WO2018079370A1 - Method for using recompressed vapor and plant - Google Patents

Method for using recompressed vapor and plant Download PDF

Info

Publication number
WO2018079370A1
WO2018079370A1 PCT/JP2017/037672 JP2017037672W WO2018079370A1 WO 2018079370 A1 WO2018079370 A1 WO 2018079370A1 JP 2017037672 W JP2017037672 W JP 2017037672W WO 2018079370 A1 WO2018079370 A1 WO 2018079370A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensate
unit
steam
gas
hold
Prior art date
Application number
PCT/JP2017/037672
Other languages
French (fr)
Japanese (ja)
Inventor
充宏 河野
木村 聡
和久 当房
和史 竹田
鈴木 要
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to MYPI2019001496A priority Critical patent/MY195815A/en
Priority to CN201780067146.XA priority patent/CN109890476B/en
Priority to JP2018547597A priority patent/JP7032319B2/en
Publication of WO2018079370A1 publication Critical patent/WO2018079370A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators

Definitions

  • the present invention relates to a method of efficiently using recompressed steam obtained by adiabatically compressing this steam as a heat source in a process involving generation of steam, and a plant using this method.
  • VRC vapor recompression
  • Patent Document 1 in International Publication No. 2015/033935 (Patent Document 1), in the VRC method, by providing a circulation step for returning a gas component such as uncondensed recompressed steam existing downstream of the compressor to the main step.
  • a method of using process steam while preventing damage to equipment such as a compressor is disclosed. In this method, it is described that the process steam can be used safely and easily because the stagnation of the gas component downstream of the compressor can be suppressed by the circulation step.
  • an object of the present invention is to provide a method of efficiently using process steam (recompressed steam) heated by adiabatic compression as a heat source, and a plant using this method.
  • Another object of the present invention is to provide a method capable of stably (or smoothly) operating a plant equipped with a VRC system using recompressed steam, and the plant.
  • Still another object of the present invention is to provide a method for using recompressed steam having excellent process design flexibility and a plant using the method.
  • Another object of the present invention is to provide a method capable of operating other heat source utilization processes in parallel even if many process steams are used in the VRC method, and a plant using this method.
  • the present inventors have generated a process steam containing a condensable gas component, and a main process for recovering the condensable gas component of the generated process steam as a condensate, A recompression process in which at least a part of the process steam is adiabatically compressed by a compressor to raise the temperature to obtain recompressed steam, a heat exchange process using the recompressed steam as a heat source, and a recombination provided for the heat exchange process.
  • the condensate condensed in the heat exchange process is retained without forcibly cooling or quenching.
  • maintaining the pressure in the back pressure space downstream of the compressor or suppressing (or preventing) the decrease in back pressure
  • the method of using the recompressed steam of the present invention generates a process steam containing a condensable gas component, and collects the condensable gas component of the generated process steam as a condensate, and at least the process steam.
  • the heat exchanging process using the recompressed steam as a heat source, and the recompressed steam used in the heat exchanging process A method of using recompressed steam including a circulation step for returning non-condensed non-condensed components to the main step, the condensate condensed in the heat exchange step being retained, and the back pressure space downstream of the compressor At least a holding step for holding the pressure.
  • the condensate may be retained in the hold step without being forcibly cooled on the upstream side of the hold step. Further, in the processes after the heat exchange process, the generated condensate may be kept warm or heated, and the temperature of the condensate retained in the hold process is the outlet of the heat exchange process (or the heat exchange unit outlet side).
  • the temperature T may be about (T-50) ° C. to (T + 20) ° C.
  • the condensate may be retained for about 0.5 minutes to 10 hours by adjusting the outflow amount.
  • the condensed liquid and the non-condensed component may be gas-liquid separated.
  • the method of the present invention may further include a cooling step for cooling the condensate flowing out from the hold step.
  • the method of the present invention also includes a gas introduction step for introducing a non-condensable gas into the back pressure space downstream of the compressor, and a deaeration for degassing the dissolved non-condensable gas from the condensate discharged in the hold step. And an air step.
  • the method of the present invention may include a flashing step in which the condensate discharged in the holding step is flash-evaporated and separated into a volatile component and a non-volatile component. At least a part of the volatile components separated in the flash step may be used as a heat source for another process.
  • the present invention also includes a steam generator for generating process steam containing a condensable gas component, a main unit having a condenser for cooling and condensing a part of the generated process steam, and the remainder of the process steam.
  • a steam generator for generating process steam containing a condensable gas component
  • a main unit having a condenser for cooling and condensing a part of the generated process steam, and the remainder of the process steam.
  • the heat recompression unit for using the recompressed steam as a heat source
  • the recompressed steam provided to the heat exchange unit.
  • a recompressed steam utilization plant comprising a circulation line for returning non-condensed non-condensed components to the main unit, the condensate condensed in the heat exchange unit being retained and downstream of the steam recompressing unit
  • a recompressed steam utilization plant having at least a holding unit for holding the pressure in the back pressure space is also included.
  • the plant may include a hold tank that retains the condensate without being provided with a cooling unit for forcibly cooling the condensate upstream of the hold unit. At least a part of the unit and line forming the back pressure space downstream of the vapor recompression unit may be kept warm or heated, and the temperature of the condensate in which the hold unit stays is the temperature at the outlet side of the heat exchange unit. The temperature may be maintained at about (T-50) ° C. to (T + 20) ° C. with respect to T.
  • the hold unit may have a flow rate control device for adjusting the outflow amount of the condensate and retaining the condensate for about 0.5 minutes to 10 hours.
  • the hold unit has a gas-liquid separation function, and holds the condensate from the hold tank among the hold tank, the gas phase in the hold tank, and the back pressure space downstream of the vapor recompression unit. May also have an air ring line for connecting the gas phase space on the upstream side.
  • the hold unit includes a hold tank for retaining the condensate, a gas-liquid separator disposed upstream of the hold tank, and a gas component separated by the gas-liquid separator.
  • An air ring line for returning to the gas phase space upstream of the gas-liquid separator in the back pressure space downstream of the unit may be provided.
  • the plant of the present invention may further include a cooling unit for cooling the condensate flowing out of the hold unit.
  • the plant of the present invention also removes the non-condensable gas dissolved in the condensate flowing out from the gas introduction unit for introducing the non-condensable gas into the back pressure space downstream of the vapor recompression unit and the hold unit. And a deaeration unit for taking care of.
  • the plant of this invention may be equipped with the flash unit which flash-evaporates the condensate which flows out from a hold unit, and isolate
  • the plant may include a line for using at least a part of the volatile components separated by the flash unit as a heat source for another process.
  • process steam means steam generated in a manufacturing process (step) in which a unit operation involving a gas-liquid phase change is incorporated.
  • Recompressed steam means process steam that has been compressed and heated to be used as a heat source in the steam recompression system (VRC system).
  • Back pressure space means all spaces and lines (including air ring lines) that reach (or transmit) the discharge pressure of the compressor in the VRC system (VRC process).
  • Non-condensable gas means a gas capable of maintaining a gaseous state under temperature and pressure in a back pressure space downstream of the compressor.
  • Non-condensable component is used to mean both non-condensable gas components and non-condensable gas components among the condensable gas components in the VRC method (VRC process).
  • Volatile component means a gas (or volatile) component evaporated by flash evaporation of condensate in the flash process, and “nonvolatile component” does not evaporate by flash evaporation of condensate in the flash process. Liquid (or low volatility) component.
  • the condensate condensed in the heat exchange step is retained, and the pressure in the back pressure space downstream of the compressor is maintained (or the pressure drop is suppressed). Therefore, process steam (recompressed steam) is used as an efficient heat source.
  • the plant equipped with the VRC system can be operated stably (or smoothly).
  • the stability (or smoothness) of plant operation provided with the VRC system and the flexibility of process design can be further improved.
  • emitted from a VRC process can be utilized for another heat-source utilization process. Therefore, even if many process steams are used in the VRC system, other heat source utilization processes can be operated smoothly and safely in parallel, and the process design flexibility and energy saving effect can be further improved.
  • FIG. 1 is a process flow diagram for explaining an example of a utilization method and plant (apparatus) of recompressed steam according to the present invention.
  • FIG. 2 is a process flow diagram for explaining another example of the utilization method of recompressed steam and a plant (apparatus) according to the present invention.
  • FIG. 3 is a process flow diagram for explaining still another example of the utilization method and plant (apparatus) of recompressed steam according to the present invention.
  • FIG. 4 is a process flow diagram for explaining another example of the utilization method and plant (apparatus) of recompressed steam according to the present invention.
  • FIG. 5 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam according to the first embodiment.
  • FIG. 1 is a process flow diagram for explaining an example of a utilization method and plant (apparatus) of recompressed steam according to the present invention.
  • FIG. 2 is a process flow diagram for explaining another example of the utilization method of recompressed steam and
  • FIG. 6 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam in Comparative Example 1.
  • FIG. 7 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam according to the second embodiment.
  • FIG. 8 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam in Reference Example 1.
  • the recompressed steam utilization plant includes a distillation tower 1 as a process steam generator that discharges process steam containing a condensable gas component, and the process steam is discharged from the distillation tower 1.
  • This discharge line branches off at a pipe branch point 4.
  • One of the branched lines is provided with a first condenser 2 and a second condenser 3 for cooling and condensing a part of the process steam discharged from the distillation column 1, and the condensability in the process steam is provided.
  • the gas component (condensable component) is cooled by condensers 2 and 3 and recovered as a condensate.
  • the main unit includes the distillation column 1, the first condenser 2 and the second condenser 3.
  • the remainder of the process steam is adiabatically compressed to increase the temperature via a line provided with flow control valves (or valves) 15 and 17 as flow control units.
  • Compressor 5 for example, a turbo compressor
  • heat exchanger 7 as a heat exchange unit for using recompressed steam as a heat source
  • heat exchange A hold tank (or storage tank) 8 is disposed as a hold unit for separating the process fluid that has passed through the vessel 7 into gas and liquid and retaining the separated condensed liquid (or condensed component).
  • the gas component (or non-condensed component) separated in the hold tank 8 passes through the air ring line (or pressure equalizing pipe) 8a of the hold tank 8 from the air ring line (or pressure equalizing pipe) 9a of the heat exchanger 7. Is returned to the main unit by a first circulation line 9 provided with a flow control valve 11 as a flow control device.
  • the first circulation line 9 is connected to a line between the first condenser 2 and the second condenser 3 via a connection part (or a pipe connection part) 10 and passes through the first condenser 2.
  • the process fluid (process vapor and / or condensate) is joined, and the condensate is recovered via the second condenser 3.
  • the condensate retained in the hold tank 8 is discharged (or outflowed) from a line (condensate discharge line or condensate outflow line) provided with a flow control valve 13 as a flow control device, and condensed as a cooling unit. It is cooled by the liquid cooler 18 and collected together with the condensate that has passed through the second condenser 3 in the main unit.
  • the (turbo type) compressor 5 is provided with a second circulation line 6 that connects an inlet side line and an outlet side line of the compressor, and a flow rate control valve 12 as a flow rate control device. ing.
  • the second circulation line 6 is connected to a line between the flow control valves 15 and 17 on the line on the inlet side of the compressor.
  • the method or plant of the present invention includes a distillation column 1, a first condenser 2, and a second condenser 3 as necessary, generates a process vapor containing a condensable gas component, cools and condenses.
  • VRC which includes a main process (main process), a compressor 5, a heat exchanger 7 and a hold tank 8, and generates recompressed steam whose temperature is increased by adiabatically compressing process steam with a compressor and using it as a heat source Process (VRC process).
  • main process main process
  • VRC process heat source Process
  • FIGS. 2 to 8 the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the operation is performed only in the main process before the start of the VRC process. That is, the flow control valve 15 is closed, and the process steam discharged from the distillation column 1 is cooled and condensed by the first condenser 2 and the second condenser 3 in the entire amount of condensable gas component (condensable component). It is recovered as a condensate.
  • the flow rate control valves 11, 12 and 17 are fully opened, the flow rate control valve 15 is gradually opened while the flow rate control valve 13 is closed, and the predetermined opening degree is adjusted.
  • part of the process steam discharged from the distillation column 1 is replaced with the seal gas of the line in the VRC process through the branch point 4 of the discharge line of the main process, and the system in the VRC process is also replaced by this process steam.
  • the temperature rises.
  • the flow control valve 17 is adjusted to a predetermined opening degree (for example, when the discharge pressure of the turbo compressor 5 becomes too low, the opening degree of the flow control valves 11 and / or 12 is adjusted as necessary.
  • the turbo compressor 5 After adjusting the amount of process steam introduced into the compressor (by adjusting the flow rate to reduce the flow rate), the turbo compressor 5 is started and stabilized at the rated rotational speed. At this point, the process steam passing through the turbo-type compressor 5 is hardly loaded with a discharge pressure, but a process in which heat of the compressor shaft power ⁇ mechanical efficiency ⁇ (1 ⁇ adiabatic efficiency) passes through the compressor. The temperature rises by transferring heat to the steam. When the flow control valve 12 is in an open state, it is closed so that the process steam flowing through the VRC process basically passes through the compressor only once. Therefore, the temperature rise is only the heat transfer from the compressor, and the temperature rise width is small.
  • the first circulation line in the VRC process can return the uncondensed steam to the main process, so that it is possible to suppress stagnation of process steam due to heat transfer failure in the heat exchange unit, etc. It is possible to prevent the compressor from being damaged due to stagnation of gas distribution.
  • the flow control valve 13 may open at an appropriate opening degree and / or frequency after confirming the liquid level of the condensate in the hold tank 8 and send the condensate to the subsequent process.
  • the second circulation line 6 can be used to secure a circulation flow rate in order to avoid surging in an emergency in addition to controlling the process steam circulation method. Good.
  • the flow rate control valve 11 When the flow rate control valve 11 is gradually closed and the discharge pressure of the compressor 5 is gradually increased, the temperature of the compressed process steam (recompressed steam) rises, so that the heat exchange step (or heat exchange unit) In (heat exchanger 7)), it can be effectively used as a heat source.
  • the compression ratio in the compressor 5 is controlled by adjusting the opening of the flow control valve 11.
  • a predetermined pressure may not be maintained (or maintained).
  • it is unavoidable to limit the amount of condensable gas components condensed in the heat exchange process (or the amount of raw material charged in the heat exchanger (VRC evaporator)). Therefore, the pressure control on the downstream side of the compressor is not easy, and the energy saving effect is reduced.
  • the condensate condensed in the heat exchange step (or heat exchange unit (heat exchanger 7)) is not forcibly cooled or rapidly cooled (predetermined). At least hold to maintain the pressure in the back pressure space downstream of the compressor (or the steam recompression unit (compressor 5)) in the recompression process.
  • a process (or a hold unit having the hold tank 8) is provided.
  • the condensate retained in the hold process (or hold unit) is a condensate from the heat exchange process (or heat exchange unit) and is at a relatively high temperature (for example, a temperature close to the boiling point of the condensate in the back pressure space).
  • the hold process can easily control the pressure on the downstream side (back pressure space) of the compressor, and the plant (or the steam recompression unit (or recompression process)) equipped with the VRC system. Can be operated (or operated or operated) smoothly (or easily). For this reason, it is easy to apply to a plant with large fluctuations in throughput and operating conditions, and the process design is excellent in flexibility.
  • the “back pressure space” refers to the space and line from the compressor downstream to the flow rate control device, for example, from the compressor downstream via the heat exchange unit, hold unit, etc. And a space and a line up to the flow rate control device arranged in each of the first circulation line and the condensate discharge line (or condensate discharge line), and the second circulation line from the compressor downstream It means the gas phase part of the space including the space and the line leading to the flow control device.
  • the amount of condensate retained in the hold tank 8 is adjusted by the flow rate control valve 13 disposed in the condensate discharge or outflow (extraction) line (condensate outflow line or condensate extraction line).
  • the liquid level is controlled by maintaining a predetermined liquid level.
  • the condensate in the hold tank is extracted before it is cooled by heat dissipation, and new condensate from the heat exchange unit is retained. Therefore, the temperature decrease of the condensate that remains can be effectively suppressed. Condensate can flow out smoothly (or stably) without using a liquid feed pump or the like due to the high pressure in the back pressure space.
  • the condensate Since the discharged condensate has a high temperature (for example, a temperature equal to or higher than the boiling point of the condensate at atmospheric pressure), the condensate is cooled by the cooler (or condensate cooler) 18 (or the cooling step), and the second condenser 3 of the main unit. It is collected with the condensate that passed through.
  • the cooling step for example, by cooling the condensate to a temperature below the boiling point at atmospheric pressure (or atmospheric pressure), the pressure is lower than the back pressure space (for example, about atmospheric pressure). Even if the condensate flows out (or is discharged) into a large space, it can be recovered stably (easy or smooth) while preventing flash evaporation.
  • non-condensable gases such as non-condensed recompressed steam (non-condensed steam) and seal gas not dissolved in the process condensate are air components connected to the hold tank 8 as gas components (non-condensed components). It returns to the main process via the first circulation line 9 via the ring line 8a and / or the air ring line 9a connected to the heat exchanger 7.
  • the condensable gas component (non-condensed vapor) contained in the non-condensed component returned to the connection unit 10 is usually cooled and condensed by the second condenser 3 on the downstream side of the connection unit 10, but for some reason the compressor Even if it flows into the side (upstream side), it is cooled and condensed by the first condenser 2. Therefore, even if it merges with the process steam discharged from the distillation column 1, the gas flow rate does not become excessive for the processes after the condensation process of the main process and the steam recompression process of the VRC process.
  • the hold unit may have a gas-liquid separator for separating a liquid component (condensate) and a gas or gas component (non-condensed component).
  • a gas-liquid separator for separating a liquid component (condensate) and a gas or gas component (non-condensed component).
  • the hold unit supplies the process fluid from the heat exchanger 7 to the upstream side of the hold tank 8.
  • the process is the same as that shown in FIG.
  • the method (or plant) of the present invention is not necessarily required, but may have a gas introduction step (or a gas introduction unit) for introducing a non-condensable gas into the back pressure space.
  • the process shown in FIG. 3 includes a gas introduction line 20 for introducing a non-condensable gas to the upstream side (back pressure space side) of the flow control valve 11 in the first circulation line 9 (or the circulation step) and the non-condensable gas.
  • a flow control valve 21 gas introduction unit or gas introduction step for adjusting the amount of condensable gas introduced is provided, and further, a non-dissolved solution in the condensate is provided downstream of the condensate cooler 18 (cooling unit or cooling step).
  • the process shown in FIG. 3 includes a gas introduction unit (or a gas introduction step), even if a pressure drop (or a condensate temperature drop) occurs in the back pressure space due to an abnormal situation as described above.
  • a pressure drop or a condensate temperature drop
  • the pressure in the back pressure space can be effectively maintained. Therefore, the operability (or ease) of pressure control in the back pressure space is improved, and the VRC process can be operated (or operated) more stably (or smoothly).
  • the non-condensable gas introduced into the back pressure space from the gas introduction line 20 includes recompressed steam (non-condensed steam) that has not been condensed in the heat exchanger 7, seal gas that has not been dissolved in the process condensate, and the like.
  • the main unit (or the main unit) is separated as a gas component by the hold tank 8 and via the first circulation line 9 via the air ring line 8a of the hold tank 8 and / or the air ring line 9a of the heat exchanger 7. Return to step).
  • the condensate from the condensate cooler 18 stays in the condensate deaeration tank 22, so that the non-condensable gas dissolved in the condensate under the pressure of the back pressure space.
  • a gas introduced from a gas introduction unit a non-condensable gas such as a seal gas leaking from a compressor bearing, etc. is degassed (vaporized or separated) from the condensate.
  • the degassed gas component (non-condensable gas) is discharged from a scrubber or other detoxification facility (or discharge facility), and the liquid component (condensate) is recovered together with the condensate of the main unit (or main process).
  • the Therefore, the non-condensable gas dissolved in the condensate does not re-evaporate and does not affect the recovery destination unit (or process).
  • the method (or plant) of the present invention may use the heat amount of the condensate flowing out of the hold unit in the VRC process and / or other processes.
  • the process shown in FIG. 4 includes a flash tank (or flash evaporator) 24 (flash unit or flash evaporator) for flash evaporation of the condensate flowing out of the hold unit between the flow control valve 13 and the (condensate) cooler 18. And a third circulation line 25 for returning a gas component (volatile component) generated by the flash evaporation to the main unit (or main step), and at least one of process steam generated in the main unit (or main step).
  • the process is the same as the process of FIG.
  • the condensate flowing out from the flow control valve 13 (hold unit or hold step) is not cooled and is lower in pressure than the back pressure space (for example, a large amount).
  • the liquid is sent to a flash tank 24 having a pressure of about atmospheric pressure, and flash evaporates.
  • the gas component (volatile component) generated by the flash evaporation is returned to the line between the distillation column 1 of the main unit (or main process) and the branch point 4 via the third circulation line 25, and flash evaporation is performed.
  • the non-volatile components generated by the above are recovered together with the condensate of the main unit (or main process) via the condensate cooler 18 (cooling unit or cooling process).
  • the volatile component returned to the main unit (or main process) can be used as a heat source in the VRC process and / or another process together with the process steam.
  • the flash unit (or the flash process) has a complicated apparatus or the like arranged so that the sensible heat of the condensate discharged (or outflowed) in the VRC process can be reused as the latent heat of the vapor by the flash process. Without installation, the energy saving effect can be further improved with minimum capital investment.
  • the volatile component of the process steam is a mixture
  • the composition of the volatile component of the flash unit is often almost the same as the composition of the process steam. Even if the composition of the volatile component is slightly different from the composition of the process vapor, the amount of process vapor relative to the amount of volatile component vapor is overwhelmingly large. Will not be adversely affected.
  • the VRC process and another process using the process steam of the main process are provided side by side as in the process of FIG. 4, the amount of process steam generated in the main process is insufficient, and the VRC process and the separate process There are cases where both cannot be operated (or operated) effectively.
  • the type of the compressor is a turbo type, there is a risk of equipment damage due to surging if the amount of inflow of process steam is small, and it is necessary to send more than a predetermined amount of process steam to the compressor.
  • the amount of process steam to another process tends to be insufficient, and the energy saving effect may be extremely reduced.
  • VRC process or VRC method can be easily applied to an existing plant having a main unit (or main process) and another unit (separate process), and process design flexibility is further increased. It can be improved.
  • the process steam generator is not limited to a distillation column as long as process steam is generated.
  • the process steam generator is a device whose temperature is controlled by heating and evaporating with a heat source and then cooling and circulating.
  • it may be a reactor, an evaporator, a crystallizer, a dryer, or the like.
  • a distillation column is preferable because the VRC process is easily incorporated into the heat source of the main process.
  • the distillation tower is provided with a condenser for discharging process steam from the top of the tower and cooling and condensing the process steam, and a reboiler for gas charging of the raw material at the bottom of the distillation tower.
  • the evaporator may be used as a heat source in combination with the reboiler at the bottom of the tower.
  • the process steam only needs to contain at least a condensable gas component, and may contain a non-condensable gas component, which will be described later.
  • a condensable gas component may contain a non-condensable gas component, which will be described later.
  • it is difficult to contribute as a heat source and is economically disadvantageous.
  • the condensable gas component contains water and / or an organic solvent.
  • organic solvent examples include alcohols (alkyl alcohols such as ethanol, propanol and isopropanol, glycols such as ethylene glycol and propylene glycol), esters (methyl acetate, ethyl acetate, butyl acetate and the like), ketones ( Acetone, ethyl methyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), aldehydes (acetaldehyde, propionaldehyde, etc.), carboxylic acids (acetic acid, propionic acid, etc.), ethers (chain ethers such as dimethyl ether and diethyl ether, dioxane, Cyclic ethers such as tetrahydrofuran), hydrocarbons (aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatics such as benzene, toluene, xylene, etc.
  • esters / hydrocarbons 99 / It may be mixed in a weight ratio of about 1 to 10/90, preferably 90/10 to 30/70, more preferably about 80/20 to 50/50.
  • the boiling point of the organic solvent is determined by the type of the organic solvent, but is not particularly limited, and is, for example, about 30 to 150 ° C., preferably 50 to 120 ° C., more preferably about 60 to 100 ° C.
  • the vapor pressure (25 ° C.) of the organic solvent is determined by the type of the organic solvent, but is not particularly limited, and is, for example, about 1 to 30 kPa, preferably 5 to 20 kPa, and more preferably about 10 to 15 kPa. .
  • the proportion of the organic solvent can be selected according to the type of the organic solvent and is not particularly limited, but may be 10% by weight or more, for example, 30 to 99% by weight, preferably 50 to It may be about 98% by weight, more preferably about 80 to 95% by weight (particularly 85 to 93% by weight).
  • the temperature of the process vapor can be selected according to the type of condensable gas, and is not particularly limited, but is, for example, about 20 to 200 ° C., preferably 30 to 150 ° C., and more preferably about 50 to 100 ° C.
  • the pressure of the process steam may be atmospheric pressure steam or pressurized steam.
  • the flow rate of the process steam (discharge flow rate from the process steam generator) is, for example, about 0.1 to 100 m 3 / sec, preferably 1 to 50 m 3 / sec, and more preferably about 3 to 10 m 3 / sec.
  • the condenser in the main process may be independent, but it is possible to efficiently condense the condensable gas component in the process steam and to suppress the circulation of uncondensed steam in the VRC process.
  • two capacitors may be arranged in series.
  • capacitance of a condenser is not specifically limited, Usually, the capacity
  • the condenser is provided alone, the first circulation line is connected to the upstream side of the condenser.
  • a plurality of capacitors When arranging a plurality of capacitors, a plurality of capacitors may be arranged in series, and the first circulation line may be connected upstream of the first capacitor, but downstream of the first capacitor, And a line upstream of the last capacitor (a line between adjacent capacitors, and when two capacitors are arranged in series, a line between the first capacitor and the second capacitor)
  • 1 circulation line By connecting 1 circulation line, it can suppress that the condensable gas component in the non-condensed recompressed steam from the 1st circulation line circulates (backflows) to the VRC process.
  • the plurality of condensers may be different condensers or the same condenser, but usually the first condenser (condensable gas in the process steam during steady operation only with the first condenser (upstream)).
  • a condenser is used that has the capacity to condense all of the components.
  • the main process may further include a heat exchanger such as a reboiler.
  • the heat exchanger may be, for example, a main process evaporator for charging the raw material of the process steam generator in a gaseous state.
  • the main process evaporator may be a column bottom reboiler, and a heat exchanger (such as a VRC evaporator) in the VRC process is used as a heat source for the main process together with the column bottom reboiler. May be used.
  • the process steam discharge line in the main process branches into a main line for cooling and condensing the process steam by the condenser and a VRC line supplied to the VRC process.
  • VRC line supplied to the VRC process flow control is performed.
  • an apparatus is not essential, it is preferable to arrange
  • the flow rate control device gradually increases the opening degree from the closed state at the start of operation, and is adjusted to a constant opening degree (for example, fully open) during steady operation when the VRC process is stable.
  • the ratio of the process steam distributed between the main line and the VRC line can be appropriately selected according to the capacity of the compressor.
  • the ratio supplied to the VRC line is larger. At times, the entire amount of process steam may be distributed to the VRC line, but usually some of the process steam is supplied to the main line and the remainder is supplied to the VRC line.
  • the type of the vapor recompression unit is not particularly limited, and various types of compressors such as a conventional type, for example, a screw type, a turbo type, and a reciprocating type can be used.
  • a screw type for example, a screw type, a turbo type, and a reciprocating type
  • the screw type and the turbo type are preferable because the effect of improving safety and simplicity is great.
  • the screw-type compressor is started and the flow rate disposed in the second circulation line is confirmed after being stabilized at the rated rotational speed.
  • a control device flow control valve 12 in Drawing 1
  • the discharge pressure is hardly applied to the process steam that has passed through the screw compressor, as described above, the heat of the compressor shaft power x mechanical efficiency x (1-adiabatic efficiency) passes through the compressor. Heat transfer to the process steam causes a slight temperature rise. A part of the process steam whose temperature is slightly raised is circulated to the suction side of the compressor through the second circulation line.
  • the flow control device disposed in the second circulation line is closed. Even if the flow control device disposed in the second circulation line is closed, the uncondensed recompressed steam circulating through the VRC process can be returned to the main process by the first circulation line. Circulation can be stopped in the second circulation line before the compressor is heated above the upper limit temperature. Therefore, the equipment for cooling the compressor heated up by the circulation of the second circulation line is also unnecessary. Thus, although the circulation method before the start of condensation differs depending on the type of the compressor, in any compressor, the recompressed steam can be safely and easily reused as a heat source.
  • the discharge pressure of the steam recompression unit can be selected according to the type of process steam, but the steady-state pressure is, for example, 30 kPaG (gauge pressure) or more (for example, 30 to 400 kPaG), preferably 40 to 200 kPaG, more preferably Is about 50 to 100 kPaG.
  • the present invention by adjusting the flow rate returned from the first circulation line (circulation step) to the main unit and controlling the process steam compression ratio (discharge pressure / suction pressure) (absolute pressure) by the steam recompression unit, Adjust the temperature of the recompressed steam to the desired temperature.
  • the compression ratio can be appropriately selected according to the target temperature of the recompressed steam. For example, it is 2 to 5 (for example, 2.2 to 4.5), preferably 2.4 to 4, and more preferably 2. It may be adjusted to about 5 to 3.5 (for example, 2.7 to 3.3).
  • the discharge temperature of the steam recompression unit can be selected according to the type of process steam. For example, it is set to a discharge temperature that is, for example, 5 ° C. higher than the temperature of the process steam before being supplied to the steam recompression unit.
  • the discharge temperature may be set higher by 5 to 100 ° C., preferably 10 to 80 ° C., and more preferably 15 to 50 ° C.
  • the second circulation line (return pipe of the compressor) is not essential, but since the VRC process can be stably operated, the second recirculation line provided with the flow rate control device is provided. May be.
  • the VRC line introduced into the compressor may further include a flow control device in the line after joining the second circulation line.
  • the flow rate of the process steam introduced into the compressor is adjusted by adjusting the opening of the flow control device even before the compressor is started and during stable operation of the process. May be.
  • the flow rate control device in the initial stage of the VRC process operation (cold start), the flow rate control device is opened, and the process steam is circulated to the second circulation line. It may be used only for a short period of time until the rotating part reaches a stable rotational speed at the start of operation.
  • a compressor having a function of a second circulation line in its mechanism is also commercially available.
  • the recompressed steam is a process steam that has passed through a steam recompression unit (step) (the degree of compression and the degree of compression). Steam with a small temperature rise) may also be referred to as recompressed steam.
  • the heat exchange unit can use a conventional heat exchanger (for example, an evaporator such as a multi-tube heat exchanger). As described above, this heat exchange unit can be used as a main process together with the main process evaporator of the main process. Therefore, the plant can be a resource-saving and energy-saving facility.
  • the proportion of the VRC evaporator charge is based on the total charge (total amount of VRC evaporator charge and main process evaporator charge). For example, it may be 50% or more, preferably 60% or more (for example, 65 to 95%), more preferably about 70% or more (for example, 75 to 90%).
  • the ratio of the charged amount of the VRC evaporator may be weight% or volume%.
  • the method of the present invention is operated by appropriately reducing the amount charged in the main process evaporator as the amount of evaporation in the heat exchange unit (VRC evaporator) increases.
  • the heat exchange unit is connected to the first circulation line, and gas components that have not been condensed in the heat exchange unit (non-condensed components including non-condensable vapor and non-condensable gas) are included in the heat exchange unit and / or It returns to the main process by the first circulation line via the air ring line of the hold unit.
  • gas components that have not been condensed in the heat exchange unit non-condensed components including non-condensable vapor and non-condensable gas
  • the heat exchange unit since the temperature rise of the recompressed steam is low at the initial stage of operation until the vapor recompressing unit becomes stable, most of the process fluid remains in the gaseous state in the first circulation line. Is returned to the main process.
  • the process may be designed so that a part of the recompressed steam is condensed.
  • all the condensable gas components in the recompressed steam are condensed (totally condensed).
  • the heat exchange process designed in this way since most of the condensable gas component in the recompressed steam is condensed, there is almost no uncondensed steam (condensable gas component) supplied to the first circulation line. .
  • a part of the recompressed steam may be flowed to the first circulation line for maintaining the back pressure without being fully condensed.
  • the back pressure can be effectively held by the hold unit.
  • the VRC method is easy to apply, and the process design flexibility is excellent.
  • the hold unit (hold process) only needs to have at least one hold tank, and may have a plurality of hold tanks.
  • the hold tanks may be connected in series and / or in parallel, respectively.
  • the hold unit may usually have a gas-liquid separation function for separating the condensate condensed by the heat exchange unit and the non-condensed components that have not been condensed.
  • the hold unit having such a gas-liquid separation function may have a hold tank capable of gas-liquid separation, or may be formed of a gas-liquid separator and a hold tank. And a gas-liquid separator.
  • the hold tank capable of gas-liquid separation is not particularly limited.
  • the hold tank has an appropriate capacity that allows gas-liquid separation, and the separated gas component (non-condensed component) is used as a back pressure space. It is only necessary to have an air ring line (or a pressure equalizing pipe) for returning (or communicating), and it is only necessary that the condensate can be separated into a gas phase and a liquid phase. If the capacity of the tank is too large, it is necessary to lengthen the residence time. Therefore, the temperature of the condensate may be reduced due to heat radiation from the tank surface, and the back pressure may not be effectively maintained.
  • the gas-liquid separator is not particularly limited as long as the gas component and the condensate can be separated.
  • the gas-liquid separator is usually connected to the upstream side of the hold tank in order to send the separated liquid component, and the separated gas component (non-condensed component) is returned to the back pressure space ( In many cases, it has an air ring line (or pressure equalizing pipe) for communication).
  • the gas component (non-condensed component) that is separated from the gas is separated from the steam that cannot be condensed in the heat exchange unit, the non-condensable gas introduced from the gas introduction unit, and the compressor bearing.
  • the sealing gas such as nitrogen gas
  • a gas component that was not completely dissolved in the process condensate, a vapor generated by the vapor-liquid equilibrium of the condensate remaining in the hold tank, and the like may be included.
  • These non-condensed components may be returned to the main process and processed by the first circulation line via a hold tank capable of gas-liquid separation and / or an air ring line of the gas-liquid separator.
  • the air ring line of the hold tank capable of gas-liquid separation includes a gas phase space in the hold tank and a gas pressure space upstream of the hold tank (for example, the first gas pressure space).
  • a circulation line may be used.
  • the air ring line of the gas-liquid separator is a gas-phase space (e.g., upstream of the gas-liquid separator in the back pressure space downstream of the vapor recompression unit).
  • the first return line The position where each air ring line is connected is not particularly limited as long as it is a back pressure space. For example, even if it is connected to a line between the steam recompression unit and the heat exchange unit, a heat exchange unit, or the like. Usually, it is often connected to the first circulation line (upstream side of the flow control valve 11 in FIG. 1).
  • the hold tank has an air ring line (or gas-liquid separation function)
  • the vapor pressure (or saturated vapor pressure) of the condensate that is retained (or stored) is effectively functioned to maintain the back pressure.
  • This is preferable.
  • the line through which the condensate flows into the hold tank is sufficiently large with respect to the inflow of the condensate, and the gas phase space and the back pressure space (for example, the heat exchange unit) in the hold tank are blocked with the condensate.
  • the air ring line is not always necessary when communicating (or communicating) without escaping (when the vapor pressure of the condensate that remains is connected to the extent that it can be used to maintain the back pressure) In many cases, a line is provided.
  • the hold unit (or hold process) has a hold tank that retains the condensate, but usually a hold tank (or condensate tank) that temporarily retains (or stores) the condensate is installed.
  • a condensate cooler upstream of the tank to cool the condensate so that the tank does not become a high-pressure gas facility in accordance with regulations.
  • the condensate is kept at a relatively high temperature (for example, a temperature near the boiling point of the condensate under the pressure in the back pressure space) without forcibly cooling or quenching the condensate.
  • the pressure holding effect can be improved effectively.
  • the condensate is retained in the hold tank without providing a cooling unit for cooling the condensate upstream of the hold tank.
  • the heat retention method is not particularly limited, and may be a method of keeping warm with a conventional heat insulating material or the like, or a method of keeping warm (or heating) using a heater or the like within a range not impairing the energy saving effect. Good.
  • the temperature of the condensate retained in the hold tank (or hold unit) is higher than the boiling point (boiling point under the pressure of the back pressure space) of at least one component constituting the condensate, the back pressure is effectively used. Easy to maintain or hold. Therefore, if necessary, the temperature of the condensate may be increased by heating.
  • the temperature of the condensate to be retained is, for example, (T ⁇ 50) ° C. to (T + 20) ° C. (for example, with respect to the temperature T at the outlet (or outlet of the heat exchange unit) in the heat exchange step. , (T-40) ° C. to (T + 15) ° C.), preferably (T-30) ° C.
  • the “temperature T at the outlet of the heat exchange process” is discharged from the heat exchange unit (or heat exchanger) in a state where the VRC process is stably operated. It means the temperature of the condensate immediately after (or in the vicinity of).
  • the specific temperature of the condensate staying is, for example, 40 to 150 ° C. (eg 50 to 130 ° C.), preferably 60 to 120 ° C. (eg 70 to 110 ° C.), more preferably 80 to 105 ° C. It may be about (for example, 85 to 100 ° C.). If the temperature of the condensate is too low, it may be difficult to maintain the back pressure.
  • the hold unit may not have a flow rate control device (flow rate control valve or valve) for controlling the flow rate of the condensate, but can effectively hold the back pressure and operate the VRC process stably.
  • a flow rate control device flow rate control valve or valve
  • a flow control device May be.
  • the condensate residence time (or average residence time) in the hold unit (or hold step) is, for example, 0.5 minutes to 10 hours (eg, 1 minute to 5 hours), preferably 1.5 minutes to 3 hours ( For example, it may be about 2 minutes to 1 hour), more preferably about 2.5 to 30 minutes (for example, 3 to 10 minutes).
  • the residence time is too short, the fluctuation range of the back pressure becomes large or it becomes difficult to maintain the back pressure, so there is a possibility that the VRC process cannot be stably operated.
  • the length is too long, the temperature of the condensate decreases due to heat dissipation, and it becomes difficult to maintain the back pressure or a large capacity hold tank, which may make it difficult to save space in the equipment.
  • the condensate withdrawal amount (or average withdrawal amount) in the hold unit (or hold step) is, for example, about 1 to 100 tons / hr, preferably 10 to 50 tons / hr, more preferably about 20 to 40 tons / hr.
  • the amount may be the same as the amount of condensate introduced from the heat exchange unit (heat exchange step) during steady operation of the VRC process.
  • the condensate retention amount in the hold unit is, for example, 0.1 to 20 m 3 (for example, 0.3 to 10 m 3 ), preferably 0.5 to 5 m 3 (for example, 0.8 to 3 m 3 ), and more preferably. May be about 1 to 2 m 3 (for example, 1.2 to 1.8 m 3 ).
  • the pressure in the back pressure space can be easily controlled by the hold unit (or hold process), and the condensable gas component in the recompressed steam is effectively condensed (for example, in the heat exchange unit (heat exchange process) (for example,
  • the energy saving effect can be further improved.
  • the energy efficiency for example, the amount of heat source steam reduced per unit time during steady operation
  • it can be improved by 30 to 100%, preferably 40 to 80% (for example, 50%).
  • a cooling unit for cooling the condensate may be provided downstream of the hold unit.
  • the cooling unit includes at least a cooling device (or a cooler) for cooling the condensate, and a conventional cooling device can be used as the cooling device.
  • the cooling unit may include one or a plurality of the cooling devices, and in the case where a plurality of the cooling devices are provided, they may be connected in series and / or in parallel, respectively. Moreover, as long as it is downstream of the hold unit, one cooling unit may be provided, or a plurality of cooling units may be provided with other units (or processes) in between.
  • a cooling unit Even if the condensate is discharged (or outflowed) into a space lower in pressure (eg, atmospheric pressure) than the back pressure space, it can be recovered stably (or smoothly) without flash evaporation.
  • a cooling unit may be provided in a line that discharges (or flows out) the non-volatile components separated by the flash unit.
  • the cooling unit may further include a flow rate control device (flow rate control valve or valve) for adjusting the flow rate of the cooled condensate as necessary.
  • the flow rate control device may be provided upstream (most upstream) of the cooling device (or cooler) or between a plurality of cooling devices, but is usually provided downstream (most downstream) of the cooling device. There are many cases.
  • the condensate extraction amount from the hold tank may be adjusted by the flow control device of the cooling unit.
  • the gas introduction unit may not be provided, but the temperature of the condensate is temporarily reduced by the hold unit due to some circumstances (for example, the unsteady operation at the initial stage of operation as described above).
  • a gas introduction unit may be provided.
  • the gas introduction unit may be connected to at least a position where the pressure of the back pressure space can be controlled (for example, between the downstream side of the compressor and the upstream side of the flow control device of the first circulation line).
  • the heat exchange unit and the hold unit are connected to a line between the joining portion of each air ring line and the upstream side of the flow rate control device of the first circulation line. That is, it is preferable to introduce non-condensable gas in the circulation step downstream of the heat exchange step and / or the hold step.
  • the gas introduction unit may be connected to a compressor or a main unit (for example, a line connecting the main unit and the recompression unit).
  • the non-condensable gas to be introduced may be used as a seal gas (or shaft seal gas) of the compressor, and further, a seal gas leaking from the seal portion of the compressor ( Non-condensable gas) may be used for maintaining the back pressure.
  • the gas state is maintained under the temperature and pressure in the back pressure space of the vapor recompression unit (compressor) from the viewpoint of securing a predetermined pressure in the back pressure space.
  • the gas is preferably a gas
  • the temperature of the back pressure space is, for example, about 25 to 300 ° C., preferably about 40 to 230 ° C., more preferably about 65 to 150 ° C.
  • the pressure is, for example, 30 to 400 kPaG. (For example, 30 to 300 kPaG), preferably 40 to 200 kPaG, more preferably about 50 to 100 kPaG.
  • the non-condensable gas is a gas that is difficult to dissolve in the process condensate (condensate of the condensable gas component) (a gas that is insoluble or hardly soluble). ) Is preferred.
  • non-condensable gas for example, an inert gas (for example, nitrogen, air, carbon dioxide, carbon monoxide, rare gas (for example, argon, helium, etc.), etc.) that does not react with process vapor or the like can be mentioned. It is done.
  • inert gas means process steam or equipment (or non-condensable) under the conditions of the VRC process (for example, temperature and pressure in the back pressure space). As long as it is a gas that does not react with the material of the inner surface of the equipment that comes into contact with the gas, there is no particular limitation, and under conditions other than the conditions of the VRC process, gas that is reactive with process steam, process steam, and equipment are configured. It is used to mean including a gas that is reactive with a material other than the material.
  • non-condensable gases can be used alone or in combination of two or more as a mixed gas.
  • nitrogen is preferable from the viewpoint of ease of introduction (or supply).
  • the non-condensable gas may be supplied from a gas cylinder (or a compressed gas container), a gas generator, or the like, and a gas derived from a process [for example, a main process of a plant or other process (or other reaction process)
  • Non-condensable gas generated (or by-product) preferably air contained in a trace amount in the process steam generated from the main process, seal gas leaked from equipment (such as a compressor) having a seal part such as a bearing part, etc.] May be supplied as a non-condensable gas.
  • the gas is preferably introduced from outside the process.
  • the introduction flow rate of the non-condensable gas can be appropriately selected (or adjusted) according to the operation state, but is 0.01 to 3% by volume, preferably 0. 0% with respect to the flow rate of the process steam generated in the main process. It may be about 03 to 1% by volume, more preferably about 0.05 to 0.5% by volume.
  • the introduction ratio of the non-condensable gas is a volume ratio under the temperature and pressure of the process steam generated in the main process.
  • a deaeration unit is not always necessary, but if necessary, a non-condensable gas dissolved in the condensate under the pressure of the back pressure space is degassed (vaporized or vaporized) from the condensate flowing out downstream of the hold unit. May be arranged for separation).
  • a gas introduction step it is preferable to install a deaeration unit because the amount of non-condensable gas dissolved tends to increase.
  • the deaeration unit has at least a condensate deaeration tank.
  • the condensate degassing tank only needs to have a sufficiently large capacity for retaining the condensate and degassing, and a conventional tank can be used.
  • the deaeration unit may have a gas discharge line for discharging the non-condensable gas component deaerated in the condensate deaeration tank.
  • the gas discharge line may be connected to a conventional abatement equipment (or discharge equipment) such as a scrubber.
  • the deaeration unit may be provided with a decompression pump or the like on the gas discharge line to shorten the processing time and / or reduce the tank capacity.
  • the deaeration unit may have a flow rate control device for controlling the condensate discharge (or outflow) amount from the condensate deaeration tank and adjusting the retention amount.
  • the condensate discharged from the deaeration unit (deaeration step) may be recovered as it is or via a cooling unit (cooling step).
  • Flash process flash unit
  • the flash unit is not always necessary, but the condensate discharged (or outflowed) in the hold unit (holding process) is flash-evaporated to separate the generated volatile component and non-volatile component as necessary. May be.
  • flash evaporation a part of the heat (or sensible heat) of the condensate is transferred to the heat (or latent heat) of the volatile component, and at least a part of the heat of the volatile component is transferred to another process (or another unit). It can be used as a heat source.
  • the flash evaporation may be performed by a constant temperature flash that heats the condensate and depressurizes, an adiabatic flash that depressurizes the condensate without heating, or a flash that combines these flash conditions.
  • the temperature of the condensate is, for example, 40 to 200 ° C. (eg, 50 to 180 ° C.), preferably 60 to 150 ° C. (eg, 70 to 120 ° C.), and more preferably 80 to 110 ° C. (eg, 85 to 105 ° C.).
  • the pressure (absolute pressure) in the flash tank (or flash evaporator) may be, for example, about 50 to 1000 kPa, preferably about 80 to 500 kPa, and more preferably about 100 to 300 kPa.
  • At least a part of the volatile component generated in the flash process is available as at least a part of a heat source of another process, and the amount (or flow rate) of the volatile component generated in the flash process is a condensate introduced into the flash process.
  • 1 to 70% by weight for example, 3 to 50% by weight
  • preferably 5 to 30% by weight for example, 8 to 25% by weight
  • more preferably 10 to 20% it may be about wt% (for example, 10 to 15 wt%).
  • At least a part of volatile components generated in the flash process and / or process vapor generated in the main process may be used as a heat source.
  • the separate unit may have an introduction line (or an air supply line) for introducing the volatile component and / or process steam.
  • the connection position of the introduction line is not particularly limited as long as the volatile component and / or process steam can be introduced.
  • the connection position is connected to the flash unit or a third circulation line for connecting the flash unit and the main unit.
  • the main unit for example, the process steam generator of the main unit (main process) (distillation column 1 in FIG. 1) and the condenser (the first in FIG. In many cases, it is connected to a line between the condenser 2) (especially a line downstream of the third circulation line).
  • the proportion of the volatile component introduced into the separate unit is, for example, 0 to 100% by weight (eg 10 to 99% by weight), preferably 30 to 100% by weight (eg 50 to 97% by weight), more preferably about 70 to 100% by weight (for example, 80 to 95% by weight). Note that the remainder of the volatile components generated in the flash process may be returned to the main unit for processing.
  • the plant of the present invention connects the flash unit (flash process) and the main unit (main process), and returns a third part for returning a part of the volatile components generated in the flash process to the main process.
  • a circulation line may be provided.
  • the connection position of the third circulation line is not particularly limited as long as it is upstream of the condenser (for example, the second condenser 3 in FIG. 1) from the process steam generator (distillation column 1 in FIG. 1).
  • the non-volatile component (condensate) separated by the flash unit may be recovered together with the condensate of the main unit as it is or via a cooling unit.
  • the condensate condensed in another process may be recovered together with the condensate of the main unit as it is or via a cooling unit.
  • the process steam generator is a distillation column
  • a part of the recovered condensate may be used as the reflux liquid of the distillation column, and the remainder may be sent to the subsequent process as an effluent.
  • FIG. 5 shows a process flow diagram.
  • the main process includes a distillation column 1, and the charged liquid was evaporated by a main process evaporator (first heat exchanger) 14 and charged into the distillation column 1 in a gas state.
  • the process vapor discharged from the top of the distillation column 1 is atmospheric pressure (atmospheric pressure)
  • the temperature is about 80 ° C.
  • the composition is 60% by weight of ethyl acetate, benzene
  • the flow rate was 4 m 3 / sec at 30 wt% and water 10 wt%.
  • a turbo compressor (“f44C2” manufactured by IHI Corporation) was used as the compressor of the VRC process.
  • the compressor 5 the heat exchanger 7, the hold tank 8, and the line connecting them that form the back pressure space are heat-insulated with a heat insulating material.
  • valve 15 of the line from the top of the distillation column 1 to the VRC process side was gradually opened to replace the VRC process line with process steam, and the temperature of the system was raised over about 10 minutes.
  • the valve 12 was fully closed, and the valves 11 and 17 were set to a predetermined opening degree.
  • the compressor discharge pressure rise is less than 50 kPaG in the steady continuous operation state. It was confirmed that there were no abnormalities (abnormal noise, vibration, etc.).
  • the shaft power of the compressor 5 was 250 kW
  • the suction gas flow rate was 3 m 3 / sec
  • the discharge gas temperature of the compressor was 20 ° C. higher than the inlet temperature.
  • the average residence time of the condensate was 3 minutes, and the condensate introduction amount from the heat exchange unit and the condensate outflow amount (or withdrawal amount) from the hold tank were 30 tons / hr.
  • the discharged condensate was cooled to 45 ° C. by heat exchange with cooling water in the condensate cooler 18 and returned to the main process.
  • FIG. 6 shows a process flow diagram.
  • the plant shown in FIG. 6 is a plant including the conventional VRC process including the gas-liquid separator 19 without including the condensate tank 8 and the condensate cooler 18 in the plant illustrated in FIG. 5.
  • the operation was started as follows using the same process steam (pressure, temperature, composition, flow rate) as in Example 1 and a turbo compressor.
  • FIG. 7 shows a process flow diagram.
  • the process steam discharged from the top of the distillation column 1 is normal pressure (atmospheric pressure), the temperature is about 72.5 ° C., the composition is ethyl acetate 66 wt%, benzene 24 wt%, water 10 wt%, and the flow rate is It was 55 tons / hr. Conventionally, 25 tons / hr of the process steam has been used as a heat source for a hot water purifier used in another process. As shown in FIG. 7, a VRC process was added, but from the viewpoint of investment recovery, 30 tons / hr of process steam was processed by the compressor 5 to evaporate heat of the charged liquid in the distillation column 1.
  • a turbo compressor (“f44C2” manufactured by IHI Corporation) was used as the compressor of the VRC process.
  • the temperature of the condensate produced after using 30 tons / hr of process steam as a heat source was 97 ° C.
  • the pressure in the back pressure space was 340 kPa (absolute pressure)
  • the total condensing was performed, so the flow rate was 30 tons / hr. Met.
  • the resulting vapor had a temperature of 69.5 ° C. and a flow rate of 3.8 ton / hr, and the composition was 65% by weight of ethyl acetate and 26% by weight of benzene.
  • This steam was joined to the line between the top of the distillation column 1 and the branch point 4 via the third circulation line 25.
  • a part of the merged steam was branched to the VRC process side.
  • the remainder of the combined steam is at a temperature of 72 ° C. and a flow rate of 28.8 ton / hr.
  • composition immediately after the merge is 65.93 wt% ethyl acetate, 24.13 wt% benzene, water
  • the composition after the stable operation of 9.94% by weight is ethyl acetate 63.97% by weight, benzene 26.70% by weight, water 9.33% by weight, and is discharged from the top of the distillation column 1
  • the remainder of the combined steam was sent to a hot water heater (hot water purifier) in another process, the previous hot water could be obtained without any trouble.
  • FIG. 8 shows a process flow diagram.
  • the plant shown in FIG. 8 is a plant that does not include the flash tank 24 and the third circulation line 25 in the plant shown in FIG.
  • the VRC process is installed in the same manner as in Example 2 except that the condensate generated in the VRC process is cooled to 45 ° C. by the condensate cooler 18 without passing through the flash tank 24 and merged with the condensate of the main process. It was put into operation.
  • the heat exchanger hot water purifier
  • the method of using recompressed steam of the present invention can be used in various plants that generate process steam, such as distillation plants.
  • Distiller (distillation tower) 2, 3 ... Condenser 4 ... Piping branch point 5 ... Compressor 6, 9, 25 ... Circulation line 7, 14 ... Heat exchanger (evaporator) 8 ... Hold tank (condensate tank, condensate tank) 8a, 9a, 19a ... Air ring line (equal pressure equalization pipe) 18 ... Condensate cooler (cooler) 19 ... Gas-liquid separator 20 ... Gas introduction line 22 ... Condensate deaeration tank (deaeration tank) 24 ... Flash tank (flash evaporator)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The present invention is a method for using recompressed vapor comprising a main step for generating process vapor that includes a condensable gas component and recovering a condensate of the condensable gas component in the process vapor generated, a recompression step 5 for adiabatic compression of at least part of the process vapor by a compressor, increasing temperature, and obtaining recompressed vapor, a heat exchange step 7 using the recompressed vapor as a heat source, and a circulation step 9 for returning the non-condensed components of the recompressed vapor supplied to the heat exchange step 7 to the main step, wherein the method includes at least a holding step 8 for retaining the condensate condensed in the heat exchange step 7 and holding pressure of a back-pressure space downstream of the compressor. With this method, process vapor (recompressed vapor) that has been heated by adiabatic compression can be used efficiently as a heat source.

Description

再圧縮蒸気の利用方法及びプラントRecompressed steam utilization method and plant
 本発明は、蒸気の発生を伴うプロセスにおいて、この蒸気を断熱圧縮することにより得られる再圧縮蒸気を、熱源として効率良く利用する方法、及びこの方法を利用したプラントに関する。 The present invention relates to a method of efficiently using recompressed steam obtained by adiabatically compressing this steam as a heat source in a process involving generation of steam, and a plant using this method.
 蒸気の発生を伴う化学プロセス(例えば、化学物質の反応、混合物の分離など)において、プロセス全体で掛かるエネルギー量又はランニングコストを低減するために、発生するプロセス蒸気の熱量を、熱源として有効活用する方法が提案されている。例えば、プロセス蒸気を断熱圧縮することで温度を上昇させ、その圧縮プロセス蒸気(再圧縮蒸気)の熱量を蒸発や蒸留、乾燥などの工程における熱源として利用する蒸気再圧縮(Vapor Re-Compression:VRC)方式などの方法が検討されている。 In chemical processes involving the generation of steam (for example, reaction of chemical substances, separation of mixtures, etc.), in order to reduce the amount of energy or running cost of the entire process, the amount of generated process steam is effectively used as a heat source. A method has been proposed. For example, vapor recompression (Vapor Re-Compression: VRC) that raises the temperature by adiabatically compressing process steam and uses the amount of heat of the compressed process steam (recompressed steam) as a heat source in processes such as evaporation, distillation, and drying ) Methods are being studied.
 例えば、国際公開第2015/033935号(特許文献1)には、VRC方式において、圧縮機の下流に存在する未凝縮の再圧縮蒸気などのガス成分を、主工程に戻す循環工程を設けることにより、圧縮機などの機器の破損を防止しつつ、プロセス蒸気を利用する方法が開示されている。この方法では、循環工程により、圧縮機の下流における前記ガス成分の滞留などを抑制できるため、安全かつ簡便にプロセス蒸気を利用できることが記載されている。 For example, in International Publication No. 2015/033935 (Patent Document 1), in the VRC method, by providing a circulation step for returning a gas component such as uncondensed recompressed steam existing downstream of the compressor to the main step. A method of using process steam while preventing damage to equipment such as a compressor is disclosed. In this method, it is described that the process steam can be used safely and easily because the stagnation of the gas component downstream of the compressor can be suppressed by the circulation step.
 しかし、この方法では、プラントの稼働条件によっては、円滑に再圧縮できない場合があり、省エネルギー効果は十分ではなく、プロセス設計(又はVRC方式の適用)における自由度も制限されていた。また、プロセス設計の自由度に関して、他の熱源利用設備が設置された既存のプラントに、新たにVRC方式の設備を増設すると、双方の設備を安定して稼働するのに必要なプロセス蒸気量を確保できない場合もあった。 However, with this method, depending on the operating conditions of the plant, it may not be possible to smoothly recompress, the energy saving effect is not sufficient, and the degree of freedom in process design (or application of the VRC method) is limited. In addition, with regard to the degree of freedom in process design, if a new VRC system facility is added to an existing plant with other heat source facilities installed, the amount of process steam required to operate both facilities stably will be increased. In some cases, it could not be secured.
国際公開第2015/033935号(請求の範囲、段落[0005][0009]、実施例、図1、2及び4)WO2015 / 033935 (Claims, paragraphs [0005] [0009], Examples, FIGS. 1, 2 and 4)
 従って、本発明の目的は、断熱圧縮により昇温させたプロセス蒸気(再圧縮蒸気)を熱源として効率的に利用する方法、及びこの方法を用いたプラントを提供することにある。 Therefore, an object of the present invention is to provide a method of efficiently using process steam (recompressed steam) heated by adiabatic compression as a heat source, and a plant using this method.
 本発明の他の目的は、再圧縮蒸気を利用するVRC方式を備えたプラントを安定して(又は円滑に)稼働できる方法、及びそのプラントを提供することにある。 Another object of the present invention is to provide a method capable of stably (or smoothly) operating a plant equipped with a VRC system using recompressed steam, and the plant.
 本発明のさらに他の目的は、プロセス設計の柔軟性に優れた再圧縮蒸気の利用方法、及びその方法を用いたプラントを提供することにある。 Still another object of the present invention is to provide a method for using recompressed steam having excellent process design flexibility and a plant using the method.
 本発明の別の目的は、VRC方式で多くのプロセス蒸気を利用しても、他の熱源利用プロセスを平行して稼働できる方法、及びこの方法を用いたプラントを提供することにある。 Another object of the present invention is to provide a method capable of operating other heat source utilization processes in parallel even if many process steams are used in the VRC method, and a plant using this method.
 本発明者らは、前記課題を達成するため鋭意検討した結果、凝縮性ガス成分を含むプロセス蒸気を発生し、かつ発生したプロセス蒸気の凝縮性ガス成分を凝縮液として回収する主工程と、前記プロセス蒸気の少なくとも一部を圧縮機で断熱圧縮して温度を上昇させて再圧縮蒸気を得る再圧縮工程と、再圧縮蒸気を熱源として利用する熱交換工程と、熱交換工程に供された再圧縮蒸気のうち、凝縮していない非凝縮成分を主工程に戻す循環工程とを含む再圧縮蒸気の利用方法において、熱交換工程で凝縮した凝縮液を強制的に冷却又は急冷することなく滞留させて、圧縮機下流の背圧空間の圧力を保持(又は背圧の低下を抑制(又は防止))すると、再圧縮蒸気をより効率的に利用できるだけでなく、プロセス(又はプラント)をより安定して(又は円滑に)運転(又は稼働)できることを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have generated a process steam containing a condensable gas component, and a main process for recovering the condensable gas component of the generated process steam as a condensate, A recompression process in which at least a part of the process steam is adiabatically compressed by a compressor to raise the temperature to obtain recompressed steam, a heat exchange process using the recompressed steam as a heat source, and a recombination provided for the heat exchange process. Among the compressed steam, in the method of using recompressed steam including a circulation process for returning non-condensed non-condensed components to the main process, the condensate condensed in the heat exchange process is retained without forcibly cooling or quenching. Thus, maintaining the pressure in the back pressure space downstream of the compressor (or suppressing (or preventing) the decrease in back pressure) can not only use recompressed steam more efficiently, but also stabilize the process (or plant). (Or smooth) found that can be operated (or running), and completed the present invention.
 すなわち、本発明の再圧縮蒸気の利用方法は、凝縮性ガス成分を含むプロセス蒸気を発生し、かつ発生したプロセス蒸気の凝縮性ガス成分を凝縮液として回収する主工程と、前記プロセス蒸気の少なくとも一部を圧縮機で断熱圧縮して温度を上昇させて再圧縮蒸気を得る再圧縮工程と、再圧縮蒸気を熱源として利用する熱交換工程と、熱交換工程に供された再圧縮蒸気のうち、凝縮していない非凝縮成分を主工程に戻す循環工程とを含む再圧縮蒸気の利用方法であって、熱交換工程で凝縮した凝縮液を滞留させて、圧縮機の下流の背圧空間の圧力を保持するためのホールド工程を少なくとも含んでいる。 That is, the method of using the recompressed steam of the present invention generates a process steam containing a condensable gas component, and collects the condensable gas component of the generated process steam as a condensate, and at least the process steam. Of the recompressing process in which a part is adiabatically compressed with a compressor to increase the temperature to obtain recompressed steam, the heat exchanging process using the recompressed steam as a heat source, and the recompressed steam used in the heat exchanging process A method of using recompressed steam including a circulation step for returning non-condensed non-condensed components to the main step, the condensate condensed in the heat exchange step being retained, and the back pressure space downstream of the compressor At least a holding step for holding the pressure.
 凝縮液は、ホールド工程より上流側において、強制的に冷却することなく、ホールド工程で滞留させてもよい。また、熱交換工程以降の工程において、生じた凝縮液は保温又は昇温されていてもよく、ホールド工程で滞留させる凝縮液の温度は、熱交換工程の流出口(又は熱交換ユニット出口側)での温度Tに対して、(T-50)℃~(T+20)℃程度であってもよい。凝縮液は、ホールド工程において、流出量を調整して、0.5分~10時間程度滞留させてもよい。ホールド工程において、凝縮液と非凝縮成分とを気液分離してもよい。 The condensate may be retained in the hold step without being forcibly cooled on the upstream side of the hold step. Further, in the processes after the heat exchange process, the generated condensate may be kept warm or heated, and the temperature of the condensate retained in the hold process is the outlet of the heat exchange process (or the heat exchange unit outlet side). The temperature T may be about (T-50) ° C. to (T + 20) ° C. In the hold step, the condensate may be retained for about 0.5 minutes to 10 hours by adjusting the outflow amount. In the holding step, the condensed liquid and the non-condensed component may be gas-liquid separated.
 本発明の方法は、さらに、ホールド工程から流出される凝縮液を冷却する冷却工程を含んでいてもよい。また、本発明の方法は、圧縮機の下流の背圧空間に非凝縮性ガスを導入するガス導入工程と、ホールド工程で流出される凝縮液から、溶解した非凝縮性ガスを脱気する脱気工程とを含んでいてもよい。さらに、本発明の方法は、ホールド工程で流出される凝縮液をフラッシュ蒸発して、揮発性成分と不揮発性成分とに分離するフラッシュ工程を含んでいてもよい。このフラッシュ工程で分離した揮発成分の少なくとも一部は、別プロセスの熱源として利用してもよい。 The method of the present invention may further include a cooling step for cooling the condensate flowing out from the hold step. The method of the present invention also includes a gas introduction step for introducing a non-condensable gas into the back pressure space downstream of the compressor, and a deaeration for degassing the dissolved non-condensable gas from the condensate discharged in the hold step. And an air step. Furthermore, the method of the present invention may include a flashing step in which the condensate discharged in the holding step is flash-evaporated and separated into a volatile component and a non-volatile component. At least a part of the volatile components separated in the flash step may be used as a heat source for another process.
 また、本発明には、凝縮性ガス成分を含むプロセス蒸気を発生する蒸気生成器、及び発生したプロセス蒸気の一部を冷却して凝縮させるためのコンデンサーを有する主ユニットと、前記プロセス蒸気の残部を断熱圧縮して温度を上昇させて再圧縮蒸気を得るための蒸気再圧縮ユニットと、再圧縮蒸気を熱源として利用するための熱交換ユニットと、熱交換ユニットに供された再圧縮蒸気のうち、凝縮していない非凝縮成分を主ユニットに戻すための循環ラインとを備えた再圧縮蒸気の利用プラントであって、熱交換ユニットで凝縮した凝縮液を滞留させて、蒸気再圧縮ユニットの下流の背圧空間の圧力を保持するためのホールドユニットを少なくとも備えた再圧縮蒸気の利用プラントも包含する。 The present invention also includes a steam generator for generating process steam containing a condensable gas component, a main unit having a condenser for cooling and condensing a part of the generated process steam, and the remainder of the process steam. Among the recompressed steam supplied to the heat exchange unit, the heat recompression unit for using the recompressed steam as a heat source, and the recompressed steam provided to the heat exchange unit. A recompressed steam utilization plant comprising a circulation line for returning non-condensed non-condensed components to the main unit, the condensate condensed in the heat exchange unit being retained and downstream of the steam recompressing unit A recompressed steam utilization plant having at least a holding unit for holding the pressure in the back pressure space is also included.
 前記プラントは、ホールドユニットよりも上流側に、凝縮液を強制的に冷却するための冷却ユニットを備えることなく、凝縮液を滞留させるホールドタンクを備えていてもよい。蒸気再圧縮ユニットの下流の背圧空間を形成するユニット及びラインの少なくとも一部は保温又は昇温されていてもよく、ホールドユニットが滞留する凝縮液の温度は、熱交換ユニット出口側での温度Tに対して、(T-50)℃~(T+20)℃程度に保持してもよい。ホールドユニットは、凝縮液の流出量を調整して、凝縮液を0.5分~10時間程度滞留させるための流量制御装置を有していてもよい。 The plant may include a hold tank that retains the condensate without being provided with a cooling unit for forcibly cooling the condensate upstream of the hold unit. At least a part of the unit and line forming the back pressure space downstream of the vapor recompression unit may be kept warm or heated, and the temperature of the condensate in which the hold unit stays is the temperature at the outlet side of the heat exchange unit. The temperature may be maintained at about (T-50) ° C. to (T + 20) ° C. with respect to T. The hold unit may have a flow rate control device for adjusting the outflow amount of the condensate and retaining the condensate for about 0.5 minutes to 10 hours.
 ホールドユニットは、気液分離機能を備え、かつ凝縮液を滞留させるためのホールドタンク、及び、このホールドタンク内の気相部と、蒸気再圧縮ユニットの下流の背圧空間のうち、ホールドタンクよりも上流側の気相空間とを接続するためのエアリングラインを有していてもよい。また、ホールドユニットは、凝縮液を滞留させるためのホールドタンクと、このホールドタンクよりも上流側に配設された気液分離器と、この気液分離器で分離した気体成分を、蒸気再圧縮ユニットの下流の背圧空間のうち、気液分離器よりも上流側の気相空間に戻すためのエアリングラインとを有していてもよい。 The hold unit has a gas-liquid separation function, and holds the condensate from the hold tank among the hold tank, the gas phase in the hold tank, and the back pressure space downstream of the vapor recompression unit. May also have an air ring line for connecting the gas phase space on the upstream side. In addition, the hold unit includes a hold tank for retaining the condensate, a gas-liquid separator disposed upstream of the hold tank, and a gas component separated by the gas-liquid separator. An air ring line for returning to the gas phase space upstream of the gas-liquid separator in the back pressure space downstream of the unit may be provided.
 本発明のプラントは、さらに、ホールドユニットから流出される凝縮液を冷却するための冷却ユニットを備えていてもよい。また、本発明のプラントは、蒸気再圧縮ユニットの下流の背圧空間に非凝縮性ガスを導入するためのガス導入ユニットと、ホールドユニットから流出される凝縮液に溶解した非凝縮性ガスを脱気するための脱気ユニットとを備えていてもよい。さらに、本発明のプラントは、ホールドユニットから流出される凝縮液をフラッシュ蒸発して、揮発成分と不揮発成分とに分離するフラッシュユニットを備えていてもよい。前記プラントは、このフラッシュユニットで分離した揮発成分の少なくとも一部を、別プロセスの熱源として利用するためのラインを備えていてもよい。 The plant of the present invention may further include a cooling unit for cooling the condensate flowing out of the hold unit. The plant of the present invention also removes the non-condensable gas dissolved in the condensate flowing out from the gas introduction unit for introducing the non-condensable gas into the back pressure space downstream of the vapor recompression unit and the hold unit. And a deaeration unit for taking care of. Furthermore, the plant of this invention may be equipped with the flash unit which flash-evaporates the condensate which flows out from a hold unit, and isolate | separates into a volatile component and a non-volatile component. The plant may include a line for using at least a part of the volatile components separated by the flash unit as a heat source for another process.
 なお、本明細書及び請求の範囲において、「プロセス蒸気」とは、気液の相変化を伴う単位操作が組み込まれた製造プロセス(工程)中で発生する蒸気を意味する。 In the present specification and claims, “process steam” means steam generated in a manufacturing process (step) in which a unit operation involving a gas-liquid phase change is incorporated.
 「再圧縮蒸気」とは、蒸気再圧縮方式(VRC方式)において、熱源として利用するために圧縮して温度上昇させたプロセス蒸気を意味する。 “Recompressed steam” means process steam that has been compressed and heated to be used as a heat source in the steam recompression system (VRC system).
 「背圧空間」とは、VRC方式(VRCプロセス)において、圧縮機の吐出圧が及ぶ(又は伝達する)全ての空間及びライン(エアリングラインを含む)を意味する。 “Back pressure space” means all spaces and lines (including air ring lines) that reach (or transmit) the discharge pressure of the compressor in the VRC system (VRC process).
 「非凝縮性ガス」とは、圧縮機下流の背圧空間における温度及び圧力下において、気体状態を保持可能なガスを意味する。 “Non-condensable gas” means a gas capable of maintaining a gaseous state under temperature and pressure in a back pressure space downstream of the compressor.
 「非凝縮成分」とは、VRC方式(VRCプロセス)において、凝縮性ガス成分のうち凝縮していないガス成分、及び非凝縮性ガス成分の双方を含む意味に用いる。 “Non-condensable component” is used to mean both non-condensable gas components and non-condensable gas components among the condensable gas components in the VRC method (VRC process).
 「揮発成分」とは、フラッシュ工程において、凝縮液のフラッシュ蒸発により蒸発した気体(又は揮発性)成分を意味し、「不揮発成分」とは、フラッシュ工程において、凝縮液のフラッシュ蒸発により蒸発しなかった液体(又は低揮発性)成分を意味する。 “Volatile component” means a gas (or volatile) component evaporated by flash evaporation of condensate in the flash process, and “nonvolatile component” does not evaporate by flash evaporation of condensate in the flash process. Liquid (or low volatility) component.
 本発明では、熱交換工程で凝縮された凝縮液を滞留させて、圧縮機下流の背圧空間の圧力を保持(又は圧力低下を抑制)するため、プロセス蒸気(再圧縮蒸気)を熱源として効率的に利用でき、省エネルギー効果を向上できるだけでなく、VRC方式を備えたプラントを安定して(又は円滑に)稼働できる。また、処理量や運転条件の変動が大きなプラントにも対応し易く、プロセス設計の柔軟性にも優れている。また、非凝縮性ガスを導入することにより、VRC方式を備えたプラント稼働の安定性(又は円滑性)やプロセス設計の柔軟性をより一層向上できる。さらに、VRC工程から排出(又は流出)される凝縮液のフラッシュ蒸発により生成する揮発成分を、他の熱源利用プロセスに利用できる。そのため、VRC方式で多くのプロセス蒸気を利用しても、他の熱源利用プロセスを平行して円滑かつ安全に稼働でき、プロセス設計の柔軟性や省エネルギー効果をより一層向上できる。 In the present invention, the condensate condensed in the heat exchange step is retained, and the pressure in the back pressure space downstream of the compressor is maintained (or the pressure drop is suppressed). Therefore, process steam (recompressed steam) is used as an efficient heat source. In addition to improving the energy saving effect, the plant equipped with the VRC system can be operated stably (or smoothly). In addition, it is easy to deal with plants with large fluctuations in throughput and operating conditions, and has excellent process design flexibility. Moreover, by introducing a non-condensable gas, the stability (or smoothness) of plant operation provided with the VRC system and the flexibility of process design can be further improved. Furthermore, the volatile component produced | generated by flash evaporation of the condensate discharged | emitted from a VRC process (or outflow) can be utilized for another heat-source utilization process. Therefore, even if many process steams are used in the VRC system, other heat source utilization processes can be operated smoothly and safely in parallel, and the process design flexibility and energy saving effect can be further improved.
図1は本発明の再圧縮蒸気の利用方法及びプラント(装置)の一例を説明するためのプロセスフロー図である。FIG. 1 is a process flow diagram for explaining an example of a utilization method and plant (apparatus) of recompressed steam according to the present invention. 図2は本発明の再圧縮蒸気の利用方法及びプラント(装置)の他の例を説明するためのプロセスフロー図である。FIG. 2 is a process flow diagram for explaining another example of the utilization method of recompressed steam and a plant (apparatus) according to the present invention. 図3は本発明の再圧縮蒸気の利用方法及びプラント(装置)のさらに他の例を説明するためのプロセスフロー図である。FIG. 3 is a process flow diagram for explaining still another example of the utilization method and plant (apparatus) of recompressed steam according to the present invention. 図4は本発明の再圧縮蒸気の利用方法及びプラント(装置)の別の例を説明するためのプロセスフロー図である。FIG. 4 is a process flow diagram for explaining another example of the utilization method and plant (apparatus) of recompressed steam according to the present invention. 図5は実施例1の再圧縮蒸気の利用方法及びプラント(装置)を説明するためのプロセスフロー図である。FIG. 5 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam according to the first embodiment. 図6は比較例1の再圧縮蒸気の利用方法及びプラント(装置)を説明するためのプロセスフロー図である。FIG. 6 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam in Comparative Example 1. 図7は実施例2の再圧縮蒸気の利用方法及びプラント(装置)を説明するためのプロセスフロー図である。FIG. 7 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam according to the second embodiment. 図8は参考例1の再圧縮蒸気の利用方法及びプラント(装置)を説明するためのプロセスフロー図である。FIG. 8 is a process flow diagram for explaining the utilization method and plant (apparatus) of recompressed steam in Reference Example 1.
 以下、必要により添付図面を参照しつつ、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings as necessary.
 図1の例では、再圧縮蒸気の利用プラントは、凝縮性ガス成分を含むプロセス蒸気を排出するプロセス蒸気生成器としての蒸留塔1を備えており、この蒸留塔1からプロセス蒸気を排出するための排出ラインは、配管分岐点4で分岐している。分岐した一方のラインには、蒸留塔1から排出したプロセス蒸気の一部を冷却して凝縮するための第1のコンデンサー2及び第2のコンデンサー3が配設され、前記プロセス蒸気中の凝縮性ガス成分(凝縮性成分)をコンデンサー2及び3で冷却して凝縮液として回収する。主ユニットは前記蒸留塔1と第1のコンデンサー2及び第2のコンデンサー3とを含む。 In the example of FIG. 1, the recompressed steam utilization plant includes a distillation tower 1 as a process steam generator that discharges process steam containing a condensable gas component, and the process steam is discharged from the distillation tower 1. This discharge line branches off at a pipe branch point 4. One of the branched lines is provided with a first condenser 2 and a second condenser 3 for cooling and condensing a part of the process steam discharged from the distillation column 1, and the condensability in the process steam is provided. The gas component (condensable component) is cooled by condensers 2 and 3 and recovered as a condensate. The main unit includes the distillation column 1, the first condenser 2 and the second condenser 3.
 また、分岐した他方のラインでは、流量制御ユニットとしての流量制御弁(又はバルブ)15及び17が配設されたラインを経由して、前記プロセス蒸気の残部を断熱圧縮して温度を上昇させて再圧縮蒸気を得るための蒸気再圧縮ユニットとしての圧縮機5(例えば、ターボ型圧縮機など)と、再圧縮蒸気を熱源として利用するための熱交換ユニットとしての熱交換器7と、熱交換器7を経たプロセス流体を気液分離し、分離された凝縮液(又は凝縮成分)を滞留させるためのホールドユニットとしてのホールドタンク(又は貯留タンク)8とが配設されている。 In the other branched line, the remainder of the process steam is adiabatically compressed to increase the temperature via a line provided with flow control valves (or valves) 15 and 17 as flow control units. Compressor 5 (for example, a turbo compressor) as a steam recompression unit for obtaining recompressed steam, heat exchanger 7 as a heat exchange unit for using recompressed steam as a heat source, and heat exchange A hold tank (or storage tank) 8 is disposed as a hold unit for separating the process fluid that has passed through the vessel 7 into gas and liquid and retaining the separated condensed liquid (or condensed component).
 ホールドタンク8で分離されたガス成分(又は非凝縮成分)は、ホールドタンク8のエアリングライン(又は均圧管)8aを経由して、熱交換器7のエアリングライン(又は均圧管)9aからのガスと合流し、流量制御装置としての流量制御弁11を備えた第1の循環ライン9により主ユニットに戻される。この第1の循環ライン9は、第1のコンデンサー2と第2のコンデンサー3との間のラインに接続部(又は配管接続部)10を介して接続されており、第1のコンデンサー2を通過したプロセス流体(プロセス蒸気及び/又は凝縮液)と合流されて、第2のコンデンサー3を経て凝縮液が回収される。 The gas component (or non-condensed component) separated in the hold tank 8 passes through the air ring line (or pressure equalizing pipe) 8a of the hold tank 8 from the air ring line (or pressure equalizing pipe) 9a of the heat exchanger 7. Is returned to the main unit by a first circulation line 9 provided with a flow control valve 11 as a flow control device. The first circulation line 9 is connected to a line between the first condenser 2 and the second condenser 3 via a connection part (or a pipe connection part) 10 and passes through the first condenser 2. The process fluid (process vapor and / or condensate) is joined, and the condensate is recovered via the second condenser 3.
 一方、ホールドタンク8で滞留される凝縮液は、流量制御装置としての流量制御弁13を備えたライン(凝縮液排出ライン又は凝縮液流出ライン)から排出(又は流出)され、冷却ユニットとしての凝縮液クーラー18で冷却され、主ユニットにおける第2のコンデンサー3を経た凝縮液とともに回収される。 On the other hand, the condensate retained in the hold tank 8 is discharged (or outflowed) from a line (condensate discharge line or condensate outflow line) provided with a flow control valve 13 as a flow control device, and condensed as a cooling unit. It is cooled by the liquid cooler 18 and collected together with the condensate that has passed through the second condenser 3 in the main unit.
 さらに、前記(ターボ型)圧縮機5には、圧縮機の入口側のラインと出口側のラインとを連結する第2の循環ライン6、および流量制御装置としての流量制御弁12が配設されている。第2の循環ライン6は、圧縮機の入口側のラインにおいて、流量制御弁15及び17の間のラインに接続されている。 Further, the (turbo type) compressor 5 is provided with a second circulation line 6 that connects an inlet side line and an outlet side line of the compressor, and a flow rate control valve 12 as a flow rate control device. ing. The second circulation line 6 is connected to a line between the flow control valves 15 and 17 on the line on the inlet side of the compressor.
 なお、本発明の方法又はプラントは、蒸留塔1並びに第1のコンデンサー2、及び必要に応じて第2のコンデンサー3を含み、凝縮性ガス成分を含むプロセス蒸気を発生し、冷却して凝縮させる主工程(主プロセス)と、圧縮機5、熱交換器7及びホールドタンク8を含み、プロセス蒸気を圧縮機で断熱圧縮して温度を上昇させた再圧縮蒸気を生成して熱源として利用するVRC工程(VRCプロセス)とを有している。また、本明細書及び図2~8においても、図1と同一の構成要素については、同一の番号を付している。 The method or plant of the present invention includes a distillation column 1, a first condenser 2, and a second condenser 3 as necessary, generates a process vapor containing a condensable gas component, cools and condenses. VRC which includes a main process (main process), a compressor 5, a heat exchanger 7 and a hold tank 8, and generates recompressed steam whose temperature is increased by adiabatically compressing process steam with a compressor and using it as a heat source Process (VRC process). Also in this specification and FIGS. 2 to 8, the same components as those in FIG. 1 are denoted by the same reference numerals.
 このような構成を有するプラント(装置)において、VRC工程の起動前は、主工程のみで運転されている。すなわち、流量制御弁15は閉じられており、蒸留塔1から排出されたプロセス蒸気は、第1のコンデンサー2及び第2のコンデンサー3で凝縮性ガス成分(凝縮性成分)の全量が冷却凝縮され、凝縮液として回収されている。 In the plant (apparatus) having such a configuration, the operation is performed only in the main process before the start of the VRC process. That is, the flow control valve 15 is closed, and the process steam discharged from the distillation column 1 is cooled and condensed by the first condenser 2 and the second condenser 3 in the entire amount of condensable gas component (condensable component). It is recovered as a condensate.
 次に、流量制御弁11、12及び17を全開にし、流量制御弁13を閉の状態で流量制御弁15を徐々に開き、所定の開度に調整する。このとき、蒸留塔1から排出されるプロセス蒸気の一部は、主工程の排出ラインの分岐点4を経て、VRC工程におけるラインのシールガスと置換され、VRC工程の系内もこのプロセス蒸気により昇温されていく。その後、流量制御弁17を所定の開度に調整して(例えば、ターボ型圧縮機5の吐出圧が低くなりすぎる場合には、必要に応じて、流量制御弁11及び/又は12の開度を、流量を減らす方向に調整して)圧縮機に導入されるプロセス蒸気量を調整した後、ターボ型圧縮機5を起動させ、定格回転数で安定させる。この時点では、ターボ型圧縮機5を通過するプロセス蒸気には吐出圧は殆ど負荷されていないが、圧縮機の軸動力×機械効率×(1-断熱効率)の熱が圧縮機内を通過するプロセス蒸気に伝熱することで温度上昇が生じる。流量制御弁12が開の状態である場合は閉じることで、VRC工程を流れるプロセス蒸気は、基本的に圧縮機内を1回通過するだけの状態となる。そのため、温度上昇は圧縮機からの伝熱のみであり温度上昇幅は小さい。ターボ型圧縮機5を通過したプロセス蒸気と、熱交換器7の内部プロセスの沸点との温度差も十分でないため、伝熱も不十分で凝縮もあまり生じていない。従って、殆どのプロセス蒸気(プロセス蒸気中の凝縮性ガス成分)は、未凝縮のまま第1の循環ライン9により主工程の配管接続部10へと戻され、冷却凝縮により回収される。 Next, the flow rate control valves 11, 12 and 17 are fully opened, the flow rate control valve 15 is gradually opened while the flow rate control valve 13 is closed, and the predetermined opening degree is adjusted. At this time, part of the process steam discharged from the distillation column 1 is replaced with the seal gas of the line in the VRC process through the branch point 4 of the discharge line of the main process, and the system in the VRC process is also replaced by this process steam. The temperature rises. Thereafter, the flow control valve 17 is adjusted to a predetermined opening degree (for example, when the discharge pressure of the turbo compressor 5 becomes too low, the opening degree of the flow control valves 11 and / or 12 is adjusted as necessary. After adjusting the amount of process steam introduced into the compressor (by adjusting the flow rate to reduce the flow rate), the turbo compressor 5 is started and stabilized at the rated rotational speed. At this point, the process steam passing through the turbo-type compressor 5 is hardly loaded with a discharge pressure, but a process in which heat of the compressor shaft power × mechanical efficiency × (1−adiabatic efficiency) passes through the compressor. The temperature rises by transferring heat to the steam. When the flow control valve 12 is in an open state, it is closed so that the process steam flowing through the VRC process basically passes through the compressor only once. Therefore, the temperature rise is only the heat transfer from the compressor, and the temperature rise width is small. Since the temperature difference between the process steam that has passed through the turbo compressor 5 and the boiling point of the internal process of the heat exchanger 7 is not sufficient, heat transfer is insufficient and condensation does not occur much. Therefore, most of the process steam (condensable gas component in the process steam) is returned to the pipe connection portion 10 of the main process through the first circulation line 9 without being condensed, and is recovered by cooling condensation.
 このようにVRC工程での第1の循環ラインにより、未凝縮の蒸気を主工程に戻すことができるため、熱交換ユニットでの伝熱不良などによるプロセス蒸気の滞留などを抑制でき、圧縮機内のガス流通の停滞などによる圧縮機の破損を防止できる。 In this way, the first circulation line in the VRC process can return the uncondensed steam to the main process, so that it is possible to suppress stagnation of process steam due to heat transfer failure in the heat exchange unit, etc. It is possible to prevent the compressor from being damaged due to stagnation of gas distribution.
 なお、流量制御弁13は、ホールドタンク8に凝縮液の液面を確認後、適切な開度及び/又は頻度で開き、後工程に凝縮液を送ってもよい。また、ターボ型圧縮機を備えたプラントでは、第2の循環ライン6は、プロセス蒸気の循環方法の制御に加えて、緊急時のサージング回避のため、循環流量を確保するために利用してもよい。 The flow control valve 13 may open at an appropriate opening degree and / or frequency after confirming the liquid level of the condensate in the hold tank 8 and send the condensate to the subsequent process. In addition, in a plant equipped with a turbo compressor, the second circulation line 6 can be used to secure a circulation flow rate in order to avoid surging in an emergency in addition to controlling the process steam circulation method. Good.
 次に、流量制御弁11を徐々に閉め、圧縮機5の吐出圧を徐々に増大させると、圧縮されたプロセス蒸気(再圧縮蒸気)の温度が上昇するため、熱交換工程(又は熱交換ユニット(熱交換器7))において、熱源として有効に利用できる。所定の圧力(又は圧縮機下流側の背圧)及び温度を維持するために、流量制御弁11の開度調整で圧縮機5における圧縮比を制御する。 Next, when the flow rate control valve 11 is gradually closed and the discharge pressure of the compressor 5 is gradually increased, the temperature of the compressed process steam (recompressed steam) rises, so that the heat exchange step (or heat exchange unit) In (heat exchanger 7)), it can be effectively used as a heat source. In order to maintain a predetermined pressure (or back pressure on the downstream side of the compressor) and temperature, the compression ratio in the compressor 5 is controlled by adjusting the opening of the flow control valve 11.
 しかし、このような流量制御弁11の開度調整による制御のみでは、VRC方式の効果を有効に発揮するには、未だ十分ではなかった。例えば、VRC工程においては、熱交換工程などにおける再圧縮蒸気(凝縮性ガス成分)の凝縮、及び凝縮液(凝縮性ガス成分の凝縮液)に対する非凝縮性ガス(例えば、圧縮機の軸受けなどからプロセス内に漏れ込むシールガスなど)の溶解などに起因して、圧力(又は圧縮機下流側の背圧)の低下(又は圧力上昇の停滞)と、それに伴う温度の低下(又は温度上昇の停滞)が起こる。このような事態に対して、流量制御弁11の開度調整のみで対処しても、所定の圧力を保持(又は維持)できない場合がある。所定の圧力を保持するためには、熱交換工程における凝縮性ガス成分の凝縮量(又は熱交換器(VRC蒸発器)での原料仕込み量)を制限するなどして対応せざるを得ない。そのため、圧縮機の下流側の圧力制御も容易ではなく、省エネルギー効果も低下する。また、前記圧力の低下(又は圧力上昇の停滞)、すなわち、圧縮機が空回りしている状態(圧縮せずに、単に送風している状態)のため、VRC方式を備えたプラント(又は再圧縮ユニット(又は工程))の円滑な運転ができず、本来有する省エネプラントとしての機能(又は動作)が停止する場合もある。 However, such control only by adjusting the opening degree of the flow control valve 11 is not yet sufficient to effectively exert the effect of the VRC method. For example, in the VRC process, the condensation of recompressed steam (condensable gas component) in the heat exchange process and the like, and the non-condensable gas (for example, compressor bearings) for the condensate (condensate of the condensable gas component) Pressure (or back pressure on the downstream side of the compressor) drops (or stagnation of pressure rise) and accompanying temperature drop (or stagnation of temperature rise) due to dissolution of sealing gas leaking into the process) ) Occurs. Even if such a situation is dealt with only by adjusting the opening degree of the flow control valve 11, a predetermined pressure may not be maintained (or maintained). In order to maintain the predetermined pressure, it is unavoidable to limit the amount of condensable gas components condensed in the heat exchange process (or the amount of raw material charged in the heat exchanger (VRC evaporator)). Therefore, the pressure control on the downstream side of the compressor is not easy, and the energy saving effect is reduced. In addition, because of the pressure drop (or stagnation of pressure rise), that is, the compressor is idle (the state where the compressor is simply blowing without being compressed), the plant (or recompression) equipped with the VRC system The unit (or process)) cannot be smoothly operated, and the function (or operation) as an inherent energy saving plant may be stopped.
 このような事態に対応するために、本発明の方法又はプラントでは、熱交換工程(又は熱交換ユニット(熱交換器7))で凝縮した凝縮液を強制的に冷却又は急冷することなく(所定の温度及び/又は蒸気圧を保持しつつ)滞留させて、再圧縮工程における圧縮機(又は蒸気再圧縮ユニット(圧縮機5))の下流の背圧空間の圧力を保持するために、少なくともホールド工程(又はホールドタンク8を有するホールドユニット)を備えている。ホールド工程(又はホールドユニット)で滞留させる凝縮液は、熱交換工程(又は熱交換ユニット)からの凝縮液であり、比較的高温(例えば、背圧空間における凝縮液の沸点に近い温度)な状態に維持(又は保持、保温)されているため、この凝縮液の高い蒸気圧(又は飽和蒸気圧)を利用することにより、背圧空間の圧力を有効に保持(又は低下を抑制)できる。このようなホールド工程(又はホールドユニット)を含むため、熱交換工程において、再圧縮蒸気を多量に凝縮(例えば、凝縮性ガス成分を全凝縮)しても、VRC方式が有効に機能するプロセス(又はプラント)設計が可能(又は容易)となり、省エネルギー効果をより一層向上できる。また、このホールド工程(又はホールドユニット)により、圧縮機の下流側(背圧空間)での圧力を容易に制御でき、VRC方式を備えたプラント(又は蒸気再圧縮ユニット(又は再圧縮工程))を円滑(又は容易)に運転(又は作動、稼働)できる。そのため、処理量や運転条件の変動が大きなプラントに対しても適用し易く、プロセス設計の柔軟性にも優れている。 In order to cope with such a situation, in the method or plant of the present invention, the condensate condensed in the heat exchange step (or heat exchange unit (heat exchanger 7)) is not forcibly cooled or rapidly cooled (predetermined). At least hold to maintain the pressure in the back pressure space downstream of the compressor (or the steam recompression unit (compressor 5)) in the recompression process. A process (or a hold unit having the hold tank 8) is provided. The condensate retained in the hold process (or hold unit) is a condensate from the heat exchange process (or heat exchange unit) and is at a relatively high temperature (for example, a temperature close to the boiling point of the condensate in the back pressure space). Therefore, by utilizing the high vapor pressure (or saturated vapor pressure) of this condensate, the pressure in the back pressure space can be effectively maintained (or the decrease is suppressed). Since such a hold step (or hold unit) is included, a process in which the VRC system functions effectively even if a large amount of recompressed steam is condensed (for example, the condensable gas component is totally condensed) in the heat exchange step ( Or a plant) design becomes possible (or easy), and the energy saving effect can be further improved. In addition, the hold process (or hold unit) can easily control the pressure on the downstream side (back pressure space) of the compressor, and the plant (or the steam recompression unit (or recompression process)) equipped with the VRC system. Can be operated (or operated or operated) smoothly (or easily). For this reason, it is easy to apply to a plant with large fluctuations in throughput and operating conditions, and the process design is excellent in flexibility.
 なお、本明細書及び請求の範囲において、「背圧空間」は、圧縮機下流から流量制御装置に至るまでの空間及びライン、例えば、圧縮機下流から、熱交換ユニット、ホールドユニットなどを経由して、第1の循環ライン及び凝縮液排出ライン(又は凝縮液流出ライン)のそれぞれに配設される流量制御装置に至るまでの空間及びラインと、圧縮機下流から第2の循環ラインに配設される流量制御装置に至るまでの空間及びラインとを含む空間の気相部を意味する。 In the present specification and claims, the “back pressure space” refers to the space and line from the compressor downstream to the flow rate control device, for example, from the compressor downstream via the heat exchange unit, hold unit, etc. And a space and a line up to the flow rate control device arranged in each of the first circulation line and the condensate discharge line (or condensate discharge line), and the second circulation line from the compressor downstream It means the gas phase part of the space including the space and the line leading to the flow control device.
 ホールドタンク8での凝縮液の滞留量は、凝縮液の排出又は流出(抜取り)ライン(凝縮液流出ライン又は凝縮液抜取りライン)に配設された流量制御弁13で凝縮液の流出量を調整することで、所定の液面位を維持することにより制御される。このような制御により、ホールドタンク内の凝縮液が放熱で冷える前に抜取られ、熱交換ユニットからの新たな凝縮液を滞留するため、滞留する凝縮液の温度低下を有効に抑制できる。凝縮液は、背圧空間の高い圧力により、送液ポンプなどを用いなくても、円滑に(又は安定的に)流出(又は圧送)できる。流出された凝縮液は高温(例えば、大気圧における凝縮液の沸点以上の温度)であるため、クーラー(又は凝縮液クーラー)18(又は冷却工程)により冷却され、主ユニットの第2のコンデンサー3を経た凝縮液とともに回収される。冷却工程(又は冷却ユニット(凝縮液クーラー18))において、例えば、大気圧(又は常圧)における沸点以下の温度にまで凝縮液を冷却することにより、背圧空間より低圧(例えば、大気圧程度)な空間に凝縮液を流出(又は排出)しても、フラッシュ蒸発を防止しつつ、安定して(容易又は円滑に)回収できる。 The amount of condensate retained in the hold tank 8 is adjusted by the flow rate control valve 13 disposed in the condensate discharge or outflow (extraction) line (condensate outflow line or condensate extraction line). Thus, the liquid level is controlled by maintaining a predetermined liquid level. By such control, the condensate in the hold tank is extracted before it is cooled by heat dissipation, and new condensate from the heat exchange unit is retained. Therefore, the temperature decrease of the condensate that remains can be effectively suppressed. Condensate can flow out smoothly (or stably) without using a liquid feed pump or the like due to the high pressure in the back pressure space. Since the discharged condensate has a high temperature (for example, a temperature equal to or higher than the boiling point of the condensate at atmospheric pressure), the condensate is cooled by the cooler (or condensate cooler) 18 (or the cooling step), and the second condenser 3 of the main unit. It is collected with the condensate that passed through. In the cooling step (or the cooling unit (condensate cooler 18)), for example, by cooling the condensate to a temperature below the boiling point at atmospheric pressure (or atmospheric pressure), the pressure is lower than the back pressure space (for example, about atmospheric pressure). Even if the condensate flows out (or is discharged) into a large space, it can be recovered stably (easy or smooth) while preventing flash evaporation.
 一方、凝縮していない再圧縮蒸気(非凝縮蒸気)、プロセス凝縮液に溶解しなかったシールガスなどの非凝縮性ガスは、ガス成分(非凝縮成分)として、ホールドタンク8に接続されるエアリングライン8a及び/又は熱交換器7に接続されるエアリングライン9aを経由して、第1の循環ライン9を介して主工程に戻される。接続部10に戻った非凝縮成分中に含まれる凝縮性ガス成分(非凝縮蒸気)は、通常、接続部10の下流側の第2のコンデンサー3で冷却凝縮されるが、何らかの理由で圧縮機側(上流側)に流入しても、第1のコンデンサー2で冷却凝縮される。そのため、蒸留塔1から排出されるプロセス蒸気と合流しても、主プロセスの凝縮工程及びVRCプロセスの蒸気再圧縮工程以降の工程に対してガス流量が過大となることはない。 On the other hand, non-condensable gases such as non-condensed recompressed steam (non-condensed steam) and seal gas not dissolved in the process condensate are air components connected to the hold tank 8 as gas components (non-condensed components). It returns to the main process via the first circulation line 9 via the ring line 8a and / or the air ring line 9a connected to the heat exchanger 7. The condensable gas component (non-condensed vapor) contained in the non-condensed component returned to the connection unit 10 is usually cooled and condensed by the second condenser 3 on the downstream side of the connection unit 10, but for some reason the compressor Even if it flows into the side (upstream side), it is cooled and condensed by the first condenser 2. Therefore, even if it merges with the process steam discharged from the distillation column 1, the gas flow rate does not become excessive for the processes after the condensation process of the main process and the steam recompression process of the VRC process.
 ホールドユニットは、液体成分(凝縮液)と、ガス又は気体成分(非凝縮成分)とを分離するための気液分離器を有していてもよい。図2に示すプロセスは、ホールドユニットが、ホールドタンク8、エアリングライン(又は均圧管)8a及び流量制御弁13に加えて、ホールドタンク8の上流側に、熱交換器7からのプロセス流体を気体成分(非凝縮成分)と液体成分(凝縮液)とに分離するための気液分離器19、及び気液分離器19で分離した気体成分を第1の循環ライン9に戻すエアリングライン19aを備えている以外は、図1と同様のプロセスである。 The hold unit may have a gas-liquid separator for separating a liquid component (condensate) and a gas or gas component (non-condensed component). In the process shown in FIG. 2, in addition to the hold tank 8, the air ring line (or pressure equalizing pipe) 8 a and the flow rate control valve 13, the hold unit supplies the process fluid from the heat exchanger 7 to the upstream side of the hold tank 8. A gas-liquid separator 19 for separating a gas component (non-condensed component) and a liquid component (condensate), and an air ring line 19a for returning the gas component separated by the gas-liquid separator 19 to the first circulation line 9 The process is the same as that shown in FIG.
 図2の例では、ホールドタンク8の上流側に気液分離器19を備えているため、ホールドタンク8には、気体成分(非凝縮成分)を分離したプロセス流体(凝縮液)を流入可能である。そのため、ホールドタンク8への凝縮液の導入量をより正確に管理し易く、ホールドタンク8における凝縮液の滞留量や滞留時間などをより簡便に制御できる。また、熱交換器7とホールドタンク8とをつなぐラインが長く、VRC蒸発器での凝縮量が少ない段階であっても、スチームハンマーなどの現象を有効に抑制できるため、VRCプロセスを安定的に運転できる。 In the example of FIG. 2, since the gas-liquid separator 19 is provided on the upstream side of the hold tank 8, a process fluid (condensate) from which a gas component (non-condensed component) is separated can flow into the hold tank 8. is there. Therefore, the amount of condensate introduced into the hold tank 8 can be more accurately managed, and the amount of condensate retained in the hold tank 8 and the residence time can be more easily controlled. In addition, even if the line connecting the heat exchanger 7 and the hold tank 8 is long and the amount of condensation in the VRC evaporator is small, the phenomenon such as steam hammer can be effectively suppressed, so the VRC process can be stabilized. I can drive.
 本発明の方法(又はプラント)は、必ずしも必要ではないが、背圧空間に非凝縮性ガスを導入するためのガス導入工程(又はガス導入ユニット)を有していてもよい。図3に示すプロセスは、第1の循環ライン9(又は循環工程)における流量制御弁11の上流側(背圧空間側)に、非凝縮性ガスを導入するためのガス導入ライン20及びその非凝縮性ガス導入量を調整するための流量制御弁21(ガス導入ユニット又はガス導入工程)を備え、さらに、凝縮液クーラー18(冷却ユニット又は冷却工程)の下流側に、凝縮液に溶解した非凝縮性ガス成分を凝縮液から脱気(気化又は分離)するための凝縮液脱気タンク(又は脱気タンク)22及び脱気した非凝縮性ガス成分を排出するガス排出ライン23(脱気ユニット又は脱気工程)を備えている以外は、図1のプロセスと同様である。 The method (or plant) of the present invention is not necessarily required, but may have a gas introduction step (or a gas introduction unit) for introducing a non-condensable gas into the back pressure space. The process shown in FIG. 3 includes a gas introduction line 20 for introducing a non-condensable gas to the upstream side (back pressure space side) of the flow control valve 11 in the first circulation line 9 (or the circulation step) and the non-condensable gas. A flow control valve 21 (gas introduction unit or gas introduction step) for adjusting the amount of condensable gas introduced is provided, and further, a non-dissolved solution in the condensate is provided downstream of the condensate cooler 18 (cooling unit or cooling step). A condensate degassing tank (or degassing tank) 22 for degassing (vaporizing or separating) the condensable gas component from the condensate and a gas discharge line 23 (degassing unit) for discharging the degassed non-condensable gas component Otherwise, it is the same as the process of FIG.
 VRCプロセス運転の始動時(又は運転開始初期)などにおいて、ホールドタンクなどの背圧空間を形成するユニット及び/又はラインが冷却され温度が低い場合、ホールドユニットにより背圧空間の圧力を保持し難い場合がある。図3に示すプロセスは、ガス導入ユニット(又はガス導入工程)を備えているため、前述のような異常事態により、背圧空間での圧力低下(又は凝縮液の温度低下)が生じた場合でも、非凝縮性ガスを補助的に導入することにより、背圧空間の圧力を有効に保持できる。そのため、背圧空間における圧力制御の操作性(又は容易性)が向上し、より一層安定して(又は円滑に)VRCプロセスを稼働(又は運転)できる。 When the unit and / or line forming the back pressure space such as the hold tank is cooled and the temperature is low at the start of VRC process operation (or at the beginning of operation), it is difficult to hold the pressure of the back pressure space by the hold unit. There is a case. Since the process shown in FIG. 3 includes a gas introduction unit (or a gas introduction step), even if a pressure drop (or a condensate temperature drop) occurs in the back pressure space due to an abnormal situation as described above. By introducing a non-condensable gas as an auxiliary, the pressure in the back pressure space can be effectively maintained. Therefore, the operability (or ease) of pressure control in the back pressure space is improved, and the VRC process can be operated (or operated) more stably (or smoothly).
 なお、ガス導入ライン20から背圧空間に導入された非凝縮性ガスは、熱交換器7で凝縮しなかった再圧縮蒸気(非凝縮蒸気)、プロセス凝縮液に溶解しなかったシールガスなどとともに、ガス成分としてホールドタンク8で分離され、ホールドタンク8のエアリングライン8a及び/又は熱交換器7のエアリングライン9aを経由して、第1の循環ライン9を介して主ユニット(又は主工程)に戻される。 The non-condensable gas introduced into the back pressure space from the gas introduction line 20 includes recompressed steam (non-condensed steam) that has not been condensed in the heat exchanger 7, seal gas that has not been dissolved in the process condensate, and the like. The main unit (or the main unit) is separated as a gas component by the hold tank 8 and via the first circulation line 9 via the air ring line 8a of the hold tank 8 and / or the air ring line 9a of the heat exchanger 7. Return to step).
 一方、脱気ユニット(又は脱気工程)では、凝縮液クーラー18からの凝縮液が凝縮液脱気タンク22で滞留することにより、背圧空間の圧力下で凝縮液に溶解した非凝縮性ガス(例えば、ガス導入ユニットから導入したガス、圧縮機軸受けなどから漏れ出すシールガスなどの非凝縮性ガスなど)が、凝縮液から脱気(気化又は分離)される。脱気された気体成分(非凝縮性ガス)は、スクラバーなどの除害設備(又は排出設備)から排出され、液体成分(凝縮液)は、主ユニット(又は主工程)の凝縮液とともに回収される。そのため、凝縮液に溶解した非凝縮性ガスが再気化して回収先のユニット(又は工程)に影響を及ぼすことはない。 On the other hand, in the deaeration unit (or the deaeration process), the condensate from the condensate cooler 18 stays in the condensate deaeration tank 22, so that the non-condensable gas dissolved in the condensate under the pressure of the back pressure space. (For example, a gas introduced from a gas introduction unit, a non-condensable gas such as a seal gas leaking from a compressor bearing, etc.) is degassed (vaporized or separated) from the condensate. The degassed gas component (non-condensable gas) is discharged from a scrubber or other detoxification facility (or discharge facility), and the liquid component (condensate) is recovered together with the condensate of the main unit (or main process). The Therefore, the non-condensable gas dissolved in the condensate does not re-evaporate and does not affect the recovery destination unit (or process).
 また、本発明の方法(又はプラント)は、ホールドユニットから流出される凝縮液の熱量を、VRCプロセス及び/又は他のプロセスで利用してもよい。図4に示すプロセスは、流量制御弁13と(凝縮液)クーラー18との間に、ホールドユニットから流出された凝縮液をフラッシュ蒸発するためのフラッシュタンク(又はフラッシュ蒸発器)24(フラッシュユニット又はフラッシュ工程)及びフラッシュ蒸発により生じる気体成分(揮発成分)を主ユニット(又は主工程)に戻す第3の循環ライン25を備え、さらに、主ユニット(又は主工程)で発生するプロセス蒸気の少なくとも一部を導入ライン(又は送気ライン)26を介して分岐し、他のプロセスでの熱源として利用するための別ユニット(又は別プロセス)を備えている以外は、図1のプロセスと同様である。なお、フラッシュユニット(又はフラッシュ工程)で分離された液体成分(不揮発成分)は、クーラー18を経由し、凝縮液として回収される。 Also, the method (or plant) of the present invention may use the heat amount of the condensate flowing out of the hold unit in the VRC process and / or other processes. The process shown in FIG. 4 includes a flash tank (or flash evaporator) 24 (flash unit or flash evaporator) for flash evaporation of the condensate flowing out of the hold unit between the flow control valve 13 and the (condensate) cooler 18. And a third circulation line 25 for returning a gas component (volatile component) generated by the flash evaporation to the main unit (or main step), and at least one of process steam generated in the main unit (or main step). The process is the same as the process of FIG. 1 except that a part is branched through an introduction line (or an air supply line) 26 and provided with another unit (or another process) for use as a heat source in another process. . In addition, the liquid component (nonvolatile component) separated by the flash unit (or the flash process) is recovered as a condensate via the cooler 18.
 図4のプロセスは、VRCプロセスの起動前において、主プロセスのみ又は主プロセスと別プロセスとの双方が稼働(又は運転)している。すなわち、流量制御弁15は閉じられており、蒸留塔1から排出されるプロセス蒸気の少なくとも一部は、第1のコンデンサー2及び第2のコンデンサー3により凝縮される。別プロセスが稼働している場合は、別プロセスで凝縮した凝縮液とともに回収されている。 In the process of FIG. 4, only the main process or both the main process and another process are operating (or operating) before starting the VRC process. That is, the flow control valve 15 is closed, and at least a part of the process vapor discharged from the distillation column 1 is condensed by the first condenser 2 and the second condenser 3. When another process is operating, it is collected together with the condensate condensed in the other process.
 図1のプロセスと同様にしてVRCプロセスが起動されると、流量制御弁13(ホールドユニット又はホールド工程)から流出された凝縮液は、冷却されることなく、背圧空間より低圧(例えば、大気圧程度)なフラッシュタンク24に送液され、フラッシュ蒸発する。フラッシュ蒸発により生じた気体成分(揮発成分)は、第3の循環ライン25を経由して、主ユニット(又は主工程)の蒸留塔1と分岐点4との間のラインに戻され、フラッシュ蒸発により生じた不揮発成分は、凝縮液クーラー18(冷却ユニット又は冷却工程)を経由して、主ユニット(又は主工程)の凝縮液とともに回収される。 When the VRC process is started in the same manner as in the process of FIG. 1, the condensate flowing out from the flow control valve 13 (hold unit or hold step) is not cooled and is lower in pressure than the back pressure space (for example, a large amount). The liquid is sent to a flash tank 24 having a pressure of about atmospheric pressure, and flash evaporates. The gas component (volatile component) generated by the flash evaporation is returned to the line between the distillation column 1 of the main unit (or main process) and the branch point 4 via the third circulation line 25, and flash evaporation is performed. The non-volatile components generated by the above are recovered together with the condensate of the main unit (or main process) via the condensate cooler 18 (cooling unit or cooling process).
 主ユニット(又は主工程)に戻された揮発成分は、プロセス蒸気とともに、VRCプロセス及び/又は別プロセスにおいて熱源として利用できる。すなわち、フラッシュユニット(又はフラッシュ工程)は、VRC工程で排出(又は流出)される凝縮液の顕熱を、フラッシュ工程により蒸気の潜熱として再利用可能な状態とするため、複雑な装置などを配設することなく、最小の設備投資で省エネルギー効果をより一層向上できる。なお、プロセス蒸気の揮発成分が混合物である場合、フラッシュユニットの揮発成分の組成は、プロセス蒸気の組成とほぼ同等である場合が多い。また、揮発成分の組成が、プロセス蒸気の組成とやや異なっている場合でも、揮発成分の蒸気量に対するプロセス蒸気の蒸気量が圧倒的に多いため、揮発成分を主工程に戻しても、後工程に悪影響を与えることはない。 The volatile component returned to the main unit (or main process) can be used as a heat source in the VRC process and / or another process together with the process steam. In other words, the flash unit (or the flash process) has a complicated apparatus or the like arranged so that the sensible heat of the condensate discharged (or outflowed) in the VRC process can be reused as the latent heat of the vapor by the flash process. Without installation, the energy saving effect can be further improved with minimum capital investment. When the volatile component of the process steam is a mixture, the composition of the volatile component of the flash unit is often almost the same as the composition of the process steam. Even if the composition of the volatile component is slightly different from the composition of the process vapor, the amount of process vapor relative to the amount of volatile component vapor is overwhelmingly large. Will not be adversely affected.
 また、図4のプロセスのように、VRC工程と、主工程のプロセス蒸気を利用する別プロセスとが併設されていると、主工程で発生するプロセス蒸気量が足りず、VRC工程及び別プロセスの双方を有効に稼働(又は運転)できなくなる場合がある。特に、圧縮機の形式が特にターボ型である場合には、プロセス蒸気の流入量が少ないとサージングにより機器が損傷するおそれがあり、圧縮機に所定量以上のプロセス蒸気を送る必要があるため、別プロセスへのプロセス蒸気量が不足し易く、省エネルギー効果が極端に低下することがある。しかし、本発明では、フラッシュ工程により、不足した蒸気量を揮発成分により補えるため、VRC工程と別プロセスとの双方を有効に(又は両立して)稼働し易い。そのため、主ユニット(又は主工程)と別ユニット(別プロセス)とを有する既存のプラントに対しても、VRCユニット(VRC工程又はVRC方式)が適用し易くなり、プロセス設計の柔軟性をより一層向上できる。 Also, if the VRC process and another process using the process steam of the main process are provided side by side as in the process of FIG. 4, the amount of process steam generated in the main process is insufficient, and the VRC process and the separate process There are cases where both cannot be operated (or operated) effectively. In particular, when the type of the compressor is a turbo type, there is a risk of equipment damage due to surging if the amount of inflow of process steam is small, and it is necessary to send more than a predetermined amount of process steam to the compressor. The amount of process steam to another process tends to be insufficient, and the energy saving effect may be extremely reduced. However, in the present invention, since the deficient amount of steam is compensated by the volatile component by the flash process, both the VRC process and the separate process can be operated effectively (or compatible). Therefore, the VRC unit (VRC process or VRC method) can be easily applied to an existing plant having a main unit (or main process) and another unit (separate process), and process design flexibility is further increased. It can be improved.
 [主工程(主ユニット)]
 主工程(主ユニット)において、プロセス蒸気生成器は、プロセス蒸気を発生する限り、蒸留塔に限定されず、例えば、熱源により加熱蒸発した後、冷却して循環することにより温度制御される装置であってもよく、具体的には、反応器、蒸発器、晶析器、乾燥機などであってもよい。これらのうち、VRC工程を主工程の熱源に組み込み易い点から、蒸留塔が好ましい。蒸留塔は、塔頂からプロセス蒸気が排出され、このプロセス蒸気を冷却凝縮するコンデンサーと、塔底には、原料をガス仕込みするためのリボイラーとを備えており、VRC工程の熱交換器(VRC蒸発器)を熱源として、前記塔底のリボイラーと併用してもよい。
[Main process (Main unit)]
In the main process (main unit), the process steam generator is not limited to a distillation column as long as process steam is generated. For example, the process steam generator is a device whose temperature is controlled by heating and evaporating with a heat source and then cooling and circulating. Specifically, it may be a reactor, an evaporator, a crystallizer, a dryer, or the like. Among these, a distillation column is preferable because the VRC process is easily incorporated into the heat source of the main process. The distillation tower is provided with a condenser for discharging process steam from the top of the tower and cooling and condensing the process steam, and a reboiler for gas charging of the raw material at the bottom of the distillation tower. The evaporator may be used as a heat source in combination with the reboiler at the bottom of the tower.
 プロセス蒸気は、少なくとも凝縮性ガス成分を含んでいればよく、後述する非凝縮性ガス成分を含んでいてもよいが、熱源として寄与し難く、経済的に不利であるなどの観点から、実質的に非凝縮性ガス成分を含まない(又は非凝縮性ガス成分が極めて少量である)のが好ましい。通常、凝縮性ガス成分は、水及び/又は有機溶媒を含んでいる。有機溶媒としては、例えば、アルコール類(エタノール、プロパノール、イソプロパノールなどのアルキルアルコール類、エチレングリコール、プロピレングリコールなどのグリコール類など)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)、ケトン類(アセトン、エチルメチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、アルデヒド類(アセトアルデヒド、プロピオンアルデヒドなど)、カルボン酸類(酢酸、プロピオン酸など)、エーテル類(ジメチルエーテル、ジエチルエーテルなどの鎖状エーテル類、ジオキサン、テトラヒドロフランなどの環状エーテル類など)、炭化水素類(ヘキサンなどの脂肪族炭化水素類、シクロヘキサンなどの脂環式炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類など)、ハロゲン化炭化水素類(塩化メチレン、クロロホルムなど)などが挙げられる。これらの有機溶媒は、単独で又は二種以上組み合わせて使用できる。これらの有機溶媒のうち、エステル類(特に酢酸エステル)、炭化水素類(特に芳香族炭化水素類)が汎用され、エステル類と炭化水素類とを、例えば、エステル類/炭化水素類=99/1~10/90、好ましくは90/10~30/70、さらに好ましくは80/20~50/50程度の重量割合で混合してもよい。 The process steam only needs to contain at least a condensable gas component, and may contain a non-condensable gas component, which will be described later. However, it is difficult to contribute as a heat source and is economically disadvantageous. Is preferably free of non-condensable gas components (or very small amounts of non-condensable gas components). Usually, the condensable gas component contains water and / or an organic solvent. Examples of the organic solvent include alcohols (alkyl alcohols such as ethanol, propanol and isopropanol, glycols such as ethylene glycol and propylene glycol), esters (methyl acetate, ethyl acetate, butyl acetate and the like), ketones ( Acetone, ethyl methyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), aldehydes (acetaldehyde, propionaldehyde, etc.), carboxylic acids (acetic acid, propionic acid, etc.), ethers (chain ethers such as dimethyl ether and diethyl ether, dioxane, Cyclic ethers such as tetrahydrofuran), hydrocarbons (aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatics such as benzene, toluene, xylene, etc. Hydrogen such like), halogenated hydrocarbons (methylene chloride, chloroform, etc.) and the like. These organic solvents can be used alone or in combination of two or more. Of these organic solvents, esters (especially acetates) and hydrocarbons (especially aromatic hydrocarbons) are widely used. For example, esters / hydrocarbons are represented by esters / hydrocarbons = 99 / It may be mixed in a weight ratio of about 1 to 10/90, preferably 90/10 to 30/70, more preferably about 80/20 to 50/50.
 有機溶媒の沸点は、有機溶媒の種類により決定されるが、特に限定されるものではなく、例えば、30~150℃、好ましくは50~120℃、さらに好ましくは60~100℃程度である。 The boiling point of the organic solvent is determined by the type of the organic solvent, but is not particularly limited, and is, for example, about 30 to 150 ° C., preferably 50 to 120 ° C., more preferably about 60 to 100 ° C.
 有機溶媒の蒸気圧(25℃)は、有機溶媒の種類により決定されるが、特に限定されるものではなく、例えば、1~30kPa、好ましくは5~20kPa、さらに好ましくは10~15kPa程度である。 The vapor pressure (25 ° C.) of the organic solvent is determined by the type of the organic solvent, but is not particularly limited, and is, for example, about 1 to 30 kPa, preferably 5 to 20 kPa, and more preferably about 10 to 15 kPa. .
 有機溶媒の割合は、有機溶媒の種類に応じて選択でき、特に限定されないが、プロセス蒸気全体に対して、10重量%以上であってもよく、例えば、30~99重量%、好ましくは50~98重量%、さらに好ましくは80~95重量%(特に85~93重量%)程度であってもよい。 The proportion of the organic solvent can be selected according to the type of the organic solvent and is not particularly limited, but may be 10% by weight or more, for example, 30 to 99% by weight, preferably 50 to It may be about 98% by weight, more preferably about 80 to 95% by weight (particularly 85 to 93% by weight).
 プロセス蒸気の温度は、凝縮性ガスの種類に応じて選択でき、特に限定されないが、例えば、20~200℃、好ましくは30~150℃、さらに好ましくは50~100℃程度である。プロセス蒸気の圧力は、常圧の蒸気であってもよく、加圧された蒸気であってもよい。プロセス蒸気の流量(プロセス蒸気生成器からの排出流量)は、例えば、0.1~100m/sec、好ましくは1~50m/sec、さらに好ましくは3~10m/sec程度である。 The temperature of the process vapor can be selected according to the type of condensable gas, and is not particularly limited, but is, for example, about 20 to 200 ° C., preferably 30 to 150 ° C., and more preferably about 50 to 100 ° C. The pressure of the process steam may be atmospheric pressure steam or pressurized steam. The flow rate of the process steam (discharge flow rate from the process steam generator) is, for example, about 0.1 to 100 m 3 / sec, preferably 1 to 50 m 3 / sec, and more preferably about 3 to 10 m 3 / sec.
 主工程におけるコンデンサーは、単独であってもよいが、プロセス蒸気中の凝縮性ガス成分を効率良く凝縮できるとともに、VRC工程に未凝縮の蒸気が循環されることを抑制できる点から、複数のコンデンサーを直列に配設するのが好ましく、例えば、2つのコンデンサーを直列に配設してもよい。コンデンサーの能力は、特に限定されず、通常、VRC工程を稼働させない主工程の単独運転でプロセス蒸気中の凝縮性ガス成分を凝縮可能な能力が選択される。単独でコンデンサーを配設する場合、第1の循環ラインはコンデンサーの上流側に接続される。複数のコンデンサーを配設する場合、複数のコンデンサーを直列に配設し、最初のコンデンサーよりも上流側に第1の循環ラインを接続してもよいが、最初のコンデンサーよりも下流側であり、かつ最後のコンデンサーよりも上流側のライン(隣接するコンデンサー間のラインであり、2つのコンデンサーが直列に配設されている場合、第1のコンデンサーと第2のコンデンサーとの間のライン)に第1の循環ラインを接続することにより、第1の循環ラインからの未凝縮の再圧縮蒸気中の凝縮性ガス成分がVRC工程に循環(逆流)することを抑制できる。複数のコンデンサーは、異なるコンデンサーであってもよく、同一のコンデンサーであってもよいが、通常、最初のコンデンサーとして、最初(上流側)のコンデンサーのみで定常運転時のプロセス蒸気中の凝縮性ガス成分の全量を凝縮できるだけの能力を有するコンデンサーが使用される。 The condenser in the main process may be independent, but it is possible to efficiently condense the condensable gas component in the process steam and to suppress the circulation of uncondensed steam in the VRC process. Are preferably arranged in series. For example, two capacitors may be arranged in series. The capacity | capacitance of a condenser is not specifically limited, Usually, the capacity | capacitance which can condense the condensable gas component in a process vapor | steam by the single operation of the main process which does not operate a VRC process is selected. When the condenser is provided alone, the first circulation line is connected to the upstream side of the condenser. When arranging a plurality of capacitors, a plurality of capacitors may be arranged in series, and the first circulation line may be connected upstream of the first capacitor, but downstream of the first capacitor, And a line upstream of the last capacitor (a line between adjacent capacitors, and when two capacitors are arranged in series, a line between the first capacitor and the second capacitor) By connecting 1 circulation line, it can suppress that the condensable gas component in the non-condensed recompressed steam from the 1st circulation line circulates (backflows) to the VRC process. The plurality of condensers may be different condensers or the same condenser, but usually the first condenser (condensable gas in the process steam during steady operation only with the first condenser (upstream)). A condenser is used that has the capacity to condense all of the components.
 主工程は、さらにリボイラーなどの熱交換器を備えていてもよい。熱交換器は、例えば、プロセス蒸気生成器の原料をガス状で仕込むための主プロセス蒸発器であってもよい。特に、蒸留塔の場合、前述のように、主プロセス蒸発器は、塔底リボイラーであってもよく、VRC工程の熱交換器(VRC蒸発器など)をこの塔底リボイラーとともに主工程の熱源として利用してもよい。 The main process may further include a heat exchanger such as a reboiler. The heat exchanger may be, for example, a main process evaporator for charging the raw material of the process steam generator in a gaseous state. In particular, in the case of a distillation column, as described above, the main process evaporator may be a column bottom reboiler, and a heat exchanger (such as a VRC evaporator) in the VRC process is used as a heat source for the main process together with the column bottom reboiler. May be used.
 主工程におけるプロセス蒸気の排出ラインは、前記コンデンサーによりプロセス蒸気を冷却凝縮する主ラインと、VRC工程に供給されるVRCラインとに分岐しており、VRC工程に供給されるVRCラインにおいて、流量制御装置は必須ではないが、プラントの安定した運転のために、上流に、VRC工程へのプロセス蒸気の流量を制御するための流量制御装置を配設するのが好ましい。この流量制御装置は、通常、運転開始時には閉じた状態から徐々に開度を大きくし、VRC工程が安定した定常運転時には一定の開度(例えば、全開)に調整される。主ラインとVRCラインとに分配されるプロセス蒸気の割合は、圧縮機の能力に応じて適宜選択でき、省エネルギーの点からは、VRCラインに供給される割合が多い方が好ましく、例えば、定常運転時において、全量のプロセス蒸気をVRCラインに分配してもよいが、通常、一部のプロセス蒸気が主ラインに供給され、残部がVRCラインに供給される。 The process steam discharge line in the main process branches into a main line for cooling and condensing the process steam by the condenser and a VRC line supplied to the VRC process. In the VRC line supplied to the VRC process, flow control is performed. Although an apparatus is not essential, it is preferable to arrange | position the flow volume control apparatus for controlling the flow volume of the process steam to a VRC process upstream for the stable operation | movement of a plant. Normally, the flow rate control device gradually increases the opening degree from the closed state at the start of operation, and is adjusted to a constant opening degree (for example, fully open) during steady operation when the VRC process is stable. The ratio of the process steam distributed between the main line and the VRC line can be appropriately selected according to the capacity of the compressor. From the viewpoint of energy saving, it is preferable that the ratio supplied to the VRC line is larger. At times, the entire amount of process steam may be distributed to the VRC line, but usually some of the process steam is supplied to the main line and the remainder is supplied to the VRC line.
 [再圧縮工程(蒸気再圧縮ユニット)]
 VRC工程において、蒸気再圧縮ユニットの形式は、特に限定されず、慣用の形式、例えば、スクリュー型、ターボ型、レシプロ型などの各種タイプの圧縮機を使用できる。これらのうち、安全性や簡便性の向上効果が大きい点から、スクリュー型、ターボ型が好ましい。
[Recompression process (vapor recompression unit)]
In the VRC process, the type of the vapor recompression unit is not particularly limited, and various types of compressors such as a conventional type, for example, a screw type, a turbo type, and a reciprocating type can be used. Among these, the screw type and the turbo type are preferable because the effect of improving safety and simplicity is great.
 なお、前述の通り、図1の例において、ターボ型圧縮機を備えたプラントにより、再圧縮蒸気の利用方法を説明したが、スクリュー型圧縮機を備えたプラントでは、圧縮機の昇圧開始前(凝縮開始前)におけるVRCプロセスでのプロセス蒸気の循環方法が若干異なる。具体的には、スクリュー型圧縮機を備えたプラントでは、プラントを構成する装置として、圧縮機の種類が異なることに加えて、圧縮機上流側に隣接する流量制御装置(図1における流量制御弁17)を配設しない点で、ターボ型圧縮機を備えたプラントと異なっている。プロセス蒸気の循環操作としては、スクリュー型圧縮機を備えたプラントでは、スクリュー型圧縮機を起動し、定格回転数で安定するのを確認してから、第2の循環ラインに配設される流量制御装置(図1における流量制御弁12)を閉じる点において、ターボ型圧縮機を備えたプラントと相違する。詳しくは、スクリュー型圧縮機を通過したプロセス蒸気には吐出圧は殆ど負荷されていないものの、前述の通り、圧縮機の軸動力×機械効率×(1-断熱効率)の熱が圧縮機内を通過するプロセス蒸気に伝熱することで若干の温度上昇が生じる。そして、若干昇温されたプロセス蒸気の一部は、第2の循環ラインを通して圧縮機の吸入側に循環しており、循環が続くと圧縮機の上限を上回る高温となるおそれがあるため、圧縮機の運転状況が安定した後、第2の循環ラインに配設される流量制御装置を閉じる。第2の循環ラインに配設される流量制御装置を閉じても、第1の循環ラインにより、VRC工程を循環する未凝縮の再圧縮蒸気は主工程へと戻れるため、第2の循環ラインを循環することにより圧縮機が上限温度以上に加熱される前に、第2の循環ラインでの循環を停止できる。そのため、第2の循環ラインの循環により昇温した圧縮機を冷却するための設備も不要である。このように圧縮機の種類により凝縮開始前の循環方法は異なるものの、いずれの圧縮機においても、再圧縮蒸気を熱源として安全かつ簡便に再利用できる。 As described above, in the example of FIG. 1, the utilization method of the recompressed steam was explained by the plant equipped with the turbo compressor, but in the plant equipped with the screw compressor, before the pressurization of the compressor ( The process steam circulation method in the VRC process (before the start of condensation) is slightly different. Specifically, in a plant equipped with a screw type compressor, as a device constituting the plant, in addition to different types of compressors, a flow control device adjacent to the upstream side of the compressor (the flow control valve in FIG. 1). It differs from a plant equipped with a turbo compressor in that 17) is not provided. As the process steam circulation operation, in a plant equipped with a screw-type compressor, the screw-type compressor is started and the flow rate disposed in the second circulation line is confirmed after being stabilized at the rated rotational speed. In the point which closes a control device (flow control valve 12 in Drawing 1), it differs from a plant provided with a turbo type compressor. Specifically, although the discharge pressure is hardly applied to the process steam that has passed through the screw compressor, as described above, the heat of the compressor shaft power x mechanical efficiency x (1-adiabatic efficiency) passes through the compressor. Heat transfer to the process steam causes a slight temperature rise. A part of the process steam whose temperature is slightly raised is circulated to the suction side of the compressor through the second circulation line. If the circulation continues, the temperature may exceed the upper limit of the compressor. After the operation state of the machine is stabilized, the flow control device disposed in the second circulation line is closed. Even if the flow control device disposed in the second circulation line is closed, the uncondensed recompressed steam circulating through the VRC process can be returned to the main process by the first circulation line. Circulation can be stopped in the second circulation line before the compressor is heated above the upper limit temperature. Therefore, the equipment for cooling the compressor heated up by the circulation of the second circulation line is also unnecessary. Thus, although the circulation method before the start of condensation differs depending on the type of the compressor, in any compressor, the recompressed steam can be safely and easily reused as a heat source.
 蒸気再圧縮ユニットの吐出圧は、プロセス蒸気の種類に応じて選択できるが、定常時の圧力が、例えば、30kPaG(ゲージ圧)以上(例えば、30~400kPaG)、好ましくは40~200kPaG、さらに好ましくは50~100kPaG程度である。 The discharge pressure of the steam recompression unit can be selected according to the type of process steam, but the steady-state pressure is, for example, 30 kPaG (gauge pressure) or more (for example, 30 to 400 kPaG), preferably 40 to 200 kPaG, more preferably Is about 50 to 100 kPaG.
 本発明では、第1の循環ライン(循環工程)から主ユニットに戻す流量を調整し、蒸気再圧縮ユニットによるプロセス蒸気の圧縮比(吐出圧/吸入圧)(絶対圧)を制御することにより、再圧縮蒸気の温度を目的の温度に調整する。本発明では、流量制御装置により、第1の循環ラインから主ユニットに戻す流量を抑えれば圧縮比は上昇し、圧縮比の上昇により温度が上昇することにより熱交換効率を向上できる。前記圧縮比は、再圧縮蒸気の目的の温度に応じて適宜選択できるが、例えば、2~5(例えば、2.2~4.5)、好ましくは2.4~4、さらに好ましくは2.5~3.5(例えば、2.7~3.3)程度に調整してもよい。 In the present invention, by adjusting the flow rate returned from the first circulation line (circulation step) to the main unit and controlling the process steam compression ratio (discharge pressure / suction pressure) (absolute pressure) by the steam recompression unit, Adjust the temperature of the recompressed steam to the desired temperature. In the present invention, if the flow rate returned to the main unit from the first circulation line is suppressed by the flow rate control device, the compression ratio increases, and the temperature increases due to the increase in the compression ratio, thereby improving the heat exchange efficiency. The compression ratio can be appropriately selected according to the target temperature of the recompressed steam. For example, it is 2 to 5 (for example, 2.2 to 4.5), preferably 2.4 to 4, and more preferably 2. It may be adjusted to about 5 to 3.5 (for example, 2.7 to 3.3).
 蒸気再圧縮ユニットの吐出温度は、プロセス蒸気の種類に応じて選択できるが、例えば、蒸気再圧縮ユニットに供給される前のプロセス蒸気の温度に対して、例えば、5℃以上高い吐出温度に設定してもよく、例えば、5~100℃、好ましくは10~80℃、さらに好ましくは15~50℃程度高い吐出温度に設定してもよい。 The discharge temperature of the steam recompression unit can be selected according to the type of process steam. For example, it is set to a discharge temperature that is, for example, 5 ° C. higher than the temperature of the process steam before being supplied to the steam recompression unit. For example, the discharge temperature may be set higher by 5 to 100 ° C., preferably 10 to 80 ° C., and more preferably 15 to 50 ° C.
 蒸気再圧縮ユニットにおいて、第2の循環ライン(圧縮機の戻し配管)は必須ではないが、安定してVRC工程を稼働できる点から、流量制御装置が配設された第2の循環ラインを備えてもよい。ターボ型圧縮機では、圧縮機に導入されるVRCラインは、第2の循環ラインと合流後のラインにおいて、さらに流動制御装置を備えていてもよい。ターボ型圧縮機を備えたプラントでは、圧縮機の起動前及びプロセスの安定稼働中においても、この流量制御装置の開度を調整することにより、圧縮機に導入されるプロセス蒸気の流量を調整してもよい。さらに、スクリュー型圧縮機を備えたプラントにおける第2の循環ラインでは、VRC工程稼働初期(コールドスタート)において、流量制御装置を開いて、プロセス蒸気を第2の循環ラインに循環させ、圧縮機の運転開始時に回転部が安定した回転数に至るまでの短期間に限って使用してもよい。圧縮機には、その機構内に第2の循環ラインの機能を有するタイプも市販されている。 In the steam recompression unit, the second circulation line (return pipe of the compressor) is not essential, but since the VRC process can be stably operated, the second recirculation line provided with the flow rate control device is provided. May be. In the turbo compressor, the VRC line introduced into the compressor may further include a flow control device in the line after joining the second circulation line. In a plant equipped with a turbo compressor, the flow rate of the process steam introduced into the compressor is adjusted by adjusting the opening of the flow control device even before the compressor is started and during stable operation of the process. May be. Further, in the second circulation line in the plant equipped with the screw type compressor, in the initial stage of the VRC process operation (cold start), the flow rate control device is opened, and the process steam is circulated to the second circulation line. It may be used only for a short period of time until the rotating part reaches a stable rotational speed at the start of operation. A compressor having a function of a second circulation line in its mechanism is also commercially available.
 なお、本明細書及び請求の範囲では、再圧縮蒸気について、前述の定義に加えて、蒸気再圧縮ユニット(工程)を通過したプロセス蒸気であれば、コールドスタート時のプロセス蒸気(圧縮の程度及び温度上昇が小さい蒸気)も、再圧縮蒸気と称する場合がある。 In addition, in the present specification and claims, in addition to the above definition, the recompressed steam is a process steam that has passed through a steam recompression unit (step) (the degree of compression and the degree of compression). Steam with a small temperature rise) may also be referred to as recompressed steam.
 [熱交換工程(熱交換ユニット)]
 熱交換ユニットは、慣用の熱交換器(例えば、多管式熱交換器などの蒸発器など)を利用でき、前述のように、主工程の主プロセス蒸発器とともに、この熱交換ユニットを主工程の熱源として利用できるため、プラントを省資源省エネルギー型の設備とすることができる。熱交換ユニットを主工程の熱源として利用した場合、VRC蒸発器の仕込量の割合は、全仕込量(VRC蒸発器の仕込量と主プロセス蒸発器の仕込量との合計量)に対して、例えば、50%以上であってもよく、好ましくは60%以上(例えば、65~95%)、さらに好ましくは70%以上(例えば、75~90%)程度であってもよい。なお、前記VRC蒸発器の仕込み量の割合は、重量%であってもよく、体積%であってもよい。本発明の方法では、熱交換ユニット(VRC蒸発器)での蒸発量の増加に伴い、主プロセス蒸発器での仕込量を適宜減少させて運転される。
[Heat exchange process (heat exchange unit)]
The heat exchange unit can use a conventional heat exchanger (for example, an evaporator such as a multi-tube heat exchanger). As described above, this heat exchange unit can be used as a main process together with the main process evaporator of the main process. Therefore, the plant can be a resource-saving and energy-saving facility. When the heat exchange unit is used as a heat source for the main process, the proportion of the VRC evaporator charge is based on the total charge (total amount of VRC evaporator charge and main process evaporator charge). For example, it may be 50% or more, preferably 60% or more (for example, 65 to 95%), more preferably about 70% or more (for example, 75 to 90%). In addition, the ratio of the charged amount of the VRC evaporator may be weight% or volume%. The method of the present invention is operated by appropriately reducing the amount charged in the main process evaporator as the amount of evaporation in the heat exchange unit (VRC evaporator) increases.
 熱交換ユニットは、第1の循環ラインと接続されており、熱交換ユニットにおける凝縮しなかったガス成分(非凝縮蒸気及び非凝縮性ガスなどを含む非凝縮成分)は、熱交換ユニット及び/又はホールドユニットのエアリングラインを経由して、第1の循環ラインにより主工程に戻される。熱交換ユニット(熱交換工程又は凝縮工程)において、蒸気再圧縮ユニットが安定するまでの運転初期では、再圧縮蒸気の温度上昇が低いため、殆どのプロセス流体がガス状のまま第1の循環ラインにより主工程に戻される。一方、蒸気再圧縮ユニットが安定した状態では、再圧縮蒸気の一部が凝縮されるようプロセス設計してもよいが、再圧縮蒸気中の凝縮性ガス成分の全部が凝縮(全凝縮)されるように熱交換ユニット(又は熱交換工程)をプロセス設計するのが好ましい。このように設計された熱交換工程では、再圧縮蒸気中の凝縮性ガス成分の殆どが凝縮されるため、第1の循環ラインに供給される未凝縮の蒸気(凝縮性ガス成分)は殆どない。なお、本発明の効果を害しない範囲であれば、全凝縮せずに、再圧縮蒸気の一部を背圧保持のため、第1の循環ラインに流して利用してもよい。 The heat exchange unit is connected to the first circulation line, and gas components that have not been condensed in the heat exchange unit (non-condensed components including non-condensable vapor and non-condensable gas) are included in the heat exchange unit and / or It returns to the main process by the first circulation line via the air ring line of the hold unit. In the heat exchanging unit (heat exchanging step or condensing step), since the temperature rise of the recompressed steam is low at the initial stage of operation until the vapor recompressing unit becomes stable, most of the process fluid remains in the gaseous state in the first circulation line. Is returned to the main process. On the other hand, when the vapor recompression unit is stable, the process may be designed so that a part of the recompressed steam is condensed. However, all the condensable gas components in the recompressed steam are condensed (totally condensed). Thus, it is preferable to process-design the heat exchange unit (or heat exchange step). In the heat exchange process designed in this way, since most of the condensable gas component in the recompressed steam is condensed, there is almost no uncondensed steam (condensable gas component) supplied to the first circulation line. . In addition, as long as the effect of the present invention is not adversely affected, a part of the recompressed steam may be flowed to the first circulation line for maintaining the back pressure without being fully condensed.
 また、本発明では、伝熱面積が大きく、大量処理に対応可能な熱交換ユニットであっても、ホールドユニットにより有効に背圧を保持できるため、処理量や運転条件の変動が大きなプラントに対してもVRC方式を適用し易く、プロセス設計の柔軟性にも優れている。 In the present invention, even if the heat exchange unit has a large heat transfer area and can handle a large amount of processing, the back pressure can be effectively held by the hold unit. However, the VRC method is easy to apply, and the process design flexibility is excellent.
 [ホールド工程(ホールドユニット)]
 本発明では、ホールドユニット(ホールド工程)は、少なくとも1つのホールドタンクを有していればよく、複数のホールドタンクを有していてもよい。複数のホールドタンクを有する場合、ホールドタンクは、それぞれ直列及び/又は並列に接続されていてもよい。
[Hold process (hold unit)]
In the present invention, the hold unit (hold process) only needs to have at least one hold tank, and may have a plurality of hold tanks. When having a plurality of hold tanks, the hold tanks may be connected in series and / or in parallel, respectively.
 ホールドユニットは、通常、熱交換ユニットで凝縮した凝縮液と凝縮しなかった非凝縮成分とを分離する気液分離機能を有していてもよい。このような気液分離機能を有するホールドユニットは、気液分離可能なホールドタンクを有していてもよく、気液分離器とホールドタンクとで形成してもよく、気液分離可能なホールドタンク及び気液分離器の双方を有していてもよい。 The hold unit may usually have a gas-liquid separation function for separating the condensate condensed by the heat exchange unit and the non-condensed components that have not been condensed. The hold unit having such a gas-liquid separation function may have a hold tank capable of gas-liquid separation, or may be formed of a gas-liquid separator and a hold tank. And a gas-liquid separator.
 気液分離可能なホールドタンクは、特に制限されず、例えば、ホールドタンクが、気液分離可能な程度に適切な容量を有し、かつ分離されたガス成分(非凝縮成分)を背圧空間に戻す(又は連絡する)ためのエアリングライン(又は均圧管)を有していればよく、凝縮液を滞留させることにより、気相と液相とに分離できればよい。タンクの容量が大きすぎると、滞留時間を長くする必要があるため、タンク表面からの放熱により凝縮液の温度が低下し、背圧を有効に保持できなくなるおそれがある。 The hold tank capable of gas-liquid separation is not particularly limited. For example, the hold tank has an appropriate capacity that allows gas-liquid separation, and the separated gas component (non-condensed component) is used as a back pressure space. It is only necessary to have an air ring line (or a pressure equalizing pipe) for returning (or communicating), and it is only necessary that the condensate can be separated into a gas phase and a liquid phase. If the capacity of the tank is too large, it is necessary to lengthen the residence time. Therefore, the temperature of the condensate may be reduced due to heat radiation from the tank surface, and the back pressure may not be effectively maintained.
 また、気液分離器としては、ガス成分と、凝縮液とを分離できれば、特に限定されない。また、気液分離器は、通常、分離された液体成分を送るため、ホールドタンクの上流側に接続されている場合が多く、分離されたガス成分(非凝縮成分)を背圧空間に戻す(又は連絡する)ためのエアリングライン(又は均圧管)を有している場合が多い。 Further, the gas-liquid separator is not particularly limited as long as the gas component and the condensate can be separated. The gas-liquid separator is usually connected to the upstream side of the hold tank in order to send the separated liquid component, and the separated gas component (non-condensed component) is returned to the back pressure space ( In many cases, it has an air ring line (or pressure equalizing pipe) for communication).
 なお、気液分離されるガス成分(非凝縮成分)は、熱交換ユニットにおいて凝縮しきれなかった蒸気に加え、ガス導入ユニットから導入された非凝縮性ガス、及び圧縮機の軸受けなどからプロセス内に漏れ込んだシーリングガス(窒素ガスなど)などのうち、プロセス凝縮液に溶け切れなかったガス成分、ホールドタンクで滞留する凝縮液の気液平衡により生じる蒸気などを含んでいてもよい。これらの非凝縮成分は、気液分離可能なホールドタンク及び/又は気液分離器のエアリングラインを経由して、第1の循環ラインにより主工程に戻され処理されてもよい。 The gas component (non-condensed component) that is separated from the gas is separated from the steam that cannot be condensed in the heat exchange unit, the non-condensable gas introduced from the gas introduction unit, and the compressor bearing. Among the sealing gas (such as nitrogen gas) leaked into the gas, a gas component that was not completely dissolved in the process condensate, a vapor generated by the vapor-liquid equilibrium of the condensate remaining in the hold tank, and the like may be included. These non-condensed components may be returned to the main process and processed by the first circulation line via a hold tank capable of gas-liquid separation and / or an air ring line of the gas-liquid separator.
 気液分離可能なホールドタンクのエアリングラインは、ホールドタンク内の気相部と、蒸気再圧縮ユニットの下流の背圧空間のうち、ホールドタンクよりも上流側の気相空間(例えば、第1の循環ライン)とを接続するラインであってもよい。また、気液分離器のエアリングラインは、気液分離器で分離した気体成分を、蒸気再圧縮ユニットの下流の背圧空間のうち、気液分離器よりも上流側の気相空間(例えば、第1の循環ライン)に戻すラインであってもよい。それぞれのエアリングラインが接続される位置は、背圧空間である限り、特に制限されず、例えば、蒸気再圧縮ユニットと熱交換ユニットとの間のライン、熱交換ユニットなどに接続されていてもよいが、通常、第1の循環ライン(図1における流量制御弁11の上流側)に接続されている場合が多い。 The air ring line of the hold tank capable of gas-liquid separation includes a gas phase space in the hold tank and a gas pressure space upstream of the hold tank (for example, the first gas pressure space). A circulation line) may be used. In addition, the air ring line of the gas-liquid separator is a gas-phase space (e.g., upstream of the gas-liquid separator in the back pressure space downstream of the vapor recompression unit). , The first return line). The position where each air ring line is connected is not particularly limited as long as it is a back pressure space. For example, even if it is connected to a line between the steam recompression unit and the heat exchange unit, a heat exchange unit, or the like. Usually, it is often connected to the first circulation line (upstream side of the flow control valve 11 in FIG. 1).
 ホールドタンクがエアリングライン(又は気液分離機能)を有していると、滞留(又は貯留)させる凝縮液の蒸気圧(又は飽和蒸気圧)を、背圧保持のために、有効に機能させることができるため好ましい。なお、ホールドタンクに凝縮液を流入するラインが、凝縮液の流入量に対して十分に大きく、ホールドタンク内の気相空間と背圧空間(例えば、熱交換ユニットなど)とが凝縮液で塞がれることなく連通(又は連絡)している場合(滞留する凝縮液の蒸気圧を、背圧保持に利用できる程度に繋がっている場合)は、エアリングラインは必ずしも必要ではないが、エアリングラインを設ける場合が多い。 When the hold tank has an air ring line (or gas-liquid separation function), the vapor pressure (or saturated vapor pressure) of the condensate that is retained (or stored) is effectively functioned to maintain the back pressure. This is preferable. Note that the line through which the condensate flows into the hold tank is sufficiently large with respect to the inflow of the condensate, and the gas phase space and the back pressure space (for example, the heat exchange unit) in the hold tank are blocked with the condensate. The air ring line is not always necessary when communicating (or communicating) without escaping (when the vapor pressure of the condensate that remains is connected to the extent that it can be used to maintain the back pressure) In many cases, a line is provided.
 ホールドユニット(又はホールド工程)は、凝縮液を滞留させるホールドタンクを有しているが、通常、凝縮液を一時的に滞留(又は貯留)させるホールドタンク(又は凝縮液タンク)が設置される場合、設備保守による負荷を軽減する観点から、タンク上流側に凝縮液クーラーを設置して凝縮液を冷却し、タンクが法規上の高圧ガス設備にならないようにするのが一般的であった。しかし、本発明では、凝縮液を強制的に冷却又は急冷することなく比較的高温(例えば、背圧空間の圧力下における凝縮液の沸点付近の温度)な状態に保つことにより、蒸気圧による背圧保持効果を有効に向上できる。このような観点から、ホールドユニットでは、ホールドタンクの上流側に、凝縮液を冷却するための冷却ユニットを備えることなく、ホールドタンクで凝縮液を滞留させる。 The hold unit (or hold process) has a hold tank that retains the condensate, but usually a hold tank (or condensate tank) that temporarily retains (or stores) the condensate is installed. From the viewpoint of reducing the load caused by equipment maintenance, it is common to install a condensate cooler upstream of the tank to cool the condensate so that the tank does not become a high-pressure gas facility in accordance with regulations. However, in the present invention, the condensate is kept at a relatively high temperature (for example, a temperature near the boiling point of the condensate under the pressure in the back pressure space) without forcibly cooling or quenching the condensate. The pressure holding effect can be improved effectively. From such a viewpoint, in the hold unit, the condensate is retained in the hold tank without providing a cooling unit for cooling the condensate upstream of the hold tank.
 同様の観点から、ホールドユニットを含む背圧空間を形成するユニット及びラインの少なくとも一部(特に、ホールドタンク)は、保温されているのが好ましい。保温方法は、特に制限されず、慣用の断熱材などで保温する方法などであってもよく、省エネルギー効果を損なわない範囲で、ヒーターなどを利用して保温(又は加熱)する方法であってもよい。 From the same point of view, it is preferable that at least a part (particularly the hold tank) of the unit and the line forming the back pressure space including the hold unit is kept warm. The heat retention method is not particularly limited, and may be a method of keeping warm with a conventional heat insulating material or the like, or a method of keeping warm (or heating) using a heater or the like within a range not impairing the energy saving effect. Good.
 ホールドタンク(又はホールドユニット)で滞留させる凝縮液の温度は、凝縮液を構成する少なくとも1つの成分の沸点(背圧空間の圧力下における沸点)よりも高い温度であれば、背圧を有効に維持又は保持し易い。そのため、必要であれば、凝縮液は、加熱することにより温度を上げてもよい。滞留させる凝縮液の温度として、代表的には、熱交換工程の流出口(又は熱交換ユニット出口側)での温度Tに対して、例えば、(T-50)℃~(T+20)℃(例えば、(T-40)℃~(T+15)℃)、好ましくは(T-30)℃~(T+10)℃(例えば、(T-20)℃~(T+5)℃)、さらに好ましくは(T-10)℃~(T+3)℃(例えば、(T-5)℃~T℃)程度であってもよい。なお、本明細書及び請求の範囲において、「熱交換工程の流出口での温度T」は、VRC工程が安定して稼働している状態において、熱交換ユニット(又は熱交換器)から排出された直後(又はその近傍)の凝縮液の温度を意味する。また、滞留する凝縮液の具体的な温度は、例えば、40~150℃(例えば、50~130℃)、好ましくは60~120℃(例えば、70~110℃)、さらに好ましくは80~105℃(例えば、85~100℃)程度であってもよい。凝縮液の温度が低すぎると、背圧を保持し難くなるおそれがある。 If the temperature of the condensate retained in the hold tank (or hold unit) is higher than the boiling point (boiling point under the pressure of the back pressure space) of at least one component constituting the condensate, the back pressure is effectively used. Easy to maintain or hold. Therefore, if necessary, the temperature of the condensate may be increased by heating. Typically, the temperature of the condensate to be retained is, for example, (T−50) ° C. to (T + 20) ° C. (for example, with respect to the temperature T at the outlet (or outlet of the heat exchange unit) in the heat exchange step. , (T-40) ° C. to (T + 15) ° C.), preferably (T-30) ° C. to (T + 10) ° C. (eg, (T-20) ° C. to (T + 5) ° C.), more preferably (T-10 ) ° C. to (T + 3) ° C. (for example, (T-5) ° C. to T ° C.). In the present specification and claims, the “temperature T at the outlet of the heat exchange process” is discharged from the heat exchange unit (or heat exchanger) in a state where the VRC process is stably operated. It means the temperature of the condensate immediately after (or in the vicinity of). The specific temperature of the condensate staying is, for example, 40 to 150 ° C. (eg 50 to 130 ° C.), preferably 60 to 120 ° C. (eg 70 to 110 ° C.), more preferably 80 to 105 ° C. It may be about (for example, 85 to 100 ° C.). If the temperature of the condensate is too low, it may be difficult to maintain the back pressure.
 ホールドユニットは、凝縮液の流出量を制御するための流量制御装置(流量制御弁又はバルブ)を備えていなくてもよいが、有効に背圧を保持し、安定してVRC工程を稼働できる点から、凝縮液の流出量を調整して、ホールドタンクに所定量の凝縮液を滞留させる(又は凝縮液の液面をホールドタンク内で所定の位置(液面位)に制御する)ため、ホールドタンクからの凝縮液抜取り量を調整して、滞留する凝縮液の温度低下を抑制(又は保温)するため、及び/又は急激な抜取りによる圧力低下を抑制するために、流量制御装置を有していてもよい。ホールドユニット(又はホールド工程)における凝縮液の滞留時間(又は平均滞留時間)は、例えば、0.5分~10時間(例えば、1分~5時間)、好ましくは1.5分~3時間(例えば、2分~1時間)、さらに好ましくは2.5~30分(例えば、3~10分)程度であってもよい。滞留時間が短すぎると、背圧の変動幅が大きくなったり、背圧を保持し難くなるため、VRCプロセスを安定に運転できないおそれがある。逆に長すぎると、放熱により凝縮液の温度が低下し、背圧が保持し難くなったり、容量が大きなホールドタンクが必要になり、設備を省スペース化し難くなるおそれがある。 The hold unit may not have a flow rate control device (flow rate control valve or valve) for controlling the flow rate of the condensate, but can effectively hold the back pressure and operate the VRC process stably. To adjust the outflow amount of the condensate and hold a predetermined amount of condensate in the hold tank (or to control the liquid level of the condensate to a predetermined position (liquid level) in the hold tank). In order to adjust the condensate extraction amount from the tank to suppress (or keep warm) the temperature drop of the condensate staying, and / or to suppress the pressure drop due to abrupt extraction, it has a flow control device. May be. The condensate residence time (or average residence time) in the hold unit (or hold step) is, for example, 0.5 minutes to 10 hours (eg, 1 minute to 5 hours), preferably 1.5 minutes to 3 hours ( For example, it may be about 2 minutes to 1 hour), more preferably about 2.5 to 30 minutes (for example, 3 to 10 minutes). If the residence time is too short, the fluctuation range of the back pressure becomes large or it becomes difficult to maintain the back pressure, so there is a possibility that the VRC process cannot be stably operated. On the other hand, if the length is too long, the temperature of the condensate decreases due to heat dissipation, and it becomes difficult to maintain the back pressure or a large capacity hold tank, which may make it difficult to save space in the equipment.
 ホールドユニット(又はホールド工程)における凝縮液の抜取り量(又は平均抜取り量)は、例えば、1~100トン/hr、好ましくは10~50トン/hr、さらに好ましくは20~40トン/hr程度であってもよく、VRCプロセスの定常運転時において、熱交換ユニット(熱交換工程)からの凝縮液導入量と同程度の量であってもよい。 The condensate withdrawal amount (or average withdrawal amount) in the hold unit (or hold step) is, for example, about 1 to 100 tons / hr, preferably 10 to 50 tons / hr, more preferably about 20 to 40 tons / hr. The amount may be the same as the amount of condensate introduced from the heat exchange unit (heat exchange step) during steady operation of the VRC process.
 ホールドユニットにおける凝縮液の滞留量は、例えば、0.1~20m(例えば、0.3~10m)、好ましくは0.5~5m(例えば、0.8~3m)、さらに好ましくは1~2m(例えば、1.2~1.8m)程度であってもよい。 The condensate retention amount in the hold unit is, for example, 0.1 to 20 m 3 (for example, 0.3 to 10 m 3 ), preferably 0.5 to 5 m 3 (for example, 0.8 to 3 m 3 ), and more preferably. May be about 1 to 2 m 3 (for example, 1.2 to 1.8 m 3 ).
 本発明では、ホールドユニット(又はホールド工程)により、背圧空間の圧力を容易に制御でき、熱交換ユニット(熱交換工程)において、再圧縮蒸気中の凝縮性ガス成分を有効に凝縮(例えば、全凝縮)することが可能となるため、省エネルギー効果をより一層向上できる。例えば、再圧縮蒸気の全量を凝縮(全凝縮)する場合、エネルギー効率(例えば、定常運転時に対する単位時間当たり熱源スチーム低減量など)は、従来の背圧を維持し難いVRC方式と比較して、例えば、30~100%、好ましくは40~80%(例えば、50%)程度も向上できる。 In the present invention, the pressure in the back pressure space can be easily controlled by the hold unit (or hold process), and the condensable gas component in the recompressed steam is effectively condensed (for example, in the heat exchange unit (heat exchange process) (for example, The energy saving effect can be further improved. For example, when the entire amount of recompressed steam is condensed (total condensation), the energy efficiency (for example, the amount of heat source steam reduced per unit time during steady operation) is lower than that of the conventional VRC method in which it is difficult to maintain the back pressure. For example, it can be improved by 30 to 100%, preferably 40 to 80% (for example, 50%).
 [冷却工程(冷却ユニット)]
 本発明では、必要に応じて、ホールドユニットの下流に、凝縮液を冷却するための冷却ユニットを備えていてもよい。冷却ユニットは、少なくとも凝縮液を冷却するための冷却装置(又はクーラー)を備えており、冷却装置には、慣用の冷却装置が利用できる。冷却ユニットは、前記冷却装置を1又は複数備えていてもよく、複数備えている場合には、それぞれ直列及び/又は並列に接続されていてもよい。また、ホールドユニットの下流である限り、冷却ユニットは、1つ配設されていてもよく、他のユニット(又は工程)を間に備えて、複数の冷却ユニットが配設されてもよい。このような冷却ユニットにより、凝縮液を背圧空間よりも低圧(例えば、大気圧)な空間に排出(又は流出)しても、フラッシュ蒸発させることなく、安定して(又は円滑に)回収できる。なお、ホールドユニットの下流にフラッシュユニットを設ける場合は、フラッシュユニットで分離された不揮発成分を排出(又は流出)するラインに、冷却ユニットを配設してもよい。
[Cooling process (cooling unit)]
In the present invention, if necessary, a cooling unit for cooling the condensate may be provided downstream of the hold unit. The cooling unit includes at least a cooling device (or a cooler) for cooling the condensate, and a conventional cooling device can be used as the cooling device. The cooling unit may include one or a plurality of the cooling devices, and in the case where a plurality of the cooling devices are provided, they may be connected in series and / or in parallel, respectively. Moreover, as long as it is downstream of the hold unit, one cooling unit may be provided, or a plurality of cooling units may be provided with other units (or processes) in between. With such a cooling unit, even if the condensate is discharged (or outflowed) into a space lower in pressure (eg, atmospheric pressure) than the back pressure space, it can be recovered stably (or smoothly) without flash evaporation. . When a flash unit is provided downstream of the hold unit, a cooling unit may be provided in a line that discharges (or flows out) the non-volatile components separated by the flash unit.
 また、冷却ユニットは、必要に応じて、さらに、冷却した凝縮液の流量を調節するための流量制御装置(流量制御弁又はバルブ)を備えていてもよい。流量制御装置は、前記冷却装置(又はクーラー)の上流側(最も上流側)や、複数の冷却装置の間に備えていてもよいが、通常、冷却装置の下流側(最も下流側)に備えている場合が多い。なお、ホールドユニットが流量制御装置を備えていない場合、冷却ユニットの流量制御装置により、ホールドタンクからの凝縮液抜取り量を調整してもよい。 The cooling unit may further include a flow rate control device (flow rate control valve or valve) for adjusting the flow rate of the cooled condensate as necessary. The flow rate control device may be provided upstream (most upstream) of the cooling device (or cooler) or between a plurality of cooling devices, but is usually provided downstream (most downstream) of the cooling device. There are many cases. In addition, when the hold unit is not provided with the flow control device, the condensate extraction amount from the hold tank may be adjusted by the flow control device of the cooling unit.
 [ガス導入工程(ガス導入ユニット)]
 本発明では、ガス導入ユニットを備えなくてもよいが、何らかの事情(例えば、前述のような運転開始初期における非定常運転など)により、ホールドユニットで凝縮液の温度が一時的に低下するなどの事態に対応するため、ガス導入ユニットを備えていてもよい。
[Gas introduction process (gas introduction unit)]
In the present invention, the gas introduction unit may not be provided, but the temperature of the condensate is temporarily reduced by the hold unit due to some circumstances (for example, the unsteady operation at the initial stage of operation as described above). In order to cope with the situation, a gas introduction unit may be provided.
 ガス導入ユニットは、少なくとも背圧空間の圧力を制御可能な位置(例えば、圧縮機の下流側から、第1の循環ラインの流量制御装置の上流側の間など)に接続されていればよいが、特に、熱交換ユニット及びホールドユニットのそれぞれのエアリングラインの合流部と、第1の循環ラインの流量制御装置の上流側との間のラインに接続されていることが好ましい。すなわち、熱交換工程及び/又はホールド工程の下流の循環工程において、非凝縮性ガスを導入するのが好ましい。循環工程において、非凝縮性ガスを導入することにより、再圧縮蒸気と熱交換ユニットとの熱交換のための接触頻度を低下させる非凝縮性ガスが、熱交換ユニットを通過する量が少なくなり、効率的に熱交換できるため、設備(又は熱交換ユニット)のサイズを小さくできる。また、導入する非凝縮性ガスとプロセス凝縮液との接触頻度も低減できるため、非凝縮性ガスのプロセス凝縮液への溶解も抑制できる。なお、本発明の効果を害しない限り、ガス導入ユニットは、圧縮機や、主ユニット(例えば、主ユニットと再圧縮ユニットとをつなぐラインなど)に接続されていてもよい。圧縮機にガス導入ユニットを接続する場合、導入する非凝縮性ガスを圧縮機のシールガス(又は軸封ガス)などとして利用してもよく、さらに、圧縮機のシール部分から漏出するシールガス(非凝縮性ガス)を背圧保持に利用してもよい。 The gas introduction unit may be connected to at least a position where the pressure of the back pressure space can be controlled (for example, between the downstream side of the compressor and the upstream side of the flow control device of the first circulation line). In particular, it is preferable that the heat exchange unit and the hold unit are connected to a line between the joining portion of each air ring line and the upstream side of the flow rate control device of the first circulation line. That is, it is preferable to introduce non-condensable gas in the circulation step downstream of the heat exchange step and / or the hold step. In the circulation process, by introducing the non-condensable gas, the amount of non-condensable gas that reduces the contact frequency for heat exchange between the recompressed steam and the heat exchange unit decreases through the heat exchange unit, Since heat can be exchanged efficiently, the size of the facility (or heat exchange unit) can be reduced. Moreover, since the contact frequency of the non-condensable gas to be introduced and the process condensate can be reduced, dissolution of the non-condensable gas into the process condensate can also be suppressed. As long as the effects of the present invention are not impaired, the gas introduction unit may be connected to a compressor or a main unit (for example, a line connecting the main unit and the recompression unit). When a gas introduction unit is connected to the compressor, the non-condensable gas to be introduced may be used as a seal gas (or shaft seal gas) of the compressor, and further, a seal gas leaking from the seal portion of the compressor ( Non-condensable gas) may be used for maintaining the back pressure.
 ガス導入ユニットから導入される非凝縮性ガスとしては、背圧空間において所定の圧力を確保する観点から、蒸気再圧縮ユニット(圧縮機)の背圧空間における温度及び圧力下において、気体状態を保持可能なガスであるのが好ましく、背圧空間の温度が、例えば、25~300℃、好ましくは40~230℃、さらに好ましくは65~150℃程度であり、かつ圧力が、例えば、30~400kPaG(例えば、30~300kPaG)、好ましくは40~200kPaG、さらに好ましくは50~100kPaG程度である環境下において、気体状態を保持できるガスであってもよい。また、同様に背圧空間において所定の圧力を確保する観点から、非凝縮性ガスは、プロセス凝縮液(凝縮性ガス成分の凝縮液)に対して溶解し難いガス(不溶性又は難溶性を示すガス)であるのが好ましい。 As a non-condensable gas introduced from the gas introduction unit, the gas state is maintained under the temperature and pressure in the back pressure space of the vapor recompression unit (compressor) from the viewpoint of securing a predetermined pressure in the back pressure space. The gas is preferably a gas, the temperature of the back pressure space is, for example, about 25 to 300 ° C., preferably about 40 to 230 ° C., more preferably about 65 to 150 ° C., and the pressure is, for example, 30 to 400 kPaG. (For example, 30 to 300 kPaG), preferably 40 to 200 kPaG, more preferably about 50 to 100 kPaG. Similarly, from the viewpoint of ensuring a predetermined pressure in the back pressure space, the non-condensable gas is a gas that is difficult to dissolve in the process condensate (condensate of the condensable gas component) (a gas that is insoluble or hardly soluble). ) Is preferred.
 代表的な非凝縮性ガスとしては、例えば、プロセス蒸気などと反応しない不活性ガス(例えば、窒素、空気、二酸化炭素、一酸化炭素、希ガス(例えば、アルゴン、ヘリウムなど)など)などが挙げられる。なお、本明細書及び請求の範囲において、「不活性ガス」とは、VRCプロセスの条件下(例えば、前記背圧空間における温度及び圧力下など)において、プロセス蒸気や、設備(又は非凝縮性ガスが接触する設備内面)の材質などと反応しないガスである限り、特に限定されず、VRCプロセスの条件以外の条件下ではプロセス蒸気などと反応性を有するガスや、プロセス蒸気や設備を構成する材料以外の材料に対して反応性を有するガスを含む意味に用いる。 As typical non-condensable gas, for example, an inert gas (for example, nitrogen, air, carbon dioxide, carbon monoxide, rare gas (for example, argon, helium, etc.), etc.) that does not react with process vapor or the like can be mentioned. It is done. In the present specification and claims, “inert gas” means process steam or equipment (or non-condensable) under the conditions of the VRC process (for example, temperature and pressure in the back pressure space). As long as it is a gas that does not react with the material of the inner surface of the equipment that comes into contact with the gas, there is no particular limitation, and under conditions other than the conditions of the VRC process, gas that is reactive with process steam, process steam, and equipment are configured. It is used to mean including a gas that is reactive with a material other than the material.
 これらの非凝縮性ガスは、単独で又は2種以上組み合わせて混合ガスとして使用することもできる。これらの非凝縮性ガスのうち、導入(又は供給)の容易性の観点から、窒素が好ましい。また、非凝縮性ガスは、ガスボンベ(又は圧縮ガス容器)やガス発生器などから供給してもよく、プロセス由来のガス[例えば、プラントの主工程又は他の工程(又は他の反応工程)において発生(又は副生)する非凝縮性ガスなど、好ましくは主工程から発生するプロセス蒸気に微量に含まれる空気、軸受け部などのシール部を有する機器(圧縮機など)から漏出するシールガスなど]を利用して、非凝縮性ガスとして供給してもよい。簡便性などの点から、プロセス外から導入されるガスであるのが好ましい。 These non-condensable gases can be used alone or in combination of two or more as a mixed gas. Of these non-condensable gases, nitrogen is preferable from the viewpoint of ease of introduction (or supply). In addition, the non-condensable gas may be supplied from a gas cylinder (or a compressed gas container), a gas generator, or the like, and a gas derived from a process [for example, a main process of a plant or other process (or other reaction process) Non-condensable gas generated (or by-product), preferably air contained in a trace amount in the process steam generated from the main process, seal gas leaked from equipment (such as a compressor) having a seal part such as a bearing part, etc.] May be supplied as a non-condensable gas. From the viewpoint of simplicity, the gas is preferably introduced from outside the process.
 非凝縮性ガスの導入流量は、運転状態に応じて適宜選択(又は調整)できるが、主工程で発生するプロセス蒸気の流量に対して、例えば、0.01~3体積%、好ましくは0.03~1体積%、さらに好ましくは0.05~0.5体積%程度であってもよい。なお、この非凝縮性ガスの導入割合は、主工程で発生するプロセス蒸気の温度及び圧力下での体積割合である。 The introduction flow rate of the non-condensable gas can be appropriately selected (or adjusted) according to the operation state, but is 0.01 to 3% by volume, preferably 0. 0% with respect to the flow rate of the process steam generated in the main process. It may be about 03 to 1% by volume, more preferably about 0.05 to 0.5% by volume. The introduction ratio of the non-condensable gas is a volume ratio under the temperature and pressure of the process steam generated in the main process.
 [脱気工程(脱気ユニット)]
 脱気ユニットは必ずしも必要ではないが、必要に応じて、ホールドユニットの下流において、流出される凝縮液から、背圧空間の圧力下で凝縮液に溶解した非凝縮性ガスを脱気(気化又は分離)するために配設されてもよい。ガス導入工程を備えている場合には、非凝縮性ガスの溶解量が多くなり易いため、脱気ユニットを設置するのが好ましい。
[Deaeration process (deaeration unit)]
A deaeration unit is not always necessary, but if necessary, a non-condensable gas dissolved in the condensate under the pressure of the back pressure space is degassed (vaporized or vaporized) from the condensate flowing out downstream of the hold unit. May be arranged for separation). When a gas introduction step is provided, it is preferable to install a deaeration unit because the amount of non-condensable gas dissolved tends to increase.
 脱気ユニットは、凝縮液脱気タンクを少なくとも有している。凝縮液脱気タンクは、凝縮液を滞留させて脱気するのに十分大きな容量を有していればよく、慣用のタンクが利用できる。また、脱気ユニットは、凝縮液脱気タンクで脱気された非凝縮性ガス成分を排出するためのガス排出ラインを有していてもよい。ガス排出ラインは、スクラバーなどの慣用の除害設備(又は排出設備)に接続されていればよい。脱気ユニットは、ガス排出ライン上に減圧ポンプなどを設置して、処理時間の短縮及び/又はタンク容量を低減してもよい。 The deaeration unit has at least a condensate deaeration tank. The condensate degassing tank only needs to have a sufficiently large capacity for retaining the condensate and degassing, and a conventional tank can be used. Moreover, the deaeration unit may have a gas discharge line for discharging the non-condensable gas component deaerated in the condensate deaeration tank. The gas discharge line may be connected to a conventional abatement equipment (or discharge equipment) such as a scrubber. The deaeration unit may be provided with a decompression pump or the like on the gas discharge line to shorten the processing time and / or reduce the tank capacity.
 脱気ユニットは、凝縮液脱気タンクからの凝縮液排出(又は流出)量を制御して、滞留量を調整するための流量制御装置を有していてもよい。脱気ユニット(脱気工程)から排出される凝縮液は、そのまま又は冷却ユニット(冷却工程)を経由して回収されてもよい。 The deaeration unit may have a flow rate control device for controlling the condensate discharge (or outflow) amount from the condensate deaeration tank and adjusting the retention amount. The condensate discharged from the deaeration unit (deaeration step) may be recovered as it is or via a cooling unit (cooling step).
 [フラッシュ工程(フラッシュユニット)]
 フラッシュユニットは、必ずしも必要ではないが、必要に応じて、ホールドユニット(ホールド工程)で排出(又は流出)される凝縮液をフラッシュ蒸発して、生じた揮発性成分と不揮発性成分とを分離してもよい。このようなフラッシュ蒸発を利用すると、凝縮液の熱量(又は顕熱)の一部を揮発成分の熱量(又は潜熱)に移行させ、少なくとも一部の揮発成分の熱量を別プロセス(又は別ユニット)の熱源として利用できる。
[Flash process (flash unit)]
The flash unit is not always necessary, but the condensate discharged (or outflowed) in the hold unit (holding process) is flash-evaporated to separate the generated volatile component and non-volatile component as necessary. May be. When such flash evaporation is used, a part of the heat (or sensible heat) of the condensate is transferred to the heat (or latent heat) of the volatile component, and at least a part of the heat of the volatile component is transferred to another process (or another unit). It can be used as a heat source.
 フラッシュ蒸発は、凝縮液を加熱して減圧する恒温フラッシュ、凝縮液を加熱することなく減圧する断熱フラッシュ、又はこれらのフラッシュ条件を組み合わせたフラッシュなどにより行ってもよい。フラッシュ蒸発において、凝縮液の温度は、例えば、40~200℃(例えば、50~180℃)、好ましくは60~150℃(例えば、70~120℃)、さらに好ましくは80~110℃(例えば、85~105℃)程度であってもよい。また、フラッシュタンク(又はフラッシュ蒸発器)内の圧力(絶対圧力)は、例えば、50~1000kPa、好ましくは80~500kPa、さらに好ましくは100~300kPa程度であってもよい。 The flash evaporation may be performed by a constant temperature flash that heats the condensate and depressurizes, an adiabatic flash that depressurizes the condensate without heating, or a flash that combines these flash conditions. In flash evaporation, the temperature of the condensate is, for example, 40 to 200 ° C. (eg, 50 to 180 ° C.), preferably 60 to 150 ° C. (eg, 70 to 120 ° C.), and more preferably 80 to 110 ° C. (eg, 85 to 105 ° C.). The pressure (absolute pressure) in the flash tank (or flash evaporator) may be, for example, about 50 to 1000 kPa, preferably about 80 to 500 kPa, and more preferably about 100 to 300 kPa.
 フラッシュ工程で生じる揮発成分の少なくとも一部を、別プロセスの熱源の少なくとも一部として利用可能であればよく、フラッシュ工程で生じる揮発成分の量(又は流量)は、フラッシュ工程に導入される凝縮液の量(又は流量)に対して、例えば、1~70重量%(例えば、3~50重量%)、好ましくは5~30重量%(例えば、8~25重量%)、さらに好ましくは10~20重量%(例えば、10~15重量%)程度であってもよい。 It is sufficient that at least a part of the volatile component generated in the flash process is available as at least a part of a heat source of another process, and the amount (or flow rate) of the volatile component generated in the flash process is a condensate introduced into the flash process. 1 to 70% by weight (for example, 3 to 50% by weight), preferably 5 to 30% by weight (for example, 8 to 25% by weight), and more preferably 10 to 20%. It may be about wt% (for example, 10 to 15 wt%).
 別プロセス(別ユニット)では、フラッシュ工程で生じる揮発成分及び/又は主工程で発生するプロセス蒸気の少なくとも一部を熱源として利用してもよい。 In a separate process (separate unit), at least a part of volatile components generated in the flash process and / or process vapor generated in the main process may be used as a heat source.
 別ユニットは、前記揮発成分及び/又はプロセス蒸気を導入するための導入ライン(又は送気ライン)を有していてもよい。導入ラインの接続位置は、前記揮発成分及び/又はプロセス蒸気が導入できる限り、特に制限されず、例えば、フラッシュユニットや、フラッシュユニットと主ユニットとを接続するための第3の循環ラインなどに接続されていてもよく、通常、主ユニット、例えば、主ユニット(主工程)のプロセス蒸気生成器(図1における蒸留塔1)と、主ユニットで最初に凝縮されるコンデンサー(図1における第1のコンデンサー2)との間のライン(特に、第3の循環ラインより下流側のライン)に接続される場合が多い。 The separate unit may have an introduction line (or an air supply line) for introducing the volatile component and / or process steam. The connection position of the introduction line is not particularly limited as long as the volatile component and / or process steam can be introduced. For example, the connection position is connected to the flash unit or a third circulation line for connecting the flash unit and the main unit. In general, the main unit, for example, the process steam generator of the main unit (main process) (distillation column 1 in FIG. 1) and the condenser (the first in FIG. In many cases, it is connected to a line between the condenser 2) (especially a line downstream of the third circulation line).
 別ユニットに導入される揮発成分の割合は、フラッシュ工程で生じる揮発成分全体に対して、例えば、0~100重量%(例えば、10~99重量%)、好ましくは30~100重量%(例えば、50~97重量%)、さらに好ましくは70~100重量%(例えば、80~95重量%)程度であってもよい。なお、フラッシュ工程で生じる揮発成分の残部は、主ユニットに戻して処理してもよい。 The proportion of the volatile component introduced into the separate unit is, for example, 0 to 100% by weight (eg 10 to 99% by weight), preferably 30 to 100% by weight (eg 50 to 97% by weight), more preferably about 70 to 100% by weight (for example, 80 to 95% by weight). Note that the remainder of the volatile components generated in the flash process may be returned to the main unit for processing.
 必ずしも必要ではないが、本発明のプラントは、フラッシュユニット(フラッシュ工程)と主ユニット(主工程)とを接続して、フラッシュ工程で生じた揮発成分の一部を主工程に戻すための第3の循環ラインを備えていてもよい。第3の循環ラインの接続位置は、プロセス蒸気生成器(図1における蒸留塔1)から、コンデンサー(例えば、図1における第2のコンデンサー3)より上流側である限り、特に制限されず、例えば、VRC工程及び主工程にプロセス蒸気を分岐する分岐点(図1における分岐点4)とVRCライン上の流量制御装置(図1におけるバルブ15)との間のライン、直列に接続された2つのコンデンサーの間のライン(図1における第1のコンデンサー2と第2のコンデンサー3との間のライン)などであってもよいが、熱源として利用して省エネルギー効果を向上できる観点から、プロセス蒸気生成器の頂部から、VRC工程及び主工程にプロセス蒸気を分岐する分岐点(図1における分岐点4)の間のラインに設置されるのが好ましい。 Although not necessarily required, the plant of the present invention connects the flash unit (flash process) and the main unit (main process), and returns a third part for returning a part of the volatile components generated in the flash process to the main process. A circulation line may be provided. The connection position of the third circulation line is not particularly limited as long as it is upstream of the condenser (for example, the second condenser 3 in FIG. 1) from the process steam generator (distillation column 1 in FIG. 1). , A line between a branch point (branch point 4 in FIG. 1) for branching the process steam to the VRC process and the main process, and a flow control device (valve 15 in FIG. 1) on the VRC line, two connected in series It may be a line between the condensers (a line between the first condenser 2 and the second condenser 3 in FIG. 1), but from the viewpoint of improving the energy saving effect by using it as a heat source, process steam generation It is preferable to install in the line between the branch point (branch point 4 in FIG. 1) where the process steam branches from the top of the vessel to the VRC process and the main process.
 一方、フラッシュユニットで分離された不揮発成分(凝縮液)は、そのまま又は冷却ユニットを経由して、主ユニットの凝縮液とともに回収されてもよい。なお、別プロセスで凝縮された凝縮液も同様に、そのまま又は冷却ユニットを経由して、主ユニットの凝縮液とともに回収されてもよい。プロセス蒸気生成器が蒸留塔である場合、回収された凝縮液の一部を、蒸留塔の還流液として使用し、残部を流出液として後工程に送液してもよい。 On the other hand, the non-volatile component (condensate) separated by the flash unit may be recovered together with the condensate of the main unit as it is or via a cooling unit. Similarly, the condensate condensed in another process may be recovered together with the condensate of the main unit as it is or via a cooling unit. When the process steam generator is a distillation column, a part of the recovered condensate may be used as the reflux liquid of the distillation column, and the remainder may be sent to the subsequent process as an effluent.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 (実施例1)
 図5にプロセスフロー図を示す。主プロセス(主工程)は、蒸留塔1を備えており、仕込み液は主プロセス蒸発器(第1の熱交換器)14で蒸発され、ガスの状態で蒸留塔1に仕込まれた。主プロセスのみで安定的に運転がなされているとき、蒸留塔1の塔頂から排出されるプロセス蒸気は常圧(大気圧)で温度は約80℃、その組成は酢酸エチル60重量%、ベンゼン30重量%、水10重量%で、流量は4m/secであった。VRCプロセスの圧縮機としては、ターボ型圧縮機((株)IHI製「f44C2」)を用いた。図5において、背圧空間を形成する圧縮機5、熱交換器7、ホールドタンク8及びこれらを繋ぐラインは、断熱材により保温処置を施した。
Example 1
FIG. 5 shows a process flow diagram. The main process (main process) includes a distillation column 1, and the charged liquid was evaporated by a main process evaporator (first heat exchanger) 14 and charged into the distillation column 1 in a gas state. When the main process alone is stably operated, the process vapor discharged from the top of the distillation column 1 is atmospheric pressure (atmospheric pressure), the temperature is about 80 ° C., the composition is 60% by weight of ethyl acetate, benzene The flow rate was 4 m 3 / sec at 30 wt% and water 10 wt%. As the compressor of the VRC process, a turbo compressor (“f44C2” manufactured by IHI Corporation) was used. In FIG. 5, the compressor 5, the heat exchanger 7, the hold tank 8, and the line connecting them that form the back pressure space are heat-insulated with a heat insulating material.
 1.VRCプロセスラインのプロセス蒸気置換~圧縮機の起動~圧縮機の昇圧開始(凝縮開始前)
 (1)バルブ11、12、13、15及び17が全閉であることを確認した。
1. Process steam replacement in the VRC process line-Start-up of the compressor-Start of pressurization of the compressor (before the start of condensation)
(1) It was confirmed that the valves 11, 12, 13, 15, and 17 were fully closed.
 (2)第1の循環ラインのバルブ11、第2の循環ラインのバルブ12、及び圧縮機吸入側のバルブ17を全開にした。 (2) The valve 11 of the first circulation line, the valve 12 of the second circulation line, and the valve 17 on the compressor suction side are fully opened.
 (3)蒸留塔1の塔頂からVRCプロセス側へのラインのバルブ15を徐々に開にして、VRCプロセスのラインをプロセス蒸気で置換し、10分間ほどかけて系内を温度上昇させた。バルブ12を全閉にし、バルブ11及び17を所定の開度にした。 (3) The valve 15 of the line from the top of the distillation column 1 to the VRC process side was gradually opened to replace the VRC process line with process steam, and the temperature of the system was raised over about 10 minutes. The valve 12 was fully closed, and the valves 11 and 17 were set to a predetermined opening degree.
 (4)圧縮機5を起動し、インペラが定格回転数に到達後(10~20秒程度後)、定常連続運転状態で圧縮機の吐出圧力上昇が50kPaG未満に納まっていること、圧縮機に異常(異音、振動など)がないことを確認した。このときの圧縮機5の軸動力は250kWで、吸込みガス流量は3m/secで圧縮機の吐出ガス温度が入口温度よりも20℃上昇していた。 (4) After the compressor 5 is started and the impeller reaches the rated speed (after about 10 to 20 seconds), the compressor discharge pressure rise is less than 50 kPaG in the steady continuous operation state. It was confirmed that there were no abnormalities (abnormal noise, vibration, etc.). At this time, the shaft power of the compressor 5 was 250 kW, the suction gas flow rate was 3 m 3 / sec, and the discharge gas temperature of the compressor was 20 ° C. higher than the inlet temperature.
 (5)第1の循環ラインのバルブ11を徐々に閉めていった。このとき、圧縮機5の吐出圧力が115kPaGまで上昇した。吐出温度は約105℃であった。 (5) The valve 11 of the first circulation line was gradually closed. At this time, the discharge pressure of the compressor 5 rose to 115 kPaG. The discharge temperature was about 105 ° C.
 2.圧縮機の昇圧(凝縮開始後)~既設蒸発器の負荷低減
 (1)圧縮機5の吐出圧力と凝縮とのバランスを見ながら、第1の循環ラインのバルブ11を徐々に閉めた。吐出温度を110℃とし、VRC蒸発器(第2の熱交換器)7で熱交換を開始した。再圧縮蒸気は、最終的にVRC蒸発器7でほぼ全凝縮に至り、排出される凝縮液温度は95℃となった。凝縮液タンク8は、最終的にタンク内温度95℃となった。凝縮液タンク8の液面は、液面制御のバルブ13を断続的に開閉して流出することで滞留量を1.5mに制御した。凝縮液の平均滞留時間は3分であり、熱交換ユニットからの凝縮液導入量及びホールドタンクからの凝縮液流出量(又は抜取り量)は30トン/hrであった。流出された凝縮液は凝縮液クーラー18で冷却水と熱交換されることで45℃まで冷却され、主プロセスに返送された。
2. Compressor pressurization (after the start of condensation) to existing evaporator load reduction (1) While observing the balance between the discharge pressure of the compressor 5 and the condensation, the valve 11 of the first circulation line was gradually closed. The discharge temperature was set to 110 ° C., and heat exchange was started with the VRC evaporator (second heat exchanger) 7. The recompressed steam finally reached almost total condensation in the VRC evaporator 7, and the condensate temperature discharged was 95 ° C. The condensate tank 8 finally reached a tank internal temperature of 95 ° C. The liquid level of the condensate tank 8 was controlled to 1.5 m 3 by intermittently opening and closing the liquid level control valve 13 to flow out. The average residence time of the condensate was 3 minutes, and the condensate introduction amount from the heat exchange unit and the condensate outflow amount (or withdrawal amount) from the hold tank were 30 tons / hr. The discharged condensate was cooled to 45 ° C. by heat exchange with cooling water in the condensate cooler 18 and returned to the main process.
 (2)VRC蒸発器7での蒸発量の増加に伴い、VRC蒸発器からの仕込量が徐々に増加した。VRC蒸発器からの仕込量が最大値の70%を超えたら、主プロセス蒸発器14の最低負荷を保った状態で、主プロセス蒸発器への熱源スチーム16の流量を減らす方向で調節して、バルブ17の開度を徐々に上げ、圧縮機の吸込み量を上げていき、主プロセス蒸発器からの仕込量を調整した。 (2) As the amount of evaporation in the VRC evaporator 7 increased, the amount charged from the VRC evaporator gradually increased. When the amount of charge from the VRC evaporator exceeds 70% of the maximum value, the flow rate of the heat source steam 16 to the main process evaporator is adjusted to be reduced while maintaining the minimum load of the main process evaporator 14, The opening of the valve 17 was gradually increased to increase the suction amount of the compressor, and the charge amount from the main process evaporator was adjusted.
 (3)プロセス全体の運転が安定したところで、バルブ11を微量の開度で断続的に開閉させることで、圧縮機の吐出圧を安定させた。運転が安定した状態において、主プロセス蒸発器の熱源スチーム負荷は、VRCプロセスを稼働させない定常運転時に比べ、6トン/hrの低減となった。 (3) When the operation of the entire process was stabilized, the discharge pressure of the compressor was stabilized by opening and closing the valve 11 with a slight opening. When the operation was stable, the heat source steam load of the main process evaporator was reduced by 6 tons / hr compared to the steady operation in which the VRC process was not operated.
 (比較例1)
 図6にプロセスフロー図を示す。図6で示されるプラントは、図5で示されるプラントにおいて、凝縮液タンク8及び凝縮液クーラー18を備えることなく、気液分離器19を備えた従来のVRCプロセスを備えたプラントである。なお、実施例1と同様のプロセス蒸気(圧力、温度、組成、流量)、及びターボ型圧縮機を用いて、下記のように運転を開始した。
(Comparative Example 1)
FIG. 6 shows a process flow diagram. The plant shown in FIG. 6 is a plant including the conventional VRC process including the gas-liquid separator 19 without including the condensate tank 8 and the condensate cooler 18 in the plant illustrated in FIG. 5. The operation was started as follows using the same process steam (pressure, temperature, composition, flow rate) as in Example 1 and a turbo compressor.
 1.VRCプロセスラインのプロセス蒸気置換~圧縮機の起動~圧縮機の昇圧開始(凝縮開始前)
 実施例1記載の1.(1)~(5)と同様の手順で、VRCプロセスの運転を開始した。実施例1と同様に、バルブ11を徐々に閉めていくと、圧縮機5の吐出圧力が115kPaGまで上昇し、温度は約105℃であった。
1. Process steam replacement in the VRC process line-Start-up of the compressor-Start of pressurization of the compressor (before the start of condensation)
As described in Example 1, The operation of the VRC process was started in the same procedure as (1) to (5). As in Example 1, when the valve 11 was gradually closed, the discharge pressure of the compressor 5 increased to 115 kPaG and the temperature was about 105 ° C.
 2.圧縮機の昇圧(凝縮開始後)~既設蒸発器の負荷低減
 (1)圧縮機5の吐出圧力と凝縮とのバランスを見ながら、第1の循環ラインのバルブ11を徐々に閉めていき、吐出温度を110℃とし、VRC蒸発器(第2の熱交換器)7で熱交換を行った。再圧縮蒸気は、VRC蒸発器(第2の熱交換器)7では全凝縮には至らず、再圧縮蒸気の一部は、未凝縮ガス成分として、第1の循環ラインを介して主プロセスに戻っていた。なお、気液分離器19で分離した凝縮液は、やや太めの配管(凝縮液抜取りライン)に溜まり、バルブ13を断続的に開閉することにより回収された。凝縮液の平均滞留時間は5秒であった。
2. Pressurization of the compressor (after the start of condensation) to reducing the load on the existing evaporator (1) While observing the balance between the discharge pressure of the compressor 5 and the condensation, gradually close the valve 11 of the first circulation line to discharge The temperature was set to 110 ° C., and heat exchange was performed with the VRC evaporator (second heat exchanger) 7. The recompressed steam does not reach full condensation in the VRC evaporator (second heat exchanger) 7, and a part of the recompressed steam is passed through the first circulation line to the main process as an uncondensed gas component. I was back. In addition, the condensate separated by the gas-liquid separator 19 was collected in a slightly thicker pipe (condensate drain line) and was opened and closed intermittently. The average residence time of the condensate was 5 seconds.
 (2)VRC蒸発器7での蒸発量の増加に伴い、主プロセス蒸発器への熱源スチーム16の流量を減らす方向で調整して、主プロセス蒸発器からの仕込量を調整した。 (2) The amount of feed from the main process evaporator was adjusted by adjusting the flow rate of the heat source steam 16 to the main process evaporator as the amount of evaporation in the VRC evaporator 7 increased.
 (3)運転が安定したところで、バルブ11を微量の開度で断続的に開閉させることで、圧縮機の吐出圧を安定させた。運転が安定した状態において、主プロセス蒸発器の熱源スチーム負荷は、VRCプロセスを稼働させない定常運転時に比べ、4トン/hrの低減となった。 (3) When the operation was stabilized, the discharge pressure of the compressor was stabilized by opening and closing the valve 11 intermittently with a small opening. In a stable operation, the heat source steam load of the main process evaporator was reduced by 4 tons / hr as compared to the steady operation in which the VRC process was not operated.
 (実施例2)
 図7にプロセスフロー図を示す。蒸留塔1の塔頂から排出されるプロセス蒸気は常圧(大気圧)で温度は約72.5℃、その組成は酢酸エチル66重量%、ベンゼン24重量%、水10重量%で、流量は55トン/hrであった。従来、そのプロセス蒸気のうち、25トン/hrを別プロセスで使用する温水精製装置の熱源として使用していた。図7に示すように、VRC方式のプロセスを付設することになったが、投資回収の観点から、プロセス蒸気30トン/hrを圧縮機5で処理して、蒸留塔1の仕込み液の蒸発熱源として使用する必要があることがわかった。なお、VRCプロセスの圧縮機としては、ターボ型圧縮機((株)IHI製「f44C2」)を用いた。プロセス蒸気30トン/hrを熱源として使用した後に生じた凝縮液の温度は97℃であり、背圧空間の圧力は340kPa(絶対圧)であり、全凝縮していたため、流量は30トン/hrであった。この凝縮液を、フラッシュタンク24で常圧下にフラッシュしたところ、生じた蒸気は、温度69.5℃、流量3.8トン/hrであり、組成は、酢酸エチル65重量%、ベンゼン26重量%、水9重量%であった。この蒸気を、第3の循環ライン25を経由して、蒸留塔1の塔頂と分岐点4との間のラインに合流させた。分岐点4において、合流させた蒸気の一部はVRCプロセス側に分岐した。合流させた蒸気の残部は、温度72℃、流量28.8トン/hrであり、合流直後(又は運転開始初期)の組成は、酢酸エチル65.93重量%、ベンゼン24.13重量%、水9.94重量%、運転が安定してからの組成は、酢酸エチル63.97重量%、ベンゼン26.70重量%、水9.33重量%であり、蒸留塔1の塔頂から排出されるプロセス蒸気の組成から大きく変化しなかった。この合流させた蒸気の残部を別プロセスの温水器(温水精製装置)に送ったところ、何らの支障なく従前の温水を得ることができた。
(Example 2)
FIG. 7 shows a process flow diagram. The process steam discharged from the top of the distillation column 1 is normal pressure (atmospheric pressure), the temperature is about 72.5 ° C., the composition is ethyl acetate 66 wt%, benzene 24 wt%, water 10 wt%, and the flow rate is It was 55 tons / hr. Conventionally, 25 tons / hr of the process steam has been used as a heat source for a hot water purifier used in another process. As shown in FIG. 7, a VRC process was added, but from the viewpoint of investment recovery, 30 tons / hr of process steam was processed by the compressor 5 to evaporate heat of the charged liquid in the distillation column 1. I found it necessary to use as. A turbo compressor (“f44C2” manufactured by IHI Corporation) was used as the compressor of the VRC process. The temperature of the condensate produced after using 30 tons / hr of process steam as a heat source was 97 ° C., the pressure in the back pressure space was 340 kPa (absolute pressure), and the total condensing was performed, so the flow rate was 30 tons / hr. Met. When this condensate was flushed under normal pressure in the flash tank 24, the resulting vapor had a temperature of 69.5 ° C. and a flow rate of 3.8 ton / hr, and the composition was 65% by weight of ethyl acetate and 26% by weight of benzene. And 9% by weight of water. This steam was joined to the line between the top of the distillation column 1 and the branch point 4 via the third circulation line 25. At the branch point 4, a part of the merged steam was branched to the VRC process side. The remainder of the combined steam is at a temperature of 72 ° C. and a flow rate of 28.8 ton / hr. The composition immediately after the merge (or at the start of operation) is 65.93 wt% ethyl acetate, 24.13 wt% benzene, water The composition after the stable operation of 9.94% by weight is ethyl acetate 63.97% by weight, benzene 26.70% by weight, water 9.33% by weight, and is discharged from the top of the distillation column 1 There was no significant change from the composition of process steam. When the remainder of the combined steam was sent to a hot water heater (hot water purifier) in another process, the previous hot water could be obtained without any trouble.
 (参考例1)
 図8にプロセスフロー図を示す。図8で示されるプラントは、図7で示されるプラントにおいて、フラッシュタンク24及び第3の循環ライン25を備えていないプラントである。VRCプロセスで生じる凝縮液を、フラッシュタンク24を介さずに、凝縮液クーラー18で45℃まで冷却し、主プロセスの凝縮液と合流させる以外は、実施例2と同様にして、VRCプロセスを設置稼動させた。VRCプロセスへ導入した残部のプロセス蒸気のみを別プロセスへのライン26で別プロセスの熱交換器(温水精製装置)に送ろうとしたところ、物質収支的には整合するが、流量に余裕が無いため安定的な送気(又は導入)ができず、別プロセスでの温水製造に支障を来たすこととなった。
(Reference Example 1)
FIG. 8 shows a process flow diagram. The plant shown in FIG. 8 is a plant that does not include the flash tank 24 and the third circulation line 25 in the plant shown in FIG. The VRC process is installed in the same manner as in Example 2 except that the condensate generated in the VRC process is cooled to 45 ° C. by the condensate cooler 18 without passing through the flash tank 24 and merged with the condensate of the main process. It was put into operation. When only the remaining process steam introduced into the VRC process is sent to the heat exchanger (hot water purifier) of another process through the line 26 to another process, the material balance is matched, but there is no allowance for the flow rate. Stable air supply (or introduction) was not possible, which hindered hot water production in a separate process.
 本発明の再圧縮蒸気の利用方法は、プロセス蒸気を発生する各種のプラント、例えば、蒸留プラントなどに利用できる。 The method of using recompressed steam of the present invention can be used in various plants that generate process steam, such as distillation plants.
 1…蒸留器(蒸留塔)
 2、3…コンデンサー
 4…配管分岐点
 5…圧縮機
 6、9、25…循環ライン
 7、14…熱交換器(蒸発器)
 8…ホールドタンク(凝縮液タンク、凝縮液受槽)
 8a、9a、19a…エアリングライン(均圧管)
 18…凝縮液クーラー(クーラー)
 19…気液分離器
 20…ガス導入ライン
 22…凝縮液脱気タンク(脱気タンク)
 24…フラッシュタンク(フラッシュ蒸発器)
 
1. Distiller (distillation tower)
2, 3 ... Condenser 4 ... Piping branch point 5 ... Compressor 6, 9, 25 ... Circulation line 7, 14 ... Heat exchanger (evaporator)
8 ... Hold tank (condensate tank, condensate tank)
8a, 9a, 19a ... Air ring line (equal pressure equalization pipe)
18 ... Condensate cooler (cooler)
19 ... Gas-liquid separator 20 ... Gas introduction line 22 ... Condensate deaeration tank (deaeration tank)
24 ... Flash tank (flash evaporator)

Claims (17)

  1.  凝縮性ガス成分を含むプロセス蒸気を発生し、かつ発生したプロセス蒸気の凝縮性ガス成分を凝縮液として回収する主工程と、前記プロセス蒸気の少なくとも一部を圧縮機で断熱圧縮して温度を上昇させて再圧縮蒸気を得る再圧縮工程と、再圧縮蒸気を熱源として利用する熱交換工程と、熱交換工程に供された再圧縮蒸気のうち、凝縮していない非凝縮成分を主工程に戻す循環工程とを含む再圧縮蒸気の利用方法であって、熱交換工程で凝縮した凝縮液を滞留させて、圧縮機の下流の背圧空間の圧力を保持するためのホールド工程を少なくとも含む再圧縮蒸気の利用方法。 A main process of generating process steam containing condensable gas components and recovering the condensable gas components of the generated process steam as a condensate, and adiabatically compressing at least a part of the process steam with a compressor to increase the temperature Among the recompression process to obtain recompressed steam, the heat exchange process using the recompressed steam as a heat source, and the non-condensed components that are not condensed among the recompressed steam used in the heat exchange process are returned to the main process. A re-compression steam including a circulation step, and at least a re-compression that includes a condensate condensed in the heat exchange step and retains the pressure in the back pressure space downstream of the compressor How to use steam.
  2.  ホールド工程より上流側において、凝縮液を強制的に冷却することなく、ホールド工程で凝縮液を滞留させる請求項1記載の方法。 The method according to claim 1, wherein the condensate is retained in the hold step without forcibly cooling the condensate upstream of the hold step.
  3.  ホールド工程で滞留させる凝縮液の温度が、熱交換工程の流出口での温度Tに対して、(T-50)℃~(T+20)℃である請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the temperature of the condensate retained in the holding step is (T-50) ° C to (T + 20) ° C with respect to the temperature T at the outlet of the heat exchange step.
  4.  ホールド工程において、凝縮液の流出量を調整して、凝縮液を0.5分~10時間滞留させる請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the condensate is retained for 0.5 minutes to 10 hours by adjusting an outflow amount of the condensate in the holding step.
  5.  ホールド工程において、凝縮液と非凝縮成分とを気液分離する請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the condensate and the non-condensed component are gas-liquid separated in the holding step.
  6.  さらに、圧縮機の下流の背圧空間に非凝縮性ガスを導入するガス導入工程と、ホールド工程で流出される凝縮液から、溶解した非凝縮性ガスを脱気する脱気工程とを含む請求項4又は5記載の方法。 And a degassing step of degassing the dissolved noncondensable gas from the condensate flowing out in the hold step. Item 6. The method according to Item 4 or 5.
  7.  さらに、ホールド工程で流出される凝縮液をフラッシュ蒸発して、揮発性成分と不揮発性成分とに分離するフラッシュ工程を含む請求項4~6のいずれかに記載の方法。 The method according to any one of claims 4 to 6, further comprising a flashing step in which the condensate flowing out in the holding step is flash-evaporated and separated into a volatile component and a non-volatile component.
  8.  フラッシュ工程で分離した揮発成分の少なくとも一部を、別プロセスの熱源として利用する請求項7記載の方法。 The method according to claim 7, wherein at least a part of the volatile components separated in the flash step is used as a heat source for another process.
  9.  凝縮性ガス成分を含むプロセス蒸気を発生する蒸気生成器、及び発生したプロセス蒸気の一部を冷却して凝縮させるためのコンデンサーを有する主ユニットと、前記プロセス蒸気の残部を断熱圧縮して温度を上昇させて再圧縮蒸気を得るための蒸気再圧縮ユニットと、再圧縮蒸気を熱源として利用するための熱交換ユニットと、熱交換ユニットに供された再圧縮蒸気のうち、凝縮していない非凝縮成分を主ユニットに戻すための循環ラインとを備えた再圧縮蒸気の利用プラントであって、熱交換ユニットで凝縮した凝縮液を滞留させて、蒸気再圧縮ユニットの下流の背圧空間の圧力を保持するためのホールドユニットを少なくとも備えた再圧縮蒸気の利用プラント。 A steam generator for generating process steam containing a condensable gas component, a main unit having a condenser for cooling and condensing a part of the generated process steam, and the rest of the process steam is adiabatically compressed to reduce the temperature. Steam recompression unit for obtaining recompressed steam by raising, heat exchange unit for using recompressed steam as a heat source, and non-condensed non-condensing among recompressed steam provided to heat exchange unit A recompressed steam utilization plant equipped with a circulation line for returning the components to the main unit, where the condensate condensed in the heat exchange unit is retained to reduce the pressure in the back pressure space downstream of the steam recompressing unit. Recompressed steam utilization plant having at least a holding unit for holding.
  10.  ホールドユニットよりも上流側に、凝縮液を強制的に冷却するための冷却ユニットを備えることなく、凝縮液を滞留させるホールドタンクを備えている請求項9記載のプラント。 The plant according to claim 9, further comprising a hold tank that retains the condensate without being provided with a cooling unit for forcibly cooling the condensate upstream of the hold unit.
  11.  蒸気再圧縮ユニットの下流の背圧空間を形成するユニット及びラインの少なくとも一部が保温され、かつホールドユニットが滞留する凝縮液の温度を、熱交換ユニット出口側での温度Tに対して、(T-50)℃~(T+20)℃に保持する請求項9又は10記載のプラント。 The temperature of the condensate in which at least a part of the unit and line forming the back pressure space downstream of the vapor recompression unit is kept warm and the hold unit stays is set to a temperature T at the outlet side of the heat exchange unit ( The plant according to claim 9 or 10, wherein the plant is maintained at (T-50) ° C to (T + 20) ° C.
  12.  ホールドユニットが、凝縮液の流出量を調整して、凝縮液を0.5分~10時間滞留させるための流量制御装置を有している請求項9~11のいずれかに記載のプラント。 The plant according to any one of claims 9 to 11, wherein the hold unit has a flow rate control device for adjusting the outflow amount of the condensate and retaining the condensate for 0.5 minutes to 10 hours.
  13.  ホールドユニットが、気液分離機能を備え、かつ凝縮液を滞留させるためのホールドタンク、及び、このホールドタンク内の気相部と、蒸気再圧縮ユニットの下流の背圧空間のうち、ホールドタンクよりも上流側の気相空間とを接続するためのエアリングラインを有する請求項9~12のいずれかに記載のプラント。 The hold unit has a gas-liquid separation function and holds the condensate from the hold tank, and the gas phase section in the hold tank and the back pressure space downstream of the vapor recompression unit. The plant according to any one of claims 9 to 12, further comprising an air ring line for connecting the gas phase space on the upstream side.
  14.  ホールドユニットが、凝縮液を滞留させるためのホールドタンクと、このホールドタンクよりも上流側に配設された気液分離器と、この気液分離器で分離した気体成分を、蒸気再圧縮ユニットの下流の背圧空間のうち、気液分離器よりも上流側の気相空間に戻すためのエアリングラインとを有する請求項9~12のいずれかに記載のプラント。 The hold unit holds the condensate, the gas-liquid separator disposed upstream of the hold tank, and the gas component separated by the gas-liquid separator The plant according to any one of claims 9 to 12, further comprising an air ring line for returning to the gas phase space upstream of the gas-liquid separator in the downstream back pressure space.
  15.  さらに、蒸気再圧縮ユニットの下流の背圧空間に非凝縮性ガスを導入するためのガス導入ユニットと、ホールドユニットから流出される凝縮液に溶解した非凝縮性ガスを脱気するための脱気ユニットとを備えている請求項9~14のいずれかに記載のプラント。 Furthermore, a gas introduction unit for introducing a non-condensable gas into the back pressure space downstream of the vapor recompression unit, and a deaeration for degassing the non-condensable gas dissolved in the condensate flowing out from the hold unit. The plant according to any one of claims 9 to 14, comprising a unit.
  16.  さらに、ホールドユニットから流出される凝縮液をフラッシュ蒸発して、揮発成分と不揮発成分とに分離するフラッシュユニットを備えている請求項9~15のいずれかに記載のプラント。 The plant according to any one of claims 9 to 15, further comprising a flash unit that flash-evaporates the condensate flowing out of the hold unit and separates it into a volatile component and a non-volatile component.
  17.  フラッシュユニットで分離した揮発成分の少なくとも一部を、別プロセスの熱源として利用するためのラインを備えている請求項16記載のプラント。 The plant according to claim 16, further comprising a line for using at least a part of the volatile components separated by the flash unit as a heat source for another process.
PCT/JP2017/037672 2016-10-28 2017-10-18 Method for using recompressed vapor and plant WO2018079370A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2019001496A MY195815A (en) 2016-10-28 2017-10-18 Method and Plant for Using Recompressed Vapor
CN201780067146.XA CN109890476B (en) 2016-10-28 2017-10-18 Method and plant for using recompressed steam
JP2018547597A JP7032319B2 (en) 2016-10-28 2017-10-18 How to use recompressed steam and plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-211925 2016-10-28
JP2016211925 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079370A1 true WO2018079370A1 (en) 2018-05-03

Family

ID=62024834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037672 WO2018079370A1 (en) 2016-10-28 2017-10-18 Method for using recompressed vapor and plant

Country Status (4)

Country Link
JP (1) JP7032319B2 (en)
CN (1) CN109890476B (en)
MY (1) MY195815A (en)
WO (1) WO2018079370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225446A (en) * 2021-12-14 2022-03-25 天津商业大学 Distillation device and method for directly compressing and backheating distillation steam
JP7046301B1 (en) * 2021-10-06 2022-04-04 藤▲崎▼エンジニアリング株式会社 Oil extraction and distillation equipment using flash steam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115035A (en) * 1984-11-07 1986-06-02 ワツカー‐ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of vinyl chloride by pyrolysis of purified 1,2_dichloroethane
JP2008261522A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Hot water utilizing device and steam processing equipment
WO2015033935A1 (en) * 2013-09-06 2015-03-12 株式会社ダイセル Method and plant for using recompressed vapor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115035A (en) * 1984-11-07 1986-06-02 ワツカー‐ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of vinyl chloride by pyrolysis of purified 1,2_dichloroethane
JP2008261522A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Hot water utilizing device and steam processing equipment
WO2015033935A1 (en) * 2013-09-06 2015-03-12 株式会社ダイセル Method and plant for using recompressed vapor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046301B1 (en) * 2021-10-06 2022-04-04 藤▲崎▼エンジニアリング株式会社 Oil extraction and distillation equipment using flash steam
CN114225446A (en) * 2021-12-14 2022-03-25 天津商业大学 Distillation device and method for directly compressing and backheating distillation steam
CN114225446B (en) * 2021-12-14 2024-05-14 天津商业大学 Distillation device and method for directly compressing and backheating distillation vapor

Also Published As

Publication number Publication date
CN109890476B (en) 2021-09-14
MY195815A (en) 2023-02-22
CN109890476A (en) 2019-06-14
JP7032319B2 (en) 2022-03-08
JPWO2018079370A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6291499B2 (en) Recompressed steam utilization method and plant
KR101584529B1 (en) Solution treatment device
JP2007010243A (en) Heat pump device, and operating method for heat pump
JP2009281681A (en) Steam condenser and power generation facility
US20140014492A1 (en) Produced water treatment process at crude oil and natural gas processing facilities
WO2018079370A1 (en) Method for using recompressed vapor and plant
EP2758499B1 (en) Regeneration of kinetic hydrate inhibitor
JP4694116B2 (en) Method and apparatus for producing purified liquid
EP2239027A1 (en) Method and device for producing vacuum in a petroleum distillation column
US10443932B2 (en) Refrigerant vent rectifier and efficiency booster
JP6450292B2 (en) Recompressed steam utilization method and plant
US9719676B2 (en) Draining a power plant
CN113398610A (en) Evaporation apparatus
JP2020121239A (en) Distillation apparatus
KR20150060936A (en) Gas and steam turbine system having feed-water partial-flow degasser
US7038081B2 (en) Method for producing polyacrylic acid
RU2146778C1 (en) Method of operation of pump-ejector plant and pump-ejector plant for method embodiment
WO2024048725A1 (en) Distillation method
CN113573790A (en) Fractionating tower with heat pump using high boiling point vapor
JP6931543B2 (en) Waste heat utilization system, alcohol distillation equipment and waste heat utilization method
WO2023285240A1 (en) Control of pressure in an ammonia cooling circuit at varying loads
CN117715867A (en) Pressure control of an ammonia cooling circuit under varying loads
JP2017029910A (en) Separation refining apparatus for composite liquid
JP2004113949A (en) Vacuum evaporation type distillation apparatus
JP2005288283A (en) Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866116

Country of ref document: EP

Kind code of ref document: A1