WO2018079280A1 - In-vehicle updating system and in-vehicle updating device - Google Patents

In-vehicle updating system and in-vehicle updating device Download PDF

Info

Publication number
WO2018079280A1
WO2018079280A1 PCT/JP2017/036981 JP2017036981W WO2018079280A1 WO 2018079280 A1 WO2018079280 A1 WO 2018079280A1 JP 2017036981 W JP2017036981 W JP 2017036981W WO 2018079280 A1 WO2018079280 A1 WO 2018079280A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
battery
unit
switching
power supply
Prior art date
Application number
PCT/JP2017/036981
Other languages
French (fr)
Japanese (ja)
Inventor
聡一 中村
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2018079280A1 publication Critical patent/WO2018079280A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to an in-vehicle update system and an in-vehicle update device for updating a program of an in-vehicle device mounted on a vehicle.
  • in-vehicle devices such as a plurality of ECUs (Electronic Control Units) are mounted on a vehicle, and a plurality of ECUs are connected via a communication line such as a CAN (Controller Area Network) bus to transmit and receive information to and from each other.
  • a communication line such as a CAN (Controller Area Network) bus to transmit and receive information to and from each other.
  • Each ECU reads and executes a program stored in a storage unit such as a flash memory or an EEPROM (ElectricallyrasErasable Programmable Read Only Memory) by a processing device such as a CPU (Central Processing Unit), thereby performing various control such as vehicle control Is being processed.
  • a storage unit such as a flash memory or an EEPROM (ElectricallyrasErasable Programmable Read Only Memory)
  • CPU Central Processing Unit
  • the program or data stored in the storage unit of the ECU needs to be updated to be rewritten with a new program or data, for example, when it becomes necessary to add a function, correct a defect, or upgrade a version.
  • an update program or data is transmitted to the ECU to be updated by a communication line.
  • Patent Document 1 when the program is updated after the driver gets off while the engine is running, the program update device monitors the vehicle state and transmits monitoring information to the center.
  • a program update system for monitoring has been proposed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an in-vehicle update system and an in-vehicle update device that can suppress battery exhaustion associated with an update process of an in-vehicle device. .
  • An in-vehicle update system includes an in-vehicle device that is supplied with electric power from one or a plurality of batteries mounted on a vehicle and operates by executing a program stored in a storage unit,
  • An in-vehicle update system comprising: an in-vehicle update device that performs a process of updating a program stored in the storage unit of the in-vehicle device, wherein energization / interruption of a power supply path from the plurality of batteries to the in-vehicle device is individually performed
  • a plurality of switching units to be switched a plurality of detection units that respectively detect the stored power amounts of the plurality of batteries, and when the in-vehicle update device performs update processing of the in-vehicle device, based on the detection result of the detection unit
  • a switching control processing unit that controls energization / shut-off of the plurality of switching units, and the switching control processing unit is configured such that the stored power amount among the stored power amounts detected by the detection unit
  • the switching control processing unit gives priority to a battery whose stored power amount detected by the detection unit exceeds a threshold, and energizes a power supply path from the battery to the in-vehicle device. It is characterized by switching to a state.
  • the in-vehicle update system is characterized in that the in-vehicle update device includes the switching control processing unit.
  • the in-vehicle update system further includes a switching control device having a communication unit that communicates with the in-vehicle update device and the switching control processing unit, and the switching control device is configured to transmit the switching control device by the communication unit. Control by the switching control processing unit is performed according to a command received from the in-vehicle update device.
  • the plurality of batteries are a first battery and a second battery
  • the in-vehicle device is supplied with electric power from the first battery
  • the in-vehicle update device includes the first battery Power is supplied from one battery and the second battery, a first power supply path from the first battery to the in-vehicle device and the in-vehicle update device, and a second power supply from the second battery to the in-vehicle update device
  • a plurality of switching units a first switching unit that switches between energization / interruption provided on the first power supply path and an energization / interruption provided on the second power supply path.
  • a second switching unit, a third switching unit that is provided between the first power supply path and the second power supply path and switches between energization / cutoff between the two paths, and the plurality of detection units are First A first detection unit for detecting a stored power amount of the battery and a second detection unit for detecting a stored power amount of the second battery, wherein the switching control processing unit is configured to update the in-vehicle device by the in-vehicle update device.
  • the switching control processing unit is configured to update the in-vehicle device by the in-vehicle update device.
  • the switching control processing unit when the switching control processing unit has a stored power amount detected by the first detection unit larger than a stored power amount detected by the second detection unit, the first control unit Accumulated power detected by the second detection unit with the first switching unit in the energized state, the second switching unit and the third switching unit in the cut-off state, and the accumulated power amount detected by the first detection unit When the amount is smaller than the amount, the first switching unit is turned off, and the second switching unit and the third switching unit are turned on.
  • the plurality of batteries are a first battery and a second battery
  • the in-vehicle device is supplied with power from either the first battery or the second battery
  • the in-vehicle update device is supplied with electric power from the first battery and the second battery, a first power supply path from the first battery to the in-vehicle update device, and a first power supply path from the second battery to the in-vehicle update device.
  • Two power supply paths, and the plurality of switching sections include a first switching section that switches between energization / cutoff provided on the first power supply path and an energization / switch provided on the second power supply path.
  • a third switching unit configured to switch between energization / shutoff between the first power supply path and the second power supply path, wherein the plurality of switching units are provided between the first power supply path and the second power supply path.
  • a first detector that detects the amount of stored power of the first battery
  • a second detector that detects the amount of stored power of the second battery
  • the in-vehicle device includes the first power supply path and the first
  • a connection information storage unit that stores which of the two power supply paths is connected
  • the switching control processing unit when the in-vehicle update device performs the update process of the in-vehicle device, Based on the detection result of the second detection unit and the information stored in the connection information storage unit, energization / cutoff of the first switching unit, the second switching unit, and the third switching unit is controlled.
  • the switching control processing unit is configured to supply power to the plurality of switching units after the update processing by the in-vehicle update device is completed until the vehicle engine is started. It is characterized by maintaining a shut-off state.
  • the in-vehicle update device is an in-vehicle device that operates by executing a program that is supplied with power from one or a plurality of batteries out of a plurality of batteries mounted on a vehicle and stored in a storage unit.
  • a vehicle-mounted update device that performs a process of updating a program stored in the storage unit, and a detection result acquisition unit that acquires a detection result from a plurality of detection units that respectively detect the stored power amounts of the plurality of batteries;
  • a plurality of switching units that individually switch energization / cutoff of the power supply path from the plurality of batteries to the in-vehicle device based on the detection result acquired by the detection result acquisition unit when performing the update process of the in-vehicle device;
  • a switching control processing unit that performs processing related to switching control, wherein the switching control processing unit starts from a battery having the largest amount of stored power among the stored power amounts detected by the detection unit. Switching power supply path to the serial-vehicle device energized, and switches from the battery other than the amount accumulated power highest battery cutoff state power supply path to the vehicle device.
  • the present invention is intended for a vehicle on which a plurality of batteries are mounted, and an in-vehicle device that is an object of update processing is configured to be able to receive power supply from a plurality of batteries mounted on the vehicle.
  • the power supply path from each battery to the in-vehicle device is provided with a switching unit such as a switch or a relay that can be switched between energization / cutoff individually.
  • the amount of stored power in each battery is detected.
  • the stored power amount of the battery to be detected may be a power amount expressed in units such as watt hours (Wh), for example, and may be expressed as a ratio such as SOC (State Of Charge). Also good.
  • the switching control of energization / interruption of each switching unit is performed based on the detected accumulated power amount of each battery.
  • an update process corresponding to the accumulated power amount of each battery can be realized, such as not using a battery whose accumulated power amount is reduced for the update process, and it is possible to contribute to the suppression of battery exhaustion.
  • a battery with a large amount of stored power is given priority, and the power supply path from this battery to the in-vehicle device is set to the energized state.
  • the power supply path from this battery to the in-vehicle device is set to the energized state.
  • the power of the battery with a large amount of stored power can be supplied to the in-vehicle device subject to the update process to perform the update process, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing. .
  • the threshold value is determined in advance at the system design stage or the like based on, for example, the amount of power required to perform the update processing of the in-vehicle device and the amount of power required to start the engine of the vehicle. For example, among a plurality of batteries mounted on a vehicle, a predetermined number of batteries are selected in descending order of the stored power amount from those whose stored power amount exceeds a threshold, and power is supplied from the selected predetermined number of batteries to the in-vehicle device. The path can be energized. Thereby, it is possible to prevent the stored power amount of the battery from being significantly reduced by performing the update process.
  • the in-vehicle update device that performs the update process of the in-vehicle device performs control to switch energization / interruption of a plurality of switching units provided in the power supply path from each battery to the in-vehicle device. Thereby, control of a switching part is easily realizable according to update processing.
  • the switching control apparatus which performs control which switches electricity supply / cutoff of the several switching part provided in the electric power supply path
  • route from each battery to vehicle equipment is provided separately from a vehicle update apparatus.
  • the in-vehicle update device and the switching control device have a function of performing communication according to a standard such as CAN (Controller Area Network), and can transmit and receive information to and from each other.
  • the in-vehicle updating device gives a switching command of the switching unit to the switching control device when performing the update process, and the switching control device performs switching control of the switching unit according to the switching command.
  • the in-vehicle update device In the configuration in which the in-vehicle update device performs the switching control of the switching unit, the in-vehicle update device needs to perform the switching control of the switching unit even when the update process is not performed.
  • the switching control device By adopting a configuration in which the switching control device performs switching control of the switching unit, it is not necessary for the in-vehicle updating device to perform switching control of the switching unit when update processing is not performed, and in-vehicle updating by introducing the configuration of the present invention. The complexity of the apparatus can be suppressed.
  • a vehicle on which two batteries, a first battery and a second battery, are mounted, an in-vehicle device to be subjected to update processing receives power supply from the first battery, It is assumed that the power supply operates from the first battery and the second battery.
  • a first switching unit is provided in the first power supply path from the first battery to the in-vehicle device and the in-vehicle updating device, and a second switching unit is provided in the second power supply path from the second battery to the in-vehicle updating device.
  • a third switching unit that switches between energization / cutoff between both paths is provided between the first power supply path and the second power supply path.
  • the 1st electric power supply path and the 2nd electric power supply path can be connected by making the 3rd switching part into an energized state, it is the 2nd battery to the in-vehicle apparatus connected to the 1st electric power supply path. It becomes possible to supply the electric power.
  • the in-vehicle update device detects the stored power amounts of the first battery and the second battery and performs the update process of the in-vehicle device, the first switching unit and the second switching unit based on the detection result of the stored power amount. And switching control of the third switching unit.
  • an update process corresponding to the accumulated power amount of each battery can be realized, such as not using a battery whose accumulated power amount is reduced for the update process, and it is possible to contribute to the suppression of battery exhaustion.
  • the first switching unit when the stored power amount of the first battery is larger than the stored power amount of the second battery, the first switching unit is turned on, and the second switching unit and the third switching unit are turned off. Thus, power is supplied from the first battery to the in-vehicle device.
  • the first switching unit when the stored power amount of the first battery is smaller than the stored power amount of the second battery, the first switching unit is turned off, and the second switching unit and the third switching unit are turned on. Thus, power is supplied from the second battery to the in-vehicle device.
  • the battery power with a large amount of stored power can be supplied to the in-vehicle device that is the target of the update process and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing. .
  • the in-vehicle device that is the target of the update process is connected to either the first power supply path or the second power supply path. Therefore, it is stored as connection information whether the in-vehicle device that can be the target of the update process is connected to the first power supply path or the second power supply path. After determining whether to use the first battery or the second battery for the update process based on the stored power amount, the power supply path to which the battery used for the update process is connected and the in-vehicle device to be updated are connected. When the power supply path is different, the power is supplied from the battery to the in-vehicle device to be updated by switching the third switch to the energized state.
  • the switching unit provided in each power supply path from the plurality of batteries to the in-vehicle device based on the stored power amount of the plurality of batteries.
  • FIG. 10 is a flowchart illustrating a procedure of processing performed by a gateway according to the second embodiment. 10 is a flowchart illustrating a procedure of processing performed by a gateway according to the second embodiment.
  • FIG. 1 is a block diagram showing the configuration of the in-vehicle update system according to the first embodiment.
  • 1 indicated by a broken line is a vehicle, and the vehicle 1 is provided with an in-vehicle update system 1a having a first battery 11, a second battery 12, a gateway 13, an ECU 14, a body ECU 15, and the like.
  • the power supply path 3 is indicated by a thick solid line
  • the signal lines 4a to 4c for transmitting control signals and the like are indicated by thin solid lines
  • the communication line 2 constituting the in-vehicle network is indicated by a one-dot chain line
  • wireless communication is performed. It is indicated by a two-dot chain line.
  • the first battery 11 and the second battery 12 are devices that accumulate electric power generated by an alternator (not shown) during engine operation of the vehicle 1, and are configured using a battery such as a lead storage battery or a lithium ion battery, for example. can do.
  • the first battery 11 and the second battery 12 can supply the accumulated power to the gateway 13, the ECU 14, the body ECU 15, and the like mounted on the vehicle 1 while the engine of the vehicle 1 is stopped.
  • the first battery 11 and the second battery 12 are connected to in-vehicle devices such as the gateway 13, the ECU 14, and the body ECU 15 through the power supply path 3 configured using a power line or the like in the vehicle 1.
  • the first battery 11 and the second battery 12 are the same device having the same amount of power that can be stored.
  • the 1st battery 11 and the 2nd battery 12 may be the structures from which the electric energy which can be stored differs.
  • the 1st battery 11 and the 2nd battery 12 may be comprised using different apparatuses, such as making the 1st battery 11 into a lead storage battery and making the 2nd battery 12 into a lithium ion battery, for example.
  • the gateway 13 is a device that performs processing for relaying message transmission / reception between the communication lines 2 by connecting a plurality of communication lines 2 constituting the in-vehicle network of the vehicle 1.
  • the gateway 13 has a function of performing communication via a wireless network such as a cellular phone communication network or a wireless LAN (Local Area Network), for example, and thereby communicates with the server device 9 installed outside the vehicle 1. It can be performed. Thereby, the gateway 13 can relay communication inside and outside the vehicle 1.
  • a configuration may be adopted in which the vehicle 1 is provided with a wireless communication device that performs wireless communication, and the gateway 13 communicates with the server device 9 via the wireless communication device.
  • the gateway 13 has a function as an in-vehicle update device that updates a program or data (hereinafter simply referred to as a program) stored in a memory of an in-vehicle device such as the ECU 14 mounted on the vehicle 1. ing.
  • the gateway 13 communicates with the server device 9 outside the vehicle while the engine of the vehicle 1 is operating, and inquires whether or not the program of the in-vehicle device such as the ECU 14 mounted on the vehicle 1 needs to be updated. If necessary, download the update program and store it.
  • the gateway 13 reaches a predetermined update timing, for example, after a predetermined time has elapsed since the engine of the vehicle 1 is stopped, the gateway 13 updates the stored update program to the ECU 14 to be updated. Process.
  • the ECU 14 may include various ECUs such as an ECU that controls the operation of the engine of the vehicle 1, an ECU that controls the operation of the airbag, and an ECU that controls the operation of an ABS (Antilock Brake System).
  • the ECU 14 performs various processes by executing a program stored in an internal memory or the like by a CPU (Central Processing Unit) or the like.
  • the ECU 14 is an ECU that can be an object of update processing for updating a program stored in a memory or the like.
  • the body ECU 15 is an ECU that controls, for example, locking / unlocking the door of the vehicle 1 and controlling lighting on / off of the light. Further, in the present embodiment, the body ECU 15 performs control to switch which power of the first battery 11 or the second battery 12 is supplied to the in-vehicle device such as the gateway 13 and the ECU 14 when the engine of the vehicle 1 is stopped.
  • the vehicle 1 is provided with a first switch 21 for energizing / cutting off the first battery 11 with respect to the power supply path 3 and a second switch 22 for energizing / cutting off the second battery 12 with respect to the power supply path 3. It has been.
  • the first switch 21 and the second switch 22 are switched between energization / cutoff according to a control signal given from the body ECU 15 via the signal lines 4a and 4b.
  • the first switch 21 and the second switch 22 are configured using, for example, a mechanical relay or a semiconductor element.
  • the body ECU 15 switches both the first switch 21 and the second switch 22 to the energized state.
  • power is supplied from the alternator of the vehicle 1 connected to the power supply path 3 to the first battery 11 and the second battery 12, and the power is accumulated in the first battery 11 and the second battery 12.
  • the body ECU 15 sets one of the first switch 21 and the second switch 22 in an energized state and the other in a cut-off state, so that the first battery 11 and the second battery 12 are turned off. Electric power is supplied from either one to in-vehicle devices such as the gateway 13 and the ECU 14.
  • the first battery 11 is used as a main battery
  • the second battery 12 is used as a sub battery.
  • the body ECU 15 sets the first switch 21 in the energized state and sets the second switch 22 in the cut-off state to supply the electric power of the first battery 11 to the in-vehicle device.
  • a first power amount detection unit 23 that detects the amount of power stored in the first battery 11 and a second power that detects the amount of power stored in the second battery 12.
  • the amount detection unit 24 is provided, and the detection results of the first power amount detection unit 23 and the second power amount detection unit 24 are input to the gateway 13 via the signal lines 4c and 4d.
  • the first power amount detection unit 23 and the second power amount detection unit 24 are provided at or near the input / output terminal of the battery, detect the amount of current input to and output from the input / output terminal, and an integrated value of the current amount The amount of stored power can be calculated by calculating.
  • the first power amount detection unit 23 and the second power amount detection unit 24 may be configured to detect the voltage value of the input / output terminal of the battery and calculate the accumulated power amount from the voltage value.
  • the first power amount detection unit 23 and the second power amount detection unit 24 simply input the detected current value or voltage value to the gateway 13, and the gateway 13 is based on the current value or voltage value.
  • the storage power amount of the first battery 11 and the second battery 12 may be calculated.
  • the stored power amounts of the first battery 11 and the second battery 12 are detected as so-called SOC. That is, the ratio [%] of the amount of power stored at that time to the amount of power stored when the battery is fully charged is treated as the stored power amount of the first battery 11 and the second battery 12.
  • the configuration may be such that the amount of power expressed in watt hours (Wh) is detected as the amount of stored power in the first battery 11 and the second battery 12.
  • the gateway 13 starts the program update process of the ECU 14 when the predetermined update timing is reached while the engine of the vehicle 1 is stopped. However, the gateway 13 checks the stored electric energy of the first battery 11 and the second battery 12 before starting the update process. The gateway 13 determines whether or not each of the first battery 11 and the second battery 12 exceeds a threshold value. For example, in the present embodiment, the gateway 13 does not perform the update process when either the stored power amount of the first battery 11 or the stored power amount of the second battery 12 does not exceed 90%. When at least one of the stored power amount of the first battery 11 and the stored power amount of the second battery 12 exceeds 90%, the gateway 13 performs an update process.
  • the gateway 13 compares the stored power amount of the first battery 11 with the stored power amount of the second battery 12, and performs update processing using a battery having a large stored power amount.
  • the gateway 13 sends a switch command to the body ECU 15 to switch the first switch 21 to the energized state and the second switch 22 to the cut-off state.
  • the body ECU 15 turns on the first switch 21 and turns off the second switch 22, whereby the electric power stored in the first battery 11 is supplied to the gateway 13, the ECU 14, and the like.
  • the gateway 13 performs a program update process of the ECU 14.
  • the gateway 13 issues a switching command to the body ECU 15 to switch the first switch 21 to the cutoff state and the second switch 22 to the energized state. Give through the network. By this switching command, the body ECU 15 turns off the first switch 21 and turns on the second switch 22, so that the electric power stored in the second battery 12 is supplied to the gateway 13, the ECU 14, and the like. After the switching control by the body ECU 15 is completed, the gateway 13 performs a program update process of the ECU 14.
  • the gateway 13 gives the body ECU 15 a command for canceling the switching command.
  • the body ECU 15 maintains the current energized state and sets the first switch 21 and the second switch 22 to the energized state after the next engine start.
  • the threshold at which the gateway 13 compares the stored power amount of the first battery 11 and the stored power amount of the second battery 12 may be a fixed value, but the content of the update process target (for example, the update target device) The number may vary depending on the number of Further, the threshold value for comparing with the stored power amount of the first battery 11 and the threshold value for comparing with the stored power amount of the second battery 12 may be different values.
  • the stored power amount of the first battery 11 and the stored power amount of the second battery 12 are simply compared, but the present invention is not limited to this.
  • a configuration may be adopted in which weighting based on the amount of power that can be stored is weighted to compare the stored power amount. .
  • FIG. 2 is a block diagram showing the configuration of the gateway 13. However, in FIG. 2, functional blocks related to the update process of the gateway 13 are illustrated, and functional blocks related to the communication relay process are not shown.
  • the gateway 13 includes a processing unit 31, a storage unit 32, a detection result input unit 33, an in-vehicle communication unit 34, an out-of-vehicle communication unit 35, and the like.
  • the processing unit 31 is configured by using an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), for example, and a program (not shown) stored in the storage unit 32 or a ROM (Read Only Memory).
  • a CPU Central Processing Unit
  • MPU Micro-Processing Unit
  • the processing unit 31 performs a process of downloading an update program for the ECU 14 from the server device 9 outside the vehicle, a process for updating the program by transmitting the downloaded update program to the ECU 14, and the like. Further, in the present embodiment, the processing unit 31 performs switching control processing of the first switch 21 and the second switch 22 based on the stored electric energy of the first battery 11 and the second battery 12 when performing the update processing.
  • the storage unit 32 is configured using a nonvolatile memory element such as a flash memory or an EEPROM (ElectricallyrErasable Programmable Read Only Memory).
  • the storage unit 32 stores a program executed by the processing unit 31 and data necessary for the execution of the program, and also stores an update program 32 a used for updating the ECU 14.
  • the storage unit 32 may store data generated in the course of processing by the processing unit 31.
  • the detection result input unit 33 is connected to the first power amount detection unit 23 and the second power amount detection unit 24 via the signal lines 4c and 4d, and stores the stored power amount of the first battery 11 and the second battery 12.
  • a detection result (or a detection result such as a current value or a voltage value for calculating the stored power amount) is input.
  • the detection result input unit 33 converts the digital signal into digital data by sampling and acquiring the input signal, and gives the detection result of the converted digital value to the processing unit 31.
  • the detection result input unit 33 provides the processing unit 31 with digital data corresponding to the input signal.
  • the in-vehicle communication unit 34 is connected to the communication line 2 constituting the in-vehicle network provided in the vehicle 1 and transmits and receives data according to a communication protocol such as CAN (Controller Area Network).
  • the in-vehicle communication unit 34 transmits information by converting the data given from the processing unit 31 into an electrical signal and outputs the signal to the communication line 2, and also samples and acquires the potential of the communication line 2 to obtain the data.
  • the received data is given to the processing unit 31.
  • the gateway 13 can transmit and receive data between the ECU 14 and the body ECU 15 mounted on the vehicle 1.
  • the gateway 13 includes a plurality of in-vehicle communication units 34, and relays data by transmitting data received by one in-vehicle communication unit 34 from another in-vehicle communication unit 34.
  • the vehicle exterior communication unit 35 communicates with the server device 9 outside the vehicle by using, for example, a mobile phone communication network or a wireless LAN.
  • the out-of-vehicle communication unit 35 transmits data by outputting a radio signal obtained by modulating data provided from the processing unit 31 from the antenna, and processes the data obtained by demodulating the radio signal received by the antenna.
  • the gateway 13 directly performs wireless communication with the outside of the vehicle, but is not limited thereto.
  • a wireless communication device can be mounted on the vehicle 1 separately from the gateway 13 and can communicate with each other by connecting the gateway 13 and the wireless communication device via the communication line 2 constituting the in-vehicle network or a dedicated communication line.
  • the configuration may be such that the gateway 13 communicates with the server device 9 outside the vehicle via the wireless communication device.
  • the processing unit 31 executes a program stored in the storage unit 32 or the ROM, so that the detection result acquisition unit 31a, the switching control processing unit 31b, the update processing unit 31c, and the like are realized as software functional blocks. Is done.
  • the detection result acquisition unit 31a receives the detection result input from the first power amount detection unit 23 and the second power amount detection unit 24 to the detection result input unit 33 when the predetermined update timing is reached after the engine of the vehicle 1 is stopped. Process to get.
  • the detection result acquisition unit 31a performs a process of comparing the acquired stored power amount of the first battery 11 and the stored power amount of the second battery 12 with a predetermined threshold value.
  • the detection result acquisition unit 31a performs a process of comparing the stored power amount of the first battery 11 and the stored power amount of the second battery 12.
  • the switching control processing unit 31b performs energization / interruption switching processing of the first switch 21 and the second switch 22 based on the comparison result of the stored electric energy by the detection result acquisition unit 31a. Note that if both the stored power amount of the first battery 11 and the stored power amount of the second battery 12 do not exceed the threshold value, the gateway 13 stops the update process. When the stored power amount of the first battery 11 exceeds the threshold value and the stored power amount of the second battery 12 does not exceed the threshold value, the switching control processing unit 31b determines to perform the update process using the first battery 11, A switching command to turn on the first switch 21 and turn off the second switch 22 is transmitted to the body ECU 15.
  • the switching control processing unit 31b determines to perform the update process using the second battery 12, A switching command for setting the first switch 21 to the cutoff state and the second switch 22 to be energized is transmitted to the body ECU 15.
  • the switching control processing unit 31b determines whether the stored power amount of the first battery 11 and the stored power amount of the second battery 12 Based on the comparison result, it is determined that the update process is performed using the battery with the larger amount of stored power.
  • the switching control processing unit 31b determines that the update process is performed using the first battery 11, and the first switch 21 is energized. And a switching command to turn off the second switch 22 is transmitted to the body ECU 15.
  • the switching control processing unit 31b determines that the update process is performed using the second battery 12, and the first switch 21 is turned off. Then, a switching command for energizing the second switch 22 is transmitted to the body ECU 15.
  • the update processing unit 31c performs processing for updating a program stored in a storage unit of various in-vehicle devices (ECU 14 in the present embodiment) mounted on the vehicle 1.
  • the update processing unit 31 c communicates with the server device 9 outside the vehicle while the engine of the vehicle 1 is operating, and performs a process of inquiring whether there is a program update for all in-vehicle devices that may be updated.
  • the update processing unit 31 c acquires the update program necessary for the update process from the server device 9 and stores it in the storage unit 32.
  • the update processing unit 31c reads the update program 32a stored in the storage unit 32 and becomes the target of the update process. Update processing is performed by transmitting to the device.
  • FIG. 3 is a block diagram showing the configuration of the body ECU 15.
  • the body ECU 15 includes a processing unit 51, a storage unit 52, an in-vehicle communication unit 53, a control signal output unit 54, and the like.
  • the processing unit 51 is configured using, for example, an arithmetic processing device such as a CPU or MPU, and reads and executes a program (not shown) stored in the storage unit 52 or the ROM, thereby executing the first switch 21 and Various arithmetic processes related to switching control of the second switch 22 and the like are performed.
  • the storage unit 52 is configured using a nonvolatile memory element such as a flash memory or an EEPROM.
  • the storage unit 52 stores a program executed by the processing unit 51, data necessary for executing the program, and the like.
  • the storage unit 52 may store data generated in the course of processing by the processing unit 51.
  • the in-vehicle communication unit 53 is connected to the communication line 2 constituting the in-vehicle network provided in the vehicle 1 and transmits / receives data according to a communication protocol such as CAN.
  • the in-vehicle communication unit 53 transmits information by converting the data provided from the processing unit 51 into an electric signal and outputs the electric signal to the communication line 2, and also samples and acquires the data by sampling the potential of the communication line 2.
  • the received data is given to the processing unit 51.
  • the body ECU 15 can transmit and receive data to and from the gateway 13 and ECU 14 mounted on the vehicle 1.
  • the control signal output unit 54 is connected to the first switch 21 and the second switch 22 via the signal lines 4a and 4b, respectively, and receives a control signal for switching energization / cutoff of these switches in response to an instruction from the processing unit 51. Output.
  • the switching control processing unit 51b is realized as a software functional block by executing a program stored in the storage unit 52 or the ROM.
  • the switching control processing unit 51 a causes the control signal output unit 54 to switch the first switch so that the switching state specified by the switching command is established. 21 and a process of outputting a control signal to the second switch 22 is performed.
  • the switching control processing unit 51a performs a process of appropriately switching between energization / cutoff of the first switch 21 and the second switch 22 according to the operating state of the engine of the vehicle 1 or the state of the ignition switch.
  • FIG. 4 is a flowchart showing a procedure of processing performed by the gateway 13 according to the present embodiment. Note that the processing shown in this flowchart starts from a state after the gateway 13 completes the acquisition of the update program necessary for the update processing from the server device 9 and the engine of the vehicle 1 is stopped.
  • the update processing unit 31c of the processing unit 31 of the gateway 13 determines whether or not a predetermined timing for performing the program update processing of the ECU 14 has been reached (step S1).
  • a predetermined time for example, a predetermined time such as 11:00 pm, or a timing after two hours have elapsed since the ignition switch is switched to the off state can be employed.
  • the update timing may be determined by the user.
  • the update processing unit 31c waits until the update timing is reached.
  • the detection result acquisition unit 31a of the processing unit 31 When the update timing is reached (S1: YES), the detection result acquisition unit 31a of the processing unit 31 outputs a signal input to the detection result input unit 33 from the first power amount detection unit 23 and the second power amount detection unit 24. Based on this, the detection result of the stored power amount of the first battery 11 and the detection result of the stored power amount of the second battery 12 are acquired (step S2). Next, the detection result acquisition unit 31a determines whether or not the accumulated power amount of the first battery 11 acquired in step S2 exceeds a predetermined threshold (step S3). When the stored power amount of the first battery 11 exceeds the threshold value (S3: YES), the detection result acquisition unit 31a determines whether or not the stored power amount of the second battery 12 acquired in step S2 exceeds a predetermined threshold value.
  • step S4 When the accumulated power amount of the second battery 12 exceeds the threshold value (S4: YES), that is, when both the accumulated power amounts of the first battery 11 and the second battery 12 exceed the threshold value, the detection result acquisition unit 31a It is further determined whether or not the stored power amount of 11 exceeds the stored power amount of the second battery 12 (step S5).
  • the switching control processing unit 51a sets the first switch 21 in the energized state and sets the second switch 22 in the cut-off state. Therefore, a switch switching command is transmitted to the body ECU 15 (step S7).
  • the switching control processing unit 51a sets the first switch 21 in the energized state and shuts off the second switch 22. In order to enter the state, a switch switching command is transmitted to the body ECU 15 (step S7).
  • the update processing unit 31c After completing the switching of the first switch 21 and the second switch 22 in step S7, the update processing unit 31c reads the update program 32a stored in the storage unit 32 and transmits it to the ECU 14 to be updated by the in-vehicle communication unit 34. Thus, an update process is performed (step S9), and the process ends.
  • step S5 When the stored power amount of the first battery 11 does not exceed the stored power amount of the second battery 12 in step S5 (S5: NO), the switching control processing unit 51a sets the first switch 21 to the shut-off state and sets the second switch A switch switching command is transmitted to the body ECU 15 in order to set 22 to an energized state (step S8).
  • step S3 the threshold value in step S3
  • the detection result acquisition unit 31a determines that the stored power amount of the second battery 12 acquired in step S2 is a predetermined threshold value. It is determined whether or not (step S6).
  • the switching control processing unit 51a instructs the body ECU 15 to turn off the first switch 21 and turn on the second switch 22.
  • the switch change command is transmitted (step S8).
  • the update processing unit 31c reads the update program 32a stored in the storage unit 32 and transmits it to the ECU 14 to be updated by the in-vehicle communication unit 34.
  • an update process is performed (step S9), and the process ends.
  • step S6 (S6: NO)
  • the processing unit 31 finisheses the process without performing the program update process of the ECU 14.
  • the in-vehicle update system 1a targets the vehicle 1 on which two batteries of the first battery 11 and the second battery 12 are mounted, and the ECU 14 that is the target of the update process is the first battery.
  • power can be supplied from both the battery 11 and the second battery 12.
  • the power supply path 3 from the first battery 11 and the second battery 12 to the ECU 14 is provided with a first switch 21 and a second switch 22 that can be switched between energization / cutoff.
  • a first power amount detection unit 23 and a second power amount detection unit 24 that detect the stored power amount of the first battery 11 and the second battery 12 are provided, and the gateway 13 performs a program update process of the ECU 14.
  • On / off switching control of the first switch 21 and the second switch 22 is performed based on the detected accumulated electric energy of the first battery 11 and the second battery 12.
  • an update process corresponding to the stored power amount of each battery can be realized, such as not using a battery whose stored power amount is reduced in the update process, and it is possible to contribute to the suppression of battery power up of the vehicle 1.
  • the gateway 13 gives priority to a battery with a large amount of stored power, and performs switching control of the first switch 21 and the second switch 22 so that the power supply path from the battery to the ECU 14 is energized.
  • the gateway 13 may set the power supply path from the battery having the largest amount of stored power to the ECU 14 in an energized state. That is, the gateway 13 performs switching control of the first switch 21 and the second switch 22 so as to supply the electric power of the battery having a large amount of accumulated electric power among the first battery 11 and the second battery 12 to the ECU 14 that is an object of the update process. I do.
  • the power of the battery with a large amount of stored power can be supplied to the ECU 14 to be updated, and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing.
  • the first battery 11 and the second battery 12 are mounted on the vehicle 1.
  • the present invention is not limited to this, and three or more batteries are mounted on the vehicle 1. It is good as composition.
  • the gateway 13 acquires the stored power amount of each battery, and connects each battery to the power supply path so as to supply power from the one battery having the largest stored power amount to the ECU 14 to be updated. It can be set as the structure which switches electricity supply / cut-off of switching parts, such as a switch to perform or a relay. Further, for example, the gateway 13 may be configured to select a predetermined number of batteries in descending order of the amount of stored power, and to put the power supply path from the selected battery to the ECU 14 to be updated into an energized state.
  • the gateway 13 determines whether or not the stored power amount of the first battery 11 and the second battery 12 exceeds a predetermined threshold value.
  • the gateway 13 selects a battery to be used for the update process from among those whose stored power amount exceeds the threshold value. If any of the batteries does not exceed the threshold, the gateway 13 stops the update process. Thereby, it is possible to prevent the stored power amount of the first battery 11 and the second battery 12 from being significantly reduced by the gateway 13 performing the update process.
  • the in-vehicle update system 1a includes a body ECU 15 that performs control to switch energization / cutoff of the first switch 21 and the second switch 22 provided in the power supply path 3 from the first battery 11 and the second battery 12 to the ECU 14.
  • This configuration is provided separately from the gateway 13 that performs the update process.
  • the gateway 13 and the body ECU 15 can exchange data with each other via the communication line 2.
  • the gateway 13 gives a switching command for the first switch 21 and the second switch 22 to the body ECU 15 when performing the update process, and the body ECU 15 performs switching control for the first switch 21 and the second switch 22 in accordance with the switching command. .
  • the body ECU 15 can perform the switching control of the first switch 21 and the second switch 22 when the update process is not performed, and the gateway 13 is configured to perform the control of the first switch 21 and the second switch 22 other than the update process. There is no need to perform switching control.
  • the in-vehicle update system 1a may realize a device that performs an update process for in-vehicle devices and a device that performs switching control of the first switch 21 and the second switch 22 as one device.
  • the gateway 13 may be configured to output a control signal for switching energization / cutoff of the first switch 21 and the second switch 22.
  • the body ECU 15 may be configured to update the program of the ECU 14.
  • the gateway 13 performs the update process of the ECU 14 and the like, but the present invention is not limited to this.
  • Another device mounted on the vehicle 1 may be configured to perform the update process.
  • the system configuration shown in FIG. 1 is an example, and the present invention is not limited to this.
  • the body ECU 15 performs the switching control of the first switch 21 and the second switch 22, it is not limited to this.
  • Another device mounted on the vehicle 1 may be configured to perform switching control of the first switch 21 and the second switch 22.
  • FIG. 5 is a block diagram showing a configuration of the in-vehicle update system 1a according to the second embodiment.
  • the vehicle 1 includes a first power supply path 3a to which power is supplied from the first battery 11 and a second power supply path 3b to which power is supplied from the second battery.
  • the in-vehicle update system 1a includes a first switch 21 that connects the first battery 11 to the first power supply path 3a, and a second switch 22 that connects the second battery 12 to the second power supply path 3b.
  • the body ECU 15 controls energization / cutoff of the first switch 21 and the second switch 22.
  • the gateway 13 and the body ECU 15 are connected to both the first power supply path 3 a and the second power supply path 3 b, and can receive power supply from either the first battery 11 or the second battery 12.
  • the ECU 14 is connected only to the first power supply path 3 a, is not connected to the second power supply path 3 b, and operates by supplying power from the first battery 11.
  • the gateway 13 When the gateway 13 according to the second embodiment reaches a predetermined update timing when the engine of the vehicle 1 is stopped, the gateway 13 stores the stored power amounts of the first battery 11 and the second battery 12 in the first power amount detection unit 23 and the first power amount detection unit 23. 2 Obtained from the electric energy detection unit 24. The gateway 13 compares the acquired stored power amount with a threshold value and compares the two acquired stored power amounts, and supplies power to the ECU 14 from either the first battery 11 or the second battery 12 during the update process. Determine whether to perform. Since these determination methods are the same as the determination method in the first embodiment, the details are omitted.
  • the gateway 13 sets the first switch 21 in the energized state, A switching command to turn off the 2 switch 22 and the third switch 123 is given to the body ECU 15.
  • the gateway 13 switches the first switch 21 and the third switch 123.
  • a switching command for setting the energized state and turning off the second switch may be given to the body ECU 15.
  • the gateway 13 sets the first switch 21 in the cutoff state, A switching command for energizing the second switch 22 and the third switch 123 is given to the body ECU 15. It is determined that the second battery 12 is used for the update process, the in-vehicle device that is the target of the update process is connected to the second power supply path 3b, and the in-vehicle device that is the target of the update process is connected to the first power supply path 3a. If not, the gateway 13 may give a switching command to the body ECU 15 to turn off the first switch 21 and the third switch 123 and turn on the second switch 22.
  • the gateway 13 stores information for determining whether the in-vehicle device that can be updated is connected to the first power supply path 3a or the second power supply path 3b.
  • This information may be stored as connection information in advance in the storage unit 32 of the gateway 13, for example, or connection information may be acquired from the server device 9, for example.
  • the gateway 13 energizes the third switch 123 when the power supply path to which the in-vehicle device to be updated is connected is different from the power supply path to which the battery determined to be used for the update process based on the stored power amount is connected.
  • a switching command for setting the state may be given to the body ECU 15.
  • the third switch 123 may be switched to the energized state when performing the update process, but is controlled by the body ECU 15 to maintain the shut-off state at times other than the update process. Therefore, the third switch 123 may be configured such that the gateway 13 directly performs energization / cutoff switching control. However, the third switch 123 may perform control to switch to the energized state other than the update process.
  • FIG. 6 and 7 are flowcharts showing a procedure of processing performed by the gateway 13 according to the second embodiment.
  • the process shown in this flowchart is performed in place of steps S7 and S8 in the process performed by the gateway 13 according to the first embodiment shown in FIG.
  • the gateway 13 according to the second embodiment performs the same processing for steps S1 to S6 and S9 in the flowchart of FIG. 4, performs the processing of steps S21 to S24 of FIG. 6 instead of step S7, and executes step S8. Instead, the processing of steps S31 to S34 in FIG. 7 is performed.
  • the switching control processing unit 31b of the processing unit 31 of the gateway 13 reads the connection information stored in the storage unit 32 (step S21).
  • the connection information describes whether the in-vehicle device mounted on the vehicle 1 is connected to the first power supply path 3a or the second power supply path 3b.
  • the switching control processing unit 31b determines whether or not an in-vehicle device (at least one in-vehicle device when there are a plurality of devices) to be updated is connected to the second power supply path 3b.
  • step S22 When the in-vehicle device to be updated is connected to the second power supply path 3b (S22: YES), the switching control processing unit 31b sets the first switch 21 in the energized state, sets the second switch 22 in the cut-off state, 3 In order to put the switch 123 in the energized state, a switch switching command is transmitted to the body ECU 15 (step S23), and the process proceeds to step S9 in FIG.
  • the switching control processing unit 31b sets the first switch 21 in the energized state and turns the second switch 22 on. A switch switching command is transmitted to the body ECU 15 (step S24), and the process proceeds to step S9 in FIG.
  • the switching control processing unit 31b reads the connection information stored in the storage unit 32 (step S31). Based on the read connection information, the switching control processing unit 31b determines whether or not the in-vehicle device to be updated is connected to the first power supply path 3a (Step S32).
  • the switching control processing unit 31b sets the first switch 21 to the cut-off state, the second switch 22 to the energized state, 3 In order to put the switch 123 in the energized state, a switch switching command is transmitted to the body ECU 15 (step S33), and the process proceeds to step S9 in FIG.
  • the switching control processing unit 31b sets the first switch 21 to the cut-off state and switches the second switch 22 to the first power supply path 3a. In order to switch to the energized state and turn off the third switch 123, a switch switching command is transmitted to the body ECU 15 (step S34), and the process proceeds to step S9 in FIG.
  • the ECU 14 that is the target of the update process supplies power from the first battery 11.
  • the gateway 13 that performs the receiving and updating process operates by receiving power supply from the first battery 11 and the second battery 12.
  • a first switch 21 is provided in the first power supply path 3 a from the first battery 11 to the ECU 14 and the gateway 13, and a second switch 22 is provided in the second power supply path 3 b from the second battery 12 to the gateway 13. It has been.
  • a third switch 123 is provided between the first power supply path 3a and the second power supply path 3b to switch between energization / cutoff of both paths. Accordingly, the first power supply path 3a and the second power supply path 3b can be connected by switching the third switch 123 to the energized state, and therefore the ECU 14 connected to the first power supply path 3a 2 The power of the battery 12 can be supplied.
  • the gateway 13 sets the first switch 21 in the energized state when the accumulated power amount of the first battery 11 is larger than the accumulated power amount of the second battery 12, and the second switch 22 and the third switch The switch 123 is turned off to supply power from the first battery 11 to the ECU 14.
  • the gateway 13 turns off the first switch 21, and the second switch 22 and the third switch 123. Is supplied to the ECU 14 from the second battery 12. Thereby, the power of the battery with a large amount of stored power can be supplied to the ECU 14 to be updated, and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing.
  • the gateway 13 stores in the storage unit 32, as connection information, which of the first power supply path 3a and the second power supply path 3b is connected to the in-vehicle device that can be the target of the update process. After determining which of the first battery 11 or the second battery 12 is to be used for the update process based on the accumulated power amount, the gateway 13 determines the power supply path to which the battery used for the update process is connected and the target of the update process.
  • the first battery 11 and the second battery 12 are mounted on the vehicle 1 and two power supply paths, the first power supply path 3a and the second power supply path 3b, are provided.
  • the present invention is not limited to this, and a configuration may be adopted in which three or more batteries are mounted and three or more power supply paths are provided.
  • a plurality of third switches 123 for connecting / blocking between the plurality of power supply paths are provided, and the power supply path to which the battery used for the update process is connected and the in-vehicle device to be updated are connected.
  • the power supply path may be connected by turning off any of the third switches 123.
  • a first third switch 123 is provided between the first power supply path and the second power supply path, and the second power supply path and A second third switch 123 may be provided between the third power supply paths, and a third third switch 123 may be provided between the third power supply path and the first power supply path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stored Programmes (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided are an in-vehicle updating system and an in-vehicle updating device capable of preventing a battery from running out in association with update processing of an in-vehicle device. The in-vehicle updating system according to the present embodiment is provided with: an in-vehicle device supplied with power from one or more of a plurality of batteries mounted on a vehicle and operating by executing a program stored in a storage unit; and an in-vehicle updating device performing processing for updating the program stored in the storage unit of the in-vehicle device. The in-vehicle updating system is further provided with: a plurality of switching units for separately switching between the energizaton and the de-energization of power supply paths from the plurality of batteries to the in-vehicle device; a plurality of detection units for detecting the respective amounts of power stored in the plurality of batteries; and a switching control processing unit for, when the in-vehicle updating device performs update processing of the in-vehicle device, controlling the energizaton and the de-energization of the plurality of switching units on the basis of the detection results of the detection units.

Description

車載更新システム及び車載更新装置In-vehicle update system and in-vehicle update device
 本発明は、車両に搭載された車載機器のプログラムを更新する車載更新システム及び車載更新装置に関する。 The present invention relates to an in-vehicle update system and an in-vehicle update device for updating a program of an in-vehicle device mounted on a vehicle.
 従来、車両には複数のECU(Electronic Control Unit)などの車載機器が搭載され、複数のECUがCAN(Controller Area Network)バスなどの通信線を介して接続されて相互に情報の送受信を行うことが可能とされている。各ECUは、フラッシュメモリ又はEEPROM(Electrically Erasable Programmable Read Only Memory)等の記憶部に記憶されたプログラムをCPU(Central Processing Unit)などの処理装置が読み出して実行することにより、車両の制御などの種々の処理を行っている。ECUの記憶部に記憶されたプログラム又はデータは、例えば機能追加、不具合の修正又はバージョンアップ等の必要が生じた際には、新たなプログラム又はデータに書き換える更新処理を行う必要がある。この場合、更新処理の対象となるECUに対して、通信線を介して更新用のプログラム又はデータを送信することが行われている。 Conventionally, in-vehicle devices such as a plurality of ECUs (Electronic Control Units) are mounted on a vehicle, and a plurality of ECUs are connected via a communication line such as a CAN (Controller Area Network) bus to transmit and receive information to and from each other. Is possible. Each ECU reads and executes a program stored in a storage unit such as a flash memory or an EEPROM (ElectricallyrasErasable Programmable Read Only Memory) by a processing device such as a CPU (Central Processing Unit), thereby performing various control such as vehicle control Is being processed. The program or data stored in the storage unit of the ECU needs to be updated to be rewritten with a new program or data, for example, when it becomes necessary to add a function, correct a defect, or upgrade a version. In this case, an update program or data is transmitted to the ECU to be updated by a communication line.
 特許文献1においては、エンジン起動中でドライバが降車した後にプログラムを更新する場合に、プログラム更新装置が車両状態を監視してセンタに監視情報を送信し、センタがプログラム更新中の車両の状態を監視するプログラム更新システムが提案されている。 In Patent Document 1, when the program is updated after the driver gets off while the engine is running, the program update device monitors the vehicle state and transmits monitoring information to the center. A program update system for monitoring has been proposed.
特開2011-70287号公報JP 2011-70287 A
 特許文献1に記載のプログラム更新システムでは、車両のエンジン起動中にプログラムの更新が行われる。しかしながら、ユーザが車両を使用しない可能性の高いエンジン停止中にプログラムの更新を行うことが望まれる場合があり得る。エンジン停止中にプログラムの更新を行う場合、車両のバッテリに蓄積された電力を用いて更新対象となるECUを動作させる必要がある。このため更新処理を行うことによってバッテリの蓄積電力量が著しく低下した場合、次回のエンジン始動を行うことができなくなる虞がある。 In the program update system described in Patent Document 1, the program is updated while the vehicle engine is running. However, it may be desired to update the program while the engine is stopped, which is likely to prevent the user from using the vehicle. When updating the program while the engine is stopped, it is necessary to operate the ECU to be updated using the electric power stored in the vehicle battery. For this reason, if the stored power amount of the battery is remarkably reduced by performing the update process, there is a possibility that the next engine start cannot be performed.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、車載機器の更新処理に伴うバッテリ上がりを抑制し得る車載更新システム及び車載更新装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an in-vehicle update system and an in-vehicle update device that can suppress battery exhaustion associated with an update process of an in-vehicle device. .
 本発明に係る車載更新システムは、車両に搭載された複数のバッテリのうちの一又は複数のバッテリからの電力が供給され、記憶部に記憶されたプログラムを実行して動作する車載機器と、前記車載機器の前記記憶部に記憶されたプログラムを更新する処理を行う車載更新装置とを備える車載更新システムであって、前記複数のバッテリから前記車載機器への電力供給経路の通電/遮断を個別に切り替える複数の切替部と、前記複数のバッテリの蓄積電力量をそれぞれ検出する複数の検出部と、前記車載更新装置が前記車載機器の更新処理を行う際に、前記検出部の検出結果に基づいて、前記複数の切替部の通電/遮断を制御する切替制御処理部とを備え、前記切替制御処理部は、前記検出部が検出する蓄積電力量のうち、該蓄積電力量が最も多いバッテリから前記車載機器への電力供給経路を通電状態に切り替え、蓄積電力量が最も多いバッテリ以外のバッテリから前記車載機器への電力供給経路を遮断状態に切り替えることを特徴とする。 An in-vehicle update system according to the present invention includes an in-vehicle device that is supplied with electric power from one or a plurality of batteries mounted on a vehicle and operates by executing a program stored in a storage unit, An in-vehicle update system comprising: an in-vehicle update device that performs a process of updating a program stored in the storage unit of the in-vehicle device, wherein energization / interruption of a power supply path from the plurality of batteries to the in-vehicle device is individually performed A plurality of switching units to be switched, a plurality of detection units that respectively detect the stored power amounts of the plurality of batteries, and when the in-vehicle update device performs update processing of the in-vehicle device, based on the detection result of the detection unit A switching control processing unit that controls energization / shut-off of the plurality of switching units, and the switching control processing unit is configured such that the stored power amount among the stored power amounts detected by the detection unit is Also it switched from many battery energized power supply path to the vehicle device, and switches from the battery other than the amount accumulated power highest battery cutoff state power supply path to the vehicle device.
 また、本発明に係る車載更新システムは、前記切替制御処理部が、前記検出部が検出する蓄積電力量が閾値を超えるバッテリを優先して、該バッテリから前記車載機器への電力供給経路を通電状態に切り替えることを特徴とする。 Further, in the in-vehicle update system according to the present invention, the switching control processing unit gives priority to a battery whose stored power amount detected by the detection unit exceeds a threshold, and energizes a power supply path from the battery to the in-vehicle device. It is characterized by switching to a state.
 また、本発明に係る車載更新システムは、前記車載更新装置が、前記切替制御処理部を有することを特徴とする。 Moreover, the in-vehicle update system according to the present invention is characterized in that the in-vehicle update device includes the switching control processing unit.
 また、本発明に係る車載更新システムは、前記車載更新装置との間で通信を行う通信部及び前記切替制御処理部を有する切替制御装置を更に備え、前記切替制御装置は、前記通信部により前記車載更新装置から受信した命令に応じて、前記切替制御処理部による制御を行うことを特徴とする。 The in-vehicle update system according to the present invention further includes a switching control device having a communication unit that communicates with the in-vehicle update device and the switching control processing unit, and the switching control device is configured to transmit the switching control device by the communication unit. Control by the switching control processing unit is performed according to a command received from the in-vehicle update device.
 また、本発明に係る車載更新システムは、前記複数のバッテリは、第1バッテリ及び第2バッテリであり、前記車載機器は、前記第1バッテリから電力が供給され、前記車載更新装置は、前記第1バッテリ及び前記第2バッテリから電力が供給され、前記第1バッテリから前記車載機器及び前記車載更新装置への第1電力供給経路と、前記第2バッテリから前記車載更新装置への第2電力供給経路とを備え、前記複数の切替部は、前記第1電力供給経路上に設けられた通電/遮断を切り替える第1切替部と、前記第2電力供給経路上に設けられた通電/遮断を切り替える第2切替部と、前記第1電力供給経路及び前記第2電力供給経路の間に設けられ、両経路間の通電/遮断を切り替える第3切替部とであり、前記複数の検出部は、前記第1バッテリの蓄積電力量を検出する第1検出部と、前記第2バッテリの蓄積電力量を検出する第2検出部とであり、前記切替制御処理部は、前記車載更新装置が前記車載機器の更新処理を行う際に、前記第1検出部及び前記第2検出部の検出結果に基づいて、前記第1切替部、前記第2切替部及び前記第3切替部の通電/遮断を制御することを特徴とする。 Further, in the in-vehicle update system according to the present invention, the plurality of batteries are a first battery and a second battery, the in-vehicle device is supplied with electric power from the first battery, and the in-vehicle update device includes the first battery Power is supplied from one battery and the second battery, a first power supply path from the first battery to the in-vehicle device and the in-vehicle update device, and a second power supply from the second battery to the in-vehicle update device A plurality of switching units, a first switching unit that switches between energization / interruption provided on the first power supply path and an energization / interruption provided on the second power supply path. A second switching unit, a third switching unit that is provided between the first power supply path and the second power supply path and switches between energization / cutoff between the two paths, and the plurality of detection units are First A first detection unit for detecting a stored power amount of the battery and a second detection unit for detecting a stored power amount of the second battery, wherein the switching control processing unit is configured to update the in-vehicle device by the in-vehicle update device. When performing processing, based on the detection results of the first detection unit and the second detection unit, controlling energization / cutoff of the first switching unit, the second switching unit, and the third switching unit. Features.
 また、本発明に係る車載更新システムは、前記切替制御処理部が、前記第1検出部により検出された蓄積電力量が前記第2検出部により検出された蓄積電力量よりも大きい場合、前記第1切替部を通電状態とし、且つ、前記第2切替部及び前記第3切替部を遮断状態とし、前記第1検出部により検出された蓄積電力量が前記第2検出部により検出された蓄積電力量よりも小さい場合、前記第1切替部を遮断状態とし、且つ、前記第2切替部及び前記第3切替部を通電状態とすることを特徴とする。 Further, in the in-vehicle update system according to the present invention, when the switching control processing unit has a stored power amount detected by the first detection unit larger than a stored power amount detected by the second detection unit, the first control unit Accumulated power detected by the second detection unit with the first switching unit in the energized state, the second switching unit and the third switching unit in the cut-off state, and the accumulated power amount detected by the first detection unit When the amount is smaller than the amount, the first switching unit is turned off, and the second switching unit and the third switching unit are turned on.
 また、本発明に係る車載更新システムは、前記複数のバッテリが、第1バッテリ及び第2バッテリであり、前記車載機器は、前記第1バッテリ及び第2バッテリのいずれかから電力が供給され、前記車載更新装置は、前記第1バッテリ及び前記第2バッテリから電力が供給され、前記第1バッテリから前記車載更新装置への第1電力供給経路と、前記第2バッテリから前記車載更新装置への第2電力供給経路とを備え、前記複数の切替部は、前記第1電力供給経路上に設けられた通電/遮断を切り替える第1切替部と、前記第2電力供給経路上に設けられた通電/遮断を切り替える第2切替部とであり、前記複数の切替部は、前記第1電力供給経路及び前記第2電力供給経路の間に設けられ、両経路間の通電/遮断を切り替える第3切替部と、前記第1バッテリの蓄積電力量を検出する第1検出部と、前記第2バッテリの蓄積電力量を検出する第2検出部とであり、前記車載機器が前記第1電力供給経路及び前記第2電力供給経路のいずれに接続されているかを記憶する接続情報記憶部を備え、前記切替制御処理部は、前記車載更新装置が前記車載機器の更新処理を行う際に、前記第1検出部及び前記第2検出部の検出結果並びに前記接続情報記憶部に記憶された情報に基づいて、前記第1切替部、前記第2切替部及び前記第3切替部の通電/遮断を制御することを特徴とする。 Further, in the in-vehicle update system according to the present invention, the plurality of batteries are a first battery and a second battery, and the in-vehicle device is supplied with power from either the first battery or the second battery, The in-vehicle update device is supplied with electric power from the first battery and the second battery, a first power supply path from the first battery to the in-vehicle update device, and a first power supply path from the second battery to the in-vehicle update device. Two power supply paths, and the plurality of switching sections include a first switching section that switches between energization / cutoff provided on the first power supply path and an energization / switch provided on the second power supply path. A third switching unit configured to switch between energization / shutoff between the first power supply path and the second power supply path, wherein the plurality of switching units are provided between the first power supply path and the second power supply path. A first detector that detects the amount of stored power of the first battery, and a second detector that detects the amount of stored power of the second battery, wherein the in-vehicle device includes the first power supply path and the first A connection information storage unit that stores which of the two power supply paths is connected, and the switching control processing unit, when the in-vehicle update device performs the update process of the in-vehicle device, Based on the detection result of the second detection unit and the information stored in the connection information storage unit, energization / cutoff of the first switching unit, the second switching unit, and the third switching unit is controlled. And
 また、本発明に係る車載更新システムは、前記切替制御処理部が、前記車載更新装置による前記更新処理の完了後から前記車両のエンジンが始動されるまでの間、前記複数の切替部の通電/遮断の状態を維持することを特徴とする。 Further, in the in-vehicle update system according to the present invention, the switching control processing unit is configured to supply power to the plurality of switching units after the update processing by the in-vehicle update device is completed until the vehicle engine is started. It is characterized by maintaining a shut-off state.
  また、本発明に係る車載更新装置は、車両に搭載された複数のバッテリのうちの一又は複数のバッテリからの電力が供給されて記憶部に記憶されたプログラムを実行して動作する車載機器の前記記憶部に記憶されたプログラムを更新する処理を行う車載更新装置であって、前記複数のバッテリの蓄積電力量をそれぞれ検出する複数の検出部から検出結果を取得する検出結果取得部と、前記車載機器の更新処理を行う際に、前記検出結果取得部が取得した検出結果に基づいて、前記複数のバッテリから前記車載機器への電力供給経路の通電/遮断を個別に切り替える複数の切替部の切替制御に係る処理を行う切替制御処理部とを備え、前記切替制御処理部は、前記検出部が検出する蓄積電力量のうち、該蓄積電力量が最も多いバッテリから前記車載機器への電力供給経路を通電状態に切り替え、蓄積電力量が最も多いバッテリ以外のバッテリから前記車載機器への電力供給経路を遮断状態に切り替えることを特徴とする。 Further, the in-vehicle update device according to the present invention is an in-vehicle device that operates by executing a program that is supplied with power from one or a plurality of batteries out of a plurality of batteries mounted on a vehicle and stored in a storage unit. A vehicle-mounted update device that performs a process of updating a program stored in the storage unit, and a detection result acquisition unit that acquires a detection result from a plurality of detection units that respectively detect the stored power amounts of the plurality of batteries; A plurality of switching units that individually switch energization / cutoff of the power supply path from the plurality of batteries to the in-vehicle device based on the detection result acquired by the detection result acquisition unit when performing the update process of the in-vehicle device; A switching control processing unit that performs processing related to switching control, wherein the switching control processing unit starts from a battery having the largest amount of stored power among the stored power amounts detected by the detection unit. Switching power supply path to the serial-vehicle device energized, and switches from the battery other than the amount accumulated power highest battery cutoff state power supply path to the vehicle device.
 本発明は複数のバッテリが搭載された車両を対象とし、更新処理の対象となる車載機器は、車両に搭載された複数のバッテリから電力供給を受けることが可能な構成であるものとする。各バッテリから車載機器への電力供給経路には、個別に通電/遮断を切り替え可能なスイッチ又はリレー等の切替部が設けられる。また各バッテリの蓄積電力量の検出を行う。なお検出するバッテリの蓄積電力量は、例えばワット時(Wh)などの単位で表される電力量であってよく、また例えばSOC(State Of Charge)などの比率として表される電力量であってもよい。車載更新装置が車載機器の更新処理を行う際には、検出した各バッテリの蓄積電力量に基づいて、各切替部の通電/遮断の切替制御を行う。これにより、例えば蓄積電力量が低下しているバッテリを更新処理に用いないなど、各バッテリの蓄積電力量に応じた更新処理を実現でき、バッテリ上がりの抑制に貢献することができる。 The present invention is intended for a vehicle on which a plurality of batteries are mounted, and an in-vehicle device that is an object of update processing is configured to be able to receive power supply from a plurality of batteries mounted on the vehicle. The power supply path from each battery to the in-vehicle device is provided with a switching unit such as a switch or a relay that can be switched between energization / cutoff individually. Also, the amount of stored power in each battery is detected. The stored power amount of the battery to be detected may be a power amount expressed in units such as watt hours (Wh), for example, and may be expressed as a ratio such as SOC (State Of Charge). Also good. When the in-vehicle update device performs the update processing of the in-vehicle device, the switching control of energization / interruption of each switching unit is performed based on the detected accumulated power amount of each battery. Thereby, for example, an update process corresponding to the accumulated power amount of each battery can be realized, such as not using a battery whose accumulated power amount is reduced for the update process, and it is possible to contribute to the suppression of battery exhaustion.
 また本発明においては、蓄積電力量が多いバッテリを優先してこのバッテリから車載機器への電力供給経路を通電状態とする。例えば、車両に搭載された複数のバッテリのうち、蓄積電力量が多い順に所定数のバッテリを選択し、選択した所定数のバッテリから車載機器への電力供給経路を通電状態とすることができる。
 また、蓄積電力量が最も多いいずれか1つのバッテリから車載機器への電力供給経路を通電状態としてもよい。
 これらにより、蓄積電力量が多いバッテリの電力を更新処理の対象とする車載機器へ供給して更新処理を行うことができ、蓄積電力量が少ないバッテリの蓄積電力量が更に減少することを防止できる。
In the present invention, a battery with a large amount of stored power is given priority, and the power supply path from this battery to the in-vehicle device is set to the energized state. For example, it is possible to select a predetermined number of batteries from the plurality of batteries mounted on the vehicle in the descending order of the stored power amount, and to set the power supply path from the selected predetermined number of batteries to the in-vehicle device in an energized state.
Moreover, it is good also considering the electric power supply path | route from any one battery with the largest stored electric energy to vehicle equipment as an energization state.
As a result, the power of the battery with a large amount of stored power can be supplied to the in-vehicle device subject to the update process to perform the update process, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing. .
 また本発明においては、各バッテリの蓄積電力量が所定の閾値を超えるか否かを判定する。閾値は、例えば車載機器の更新処理を行うために必要な電力量及び車両のエンジン始動に必要な電力量等に基づいて、システムの設計段階などにおいて予め決定される。例えば、車両に搭載された複数のバッテリのうち、蓄積電力量が閾値を超えるものの中から蓄積電力量が多い順に所定数のバッテリを選択し、選択した所定数のバッテリから車載機器への電力供給経路を通電状態とすることができる。これにより、更新処理を行うことによってバッテリの蓄積電力量が著しく低下することを防止できる。 Also, in the present invention, it is determined whether or not the stored power amount of each battery exceeds a predetermined threshold value. The threshold value is determined in advance at the system design stage or the like based on, for example, the amount of power required to perform the update processing of the in-vehicle device and the amount of power required to start the engine of the vehicle. For example, among a plurality of batteries mounted on a vehicle, a predetermined number of batteries are selected in descending order of the stored power amount from those whose stored power amount exceeds a threshold, and power is supplied from the selected predetermined number of batteries to the in-vehicle device. The path can be energized. Thereby, it is possible to prevent the stored power amount of the battery from being significantly reduced by performing the update process.
 また本発明においては、車載機器の更新処理を行う車載更新装置が、各バッテリから車載機器への電力供給経路中に設けられた複数の切替部の通電/遮断を切り替える制御を行う。これにより、更新処理に応じて切替部の制御を容易に実現できる。 In the present invention, the in-vehicle update device that performs the update process of the in-vehicle device performs control to switch energization / interruption of a plurality of switching units provided in the power supply path from each battery to the in-vehicle device. Thereby, control of a switching part is easily realizable according to update processing.
 また本発明においては、各バッテリから車載機器への電力供給経路中に設けられた複数の切替部の通電/遮断を切り替える制御を行う切替制御装置を車載更新装置とは別に設ける。車載更新装置及び切替制御装置は、例えばCAN(Controller Area Network)などの規格による通信を行う機能を有し、相互に情報の送受信を行うことができる。車載更新装置は更新処理を行う際に切替部の切替命令を切替制御装置へ与え、この切替命令に応じて切替制御装置が切替部の切替制御を行う。
 切替部の切替制御を車載更新装置が行う構成では、更新処理を行わない場合であっても車載更新装置が切替部の切替制御を行う必要が生じる。切替部の切替制御を切替制御装置が行う構成とすることによって、更新処理を行わない場合に車載更新装置が切替部の切替制御を行う必要がなく、本発明の構成を導入することによる車載更新装置の複雑化を抑制できる。
Moreover, in this invention, the switching control apparatus which performs control which switches electricity supply / cutoff of the several switching part provided in the electric power supply path | route from each battery to vehicle equipment is provided separately from a vehicle update apparatus. The in-vehicle update device and the switching control device have a function of performing communication according to a standard such as CAN (Controller Area Network), and can transmit and receive information to and from each other. The in-vehicle updating device gives a switching command of the switching unit to the switching control device when performing the update process, and the switching control device performs switching control of the switching unit according to the switching command.
In the configuration in which the in-vehicle update device performs the switching control of the switching unit, the in-vehicle update device needs to perform the switching control of the switching unit even when the update process is not performed. By adopting a configuration in which the switching control device performs switching control of the switching unit, it is not necessary for the in-vehicle updating device to perform switching control of the switching unit when update processing is not performed, and in-vehicle updating by introducing the configuration of the present invention. The complexity of the apparatus can be suppressed.
 また本発明においては、第1バッテリ及び第2バッテリの2つのバッテリが搭載された車両を対象とし、更新処理の対象となる車載機器は第1バッテリからの電力供給を受け、車載更新装置は第1バッテリ及び第2バッテリからの電力供給を受けて動作するものとする。第1バッテリから車載機器及び車載更新装置への第1電力供給経路には第1切替部が設けられ、第2バッテリから車載更新装置への第2電力供給経路には第2切替部が設けられる。更に本発明においては、第1電力供給経路と第2電力供給経路との間に、両経路間の通電/遮断を切り替える第3切替部を設ける。これにより、第3切替部を通電状態とすることにより第1電力供給経路及び第2電力供給経路を接続することができるため、第1電力供給経路に接続された車載機器に対して第2バッテリの電力を供給することが可能となる。また第1バッテリ及び第2バッテリの蓄積電力量をそれぞれ検出し、車載更新装置が車載機器の更新処理を行う際には、蓄積電力量の検出結果に基づいて第1切替部、第2切替部及び第3切替部の切替制御を行う。これにより、例えば蓄積電力量が低下しているバッテリを更新処理に用いないなど、各バッテリの蓄積電力量に応じた更新処理を実現でき、バッテリ上がりの抑制に貢献することができる。 Further, in the present invention, a vehicle on which two batteries, a first battery and a second battery, are mounted, an in-vehicle device to be subjected to update processing receives power supply from the first battery, It is assumed that the power supply operates from the first battery and the second battery. A first switching unit is provided in the first power supply path from the first battery to the in-vehicle device and the in-vehicle updating device, and a second switching unit is provided in the second power supply path from the second battery to the in-vehicle updating device. . Furthermore, in the present invention, a third switching unit that switches between energization / cutoff between both paths is provided between the first power supply path and the second power supply path. Thereby, since the 1st electric power supply path and the 2nd electric power supply path can be connected by making the 3rd switching part into an energized state, it is the 2nd battery to the in-vehicle apparatus connected to the 1st electric power supply path. It becomes possible to supply the electric power. In addition, when the in-vehicle update device detects the stored power amounts of the first battery and the second battery and performs the update process of the in-vehicle device, the first switching unit and the second switching unit based on the detection result of the stored power amount. And switching control of the third switching unit. Thereby, for example, an update process corresponding to the accumulated power amount of each battery can be realized, such as not using a battery whose accumulated power amount is reduced for the update process, and it is possible to contribute to the suppression of battery exhaustion.
 また本発明においては、第1バッテリの蓄積電力量が第2バッテリの蓄積電力量より多い場合、第1切替部を通電状態とし、且つ、第2切替部及び第3切替部を遮断状態とすることによって、第1バッテリから車載機器へ電力供給を行う。これに対して、第1バッテリの蓄積電力量が第2バッテリの蓄積電力量より少ない場合、第1切替部を遮断状態とし、且つ、第2切替部及び第3切替部を通電状態とすることによって、第2バッテリから車載機器へ電力供給を行う。これにより、蓄積電力量が多いバッテリの電力を更新処理の対象とする車載機器へ供給して更新処理を行うことができ、蓄積電力量が少ないバッテリの蓄積電力量が更に減少することを防止できる。 Further, in the present invention, when the stored power amount of the first battery is larger than the stored power amount of the second battery, the first switching unit is turned on, and the second switching unit and the third switching unit are turned off. Thus, power is supplied from the first battery to the in-vehicle device. On the other hand, when the stored power amount of the first battery is smaller than the stored power amount of the second battery, the first switching unit is turned off, and the second switching unit and the third switching unit are turned on. Thus, power is supplied from the second battery to the in-vehicle device. As a result, the battery power with a large amount of stored power can be supplied to the in-vehicle device that is the target of the update process and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing. .
 また本発明においては、更新処理の対象となる車載機器は、第1電力供給経路又は第2電力供給経路のいずれにも接続されている可能性がある。そこで、更新処理の対象となり得る車載機器が第1電力供給経路又は第2電力供給経路のいずれに接続されているかを接続情報として記憶しておく。蓄積電力量に基づいて第1バッテリ又は第2バッテリのいずれを更新処理に用いるかを判定した後、更新処理に用いるバッテリが接続された電力供給経路と更新処理の対象となる車載機器が接続された電力供給経路とが異なる場合、第3スイッチを通電状態へ切り替えることによって、バッテリから更新処理対象の車載機器へ電力が供給される。 In the present invention, there is a possibility that the in-vehicle device that is the target of the update process is connected to either the first power supply path or the second power supply path. Therefore, it is stored as connection information whether the in-vehicle device that can be the target of the update process is connected to the first power supply path or the second power supply path. After determining whether to use the first battery or the second battery for the update process based on the stored power amount, the power supply path to which the battery used for the update process is connected and the in-vehicle device to be updated are connected. When the power supply path is different, the power is supplied from the battery to the in-vehicle device to be updated by switching the third switch to the energized state.
 本発明による場合は、車載更新装置が車載機器の更新処理を行う際に、複数のバッテリの蓄積電力量に基づいて、複数のバッテリから車載機器への各電力供給経路中に設けられた切替部の通電/遮断の切替制御を行う構成とすることにより、各バッテリの蓄積電力量に応じた更新処理を実現でき、車載機器の更新処理に伴うバッテリ上がりを抑制することができる。 In the case of the present invention, when the in-vehicle update device performs the update processing of the in-vehicle device, the switching unit provided in each power supply path from the plurality of batteries to the in-vehicle device based on the stored power amount of the plurality of batteries. By adopting a configuration that performs switching control of energization / interruption of the battery, it is possible to realize an update process according to the amount of stored electric power of each battery, and to suppress battery exhaustion accompanying the update process of the in-vehicle device.
実施の形態1に係る車載更新システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle-mounted update system which concerns on Embodiment 1. FIG. ゲートウェイの構成を示すブロック図である。It is a block diagram which shows the structure of a gateway. ボディECUの構成を示すブロック図である。It is a block diagram which shows the structure of body ECU. 本実施の形態に係るゲートウェイが行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the gateway which concerns on this Embodiment performs. 実施の形態2に係る車載更新システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle-mounted update system which concerns on Embodiment 2. FIG. 実施の形態2に係るゲートウェイが行う処理の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of processing performed by a gateway according to the second embodiment. 実施の形態2に係るゲートウェイが行う処理の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of processing performed by a gateway according to the second embodiment.
(実施の形態1)
 図1は、実施の形態1に係る車載更新システムの構成を示すブロック図である。図において破線で示す1は車両であり、車両1は第1バッテリ11、第2バッテリ12、ゲートウェイ13、ECU14及びボディECU15等を有する車載更新システム1aが備えられている。なお本図においては、電力供給経路3を太実線で示し、制御信号などを伝達する信号線4a~4cを細実線で示し、車内ネットワークを構成する通信線2を一点鎖線で示し、無線通信を二点鎖線で示してある。第1バッテリ11及び第2バッテリ12は、車両1のエンジン動作中にオルタネータ(図示は省略する)が発電した電力を蓄積する装置であり、例えば鉛蓄電池又はリチウムイオン電池等の電池を用いて構成することができる。また第1バッテリ11及び第2バッテリ12は、車両1のエンジン停止中には、車両1に搭載されたゲートウェイ13、ECU14及びボディECU15等へ、蓄積した電力を供給することができる。第1バッテリ11及び第2バッテリ12は、車両1内に電力線などを用いて構成された電力供給経路3を介して、ゲートウェイ13、ECU14及びボディECU15等の車載機器に接続されている。
(Embodiment 1)
FIG. 1 is a block diagram showing the configuration of the in-vehicle update system according to the first embodiment. In the figure, 1 indicated by a broken line is a vehicle, and the vehicle 1 is provided with an in-vehicle update system 1a having a first battery 11, a second battery 12, a gateway 13, an ECU 14, a body ECU 15, and the like. In this figure, the power supply path 3 is indicated by a thick solid line, the signal lines 4a to 4c for transmitting control signals and the like are indicated by thin solid lines, the communication line 2 constituting the in-vehicle network is indicated by a one-dot chain line, and wireless communication is performed. It is indicated by a two-dot chain line. The first battery 11 and the second battery 12 are devices that accumulate electric power generated by an alternator (not shown) during engine operation of the vehicle 1, and are configured using a battery such as a lead storage battery or a lithium ion battery, for example. can do. The first battery 11 and the second battery 12 can supply the accumulated power to the gateway 13, the ECU 14, the body ECU 15, and the like mounted on the vehicle 1 while the engine of the vehicle 1 is stopped. The first battery 11 and the second battery 12 are connected to in-vehicle devices such as the gateway 13, the ECU 14, and the body ECU 15 through the power supply path 3 configured using a power line or the like in the vehicle 1.
 なお本実施の形態において、第1バッテリ11及び第2バッテリ12は、蓄積可能な電力量が等しい同じ装置であるものとする。ただし、第1バッテリ11及び第2バッテリ12は、蓄積可能な電力量が異なる構成であってもよい。また第1バッテリ11及び第2バッテリ12は、例えば第1バッテリ11を鉛蓄電池とし、第2バッテリ12をリチウムイオン電池とするなど、異なる装置を用いて構成されていてもよい。 In the present embodiment, it is assumed that the first battery 11 and the second battery 12 are the same device having the same amount of power that can be stored. However, the 1st battery 11 and the 2nd battery 12 may be the structures from which the electric energy which can be stored differs. Moreover, the 1st battery 11 and the 2nd battery 12 may be comprised using different apparatuses, such as making the 1st battery 11 into a lead storage battery and making the 2nd battery 12 into a lithium ion battery, for example.
 ゲートウェイ13は、車両1の車内ネットワークを構成する通信線2が複数接続され、通信線2間のメッセージ送受信を中継する処理を行う装置である。ただし図1においては、ゲートウェイ13とECU14及びボディECU15とを接続する1つの通信線2のみを一点鎖線で図示しており、これ以外の通信線については図示を省略してある。またゲートウェイ13は、例えば携帯電話通信網又は無線LAN(Local Area Network)等の無線ネットワークを介した通信を行う機能を有しており、これにより車両1外に設置されたサーバ装置9との通信を行うことができる。これによりゲートウェイ13は、車両1の内外の通信を中継することができる。なおゲートウェイ13が無線通信機能を有するのではなく、車両1に無線通信を行う無線通信装置を設け、ゲートウェイ13がこの無線通信装置を介してサーバ装置9との通信を行う構成としてもよい。 The gateway 13 is a device that performs processing for relaying message transmission / reception between the communication lines 2 by connecting a plurality of communication lines 2 constituting the in-vehicle network of the vehicle 1. However, in FIG. 1, only one communication line 2 that connects the gateway 13, the ECU 14, and the body ECU 15 is shown by a one-dot chain line, and the other communication lines are not shown. Further, the gateway 13 has a function of performing communication via a wireless network such as a cellular phone communication network or a wireless LAN (Local Area Network), for example, and thereby communicates with the server device 9 installed outside the vehicle 1. It can be performed. Thereby, the gateway 13 can relay communication inside and outside the vehicle 1. Instead of the gateway 13 having a wireless communication function, a configuration may be adopted in which the vehicle 1 is provided with a wireless communication device that performs wireless communication, and the gateway 13 communicates with the server device 9 via the wireless communication device.
 本実施の形態においてゲートウェイ13は、車両1に搭載されたECU14などの車載機器のメモリなどに記憶されたプログラム又はデータ等(以下、単にプログラムという)を更新する車載更新装置としての機能を有している。ゲートウェイ13は、車両1のエンジン動作中に車外のサーバ装置9との間で通信を行い、車両1に搭載されたECU14などの車載機器のプログラムの更新が必要であるか否かを問い合せ、更新が必要である場合には更新用のプログラムをダウンロードして記憶しておく。ゲートウェイ13は、例えば車両1のエンジン停止から所定時間が経過した後など、所定の更新タイミングに至った際に、記憶しておいた更新用のプログラムを更新対象のECU14へ送信することによって、更新処理を行う。 In the present embodiment, the gateway 13 has a function as an in-vehicle update device that updates a program or data (hereinafter simply referred to as a program) stored in a memory of an in-vehicle device such as the ECU 14 mounted on the vehicle 1. ing. The gateway 13 communicates with the server device 9 outside the vehicle while the engine of the vehicle 1 is operating, and inquires whether or not the program of the in-vehicle device such as the ECU 14 mounted on the vehicle 1 needs to be updated. If necessary, download the update program and store it. When the gateway 13 reaches a predetermined update timing, for example, after a predetermined time has elapsed since the engine of the vehicle 1 is stopped, the gateway 13 updates the stored update program to the ECU 14 to be updated. Process.
 ECU14は、例えば車両1のエンジンの動作を制御するECU、エアバッグの動作を制御するECU、及び、ABS(Antilock Brake System)の動作を制御するECU等の種々のECUが含まれ得る。ECU14は、内部のメモリなどに記憶されたプログラムをCPU(Central Processing Unit)などが実行することによって、種々の処理を行う。本実施の形態においてECU14は、メモリなどに記憶されたプログラムを更新する更新処理の対象となり得るECUである。 The ECU 14 may include various ECUs such as an ECU that controls the operation of the engine of the vehicle 1, an ECU that controls the operation of the airbag, and an ECU that controls the operation of an ABS (Antilock Brake System). The ECU 14 performs various processes by executing a program stored in an internal memory or the like by a CPU (Central Processing Unit) or the like. In the present embodiment, the ECU 14 is an ECU that can be an object of update processing for updating a program stored in a memory or the like.
 ボディECU15は、例えば車両1のドアのロック/アンロックの制御及びライトの点灯/消灯の制御等を行うECUである。また本実施の形態においてボディECU15は、車両1のエンジン停止時に、第1バッテリ11又は第2バッテリ12のいずれの電力をゲートウェイ13及びECU14等の車載機器へ供給するかを切り替える制御を行う。車両1には、第1バッテリ11を電力供給経路3に対して通電/遮断する第1スイッチ21と、第2バッテリ12を電力供給経路3に対して通電/遮断する第2スイッチ22とが設けられている。第1スイッチ21及び第2スイッチ22は、信号線4a及び4bを介してボディECU15から与えられる制御信号に応じて、通電/遮断の切り替えが行われる。第1スイッチ21及び第2スイッチ22は、例えば機械式のリレー又は半導体素子等を用いて構成される。 The body ECU 15 is an ECU that controls, for example, locking / unlocking the door of the vehicle 1 and controlling lighting on / off of the light. Further, in the present embodiment, the body ECU 15 performs control to switch which power of the first battery 11 or the second battery 12 is supplied to the in-vehicle device such as the gateway 13 and the ECU 14 when the engine of the vehicle 1 is stopped. The vehicle 1 is provided with a first switch 21 for energizing / cutting off the first battery 11 with respect to the power supply path 3 and a second switch 22 for energizing / cutting off the second battery 12 with respect to the power supply path 3. It has been. The first switch 21 and the second switch 22 are switched between energization / cutoff according to a control signal given from the body ECU 15 via the signal lines 4a and 4b. The first switch 21 and the second switch 22 are configured using, for example, a mechanical relay or a semiconductor element.
 例えば、ボディECU15は、車両1のエンジンが動作している場合、第1スイッチ21及び第2スイッチ22を共に通電状態に切り替える。これにより電力供給経路3に接続された車両1のオルタネータから第1バッテリ11及び第2バッテリ12へ電力が供給され、第1バッテリ11及び第2バッテリ12に電力が蓄積される。車両1のエンジンが停止した場合、ボディECU15は、第1スイッチ21及び第2スイッチ22のいずれか一方を通電状態とし、他方を遮断状態とすることにより、第1バッテリ11及び第2バッテリ12のいずれか一方からゲートウェイ13及びECU14等の車載機器へ電力を供給する。なお本実施の形態においては、第1バッテリ11をメインのバッテリとし、第2バッテリ12をサブのバッテリとして用いる。ボディECU15は、車両1のエンジンが停止した場合、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態として、第1バッテリ11の電力を車載機器へ供給する。 For example, when the engine of the vehicle 1 is operating, the body ECU 15 switches both the first switch 21 and the second switch 22 to the energized state. As a result, power is supplied from the alternator of the vehicle 1 connected to the power supply path 3 to the first battery 11 and the second battery 12, and the power is accumulated in the first battery 11 and the second battery 12. When the engine of the vehicle 1 is stopped, the body ECU 15 sets one of the first switch 21 and the second switch 22 in an energized state and the other in a cut-off state, so that the first battery 11 and the second battery 12 are turned off. Electric power is supplied from either one to in-vehicle devices such as the gateway 13 and the ECU 14. In the present embodiment, the first battery 11 is used as a main battery, and the second battery 12 is used as a sub battery. When the engine of the vehicle 1 is stopped, the body ECU 15 sets the first switch 21 in the energized state and sets the second switch 22 in the cut-off state to supply the electric power of the first battery 11 to the in-vehicle device.
 本実施の形態に係る車載更新システム1aでは、第1バッテリ11に蓄積された電力量を検出する第1電力量検出部23と、第2バッテリ12に蓄積された電力量を検出する第2電力量検出部24とが設けられており、第1電力量検出部23及び第2電力量検出部24の検出結果が信号線4c,4dを介してゲートウェイ13へ入力されている。例えば第1電力量検出部23及び第2電力量検出部24は、バッテリの入出力端子又はその近傍に設けられ、この入出力端子へ入出力する電流量を検出し、この電流量の積算値を算出することによって蓄積電力量を算出する構成とすることができる。また例えば第1電力量検出部23及び第2電力量検出部24は、バッテリの入出力端子の電圧値を検出し、この電圧値から蓄積電力量を算出する構成とすることができる。このような構成の場合、第1電力量検出部23及び第2電力量検出部24は、単に検出した電流値又は電圧値をゲートウェイ13へ入力し、ゲートウェイ13がこの電流値又は電圧値に基づいて第1バッテリ11及び第2バッテリ12の蓄積電力量を算出する構成であってもよい。 In the in-vehicle update system 1a according to the present embodiment, a first power amount detection unit 23 that detects the amount of power stored in the first battery 11 and a second power that detects the amount of power stored in the second battery 12. The amount detection unit 24 is provided, and the detection results of the first power amount detection unit 23 and the second power amount detection unit 24 are input to the gateway 13 via the signal lines 4c and 4d. For example, the first power amount detection unit 23 and the second power amount detection unit 24 are provided at or near the input / output terminal of the battery, detect the amount of current input to and output from the input / output terminal, and an integrated value of the current amount The amount of stored power can be calculated by calculating. Further, for example, the first power amount detection unit 23 and the second power amount detection unit 24 may be configured to detect the voltage value of the input / output terminal of the battery and calculate the accumulated power amount from the voltage value. In the case of such a configuration, the first power amount detection unit 23 and the second power amount detection unit 24 simply input the detected current value or voltage value to the gateway 13, and the gateway 13 is based on the current value or voltage value. In other words, the storage power amount of the first battery 11 and the second battery 12 may be calculated.
 なお本実施の形態においては、第1バッテリ11及び第2バッテリ12の蓄積電力量は、いわゆるSOCとして検出されるものとする。即ち、バッテリが満充電の状態において蓄積される電力量に対して、その時点で蓄積されている電力量の比率[%]を、第1バッテリ11及び第2バッテリ12の蓄積電力量として扱う。ただし、例えばワット時(Wh)で表される電力量を、第1バッテリ11及び第2バッテリ12の蓄積電力量として検出する構成であってもよい。 In the present embodiment, the stored power amounts of the first battery 11 and the second battery 12 are detected as so-called SOC. That is, the ratio [%] of the amount of power stored at that time to the amount of power stored when the battery is fully charged is treated as the stored power amount of the first battery 11 and the second battery 12. However, for example, the configuration may be such that the amount of power expressed in watt hours (Wh) is detected as the amount of stored power in the first battery 11 and the second battery 12.
 本実施の形態に係るゲートウェイ13は、車両1のエンジン停止中の所定の更新タイミングに至った場合に、ECU14のプログラムの更新処理を開始する。ただしゲートウェイ13は、更新処理を開始する前に、第1バッテリ11及び第2バッテリ12の蓄積電力量を調べる。ゲートウェイ13は、第1バッテリ11及び第2バッテリ12がそれぞれ閾値を超えているか否かを判定する。例えば、本実施の形態においてゲートウェイ13は、第1バッテリ11の蓄積電力量又は第2バッテリ12の蓄積電力量のいずれかが90%を超えていない場合、更新処理は行わない。第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量の少なくとも一方が90%を超えている場合に、ゲートウェイ13は、更新処理を行う。 The gateway 13 according to the present embodiment starts the program update process of the ECU 14 when the predetermined update timing is reached while the engine of the vehicle 1 is stopped. However, the gateway 13 checks the stored electric energy of the first battery 11 and the second battery 12 before starting the update process. The gateway 13 determines whether or not each of the first battery 11 and the second battery 12 exceeds a threshold value. For example, in the present embodiment, the gateway 13 does not perform the update process when either the stored power amount of the first battery 11 or the stored power amount of the second battery 12 does not exceed 90%. When at least one of the stored power amount of the first battery 11 and the stored power amount of the second battery 12 exceeds 90%, the gateway 13 performs an update process.
 またゲートウェイ13は、第1バッテリ11の蓄積電力量と第2バッテリ12の蓄積電力量との比較を行い、蓄積電力量が多いバッテリを利用して更新処理を行う。第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より多い場合、ゲートウェイ13は、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とする切替命令をボディECU15へ車内ネットワークを介して与える。この切替命令によりボディECU15が第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とすることにより、第1バッテリ11に蓄積された電力がゲートウェイ13及びECU14等へ供給される。ボディECU15による切替制御の完了後、ゲートウェイ13は、ECU14のプログラムの更新処理を行う。 Further, the gateway 13 compares the stored power amount of the first battery 11 with the stored power amount of the second battery 12, and performs update processing using a battery having a large stored power amount. When the stored power amount of the first battery 11 is larger than the stored power amount of the second battery 12, the gateway 13 sends a switch command to the body ECU 15 to switch the first switch 21 to the energized state and the second switch 22 to the cut-off state. Give through the network. In response to this switching command, the body ECU 15 turns on the first switch 21 and turns off the second switch 22, whereby the electric power stored in the first battery 11 is supplied to the gateway 13, the ECU 14, and the like. After the switching control by the body ECU 15 is completed, the gateway 13 performs a program update process of the ECU 14.
 第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より少ない場合、ゲートウェイ13は、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とする切替命令をボディECU15へ車内ネットワークを介して与える。この切替命令によりボディECU15が第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とすることにより、第2バッテリ12に蓄積された電力がゲートウェイ13及びECU14等へ供給される。ボディECU15による切替制御の完了後、ゲートウェイ13は、ECU14のプログラムの更新処理を行う。 When the stored power amount of the first battery 11 is smaller than the stored power amount of the second battery 12, the gateway 13 issues a switching command to the body ECU 15 to switch the first switch 21 to the cutoff state and the second switch 22 to the energized state. Give through the network. By this switching command, the body ECU 15 turns off the first switch 21 and turns on the second switch 22, so that the electric power stored in the second battery 12 is supplied to the gateway 13, the ECU 14, and the like. After the switching control by the body ECU 15 is completed, the gateway 13 performs a program update process of the ECU 14.
 更新処理の終了後、ゲートウェイ13は、切替命令を解除する命令をボディECU15へ与える。ボディECU15は現状態の通電状態を維持し、次回エンジン始動後に第1スイッチ21及び第2スイッチ22を通電状態とする。 After completion of the update process, the gateway 13 gives the body ECU 15 a command for canceling the switching command. The body ECU 15 maintains the current energized state and sets the first switch 21 and the second switch 22 to the energized state after the next engine start.
 なおゲートウェイ13が第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量との比較を行う閾値は、固定の値であってもよいが、更新処理対象の内容(例えば更新対象の機器の数など)に応じて変動する値であってもよい。また第1バッテリ11の蓄積電力量との比較を行う閾値と、第2バッテリ12の蓄積電力量との比較を行う閾値とは、異なる値であってもよい。 Note that the threshold at which the gateway 13 compares the stored power amount of the first battery 11 and the stored power amount of the second battery 12 may be a fixed value, but the content of the update process target (for example, the update target device) The number may vary depending on the number of Further, the threshold value for comparing with the stored power amount of the first battery 11 and the threshold value for comparing with the stored power amount of the second battery 12 may be different values.
 また本実施の形態においては、第1バッテリ11の蓄積電力量と第2バッテリ12の蓄積電力量を単に比較しているが、これに限るものではない。例えば第1バッテリ11の蓄積可能な電力量と、第2バッテリ12の蓄積可能な電力量とが異なる場合、蓄積可能な電力量に基づく重み付けを行って蓄積電力量の比較を行う構成としてもよい。 In the present embodiment, the stored power amount of the first battery 11 and the stored power amount of the second battery 12 are simply compared, but the present invention is not limited to this. For example, when the amount of power that can be stored in the first battery 11 and the amount of power that can be stored in the second battery 12 are different, a configuration may be adopted in which weighting based on the amount of power that can be stored is weighted to compare the stored power amount. .
 図2は、ゲートウェイ13の構成を示すブロック図である。ただし図2においては、ゲートウェイ13の更新処理に関する機能ブロックを図示し、通信の中継処理に関する機能ブロックについては図示を省略してある。本実施の形態に係るゲートウェイ13は、処理部31、記憶部32、検出結果入力部33、車内通信部34及び車外通信部35等を備えて構成されている。処理部31は、例えばCPU(Central Processing Unit)又はMPU(Micro-Processing Unit)等の演算処理装置を用いて構成され、記憶部32又はROM(Read Only Memory)等に記憶されたプログラム(図示は省略する)を読み出して実行することにより、中継処理及び更新処理に係る種々の演算処理を行う。例えば処理部31は、車外のサーバ装置9からECU14の更新用プログラムをダウンロードする処理、及び、ダウンロードした更新用プログラムをECU14へ送信することでプログラムを更新する処理等を行う。また本実施の形態において処理部31は、更新処理を行う際に、第1バッテリ11及び第2バッテリ12蓄積電力量に基づく第1スイッチ21及び第2スイッチ22の切替制御処理を行う。 FIG. 2 is a block diagram showing the configuration of the gateway 13. However, in FIG. 2, functional blocks related to the update process of the gateway 13 are illustrated, and functional blocks related to the communication relay process are not shown. The gateway 13 according to the present embodiment includes a processing unit 31, a storage unit 32, a detection result input unit 33, an in-vehicle communication unit 34, an out-of-vehicle communication unit 35, and the like. The processing unit 31 is configured by using an arithmetic processing unit such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), for example, and a program (not shown) stored in the storage unit 32 or a ROM (Read Only Memory). Various operations related to the relay process and the update process are performed by reading and executing (omitted). For example, the processing unit 31 performs a process of downloading an update program for the ECU 14 from the server device 9 outside the vehicle, a process for updating the program by transmitting the downloaded update program to the ECU 14, and the like. Further, in the present embodiment, the processing unit 31 performs switching control processing of the first switch 21 and the second switch 22 based on the stored electric energy of the first battery 11 and the second battery 12 when performing the update processing.
 記憶部32は、フラッシュメモリ又はEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性のメモリ素子を用いて構成されている。記憶部32は、処理部31が実行するプログラム及びこのプログラムの実行に必要なデータなどを記憶すると共に、ECU14の更新に用いられる更新用プログラム32aを記憶する。また記憶部32は、処理部31の処理の過程で生成されたデータなどを記憶してもよい。 The storage unit 32 is configured using a nonvolatile memory element such as a flash memory or an EEPROM (ElectricallyrErasable Programmable Read Only Memory). The storage unit 32 stores a program executed by the processing unit 31 and data necessary for the execution of the program, and also stores an update program 32 a used for updating the ECU 14. The storage unit 32 may store data generated in the course of processing by the processing unit 31.
 検出結果入力部33は、信号線4c,4dを介して第1電力量検出部23及び第2電力量検出部24に接続されており、第1バッテリ11及び第2バッテリ12の蓄積電力量の検出結果(又は、蓄積電力量を算出するための電流値若しくは電圧値等の検出結果)が入力されている。検出結果がアナログ信号として入力される場合、検出結果入力部33は、入力された信号をサンプリングして取得することによりデジタルデータに変換し、変換したデジタル値の検出結果を処理部31へ与える。検出結果がデジタル信号として入力される場合、検出結果入力部33は、入力された信号に応じたデジタルデータを処理部31へ与える。 The detection result input unit 33 is connected to the first power amount detection unit 23 and the second power amount detection unit 24 via the signal lines 4c and 4d, and stores the stored power amount of the first battery 11 and the second battery 12. A detection result (or a detection result such as a current value or a voltage value for calculating the stored power amount) is input. When the detection result is input as an analog signal, the detection result input unit 33 converts the digital signal into digital data by sampling and acquiring the input signal, and gives the detection result of the converted digital value to the processing unit 31. When the detection result is input as a digital signal, the detection result input unit 33 provides the processing unit 31 with digital data corresponding to the input signal.
 車内通信部34は、車両1内に設けられた車内ネットワークを構成する通信線2に接続され、例えばCAN(Controller Area Network)などの通信プロトコルに従ってデータの送受信を行う。車内通信部34は、処理部31から与えられたデータを電気信号に変換して通信線2へ出力することによって情報を送信すると共に、通信線2の電位をサンプリングして取得することによりデータを受信し、受信したデータを処理部31へ与える。これによりゲートウェイ13は、車両1に搭載されたECU14及びボディECU15等との間でデータの送受信を行うことができる。またゲートウェイ13には、複数の車内通信部34が備えられており、一の車内通信部34にて受信したデータを他の車内通信部34から送信することによって、データの中継を行う。 The in-vehicle communication unit 34 is connected to the communication line 2 constituting the in-vehicle network provided in the vehicle 1 and transmits and receives data according to a communication protocol such as CAN (Controller Area Network). The in-vehicle communication unit 34 transmits information by converting the data given from the processing unit 31 into an electrical signal and outputs the signal to the communication line 2, and also samples and acquires the potential of the communication line 2 to obtain the data. The received data is given to the processing unit 31. Thereby, the gateway 13 can transmit and receive data between the ECU 14 and the body ECU 15 mounted on the vehicle 1. Further, the gateway 13 includes a plurality of in-vehicle communication units 34, and relays data by transmitting data received by one in-vehicle communication unit 34 from another in-vehicle communication unit 34.
 車外通信部35は、例えば携帯電話通信網又は無線LAN等を利用することによって、車外のサーバ装置9との間で通信を行う。車外通信部35は、処理部31から与えられたデータを変調した無線信号をアンテナから出力することによりデータを送信し、アンテナにて受信した無線信号を復調して得られたデータを処理部31へ与える。なお本実施の形態においては、ゲートウェイ13が直接的に車外との無線通信を行う構成とするが、これに限るものではない。ゲートウェイ13とは別に無線通信装置を車両1に搭載し、車内ネットワークを構成する通信線2又は専用の通信線を介してゲートウェイ13及び無線通信装置を接続して相互に通信を行うことが可能な構成とし、ゲートウェイ13が無線通信装置を介して車外のサーバ装置9との間で通信を行う構成としてもよい。 The vehicle exterior communication unit 35 communicates with the server device 9 outside the vehicle by using, for example, a mobile phone communication network or a wireless LAN. The out-of-vehicle communication unit 35 transmits data by outputting a radio signal obtained by modulating data provided from the processing unit 31 from the antenna, and processes the data obtained by demodulating the radio signal received by the antenna. Give to. In the present embodiment, the gateway 13 directly performs wireless communication with the outside of the vehicle, but is not limited thereto. A wireless communication device can be mounted on the vehicle 1 separately from the gateway 13 and can communicate with each other by connecting the gateway 13 and the wireless communication device via the communication line 2 constituting the in-vehicle network or a dedicated communication line. The configuration may be such that the gateway 13 communicates with the server device 9 outside the vehicle via the wireless communication device.
 また処理部31には、記憶部32又はROM等に記憶されたプログラムが実行されることによって、検出結果取得部31a、切替制御処理部31b及び更新処理部31c等がソフトウェア的な機能ブロックとして実現される。検出結果取得部31aは、車両1のエンジン停止後に所定の更新タイミングに至った場合に、第1電力量検出部23及び第2電力量検出部24から検出結果入力部33に入力される検出結果を取得する処理を行う。検出結果取得部31aは、取得した第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量と所定の閾値とを比較する処理を行う。また検出結果取得部31aは、第1バッテリ11の蓄積電力量と第2バッテリ12の蓄積電力量とを比較する処理を行う。 In addition, the processing unit 31 executes a program stored in the storage unit 32 or the ROM, so that the detection result acquisition unit 31a, the switching control processing unit 31b, the update processing unit 31c, and the like are realized as software functional blocks. Is done. The detection result acquisition unit 31a receives the detection result input from the first power amount detection unit 23 and the second power amount detection unit 24 to the detection result input unit 33 when the predetermined update timing is reached after the engine of the vehicle 1 is stopped. Process to get. The detection result acquisition unit 31a performs a process of comparing the acquired stored power amount of the first battery 11 and the stored power amount of the second battery 12 with a predetermined threshold value. In addition, the detection result acquisition unit 31a performs a process of comparing the stored power amount of the first battery 11 and the stored power amount of the second battery 12.
 切替制御処理部31bは、検出結果取得部31aによる蓄積電力量の比較結果に基づいて、第1スイッチ21及び第2スイッチ22の通電/遮断の切り替え処理を行う。なお、第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量が共に閾値を超えない場合、ゲートウェイ13は、更新処理を中止する。第1バッテリ11の蓄積電力量が閾値を超え、第2バッテリ12の蓄積電力量が閾値を超えない場合、切替制御処理部31bは、第1バッテリ11を用いて更新処理を行うと判断し、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とする切替命令をボディECU15へ送信する。第1バッテリ11の蓄積電力量が閾値を超えず、第2バッテリ12の蓄積電力量が閾値を超える場合、切替制御処理部31bは、第2バッテリ12を用いて更新処理を行うと判断し、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とする切替命令をボディECU15へ送信する。 The switching control processing unit 31b performs energization / interruption switching processing of the first switch 21 and the second switch 22 based on the comparison result of the stored electric energy by the detection result acquisition unit 31a. Note that if both the stored power amount of the first battery 11 and the stored power amount of the second battery 12 do not exceed the threshold value, the gateway 13 stops the update process. When the stored power amount of the first battery 11 exceeds the threshold value and the stored power amount of the second battery 12 does not exceed the threshold value, the switching control processing unit 31b determines to perform the update process using the first battery 11, A switching command to turn on the first switch 21 and turn off the second switch 22 is transmitted to the body ECU 15. When the stored power amount of the first battery 11 does not exceed the threshold value and the stored power amount of the second battery 12 exceeds the threshold value, the switching control processing unit 31b determines to perform the update process using the second battery 12, A switching command for setting the first switch 21 to the cutoff state and the second switch 22 to be energized is transmitted to the body ECU 15.
 第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量が共に閾値を超える場合、切替制御処理部31bは、第1バッテリ11の蓄積電力量と第2バッテリ12の蓄積電力量との比較結果に基づき、蓄積電力量が多い方のバッテリを用いて更新処理を行うと判断する。第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より多い場合、切替制御処理部31bは、第1バッテリ11を用いて更新処理を行うと判断し、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とする切替命令をボディECU15へ送信する。第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より少ない場合、切替制御処理部31bは、第2バッテリ12を用いて更新処理を行うと判断し、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とする切替命令をボディECU15へ送信する。 When the stored power amount of the first battery 11 and the stored power amount of the second battery 12 both exceed the threshold, the switching control processing unit 31b determines whether the stored power amount of the first battery 11 and the stored power amount of the second battery 12 Based on the comparison result, it is determined that the update process is performed using the battery with the larger amount of stored power. When the stored power amount of the first battery 11 is greater than the stored power amount of the second battery 12, the switching control processing unit 31b determines that the update process is performed using the first battery 11, and the first switch 21 is energized. And a switching command to turn off the second switch 22 is transmitted to the body ECU 15. When the stored power amount of the first battery 11 is smaller than the stored power amount of the second battery 12, the switching control processing unit 31b determines that the update process is performed using the second battery 12, and the first switch 21 is turned off. Then, a switching command for energizing the second switch 22 is transmitted to the body ECU 15.
 更新処理部31cは、車両1に搭載された種々の車載機器(本実施の形態においてはECU14)の記憶部に記憶されたプログラムを更新するための処理を行う。更新処理部31cは、車両1のエンジン動作中に車外のサーバ装置9との通信を行い、更新処理が行われる可能性がある全ての車載機器について、プログラムの更新の有無を問い合わせる処理を行う。更新処理部31cは、更新処理を行う必要があるとの応答がサーバ装置9から与えられた場合、更新処理に必要な更新用プログラムをサーバ装置9から取得して記憶部32に記憶する。車両1のエンジンが停止状態となった後、更新処理を行う所定のタイミングに至った場合、更新処理部31cは、記憶部32に記憶きた更新用プログラム32aを読み出して更新処理の対象となる車載機器へ送信することによって更新処理を行う。 The update processing unit 31c performs processing for updating a program stored in a storage unit of various in-vehicle devices (ECU 14 in the present embodiment) mounted on the vehicle 1. The update processing unit 31 c communicates with the server device 9 outside the vehicle while the engine of the vehicle 1 is operating, and performs a process of inquiring whether there is a program update for all in-vehicle devices that may be updated. When the response that the update process needs to be performed is given from the server device 9, the update processing unit 31 c acquires the update program necessary for the update process from the server device 9 and stores it in the storage unit 32. When the predetermined timing for performing the update process is reached after the engine of the vehicle 1 is stopped, the update processing unit 31c reads the update program 32a stored in the storage unit 32 and becomes the target of the update process. Update processing is performed by transmitting to the device.
 図3は、ボディECU15の構成を示すブロック図である。なお図3においては、ボディECU15の第1スイッチ21及び第2スイッチ22の切替制御に関する機能ブロックを図示し、他の機能に関するブロックについては図示を省略してある。本実施の形態に係るボディECU15は、処理部51、記憶部52、車内通信部53及び制御信号出力部54等を備えて構成されている。処理部51は、例えばCPU又はMPU等の演算処理装置を用いて構成され、記憶部52又はROM等に記憶されたプログラム(図示は省略する)を読み出して実行することにより、第1スイッチ21及び第2スイッチ22の切替制御などに係る種々の演算処理を行う。記憶部52は、フラッシュメモリ又はEEPROM等の不揮発性のメモリ素子を用いて構成されている。記憶部52は、処理部51が実行するプログラム及びこのプログラムの実行に必要なデータなどを記憶する。また記憶部52は、処理部51の処理の過程で生成されたデータなどを記憶してもよい。 FIG. 3 is a block diagram showing the configuration of the body ECU 15. In FIG. 3, functional blocks relating to the switching control of the first switch 21 and the second switch 22 of the body ECU 15 are illustrated, and illustrations of blocks relating to other functions are omitted. The body ECU 15 according to the present embodiment includes a processing unit 51, a storage unit 52, an in-vehicle communication unit 53, a control signal output unit 54, and the like. The processing unit 51 is configured using, for example, an arithmetic processing device such as a CPU or MPU, and reads and executes a program (not shown) stored in the storage unit 52 or the ROM, thereby executing the first switch 21 and Various arithmetic processes related to switching control of the second switch 22 and the like are performed. The storage unit 52 is configured using a nonvolatile memory element such as a flash memory or an EEPROM. The storage unit 52 stores a program executed by the processing unit 51, data necessary for executing the program, and the like. The storage unit 52 may store data generated in the course of processing by the processing unit 51.
 車内通信部53は、車両1内に設けられた車内ネットワークを構成する通信線2に接続され、例えばCANなどの通信プロトコルに従ってデータの送受信を行う。車内通信部53は、処理部51から与えられたデータを電気信号に変換して通信線2へ出力することによって情報を送信すると共に、通信線2の電位をサンプリングして取得することによりデータを受信し、受信したデータを処理部51へ与える。これによりボディECU15は、車両1に搭載されたゲートウェイ13及びECU14等との間でデータの送受信を行うことができる。制御信号出力部54は、信号線4a,4bを介して第1スイッチ21及び第2スイッチ22にそれぞれ接続され、処理部51からの指示に応じてこれらのスイッチの通電/遮断を切り替える制御信号を出力する。 The in-vehicle communication unit 53 is connected to the communication line 2 constituting the in-vehicle network provided in the vehicle 1 and transmits / receives data according to a communication protocol such as CAN. The in-vehicle communication unit 53 transmits information by converting the data provided from the processing unit 51 into an electric signal and outputs the electric signal to the communication line 2, and also samples and acquires the data by sampling the potential of the communication line 2. The received data is given to the processing unit 51. As a result, the body ECU 15 can transmit and receive data to and from the gateway 13 and ECU 14 mounted on the vehicle 1. The control signal output unit 54 is connected to the first switch 21 and the second switch 22 via the signal lines 4a and 4b, respectively, and receives a control signal for switching energization / cutoff of these switches in response to an instruction from the processing unit 51. Output.
 また処理部51には、記憶部52又はROM等に記憶されたプログラムが実行されることによって、切替制御処理部51bなどがソフトウェア的な機能ブロックとして実現される。切替制御処理部51aは、車内通信部53にてゲートウェイ13からの切替命令を受信した場合に、この切替命令にて指定された切替状態となるように、制御信号出力部54にて第1スイッチ21及び第2スイッチ22への制御信号を出力する処理を行う。また切替制御処理部51aは、車両1のエンジンの動作状態又はイグニッションスイッチの状態等に応じて、第1スイッチ21及び第2スイッチ22の通電/遮断を適宜に切り替える処理を行う。 In the processing unit 51, the switching control processing unit 51b is realized as a software functional block by executing a program stored in the storage unit 52 or the ROM. When the in-vehicle communication unit 53 receives a switching command from the gateway 13, the switching control processing unit 51 a causes the control signal output unit 54 to switch the first switch so that the switching state specified by the switching command is established. 21 and a process of outputting a control signal to the second switch 22 is performed. In addition, the switching control processing unit 51a performs a process of appropriately switching between energization / cutoff of the first switch 21 and the second switch 22 according to the operating state of the engine of the vehicle 1 or the state of the ignition switch.
 図4は、本実施の形態に係るゲートウェイ13が行う処理の手順を示すフローチャートである。なお本フローチャートに示す処理は、ゲートウェイ13がサーバ装置9から更新処理に必要な更新用プログラムの取得を完了し、車両1のエンジンが停止した後の状態から開始するものとしてある。ゲートウェイ13の処理部31の更新処理部31cは、ECU14のプログラムの更新処理を行うべき所定のタイミングに至ったか否かを判定する(ステップS1)。所定の更新タイミングは、例えば午後11時などの所定時刻、又は、イグニッションスイッチがオフ状態へ切り替えられてから2時間が経過した後等のタイミングを採用することができる。この更新タイミングをユーザが決定可能な構成としてもよい。更新タイミングに至っていない場合(S1:NO)、更新処理部31cは、更新タイミングに至るまで待機する。 FIG. 4 is a flowchart showing a procedure of processing performed by the gateway 13 according to the present embodiment. Note that the processing shown in this flowchart starts from a state after the gateway 13 completes the acquisition of the update program necessary for the update processing from the server device 9 and the engine of the vehicle 1 is stopped. The update processing unit 31c of the processing unit 31 of the gateway 13 determines whether or not a predetermined timing for performing the program update processing of the ECU 14 has been reached (step S1). As the predetermined update timing, for example, a predetermined time such as 11:00 pm, or a timing after two hours have elapsed since the ignition switch is switched to the off state can be employed. The update timing may be determined by the user. When the update timing has not been reached (S1: NO), the update processing unit 31c waits until the update timing is reached.
 更新タイミングに至った場合(S1:YES)、処理部31の検出結果取得部31aは、第1電力量検出部23及び第2電力量検出部24から検出結果入力部33へ入力される信号に基づいて、第1バッテリ11の蓄積電力量の検知結果及び第2バッテリ12の蓄積電力量の検知結果を取得する(ステップS2)。次いで検出結果取得部31aは、ステップS2にて取得した第1バッテリ11の蓄積電力量が所定の閾値を超えるか否かを判定する(ステップS3)。第1バッテリ11の蓄積電力量が閾値を超える場合(S3:YES)、検出結果取得部31aは、ステップS2にて取得した第2バッテリ12の蓄積電力量が所定の閾値を超えるか否かを判定する(ステップS4)。第2バッテリ12の蓄積電力量が閾値を超える場合(S4:YES)、即ち第1バッテリ11及び第2バッテリ12の蓄積電力量が共に閾値を超える場合、検出結果取得部31aは、第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量を超えるか否かを更に判定する(ステップS5)。 When the update timing is reached (S1: YES), the detection result acquisition unit 31a of the processing unit 31 outputs a signal input to the detection result input unit 33 from the first power amount detection unit 23 and the second power amount detection unit 24. Based on this, the detection result of the stored power amount of the first battery 11 and the detection result of the stored power amount of the second battery 12 are acquired (step S2). Next, the detection result acquisition unit 31a determines whether or not the accumulated power amount of the first battery 11 acquired in step S2 exceeds a predetermined threshold (step S3). When the stored power amount of the first battery 11 exceeds the threshold value (S3: YES), the detection result acquisition unit 31a determines whether or not the stored power amount of the second battery 12 acquired in step S2 exceeds a predetermined threshold value. Determine (step S4). When the accumulated power amount of the second battery 12 exceeds the threshold value (S4: YES), that is, when both the accumulated power amounts of the first battery 11 and the second battery 12 exceed the threshold value, the detection result acquisition unit 31a It is further determined whether or not the stored power amount of 11 exceeds the stored power amount of the second battery 12 (step S5).
 第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量を超える場合(S5:YES)、切替制御処理部51aは、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とすべく、ボディECU15に対してスイッチの切替命令を送信する(ステップS7)。またステップS4にて第2バッテリ12の蓄積電力量が閾値を超えない場合(S4:NO)も同様に、切替制御処理部51aは、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とすべく、ボディECU15に対してスイッチの切替命令を送信する(ステップS7)。ステップS7による第1スイッチ21及び第2スイッチ22の切替完了後、更新処理部31cは、記憶部32に記憶された更新用プログラム32aを読み出し、車内通信部34にて更新対象のECU14へ送信することによって更新処理を行い(ステップS9)、処理を終了する。 When the stored power amount of the first battery 11 exceeds the stored power amount of the second battery 12 (S5: YES), the switching control processing unit 51a sets the first switch 21 in the energized state and sets the second switch 22 in the cut-off state. Therefore, a switch switching command is transmitted to the body ECU 15 (step S7). Similarly, when the stored power amount of the second battery 12 does not exceed the threshold value in step S4 (S4: NO), the switching control processing unit 51a sets the first switch 21 in the energized state and shuts off the second switch 22. In order to enter the state, a switch switching command is transmitted to the body ECU 15 (step S7). After completing the switching of the first switch 21 and the second switch 22 in step S7, the update processing unit 31c reads the update program 32a stored in the storage unit 32 and transmits it to the ECU 14 to be updated by the in-vehicle communication unit 34. Thus, an update process is performed (step S9), and the process ends.
 ステップS5にて第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量を超えない場合(S5:NO)、切替制御処理部51aは、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とすべく、ボディECU15に対してスイッチの切替命令を送信する(ステップS8)。またステップS3にて第1バッテリ11の蓄積電力量が閾値を超えない場合(S3:NO)、検出結果取得部31aは、ステップS2にて取得した第2バッテリ12の蓄積電力量が所定の閾値を超えるか否かを判定する(ステップS6)。第2バッテリ12の蓄積電力量が閾値を超える場合(S6:YES)、切替制御処理部51aは、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とすべく、ボディECU15に対してスイッチの切替命令を送信する(ステップS8)。ステップS8による第1スイッチ21及び第2スイッチ22の切替完了後、更新処理部31cは、記憶部32に記憶された更新用プログラム32aを読み出し、車内通信部34にて更新対象のECU14へ送信することによって更新処理を行い(ステップS9)、処理を終了する。 When the stored power amount of the first battery 11 does not exceed the stored power amount of the second battery 12 in step S5 (S5: NO), the switching control processing unit 51a sets the first switch 21 to the shut-off state and sets the second switch A switch switching command is transmitted to the body ECU 15 in order to set 22 to an energized state (step S8). When the stored power amount of the first battery 11 does not exceed the threshold value in step S3 (S3: NO), the detection result acquisition unit 31a determines that the stored power amount of the second battery 12 acquired in step S2 is a predetermined threshold value. It is determined whether or not (step S6). When the stored power amount of the second battery 12 exceeds the threshold (S6: YES), the switching control processing unit 51a instructs the body ECU 15 to turn off the first switch 21 and turn on the second switch 22. The switch change command is transmitted (step S8). After completing the switching of the first switch 21 and the second switch 22 in step S8, the update processing unit 31c reads the update program 32a stored in the storage unit 32 and transmits it to the ECU 14 to be updated by the in-vehicle communication unit 34. Thus, an update process is performed (step S9), and the process ends.
 またステップS6にて第2バッテリ12の蓄積電力量が閾値を超えない場合(S6:NO)、即ち第1バッテリ11及び第2バッテリ12の蓄積電力量が共に閾値を超えない場合、処理部31は、ECU14のプログラムの更新処理を行うことなく、処理を終了する。 Further, when the accumulated power amount of the second battery 12 does not exceed the threshold value in step S6 (S6: NO), that is, when both the accumulated power amounts of the first battery 11 and the second battery 12 do not exceed the threshold value, the processing unit 31. Finishes the process without performing the program update process of the ECU 14.
 以上の構成の本実施の形態に係る車載更新システム1aは、第1バッテリ11及び第2バッテリ12の2つのバッテリが搭載された車両1を対象とし、更新処理の対象となるECU14が第1バッテリ11及び第2バッテリ12の両方から電力供給を受けることが可能な構成である。第1バッテリ11及び第2バッテリ12からECU14への電力供給経路3には、通電/遮断を切り替え可能な第1スイッチ21及び第2スイッチ22がそれぞれ設けられている。また第1バッテリ11及び第2バッテリ12の蓄積電力量を検出する第1電力量検出部23及び第2電力量検出部24を設け、ゲートウェイ13は、ECU14のプログラムの更新処理を行う際に、検出した第1バッテリ11及び第2バッテリ12の蓄積電力量に基づいて、第1スイッチ21及び第2スイッチ22の通電/遮断の切替制御を行う。これにより、例えば蓄積電力量が低下しているバッテリを更新処理に用いないなど、各バッテリの蓄積電力量に応じた更新処理を実現でき、車両1のバッテリ上がりの抑制に貢献することができる。 The in-vehicle update system 1a according to the present embodiment having the above-described configuration targets the vehicle 1 on which two batteries of the first battery 11 and the second battery 12 are mounted, and the ECU 14 that is the target of the update process is the first battery. In this configuration, power can be supplied from both the battery 11 and the second battery 12. The power supply path 3 from the first battery 11 and the second battery 12 to the ECU 14 is provided with a first switch 21 and a second switch 22 that can be switched between energization / cutoff. In addition, a first power amount detection unit 23 and a second power amount detection unit 24 that detect the stored power amount of the first battery 11 and the second battery 12 are provided, and the gateway 13 performs a program update process of the ECU 14. On / off switching control of the first switch 21 and the second switch 22 is performed based on the detected accumulated electric energy of the first battery 11 and the second battery 12. Thereby, for example, an update process corresponding to the stored power amount of each battery can be realized, such as not using a battery whose stored power amount is reduced in the update process, and it is possible to contribute to the suppression of battery power up of the vehicle 1.
 またゲートウェイ13は、蓄積電力量が多いバッテリを優先し、このバッテリからECU14への電力供給経路を通電状態とすべく、第1スイッチ21及び第2スイッチ22の切替制御を行う。ゲートウェイ13は、蓄積電力量が最も多いバッテリからECU14への電力供給経路を通電状態としてよい。即ちゲートウェイ13は、第1バッテリ11及び第2バッテリ12のうち蓄積電力量が多いバッテリの電力を、更新処理の対象となるECU14へ供給すべく、第1スイッチ21及び第2スイッチ22の切替制御を行う。これにより、蓄積電力量が多いバッテリの電力を更新処理の対象とするECU14へ供給して更新処理を行うことができ、蓄積電力量が少ないバッテリの蓄積電力量が更に減少することを防止できる。 Further, the gateway 13 gives priority to a battery with a large amount of stored power, and performs switching control of the first switch 21 and the second switch 22 so that the power supply path from the battery to the ECU 14 is energized. The gateway 13 may set the power supply path from the battery having the largest amount of stored power to the ECU 14 in an energized state. That is, the gateway 13 performs switching control of the first switch 21 and the second switch 22 so as to supply the electric power of the battery having a large amount of accumulated electric power among the first battery 11 and the second battery 12 to the ECU 14 that is an object of the update process. I do. Thereby, the power of the battery with a large amount of stored power can be supplied to the ECU 14 to be updated, and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing.
 なお本実施の形態においては、車両1に第1バッテリ11及び第2バッテリ12の2つのバッテリを搭載する構成としたが、これに限るものではなく、3つ以上のバッテリを車両1に搭載する構成としてよい。この構成の場合、例えばゲートウェイ13は、各バッテリの蓄積電力量を取得して、最も蓄積電力量が多い1つのバッテリから更新対象のECU14へ電力を供給すべく、各バッテリを電力供給経路に接続するスイッチ又はリレー等の切替部の通電/遮断を切り替える構成とすることができる。また例えばゲートウェイ13は、蓄積電力量が多い順に所定数のバッテリを選択し、選択したバッテリから更新対象のECU14への電力供給経路を通電状態とする構成とすることができる。 In the present embodiment, the first battery 11 and the second battery 12 are mounted on the vehicle 1. However, the present invention is not limited to this, and three or more batteries are mounted on the vehicle 1. It is good as composition. In the case of this configuration, for example, the gateway 13 acquires the stored power amount of each battery, and connects each battery to the power supply path so as to supply power from the one battery having the largest stored power amount to the ECU 14 to be updated. It can be set as the structure which switches electricity supply / cut-off of switching parts, such as a switch to perform or a relay. Further, for example, the gateway 13 may be configured to select a predetermined number of batteries in descending order of the amount of stored power, and to put the power supply path from the selected battery to the ECU 14 to be updated into an energized state.
 またゲートウェイ13は、第1バッテリ11及び第2バッテリ12の蓄積電力量が所定の閾値を超えるか否かを判定する。ゲートウェイ13は、蓄積電力量が閾値を超えるものの中から、更新処理の際に用いるバッテリを選択する。いずれのバッテリも蓄積電力量が閾値を超えない場合、ゲートウェイ13は、更新処理を中止する。これにより、ゲートウェイ13が更新処理を行うことによって第1バッテリ11及び第2バッテリ12の蓄積電力量が著しく低下することを防止できる。 Further, the gateway 13 determines whether or not the stored power amount of the first battery 11 and the second battery 12 exceeds a predetermined threshold value. The gateway 13 selects a battery to be used for the update process from among those whose stored power amount exceeds the threshold value. If any of the batteries does not exceed the threshold, the gateway 13 stops the update process. Thereby, it is possible to prevent the stored power amount of the first battery 11 and the second battery 12 from being significantly reduced by the gateway 13 performing the update process.
 また車載更新システム1aは、第1バッテリ11及び第2バッテリ12からECU14への電力供給経路3に設けられた第1スイッチ21及び第2スイッチ22の通電/遮断を切り替える制御を行うボディECU15を、更新処理を行うゲートウェイ13とは別に設けた構成である。ゲートウェイ13及びボディECU15は通信線2を介して相互にデータの送受信を行うことができる。ゲートウェイ13は更新処理を行う際に第1スイッチ21及び第2スイッチ22の切替命令をボディECU15に与え、この切替命令に応じてボディECU15が第1スイッチ21及び第2スイッチ22の切替制御を行う。これにより更新処理を行わない場合の第1スイッチ21及び第2スイッチ22の切替制御をボディECU15が行う構成とすることができ、ゲートウェイ13が更新処理以外で第1スイッチ21及び第2スイッチ22の切替制御を行う必要がなくなる。 Further, the in-vehicle update system 1a includes a body ECU 15 that performs control to switch energization / cutoff of the first switch 21 and the second switch 22 provided in the power supply path 3 from the first battery 11 and the second battery 12 to the ECU 14. This configuration is provided separately from the gateway 13 that performs the update process. The gateway 13 and the body ECU 15 can exchange data with each other via the communication line 2. The gateway 13 gives a switching command for the first switch 21 and the second switch 22 to the body ECU 15 when performing the update process, and the body ECU 15 performs switching control for the first switch 21 and the second switch 22 in accordance with the switching command. . As a result, the body ECU 15 can perform the switching control of the first switch 21 and the second switch 22 when the update process is not performed, and the gateway 13 is configured to perform the control of the first switch 21 and the second switch 22 other than the update process. There is no need to perform switching control.
 ただし車載更新システム1aは、車載機器の更新処理を行う装置と、第1スイッチ21及び第2スイッチ22の切替制御を行う装置とを1つの装置として実現してもよい。例えばゲートウェイ13が第1スイッチ21及び第2スイッチ22の通電/遮断を切り替える制御信号を出力する構成としてもよい。また例えばボディECU15がECU14のプログラムの更新処理を行う構成としてもよい。 However, the in-vehicle update system 1a may realize a device that performs an update process for in-vehicle devices and a device that performs switching control of the first switch 21 and the second switch 22 as one device. For example, the gateway 13 may be configured to output a control signal for switching energization / cutoff of the first switch 21 and the second switch 22. Further, for example, the body ECU 15 may be configured to update the program of the ECU 14.
 また本実施の形態においては、ECU14などの更新処理をゲートウェイ13が行う構成としたが、これに限るものではない。車両1に搭載された別の装置が更新処理を行う構成であってよい。また図1に示したシステム構成は一例であって、これに限るものではない。またボディECU15が第1スイッチ21及び第2スイッチ22の切替制御を行う構成としたが、これに限るものではない。車両1に搭載された別の装置が第1スイッチ21及び第2スイッチ22の切替制御を行う構成であってよい。 In the present embodiment, the gateway 13 performs the update process of the ECU 14 and the like, but the present invention is not limited to this. Another device mounted on the vehicle 1 may be configured to perform the update process. The system configuration shown in FIG. 1 is an example, and the present invention is not limited to this. Further, although the body ECU 15 performs the switching control of the first switch 21 and the second switch 22, it is not limited to this. Another device mounted on the vehicle 1 may be configured to perform switching control of the first switch 21 and the second switch 22.
(実施の形態2)
 図5は、実施の形態2に係る車載更新システム1aの構成を示すブロック図である。実施の形態2に係る車載更新システム1aは、第1バッテリ11から電力が供給される第1電力供給経路3aと、第2バッテリから電力が供給される第2電力供給経路3bとが車両1に別に設けられた構成である。車載更新システム1aでは、第1バッテリ11を第1電力供給経路3aに接続する第1スイッチ21と、第2バッテリ12を第2電力供給経路3bに接続する第2スイッチ22とが設けられ、第1スイッチ21及び第2スイッチ22の通電/遮断の制御をボディECU15が行う。
(Embodiment 2)
FIG. 5 is a block diagram showing a configuration of the in-vehicle update system 1a according to the second embodiment. In the in-vehicle update system 1a according to the second embodiment, the vehicle 1 includes a first power supply path 3a to which power is supplied from the first battery 11 and a second power supply path 3b to which power is supplied from the second battery. This is a separate configuration. The in-vehicle update system 1a includes a first switch 21 that connects the first battery 11 to the first power supply path 3a, and a second switch 22 that connects the second battery 12 to the second power supply path 3b. The body ECU 15 controls energization / cutoff of the first switch 21 and the second switch 22.
 ゲートウェイ13及びボディECU15は、第1電力供給経路3a及び第2電力供給経路3bの両方に接続されており、第1バッテリ11及び第2バッテリ12のいずれからも電力供給を受けることができる。これに対してECU14は、第1電力供給経路3aにのみ接続され、第2電力供給経路3bには接続されておらず、第1バッテリ11からの電力供給により動作する。 The gateway 13 and the body ECU 15 are connected to both the first power supply path 3 a and the second power supply path 3 b, and can receive power supply from either the first battery 11 or the second battery 12. On the other hand, the ECU 14 is connected only to the first power supply path 3 a, is not connected to the second power supply path 3 b, and operates by supplying power from the first battery 11.
 このような2系統に分けられた電力供給経路を有するシステム構成において、本実施の形態に係る車載更新システム1aでは、第1電力供給経路3aと第2電力供給経路3bとを接続する第3スイッチ123を設け、第3スイッチ123の通電/遮断の切替制御をボディECU15が行う。これにより、ボディECU15が第2スイッチ22及び第3スイッチ123を共に通電状態へ切り替えることによって、第2バッテリ12の電力をECU14へ供給することが可能となる。 In such a system configuration having power supply paths divided into two systems, in the in-vehicle update system 1a according to the present embodiment, the third switch that connects the first power supply path 3a and the second power supply path 3b. 123, and the body ECU 15 performs energization / cutoff switching control of the third switch 123. Accordingly, the body ECU 15 can supply the electric power of the second battery 12 to the ECU 14 by switching both the second switch 22 and the third switch 123 to the energized state.
 実施の形態2に係るゲートウェイ13は、車両1のエンジン停止中の所定の更新タイミングに至った場合に、第1バッテリ11及び第2バッテリ12の蓄積電力量を第1電力量検出部23及び第2電力量検出部24から取得する。ゲートウェイ13は、取得した蓄積電力量と閾値との比較、並びに、取得した2つの蓄積電力量の比較を行って、更新処理時に第1バッテリ11又は第2バッテリ12のいずれからECU14への電力供給を行うかを判定する。これらの判定方法は、実施の形態1における判定方法と同様であるため、詳細は省略する。 When the gateway 13 according to the second embodiment reaches a predetermined update timing when the engine of the vehicle 1 is stopped, the gateway 13 stores the stored power amounts of the first battery 11 and the second battery 12 in the first power amount detection unit 23 and the first power amount detection unit 23. 2 Obtained from the electric energy detection unit 24. The gateway 13 compares the acquired stored power amount with a threshold value and compares the two acquired stored power amounts, and supplies power to the ECU 14 from either the first battery 11 or the second battery 12 during the update process. Determine whether to perform. Since these determination methods are the same as the determination method in the first embodiment, the details are omitted.
 第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より多く、第1バッテリ11を用いて更新処理を行うと判定した場合、ゲートウェイ13は、第1スイッチ21を通電状態とし、第2スイッチ22及び第3スイッチ123を遮断状態とする切替命令をボディECU15へ与える。なお更新処理に第1バッテリ11を用いると判定し、第2電力供給経路3bに更新処理の対象となる車載機器が接続されている場合、ゲートウェイ13は、第1スイッチ21及び第3スイッチ123を通電状態とし、第2スイッチを遮断状態とする切替命令をボディECU15へ与えてよい。 If the stored power amount of the first battery 11 is larger than the stored power amount of the second battery 12 and it is determined that the update process is performed using the first battery 11, the gateway 13 sets the first switch 21 in the energized state, A switching command to turn off the 2 switch 22 and the third switch 123 is given to the body ECU 15. When it is determined that the first battery 11 is used for the update process, and the in-vehicle device that is the object of the update process is connected to the second power supply path 3b, the gateway 13 switches the first switch 21 and the third switch 123. A switching command for setting the energized state and turning off the second switch may be given to the body ECU 15.
 第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より少なく、第2バッテリ12を用いて更新処理を行うと判定した場合、ゲートウェイ13は、第1スイッチ21を遮断状態とし、第2スイッチ22及び第3スイッチ123を通電状態とする切替命令をボディECU15へ与える。なお更新処理に第2バッテリ12を用いると判定し、第2電力供給経路3bに更新処理の対象となる車載機器が接続され、第1電力供給経路3aに更新処理の対象となる車載機器が接続されていない場合、ゲートウェイ13は、第1スイッチ21及び第3スイッチ123を遮断状態とし、第2スイッチ22を通電状態とする切替命令をボディECU15へ与えてよい。 When it is determined that the stored power amount of the first battery 11 is less than the stored power amount of the second battery 12 and the update process is performed using the second battery 12, the gateway 13 sets the first switch 21 in the cutoff state, A switching command for energizing the second switch 22 and the third switch 123 is given to the body ECU 15. It is determined that the second battery 12 is used for the update process, the in-vehicle device that is the target of the update process is connected to the second power supply path 3b, and the in-vehicle device that is the target of the update process is connected to the first power supply path 3a. If not, the gateway 13 may give a switching command to the body ECU 15 to turn off the first switch 21 and the third switch 123 and turn on the second switch 22.
 このため、ゲートウェイ13は、更新対象となり得る車載機器が第1電力供給経路3a又は第2電力供給経路3bのいずれに接続されているかを判断するための情報を記憶している。この情報は、例えばゲートウェイ13の記憶部32に予め接続情報として記憶されていてもよく、また例えばサーバ装置9から接続情報を取得してもよい。ゲートウェイ13は、更新対象の車載機器が接続された電力供給経路と、蓄積電力量に基づいて更新処理に用いると判定したバッテリが接続された電力供給経路とが異なる場合、第3スイッチ123を通電状態とする切替命令をボディECU15へ与えればよい。 For this reason, the gateway 13 stores information for determining whether the in-vehicle device that can be updated is connected to the first power supply path 3a or the second power supply path 3b. This information may be stored as connection information in advance in the storage unit 32 of the gateway 13, for example, or connection information may be acquired from the server device 9, for example. The gateway 13 energizes the third switch 123 when the power supply path to which the in-vehicle device to be updated is connected is different from the power supply path to which the battery determined to be used for the update process based on the stored power amount is connected. A switching command for setting the state may be given to the body ECU 15.
 なお本実施の形態においては、第3スイッチ123は更新処理を行う際に通電状態へ切り替えられる可能性があるが、更新処理以外の際には遮断状態を維持するようボディECU15により制御される。このため第3スイッチ123は、ゲートウェイ13が直接的に通電/遮断の切替制御を行う構成としてもよい。ただし第3スイッチ123は、更新処理以外でも通電状態へ切り替える制御を行ってよい。 In the present embodiment, the third switch 123 may be switched to the energized state when performing the update process, but is controlled by the body ECU 15 to maintain the shut-off state at times other than the update process. Therefore, the third switch 123 may be configured such that the gateway 13 directly performs energization / cutoff switching control. However, the third switch 123 may perform control to switch to the energized state other than the update process.
 図6及び図7は、実施の形態2に係るゲートウェイ13が行う処理の手順を示すフローチャートである。なお本フローチャートに示す処理は、図4に示した実施の形態1に係るゲートウェイ13が行う処理においてステップS7及びS8に代えて行われるものである。このため実施の形態2に係るゲートウェイ13は、図4のフローチャートのステップS1~S6,S9については同様の処理を行い、ステップS7に代えて図6のステップS21~S24の処理を行い、ステップS8に代えて図7のステップS31~S34の処理を行う。 6 and 7 are flowcharts showing a procedure of processing performed by the gateway 13 according to the second embodiment. The process shown in this flowchart is performed in place of steps S7 and S8 in the process performed by the gateway 13 according to the first embodiment shown in FIG. For this reason, the gateway 13 according to the second embodiment performs the same processing for steps S1 to S6 and S9 in the flowchart of FIG. 4, performs the processing of steps S21 to S24 of FIG. 6 instead of step S7, and executes step S8. Instead, the processing of steps S31 to S34 in FIG. 7 is performed.
 第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量に基づいて、第1バッテリ11を利用して更新処理を行うと判定した場合(図4のS4:NO又はS5:YES)、実施の形態2に係るゲートウェイ13の処理部31の切替制御処理部31bは、記憶部32に記憶された接続情報の読み出しを行う(ステップS21)。接続情報には、車両1に搭載された車載機器が第1電力供給経路3a又は第2電力供給経路3bのいずれに接続されているかが記されている。切替制御処理部31bは、読み出した接続情報に基づいて、更新処理の対象となる車載機器(複数存在する場合には少なくとも1つの車載機器)が第2電力供給経路3bに接続されているか否かを判定する(ステップS22)。第2電力供給経路3bに更新対象の車載機器が接続されている場合(S22:YES)、切替制御処理部31bは、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とし、第3スイッチ123を通電状態とすべく、ボディECU15に対してスイッチの切替命令を送信し(ステップS23)、図4のステップS9へ処理を進める。これに対して、第2電力供給経路3bに更新対象の車載機器が接続されていない場合(S22:NO)、切替制御処理部31bは、第1スイッチ21を通電状態とし、第2スイッチ22を遮断状態とし、第3スイッチ123を遮断状態とすべく、ボディECU15に対してスイッチの切替命令を送信し(ステップS24)、図4のステップS9へ処理を進める。 When it is determined that the update process is performed using the first battery 11 based on the stored power amount of the first battery 11 and the stored power amount of the second battery 12 (S4: NO or S5: YES in FIG. 4), The switching control processing unit 31b of the processing unit 31 of the gateway 13 according to Embodiment 2 reads the connection information stored in the storage unit 32 (step S21). The connection information describes whether the in-vehicle device mounted on the vehicle 1 is connected to the first power supply path 3a or the second power supply path 3b. Based on the read connection information, the switching control processing unit 31b determines whether or not an in-vehicle device (at least one in-vehicle device when there are a plurality of devices) to be updated is connected to the second power supply path 3b. Is determined (step S22). When the in-vehicle device to be updated is connected to the second power supply path 3b (S22: YES), the switching control processing unit 31b sets the first switch 21 in the energized state, sets the second switch 22 in the cut-off state, 3 In order to put the switch 123 in the energized state, a switch switching command is transmitted to the body ECU 15 (step S23), and the process proceeds to step S9 in FIG. On the other hand, when the in-vehicle device to be updated is not connected to the second power supply path 3b (S22: NO), the switching control processing unit 31b sets the first switch 21 in the energized state and turns the second switch 22 on. A switch switching command is transmitted to the body ECU 15 (step S24), and the process proceeds to step S9 in FIG.
 同様に、第1バッテリ11の蓄積電力量及び第2バッテリ12の蓄積電力量に基づいて、第2バッテリ12を利用して更新処理を行うと判定した場合(図4のS5:NO又はS6:YES)、切替制御処理部31bは、記憶部32に記憶された接続情報の読み出しを行う(ステップS31)。切替制御処理部31bは、読み出した接続情報に基づいて、更新処理の対象となる車載機器が第1電力供給経路3aに接続されているか否かを判定する(ステップS32)。第1電力供給経路3aに更新対象の車載機器が接続されている場合(S32:YES)、切替制御処理部31bは、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とし、第3スイッチ123を通電状態とすべく、ボディECU15に対してスイッチの切替命令を送信し(ステップS33)、図4のステップS9へ処理を進める。これに対して、第1電力供給経路3aに更新対象の車載機器が接続されていない場合(S32:NO)、切替制御処理部31bは、第1スイッチ21を遮断状態とし、第2スイッチ22を通電状態とし、第3スイッチ123を遮断状態とすべく、ボディECU15に対してスイッチの切替命令を送信し(ステップS34)、図4のステップS9へ処理を進める。 Similarly, when it is determined that the update process is performed using the second battery 12 based on the stored power amount of the first battery 11 and the stored power amount of the second battery 12 (S5: NO or S6 in FIG. 4: YES), the switching control processing unit 31b reads the connection information stored in the storage unit 32 (step S31). Based on the read connection information, the switching control processing unit 31b determines whether or not the in-vehicle device to be updated is connected to the first power supply path 3a (Step S32). When the in-vehicle device to be updated is connected to the first power supply path 3a (S32: YES), the switching control processing unit 31b sets the first switch 21 to the cut-off state, the second switch 22 to the energized state, 3 In order to put the switch 123 in the energized state, a switch switching command is transmitted to the body ECU 15 (step S33), and the process proceeds to step S9 in FIG. On the other hand, when the in-vehicle device to be updated is not connected to the first power supply path 3a (S32: NO), the switching control processing unit 31b sets the first switch 21 to the cut-off state and switches the second switch 22 to the first power supply path 3a. In order to switch to the energized state and turn off the third switch 123, a switch switching command is transmitted to the body ECU 15 (step S34), and the process proceeds to step S9 in FIG.
 以上の構成の実施の形態2に係る車載更新システム1aは、第1バッテリ11及び第2バッテリ12が搭載された車両1において、更新処理の対象となるECU14は第1バッテリ11からの電力供給を受け、更新処理を行うゲートウェイ13は第1バッテリ11及び第2バッテリ12からの電力供給を受けて動作する。第1バッテリ11からECU14及びゲートウェイ13への第1電力供給経路3aには第1スイッチ21が設けられ、第2バッテリ12からゲートウェイ13への第2電力供給経路3bには第2スイッチ22が設けられている。更に、第1電力供給経路3a及び第2電力供給経路3bの間には、両経路の通電/遮断を切り替える第3スイッチ123を設ける。これにより、第3スイッチ123を通電状態へ切り替えることで第1電力供給経路3a及び第2電力供給経路3bを接続することができるため、第1電力供給経路3aに接続されたECU14に対して第2バッテリ12の電力を供給することが可能となる。 In the vehicle-mounted update system 1a according to the second embodiment configured as described above, in the vehicle 1 in which the first battery 11 and the second battery 12 are mounted, the ECU 14 that is the target of the update process supplies power from the first battery 11. The gateway 13 that performs the receiving and updating process operates by receiving power supply from the first battery 11 and the second battery 12. A first switch 21 is provided in the first power supply path 3 a from the first battery 11 to the ECU 14 and the gateway 13, and a second switch 22 is provided in the second power supply path 3 b from the second battery 12 to the gateway 13. It has been. Furthermore, a third switch 123 is provided between the first power supply path 3a and the second power supply path 3b to switch between energization / cutoff of both paths. Accordingly, the first power supply path 3a and the second power supply path 3b can be connected by switching the third switch 123 to the energized state, and therefore the ECU 14 connected to the first power supply path 3a 2 The power of the battery 12 can be supplied.
 また実施の形態2に係るゲートウェイ13は、第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より多い場合、第1スイッチ21を通電状態とし、且つ、第2スイッチ22及び第3スイッチ123を遮断状態とすることによって、第1バッテリ11からECU14への電力供給を行う。これに対して、第1バッテリ11の蓄積電力量が第2バッテリ12の蓄積電力量より少ない場合、ゲートウェイ13は、第1スイッチ21を遮断状態とし、且つ、第2スイッチ22及び第3スイッチ123を通電状態とすることによって、第2バッテリ12からECU14への電力供給を行う。これにより、蓄積電力量が多いバッテリの電力を更新処理の対象とするECU14へ供給して更新処理を行うことができ、蓄積電力量が少ないバッテリの蓄積電力量が更に減少することを防止できる。 Further, the gateway 13 according to the second embodiment sets the first switch 21 in the energized state when the accumulated power amount of the first battery 11 is larger than the accumulated power amount of the second battery 12, and the second switch 22 and the third switch The switch 123 is turned off to supply power from the first battery 11 to the ECU 14. On the other hand, when the stored power amount of the first battery 11 is smaller than the stored power amount of the second battery 12, the gateway 13 turns off the first switch 21, and the second switch 22 and the third switch 123. Is supplied to the ECU 14 from the second battery 12. Thereby, the power of the battery with a large amount of stored power can be supplied to the ECU 14 to be updated, and the update process can be performed, and the stored power amount of the battery with a small amount of stored power can be prevented from further decreasing.
 また更新処理の対象となり得る車載機器は、第1電力供給経路3a又は第2電力供給経路3bのいずれにも接続されている可能性がある。そこでゲートウェイ13は、更新処理の対象となり得る車載機器が第1電力供給経路3a又は第2電力供給経路3bのいずれに接続されているかを接続情報として記憶部32に記憶しておく。蓄積電力量に基づいて第1バッテリ11又は第2バッテリ12のいずれを更新処理に用いるかを判定した後、ゲートウェイ13は、更新処理に用いるバッテリが接続された電力供給経路と更新処理の対象となる車載機器が接続された電力供給経路とが異なる場合、第3スイッチ123を通電状態へ切り替えることによって、バッテリから更新処理対象の車載機器へ電力が供給され、更新処理を行うことが可能となる。 Also, there is a possibility that the in-vehicle device that can be the target of the update process is connected to either the first power supply path 3a or the second power supply path 3b. Therefore, the gateway 13 stores in the storage unit 32, as connection information, which of the first power supply path 3a and the second power supply path 3b is connected to the in-vehicle device that can be the target of the update process. After determining which of the first battery 11 or the second battery 12 is to be used for the update process based on the accumulated power amount, the gateway 13 determines the power supply path to which the battery used for the update process is connected and the target of the update process. When the power supply path to which the in-vehicle device is connected is different, by switching the third switch 123 to the energized state, power is supplied from the battery to the in-vehicle device subject to the update process, and the update process can be performed. .
 なお実施の形態2においては、車両1に第1バッテリ11及び第2バッテリ12の2つのバッテリを搭載し、第1電力供給経路3a及び第2電力供給経路3bの2つの電力供給経路を設ける構成としたが、これに限るものではなく、3つ以上のバッテリを搭載して3つ以上の電力供給経路を設ける構成としてよい。この場合には、複数の電力供給経路間をそれぞれ接続/遮断するための複数の第3スイッチ123を設け、更新処理に用いるバッテリが接続された電力供給経路と更新処理対象の車載機器が接続された電力供給経路とをいずれかの第3スイッチ123を遮断状態とすることで接続すればよい。例えば車両1に3つのバッテリが搭載され、3つの電力供給経路が設けられる場合、第1電力供給経路及び第2電力供給経路間に1つ目の第3スイッチ123設け、第2電力供給経路及び第3電力供給経路間に2つ目の第3スイッチ123を設け、第3電力供給経路及び第1電力供給経路間に3つ目の第3スイッチ123を設ける構成とすることができる。 In the second embodiment, the first battery 11 and the second battery 12 are mounted on the vehicle 1 and two power supply paths, the first power supply path 3a and the second power supply path 3b, are provided. However, the present invention is not limited to this, and a configuration may be adopted in which three or more batteries are mounted and three or more power supply paths are provided. In this case, a plurality of third switches 123 for connecting / blocking between the plurality of power supply paths are provided, and the power supply path to which the battery used for the update process is connected and the in-vehicle device to be updated are connected. The power supply path may be connected by turning off any of the third switches 123. For example, when three batteries are mounted on the vehicle 1 and three power supply paths are provided, a first third switch 123 is provided between the first power supply path and the second power supply path, and the second power supply path and A second third switch 123 may be provided between the third power supply paths, and a third third switch 123 may be provided between the third power supply path and the first power supply path.
 また、実施の形態2に係る車載更新システム1aのその他の構成は、実施の形態1に係る車載更新システム1aと同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。 Moreover, since the other structure of the vehicle-mounted update system 1a which concerns on Embodiment 2 is the same as that of the vehicle-mounted update system 1a which concerns on Embodiment 1, the same code | symbol is attached | subjected to the same location and detailed description is abbreviate | omitted. To do.
 1 車両
 1a 車載更新システム
 2 通信線
 3 電力供給経路
 3a 第1電力供給経路(電力供給経路)
 3b 第2電力供給経路(電力供給経路)
 4a~4c 信号線
 9 サーバ装置
 11 第1バッテリ(バッテリ)
 12 第2バッテリ(バッテリ)
 13 ゲートウェイ(車載更新装置)
 14 ECU(車載機器)
 15 ボディECU(切替制御装置)
 21 第1スイッチ(切替部)
 22 第2スイッチ(切替部)
 23 第1電力量検出部(検出部)
 24 第2電力量検出部(検出部)
 31 処理部
 31a 検出結果取得部
 31b 切替制御処理部
 31c 更新処理部
 32 記憶部
 32a 更新用プログラム
 33 検出結果入力部
 34 車内通信部
 35 車外通信部
 51 処理部
 51a 切替制御処理部
 52 記憶部
 53 車内通信部
 54 制御信号出力部
 123 第3スイッチ(切替部)
 
DESCRIPTION OF SYMBOLS 1 Vehicle 1a Car-mounted update system 2 Communication line 3 Electric power supply path 3a 1st electric power supply path (electric power supply path)
3b Second power supply path (power supply path)
4a to 4c Signal line 9 Server device 11 First battery (battery)
12 Second battery (battery)
13 Gateway (in-vehicle update device)
14 ECU (on-vehicle equipment)
15 Body ECU (switching control device)
21 1st switch (switching part)
22 Second switch (switching unit)
23 1st electric energy detection part (detection part)
24 2nd electric energy detection part (detection part)
Reference Signs List 31 processing unit 31a detection result acquisition unit 31b switching control processing unit 31c update processing unit 32 storage unit 32a update program 33 detection result input unit 34 in-vehicle communication unit 35 outside communication unit 51 processing unit 51a switching control processing unit 52 storage unit 53 in vehicle Communication unit 54 Control signal output unit 123 Third switch (switching unit)

Claims (9)

  1.  車両に搭載された複数のバッテリのうちの一又は複数のバッテリからの電力が供給され、記憶部に記憶されたプログラムを実行して動作する車載機器と、前記車載機器の前記記憶部に記憶されたプログラムを更新する処理を行う車載更新装置とを備える車載更新システムであって、
     前記複数のバッテリから前記車載機器への電力供給経路の通電/遮断を個別に切り替える複数の切替部と、
     前記複数のバッテリの蓄積電力量をそれぞれ検出する複数の検出部と、
     前記車載更新装置が前記車載機器の更新処理を行う際に、前記検出部の検出結果に基づいて、前記複数の切替部の通電/遮断を制御する切替制御処理部と
     を備え、
     前記切替制御処理部は、前記検出部が検出する蓄積電力量のうち、該蓄積電力量が最も多いバッテリから前記車載機器への電力供給経路を通電状態に切り替え、蓄積電力量が最も多いバッテリ以外のバッテリから前記車載機器への電力供給経路を遮断状態に切り替えること
     を特徴とする車載更新システム。
    Power is supplied from one or more of the plurality of batteries mounted on the vehicle, and the vehicle-mounted device operates by executing the program stored in the storage unit, and is stored in the storage unit of the vehicle-mounted device An in-vehicle update system provided with an in-vehicle update device that performs processing to update the program,
    A plurality of switching units that individually switch energization / cutoff of the power supply path from the plurality of batteries to the in-vehicle device;
    A plurality of detection units for respectively detecting the stored power amounts of the plurality of batteries;
    A switching control processing unit that controls energization / cutoff of the plurality of switching units based on a detection result of the detection unit when the in-vehicle updating device performs an update process of the in-vehicle device; and
    The switching control processing unit switches the power supply path from the battery having the largest stored power amount to the in-vehicle device among the stored power amounts detected by the detecting unit to the energized state, except for the battery having the largest stored power amount A vehicle-mounted update system characterized in that the power supply path from the battery to the vehicle-mounted device is switched to a cutoff state.
  2.  前記切替制御処理部は、前記検出部が検出する蓄積電力量が閾値を超えるバッテリを優先して、該バッテリから前記車載機器への電力供給経路を通電状態に切り替えること
     を特徴とする請求項1に記載の車載更新システム。
    The switch control processing unit preferentially switches a power supply path from the battery to the in-vehicle device to an energized state with priority given to a battery whose accumulated power amount detected by the detection unit exceeds a threshold value. The in-vehicle update system described in 1.
  3.  前記車載更新装置が、前記切替制御処理部を有すること
     を特徴とする請求項1又は請求項2に記載の車載更新システム。
    The in-vehicle update system according to claim 1 or 2, wherein the in-vehicle update device includes the switching control processing unit.
  4.  前記車載更新装置との間で通信を行う通信部及び前記切替制御処理部を有する切替制御装置を更に備え、
     前記切替制御装置は、前記通信部により前記車載更新装置から受信した命令に応じて、前記切替制御処理部による制御を行うこと
     を特徴とする請求項1又は請求項2に記載の車載更新システム。
    A switching control device having a communication unit that communicates with the in-vehicle update device and the switching control processing unit;
    The in-vehicle update system according to claim 1 or 2, wherein the switching control device performs control by the switching control processing unit in accordance with a command received from the in-vehicle updating device by the communication unit.
  5.  前記複数のバッテリは、第1バッテリ及び第2バッテリであり、
     前記車載機器は、前記第1バッテリから電力が供給され、
     前記車載更新装置は、前記第1バッテリ及び前記第2バッテリから電力が供給され、
     前記第1バッテリから前記車載機器及び前記車載更新装置への第1電力供給経路と、前記第2バッテリから前記車載更新装置への第2電力供給経路とを備え、
     前記複数の切替部は、
     前記第1電力供給経路上に設けられた通電/遮断を切り替える第1切替部と、
     前記第2電力供給経路上に設けられた通電/遮断を切り替える第2切替部と、
     前記第1電力供給経路及び前記第2電力供給経路の間に設けられ、両経路間の通電/遮断を切り替える第3切替部と
     であり、
     前記複数の検出部は、
     前記第1バッテリの蓄積電力量を検出する第1検出部と、
     前記第2バッテリの蓄積電力量を検出する第2検出部と
     であり、
     前記切替制御処理部は、前記車載更新装置が前記車載機器の更新処理を行う際に、前記第1検出部及び前記第2検出部の検出結果に基づいて、前記第1切替部、前記第2切替部及び前記第3切替部の通電/遮断を制御すること
     を特徴とする請求項1乃至請求項4のいずれか1つに記載の車載更新システム。
    The plurality of batteries are a first battery and a second battery,
    The in-vehicle device is supplied with power from the first battery,
    The in-vehicle update device is supplied with power from the first battery and the second battery,
    A first power supply path from the first battery to the in-vehicle device and the in-vehicle update device; and a second power supply path from the second battery to the in-vehicle update device;
    The plurality of switching units are
    A first switching unit that switches between energization / cutoff provided on the first power supply path;
    A second switching unit for switching energization / cutoff provided on the second power supply path;
    A third switching unit that is provided between the first power supply path and the second power supply path and switches between energization / cutoff between the two paths;
    The plurality of detection units are:
    A first detector for detecting the amount of stored power in the first battery;
    A second detector that detects the amount of power stored in the second battery;
    The switching control processing unit, when the in-vehicle update device performs update processing of the in-vehicle device, based on detection results of the first detection unit and the second detection unit, the first switching unit, the second The in-vehicle update system according to any one of claims 1 to 4, wherein energization / cutoff of the switching unit and the third switching unit is controlled.
  6.  前記切替制御処理部は、
     前記第1検出部により検出された蓄積電力量が前記第2検出部により検出された蓄積電力量よりも大きい場合、前記第1切替部を通電状態とし、且つ、前記第2切替部及び前記第3切替部を遮断状態とし、
     前記第1検出部により検出された蓄積電力量が前記第2検出部により検出された蓄積電力量よりも小さい場合、前記第1切替部を遮断状態とし、且つ、前記第2切替部及び前記第3切替部を通電状態とすること
     を特徴とする請求項5に記載の車載更新システム。
    The switching control processing unit
    When the stored power amount detected by the first detection unit is larger than the stored power amount detected by the second detection unit, the first switching unit is turned on, and the second switching unit and the second switching unit 3 Set the switching part to the shut-off state,
    When the stored power amount detected by the first detection unit is smaller than the stored power amount detected by the second detection unit, the first switching unit is turned off, and the second switching unit and the second switching unit The in-vehicle update system according to claim 5, wherein the 3 switching unit is energized.
  7.  前記複数のバッテリは、第1バッテリ及び第2バッテリであり、
     前記車載機器は、前記第1バッテリ及び第2バッテリのいずれかから電力が供給され、
     前記車載更新装置は、前記第1バッテリ及び前記第2バッテリから電力が供給され、
     前記第1バッテリから前記車載更新装置への第1電力供給経路と、前記第2バッテリから前記車載更新装置への第2電力供給経路とを備え、
     前記複数の切替部は、
     前記第1電力供給経路上に設けられた通電/遮断を切り替える第1切替部と、
     前記第2電力供給経路上に設けられた通電/遮断を切り替える第2切替部と
     であり、
     前記複数の切替部は、
     前記第1電力供給経路及び前記第2電力供給経路の間に設けられ、両経路間の通電/遮断を切り替える第3切替部と、
     前記第1バッテリの蓄積電力量を検出する第1検出部と、
     前記第2バッテリの蓄積電力量を検出する第2検出部と
     であり、
     前記車載機器が前記第1電力供給経路及び前記第2電力供給経路のいずれに接続されているかを記憶する接続情報記憶部を備え、
     前記切替制御処理部は、前記車載更新装置が前記車載機器の更新処理を行う際に、前記第1検出部及び前記第2検出部の検出結果並びに前記接続情報記憶部に記憶された情報に基づいて、前記第1切替部、前記第2切替部及び前記第3切替部の通電/遮断を制御すること
     を特徴とする請求項1乃至請求項4のいずれか1つに記載の車載更新システム。
    The plurality of batteries are a first battery and a second battery,
    The in-vehicle device is supplied with power from either the first battery or the second battery,
    The in-vehicle update device is supplied with power from the first battery and the second battery,
    A first power supply path from the first battery to the in-vehicle update device; and a second power supply path from the second battery to the in-vehicle update device;
    The plurality of switching units are
    A first switching unit that switches between energization / cutoff provided on the first power supply path;
    A second switching unit that switches between energization / cutoff provided on the second power supply path;
    The plurality of switching units are
    A third switching unit that is provided between the first power supply path and the second power supply path and switches between energization / cutoff between the two paths;
    A first detector for detecting the amount of stored power in the first battery;
    A second detector that detects the amount of power stored in the second battery;
    A connection information storage unit for storing whether the in-vehicle device is connected to the first power supply path or the second power supply path;
    The switching control processing unit is based on detection results of the first detection unit and the second detection unit and information stored in the connection information storage unit when the in-vehicle update device performs update processing of the in-vehicle device. The in-vehicle update system according to any one of claims 1 to 4, wherein energization / cutoff of the first switching unit, the second switching unit, and the third switching unit is controlled.
  8.  前記切替制御処理部は、前記車載更新装置による前記更新処理の完了後から前記車両のエンジンが始動されるまでの間、前記複数の切替部の通電/遮断の状態を維持すること
     を特徴とする請求項1乃至請求項7のいずれか1つに記載の車載更新システム。
    The switching control processing unit maintains a state of energization / cutoff of the plurality of switching units from the completion of the update process by the in-vehicle update device until the engine of the vehicle is started. The in-vehicle update system according to any one of claims 1 to 7.
  9.  車両に搭載された複数のバッテリのうちの一又は複数のバッテリからの電力が供給されて記憶部に記憶されたプログラムを実行して動作する車載機器の前記記憶部に記憶されたプログラムを更新する処理を行う車載更新装置であって、
     前記複数のバッテリの蓄積電力量をそれぞれ検出する複数の検出部から検出結果を取得する検出結果取得部と、
     前記車載機器の更新処理を行う際に、前記検出結果取得部が取得した検出結果に基づいて、前記複数のバッテリから前記車載機器への電力供給経路の通電/遮断を個別に切り替える複数の切替部の切替制御に係る処理を行う切替制御処理部と
     を備え、
     前記切替制御処理部は、前記検出部が検出する蓄積電力量のうち、該蓄積電力量が最も多いバッテリから前記車載機器への電力供給経路を通電状態に切り替え、蓄積電力量が最も多いバッテリ以外のバッテリから前記車載機器への電力供給経路を遮断状態に切り替えること
     を特徴とする車載更新装置。
     
    The program stored in the storage unit of the in-vehicle device that operates by executing the program stored in the storage unit by supplying power from one or more of the plurality of batteries mounted on the vehicle is updated. An in-vehicle update device that performs processing,
    A detection result acquisition unit that acquires detection results from a plurality of detection units that respectively detect the stored power amounts of the plurality of batteries;
    A plurality of switching units that individually switch energization / cutoff of power supply paths from the plurality of batteries to the in-vehicle device based on the detection result acquired by the detection result acquisition unit when performing the update process of the in-vehicle device A switching control processing unit for performing processing related to the switching control of
    The switching control processing unit switches the power supply path from the battery having the largest stored power amount to the in-vehicle device among the stored power amounts detected by the detecting unit to the energized state, except for the battery having the largest stored power amount An in-vehicle update device, wherein the power supply path from the battery to the in-vehicle device is switched to a cut-off state.
PCT/JP2017/036981 2016-10-31 2017-10-12 In-vehicle updating system and in-vehicle updating device WO2018079280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213360 2016-10-31
JP2016213360A JP2018074799A (en) 2016-10-31 2016-10-31 On-vehicle update system and on-vehicle update device

Publications (1)

Publication Number Publication Date
WO2018079280A1 true WO2018079280A1 (en) 2018-05-03

Family

ID=62023386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036981 WO2018079280A1 (en) 2016-10-31 2017-10-12 In-vehicle updating system and in-vehicle updating device

Country Status (2)

Country Link
JP (1) JP2018074799A (en)
WO (1) WO2018079280A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110263590A (en) * 2019-06-30 2019-09-20 潍柴动力股份有限公司 A kind of vehicle-mounted ECU and its safety protecting method
CN111619477A (en) * 2019-02-27 2020-09-04 采埃孚主动安全股份有限公司 Communication system and communication method for motor vehicle communication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037805A (en) * 2020-08-25 2022-03-09 トヨタ自動車株式会社 On-vehicle system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262341A (en) * 1997-03-19 1998-09-29 Sony Corp Automatic voltage selector
JP2007237905A (en) * 2006-03-08 2007-09-20 Denso Corp Program rewriting system for hybrid type vehicle and electronic control device
JP2009213216A (en) * 2008-03-03 2009-09-17 Panasonic Corp Information processor
JP2013084143A (en) * 2011-10-11 2013-05-09 Denso Corp On-vehicle communication device
JP2013154708A (en) * 2012-01-27 2013-08-15 Denso Corp Power supply control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262341A (en) * 1997-03-19 1998-09-29 Sony Corp Automatic voltage selector
JP2007237905A (en) * 2006-03-08 2007-09-20 Denso Corp Program rewriting system for hybrid type vehicle and electronic control device
JP2009213216A (en) * 2008-03-03 2009-09-17 Panasonic Corp Information processor
JP2013084143A (en) * 2011-10-11 2013-05-09 Denso Corp On-vehicle communication device
JP2013154708A (en) * 2012-01-27 2013-08-15 Denso Corp Power supply control device for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619477A (en) * 2019-02-27 2020-09-04 采埃孚主动安全股份有限公司 Communication system and communication method for motor vehicle communication
US11570250B2 (en) * 2019-02-27 2023-01-31 Zf Active Safety Gmbh Communication system and method for communication for a motor vehicle
CN111619477B (en) * 2019-02-27 2024-02-09 采埃孚主动安全股份有限公司 Communication system and communication method for motor vehicle communication
CN110263590A (en) * 2019-06-30 2019-09-20 潍柴动力股份有限公司 A kind of vehicle-mounted ECU and its safety protecting method
CN110263590B (en) * 2019-06-30 2021-10-08 潍柴动力股份有限公司 Vehicle-mounted ECU and safety protection method thereof

Also Published As

Publication number Publication date
JP2018074799A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018025685A1 (en) On-board update device, on-board update system, and communication device update method
US10915310B2 (en) Control apparatus, program updating method, and computer program
US10279757B2 (en) Control device update in a motor vehicle
WO2018079280A1 (en) In-vehicle updating system and in-vehicle updating device
CN105936245B (en) Service provider adaptive vehicle antenna
JP5741480B2 (en) Communication system, relay device, and power supply control method
WO2013136872A1 (en) In-vehicle communication system
US20160266886A1 (en) Performing a vehicle update
US20210094491A1 (en) Power supply control device, power supply control method, and computer program
JP2017027549A (en) Software update device and software update system
US20190315295A1 (en) On-board communication device, on-board communication system, and specific processing prohibition method for a vehicle
JP2017157007A (en) System, method, and computer program for updating programs
JP6690500B2 (en) In-vehicle update system and in-vehicle update device
WO2018096945A1 (en) In-vehicle updating system and in-vehicle updating apparatus
JP2019036855A (en) Control device, control method, and computer program
CN112092754A (en) Method and system for software update of a vehicle
JP2014117104A (en) Vehicle
WO2018088505A1 (en) In-vehicle update system, in-vehicle update apparatus, and gateway
WO2018198595A1 (en) In-vehicle power supply system, in-vehicle control device, and power supply control method
US11416237B2 (en) Control apparatus, control method, and computer program
US20220385553A1 (en) Vehicle-mounted relay device and information processing method
WO2019188073A1 (en) Control device, control method, and computer program
WO2018186075A1 (en) Vehicle-mounted instrument, portable device, and keyless entry system
KR20200133917A (en) Apparatus for controlling dark current of a vehicle, system having the same and method thereof
US10757640B2 (en) Radio communication device, radio communication device control method, and radio communication system for scanning to find a base station for radio communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863737

Country of ref document: EP

Kind code of ref document: A1