WO2018081990A1 - 数据传输的方法、用户设备与网络设备 - Google Patents

数据传输的方法、用户设备与网络设备 Download PDF

Info

Publication number
WO2018081990A1
WO2018081990A1 PCT/CN2016/104475 CN2016104475W WO2018081990A1 WO 2018081990 A1 WO2018081990 A1 WO 2018081990A1 CN 2016104475 W CN2016104475 W CN 2016104475W WO 2018081990 A1 WO2018081990 A1 WO 2018081990A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
transmission waveform
network device
indication message
waveform
Prior art date
Application number
PCT/CN2016/104475
Other languages
English (en)
French (fr)
Inventor
杨宁
许华
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES16920858T priority Critical patent/ES2911032T3/es
Priority to RU2019114741A priority patent/RU2715739C1/ru
Priority to PCT/CN2016/104475 priority patent/WO2018081990A1/zh
Priority to MX2019004848A priority patent/MX2019004848A/es
Priority to CN202011464156.7A priority patent/CN112600602A/zh
Priority to US16/345,430 priority patent/US11265059B2/en
Priority to CN201680090604.7A priority patent/CN109923795B/zh
Priority to JP2019523031A priority patent/JP2020504474A/ja
Priority to EP22152057.0A priority patent/EP4002715B1/en
Priority to AU2016428423A priority patent/AU2016428423B2/en
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CA3041935A priority patent/CA3041935C/en
Priority to EP16920858.4A priority patent/EP3518433B1/en
Priority to BR112019008736-2A priority patent/BR112019008736B1/pt
Priority to MYPI2019002420A priority patent/MY193582A/en
Priority to KR1020197013208A priority patent/KR20190080882A/ko
Priority to TW106137480A priority patent/TWI791001B/zh
Publication of WO2018081990A1 publication Critical patent/WO2018081990A1/zh
Priority to PH12019500958A priority patent/PH12019500958A1/en
Priority to IL266327A priority patent/IL266327A/en
Priority to ZA2019/03465A priority patent/ZA201903465B/en
Priority to JP2021203307A priority patent/JP7220768B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method for data transmission, a user equipment, and a network device.
  • Beamforming is a signal preprocessing technique based on an antenna array. Beamforming produces a directional beam by adjusting the weighting coefficients of each element in the antenna array, so that a significant array gain can be obtained.
  • beamforming technology is a key technology to improve network coverage.
  • the Beam/Beamformed Signal between the base station and the User Equipment (UE) is easy to block the communication link due to obstacle blocking or UE movement (Block). ).
  • UE User Equipment
  • Block UE movement
  • a scheme for measuring or transmitting based on a plurality of beam/beamforming signals is proposed, and the UE can be on the alternate beam/beamforming signal when the currently operating beam/beamforming signal is blocked. Communicate with the base station.
  • different beam/beamforming signals may come from different Transmit and Receive Point (TRP), because the distance between the UE and different TRPs may be different, and the transmission channel corresponding to different beam/beamforming signals The signal fading on the signal may not be equal, and the signal energy loss of the UE on the transmission path corresponding to these different beam/beamforming signals may also be different. Therefore, if the UE transmits data on different beams, different uplink transmission waveforms (Waveform) may be needed. For example, the UE needs to use orthogonal frequency division multiplexing multiple access according to discrete Fourier transform on one beam.
  • TRP Transmit and Receive Point
  • the uplink transmission waveform determined by the Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) technology, and the UE needs to adopt the cyclic prefix-orthogonal frequency division multiplexing multiple access on another beam ( Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) determines the uplink transmission waveform.
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • Embodiments of the present invention provide a data transmission method, a user equipment, and a network device, so that The user equipment can transmit data on different beams through a suitable uplink transmission waveform, thereby obtaining better uplink coverage and uplink transmission quality.
  • a method for data transmission includes: a user equipment UE transmitting data to a network device by using a first uplink transmission waveform on a first beam; and receiving, by the UE, a first indication sent by the network device a message, the first indication message is used to indicate an uplink transmission waveform corresponding to at least one beam; and the UE sends data to the network device by using a second uplink transmission waveform on a second beam of the at least one beam.
  • the second uplink transmission waveform is an uplink transmission waveform corresponding to the second beam indicated in the first indication message.
  • the at least one beam includes two or more beams, and different ones of the at least one beam are not identical in uplink transmission waveforms.
  • the uplink transmission waveform corresponding to the second beam is that the network device is based on channel quality information of a transmission channel corresponding to the second beam, or the UE is The location information in the cell is determined.
  • the at least one beam includes two or more beams, and different ones of the at least one beam have the same uplink transmission waveform.
  • the at least one beam does not include the first beam
  • Transmitting data to the network device includes: in a case where the first beam is blocked, the UE transmits data to the network device by using the second uplink transmission waveform on the second beam.
  • the first indication message is further used to indicate that the at least one beam is a spare beam of the UE.
  • the method further includes: receiving, by the UE, a second indication message sent by the network device, where the second indication message is used to indicate the at least one The uplink transmission waveform corresponding to the beam, the uplink transmission waveform corresponding to the at least one beam indicated by the second indication message is different from the uplink transmission waveform corresponding to the at least one beam indicated by the first indication message;
  • the UE sends data to the network device by using a third uplink transmission waveform on the third beam of the at least one beam, where the third uplink transmission waveform is the third beam corresponding to the indication in the second indication message.
  • Upstream transmission waveform is used to indicate the at least one The uplink transmission waveform corresponding to the beam, the uplink transmission waveform corresponding to the at least one beam indicated by the second indication message is different from the uplink transmission waveform corresponding to the at least one beam indicated by the first indication message.
  • the second indication message is that the network device is in the Sent when the location of the UE changes.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the uplink transmission waveform includes a waveform modulated by orthogonal frequency division multiplexing multiple access DFT-S-OFDM technology using discrete Fourier transform spread spectrum Or a waveform modulated by a cyclic prefix-orthogonal frequency division multiplexing multiple access CP-OFDM technique.
  • a second aspect provides a method for data transmission, where the method includes: receiving, by a network device, data sent by a user equipment UE on a first beam by using a first uplink transmission waveform; and determining, by the network device, uplink transmission corresponding to at least one beam The network device sends a first indication message to the UE, where the first indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam.
  • the at least one beam includes two or more beams, and different ones of the at least one beam are not identical in uplink transmission waveforms.
  • the at least one beam includes two or more beams, and different ones of the at least one beam have the same uplink transmission waveform.
  • the determining, by the network device, the uplink transmission waveform corresponding to the at least one beam the network device determining, according to at least one of the following information, the at least one of the following information
  • An uplink transmission waveform of each beam in one beam channel quality information of a transmission channel corresponding to each beam, location information of the UE in a cell.
  • the at least one beam does not include the first beam
  • the first indication message is further used to indicate that the UE uses the at least one beam as a backup. Beam.
  • the first indication message may also be used to indicate the at least one beam as an active beam of the UE.
  • the active beam refers to a beam used for communication with the network device at the current moment of the UE.
  • the method further includes: the network device re-determining an uplink transmission waveform corresponding to the at least one beam, where the re-determined at least one beam corresponds to The uplink transmission waveform is different from the uplink transmission waveform corresponding to the last determined at least one beam; the network device sends a second indication message to the UE, where The second indication message is used to indicate the uplink transmission waveform corresponding to the re-determined at least one beam.
  • the determining, by the network device, the uplink transmission waveform corresponding to the at least one beam includes:
  • the network device When the location of the UE changes, the network device re-determines an uplink transmission waveform corresponding to the at least one beam.
  • the network device may re-determine an uplink transmission waveform of each of the at least one beam according to at least one of the following information: between the transmitting and receiving node TRP corresponding to each beam and the UE The distance of the signal, the signal fading of the transmission channel corresponding to each beam, and the location of the UE in the cell.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the first indication message is high layer signaling
  • the second indication message is DCI
  • the uplink transmission waveform comprises a waveform modulated with a DFT-S-OFDM technique or a waveform modulated with a CP-OFDM technique.
  • the DFT-S-OFDM technology may also be a Single-Carrier Frequency-Division Multiple Access (SC-FDMA) technology.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the high layer signaling is, for example, Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the beam may also be referred to as a Beamformed Signal.
  • a user equipment for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the user equipment may comprise means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • the network device may comprise means for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • a user equipment comprising a memory for storing instructions for executing instructions stored in the memory, and a processor for performing the processing of the instructions stored in the memory Performing either of the first aspect or the first aspect The method in the way of implementation.
  • a network device comprising a memory and a processor for storing instructions for executing instructions stored by the memory, and performing execution of the instructions stored in the memory such that the processing The method of any one of the possible implementations of the second aspect or the second aspect is performed.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising a method for performing the second aspect or any of the possible implementations of the second aspect.
  • the network device sends an indication message to the user equipment to notify the user equipment to use the corresponding uplink transmission waveform to send data on different beams, so that the user equipment can transmit different waveforms through different suitable uplink signals.
  • the data is transmitted on, so that better uplink coverage and uplink transmission quality can be obtained, and the performance of uplink transmission is provided.
  • FIG. 1 is a schematic flowchart of a method for data transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 3 is another schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 5 is another schematic block diagram of a network device according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • future 5G system or new air interface New Radio Technology, NR
  • User equipment may also be referred to as a terminal, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal device, a wireless communication device, a user agent, or a user device.
  • the user equipment can be a mobile phone (or "cellular" phone), a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, personal digital processing.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), or can access a distributed peer-to-peer (Ad-Hoc) mode network and users through self-organizing or unauthorized access.
  • RAN Radio Access Network
  • Ad-Hoc distributed peer-to-peer
  • the user equipment can also access the network for communication in other manners, which is not limited in this embodiment of the present invention.
  • the network device may be a network side device for communicating with the user device.
  • the network device may be a network device that provides wireless access and communication services for mobile or fixed terminals in the cell.
  • the network device may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system (Evolutional Node). B, eNB or eNodeB).
  • the network device may also be a relay station, an access point, an in-vehicle device, or a wearable device.
  • the network device may also be a network side device in a future 5G network or a network after 5G, and a network side device in a future evolved PLMN network, Or a network side device in the NR network, and the like.
  • FIG. 1 is a schematic flowchart of a method 100 for data transmission according to an embodiment of the present invention.
  • the method 100 includes:
  • the user equipment UE sends data to the network device by using the first uplink transmission waveform on the first beam.
  • the first beam may also be referred to as an active beam of the UE, and the active beam refers to a beam used by the UE to communicate with the network device.
  • the first uplink transmission beam may be a default/fallback uplink transmission waveform set by the UE.
  • the first uplink transmission beam is a waveform determined by DFT-S-OFDM technology or a waveform determined by CP-OFDM technology.
  • the UE uses the default/standby uplink transmission waveform for uplink transmission.
  • the default/standby uplink transmission waveform may be set by the UE; or the default/standby uplink transmission waveform may be protocol-defined; or the default/standby uplink transmission waveform may be the UE according to the network side.
  • the broadcast information or system information of the device (for example, the network device) is set.
  • the above DFT-S-OFDM technology may also be a Single-Carrier Frequency-Division Multiple Access (SC-FDMA) technology.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the network device determines an uplink transmission waveform corresponding to the at least one beam.
  • the at least one beam is a beam for the UE to communicate with the network device.
  • the at least one beam may be one beam, or multiple beams, or one beam group, or multiple beam groups.
  • a beam group refers to a combined beam of multiple beams.
  • the at least one beam may also be an shaping signal corresponding to one beam, or multiple shaping signals corresponding to multiple beams, or one shaping signal group corresponding to one beam group, or multiple assignments corresponding to multiple beam groups.
  • Type signal group refers to an shaping signal formed by the corresponding beam shaping
  • the shaping signal group refers to an shaping signal group formed by shaping the corresponding beam group.
  • the network device determines an uplink transmission waveform corresponding to the at least one beam, where the network device determines, according to at least one of the following information, an uplink transmission waveform of each of the at least one beam: Channel quality information of the transport channel corresponding to each beam, location information of the UE in the cell.
  • the channel quality information of the transmission channel corresponding to a certain beam is, for example, signal fading information of the transmission channel corresponding to the certain beam.
  • the network device acquires channel quality information of the transport channel corresponding to the beam A or location information of the UE in the cell according to the measurement information reported by the UE. Alternatively, the network device obtains channel quality information of the transport channel corresponding to the beam A or location information of the UE in the cell according to the experience information.
  • the uplink transmission waveform corresponding to the beam A is different from the beam.
  • the uplink transmission waveform corresponding to B for example, the uplink transmission waveform corresponding to beam A is a waveform determined by DFT-S-OFDM technology, and the uplink transmission waveform corresponding to beam B is a waveform determined by using CP-OFDM technology.
  • the uplink transmission waveform corresponding to the beam C is different from the beam D.
  • the uplink transmission waveform for example, the uplink transmission waveform corresponding to beam C is a waveform determined by DFT-S-OFDM technology, and the uplink transmission waveform corresponding to beam D is a waveform determined by CP-OFDM technology.
  • the network device sends a first indication message to the UE, where the first indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam.
  • the first indication message may be a high level signaling (High Level Signaling).
  • the first indication message may be a radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first indication message may also be Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the UE sends data to the network device by using the second uplink transmission waveform on the second beam in the at least one beam, where the second uplink transmission waveform is an uplink transmission waveform corresponding to the second beam indicated in the first indication message.
  • the network device sends an indication message to the UE to inform the UE to use the corresponding uplink transmission waveform to transmit data on different beams, so that the UE can transmit data on different beams through a suitable uplink transmission waveform. Therefore, better uplink coverage and uplink transmission quality can be obtained, and the performance of uplink transmission is provided.
  • the beam in the embodiment of the present invention may also be referred to as a Beamformed Signal.
  • the at least one beam may include the first beam.
  • the network device may also send an indication message to inform the UE to change the first beam. Upstream transmission waveform. After receiving the indication message of the network device, the UE continues to communicate with the network device on the first beam, but only changes the uplink transmission waveform.
  • the at least one beam may not include the first beam, and the at least one beam may serve as a standby beam or an active beam of the UE.
  • the at least one beam may not include the first beam, and the first indication message is further used to indicate the at least one beam as a spare beam of the UE, where the UE is at least The second uplink transmission waveform is used to transmit data to the network device by using the second uplink transmission waveform, and the UE sends the data to the network device by using the second uplink transmission waveform on the second beam.
  • the UE is communicating with a network device in one beam (denoted as an active beam).
  • the at least one beam may not include the first beam
  • the first indication message is further used to indicate the at least one beam as an active beam of the UE
  • the UE is at least
  • the second uplink transmission waveform is used to transmit data to the network device by using the second uplink transmission waveform, and the UE sends the data to the network device by using the first uplink transmission waveform on the first beam, and is in the at least one beam.
  • the second uplink transmission waveform is used to transmit data to the network device.
  • the UE is communicating with the network device in one beam (denoted as active beam 1) (the uplink transmission beam is CP-OFDM).
  • the uplink transmission beam of the CP-OFDM is still used, and the remaining power of the UE is limited.
  • the network device considers that the UE uses the DFT-S-OFDM uplink transmission waveform to transmit data on the second active beam 2.
  • the network device notifies the UE to use DFT-S-OFDM as the uplink transmission when the activation beam 2 is configured. Waveform.
  • the network device can communicate with a user equipment group (including a set of multiple user equipments), or can also communicate with multiple user equipments or multiple user equipment groups. Therefore, the network equipment is configured to correspond to uplinks.
  • the uplink transmission waveform of the at least one beam corresponding to each user equipment or each group of user equipments may be independently configured for each user equipment or each group of user equipments.
  • the network device sends an indication message (for example, the first indication message shown in FIG. 1) for indicating an uplink transmission waveform corresponding to the at least one beam, or may be independent for each user equipment or each group of user equipments. Configured and indicated, ie UE-specific.
  • the uplink transmission waveform involved in the embodiment of the present invention includes a waveform determined by using DFT-S-OFDM technology or a waveform determined by using CP-OFDM technology.
  • the at least one beam includes two or more beams
  • the 120 network device determines an uplink transmission waveform corresponding to the at least one beam, where the network device configures the uplink for the at least one beam.
  • the transmitted waveform can support one or more or all of the following options:
  • the uplink channels corresponding to different beams include a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the same uplink transmission waveform DFT-S-OFDM is configured for the PUSCH and the PUCCH.
  • the same uplink transmission waveform CP-OFDM is configured for the PUSCH and the PUCCH.
  • an uplink transmission waveform CP-OFDM is configured for the PUSCH, and an uplink transmission waveform CP-OFDM is configured for the PUCCH.
  • an uplink transmission waveform DFT-S-OFDM is configured for the PUSCH, and an uplink transmission waveform DFT-S-OFDM is configured for the PUCCH.
  • an uplink transmission waveform CP-OFDM is configured for the PUSCH
  • an uplink transmission waveform DFT-S-OFDM is configured for the PUCCH.
  • an uplink transmission waveform DFT-S-OFDM is configured for the PUSCH, and an uplink transmission waveform CP-OFDM is configured for the PUCCH.
  • the uplink channels corresponding to different beams include a PUSCH and a PUCCH, and the PUCCHs can be further divided into different channels according to different channel formats.
  • the PUCCH is divided into two groups according to its channel format type, which are respectively recorded as PUCCH_Group_1 and PUCCH_GROUP_2, and the network device may separately configure an uplink transmission waveform for the PUCCH_Group1 and the PUSCH, and indicate that the corresponding uplink transmission waveform adopts DFT- S-OFDM or CP-OFDM, wherein the uplink transmission waveform configured for PUCCH_Group2 is consistent with the uplink transmission waveform configured for the PUSCH.
  • the PUCCH is divided into N groups according to the channel type, and is respectively recorded as PUCCH_Group_1, . . . , PUCCH_GROUP_N, and the network device can separately configure the uplink transmission waveform for the PUCCH_Group1, . . . , PUCCH_Group N and the PUSCH, and indicate the corresponding
  • the uplink transmission waveform uses DFT-S-OFDM or CP-OFDM.
  • an uplink transmission waveform of a channel of one or some channel formats is configured as an uplink transmission waveform (for example, SC-FDMA)
  • other channels can only be configured as Some kind of waveform.
  • the PUCCH or PUCCH group (corresponding to the above PUCCH_Group_i (i is 1, ..., N) can only be configured to adopt DFT-S-OFDM.
  • the PUCCH or PUCCH group As an upstream transmission waveform.
  • the PUCCH or PUCCH group may be configured to select DFT-S-OFDM or CP-OFDM as the uplink transmission waveform.
  • the method 100 further includes: the network device re-determining the uplink transmission waveform corresponding to the at least one beam, and the re-determined uplink transmission waveform corresponding to the at least one beam and the last determined (step 120)
  • the uplink transmission waveform corresponding to the at least one beam is different; the network device sends a second indication message to the UE, where the second indication message is used to indicate the uplink transmission waveform corresponding to the re-determined at least one beam; and the UE is the third one in the at least one beam.
  • the third uplink transmission waveform is used to transmit data to the network device, and the third uplink transmission waveform is an uplink transmission waveform corresponding to the third beam indicated in the second indication message.
  • the network device re-determines the uplink transmission waveform corresponding to the at least one beam, and the network device re-determines the uplink transmission waveform corresponding to the at least one beam when the location of the UE changes.
  • the network device may re-determine an uplink transmission waveform of each of the at least one beam according to at least one of the following information: a distance between the transmitting and receiving node TRP and the UE corresponding to each beam, each beam The signal of the corresponding transport channel is fading, and the location of the UE in the coverage cell of the network device.
  • the second indication message may be a DCI.
  • the second indication message can be independently configured for different user equipments or different groups of user equipments, and is independently notified.
  • the configuration information of the uplink transmission waveform of the at least one beam indicated by the first indication message is reset by the configuration information indicated by the second indication message (eg, DCI).
  • the network device initially uses a high-level signaling to indicate that a certain user equipment or a certain beam/beam group corresponding to a certain group of user equipment adopts some uplink transmission waveform, and the latest user equipment or the group of users is indicated by DCI signaling.
  • the corresponding beam/beam group of the device adopts another uplink transmission waveform, and the indicated user equipment or a group of user equipment adopts the uplink transmission waveform indicated by the latest DCI.
  • the reconfigured uplink transmission waveform of the network device may support any one or more or all of the foregoing Option 1 to Option 3.
  • the first indication message may also be downlink control information DCI.
  • the technical solution provided by the embodiment of the present invention sends an indication message to the UE through the network device, to inform the UE to use the corresponding uplink transmission waveform to send data on different beams, so that the UE can pass the more suitable uplink transmission waveform.
  • Data is transmitted on different beams, so that better uplink coverage and uplink transmission quality can be obtained, and uplink transmission performance is provided.
  • the method for data transmission provided by the embodiment of the present invention is described above with reference to FIG. 1.
  • the user equipment and the network device provided by the embodiment of the present invention are described below with reference to FIG.
  • FIG. 2 shows a schematic block diagram of a user equipment 200 according to an embodiment of the present invention.
  • the user equipment 200 includes:
  • the sending module 210 is configured to send data to the network device by using the first uplink transmission waveform on the first beam;
  • the receiving module 220 is configured to receive a first indication message that is sent by the network device, where the first indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam;
  • the sending module 210 is further configured to: send data to the network device by using the second uplink transmission waveform on the second beam of the at least one beam, where the second uplink transmission waveform is an uplink transmission waveform corresponding to the second beam indicated by the first indication message. .
  • the network device sends an indication message to the UE to notify the UE to use the corresponding uplink transmission waveform to transmit data on different beams, so that the UE can transmit data on different beams through a suitable uplink transmission waveform, thereby Better uplink coverage and uplink transmission quality can be obtained, providing uplink transmission performance.
  • the at least one beam includes two or more beams, and the uplink transmission waveforms corresponding to different beams in the at least one beam are not completely the same.
  • the uplink transmission waveform corresponding to the second beam is determined by the network device according to channel quality information of the transmission channel corresponding to the second beam or location information of the UE in the cell.
  • the at least one beam does not include the first beam
  • the sending module is configured to send the data to the network device by using the second uplink transmission waveform on the second beam if the first beam is blocked.
  • the first indication message is further used to indicate that at least one beam is a spare beam of the UE.
  • the receiving module 220 is further configured to receive a second indication message that is sent by the network device, where the second indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam, where the second indication message indicates The uplink transmission waveform corresponding to the at least one beam is different from the uplink transmission waveform corresponding to the at least one beam indicated by the first indication message; the sending module is further configured to: use the third uplink transmission waveform to the network on the third beam of the at least one beam The device sends data, and the third uplink transmission waveform is an uplink transmission waveform corresponding to the third beam indicated in the second indication message.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the uplink transmission waveform includes a waveform determined by using DFT-S-OFDM technology or a waveform determined by using CP-OFDM technology.
  • the sending module 210 in the embodiment of the present invention may be implemented by a transmitter or a transmitter related circuit
  • the receiving module 220 may be implemented by a receiver or a receiver related circuit.
  • an embodiment of the present invention further provides a user equipment 300, which includes a processor 310, a memory 320, a bus system 330, a receiver 340, and a transmitter 350.
  • the processor 310, the memory 320, the receiver 340, and the transmitter 350 are connected by a bus system 330.
  • the memory 320 is used to store instructions for executing the instructions stored in the memory 320 to control the receiver 340 to receive. Signal and control transmitter 350 to send a signal.
  • the transmitter 350 is configured to send data to the network device by using the first uplink transmission waveform on the first beam, and the receiver 340 is configured to receive the first indication message sent by the network device, where the first indication message is used to indicate at least one The uplink transmission waveform corresponding to the beam; the transmitter 350 is configured to send data to the network device by using the second uplink transmission waveform on the second beam of the at least one beam, where the second uplink transmission waveform is the second indicated in the first indication message The uplink transmission waveform corresponding to the beam.
  • the network device sends an indication message to the UE to notify the UE to use the corresponding uplink transmission waveform to transmit data on different beams, so that the UE can transmit data on different beams through a suitable uplink transmission waveform, thereby Better uplink coverage and uplink transmission quality can be obtained, providing uplink transmission performance.
  • the at least one beam includes two or more beams, and the uplink transmission waveforms corresponding to different beams in the at least one beam are not completely the same.
  • the uplink transmission waveform corresponding to the second beam is determined by the network device according to channel quality information of the transmission channel corresponding to the second beam or location information of the UE in the cell.
  • the at least one beam does not include the first beam
  • the transmitter 350 is specifically configured to: when the first beam is blocked, use the second uplink transmission waveform on the second beam to the network device. send data.
  • the first indication message is further used to indicate that at least one beam is a spare beam of the UE.
  • the receiver 340 is further configured to receive a second indication message that is sent by the network device, where the second indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam, where the second indication message indicates At least one beam corresponding uplink transmission waveform and the first indication message
  • the uplink transmission waveform corresponding to the indicated at least one beam is different
  • the transmitter 350 is further configured to: send data to the network device by using the third uplink transmission waveform on the third beam of the at least one beam, and the third uplink transmission waveform is the second Indicates an uplink transmission waveform corresponding to the third beam indicated in the message.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the uplink transmission waveform includes a waveform determined by orthogonal frequency division multiplexing multiple access DFT-S-OFDM technology using discrete Fourier transform spread spectrum or adopts a cyclic prefix-orthogonal frequency The waveform determined by the multiplexed multiple access CP-OFDM technology.
  • the user equipment 200 shown in FIG. 2 or the user equipment 300 shown in FIG. 3 may be used to perform operations or processes related to the user equipment in the foregoing method embodiments, and the user equipment 200 or each module in the user equipment 300.
  • the operations and/or functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • FIG. 4 shows a schematic block diagram of a network device 400 according to an embodiment of the present invention, the network device 400 comprising:
  • the receiving module 410 is configured to receive data that is sent by the user equipment UE by using the first uplink transmission waveform on the first beam;
  • a determining module 420 configured to determine an uplink transmission waveform corresponding to the at least one beam
  • the sending module 430 is configured to send a first indication message to the UE, where the first indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam.
  • the network device sends an indication message to the UE to notify the UE to use the corresponding uplink transmission waveform to transmit data on different beams, so that the UE can transmit data on different beams through a suitable uplink transmission waveform, thereby Better uplink coverage and uplink transmission quality can be obtained, providing uplink transmission performance.
  • the at least one beam includes two or more beams, and the uplink transmission waveforms corresponding to different beams in the at least one beam are not completely the same.
  • the determining module 420 is configured to determine, according to at least one of the following information, an uplink transmission waveform of each of the at least one beam: the transmission channel corresponding to each of the beams Channel quality information, location information of the UE in the cell.
  • the at least one beam does not include the first beam
  • the first indication message is further used to indicate that the UE uses at least one beam as the spare beam.
  • the determining module 420 is further configured to: re-determine at least one The uplink transmission waveform corresponding to the beam, the re-determined uplink transmission waveform corresponding to the at least one beam is different from the uplink transmission waveform corresponding to the last determined at least one beam; the sending module 430 is further configured to send the second indication message to the UE, and the second The indication message is used to indicate an uplink transmission waveform corresponding to the re-determined at least one beam.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the uplink transmission waveform includes a waveform determined by using DFT-S-OFDM technology or a waveform determined by using CP-OFDM technology.
  • the determining module 420 in the embodiment of the present invention may be implemented by a processor or a processor related circuit.
  • the receiving module 410 can be implemented by a receiver or receiver related circuitry.
  • the transmitting module 430 can be implemented by a transmitter or a transmitter related circuit.
  • an embodiment of the present invention further provides a network device 500.
  • the network device 500 includes a processor 510, a memory 520, a bus system 530, a receiver 540, and a transmitter 550.
  • the processor 510, the memory 520, the receiver 540 and the transmitter 550 are connected by a bus system 530 for storing instructions for executing instructions stored in the memory 520 to control the receiver 540 to receive.
  • Signal and control transmitter 550 to send a signal.
  • the receiver 540 is configured to receive data that is sent by the user equipment UE by using the first uplink transmission waveform on the first beam, and the processor 510 is configured to determine an uplink transmission waveform corresponding to the at least one beam, where the transmitter 530 is configured to The UE sends a first indication message, where the first indication message is used to indicate an uplink transmission waveform corresponding to the at least one beam.
  • the network device sends an indication message to the UE to notify the UE to use the corresponding uplink transmission waveform to transmit data on different beams, so that the UE can transmit data on different beams through a suitable uplink transmission waveform, thereby Better uplink coverage and uplink transmission quality can be obtained, providing uplink transmission performance.
  • the at least one beam includes two or more beams, and the uplink transmission waveforms corresponding to different beams in the at least one beam are not completely the same.
  • the processor 510 is specifically configured to: determine, according to at least one of the following information, an uplink transmission waveform of each of the at least one beam: a transmission channel corresponding to each beam Channel quality information, location information of the UE in the cell.
  • the at least one beam does not include the first beam
  • the first indication message is further used to indicate that the UE uses at least one beam as the spare beam.
  • the processor 510 is further configured to: re-determine an uplink transmission waveform corresponding to the at least one beam, and determine, by the re-determined uplink transmission waveform corresponding to the at least one beam, the uplink corresponding to the last determined at least one beam.
  • the transmitter 530 is further configured to send a second indication message to the UE, where the second indication message is used to indicate the uplink transmission waveform corresponding to the re-determined at least one beam.
  • the first indication message is high layer signaling or downlink control information DCI.
  • the uplink transmission waveform includes a waveform determined by using DFT-S-OFDM technology or a waveform determined by using CP-OFDM technology.
  • network device 400 shown in FIG. 4 or the network device 500 shown in FIG. 5 may be used to perform operations or processes related to network devices in the foregoing method embodiments, and various modules in the network device 400 or the network device 500.
  • the operations and/or functions are respectively implemented in order to implement the corresponding processes in the foregoing method embodiments, and are not described herein for brevity.
  • the processor in the embodiment of the present invention may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), and an application specific integrated circuit (Application Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in embodiments of the invention may be a volatile memory or a non-volatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Connection Dynamic Random Access Memory (Synchlink DRAM, SLDRAM) ) and direct memory Bus Random Access Memory (DR RAM).
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • the bus system may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as a bus system in FIGS. 3 and 5.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another module, or some features can be ignored or not executed.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, may be located in one place. Or it can be distributed to multiple network elements.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本发明实施例提供一种数据传输的方法、用户设备与网络设备,该方法包括:用户设备UE在第一波束上采用第一上行传输波形向网络设备发送数据;UE接收网络设备发送的第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形;UE在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,第二上行传输波形为第一指示消息中指示的第二波束对应的上行传输波形。因此,本发明实施例能够使得UE通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。

Description

数据传输的方法、用户设备与网络设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法、用户设备与网络设备。
背景技术
随着通信技术的应用频段不断提高,对网络覆盖范围的挑战越来越大。波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。目前,波束赋型技术作为一项关键技术来改善网络覆盖能力。
在较高的频段,基站和用户设备(User Equipment,UE)之间的波束(Beam)/波束赋型信号(Beamformed Signal)容易因为障碍物阻挡或UE移动等因素导致通信链路被阻挡(Block)。针对上述问题,基于多个波束/波束赋型信号进行测量或传输的方案被提出来,在当前工作的波束/波束赋型信号被阻挡的时候,UE可以在备用的波束/波束赋型信号上与基站进行通信。
但是,不同的波束/波束赋型信号可能来自不同的发送接收节点(Transmit and Receive Point,TRP),由于UE和不同TRP之间的距离可能不同、且不同波束/波束赋型信号对应的传输信道上的信号衰落可能也不同等因素,导致UE在这些不同波束/波束赋型信号对应的传输路径上的信号能量损耗也可能不同。因此,如果UE在不同波束上发送数据时,可能需要采用不同的上行传输波形(Waveform),例如,UE在一个波束上需要采用根据离散傅里叶变换扩频的正交频分复用多址接入(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)技术确定的上行传输波形,UE在另一个波束上需要采用根据循环前缀-正交频分复用多址接入(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM)确定的上行传输波形。当前技术中,尚未提出针对上述情形的解决方案。
发明内容
本发明实施例提供一种数据传输的方法、用户设备与网络设备,使得用 户设备可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量。
第一方面,提供一种数据传输的方法,所述方法包括:用户设备UE在第一波束上采用第一上行传输波形向网络设备发送数据;所述UE接收所述网络设备发送的第一指示消息,所述第一指示消息用于指示至少一个波束对应的上行传输波形;所述UE在所述至少一个波束中的第二波束上采用第二上行传输波形向所述网络设备发送数据,所述第二上行传输波形为所述第一指示消息中指示的所述第二波束对应的上行传输波形。
结合第一方面,在第一方面的某些实现方式中,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
结合第一方面,在第一方面的某些实现方式中,所述第二波束对应的上行传输波形是所述网络设备根据所述第二波束对应的传输信道的信道质量信息或所述UE在小区中的位置信息确定的。
可选地,在某些实现方式中,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形相同。
结合第一方面,在第一方面的某些实现方式中,所述至少一个波束不包括所述第一波束,所述UE在所述至少一个波束中的第二波束上采用第二上行传输波形向所述网络设备发送数据,包括:在所述第一波束被阻挡的情况下,所述UE在所述第二波束上采用所述第二上行传输波形向所述网络设备发送数据。
结合第一方面,在第一方面的某些实现方式中,所述第一指示消息还用于指示所述至少一个波束为所述UE的备用波束。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述UE接收所述网络设备发送的第二指示消息,所述第二指示消息用于指示所述至少一个波束对应的上行传输波形,所述第二指示消息所指示的所述至少一个波束对应的上行传输波形与所述第一指示消息所指示的所述至少一个波束对应的上行传输波形不同;所述UE在所述至少一个波束中的第三波束上采用第三上行传输波形向所述网络设备发送数据,所述第三上行传输波形为所述第二指示消息中指示的所述第三波束对应的上行传输波形。
可选地,在某些实现方式中,所述第二指示消息是所述网络设备在所述 UE的位置发生变化的时候发送的。
结合第一方面,在第一方面的某些实现方式中,所述第一指示消息为高层信令或下行控制信息DCI。
结合第一方面,在第一方面的某些实现方式中,所述上行传输波形包括采用离散傅里叶变换扩频的正交频分复用多址接入DFT-S-OFDM技术调制的波形或采用循环前缀-正交频分复用多址接入CP-OFDM技术调制的波形。
第二方面,提供一种数据传输的方法,所述方法包括:网络设备接收用户设备UE在第一波束上采用第一上行传输波形发送的数据;所述网络设备确定至少一个波束对应的上行传输波形;所述网络设备向所述UE发送第一指示消息,所述第一指示消息用于指示所述至少一个波束对应的上行传输波形。
结合第二方面,在第二方面的某些实现方式中,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
可选地,在某些实现方式中,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形相同。
结合第二方面,在第二方面的某些实现方式中,所述网络设备确定至少一个波束对应的上行传输波形,包括:所述网络设备根据下列信息中的至少一种信息,确定所述至少一个波束中的每个波束的上行传输波形:所述每个波束对应的传输信道的信道质量信息,所述UE在小区中的位置信息。
结合第二方面,在第二方面的某些实现方式中,所述至少一个波束不包括所述第一波束,所述第一指示消息还用于指示所述UE将所述至少一个波束作为备用波束。
可选地,在某些实现方式中,所述第一指示消息也可以用于指示所述至少一个波束作为所述UE的活跃波束。具体地,活跃波束指的是用于UE当前时刻与所述网络设备进行通信的波束。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备重新确定所述至少一个波束对应的上行传输波形,所述重新确定的所述至少一个波束对应的上行传输波形与上一次确定的所述至少一个波束对应的上行传输波形不同;所述网络设备向所述UE发送第二指示消息,所 述第二指示消息用于指示所述重新确定的所述至少一个波束对应的上行传输波形。
可选地,作为一种实现方式,所述网络设备重新确定所述至少一个波束对应的上行传输波形,包括:
在所述UE的位置发生变化时,所述网络设备重新确定所述至少一个波束对应的上行传输波形。可选地,网络设备可以根据下列信息中的至少一种信息重新确定所述至少一个波束中的每个波束的上行传输波形:所述每个波束对应的发送接收节点TRP与所述UE之间的距离、所述每个波束对应的传输信道的信号衰落,所述UE在小区中的位置。
结合第二方面,在第二方面的某些实现方式中,所述第一指示消息为高层信令或下行控制信息DCI。
可选地,在某些实现方式中,所述第一指示消息为高层信令,所述第二指示消息为DCI。
结合第二方面,在第二方面的某些实现方式中,所述上行传输波形包括采用DFT-S-OFDM技术调制的波形或采用CP-OFDM技术调制的波形。
可选地,在上述某些实现方式中,所述DFT-S-OFDM技术也可以为单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)技术。
可选地,在上述某些实现方式中,所述高层信令例如为无线资源控制(Radio Resource Control,RRC)信令。
可选地,在上述各个实现方式中,所述波束也可称为波束赋型信号(Beamformed Signal)。
第三方面,提供一种用户设备,该用户设备用于执行第一方面或第一方面的任一种可能的实现方式中的方法。具体地,该用户设备可以包括用于执行第一方面或第一方面的任一种可能的实现方式中的方法的模块。
第四方面,提供一种网络设备,该网络设备用于执行第二方面或第二方面的任一种可能的实现方式中的方法。具体地,该网络设备可以包括用于执行第二方面或第二方面的任一种可能的实现方式中的方法的模块。
第五方面,提供一种用户设备,该用户设备包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一种可 能的实现方式中的方法。
第六方面,提供一种网络设备,该网络设备包括存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第七方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任一种可能的实现方式中的方法。
因此,在本发明实施例中,通过网络设备向用户设备发送指示消息,以告知用户设备在不同波束上采用对应的上行传输波形发送数据,使得用户设备可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的数据传输的方法的示意性流程图。
图2为本发明实施例提供的用户设备的示意性框图。
图3为本发明实施例提供的用户设备的另一示意性框图。
图4为本发明实施例提供的网络设备的示意性框图。
图5为本发明实施例提供的网络设备的另一示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的5G系统或新空口(New Radio Technology,NR)系统等。
本发明实施例的技术方案中涉及用户设备(User Equipment,UE)。用户设备还可以称之为终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。例如,该用户设备可以是移动电话(或称为“蜂窝”电话)、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端等,本发明实施例对此不作限定。用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式的点对点(Ad-Hoc)模式网络以及用户部署的子网络,用户设备还可以通过其他方式接入网络进行通信,本发明实施例对此不作限定。
本发明实施例的技术方案中还涉及网络设备。网络设备可以是用于与用户设备进行通信的网络侧设备。具体地,该网络设备可以是为小区内移动或固定的终端提供无线接入、通信服务的网络设备。例如,该网络设备可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。或者该网络设备还可以为中继站、接入点、车载设备、可穿戴设备。该网络设备还可以为未来5G网络或5G之后的网络中的网络侧设备、未来演进的PLMN网络中的网络侧设备, 或者NR网络中的网络侧设备等。
图1为本发明实施例提供的数据传输的方法100的示意性流程图,该方法100包括:
110,用户设备UE在第一波束上采用第一上行传输波形向网络设备发送数据。
该第一波束也可以称为该UE的活跃波束,活跃波束指的是UE当前与网络设备进行通信所采用的波束。
该第一上行传输波束可以是该UE设置的默认/备用(default/fallback)的上行传输波形。例如,该第一上行传输波束为采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。在未接收到系统的相关配置信息时,UE采用默认/备用的上行传输波形进行上行传输。
可选地,该默认/备用的上行传输波形可以是UE自行设定的;或该默认/备用的上行传输波形可以是协议规定的;或该默认/备用的上行传输波形可以是UE根据网络侧设备(例如该网络设备)的广播信息或系统信息设定的。
例如,上述DFT-S-OFDM技术也可以为单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)技术。
120,网络设备确定至少一个波束对应的上行传输波形。
具体地,在本实施例中,该至少一个波束为用于该UE与该网络设备进行通信的波束。
可选地,该至少一个波束可以为一个波束,或多个波束,或一个波束组,或多个波束组。波束组指的是多个波束的组合波束。该至少一个波束还可以为一个波束对应的一个赋型信号,或者多个波束对应的多个赋型信号,或者一个波束组对应的一个赋型信号组,或多个波束组对应的多个赋型信号组。应理解,上述的赋型信号指的是由对应的波束赋型后形成的赋型信号,赋型信号组指的是,由对应的波束组赋型后形成的赋型信号组。
可选地,在本实施例中,网络设备确定至少一个波束对应的上行传输波形,包括:网络设备根据下列信息中的至少一种信息,确定至少一个波束中的每个波束的上行传输波形:每个波束对应的传输信道的信道质量信息,该UE在小区中的位置信息。
具体地,某个波束对应的传输信道的信道质量信息例如为该某个波束对应的传输信道的信号衰落信息。
具体地,以该至少一个波束中的波束A为例,网络设备根据UE上报的测量信息,获取波束A对应的传输信道的信道质量信息,或者该UE在小区中的位置信息。或者,网络设备也根据经验信息,获取波束A对应的传输信道的信道质量信息,或者该UE在小区中的位置信息。
例如,假设该至少一个波束包括波束A与波束B,且波束A对应的TRP与该UE的距离远远小于波束B对应的TRP与该UE的距离,则波束A对应的上行传输波形不同于波束B对应的上行传输波形,例如,波束A对应上行传输波形为采用DFT-S-OFDM技术确定的波形,波束B对应上行传输波形为采用CP-OFDM技术确定的波形。
再例如,假设该至少一个波束包括波束C与波束D,且波束C对应的传输信道的信号衰落比波束B对应的传输信道的信号衰落严重,则波束C对应的上行传输波形不同于波束D对应的上行传输波形,例如,波束C对应上行传输波形为采用DFT-S-OFDM技术确定的波形,波束D对应上行传输波形为采用CP-OFDM技术确定的波形。
130,网络设备向UE发送第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形。
可选地,该第一指示消息可以为高层信令高层信令(High Level Signalling),具体地,例如,该第一指示消息可以为无线资源控制(Radio Resource Control,RRC)信令。
可选地,该第一指示消息也可以为下行控制信息(Downlink Control Information,DCI)。
140,UE在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,第二上行传输波形为第一指示消息中指示的第二波束对应的上行传输波形。
因此,在本发明实施例中,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
应理解,本发明实施例中的波束也可称为波束赋型信号(Beamformed Signal),下文均以波束为例进行说明。
可选地,作为一种实现方式,该至少一个波束可以包括该第一波束。
例如,当网络设备检测到第一波束对应的传输信道的信道质量发生变化,需要改变第一波束上的上行传输波形时,网络设备也可以下发指示消息,以告知该UE改变该第一波束上的上行传输波形。该UE接收到网络设备的指示消息后,继续在第一波束上与网络设备进行通信,只是改变上行传输波形。
可选地,作为一种实现方式,该至少一个波束可以不包括该第一波束,该至少一个波束可以作为该UE的备用波束或者活跃波束。
可选地,在一些实施例中,该至少一个波束可以不包括该第一波束,所述第一指示消息还用于指示所述至少一个波束作为所述UE的备用波束,140,UE在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,包括:在第一波束被阻挡的情况下,UE在第二波束上采用第二上行传输波形向网络设备发送数据。
例如,UE与网络设备正在一个波束(记为活跃波束)进行通信。同时,网络设备配置UE对其他M个波束进行测量,UE反馈N个波束的信道质量(N<=M),网络设备根据UE反馈以及其他因素综合考虑,或者网络设备根据对UE某些上行信号/信道的测量及其他因素综合考虑,或者网络设备根据UE反馈、网络对UE某些上行信号/信道的测量以及其他因素综合考虑,把L个波束(L<=N)作为备用波束,通知UE如果在某个波束(上述L个中的一个)进行传输时采用的上行传输波形。后续某个时刻,原先波束由于某个原因被阻挡了,此时UE根据某些准则在某个备用的波束上发起随机接入,UE上行传输波形就采用上述UE告知的波形。
可选地,在一些实施例中,该至少一个波束可以不包括该第一波束,所述第一指示消息还用于指示所述至少一个波束作为所述UE的活跃波束,140,UE在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,包括:该UE同时在该第一波束上采用第一上行传输波形向网络设备发送数据,并在该至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据。
例如,UE与网络设备正在一个波束(记为活跃波束1)进行通信(上行传输波束采用CP-OFDM)。同时,网络设备配置UE对其他M个波束进行测量,UE反馈N个波束的信道质量(N<=M),网络设备根据UE反馈以及其他因素综合考虑,把L个波束(L<=N)也作为活跃波束,让UE同时 在这些波速上也进行传输。假设L=1,把对应波束记为活跃波速2。由于UE需要同时在两个波束上进行上行传输,能量需要分配到不同的波束上,假设原先的活跃波束1上UE能量足够,仍然采用CP-OFDM的上行传输波束,而UE剩余的功率有限,网络设备认为UE在第二个激活波束2上采用DFT-S-OFDM的上行传输波形传输数据更为合适,则网络设备在配置该激活波束2时,通知UE采用DFT-S-OFDM作为上行传输波形。
为了便于理解与描述,上文结合图1所述的实施例中,以一个UE为例进行了描述。在实际应用中,网络设备可以与一个用户设备组(包括多个用户设备的集合),或者还可以与多个用户设备或者多个用户设备组进行通信,因此,网络设备为配置波束对应的上行传输波形时,可以是针对每个用户设备或每组用户设备独立配置该每个用户设备或该每组用户设备对应的至少一个波束的上行传输波形。相应地,网络设备下发用于指示至少一个波束对应的上行传输波形的指示消息(例如图1中所示的第一指示消息),也可以是针对每个用户设备或每组用户设备进行独立配置和指示的,即UE-specific。
可选地,本发明实施例中涉及的上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
可选地,在一些实施例中,该至少一个波束包括两个或两个以上的波束,120网络设备确定至少一个波束对应的上行传输波形,包括:网络设备针对该至少一个波束,配置的上行传输波形可以支持下列选项中的一种或多种或全部:
选项一,为不同波束对应的上行信道配置统一的上行传输波形。
例如,不同波束对应的上行信道包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)。下文以不同波束对应的上行信道包括PUSCH与PUCCH为例进行描述。
可选地,在本实施例中,为PUSCH与PUCCH配置相同的上行传输波形DFT-S-OFDM。
可选地,在本实施例中,为PUSCH与PUCCH配置相同的上行传输波形CP-OFDM。
选项二,为不同波束对应的上行信道(例如PUSCH和PUCCH),分别 配置其各自的上行传输波形。
可选地,在本实施例中,为PUSCH配置上行传输波形CP-OFDM,为PUCCH配置上行传输波形CP-OFDM。
可选地,在本实施例中,为PUSCH配置上行传输波形DFT-S-OFDM,为PUCCH配置上行传输波形DFT-S-OFDM。
可选地,在本实施例中,为PUSCH配置上行传输波形CP-OFDM,为PUCCH配置上行传输波形DFT-S-OFDM。
可选地,在本实施例中,为PUSCH配置上行传输波形DFT-S-OFDM,为PUCCH配置上行传输波形CP-OFDM。
选项三,为不同波束对应的上行信道或不同信道格式(format)的上行信道独立配置其各自的上行传输波形。例如,不同波束对应的上行信道包括PUSCH和PUCCH,其中,PUCCH根据不同的信道格式(format)又可以区分为不同的信道。
具体地,PUCCH根据其信道格式(format)类型分为2组,分别记为PUCCH_Group_1与PUCCH_GROUP_2,则网络设备可以为PUCCH_Group1与PUSCH分别独立配置上行传输波形,并指示其对应的上行传输波形采用DFT-S-OFDM或CP-OFDM,其中,为PUCCH_Group2配置的上行传输波形与为PUSCH配置的上行传输波形保持一致。
具体地,PUCCH根据其信道格式(format)类型分为N组,分别记为PUCCH_Group_1,…,PUCCH_GROUP_N,则网络设备可以为PUCCH_Group1,…,PUCCH_Group N以及PUSCH分别独立配置上行传输波形,并指示其对应的上行传输波形采用DFT-S-OFDM或CP-OFDM。
可选地,在一些实施例中,当某个或某些信道格式的信道的上行传输波形被配置为某种上行传输波形时(例如SC-FDMA),则其他信道的也只能被配置为某种波形。
具体地,例如,PUSCH被配置采用DFT-S-OFDM作为上行传输波形时,PUCCH或PUCCH组(对应上文的PUCCH_Group_i(i为1,…,N)只能被配置为采用DFT-S-OFDM作为上行传输波形。
应理解,当PUSCH被配置为采用CP-OFDM作为上行传输波形时,PUCCH或PUCCH组可以被配置为选择DFT-S-OFDM或CP-OFDM作为上行传输波形。
可选地,在一些实施例中,方法100还包括:网络设备重新确定该至少一个波束对应的上行传输波形,重新确定的该至少一个波束对应的上行传输波形与上一次(步骤120)确定的该至少一个波束对应的上行传输波形不同;网络设备向UE发送第二指示消息,第二指示消息用于指示重新确定的至少一个波束对应的上行传输波形;UE在该至少一个波束中的第三波束上采用第三上行传输波形向网络设备发送数据,第三上行传输波形为第二指示消息中指示的第三波束对应的上行传输波形。
可选地,在本实施例中,网络设备重新确定至少一个波束对应的上行传输波形,包括:在UE的位置发生变化时,网络设备重新确定至少一个波束对应的上行传输波形。可选地,网络设备可以根据下列信息中的至少一种信息重新确定至少一个波束中的每个波束的上行传输波形:每个波束对应的发送接收节点TRP与UE之间的距离、每个波束对应的传输信道的信号衰落,UE在网络设备的覆盖小区中的位置。
具体地,第二指示消息可以为DCI。该第二指示消息对不同用户设备或不同组用户设备可以独立配置,并独立通知。
在本实施例中,第一指示消息所指示的该至少一个波束的上行传输波形的配置信息被该第二指示消息(例如DCI)所指示的配置信息重置。
例如,网络设备初始通过高层信令来指示某个用户设备或者某组用户设备对应的某个波束/波束组采用某种上行传输波形,而最新通过DCI信令指示这一用户设备或这组用户设备其对应的此波束/波束组采用另一种上行传输波形,则被指示的用户设备或某组用户设备采用DCI最新指示的上行传输波形。
可选地,在本实施例中,网络设备针对该至少一个波束,重新配置的上行传输波形可以支持上述选项一至选项三中的任一种或多种或全部。
可选地,在一些实施例中,第一指示消息也可以为下行控制信息DCI。
综上所述,本发明实施例提供的技术方案,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
上文中结合图1描述了本发明实施例提供的数据传输的方法,下面将结合图2-图5,描述本发明实施例提供的用户设备与网络设备。
图2示出了根据本发明实施例的用户设备200的示意性框图,该用户设备200包括:
发送模块210,用于在第一波束上采用第一上行传输波形向网络设备发送数据;
接收模块220,用于接收网络设备发送的第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形;
发送模块210还用于,在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,第二上行传输波形为第一指示消息中指示的第二波束对应的上行传输波形。
在本发明实施例中,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
可选地,作为一个实施例,该至少一个波束包括两个或两个以上的波束,至少一个波束中的不同波束对应的上行传输波形不完全相同。
可选地,作为一个实施例,该第二波束对应的上行传输波形是网络设备根据第二波束对应的传输信道的信道质量信息或该UE在小区中的位置信息确定的。
可选地,作为一个实施例,该至少一个波束不包括第一波束,发送模块用于,在第一波束被阻挡的情况下,在第二波束上采用第二上行传输波形向网络设备发送数据。
可选地,作为一个实施例,该第一指示消息还用于指示至少一个波束为UE的备用波束。
可选地,作为一个实施例,该接收模块220还用于,接收网络设备发送的第二指示消息,第二指示消息用于指示至少一个波束对应的上行传输波形,第二指示消息所指示的至少一个波束对应的上行传输波形与第一指示消息所指示的至少一个波束对应的上行传输波形不同;发送模块还用于,在至少一个波束中的第三波束上采用第三上行传输波形向网络设备发送数据,第三上行传输波形为第二指示消息中指示的第三波束对应的上行传输波形。
可选地,作为一个实施例,该第一指示消息为高层信令或下行控制信息DCI。
可选地,作为一个实施例,该上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
具体地,本发明实施例中的发送模块210可以由发送器或发送器相关电路来实现,接收模块220可以由接收器或接收器相关电路来实现。
如图3所示,本发明实施例还提供了一种用户设备300,该用户设备300包括处理器310、存储器320、总线系统330、接收器340和发送器350。其中,处理器310、存储器320、接收器340和发送器350通过总线系统330相连,该存储器320用于存储指令,该处理器310用于执行该存储器320存储的指令,以控制接收器340接收信号,并控制发送器350发送信号。其中,发送器350用于,在第一波束上采用第一上行传输波形向网络设备发送数据;接收器340用于,接收网络设备发送的第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形;发送器350用于,在至少一个波束中的第二波束上采用第二上行传输波形向网络设备发送数据,第二上行传输波形为第一指示消息中指示的第二波束对应的上行传输波形。
在本发明实施例中,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
可选地,作为一个实施例,该至少一个波束包括两个或两个以上的波束,至少一个波束中的不同波束对应的上行传输波形不完全相同。
可选地,作为一个实施例,该第二波束对应的上行传输波形是网络设备根据该第二波束对应的传输信道的信道质量信息或该UE在小区中的位置信息确定的。
可选地,作为一个实施例,该至少一个波束不包括第一波束,发送器350具体用于,在第一波束被阻挡的情况下,在第二波束上采用第二上行传输波形向网络设备发送数据。
可选地,作为一个实施例,该第一指示消息还用于指示至少一个波束为UE的备用波束。
可选地,作为一个实施例,该接收器340还用于,接收网络设备发送的第二指示消息,第二指示消息用于指示至少一个波束对应的上行传输波形,第二指示消息所指示的至少一个波束对应的上行传输波形与第一指示消息 所指示的至少一个波束对应的上行传输波形不同;发送器350还用于,在至少一个波束中的第三波束上采用第三上行传输波形向网络设备发送数据,第三上行传输波形为第二指示消息中指示的第三波束对应的上行传输波形。
可选地,作为一个实施例,该第一指示消息为高层信令或下行控制信息DCI。
可选地,作为一个实施例,该上行传输波形包括采用离散傅里叶变换扩频的正交频分复用多址接入DFT-S-OFDM技术确定的波形或采用循环前缀-正交频分复用多址接入CP-OFDM技术确定的波形。
应理解,图2所示的用户设备200或图3所示的用户设备300可用于执行上述方法实施例中与用户设备相关的操作或流程,并且用户设备200或用户设备300中的各个模块的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
图4示出了根据本发明实施例的网络设备400的示意性框图,该网络设备400包括:
接收模块410,用于接收用户设备UE在第一波束上采用第一上行传输波形发送的数据;
确定模块420,用于确定至少一个波束对应的上行传输波形;
发送模块430,用于向UE发送第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形。
在本发明实施例中,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
可选地,作为一个实施例,该至少一个波束包括两个或两个以上的波束,至少一个波束中的不同波束对应的上行传输波形不完全相同。
可选地,作为一个实施例,该确定模块420用于,根据下列信息中的至少一种信息,确定该至少一个波束中的每个波束的上行传输波形:该每个波束对应的传输信道的信道质量信息,该UE在小区中的位置信息。
可选地,作为一个实施例,该至少一个波束不包括第一波束,第一指示消息还用于指示UE将至少一个波束作为备用波束。
可选地,作为一个实施例,该确定模块420还用于,重新确定至少一个 波束对应的上行传输波形,重新确定的至少一个波束对应的上行传输波形与上一次确定的至少一个波束对应的上行传输波形不同;发送模块430还用于,向UE发送第二指示消息,第二指示消息用于指示重新确定的至少一个波束对应的上行传输波形。
可选地,作为一个实施例,该第一指示消息为高层信令或下行控制信息DCI。
可选地,作为一个实施例,该上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
具体地,本发明实施例中的确定模块420可以由处理器或处理器相关电路来实现。接收模块410可以由接收器或接收器相关电路来实现。发送模块430可以由发送器或发送器相关电路来实现。
如图5所示,本发明实施例还提供了一种网络设备500,该网络设备500包括:处理器510、存储器520、总线系统530、接收器540和发送器550。其中,处理器510、存储器520、接收器540和发送器550通过总线系统530相连,该存储器520用于存储指令,该处理器510用于执行该存储器520存储的指令,以控制接收器540接收信号,并控制发送器550发送信号。其中,接收器540用于,接收用户设备UE在第一波束上采用第一上行传输波形发送的数据;处理器510用于,确定至少一个波束对应的上行传输波形;发送器530用于,向UE发送第一指示消息,第一指示消息用于指示至少一个波束对应的上行传输波形。
在本发明实施例中,通过网络设备向UE发送指示消息,以告知UE在不同波束上采用对应的上行传输波形发送数据,使得UE可以通过较为合适的上行传输波形在不同波束上传输数据,从而可以获得较好的上行覆盖范围和上行传输质量,提供上行传输的性能。
可选地,作为一个实施例,该至少一个波束包括两个或两个以上的波束,至少一个波束中的不同波束对应的上行传输波形不完全相同。
可选地,作为一个实施例,该处理器510具体用于,根据下列信息中的至少一种信息,确定该至少一个波束中的每个波束的上行传输波形:该每个波束对应的传输信道的信道质量信息,该UE在小区中的位置信息。
可选地,作为一个实施例,该至少一个波束不包括第一波束,第一指示消息还用于指示UE将至少一个波束作为备用波束。
可选地,作为一个实施例,该处理器510还用于,重新确定至少一个波束对应的上行传输波形,重新确定的至少一个波束对应的上行传输波形与上一次确定的至少一个波束对应的上行传输波形不同;发送器530还用于,向UE发送第二指示消息,第二指示消息用于指示重新确定的至少一个波束对应的上行传输波形。
可选地,作为一个实施例,该第一指示消息为高层信令或下行控制信息DCI。
可选地,作为一个实施例,该上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
应理解,图4所示的网络设备400或图5所示的网络设备500可用于执行上述方法实施例中与网络设备相关的操作或流程,并且网络设备400或网络设备500中的各个模块的操作和/或功能分别为了实现上述方法实施例中的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存 总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
还应理解,在本发明实施例中,总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图3与图5中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,在本发明实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
应该理解,在本申请所提供的几个实施例中,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个模块,或一些特征可以忽略,或不执行。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方, 或者也可以分布到多个网络单元上。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
以上所述,仅为本发明实施例的具体实施方式,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种数据传输的方法,其特征在于,包括:
    用户设备UE在第一波束上采用第一上行传输波形向网络设备发送数据;
    所述UE接收所述网络设备发送的第一指示消息,所述第一指示消息用于指示至少一个波束对应的上行传输波形;
    所述UE在所述至少一个波束中的第二波束上采用第二上行传输波形向所述网络设备发送数据,所述第二上行传输波形为所述第一指示消息中指示的所述第二波束对应的上行传输波形。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二波束对应的上行传输波形是所述网络设备根据所述第二波束对应的传输信道的信道质量信息或所述UE在小区中的位置信息确定的。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述至少一个波束不包括所述第一波束,所述UE在所述至少一个波束中的第二波束上采用第二上行传输波形向所述网络设备发送数据,包括:
    在所述第一波束被阻挡的情况下,所述UE在所述第二波束上采用所述第二上行传输波形向所述网络设备发送数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第一指示消息还用于指示所述至少一个波束为所述UE的备用波束。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述网络设备发送的第二指示消息,所述第二指示消息用于指示所述至少一个波束对应的上行传输波形,所述第二指示消息所指示的所述至少一个波束对应的上行传输波形与所述第一指示消息所指示的所述至少一个波束对应的上行传输波形不同;
    所述UE在所述至少一个波束中的第三波束上采用第三上行传输波形向所述网络设备发送数据,所述第三上行传输波形为所述第二指示消息中指示的所述第三波束对应的上行传输波形。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一指示消息为高层信令或下行控制信息DCI。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述上行传输波形包括采用离散傅里叶变换扩频的正交频分复用多址接入DFT-S-OFDM技术确定的波形或采用循环前缀-正交频分复用多址接入CP-OFDM技术确定的波形。
  9. 一种数据传输的方法,其特征在于,包括:
    网络设备接收用户设备UE在第一波束上采用第一上行传输波形发送的数据;
    所述网络设备确定至少一个波束对应的上行传输波形;
    所述网络设备向所述UE发送第一指示消息,所述第一指示消息用于指示所述至少一个波束对应的上行传输波形。
  10. 根据权利要求9所述的方法,其特征在于,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
  11. 根据权利要求9或10所述的方法,其特征在于,所述网络设备确定至少一个波束对应的上行传输波形,包括:
    所述网络设备根据下列信息中的至少一种信息,确定所述至少一个波束中的每个波束的上行传输波形:所述每个波束对应的传输信道的信道质量信息,所述UE在小区中的位置信息。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述至少一个波束不包括所述第一波束,所述第一指示消息还用于指示所述UE将所述至少一个波束作为备用波束。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备重新确定所述至少一个波束对应的上行传输波形,所述重新确定的所述至少一个波束对应的上行传输波形与上一次确定的所述至少一个波束对应的上行传输波形不同;
    所述网络设备向所述UE发送第二指示消息,所述第二指示消息用于指示所述重新确定的所述至少一个波束对应的上行传输波形。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,所述第一 指示消息为高层信令或下行控制信息DCI。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,所述上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
  16. 一种用户设备UE,其特征在于,包括:
    发送模块,用于在第一波束上采用第一上行传输波形向网络设备发送数据;
    接收模块,用于接收所述网络设备发送的第一指示消息,所述第一指示消息用于指示至少一个波束对应的上行传输波形;
    所述发送模块还用于,在所述至少一个波束中的第二波束上采用第二上行传输波形向所述网络设备发送数据,所述第二上行传输波形为所述第一指示消息中指示的所述第二波束对应的上行传输波形。
  17. 根据权利要求16所述的用户设备,其特征在于,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
  18. 根据权利要求16或17所述的用户设备,其特征在于,所述第二波束对应的上行传输波形是所述网络设备根据所述第二波束对应的传输信道的信道质量信息或所述UE在小区中的位置信息确定的。
  19. 根据权利要求16-18中任一项所述的用户设备,其特征在于,所述至少一个波束不包括所述第一波束,所述发送模块用于,在所述第一波束被阻挡的情况下,在所述第二波束上采用所述第二上行传输波形向所述网络设备发送数据。
  20. 根据权利要求19所述的用户设备,其特征在于,所述第一指示消息还用于指示所述至少一个波束为所述UE的备用波束。
  21. 根据权利要求16-20中任一项所述的用户设备,其特征在于,所述接收模块还用于,接收所述网络设备发送的第二指示消息,所述第二指示消息用于指示所述至少一个波束对应的上行传输波形,所述第二指示消息所指示的所述至少一个波束对应的上行传输波形与所述第一指示消息所指示的所述至少一个波束对应的上行传输波形不同;
    所述发送模块还用于,在所述至少一个波束中的第三波束上采用第三上行传输波形向所述网络设备发送数据,所述第三上行传输波形为所述第二指 示消息中指示的所述第三波束对应的上行传输波形。
  22. 根据权利要求19-21中任一项所述的用户设备,其特征在于,所述第一指示消息为高层信令或下行控制信息DCI。
  23. 根据权利要求19-22中任一项所述的用户设备,其特征在于,所述上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
  24. 一种网络设备,其特征在于,包括:
    接收模块,用于接收用户设备UE在第一波束上采用第一上行传输波形发送的数据;
    确定模块,用于确定至少一个波束对应的上行传输波形;
    发送模块,用于向所述UE发送第一指示消息,所述第一指示消息用于指示所述至少一个波束对应的上行传输波形。
  25. 根据权利要求24所述的网络设备,其特征在于,所述至少一个波束包括两个或两个以上的波束,所述至少一个波束中的不同波束对应的上行传输波形不完全相同。
  26. 根据权利要求24或25所述的网络设备,其特征在于,所述确定模块用于,根据下列信息中的至少一种信息,确定所述至少一个波束中的每个波束的上行传输波形:所述每个波束对应的传输信道的信道质量信息,所述UE在小区中的位置信息。
  27. 根据权利要求24-26中任一项所述的网络设备,其特征在于,所述至少一个波束不包括所述第一波束,所述第一指示消息还用于指示所述UE将所述至少一个波束作为备用波束。
  28. 根据权利要求24-27中任一项所述的网络设备,其特征在于,所述确定模块还用于,重新确定所述至少一个波束对应的上行传输波形,所述重新确定的所述至少一个波束对应的上行传输波形与上一次确定的所述至少一个波束对应的上行传输波形不同;
    所述发送模块还用于,向所述UE发送第二指示消息,所述第二指示消息用于指示所述重新确定的所述至少一个波束对应的上行传输波形。
  29. 根据权利要求24-28中任一项所述的网络设备,其特征在于,所述第一指示消息为高层信令或下行控制信息DCI。
  30. 根据权利要求24-29中任一项所述的网络设备,其特征在于,所述 上行传输波形包括采用DFT-S-OFDM技术确定的波形或采用CP-OFDM技术确定的波形。
PCT/CN2016/104475 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备 WO2018081990A1 (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CA3041935A CA3041935C (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
RU2019114741A RU2715739C1 (ru) 2016-11-03 2016-11-03 Способ передачи данных, абонентское оборудование и сетевое устройство
MX2019004848A MX2019004848A (es) 2016-11-03 2016-11-03 Procedimiento de transmisión de datos, equipo de usuario y dispositivo de red.
CN202011464156.7A CN112600602A (zh) 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备及计算机可读介质
US16/345,430 US11265059B2 (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
CN201680090604.7A CN109923795B (zh) 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备及计算机可读介质
JP2019523031A JP2020504474A (ja) 2016-11-03 2016-11-03 データ伝送の方法、ユーザ装置及びネットワークデバイス
EP16920858.4A EP3518433B1 (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
AU2016428423A AU2016428423B2 (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
ES16920858T ES2911032T3 (es) 2016-11-03 2016-11-03 Método de transmisión de datos, equipo de usuario y dispositivo de red
PCT/CN2016/104475 WO2018081990A1 (zh) 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备
EP22152057.0A EP4002715B1 (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
BR112019008736-2A BR112019008736B1 (pt) 2016-11-03 2016-11-03 Método de transmissão de dados, equipamento de usuário e dispositivo de rede
MYPI2019002420A MY193582A (en) 2016-11-03 2016-11-03 Data transmission method, user equipment and network device
KR1020197013208A KR20190080882A (ko) 2016-11-03 2016-11-03 데이터 전송 방법, 사용자 장치와 네트워크 장치
TW106137480A TWI791001B (zh) 2016-11-03 2017-10-30 資料傳輸的方法、使用者設備與網路設備
PH12019500958A PH12019500958A1 (en) 2016-11-03 2019-04-29 Data transmission method, user equipment and network device
IL266327A IL266327A (en) 2016-11-03 2019-04-29 Data transmission method, user equipment and network device
ZA2019/03465A ZA201903465B (en) 2016-11-03 2019-05-31 Data transmission method, user equipment and network device
JP2021203307A JP7220768B2 (ja) 2016-11-03 2021-12-15 データ伝送の方法、ユーザ装置及びネットワークデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104475 WO2018081990A1 (zh) 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备

Publications (1)

Publication Number Publication Date
WO2018081990A1 true WO2018081990A1 (zh) 2018-05-11

Family

ID=62075486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104475 WO2018081990A1 (zh) 2016-11-03 2016-11-03 数据传输的方法、用户设备与网络设备

Country Status (17)

Country Link
US (1) US11265059B2 (zh)
EP (2) EP4002715B1 (zh)
JP (1) JP2020504474A (zh)
KR (1) KR20190080882A (zh)
CN (2) CN112600602A (zh)
AU (1) AU2016428423B2 (zh)
BR (1) BR112019008736B1 (zh)
CA (1) CA3041935C (zh)
ES (1) ES2911032T3 (zh)
IL (1) IL266327A (zh)
MX (1) MX2019004848A (zh)
MY (1) MY193582A (zh)
PH (1) PH12019500958A1 (zh)
RU (1) RU2715739C1 (zh)
TW (1) TWI791001B (zh)
WO (1) WO2018081990A1 (zh)
ZA (1) ZA201903465B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200007375A1 (en) * 2017-01-06 2020-01-02 Yu Zhang Transmitting sounding reference signals in new radio

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023709B (zh) * 2016-11-04 2022-03-15 夏普株式会社 上行发送波形的配置方法、基站和用户设备
JPWO2018117207A1 (ja) * 2016-12-21 2019-10-31 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN112714470B (zh) * 2017-01-04 2022-09-02 华为技术有限公司 一种通信方法及其终端设备、网络设备
KR102409785B1 (ko) * 2017-03-23 2022-06-16 삼성전자주식회사 무선 통신 시스템에서 초기 접속을 수행하기 위한 장치 및 방법
WO2019182341A1 (ko) * 2018-03-20 2019-09-26 엘지전자 주식회사 사이드링크를 지원하는 무선 통신 시스템에서 송신 빔을 결정하는 방법 및 이를 위한 단말
US11133970B2 (en) * 2018-09-27 2021-09-28 Qualcomm Incorporated Techniques for supporting multiple waveforms in wireless communications
US11171750B2 (en) * 2019-08-02 2021-11-09 Qualcomm Incorporated Per beam waveform selection
US11088748B2 (en) * 2019-08-30 2021-08-10 Samsung Electronics Co., Ltd. Multi-band beam codebook design and operations
US11916725B2 (en) * 2020-02-07 2024-02-27 Qualcomm Incorporated Determining a duration of a resetting time period after uplink beam failure
US11005696B1 (en) * 2020-05-01 2021-05-11 Huawei Technologies Co., Ltd. Modulation scheme in a wireless communication system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036669B2 (en) * 2006-04-20 2011-10-11 Qualcomm Incorporated Orthogonal resource reuse with SDMA beams
US8913672B2 (en) 2008-09-12 2014-12-16 Qualcomm Incorporated Efficiently identifying system waveform in uplink transmission
AR073833A1 (es) 2008-10-20 2010-12-01 Interdigital Patent Holdings Metodos para el control ascendente de transmision de informacion para agregar ona portadora
US8718168B2 (en) * 2010-01-20 2014-05-06 Electronics And Telecommunications Research Institute Method of transmitting uplink DM-RS multiplexed with data in uplink MIMO transmission
US8780878B2 (en) * 2011-03-22 2014-07-15 Innovative Sonic Corporation Method and apparatus to improve aperiodic SRS (sounding reference symbol) in a wireless communication system
KR101820731B1 (ko) * 2011-08-25 2018-01-22 삼성전자주식회사 다수의 직교 주파수 분할 다중 파라미터 셋을 지원하는 무선통신 시스템에서 통신 방법 및 장치
US9591645B2 (en) * 2012-02-17 2017-03-07 Samsung Electronics Co., Ltd. Method and apparatus for operating control channels for beamforming-based wireless communication
JP6294468B2 (ja) 2013-05-07 2018-03-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける3次元ビームフォーミングのためのチャネル状態情報報告方法及びそのための装置
KR20150025630A (ko) * 2013-08-29 2015-03-11 한국전자통신연구원 Lte기반 통신시스템에서 빔 형성 방법 및 자원 할당 방법
US10477546B2 (en) * 2013-09-10 2019-11-12 Lg Electronics Inc. Method and apparatus for communication for terminal in wireless communication system
CN104734763A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种指示和接收上行波束索引的方法、系统及装置
US9692494B2 (en) * 2014-08-12 2017-06-27 Qualcomm Incorporated Dynamic switching between wireless multiple access schemes
WO2016095637A1 (zh) * 2014-12-15 2016-06-23 华为技术有限公司 基于盲区中实现高频通信的处理方法、装置和设备
CN107306452B (zh) 2016-04-22 2021-06-01 华为技术有限公司 数据传输的方法、用户设备及网络设备
JP6718523B2 (ja) * 2016-08-11 2020-07-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置及び通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IDAHO NATIONAL LABORATORY: "Optimized PAPR/CM SC-CPS Waveform and Further Results", 3GPP TSG-RAN WG1 #86BIS, R1-1608709, 3 October 2016 (2016-10-03), XP051158314, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/> *
QUALCOMM INCORPORATED: "Phase 1 Waveform Proposal: CP-OFDM Plus DFT-S-OFDM", 3GPP TSG-RAN WG1 #86, R1-1610111, 1 October 2016 (2016-10-01), XP051159915, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/> *
See also references of EP3518433A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200007375A1 (en) * 2017-01-06 2020-01-02 Yu Zhang Transmitting sounding reference signals in new radio
US11483107B2 (en) * 2017-01-06 2022-10-25 Qualcomm Incorporated Transmitting sounding reference signals in new radio

Also Published As

Publication number Publication date
US20190253122A1 (en) 2019-08-15
AU2016428423B2 (en) 2022-01-27
CN109923795A (zh) 2019-06-21
BR112019008736B1 (pt) 2023-12-19
EP3518433A1 (en) 2019-07-31
MY193582A (en) 2022-10-19
EP3518433A4 (en) 2019-10-30
RU2715739C1 (ru) 2020-03-03
PH12019500958A1 (en) 2019-12-02
TW201818755A (zh) 2018-05-16
JP2020504474A (ja) 2020-02-06
KR20190080882A (ko) 2019-07-08
ES2911032T3 (es) 2022-05-17
TWI791001B (zh) 2023-02-01
CA3041935A1 (en) 2018-05-11
CN112600602A (zh) 2021-04-02
BR112019008736A2 (pt) 2019-07-09
EP4002715A1 (en) 2022-05-25
AU2016428423A1 (en) 2019-05-23
ZA201903465B (en) 2022-06-29
US11265059B2 (en) 2022-03-01
MX2019004848A (es) 2019-06-20
EP4002715B1 (en) 2023-07-12
CN109923795B (zh) 2020-12-25
EP3518433B1 (en) 2022-03-02
IL266327A (en) 2019-06-30
CA3041935C (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2018081990A1 (zh) 数据传输的方法、用户设备与网络设备
WO2019140666A1 (zh) 探测参考信号传输方法、网络设备和终端设备
US11310814B2 (en) Wireless communication method, network device, and terminal device
JP7102421B2 (ja) 情報受信方法、装置及びコンピュータ可読媒体
WO2019006702A1 (zh) 无线通信方法和设备
TWI762716B (zh) 無線通訊方法、網路設備和終端設備
TWI759407B (zh) 傳輸上行訊號的方法和設備
JP7220768B2 (ja) データ伝送の方法、ユーザ装置及びネットワークデバイス
EP3606135B1 (en) Method and device for determining detection range of control channel in multi-beam system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3041935

Country of ref document: CA

Ref document number: 2019523031

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 266327

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008736

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197013208

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016920858

Country of ref document: EP

Effective date: 20190426

ENP Entry into the national phase

Ref document number: 2016428423

Country of ref document: AU

Date of ref document: 20161103

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019008736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190429