization direction of the permanent magnet is tangentially magnetized and the magnetization directions of the permanent magnets are the same.
  • the inner side of the rim is provided with a plurality of bosses, and a rotor unit accommodating portion is formed between adjacent bosses, and the rotor unit is located in the rotor unit accommodating portion.
  • a side of the boss adjacent to the rotor core is provided with a positioning protrusion or a positioning groove, and the rotor core is correspondingly provided with a positioning groove or a positioning protrusion.
  • the inner and outer surfaces of the boss and the rotor unit have grooves, and a non-magnetic band is received in the groove and presses the rotor unit.
  • the rotor core is in contact with the permanent magnet with at least one positioning shoe; the permanent magnet has a groove adapted to the positioning shoe.
  • the rotor core and the stator core are magnetically permeable materials, and the rim is a non-magnetic material.
  • the armature winding is wound on the stator core in a concentrated winding manner.
  • the electromagnetic torque is transmitted from the rotor core to the rim through the boss inside the rim, and then to the tire, thereby improving the reliability of electromagnetic torque transmission.
  • the rotor is composed of a series of independent rotor units, which realizes modular processing of the rotor and improves manufacturing efficiency.
  • the "sandwich" design of the rotor core and the permanent magnet makes the difference in the magnetic resistance of the cross-axis of the motor obvious, which makes the difference of the inductance of the cross-axis is obvious, which ensures that the reluctance of the motor can output a large reluctance torque.
  • the weak tape loading capability of the motor is greatly improved.
  • the motor Due to the excellent weak tape capacity and weak magnetic capability, the motor has a wide speed range and improves the operating efficiency in the constant power zone.
  • the motor retains the magnetic collecting characteristics of the conventional stator permanent magnet type motor, the no-load air gap has a large magnetic flux density, and the motor has a strong torque output capability and a high power density.
  • the armature winding is a concentrated winding with short ends, low resistance and high efficiency.
  • Figure 1 shows the structure of a rotor permanent magnet type flux switching hub motor.
  • Figure 2 shows the fit of the rim and the rotor core.
  • Fig. 3 is a structural view of a rotor unit.
  • Fig. 4 is a structural view of another rotor unit.
  • Figure 5 is a view showing the cooperation of the non-magnetic band and the rotor unit and the rim boss.
  • Figure 6 is a schematic view of a stator winding.
  • Fig. 7 is a schematic view showing the operation of a rotor permanent magnet type flux switching hub motor.
  • Fig. 8 is a diagram showing three opposite potential waveforms of a rotor permanent magnet type flux switching hub motor.
  • Fig. 9 is a schematic view showing the magnetic collecting characteristics of a rotor permanent magnet type flux switching hub motor.
  • Figure 10 is a waveform diagram of the flux linkage and inductance of the rotor permanent magnet type flux switching hub motor.
  • Figure 11 is a waveform diagram of the inductance and flux linkage of the conventional rotor surface mount permanent magnet hub motor.
  • Figure 12 is a "torque-phase angle" curve of a rotor permanent magnet type flux switching hub motor and an existing rotor surface mount permanent magnet hub motor.
  • Figure 13 is a schematic view of a stator shaft of a rotor permanent magnet type flux switching hub motor.
  • a rotor permanent magnet type magnetic flux switching hub motor of the present invention a rotor permanent magnet type flux switching motor is used as a driving motor, and the stator and rotor of the motor are arranged in an outer rotor-inner stator form.
  • the inner side is a stator and the outer circumference is a rotor.
  • the rotor and the rim are coupled in the following two ways: the outer rotor and the rim are directly coupled by welding; the inner rotor is indirectly coupled to the rim through the gearbox.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention discards the above two types of modes.
  • the rotor unit is directly embedded on the rim 1, and the specific processing method is as follows: a matching dovetail groove 2a is formed on the boss 6 of the rotor core 2 and the rim, and the dovetail groove is matched.
  • the rotor core is fixed to the rim 1.
  • the jointing method of the present invention does not generate unreliable joints in the form of air holes, slag inclusions, etc., and the torque transmission reliability is higher under high speed and large torque output conditions;
  • the coupling mode of the invention avoids energy loss due to factors such as gear friction and the energy transmission efficiency is higher.
  • the rotor core of the present invention is formed by laminating silicon steel sheets, and a first positioning shoe 2b is disposed between the rotor cores for fixing the permanent magnets 3, and the permanent magnets are sandwiched between the two rotor cores.
  • the form of the rotor core and the permanent magnet may also be in the form shown in FIG. 4, that is, the second positioning shoe 2c is disposed on both sides of the rotor core, and the permanent magnet is sandwiched between the rotor cores. Modular machining is achieved for each rotor unit, increasing manufacturing efficiency.
  • the stator of the motor is composed of a stator core 4 and an armature winding 5;
  • the rotor of the motor is an yokeless structure, and is composed of a plurality of rotor units, each of which is composed of two rotor cores and a tangential direction sandwiched between the rotor cores.
  • Magnetized permanent magnet composition It should be emphasized that the magnetization directions of each permanent magnet in the rotor permanent magnet type flux switching motor are the same, which is different from the manner in which the stator permanent magnet type flux switching motor permanent magnets are relatively magnetized.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention has a permanent magnet placed on the rotor, which increases the space of the stator armature winding and the stator teeth, so the same current At the density, more armature current can be injected, which increases the torque output capability of the motor.
  • the stator teeth become wider, solving the problem of supersaturation of the stator teeth of the stator permanent magnet type flux switching motor, and improving the anti-saturation capability of the motor, which further improves the overload capability of the flux switching motor.
  • the rim boss and the rotor core are A groove for placing the non-magnetic band 7 is formed on the inner circular surface (the breath side) of the permanent magnet, and the rotor unit is pressed by the non-magnetic band.
  • the air gap between the rotor core, the permanent magnet, the rim, and the non-magnetic band is filled with anaerobic glue to ensure tightness of installation.
  • the stator winding adopts a centralized winding method, that is, each winding coil surrounds only one stator tooth, as shown in FIG. 6.
  • the winding resistance R of each phase can be calculated by the following formula (1).
  • N is the number of turns of each phase winding
  • is the wire resistivity
  • L av is the average length of the winding
  • Sav is the average cross-sectional area of the winding.
  • m is the number of motor phases
  • I is the effective value of the phase current
  • R is the resistance value of each phase.
  • the motor of the present invention has a small resistance R per phase, so that the motor of the present invention has a small copper loss when the motor phase number m and the phase current effective value I are constant.
  • the operation principle of the rotor permanent magnet type magnetic flux switching hub motor of the present invention will be described.
  • the stator teeth where the winding A is located are facing the non-magnetic convex boss, and the permanent magnetic flux linkage hardly passes through the winding A, and the permanent magnetic flux linkage of the ⁇ chain in the winding A is 0.
  • the motor runs to position 2, at which time the stator teeth where the winding A is located are facing the rotor teeth, the permanent magnetic flux passes through the winding A, and the other stator teeth return to the permanent magnet, and the winding chain in the winding A
  • the maximum N-polar permanent magnet flux linkage ie the straight-axis position; then, the motor runs to position 3, where the stator teeth where the winding A is located are facing the permanent magnet, the permanent magnet magnetic path passes through the air gap and the stator teeth where the winding A is located
  • the tip of the tooth is closed, the permanent magnetic flux linkage of the ⁇ chain in winding A is 0, that is, the position of the intersecting axis; then, the motor runs to position 4, at which time the stator teeth where the winding A is located are facing the rotor teeth, and the permanent magnetic flux passes through the other stator teeth.
  • the motor After returning to the permanent magnet through the stator teeth where the winding A is located, the maximum S-polar permanent magnet flux linkage of the ⁇ chain in the winding A, that is, the straight-axis position; finally, the motor will run to the position 1 to complete a complete electrical cycle.
  • the rotor position With the continuous operation of the motor, the rotor position will always change according to the law of “position 1 ⁇ position 2 ⁇ position 3 ⁇ position 4 ⁇ position 1”, and the permanent magnet flux linkage in winding A is also correspondingly “0 ⁇ N ⁇
  • the regular change of 0 ⁇ S ⁇ 0” will induce the corresponding back EMF in the winding A, and the appropriate armature will be connected.
  • the flow, the motor will have electromagnetic torque generated.
  • FIG. 8 is a simulation diagram of the opposite potential of a rotor permanent magnet type magnetic flux switching hub motor according to the present invention. It can be seen from FIG. 8 that the back oscillating waveform of the motor is quite high.
  • the electromagnetic torque T em of the synchronous motor is calculated as
  • Equation (3) is the electromagnetic torque generated by the interaction between the permanent magnet flux linkage and the armature flux linkage
  • the second term is the reluctance torque generated by the reluctance fluctuation of the motor.
  • Reluctance torque will be generated, and if the cross-axis inductance is greater than the direct-axis inductance, the reluctance torque will be positive, and this part of the reluctance torque will increase the load-carrying capacity of the weak-magnetic region of the motor.
  • FIG. 9 illustrates the magnetization mechanism of the rotor permanent magnet type flux switching hub motor of the present invention.
  • FIG. 9 shows a schematic diagram of the magnetic circuit in the case where the stator teeth are facing the rotor teeth, that is, the rotor is in the straight axis.
  • the permanent magnet flux ⁇ m traverses the surface S 2 of the permanent magnet, enters the air gap from the surface S 1 of the rotor tooth, and then the chain is inserted into the stator winding. This indicates that the surface magnetic flux density of the rotor tooth surface magnetic flux density B 1 and B 2 ratio of the permanent magnet:
  • S c1 is the radial surface area of the rotor teeth and S c2 is the tangential surface area of the permanent magnets.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention can adjust the magnetic gap magnetic density of the motor by adjusting the radial length of the permanent magnet and the rotor tooth width, which is impossible for the rotor surface mount permanent magnet hub motor. Arrived. By adjusting the magnetic gap of the motor air gap, the motor can be used for more working conditions.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention can be set by comparison.
  • the large permanent magnet radial length l pm and the rotor tooth width ratio r w get a larger permanent magnet flux ⁇ m , which in turn produces a large electromagnetic torque output.
  • FIG. 10 and FIG. 11 compare the inductance and flux linkage characteristics of two identically sized hub motors
  • FIG. 10 is the inductance and flux linkage waveform of the rotor permanent magnet type magnetic flux switching hub motor of the present invention
  • FIG. 11 shows the existing rotor table. Inductive and magnetic chain waveforms of the posted permanent magnet hub motor.
  • the winding inductance is minimum; 2. when the winding magnetic When the chain is 0 (crossing axis), the winding inductance is the largest, the inductance of the cross-axis is obvious, and the cross-axis inductance is greater than the direct-axis inductance.
  • the two-point inductance characteristics correspond to the operation principle of the rotor permanent magnet type magnetic flux switching hub motor of the present invention described above.
  • the rotor axis inductance L q of the rotor permanent magnet type magnetic flux switching hub motor of the present invention is twice that of the existing rotor surface mount permanent magnet hub motor, and the direct axis inductance L d is The existing rotor surface mount permanent magnet hub motor is 1.5 times.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention will generate a large forward reluctance torque in the high speed field weakening zone, and the high speed weak tape loading capability is significantly stronger than the existing rotor table. Sticker permanent magnet hub motor.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention and the conventional rotor surface mount permanent magnet hub motor have similar permanent magnet flux linkage values, but the rotor permanent magnet type of the present invention
  • the direct-axis inductance L d of the flux-switching hub motor is 1.5 times that of the existing rotor-surface-mounted permanent magnet hub motor, so in the case of the same field weakening current I d , the rotor permanent magnet type flux-switching hub of the present invention
  • the weak magnetic capability of the motor is significantly stronger than the existing rotor surface mount permanent magnet hub motor.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention has excellent weak tape carrying capacity and weak magnetic capability, so the rotor permanent magnet type magnetic flux switching hub motor of the present invention has wide speed regulation. Scope, and because of the large direct-axis inductance, it is guaranteed to be the same size as the existing rotor-surface-mounted permanent magnet hub motor At the time, the field weakening current is smaller, and the copper loss due to the weak magnetic current is smaller. Moreover, due to the existence of a large reluctance torque, the output torque of the motor is larger. Therefore, the rotor permanent magnet type magnetic flux switching hub motor of the present invention has better efficiency characteristics during high speed field weakening operation.
  • the rotor permanent magnet type magnetic flux switching hub motor of the present invention has a large reluctance torque output capability, the maximum torque output current angle of the motor is not 0, but is in the weak magnetic region.
  • FIG. 12 is a "torque-phase angle" curve of the rotor permanent magnet type magnetic flux switching hub motor of the present invention and the existing rotor surface mount permanent magnet hub motor under the same current density, wherein curve 1 is The rotor permanent magnet type magnetic flux switching hub motor of the present invention, the curve 2 is the existing rotor surface mount permanent magnet hub motor.
  • the maximum torque output current angle of the rotor permanent magnet type magnetic flux switching hub motor of the present invention is 36°
  • the existing rotor surface mount permanent magnet hub motor is 0°.
  • the stator side of the rotor permanent magnet type flux switching hub motor of the present invention may be provided with a water passage for cooling.
  • the stator shaft 8 is sleeved with a hub bearing 11 for supporting the motor rim; the stator shaft 8 has a hollow structure inside, and the 3-phase electric wire 9 of the hub motor and the inlet and outlet pipes 10 of the cooling system pass through the inside of the stator shaft 8.
  • the rotor permanent magnet type flux switching hub motor of the present invention includes three parts: a rim, an outer rotor, and an inner stator.
  • a boss structure is disposed inside the rim for positioning and fixing the rotor unit embedded on the rim to transmit electromagnetic torque.
  • the outer rotor is composed of a series of rotor units, each of which is assembled from two rotor cores and a tangentially magnetized permanent magnet, which may be ferrite or neodymium iron boron.
  • the magnetic flux switching hub motor of the new structure Due to the arrangement of the inner stator and the outer rotor, the magnetic flux switching hub motor of the new structure has a large inductance of the direct shaft winding, and the weak magnetic capability of the motor is obviously stronger than that of the surface-mounted permanent magnet motor; The reluctance torque of the motor during the field weakening operation is significantly improved, and the load carrying capacity is stronger than that of the surface mount permanent magnet motor. The performance of all aspects is significantly better than the surface mount permanent magnet motor.
  • the design of the rotor unit directly embedded in the rim improves the integration of the motor manufacturing and facilitates the modular manufacturing of the motor.
  • the inner stator is composed of an armature winding and a stator core, and the armature winding is a concentrated winding.
  • the permanent magnet flux generated by the permanent magnets will pass through the respective concentrated armature coils in different directions, thereby generating a magnetic flux switching effect, resulting in a permanent chain in each phase of the armature winding.
  • the magnetic flux linkage is bipolar.
  • the key to the invention is that the permanent magnet is placed on the rotor, and the magnetic field of the magnetic flux switching motor is retained while the space of the armature winding is released. By adjusting the radial length of the permanent magnet, the air gap magnetic density can be realized.
  • the adjustment of the rotor unit is directly embedded in the rim, the electromagnetic torque is transmitted directly to the rim, and the reliability is high, and the modular design of the rotor unit simplifies the assembly process of the rotor.
  • the motor has a magnetism effect,
  • the no-load air gap has a large magnetic flux density, the motor has a strong torque output capability, and the power density is high.
  • the armature winding is a concentrated winding, the end is short, the resistance is small, and the efficiency is high.
  • the armature reaction flux and the permanent magnet flux are spatially perpendicular to each other, and the magnetic circuit is in a parallel relationship, which ensures that the motor has strong anti-demagnetization capability.

Abstract

一种转子永磁型磁通切换轮毂电机,包括轮辋(1)、定子铁芯(4)、绕置于所述定子铁芯(4)上的电枢绕组(5),以及复数个转子单元;所述转子单元固定在所述轮辋(1)中,所述转子单元包括永磁体(3)和设置在所述永磁体(3)两侧的转子铁芯(2);所述永磁体(3)的充磁方向为切向充磁且各永磁体(3)的充磁方向相同。所述电机具有功率大、抗饱和与过载能力强、磁阻转矩大、弱磁性能好、调速范围宽、制造集成度高,以及适合模块化制造工艺等优点。

Description

转子永磁型磁通切换轮毂电机 技术领域
本发明属于电机制造技术领域,尤其是一种基于磁通切换原理的转子永磁型电机。
背景技术
随着全球化能源危机的日益加深,节能高效的电动交通工具越来越受到政府和社会的重视。当前,以电动汽车为代表的电动交通工具的驱动方式主要分为两大类:一种是分布式轮毂电机直接驱动,主要应用于电动自行车、电动踏板车,四轮独立驱动型电动汽车等领域;另一种是集中式电机配合变速箱间接驱动,主要见于功率集中型电动汽车,以及混合动力汽车领域。
另一方面,随着国民经济的快速增长,居民汽车保有量逐年增加,城市交通拥堵以及停车难的问题正日益严重。毫无疑问,具有高度行驶灵活性的电动自行车和电动踏板车,以及具有丰富操作自由度的四轮独立驱动型电动汽车,在此大环境下极具市场竞争力。作为该类电动交通工具的动力来源,轮毂电机自然吸引了工业界和学术界的广泛重视。
当前,已经有多种轮毂电机设计方案,包括表贴式永磁无刷电机、交替极型表贴式永磁无刷电机、开关磁阻电机、磁齿轮电机、定子永磁型磁通切换电机等。由于开关磁阻电机的转矩脉动太大,磁齿轮电机结构太复杂,定子永磁型磁通切换电机过载能力不足,所以,表贴式永磁电机是应用最广泛的轮毂电机。然而,表贴式永磁电机的电枢磁场直接穿过永磁体,电机面临很高的不可逆退磁风险;而且表贴式电机的绕组电感较小,电机的弱磁能力不足,交直轴电感非常接近,弱磁运行条件下,电机产生的磁阻转矩较小,弱磁带载能力差,这直接限制了表贴式电机的调速范围。
例如有的方案以开关磁阻电机作为驱动电机,电枢绕组缠绕在内定子铁心上,外转子为简单的凸极结构,没有永磁体和绕组,且外转子与轮辋需要通过焊接或其他机械方式联接,并未实现转子与轮辋的一体化设计与加工。该方案的转矩脉动高达17%,并未有效解决开关磁阻电机转矩脉动大的问题。
又如有的方案通过多段磁钢环、导磁环和磁感应元件的配合提升了电机的位置信号检测能力,然而该方案中的驱动电机为传统的表贴式永磁无刷电机,外转子由导磁环和永磁体组成,永磁体贴于导磁环表面,需要通过固定胶或固定环的方式确保电机运行时永磁体无法脱落。此外,该方案中外转子与轮辋需要通过焊接或其他机械方式联接,并 未实现转子与轮辋的一体化设计与加工。而且,该方案并未解决表贴式永磁电机存在的调速范围窄,弱磁能力差的问题。
再如,有些方案的驱动电机输出轴与轮辋之间通过减速齿轮联接,并未实现扭矩的直接传递,减速齿轮的存在降低了能量传递效率,而且系统结构比较复杂。
发明内容
发明目的:提供一种转子永磁型磁通切换轮毂电机,以解决现有技术存在的技术问题,使电机具有功率大、抗饱和与过载能力强、磁阻转矩大、弱磁性能好、调速范围宽、制造集成度高、适合模块化制造工艺等优点。
技术方案:一种转子永磁型磁通切换轮毂电机,包括轮辋、定子铁芯、绕置于所述定子铁芯上的电枢绕组,以及复数个转子单元;所述转子单元固定在所述轮辋中,所述转子单元包括永磁体和设置在所述永磁体两侧的转子铁芯;所述永磁体的充磁方向为切向充磁且各永磁体的充磁方向相同。
在进一步的实施例中,所述轮辋内侧设置有若干凸台,相邻凸台之间形成转子单元容置部,所述转子单元位于该转子单元容置部内。所述凸台与转子铁芯相邻的一侧设置有定位凸起或定位凹槽,所述转子铁芯对应设置有定位凹槽或定位凸起。
或者,所述凸台和转子单元的内圆面具有凹槽,一不导磁箍条容置于该凹槽内并压紧所述转子单元。
在进一步的实施例中,所述转子铁芯与永磁体相接触的一侧设有至少一个定位靴;所述永磁体上具有与所述定位靴适配的沟槽。所述转子铁芯、永磁体和凸台的数量关系满足Nr=2*Np=2*Nt,其中,Nr为转子铁芯的数目,Np为磁体的数目,Nt为辋凸台的数目。所述转子铁芯和定子铁芯为导磁材料,所述轮辋为不导磁材料。所述电枢绕组以集中式绕组的方式缠绕于所述定子铁芯上。
有益效果:实施本发明的技术方案,可获得以下有益效果:
1、通过将转子单元直接嵌在轮辋上,电磁转矩通过轮辋内部的凸台由转子铁芯传递到轮辋,进而到轮胎,提高了电磁转矩传递的可靠性。
2、在该实施例中,转子由一系列独立的转子单元构成,实现了转子的模块化加工,提高了制造效率。
3、在该方案中,将永磁体放在转子上,释放了定子电枢绕组的空间,解决了定子永磁型磁通切换电机定子齿过饱和的问题,使得更多的电枢电流可以注入,提高了电机 的抗饱和能力,增大了转矩输出能力。
4、转子铁芯与永磁体的“三明治”设计方案,使得电机的交直轴磁阻差异明显,进而使得交直轴电感差异明显,保证了电机弱磁运行时可以输出较大的磁阻转矩,大大提高了电机的弱磁带载能力。
5、由于电机的结构特性,当转子运行到直轴时,定子齿正对转子齿,导致该电机具有较大的直轴电感,使得电机的弱磁能力十分突出。
6、由于出色的弱磁带载能力和弱磁能力,该电机具有较宽的调速范围,同时提高了在恒功率区的运行效率。
7、由于电机保留了传统定子永磁型电机的聚磁特性,空载气隙磁通密度较大,电机具有较强的转矩输出能力,功率密度较高。
8、电枢绕组是集中绕组,端部短,电阻较小,效率较高。
9、通过调整永磁体的径向长度,可以实现气隙磁密的调节,使得电机设计的灵活性得到大幅提高,工况适应能力强。
附图说明
图1所示为转子永磁型磁通切换轮毂电机结构图。
图2所示为轮辋与转子铁芯的配合图。
图3为一种转子单元的结构图。
图4为另一种转子单元的结构图。
图5为不导磁箍条与转子单元及轮辋凸台的配合图。
图6为定子绕组的示意图。
图7为转子永磁型磁通切换轮毂电机的运行原理图。
图8为转子永磁型磁通切换轮毂电机的三相反电势波形图。
图9为转子永磁型磁通切换轮毂电机的聚磁特性示意图。
图10为转子永磁型磁通切换轮毂电机磁链与电感波形图。
图11为现有的转子表贴式永磁轮毂电机电感与磁链波形图。
图12为转子永磁型磁通切换轮毂电机和现有的转子表贴式永磁轮毂电机的“转矩-相角”曲线。
图13为转子永磁型磁通切换轮毂电机定子轴示意图。
具体实施方式
如图1所示,在本发明所述转子永磁型磁通切换轮毂电机中,以转子永磁型磁通切换电机作为驱动电机,电机定子、转子的排布方式为外转子-内定子形式,即内侧为定子,外周为转子。
在当前已见各类轮毂电机方案中,电机转子与轮辋的联接方式为以下两种:外转子与轮辋以焊接的方式直接联接;内转子通过齿轮变速箱与轮辋间接联接。本发明的转子永磁型磁通切换轮毂电机抛弃了上述两类方式。如图2所示的实施例中,转子单元直接嵌在轮辋1上,具体加工方法为:在转子铁芯2与轮辋的凸台6上开设相互匹配的燕尾槽2a,以燕尾槽配合的方式将转子铁芯固定于轮辋1上。
与现有焊接联接方式相比,本发明所述联接方式不会产生以气孔、夹渣等形式存在的不可靠联接,在高速大扭矩输出工况下,扭矩传输可靠性更高;与现有齿轮变速箱间接联接相比,本发明所述联接方式避免了因齿轮摩擦等因素造成的能量损失,能量传输效率更高。
如图3所示,本发明所述转子铁芯由硅钢片叠压而成,转子铁芯中间设有第一定位靴2b用于固定永磁体3,永磁体夹在两块转子铁芯之间。转子铁芯与永磁体的配合形式也可以为图4所示的形式,即转子铁芯的两侧设置第二定位靴2c,永磁体夹在转子铁芯中间。每个转子单元实现了模块化加工,提高了制造效率。
电机定子由定子铁芯4和电枢绕组5组成;电机转子为无轭部结构,由数块转子单元构成,每块转子单元由两块转子铁芯和一块夹在转子铁芯中间的切向充磁的永磁体组成。需要强调的是,转子永磁型磁通切换电机中每块永磁体的充磁方向都是相同的,这与定子永磁型磁通切换电机永磁体相对充磁的方式是不同的。
与定子永磁型磁通切换轮毂电机相比,本发明所述转子永磁型磁通切换轮毂电机,永磁体放在转子上,增大了定子电枢绕组和定子齿的空间,所以相同电流密度情况下,更多的电枢电流可以注入,增大了电机的转矩输出能力。而且,定子齿变得更宽,解决了定子永磁型磁通切换电机定子齿过饱和的问题,提高了电机的抗饱和能力,这进一步提高了磁通切换电机的过载能力。
基于前文提到的本发明所述转子永磁型磁通切换轮毂电机中轮辋凸台以及转子单元的装配逻辑,转子铁芯的数目Nr,永磁体的数目Np,轮辋凸台的数目Nt,需满足“Nr=2*Np=2*Nt”的关系。
如图5所示,为了进一步固定转子单元与轮辋之间的联接,在轮辋凸台、转子铁芯 和永磁体的内圆面(气息侧)上开设放置不导磁箍条7的凹槽,并用不导磁箍条压紧转子单元。在箍紧转子单元之后,用厌氧胶水填满转子铁芯、永磁体、轮辋、不导磁箍条之间的气隙,以确保安装的紧密性。
本发明所述转子永磁型磁通切换轮毂电机,定子绕组采用集中式绕法,即每个绕组线圈只包围一个定子齿,如图6所示。每相绕组电阻R可由下式(1)计算得到,
Figure PCTCN2016105502-appb-000001
其中,N为每相绕组串联匝数,ρ为导线电阻率,Lav为绕组平均长度,Sav为绕组平均截面积。因为采用集中式绕线方式,并不会改变每相绕组串联匝数N,导线电阻率ρ也无变化,绕组平均截面积Sav也不变,但是绕组平均长度Lav将会缩短,所以每相绕组电阻R较小。
又因为电机铜耗pcopper的计算公式为
pcopper=mI2R      (2)
其中,m为电机相数,I为相电流有效值,R为每相电阻值。由前所述,本发明所述电机每相电阻R较小,所以电机相数m和相电流有效值I不变时,本发明所述电机铜耗较小。
如图7所示,介绍本发明所述转子永磁型磁通切换轮毂电机的运行原理。以绕组A为例,在位置1时,绕组A所在的定子齿正对不导磁凸台,此时永磁磁链几乎不穿过绕组A,绕组A中匝链永磁磁链为0,即交轴位置;接着,电机运行到位置2,此时绕组A所在的定子齿正对转子齿,永磁磁通穿越绕组A,经过其他定子齿回到永磁体,此时绕组A中匝链最大N极性永磁磁链,即直轴位置;再接下来,电机运行到位置3,此时绕组A所在的定子齿正对永磁体,永磁磁路经过气隙以及绕组A所在定子齿齿尖闭合,绕组A中匝链永磁磁链为0,即交轴位置;接着,电机运行到位置4,此时绕组A所在的定子齿正对转子齿,永磁磁通穿越其他定子齿,经过绕组A所在定子齿回到永磁体,此时绕组A中匝链最大S极性永磁磁链,即直轴位置;最后,电机又将运行到位置1,完成一个完整的电周期。随着电机的连续运行,转子位置将一直按照“位置1→位置2→位置3→位置4→位置1”的规律不断变化,绕组A中的永磁磁链也相应的按照“0→N→0→S→0”的规律变化,绕组A中就会感应出相应的反电势,而通入适当的电枢电 流,电机就会有电磁转矩产生。
图8为一台本发明所述转子永磁型磁通切换轮毂电机相反电势仿真波形,由图8可以发现该电机的反电势波形正弦度相当高。
同步电机的电磁转矩Tem计算公式为
Figure PCTCN2016105502-appb-000002
其中,Pr为电机极对数,ψm为永磁磁链值,iq为交轴电流,id为直轴电流,Lq为交轴电感,Ld为直轴电感。式(3)中第一项为永磁磁链与电枢磁链相互作用产生的电磁转矩,第二项为电机的磁阻波动产生的磁阻转矩。当电机运行在额定转速及以下时,直轴电流为0,此时电机只输出永磁转矩;当电机运行在需要弱磁的高速区时,电机的id不为0值,此时电机将产生磁阻转矩,而且如果交轴电感大于直轴电感的话,磁阻转矩将为正值,这部分磁阻转矩将提高电机的弱磁区的带载能力。
图9展示了本发明所述转子永磁型磁通切换轮毂电机的聚磁机理。由图9展示了定子齿正对转子齿,即转子处于直轴,情况下的磁路示意图。永磁磁通Φm穿越永磁体表面S2,从转子齿表面S1进入气隙,进而匝链进定子绕组中。由此可知,转子齿表面磁密B1与永磁体表面磁密B2比值为:
Figure PCTCN2016105502-appb-000003
其中Sc1为转子齿径向表面积,Sc2为永磁体切向表面积。
又因为
Sc1=rw*l               (5)
Sc2=lpm*l              (6)
其中,rw为转子齿宽,lpm为永磁体径向长度,l为电机有效轴长。所以有
Figure PCTCN2016105502-appb-000004
所以,本发明所述转子永磁型磁通切换轮毂电机可以通过调节永磁体径向长度和转子齿宽的方式调节电机气隙磁密的大小,这是转子表贴式永磁轮毂电机无法做到的。通过调节电机气隙磁密的大小,可以使得电机适用于更多工况条件。
由于轮毂电机通常需要工作在低速大扭矩情况下,根据式(3)可知,在电机极对数和电枢电流不变时,本发明所述转子永磁型磁通切换轮毂电机可以通过设置较大的永磁体径向长度lpm与转子齿宽比值rw,得到较大的永磁磁链ψm,进而产生较大的电磁扭矩输出。
图10和图11比较了两台相同尺寸的轮毂电机电感与磁链特性,图10为本发明所述转子永磁型磁通切换轮毂电机电感与磁链波形,图11为现有的转子表贴式永磁轮毂电机电感与磁链波形。
由图10可以看出,在本发明所述转子永磁型磁通切换轮毂电机中:1.当绕组磁链处于两个极值点时(直轴),绕组电感最小;2.当绕组磁链为0时(交轴),绕组电感最大,交直轴电感差异明显,且交轴电感大于直轴电感。这两点电感特征与前文所述本发明所述转子永磁型磁通切换轮毂电机的运行原理相对应。
由图11可以看出,在现有的转子表贴式永磁轮毂电机中,无论绕组磁链处于两个极值点时(直轴),还是为0时(交轴),绕组电感几乎没有变化。
通过比较图10和图11可知,本发明所述转子永磁型磁通切换轮毂电机的交轴电感Lq为现有的转子表贴式永磁轮毂电机的两倍,直轴电感Ld为现有的转子表贴式永磁轮毂电机的1.5倍。根据式(3)可知,本发明所述转子永磁型磁通切换轮毂电机在高速弱磁区将会产生较大的正向磁阻转矩,高速弱磁带载能力明显强于现有的转子表贴式永磁轮毂电机。
又因为永磁电机的弱磁系数kfw
Figure PCTCN2016105502-appb-000005
其中,Id为弱磁电流。由图10和图11可知,本发明所述转子永磁型磁通切换轮毂电机和现有的转子表贴式永磁轮毂电机的永磁磁链值相近,然而本发明所述转子永磁型磁通切换轮毂电机的直轴电感Ld为现有的转子表贴式永磁轮毂电机的1.5倍,所以在相同弱磁电流Id情况下,本发明所述转子永磁型磁通切换轮毂电机的弱磁能力明显强于现有的转子表贴式永磁轮毂电机。
如前所述,本发明所述转子永磁型磁通切换轮毂电机具有优秀的弱磁带载能力和弱磁能力,所以本发明所述转子永磁型磁通切换轮毂电机具有较宽的调速范围,而且因为具有较大的直轴电感,所以在保证与现有的转子表贴式永磁轮毂电机弱磁磁链大小相同 时,弱磁电流更小,因弱磁电流产生的铜耗更小。而且由于较大的磁阻转矩的存在,电机的输出转矩更大。所以,本发明所述转子永磁型磁通切换轮毂电机在高速弱磁运行时的效率特性更好。
此外,由于本发明所述转子永磁型磁通切换轮毂电机具有较大的磁阻转矩输出能力,所以电机的最大转矩输出电流角不为0,而是在弱磁区。
图12为本发明所述转子永磁型磁通切换轮毂电机和现有的转子表贴式永磁轮毂电机在施加相同的电流密度情况下的“转矩-相角”曲线,其中曲线1为本发明所述转子永磁型磁通切换轮毂电机,曲线2为现有的转子表贴式永磁轮毂电机。由图12可知,本发明所述转子永磁型磁通切换轮毂电机最大转矩输出电流角为36°,而现有的转子表贴式永磁轮毂电机为0°。当电机工作在高速弱磁状态,即电流相角为正值时,本发明所述转子永磁型磁通切换轮毂电机的转矩输出能力明显强于现有的转子表贴式永磁轮毂电机。
如图13所示,本发明所述转子永磁型磁通切换轮毂电机的定子侧可以设置用于冷却的水道。定子轴8上套有轮毂轴承11,用于支撑电机轮辋;定子轴8内部为镂空结构,轮毂电机的3相电线9和冷却系统的进出水管10均从定子轴8内部穿过。
总之,本发明的转子永磁型磁通切换轮毂电机包括轮辋、外转子、内定子三大部分。轮辋内部设置了凸台结构,用于定位和固定嵌在轮辋上的转子单元,传递电磁扭矩。外转子由一系列转子单元构成,每个转子单元由两块转子铁芯和一块切向充磁的永磁体拼装而成,永磁体可以是铁氧体或者钕铁硼。由于采用了内定子、外转子的排布方式,该新型结构的磁通切换轮毂电机直轴绕组电感较大,电机弱磁能力明显强于表贴式永磁电机;且交直轴绕组电感差异明显,电机弱磁运行时的磁阻转矩得到显著提高,带载能力强于表贴式永磁电机。各方面性能明显优于表贴式永磁电机。转子单元直接嵌在轮辋中的设计,提高了电机制造的集成度,且便于电机的模块化制造。内定子由电枢绕组和定子铁芯组成,电枢绕组是集中绕组。当定子齿与不同的转子齿对齐,永磁体产生的永磁磁通穿过各个集中电枢线圈的方向就会不同,从而产生磁通切换效应,导致每相电枢绕组中所匝链的永磁磁链为双极性。本发明较为关键的是:将永磁体放置在转子上,在释放电枢绕组空间的同时保留了磁通切换电机的聚磁特性,通过调整永磁体的径向长度,可以实现对气隙磁密的调节;转子单元直接嵌在轮辋中,电磁转矩直接传递到轮辋上,可靠性高,而且转子单元的模块化设计简化了转子的拼装过程。由于电机具有聚磁效应, 空载气隙磁通密度较大,电机具有较强的转矩输出能力,功率密度较高;同时,电枢绕组是集中绕组,端部短,电阻较小,效率较高。而且,电枢反应磁通和永磁磁通在空间上互相垂直,磁路上是并联关系,保证了该电机具有较强的抗去磁能力。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。

Claims (8)

  1. 一种转子永磁型磁通切换轮毂电机,包括轮辋、定子铁芯、绕置于所述定子铁芯上的电枢绕组,以及复数个转子单元,其特征在于,所述转子单元固定在所述轮辋中,所述转子单元包括永磁体和设置在所述永磁体两侧的转子铁芯;所述永磁体的充磁方向为切向充磁且各永磁体的充磁方向相同。
  2. 如权利要求1所述的转子永磁型磁通切换轮毂电机,其特征在于,所述轮辋内侧设置有若干凸台,相邻凸台之间形成转子单元容置部,所述转子单元位于该转子单元容置部内。
  3. 如权利要求2所述的转子永磁型磁通切换轮毂电机,其特征在于,所述凸台与转子铁芯相邻的一侧设置有定位凸起或定位凹槽,所述转子铁芯对应设置有定位凹槽或定位凸起。
  4. 如权利要求2所述的转子永磁型磁通切换轮毂电机,其特征在于,所述凸台和转子单元的内圆面具有凹槽,一不导磁箍条容置于该凹槽内并压紧所述转子单元。
  5. 如权利要求2、3或4所述的转子永磁型磁通切换轮毂电机,其特征在于,所述转子铁芯与永磁体相接触的一侧设有至少一个定位靴;所述永磁体上具有与所述定位靴适配的沟槽。
  6. 如权利要求5所述的转子永磁型磁通切换轮毂电机,其特征在于,所述转子铁芯、永磁体和凸台的数量关系满足Nr=2*Np=2*Nt,其中,Nr为转子铁芯的数目,Np为磁体的数目,Nt为辋凸台的数目。
  7. 如权利要求5述的转子永磁型磁通切换轮毂电机,其特征在于,所述转子铁芯和定子铁芯为导磁材料,所述轮辋为不导磁材料。
  8. 如权利要求1至4任一项所述的转子永磁型磁通切换轮毂电机,其特征在于,所述电枢绕组以集中式绕组的方式缠绕于所述定子铁芯上。
PCT/CN2016/105502 2016-11-01 2016-11-11 转子永磁型磁通切换轮毂电机 WO2018082113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/345,734 US11043861B2 (en) 2016-11-01 2016-11-11 Magnetic flux switching hub motor having permanent magnet rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967790.XA CN106602822B (zh) 2016-11-01 2016-11-01 转子永磁型磁通切换轮毂电机
CN201610967790.X 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018082113A1 true WO2018082113A1 (zh) 2018-05-11

Family

ID=58590567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105502 WO2018082113A1 (zh) 2016-11-01 2016-11-11 转子永磁型磁通切换轮毂电机

Country Status (3)

Country Link
US (1) US11043861B2 (zh)
CN (1) CN106602822B (zh)
WO (1) WO2018082113A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769502B (zh) * 2017-11-23 2020-02-14 西安理工大学 一种转子永磁型混合励磁轴向磁通切换永磁电机
CN108418373A (zh) * 2018-02-13 2018-08-17 东南大学 一种同步磁阻电机直驱型铁心内嵌式轮辋一体化轮毂
CN109774457B (zh) * 2019-03-01 2020-09-18 北京精密机电控制设备研究所 一种电动汽车用轮毂电机
CN110365132B (zh) * 2019-07-02 2021-10-29 武汉研道科技有限公司 一种电动汽车用变支路模块化永磁内置式外转子轮毂电机
CN112644620B (zh) * 2019-12-30 2021-11-02 武汉船舶职业技术学院 一种磁力平衡车上的线圈切换装置
US11383792B1 (en) * 2021-08-27 2022-07-12 John Suratana Thienphrapa Motorized cycle
WO2023033643A1 (en) * 2021-09-03 2023-03-09 Eko Kuasa Technology Sdn Bhd A generator for clean, renewable, and sustainable power generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120212085A1 (en) * 2011-02-17 2012-08-23 The Hong Kong Polytechnic University Axial-flux electric machine
CN203840174U (zh) * 2014-05-14 2014-09-17 台州市金宇机电有限公司 一体轮结构的永磁直流无刷电机
CN104201854A (zh) * 2014-09-18 2014-12-10 同济大学 车用外转子永磁同步轮毂径向磁场电机电磁结构
CN104578658A (zh) * 2015-02-02 2015-04-29 台州市金宇机电有限公司 一种偏置安装结构的电动车用永磁直流无刷电机
CN204906145U (zh) * 2015-09-14 2015-12-23 台州市金宇机电有限公司 一种具有高效率低材损的电动车用永磁无刷直流轮毂电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343128A (en) * 1990-04-12 1994-08-30 Beltrame Carlo L Drive assistance device for a golf buggy
US5369324A (en) * 1992-07-17 1994-11-29 Lyng Elektronikk A-S Electric stepper motor
US6452302B1 (en) * 1998-09-28 2002-09-17 Hitachi, Ltd. Rotary electric machine and electric vehicle using the same
IL142123A0 (en) * 1999-07-23 2002-03-10 Advanced Rotary Systems Inc Electric drive (options)
TWI259638B (en) * 2004-12-01 2006-08-01 Ind Tech Res Inst Structure of an electric motor
JP5108236B2 (ja) * 2006-02-08 2012-12-26 本田技研工業株式会社 モータ用ロータ
JP2008295178A (ja) * 2007-05-24 2008-12-04 Meidensha Corp 永久磁石式回転機の回転子構造
US8860272B2 (en) * 2010-04-30 2014-10-14 Alstom Hydro France Synchronous generator, especially for wind turbines
EP2725687A1 (de) * 2012-10-26 2014-04-30 Siemens Aktiengesellschaft Permanenterregte Synchronmaschine
CN203056717U (zh) * 2012-11-19 2013-07-10 吴正林 一种永磁磁阻型轮毂电机
JP6207929B2 (ja) * 2013-08-29 2017-10-04 株式会社日立産機システム 永久磁石回転電機およびそれを用いたエレベータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120212085A1 (en) * 2011-02-17 2012-08-23 The Hong Kong Polytechnic University Axial-flux electric machine
CN203840174U (zh) * 2014-05-14 2014-09-17 台州市金宇机电有限公司 一体轮结构的永磁直流无刷电机
CN104201854A (zh) * 2014-09-18 2014-12-10 同济大学 车用外转子永磁同步轮毂径向磁场电机电磁结构
CN104578658A (zh) * 2015-02-02 2015-04-29 台州市金宇机电有限公司 一种偏置安装结构的电动车用永磁直流无刷电机
CN204906145U (zh) * 2015-09-14 2015-12-23 台州市金宇机电有限公司 一种具有高效率低材损的电动车用永磁无刷直流轮毂电机

Also Published As

Publication number Publication date
CN106602822B (zh) 2019-03-12
US20190260247A1 (en) 2019-08-22
US11043861B2 (en) 2021-06-22
CN106602822A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018082113A1 (zh) 转子永磁型磁通切换轮毂电机
CN104578477B (zh) 一种混合永磁磁极交替式磁通切换型记忆电机及其绕组切换弱磁控制方法
CN104201808B (zh) 一种基于位置自检测的混合励磁容错电机系统
CN107222075B (zh) 一种具有t型铁心内定子的双定子混合励磁电机
US9692265B2 (en) Variable magnetic flux-type rotary electric machine
CN101355286B (zh) 混合励磁型永磁开关磁链电机
CN107070150B (zh) 一种集中绕组直流偏置型混合励磁永磁电机
JP2010538597A (ja) 特に自動車の駆動に適した電流励磁型同期電動機
CN108616203B (zh) 错位双定子混合励磁型轴向磁场磁通切换电机
CN103973062A (zh) 一种高功率密度的磁通切换型混合永磁记忆电机
CN208316434U (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN104467333B (zh) 转子励磁多相磁阻电机及其控制方法
Sakai et al. Permanent magnet motors to change poles and machine constants
CN108321955A (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
Sakai et al. Realizing high efficiency using pole-changing hybrid permanent magnet motors
Hu et al. Electromagnetic design and flux regulation analysis of new hybrid excitation generator for electric vehicle range extender
CN110518766B (zh) 不对称双定子混合励磁型轴向磁场磁通切换电机
CN201278474Y (zh) 一种混合励磁型永磁开关磁链电机
CN108649768B (zh) 一种定子带有爪极旁路结构的混合励磁磁通切换电机
CN113078792B (zh) 一种轴向磁场交替极无刷混合励磁电机
CN107276350B (zh) 一种双定子混合励磁电机
CN101552494A (zh) 混合励磁开关磁链电机
Sakai et al. Effects of pole changing in a permanent magnet motor
CN113489175B (zh) 一种定子阻尼型永磁双凸极电机
CN111262356B (zh) 低成本高功率密度单相高速混合励磁永磁电动机及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920872

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 16920872

Country of ref document: EP

Kind code of ref document: A1