WO2018079213A1 - Longitudinal drawing device - Google Patents

Longitudinal drawing device Download PDF

Info

Publication number
WO2018079213A1
WO2018079213A1 PCT/JP2017/036207 JP2017036207W WO2018079213A1 WO 2018079213 A1 WO2018079213 A1 WO 2018079213A1 JP 2017036207 W JP2017036207 W JP 2017036207W WO 2018079213 A1 WO2018079213 A1 WO 2018079213A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rolls
low
thermoplastic film
roll
Prior art date
Application number
PCT/JP2017/036207
Other languages
French (fr)
Japanese (ja)
Inventor
成光 金島
青木 敦
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to KR1020197015283A priority Critical patent/KR20190076016A/en
Priority to CN201780076171.4A priority patent/CN110049856B/en
Publication of WO2018079213A1 publication Critical patent/WO2018079213A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/12Advancing webs by suction roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/188Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web
    • B65H23/192Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web motor-controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/22Feeding articles separated from piles; Feeding articles to machines by air-blast or suction device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • B29C2037/903Measuring, controlling or regulating by means of a computer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film

Definitions

  • the present invention relates to a longitudinal stretching apparatus. Specifically, the present invention relates to a longitudinal stretching apparatus that heats a thermoplastic film and stretches the thermoplastic film in the transport direction.
  • thermoplastic film made of a thermoplastic polymer such as polyester, triacetyl cellulose (TAC), polyolefin, and polyamide has been used as a support for packaging films, plate-making substrates, printing films, laminate films, magnetic recording media, optical disks, and the like. Widely used.
  • a thermoplastic film such as a polyester resin is known to obtain excellent physical properties by stretching, and is usually used as a uniaxially stretched film or a biaxially stretched film.
  • the biaxially stretched film is produced by transversely stretching after longitudinally uniaxially stretching.
  • the thermoplastic film is stretched longitudinally, the thermoplastic film is stretched in the flow direction by utilizing the speed difference between the upstream low-speed roll and the downstream high-speed roll.
  • a heating furnace is provided between an upstream low speed roller (low speed roll) and a downstream high speed roller (high speed roll), and a plurality of pass rollers are provided in the heating furnace. It has been.
  • the longitudinal stretching apparatus is a film in which a longitudinal film of a film is stretched by a plurality of pass rollers while a thermoplastic film heated by a heating furnace is stretched by a low-speed roller and a high-speed roller arranged with a wide span. Stable stretching can be performed by preventing undulation.
  • the technique described in Patent Document 1 extends the wrinkles by bringing the thermoplastic film into contact with a plurality of pass rollers, the resistance during conveyance is large.
  • the longitudinal stretching apparatus conveys the thermoplastic film while pressing the thermoplastic film with the nip roller so that the thermoplastic film does not slip between the high speed roller and the low speed roller.
  • the thermoplastic film may have a transfer flaw on the surface due to the pressing force of the nip roller, or may be scratched by slipping with the pass roller.
  • An object of the present invention is to provide a longitudinal stretching apparatus capable of suppressing the occurrence of transfer scratches, scratches and the like in a thermoplastic film during longitudinal stretching.
  • the plurality of low speeds are constituted by suction rolls having a plurality of suction holes on the thermoplastic film conveyance surface, and a plurality of heating between the low-speed drive roll and the high-speed drive roll adjacent to each other.
  • the rolls can be driven independently of each other, and the output torque of each actuator is And it is controlled so as to coincide with the target value set for each mediator.
  • the actuators are connected to the plurality of low-speed drive rolls, the plurality of high-speed drive rolls, and the plurality of heating rolls via a torque control device, respectively, and the difference between the output torque and the target value is When larger than the specified value, a rotational speed difference is generated between the input shaft and the output shaft of the torque control device so as to maintain the rotational speed of the output shaft of the torque control device connected to the actuator, When the difference between the output torque and the target value is smaller than the specified value, the rotational speed difference between the input shaft and the output shaft of the torque control device connected to the actuator is not generated. is there.
  • the torque control device is constituted by a powder clutch, and the torque transmission amount is controlled based on the target value.
  • the longitudinal stretching apparatus is configured such that the plurality of heating rolls can be independently temperature controlled.
  • thermoplastic film since the resistance when the thermoplastic film is conveyed by the heating roll is small, it is not necessary to apply a friction force by pressing the thermoplastic film with a nip roller between the low speed driving roll and the high speed driving roll. Further, no slip occurs between the plurality of heating rolls and the thermoplastic film that are independently driven and controlled. Thereby, generation
  • the heating roll rotates following the thermoplastic film regardless of the control of the actuator. Thereby, generation
  • the rotational speed of the heating roll is controlled based on the conveyance speed and stretching amount of the thermoplastic film.
  • wound, an abrasion, etc. can be suppressed in the thermoplastic film at the time of longitudinal stretching.
  • thermoplastic film is stretched at a predetermined stretching ratio, so that speed fluctuation is unlikely to occur. Thereby, generation
  • Schematic which shows the whole structure in one Embodiment of a manufacturing apparatus provided with a longitudinal stretch apparatus Schematic which shows the whole structure in one Embodiment of a longitudinal stretch apparatus.
  • the front view which shows the structure of the low speed drive roll and high speed drive roll in one Embodiment of a longitudinal stretch apparatus.
  • the front view which shows the structure of the heating roll and cooling roll in one Embodiment of a longitudinal stretch apparatus.
  • the block diagram which shows the control structure in one Embodiment of a longitudinal stretch apparatus.
  • thermoplastic film F which consists of thermoplastic polymers, such as polyester, a triacetyl cellulose (TAC), polyolefin, and polyamide, in this embodiment, it is from triacetyl cellulose (TAC). It demonstrates as what manufactures the thermoplastic film F which becomes.
  • the manufacturing apparatus 1 processes the thermoplastic polymer which consists of triacetylcellulose (TAC), and manufactures the thermoplastic film F which consists of desired film thickness.
  • the production apparatus 1 includes a melt extrusion apparatus 2, a slit die 3, a casting roll 4, a longitudinal stretching apparatus 5, a lateral stretching apparatus 6, and a winding apparatus 7.
  • the manufacturing apparatus 1 heats and melts a chip-shaped thermoplastic polymer by a melt extrusion apparatus 2 and extrudes it from a slit die 3.
  • the manufacturing apparatus 1 makes the thermoplastic polymer continuously extruded from the slit-shaped die 3 adhere to the casting roll 4 and is cured into a sheet shape. That is, the manufacturing apparatus 1 forms the unstretched thermoplastic film F from the chip-shaped thermoplastic polymer. Furthermore, the manufacturing apparatus 1 continuously stretches the unstretched thermoplastic film F formed in the conveying direction (longitudinal direction) by the longitudinal stretching apparatus 5 to form the longitudinally stretched thermoplastic film F. .
  • the manufacturing apparatus 1 forms the thermoplastic film F biaxially stretched by continuously stretching the thermoplastic film F in the width direction (lateral direction) by the lateral stretching apparatus 6.
  • the manufacturing apparatus 1 causes the formed thermoplastic film F to be wound around the core material by the winding apparatus 7.
  • the manufacturing apparatus 1 can form continuously the thermoplastic film F biaxially stretched from the chip-shaped thermoplastic polymer to the vertical direction and the horizontal direction.
  • the longitudinal stretching device 5 stretches the unstretched thermoplastic film F in the transport direction (hereinafter referred to as “longitudinal direction”).
  • the longitudinal stretching apparatus 5 includes a plurality of low-speed drive rolls 8, a plurality of high-speed drive rolls 9, a suction pump 10, a low-speed electric motor 11, a high-speed electric motor 12, a plurality of heating rolls 13, a plurality of cooling rolls 14, and a plurality of cooling rolls 14.
  • a follow-up electric motor 15, a plurality of powder clutches 16, and a control device 17 are provided.
  • the low-speed drive roll 8 extends the unstretched thermoplastic film F together with the high-speed drive roll 9 in the longitudinal direction.
  • the low speed drive roll 8 is disposed on the most upstream side of the longitudinal stretching device 5.
  • a plurality of low speed drive rolls 8 are arranged in the longitudinal stretching device 5.
  • the low-speed drive roll 8 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide spraying, fluororesin coating, or ceramic coating.
  • the low speed drive roll 8 is arranged so that the thermoplastic film F is wound around the low speed drive roll 8 at a predetermined wrap angle. As shown in FIG.
  • a plurality of holes penetrating the inside of the roll are formed on the low-speed side conveyance surface 8 a that is a surface (hereinafter, simply referred to as “conveyance surface”) that the thermoplastic film F of the low-speed drive roll 8 contacts. Is formed. Further, the low-speed drive roll 8 is configured such that the inside of the roll is sucked by the suction pump 10 (see the thin ink portion in FIG. 2). Thereby, the low-speed drive roll 8 is configured so that the hole of the low-speed side conveying surface 8a acts as the low-speed side suction hole 8b and can adsorb and hold the thermoplastic film F.
  • the high-speed drive roll 9 extends the unstretched thermoplastic film F together with the low-speed drive roll 8 in the longitudinal direction.
  • the high-speed drive roll 9 is disposed on the most downstream side of the longitudinal stretching device 5.
  • the longitudinal stretching device 5 is provided with a plurality of high-speed drive rolls 9.
  • the high-speed drive roll 9 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluororesin coating, or ceramic coating.
  • the high-speed drive roll 9 is disposed so that the thermoplastic film F is wound around the high-speed drive roll 9 with a predetermined wrap angle. As shown in FIG.
  • the high-speed drive roll 9 has a plurality of holes penetrating into the roll on the high-speed side conveying surface 9a with which the thermoplastic film F comes into contact. Further, the plurality of high-speed drive rolls 9 are configured such that the inside of the roll is sucked by the suction pump 10 (see the thin ink portion in FIG. 2). Accordingly, the plurality of high-speed drive rolls 9 are configured such that the holes of the high-speed side conveyance surface 9a act as the high-speed side suction holes 9b and can adsorb and hold the thermoplastic film F.
  • the low-speed electric motor 11 and the high-speed electric motor 12 that are actuators rotate the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9, respectively.
  • Each of the low speed electric motor 11 and the high speed electric motor 12 is connected to a vector inverter included in the control device 17 (see FIG. 5), and is configured to be independently torque controlled.
  • the low-speed electric motor 11 is provided for each low-speed drive roll 8 via a powder clutch 16 that is a torque control device
  • the high-speed electric motor 12 is provided for each high-speed drive roll 9 via a powder clutch 16. ing. That is, the plurality of low-speed electric motors 11 can independently drive and control the low-speed drive rolls 8 connected thereto. Similarly, the plurality of high-speed electric motors 12 can independently drive and control a plurality of low-speed drive rolls 8 connected thereto.
  • Each high-speed drive roll 9 is draw-controlled with respect to each low-speed drive roll 8. That is, each high-speed drive roll 9 is driven so as to have a higher peripheral speed than each low-speed drive roll 8.
  • the thermoplastic film F is fed from the upstream side by a plurality of low-speed drive rolls 8 at a predetermined unit feed speed, and downstream by a plurality of high-speed drive rolls 9 at a predetermined unit feed speed greater than the feed speed of the low-speed drive rolls 8. It is carried in toward the side.
  • the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9 are different from each other only in the difference between the unit feed amount at a predetermined feed speed and the unit feed amount at a predetermined feed speed between the pitches of the thermoplastic film F. It is configured to stretch.
  • the heating roll 13 heats the thermoplastic film F.
  • the heating roll 13 is disposed between the most downstream low-speed drive roll 8 and the most upstream high-speed drive roll 9.
  • the longitudinal stretching device 5 is provided with a plurality of heating rolls 13.
  • the heating roll 13 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluororesin coating, or ceramic coating.
  • the heating roll 13 is disposed so that the thermoplastic film F is wound around the heating roll 13 at a predetermined wrap angle. As shown in FIG.
  • each heating roll 13 includes a heating temperature sensor that is a temperature measuring unit that measures the temperature of the heating and conveying surface 13 a that the cartridge heater 13 b that is a heating unit and the thermoplastic film F of the heating roll 13 are in contact with each other. 13c is provided.
  • the cartridge heaters 13b and the heating temperature sensors 13c provided in each heating roll 13 independently set the heating and conveying surface 13a of the heating roll 13 at a predetermined temperature by a control signal from the control device 17 (see FIG. 5). It is configured to be heated and maintained.
  • the heating means of the heating roll 13 is the cartridge heater 13b.
  • the present invention is not limited to this, and a heating device or induction heating device by circulation of a heating medium such as hot water, pressurized hot water, or heating oil. Etc.
  • the cooling roll 14 cools the thermoplastic film F.
  • the cooling roll 14 is disposed between the most downstream heating roll 13 and the most upstream high-speed drive roll 9.
  • the longitudinal stretching apparatus 5 is provided with a plurality of cooling rolls 14.
  • the cooling roll 14 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluorine resin coating, ceramic coating, or the like.
  • the cooling roll 14 is arranged so that the thermoplastic film F is wound around each cooling roll 14 at a predetermined wrap angle. As shown in FIG.
  • the plurality of cooling rolls 14 includes a cooling temperature sensor 14 c that is a temperature measurement unit that measures a cooling conveyance surface 14 a that contacts a heat pipe 14 b that is a cooling unit and a thermoplastic film F of the cooling roll 14.
  • the heat pipes 14b and the cooling temperature sensors 14c provided in the plurality of cooling rolls 14 independently cool the cooling conveyance surfaces 14a of the respective cooling rolls 14 by a control signal from the control device 17 (see FIG. 5). Is configured to do.
  • the cooling means of the cooling roll 14 is the heat pipe 14b, but is not limited to this, and may be a piezo element or a cooling device by circulating a heat medium.
  • the follow-up electric motor 15 that is an actuator rotates the heating roll 13 and the cooling roll 14.
  • the follow-up electric motor 15 is provided on each heating roll 13 and each cooling roll 14 via a powder clutch 16 that is a torque control device.
  • Each of the follow-up electric motors 15 is connected to a vector inverter included in the control device 17 (see FIG. 5), and is configured to be torque-controlled independently of each other. That is, the plurality of follow-up electric motors 15 are configured so that the heating roll 13 or the cooling roll 14 connected thereto can be independently driven and controlled.
  • the plurality of powder clutches 16 that are torque control devices include transmission torque between the low-speed drive roll 8 and the low-speed electric motor 11, the high-speed drive roll 9 and the high-speed electric motor 12.
  • the transmission torque between the heating roll 13 and the follow-up electric motor 15 or the transfer torque between the cooling roll 14 and the follow-up electric motor 15 is limited.
  • the powder clutch 16 generates friction by applying magnetic flux to magnetic iron powder (powder) interposed between the input shaft 16a and the output shaft 16b, and torque is transmitted between the input shaft 16a and the output shaft 16b. Switch to the status.
  • each powder clutch 16 is connected to the input shaft 16a of any one of a plurality of low-speed electric motors 11, a plurality of high-speed electric motors 12, or a plurality of follow-up electric motors 15, respectively. Any one of a plurality of low-speed drive rolls 8, a plurality of high-speed drive rolls 9, a plurality of heating rolls 13, or a plurality of cooling rolls 14 is connected to the output shaft 16b.
  • each powder clutch 16 includes a transmission torque between the low-speed drive roll 8 and the low-speed electric motor 11, a transmission torque between the high-speed drive roll 9 and the high-speed electric motor 12, a heating roll 13 and a follow-up electric motor. 15 or a transmission torque between the cooling roll 14 and the follow-up electric motor 15 can be arbitrarily set.
  • Each powder clutch 16 is connected to a control device 17 (see FIG. 5) and configured to be able to control the magnitude of the transmission torque independently of each other.
  • control device 17 controls the longitudinal stretching device 5.
  • the control device 17 may actually have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the control device 17 is connected to a control device of the manufacturing device 1 (not shown), and stores various programs and data for controlling the longitudinal stretching device 5 and the like.
  • the control device 17 is connected to the low-speed electric motor 11 of each low-speed drive roll 8 and the high-speed electric motor 12 of each high-speed drive roll 9 and is driven to each low-speed electric motor 11 and each high-speed electric motor 12. It is possible to control to output an arbitrary driving torque Td by transmitting a command value related to torque. In addition, the control device 17 can acquire the actual drive torque from each low-speed electric motor 11 and each high-speed electric motor 12.
  • the control device 17 is connected to the suction pump 10 and can control the suction pump 10.
  • the control device 17 is connected to each cartridge heater 13b and each heating temperature sensor 13c provided in each heating roll 13, and needs to acquire the actual temperature of the corresponding heating roll 13 from each heating temperature sensor 13c. is there. Further, the control device 17 can control to maintain a predetermined temperature by transmitting a temperature command value to each cartridge heater 13b.
  • the control device 17 is connected to each cooling temperature sensor 14c provided in each cooling roll 14, and needs to acquire the actual temperature of the corresponding cooling roll 14 from each cooling temperature sensor 14c.
  • the control device 17 is connected to the follow-up electric motor 15 of each heating roll 13 and the follow-up electric motor 15 of each cooling drive roll. Control can be performed to output the drive torque Td. Further, the control device 17 can acquire the actual driving torque from each of the follow-up electric motors 15.
  • the control device 17 is connected to each powder clutch 16 and transmits a command value related to an arbitrary transmission torque to control the torque to be transmitted between the input shaft 16a and the output shaft 16b below the arbitrary transmission torque. Can do.
  • the longitudinal stretching apparatus 5 configured as described above feeds the thermoplastic film F by a plurality of low-speed drive rolls 8 while adsorbing and holding the thermoplastic film F by a predetermined unit feed amount.
  • the longitudinal stretching device 5 heats the thermoplastic film F fed from the low-speed drive roll 8 to a predetermined temperature by the plurality of heating rolls 13.
  • the longitudinal stretching device 5 feeds the thermoplastic film F heated by the heating roll 13 by a predetermined unit feed amount while adsorbing and holding the thermoplastic film F by the plurality of high-speed drive rolls 9.
  • the longitudinal stretching apparatus 5 stretches the heated thermoplastic film F longitudinally by the difference between the unit feeding amount at a predetermined feeding speed and the unit feeding amount at a predetermined feeding speed.
  • the longitudinal stretching device 5 cools the thermoplastic film F to a predetermined temperature with a plurality of cooling rolls 14.
  • the longitudinal stretching device 5 extends the interval between the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9 to stretch the thermoplastic film F, thereby reducing the amount of elongation per unit time of the thermoplastic film F, The load on the film during stretching can be reduced.
  • the actuator is constituted by an electric motor including the low-speed electric motor 11, the high-speed electric motor 12, and the follow-up electric motor 15.
  • the present invention is not limited to this, and any actuator can be used. Good.
  • the longitudinal stretching device 5 includes four low-speed drive rolls 8, three high-speed drive rolls 9, four heating rolls 13, and four cooling rolls 14. It is not limited.
  • the plurality of low-speed drive rolls 8 of the longitudinal stretching apparatus 5 in the present embodiment uses the thermoplastic film F wound around each low-speed side conveyance surface 8 a at a predetermined wrap angle on the conveyance surface. Adsorption is held by holes formed on the entire surface. That is, each low-speed drive roll 8 sucks and holds the entire area of the thermoplastic film F that is in contact with the low-speed transport surface 8a. For this reason, each low-speed drive roll 8 can hold the thermoplastic film F with a smaller pressure than the case where it is pressed and held by the nip roller. In each low-speed drive roll 8, the thermoplastic film F is pressed against the low-speed transport surface 8a by air that is a gas.
  • each low-speed drive roll 8 can hold
  • the low speed drive roll 8 in the present embodiment can suppress the generation of transfer scratches on the surface of the thermoplastic film F by adsorbing and holding the thermoplastic film F. The same applies to the plurality of high-speed drive rolls 9.
  • slip suppression control in the plurality of low-speed drive rolls 8, the plurality of high-speed drive rolls 9, the plurality of heating rolls 13, and the plurality of cooling rolls 14 will be described with reference to FIGS.
  • the slip suppression control in the heating roll 13 will be described, and the description of the plurality of low-speed drive rolls 8, the plurality of high-speed drive rolls 9, and the plurality of cooling rolls 14 in which similar control is performed will be omitted.
  • thermoplastic film F is wound around each heating conveyance surface 13a of each heating roll 13 of the longitudinal stretching apparatus 5 in this embodiment at a predetermined wrap angle.
  • the plurality of heating rolls 13 are rotationally driven so as to follow the thermoplastic film F by a follow-up electric motor 15 (see FIG. 4) connected thereto. That is, the heating roll 13 is controlled to synchronize with the transport speed Vt of the thermoplastic film F.
  • the thermoplastic film F is transported while being stretched in the vertical direction so that the transport speed Vt increases from a predetermined feed speed of the low-speed drive roll 8 to a predetermined feed speed of the high-speed drive roll 9. For this reason, as for the thermoplastic film F, the conveyance speed Vt changes with the conveyance path positions.
  • the plurality of heating rolls 13 are configured such that the rotational speed Vr (circumferential speed) is independently controlled so as to be able to follow the transport speed Vt of the thermoplastic film F that differs for each arrangement.
  • the plurality of heating rolls 13 are limited in transmission torque with the follow-up electric motor 15 connected via the respective powder clutch 16 (see FIG. 4).
  • the driving torque Td of the follow-up electric motor 15 is transmitted to the input shaft 16a, and is transmitted to the output shaft 16b as the rotational torque Tr necessary for rotating the heating roll 13 at a predetermined speed.
  • the powder clutch 16 when a difference of a predetermined value Tg or more occurs between the driving torque Td transmitted to the input shaft 16a and the rotational torque Tr transmitted to the output shaft 16b, the input shaft 16a and the output shaft 16b The rotational speed difference is generated between the input shaft 16a and the output shaft 16b.
  • One heating roll 13 arranged at an arbitrary position among the plurality of heating rolls 13 is provided to the follow-up electric motor 15 so that the peripheral speed determined from the rotation speed Vr matches the transport speed Vt of the thermoplastic film F. It is rotationally driven.
  • the follow-up electric motor 15 is configured so that the peripheral speed determined from the rotational speed Vr of the one heating roll 13 matches the transport speed Vt of the thermoplastic film F.
  • the necessary drive torque Td is controlled as the reference drive torque Td0.
  • the transport speed Vt of the thermoplastic film F is the reference transport speed Vt0, and the transport speed Vt and the peripheral speed determined by the rotational speed Vr of the one heating roll 13 coincide with each other.
  • the rotational speed Vr of the heating roll 13 is not affected by the thermoplastic film F being conveyed.
  • the transmitted rotational torque Tr becomes the reference driving torque Td0.
  • the conveyance speed Vt of the thermoplastic film F is larger than the reference conveyance speed Vt0 and is higher than the peripheral speed determined by the rotation speed Vr of the one heating roll 13.
  • the conveyance speed Vt1 becomes high, the external force Fr1 is applied in the direction in which the rotational speed Vr of the heating roll 13 is increased by the thermoplastic film F.
  • the rotational torque Tr transmitted to the output shaft 16b of the output shaft 16b of the powder clutch 16 varies.
  • the one heating roll 13 is heated with the thermoplastic film F because the rotational speed Vr increases following the thermoplastic film F by the external force Fr1 even if the conveyance speed Vt of the thermoplastic film F increases.
  • the occurrence of slippage between the roll 13 and the conveying surface is suppressed.
  • the driving torque Td of one follow-up electric motor 15 that rotationally drives one heating roll 13 is a direction in which the external force Fr1 from the thermoplastic film F assists the rotation of the one heating roll 13.
  • the driving torque Td1 decreases from time t1 to time t2.
  • the control device 17 detects a decrease in the drive torque Td of the one follow-up electric motor 15, the control device 17 performs control so as to increase the reduced drive torque Td1 of the one follow-up electric motor 15. That is, the control device 17 controls the drive torque Td so that the rotation speed Vr of one heating roll 13 becomes the rotation speed Vr1 (see FIG. 6B). Thereby, the heating roll 13 is rotated so as to follow the transport speed Vt of the thermoplastic film F.
  • the powder clutch 16 When a difference of a specified value Tg or more occurs between the driving torque Td transmitted to the input shaft 16a of the powder clutch 16 and the rotational torque Tr transmitted to the output shaft 16b of the powder clutch 16, the powder clutch 16 The phase of the input shaft 16a and the output shaft 16b is shifted, and a rotational speed difference is generated between the input shaft 16a and the output shaft 16b. That is, the one heating roll 13 has a rotational speed Vr (peripheral speed) that is reduced to a rotational speed Vr2 that is a peripheral speed that matches the transport speed Vt2 of the thermoplastic film F by the external force Fr2 from the thermoplastic film F.
  • Vr peripheral speed
  • the one heating roll 13 can be heated together with the thermoplastic film F because the rotational speed Vr decreases following the thermoplastic film F by the external force Fr2 even if the transport speed Vt of the thermoplastic film F decreases. The occurrence of slippage between the roll 13 and the conveying surface is suppressed.
  • the driving torque Td of the one follow-up electric motor 15 that rotationally drives the one heating roll 13 is the direction in which the external force Fr2 from the thermoplastic film F hinders the rotation of the one heating roll 13.
  • the driving torque Td2 increases from time t3 to time t4.
  • the control device 17 detects an increase in the drive torque Td of the one follow-up electric motor 15, the control device 17 performs control so as to reduce the increased drive torque Td2 of the one follow-up electric motor 15. That is, the control device 17 performs control so that the rotation speed Vr of one heating roll 13 becomes the rotation speed Vr2. Thereby, the heating roll 13 is rotated so as to follow the transport speed Vt of the thermoplastic film F.
  • the longitudinal stretching apparatus 5 is less likely to cause speed fluctuations because the thermoplastic film F is stretched at a predetermined stretching ratio. Furthermore, since the longitudinal stretching apparatus 5 is controlled so that the plurality of heating rolls 13 and the plurality of cooling rolls 14 actively follow the thermoplastic film F, the thermoplasticity by the heating roll 13 and the cooling roll 14 is controlled. The resistance when the film F is conveyed is small. Therefore, the longitudinal stretching device 5 does not need to apply a frictional force for suppressing slippage by pressing the thermoplastic film F with the nip roller in the low-speed drive roll 8 and the high-speed drive roll 9.
  • the rotational speeds Vr of the plurality of heating rolls 13 and the plurality of cooling rolls 14 are independently torque controlled based on the conveyance speed Vt of the thermoplastic film F. Furthermore, when the conveyance speed Vt of the thermoplastic film F changes, the heating roll 13 or the cooling roll 14 is rotated following the thermoplastic film F regardless of the control of the follow-up electric motor 15 by the action of the powder clutch 16. . Therefore, the longitudinal stretching apparatus 5 does not slip between the heating roll 13 and the thermoplastic film F. Thereby, generation
  • the longitudinal stretching device 5 in the present embodiment uses the powder clutch 16 as a clutch, but is not limited to this, and any device can be used as long as the transmission torque can be controlled to an arbitrary value.
  • the longitudinal stretch apparatus 5 heats the thermoplastic film F alternately one surface at a time by making the thermoplastic film F contact the heating conveyance surface 13a of the heating roll 13, it is not limited to this, and is sealed
  • the thermoplastic film F may be simultaneously heated from both sides by heating with a type of air heating nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

Provided is a longitudinal drawing device capable of reducing the occurrence of transfer damage, scratches, or the like on a thermoplastic film when drawn longitudinally. Specifically, a longitudinal drawing device 5 draws a thermoplastic film F, heated by heating rolls 13, by means of a difference in peripheral speed between a plurality of low-speed driving rolls 8 and a plurality of high-speed driving rolls 9. The plurality of low-speed driving rolls 8 and the plurality of high-speed driving rolls 9 are respectively composed of suction rolls having low-speed-side suction holes 8b and high-speed-side suction holes 9b which are a plurality of suction holes in conveyance surfaces thereof for conveying the thermoplastic film F. A plurality of the heating rolls 13 are provided between adjacent low-speed driving rolls 8 and high-speed driving rolls 9. Each of the plurality of heating rolls 13 is provided with a following electric motor 15 serving as an actuator. Each of the plurality of heating rolls 13 is configured to be independently rotationally drivable. The output torque of each of the following electric motors 15 is controlled so as to coincide with a target value set for each of the following electric motors 15.

Description

縦延伸装置Longitudinal stretching device
 本発明は、縦延伸装置に関する。詳しくは、熱可塑性フィルムを加熱して搬送方向に延伸する縦延伸装置に関する。 The present invention relates to a longitudinal stretching apparatus. Specifically, the present invention relates to a longitudinal stretching apparatus that heats a thermoplastic film and stretches the thermoplastic film in the transport direction.
 従来、ポリエステル、トリアセチルセルロース(TAC)、ポリオレフィン、ポリアミド等の熱可塑性ポリマーからなる熱可塑性フィルムは、包装用フィルム、製版基板、印刷用フィルム、ラミネートフィルム、磁気記録媒体あるいは光ディスク等の支持体として広く使用されている。このようなポリエステル樹脂等の熱可塑性フィルムは、延伸することにより優れた物性が得られることが知られており、通常一軸延伸フィルムあるいは二軸延伸フィルムとして使用されている。上記二軸延伸フィルムは、縦一軸延伸した後、横延伸することにより製造される。熱可塑性フィルムを縦延伸する場合、上流側の低速ロールと下流側の高速ロールとの速度差を利用して流れ方向に延伸させる。この際、熱可塑性フィルムを破断することなく安定して延伸が行えるように上流側の低速ロールと下流側の高速ロールとの間隔を広げることで(長スパン化)単位時間当たりのフィルムの伸び量を小さくする方法が知られている。例えば特許文献1に記載のごとくである。 Conventionally, a thermoplastic film made of a thermoplastic polymer such as polyester, triacetyl cellulose (TAC), polyolefin, and polyamide has been used as a support for packaging films, plate-making substrates, printing films, laminate films, magnetic recording media, optical disks, and the like. Widely used. Such a thermoplastic film such as a polyester resin is known to obtain excellent physical properties by stretching, and is usually used as a uniaxially stretched film or a biaxially stretched film. The biaxially stretched film is produced by transversely stretching after longitudinally uniaxially stretching. When the thermoplastic film is stretched longitudinally, the thermoplastic film is stretched in the flow direction by utilizing the speed difference between the upstream low-speed roll and the downstream high-speed roll. At this time, by extending the distance between the upstream low-speed roll and the downstream high-speed roll so that the thermoplastic film can be stably stretched without breaking (long span), the amount of elongation of the film per unit time There is a known method for reducing the size. For example, as described in Patent Document 1.
 特許文献1に記載の縦延伸装置は、上流側の低速ローラ(低速ロール)と下流側の高速ローラ(高速ロール)との間に加熱炉が設けられ、加熱炉の中に複数のパスローラが設けられている。縦延伸装置は、加熱炉によって加熱された熱可塑性フィルムがスパンを広げて配置された低速ローラと高速ローラとによって延伸されつつ、複数のパスローラによってフィルムの縦方向の皺が延ばされることで、フィルムの波打ちを防止して安定した延伸が行える。しかし、特許文献1に記載の技術は、熱可塑性フィルムを複数のパスローラに接触させることよって皺を延ばすため、搬送時の抵抗が大きい。従って、縦延伸装置は、高速ローラと低速ローラとにおいて熱可塑性フィルムが滑らないようにニップローラによってよって熱可塑性フィルムを押圧しながら搬送している。このため、熱可塑性フィルムは、ニップローラの押圧力によって表面に転写傷が生じたり、パスローラとの間での滑りによって擦り傷が生じたりする場合があった。 In the longitudinal stretching apparatus described in Patent Document 1, a heating furnace is provided between an upstream low speed roller (low speed roll) and a downstream high speed roller (high speed roll), and a plurality of pass rollers are provided in the heating furnace. It has been. The longitudinal stretching apparatus is a film in which a longitudinal film of a film is stretched by a plurality of pass rollers while a thermoplastic film heated by a heating furnace is stretched by a low-speed roller and a high-speed roller arranged with a wide span. Stable stretching can be performed by preventing undulation. However, since the technique described in Patent Document 1 extends the wrinkles by bringing the thermoplastic film into contact with a plurality of pass rollers, the resistance during conveyance is large. Therefore, the longitudinal stretching apparatus conveys the thermoplastic film while pressing the thermoplastic film with the nip roller so that the thermoplastic film does not slip between the high speed roller and the low speed roller. For this reason, the thermoplastic film may have a transfer flaw on the surface due to the pressing force of the nip roller, or may be scratched by slipping with the pass roller.
特開2008-221722号公報JP 2008-221722 A
 本発明の目的は、縦延伸時の熱可塑性フィルムにおいて転写傷や擦り傷等の発生を抑制することができる縦延伸装置の提供を目的とする。 An object of the present invention is to provide a longitudinal stretching apparatus capable of suppressing the occurrence of transfer scratches, scratches and the like in a thermoplastic film during longitudinal stretching.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、加熱ロールによって加熱された熱可塑性フィルムを、複数の低速駆動ロールと前記低速駆動ロールよりも周速が大きい複数の高速駆動ロールとの周速差によって延伸する縦延伸装置において前記複数の低速駆動ロールと前記複数の高速駆動ロールとが、前記熱可塑性フィルムの搬送面に複数の吸引孔を有するサクションロールから構成され、隣り合う前記低速駆動ロールと前記高速駆動ロールとの間に複数の加熱ロールが設けられ、前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとにアクチュエータがそれぞれ設けられ、前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとをそれぞれ独立して回転駆動可能に構成され、前記アクチュエータ毎の出力トルクが前記アクチュエータ毎に設定される目標値に一致するように制御されるものである。 That is, in the longitudinal stretching apparatus that stretches a thermoplastic film heated by a heating roll by a peripheral speed difference between a plurality of low speed driving rolls and a plurality of high speed driving rolls having a peripheral speed larger than that of the low speed driving roll, the plurality of low speeds The drive roll and the plurality of high-speed drive rolls are constituted by suction rolls having a plurality of suction holes on the thermoplastic film conveyance surface, and a plurality of heating between the low-speed drive roll and the high-speed drive roll adjacent to each other. A plurality of low-speed drive rolls, a plurality of high-speed drive rolls, and a plurality of heating rolls, and a plurality of low-speed drive rolls, a plurality of high-speed drive rolls, and a plurality of heating rolls. The rolls can be driven independently of each other, and the output torque of each actuator is And it is controlled so as to coincide with the target value set for each mediator.
 縦延伸装置は、前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとに前記アクチュエータがそれぞれトルク制御装置を介して接続され、前記出力トルクと前記目標値との差が規定値よりも大きい場合、そのアクチュエータに接続されているトルク制御装置の出力軸の回転速度を維持するように、そのトルク制御装置の入力軸と出力軸との間に回転速度差が生じ、前記出力トルクと前記目標値との差が規定値よりも小さい場合、そのアクチュエータに接続されているトルク制御装置の入力軸と出力軸との間に回転速度差が生じないように構成されるものである。 In the longitudinal stretching apparatus, the actuators are connected to the plurality of low-speed drive rolls, the plurality of high-speed drive rolls, and the plurality of heating rolls via a torque control device, respectively, and the difference between the output torque and the target value is When larger than the specified value, a rotational speed difference is generated between the input shaft and the output shaft of the torque control device so as to maintain the rotational speed of the output shaft of the torque control device connected to the actuator, When the difference between the output torque and the target value is smaller than the specified value, the rotational speed difference between the input shaft and the output shaft of the torque control device connected to the actuator is not generated. is there.
 縦延伸装置は、前記トルク制御装置がパウダークラッチから構成され、前記目標値に基づいてそのトルク伝達量が制御されるものである。 In the longitudinal stretching device, the torque control device is constituted by a powder clutch, and the torque transmission amount is controlled based on the target value.
 縦延伸装置は、前記複数の加熱ロールがそれぞれ独立して温度制御可能に構成されるものである。 The longitudinal stretching apparatus is configured such that the plurality of heating rolls can be independently temperature controlled.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 縦延伸装置においては、加熱ロールによる熱可塑性フィルムの搬送時の抵抗が小さいので、低速駆動ロールと高速駆動ロールとにおいて熱可塑性フィルムをニップローラによって押圧して摩擦力を付与する必要がない。また、独立して駆動制御される複数の加熱ロールと熱可塑性フィルムとの間で滑りが発生しない。これにより、縦延伸時の熱可塑性フィルムにおいて転写傷や擦り傷等の発生を抑制することができる。 In the longitudinal stretching apparatus, since the resistance when the thermoplastic film is conveyed by the heating roll is small, it is not necessary to apply a friction force by pressing the thermoplastic film with a nip roller between the low speed driving roll and the high speed driving roll. Further, no slip occurs between the plurality of heating rolls and the thermoplastic film that are independently driven and controlled. Thereby, generation | occurrence | production of a transfer damage | wound, an abrasion, etc. can be suppressed in the thermoplastic film at the time of longitudinal stretching.
 縦延伸装置においては、熱可塑性フィルムの搬送速度が変動した場合、加熱ロールがアクチュエータの制御と関係なく熱可塑性フィルムに追従して回転する。これにより、縦延伸時の熱可塑性フィルムにおいて転写傷や擦り傷等の発生を抑制することができる。 In the longitudinal stretching apparatus, when the conveyance speed of the thermoplastic film fluctuates, the heating roll rotates following the thermoplastic film regardless of the control of the actuator. Thereby, generation | occurrence | production of a transfer damage | wound, an abrasion, etc. can be suppressed in the thermoplastic film at the time of longitudinal stretching.
 縦延伸装置においては、熱可塑性フィルムの搬送速度、延伸量に基づいて加熱ロールの回転速度が制御される。これにより、縦延伸時の熱可塑性フィルムにおいて転写傷や擦り傷等の発生を抑制することができる。 In the longitudinal stretching apparatus, the rotational speed of the heating roll is controlled based on the conveyance speed and stretching amount of the thermoplastic film. Thereby, generation | occurrence | production of a transfer damage | wound, an abrasion, etc. can be suppressed in the thermoplastic film at the time of longitudinal stretching.
 縦延伸装置においては、熱可塑性フィルムが所定の延伸割合で延伸されるので速度変動が生じにくい。これにより、縦延伸時の熱可塑性フィルムにおいて転写傷や擦り傷等の発生を抑制することができる。 In the longitudinal stretching apparatus, the thermoplastic film is stretched at a predetermined stretching ratio, so that speed fluctuation is unlikely to occur. Thereby, generation | occurrence | production of a transfer damage | wound, an abrasion, etc. can be suppressed in the thermoplastic film at the time of longitudinal stretching.
縦延伸装置を備える製造装置の一実施形態における全体構成を示す概略図。Schematic which shows the whole structure in one Embodiment of a manufacturing apparatus provided with a longitudinal stretch apparatus. 縦延伸装置の一実施形態における全体構成を示す概略図。Schematic which shows the whole structure in one Embodiment of a longitudinal stretch apparatus. 縦延伸装置の一実施形態における低速駆動ロールと高速駆動ロールとの構成を示す正面図。The front view which shows the structure of the low speed drive roll and high speed drive roll in one Embodiment of a longitudinal stretch apparatus. 縦延伸装置の一実施形態における加熱ロールと冷却ロールとの構成を示す正面図。The front view which shows the structure of the heating roll and cooling roll in one Embodiment of a longitudinal stretch apparatus. 縦延伸装置の一実施形態における制御構成を示すブロック図。The block diagram which shows the control structure in one Embodiment of a longitudinal stretch apparatus. 縦延伸装置の一実施形態における加熱ロールの滑り抑制制御での動作態様を示す模式図。The schematic diagram which shows the operation | movement aspect in the slip suppression control of a heating roll in one Embodiment of a longitudinal stretch apparatus. 縦延伸装置の一実施形態における加熱ロールの滑り抑制制御での駆動トルクの変動を表すグラフを示す図。The figure which shows the graph showing the fluctuation | variation of the driving torque in the slip suppression control of a heating roll in one Embodiment of a longitudinal stretch apparatus.
 まず、図1を用いて、本発明に係る縦延伸装置の一実施形態である縦延伸装置5を備える製造装置1について説明する。なお、製造装置1は、ポリエステル、トリアセチルセルロース(TAC)、ポリオレフィン、ポリアミド等の熱可塑性ポリマーからなる熱可塑性フィルムFを製造するものであるが、本実施形態においてはトリアセチルセルロース(TAC)からなる熱可塑性フィルムFを製造するものとして説明する。 First, the manufacturing apparatus 1 provided with the longitudinal stretch apparatus 5 which is one Embodiment of the longitudinal stretch apparatus which concerns on this invention is demonstrated using FIG. In addition, although the manufacturing apparatus 1 manufactures the thermoplastic film F which consists of thermoplastic polymers, such as polyester, a triacetyl cellulose (TAC), polyolefin, and polyamide, in this embodiment, it is from triacetyl cellulose (TAC). It demonstrates as what manufactures the thermoplastic film F which becomes.
 図1に示すように、製造装置1は、トリアセチルセルロース(TAC)からなる熱可塑性ポリマーを加工して所望のフィルム厚からなる熱可塑性フィルムFを製造するものである。製造装置1は、溶融押出装置2、スリット状ダイ3、キャスティングロール4、縦延伸装置5、横延伸装置6および巻取装置7を具備している。 As shown in FIG. 1, the manufacturing apparatus 1 processes the thermoplastic polymer which consists of triacetylcellulose (TAC), and manufactures the thermoplastic film F which consists of desired film thickness. The production apparatus 1 includes a melt extrusion apparatus 2, a slit die 3, a casting roll 4, a longitudinal stretching apparatus 5, a lateral stretching apparatus 6, and a winding apparatus 7.
 製造装置1は、チップ状の熱可塑性ポリマーを溶融押出装置2によって加熱溶融し、スリット状ダイ3から押し出す。製造装置1は、スリット状ダイ3から連続して押し出される熱可塑性ポリマーをキャスティングロール4に密着させてシート状に硬化させる。つまり、製造装置1は、チップ状の熱可塑性ポリマーから未延伸の熱可塑性フィルムFを形成する。更に、製造装置1は、連続して形成される未延伸の熱可塑性フィルムFを縦延伸装置5によって搬送方向(縦方向)に連続して延伸させて縦延伸された熱可塑性フィルムFを形成する。次に、製造装置1は、熱可塑性フィルムFを横延伸装置6によって幅方向(横方向)に連続して延伸させて二軸延伸された熱可塑性フィルムFを形成する。製造装置1は、形成した熱可塑性フィルムFを巻取装置7によって芯材に巻き取らせる。
 このように構成することで、製造装置1は、チップ状の熱可塑性ポリマーから縦方向と横方向とに二軸延伸させた熱可塑性フィルムFを連続して形成することができる。
The manufacturing apparatus 1 heats and melts a chip-shaped thermoplastic polymer by a melt extrusion apparatus 2 and extrudes it from a slit die 3. The manufacturing apparatus 1 makes the thermoplastic polymer continuously extruded from the slit-shaped die 3 adhere to the casting roll 4 and is cured into a sheet shape. That is, the manufacturing apparatus 1 forms the unstretched thermoplastic film F from the chip-shaped thermoplastic polymer. Furthermore, the manufacturing apparatus 1 continuously stretches the unstretched thermoplastic film F formed in the conveying direction (longitudinal direction) by the longitudinal stretching apparatus 5 to form the longitudinally stretched thermoplastic film F. . Next, the manufacturing apparatus 1 forms the thermoplastic film F biaxially stretched by continuously stretching the thermoplastic film F in the width direction (lateral direction) by the lateral stretching apparatus 6. The manufacturing apparatus 1 causes the formed thermoplastic film F to be wound around the core material by the winding apparatus 7.
By comprising in this way, the manufacturing apparatus 1 can form continuously the thermoplastic film F biaxially stretched from the chip-shaped thermoplastic polymer to the vertical direction and the horizontal direction.
 以下に、図2から図5を用いて、本発明に係る縦延伸装置の一実施形態である縦延伸装置5について説明する。縦延伸装置5は、未延伸の熱可塑性フィルムFを搬送方向(以下、「縦方向」と記す)に延伸させるものである。縦延伸装置5は、複数の低速駆動ロール8、複数の高速駆動ロール9、吸引ポンプ10、低速用電動モータ11、高速用電動モータ12、複数の加熱ロール13、複数の冷却ロール14、複数の追従用電動モータ15、複数のパウダークラッチ16、制御装置17を備える。 Hereinafter, the longitudinal stretching apparatus 5 as an embodiment of the longitudinal stretching apparatus according to the present invention will be described with reference to FIGS. The longitudinal stretching device 5 stretches the unstretched thermoplastic film F in the transport direction (hereinafter referred to as “longitudinal direction”). The longitudinal stretching apparatus 5 includes a plurality of low-speed drive rolls 8, a plurality of high-speed drive rolls 9, a suction pump 10, a low-speed electric motor 11, a high-speed electric motor 12, a plurality of heating rolls 13, a plurality of cooling rolls 14, and a plurality of cooling rolls 14. A follow-up electric motor 15, a plurality of powder clutches 16, and a control device 17 are provided.
 図2に示すように、低速駆動ロール8は、高速駆動ロール9とともに未延伸の熱可塑性フィルムFを縦方向に延伸するものである。低速駆動ロール8は、縦延伸装置5の最上流側に配置されている。本実施形態において、縦延伸装置5には、複数の低速駆動ロール8が配置されている。低速駆動ロール8は、金属製のロールであり、ハードクロムめっき処理やタングステンカーバイト溶射、フッ素樹脂被覆、セラミック被覆等の表面処理が施されている。低速駆動ロール8は、熱可塑性フィルムFが低速駆動ロール8に所定のラップ角で巻きかけられるように配置されている。
 図3に示すように、低速駆動ロール8の熱可塑性フィルムFが接触する面(以下、単に「搬送面」と記す)である低速側搬送面8aには、ロール内部に貫通する複数の孔が形成されている。さらに、低速駆動ロール8は、吸引ポンプ10によってロール内部が吸引されるように構成されている(図2における薄墨部分参照)。これにより、低速駆動ロール8は、低速側搬送面8aの孔が低速側吸引孔8bとして作用し、熱可塑性フィルムFを吸着保持できるように構成されている。
As shown in FIG. 2, the low-speed drive roll 8 extends the unstretched thermoplastic film F together with the high-speed drive roll 9 in the longitudinal direction. The low speed drive roll 8 is disposed on the most upstream side of the longitudinal stretching device 5. In the present embodiment, a plurality of low speed drive rolls 8 are arranged in the longitudinal stretching device 5. The low-speed drive roll 8 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide spraying, fluororesin coating, or ceramic coating. The low speed drive roll 8 is arranged so that the thermoplastic film F is wound around the low speed drive roll 8 at a predetermined wrap angle.
As shown in FIG. 3, a plurality of holes penetrating the inside of the roll are formed on the low-speed side conveyance surface 8 a that is a surface (hereinafter, simply referred to as “conveyance surface”) that the thermoplastic film F of the low-speed drive roll 8 contacts. Is formed. Further, the low-speed drive roll 8 is configured such that the inside of the roll is sucked by the suction pump 10 (see the thin ink portion in FIG. 2). Thereby, the low-speed drive roll 8 is configured so that the hole of the low-speed side conveying surface 8a acts as the low-speed side suction hole 8b and can adsorb and hold the thermoplastic film F.
 図2に示すように、高速駆動ロール9は、低速駆動ロール8とともに未延伸の熱可塑性フィルムFを縦方向に延伸するものである。高速駆動ロール9は、縦延伸装置5の最下流側に配置されている。本実施形態において、縦延伸装置5には、複数の高速駆動ロール9が配置されている。高速駆動ロール9は、金属製のロールであり、ハードクロムめっき処理やタングステンカーバイト溶射、フッ素樹脂被覆、セラミック被覆等の表面処理が施されている。高速駆動ロール9は、熱可塑性フィルムFが高速駆動ロール9に所定のラップ角で巻きかけられるように配置されている。
 図3に示すように、高速駆動ロール9は、熱可塑性フィルムFが接触する高速側搬送面9aにロール内部に貫通する複数の孔が形成されている。さらに、複数の高速駆動ロール9は、吸引ポンプ10によってロール内部が吸引されるように構成されている(図2における薄墨部分参照)。これにより、複数の高速駆動ロール9は、高速側搬送面9aの孔が高速側吸引孔9bとして作用し、熱可塑性フィルムFを吸着保持できるように構成されている。
As shown in FIG. 2, the high-speed drive roll 9 extends the unstretched thermoplastic film F together with the low-speed drive roll 8 in the longitudinal direction. The high-speed drive roll 9 is disposed on the most downstream side of the longitudinal stretching device 5. In the present embodiment, the longitudinal stretching device 5 is provided with a plurality of high-speed drive rolls 9. The high-speed drive roll 9 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluororesin coating, or ceramic coating. The high-speed drive roll 9 is disposed so that the thermoplastic film F is wound around the high-speed drive roll 9 with a predetermined wrap angle.
As shown in FIG. 3, the high-speed drive roll 9 has a plurality of holes penetrating into the roll on the high-speed side conveying surface 9a with which the thermoplastic film F comes into contact. Further, the plurality of high-speed drive rolls 9 are configured such that the inside of the roll is sucked by the suction pump 10 (see the thin ink portion in FIG. 2). Accordingly, the plurality of high-speed drive rolls 9 are configured such that the holes of the high-speed side conveyance surface 9a act as the high-speed side suction holes 9b and can adsorb and hold the thermoplastic film F.
 アクチュエータである低速用電動モータ11と高速用電動モータ12とは、複数の低速駆動ロール8と複数の高速駆動ロール9とをそれぞれ回転駆動させるものである。低速用電動モータ11と高速用電動モータ12とは、それぞれが制御装置17(図5参照)に含まれるベクトルインバーターに接続され、独立してトルク制御されるように構成されている。低速用電動モータ11は、トルク制御装置であるパウダークラッチ16を介して低速駆動ロール8毎にそれぞれ設けられ、高速用電動モータ12は、パウダークラッチ16を介して高速駆動ロール9毎にそれぞれ設けられている。つまり、複数の低速用電動モータ11は、それぞれに接続されている低速駆動ロール8を独立して駆動制御することができる。同様に、複数の高速用電動モータ12は、それぞれに接続されている複数の低速駆動ロール8を独立して駆動制御することができる。 The low-speed electric motor 11 and the high-speed electric motor 12 that are actuators rotate the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9, respectively. Each of the low speed electric motor 11 and the high speed electric motor 12 is connected to a vector inverter included in the control device 17 (see FIG. 5), and is configured to be independently torque controlled. The low-speed electric motor 11 is provided for each low-speed drive roll 8 via a powder clutch 16 that is a torque control device, and the high-speed electric motor 12 is provided for each high-speed drive roll 9 via a powder clutch 16. ing. That is, the plurality of low-speed electric motors 11 can independently drive and control the low-speed drive rolls 8 connected thereto. Similarly, the plurality of high-speed electric motors 12 can independently drive and control a plurality of low-speed drive rolls 8 connected thereto.
 各高速駆動ロール9は、各低速駆動ロール8に対してドロー制御されている。すなわち、各高速駆動ロール9は、各低速駆動ロール8よりも周速が大きくなるように駆動されている。熱可塑性フィルムFは、複数の低速駆動ロール8によって所定の単位繰り出し速度で上流側から繰り出されるとともに、複数の高速駆動ロール9によって低速駆動ロール8の繰り出し速度よりも大きい所定の単位繰り入れ速度で下流側に向かって繰り入れられる。これにより、複数の低速駆動ロール8と複数の高速駆動ロール9とは、互いのピッチ間において熱可塑性フィルムFを所定の繰り出し速度における単位繰り出し量と所定の繰り入れ速度における単位繰り入れ量との差分だけ引き伸ばすように構成されている。 Each high-speed drive roll 9 is draw-controlled with respect to each low-speed drive roll 8. That is, each high-speed drive roll 9 is driven so as to have a higher peripheral speed than each low-speed drive roll 8. The thermoplastic film F is fed from the upstream side by a plurality of low-speed drive rolls 8 at a predetermined unit feed speed, and downstream by a plurality of high-speed drive rolls 9 at a predetermined unit feed speed greater than the feed speed of the low-speed drive rolls 8. It is carried in toward the side. Thereby, the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9 are different from each other only in the difference between the unit feed amount at a predetermined feed speed and the unit feed amount at a predetermined feed speed between the pitches of the thermoplastic film F. It is configured to stretch.
 図2に示すように、加熱ロール13は、熱可塑性フィルムFを加熱するものである。加熱ロール13は、最も下流側の低速駆動ロール8と最も上流側の高速駆動ロール9との間に配置されている。本実施形態において、縦延伸装置5には、複数の加熱ロール13が配置されている。加熱ロール13は、金属製のロールであり、ハードクロムめっき処理やタングステンカーバイト溶射、フッ素樹脂被覆、セラミック被覆等の表面処理が施されている。加熱ロール13は、熱可塑性フィルムFが加熱ロール13に所定のラップ角で巻きかけられるように配置されている。
 図4に示すように、各加熱ロール13には、加熱手段であるカートリッジヒータ13bと加熱ロール13の熱可塑性フィルムFが接触する加熱搬送面13aの温度を測定する温度測定手段である加熱温度センサ13cがそれぞれ設けられている。各加熱ロール13に設けられているカートリッジヒータ13bと加熱温度センサ13cとは、制御装置17(図5参照)からの制御信号によって、加熱ロール13の加熱搬送面13aをそれぞれ独立して所定の温度に加熱して維持するように構成されている。なお、本実施形態において、加熱ロール13の加熱手段をカートリッジヒータ13bとしたがこれに限定されるものではなく、温水、加圧温水、加熱オイル等の熱媒の循環による加熱装置、誘導加熱装置などでもよい。
As shown in FIG. 2, the heating roll 13 heats the thermoplastic film F. The heating roll 13 is disposed between the most downstream low-speed drive roll 8 and the most upstream high-speed drive roll 9. In the present embodiment, the longitudinal stretching device 5 is provided with a plurality of heating rolls 13. The heating roll 13 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluororesin coating, or ceramic coating. The heating roll 13 is disposed so that the thermoplastic film F is wound around the heating roll 13 at a predetermined wrap angle.
As shown in FIG. 4, each heating roll 13 includes a heating temperature sensor that is a temperature measuring unit that measures the temperature of the heating and conveying surface 13 a that the cartridge heater 13 b that is a heating unit and the thermoplastic film F of the heating roll 13 are in contact with each other. 13c is provided. The cartridge heaters 13b and the heating temperature sensors 13c provided in each heating roll 13 independently set the heating and conveying surface 13a of the heating roll 13 at a predetermined temperature by a control signal from the control device 17 (see FIG. 5). It is configured to be heated and maintained. In the present embodiment, the heating means of the heating roll 13 is the cartridge heater 13b. However, the present invention is not limited to this, and a heating device or induction heating device by circulation of a heating medium such as hot water, pressurized hot water, or heating oil. Etc.
 図2に示すように、冷却ロール14は、熱可塑性フィルムFを冷却するものである。冷却ロール14は、最も下流側の加熱ロール13と最も上流側の高速駆動ロール9との間に配置されている。本実施形態において、縦延伸装置5には、複数の冷却ロール14が配置されている。冷却ロール14は、金属製のロールであり、ハードクロムめっき処理やタングステンカーバイト溶射、フッ素樹脂被覆、セラミック被覆等の表面処理が施されている。冷却ロール14は、熱可塑性フィルムFが各冷却ロール14に所定のラップ角で巻きかけられるように配置されている。
 図4に示すように、複数の冷却ロール14は、冷却手段であるヒートパイプ14bと冷却ロール14の熱可塑性フィルムFが接触する冷却搬送面14aを測定する温度測定手段である冷却温度センサ14cがそれぞれ設けられている。複数の冷却ロール14に設けられているヒートパイプ14bと冷却温度センサ14cとは、制御装置17(図5参照)からの制御信号によって、各冷却ロール14の冷却搬送面14aをそれぞれ独立して冷却するように構成されている。なお、本実施形態において、冷却ロール14の冷却手段をヒートパイプ14bとしたがこれに限定されるものではなく、ピエゾ素子や熱媒の循環による冷却装置などでもよい。
As shown in FIG. 2, the cooling roll 14 cools the thermoplastic film F. The cooling roll 14 is disposed between the most downstream heating roll 13 and the most upstream high-speed drive roll 9. In the present embodiment, the longitudinal stretching apparatus 5 is provided with a plurality of cooling rolls 14. The cooling roll 14 is a metal roll, and has been subjected to surface treatment such as hard chrome plating, tungsten carbide thermal spraying, fluorine resin coating, ceramic coating, or the like. The cooling roll 14 is arranged so that the thermoplastic film F is wound around each cooling roll 14 at a predetermined wrap angle.
As shown in FIG. 4, the plurality of cooling rolls 14 includes a cooling temperature sensor 14 c that is a temperature measurement unit that measures a cooling conveyance surface 14 a that contacts a heat pipe 14 b that is a cooling unit and a thermoplastic film F of the cooling roll 14. Each is provided. The heat pipes 14b and the cooling temperature sensors 14c provided in the plurality of cooling rolls 14 independently cool the cooling conveyance surfaces 14a of the respective cooling rolls 14 by a control signal from the control device 17 (see FIG. 5). Is configured to do. In the present embodiment, the cooling means of the cooling roll 14 is the heat pipe 14b, but is not limited to this, and may be a piezo element or a cooling device by circulating a heat medium.
 アクチュエータである追従用電動モータ15は、加熱ロール13と冷却ロール14とを回転駆動させるものである。追従用電動モータ15は、各加熱ロール13と各冷却ロール14とにトルク制御装置であるパウダークラッチ16を介してそれぞれ設けられている。追従用電動モータ15は、それぞれが制御装置17(図5参照)に含まれるベクトルインバーターに接続され、互いに独立してトルク制御されるように構成されている。つまり、複数の追従用電動モータ15は、それぞれに接続されている加熱ロール13または冷却ロール14を独立して駆動制御できるように構成されている。 The follow-up electric motor 15 that is an actuator rotates the heating roll 13 and the cooling roll 14. The follow-up electric motor 15 is provided on each heating roll 13 and each cooling roll 14 via a powder clutch 16 that is a torque control device. Each of the follow-up electric motors 15 is connected to a vector inverter included in the control device 17 (see FIG. 5), and is configured to be torque-controlled independently of each other. That is, the plurality of follow-up electric motors 15 are configured so that the heating roll 13 or the cooling roll 14 connected thereto can be independently driven and controlled.
 図3と図4とに示すように、トルク制御装置である複数のパウダークラッチ16は、低速駆動ロール8と低速用電動モータ11との間の伝達トルク、高速駆動ロール9と高速用電動モータ12との間の伝達トルク、加熱ロール13と追従用電動モータ15との間の伝達トルク、または冷却ロール14と追従用電動モータ15との間の伝達トルクを制限するものである。パウダークラッチ16は、入力軸16aと出力軸16bとの間に介在する磁性鉄粉(パウダー)に磁束を加えることで摩擦を発生させて、入力軸16aと出力軸16bとの間でトルク伝達される状態に切り替える。本実施形態において、各パウダークラッチ16には、その入力軸16aに複数の低速用電動モータ11、複数の高速用電動モータ12または複数の追従用電動モータ15のうちいずれか一つがそれぞれ接続され、その出力軸16bに複数の低速駆動ロール8、複数の高速駆動ロール9、複数の加熱ロール13または複数の冷却ロール14のうちいずれか一つがそれぞれ接続されている。つまり、各パウダークラッチ16は、低速駆動ロール8と低速用電動モータ11との間の伝達トルク、高速駆動ロール9と高速用電動モータ12との間の伝達トルク、加熱ロール13と追従用電動モータ15との間の伝達トルク、または冷却ロール14と追従用電動モータ15との間の伝達トルクを任意に設定できるように構成されている。各パウダークラッチ16は、それぞれが制御装置17(図5参照)に接続され、互いに独立して伝達トルクの大きさを制御できるように構成されている。 As shown in FIG. 3 and FIG. 4, the plurality of powder clutches 16 that are torque control devices include transmission torque between the low-speed drive roll 8 and the low-speed electric motor 11, the high-speed drive roll 9 and the high-speed electric motor 12. The transmission torque between the heating roll 13 and the follow-up electric motor 15 or the transfer torque between the cooling roll 14 and the follow-up electric motor 15 is limited. The powder clutch 16 generates friction by applying magnetic flux to magnetic iron powder (powder) interposed between the input shaft 16a and the output shaft 16b, and torque is transmitted between the input shaft 16a and the output shaft 16b. Switch to the status. In the present embodiment, each powder clutch 16 is connected to the input shaft 16a of any one of a plurality of low-speed electric motors 11, a plurality of high-speed electric motors 12, or a plurality of follow-up electric motors 15, respectively. Any one of a plurality of low-speed drive rolls 8, a plurality of high-speed drive rolls 9, a plurality of heating rolls 13, or a plurality of cooling rolls 14 is connected to the output shaft 16b. In other words, each powder clutch 16 includes a transmission torque between the low-speed drive roll 8 and the low-speed electric motor 11, a transmission torque between the high-speed drive roll 9 and the high-speed electric motor 12, a heating roll 13 and a follow-up electric motor. 15 or a transmission torque between the cooling roll 14 and the follow-up electric motor 15 can be arbitrarily set. Each powder clutch 16 is connected to a control device 17 (see FIG. 5) and configured to be able to control the magnitude of the transmission torque independently of each other.
 図5に示すように、制御装置17は、縦延伸装置5を制御するものである。制御装置17は、実体的には、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。制御装置17は、図示しない製造装置1の制御装置に接続され、縦延伸装置5等を制御するために種々のプログラムやデータが格納されている。 As shown in FIG. 5, the control device 17 controls the longitudinal stretching device 5. The control device 17 may actually have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like. The control device 17 is connected to a control device of the manufacturing device 1 (not shown), and stores various programs and data for controlling the longitudinal stretching device 5 and the like.
 制御装置17は、各低速駆動ロール8の低速用電動モータ11と各高速駆動ロール9の高速用電動モータ12とに接続され、各低速用電動モータ11と各高速用電動モータ12とにそれぞれ駆動トルクに関する指令値を送信して任意の駆動トルクTdを出力するように制御することができる。また、制御装置17は、各 低速用電動モータ11と各高速用電動モータ12とから実駆動トルクをそれぞれ取得することができる。 The control device 17 is connected to the low-speed electric motor 11 of each low-speed drive roll 8 and the high-speed electric motor 12 of each high-speed drive roll 9 and is driven to each low-speed electric motor 11 and each high-speed electric motor 12. It is possible to control to output an arbitrary driving torque Td by transmitting a command value related to torque. In addition, the control device 17 can acquire the actual drive torque from each low-speed electric motor 11 and each high-speed electric motor 12.
 制御装置17は、吸引ポンプ10に接続され、吸引ポンプ10を制御することができる。 The control device 17 is connected to the suction pump 10 and can control the suction pump 10.
 制御装置17は、各加熱ロール13に設けられている各カートリッジヒータ13bと各加熱温度センサ13cとに接続され、各加熱温度センサ13cから対応する加熱ロール13の実温度を取得することが必要である。また、制御装置17は、各カートリッジヒータ13bに温度の指令値を送信して所定の温度を維持するように制御することができる。 The control device 17 is connected to each cartridge heater 13b and each heating temperature sensor 13c provided in each heating roll 13, and needs to acquire the actual temperature of the corresponding heating roll 13 from each heating temperature sensor 13c. is there. Further, the control device 17 can control to maintain a predetermined temperature by transmitting a temperature command value to each cartridge heater 13b.
 制御装置17は、各冷却ロール14に設けられている各冷却温度センサ14cに接続され、各冷却温度センサ14cから対応する冷却ロール14の実温度を取得することが必要である。 The control device 17 is connected to each cooling temperature sensor 14c provided in each cooling roll 14, and needs to acquire the actual temperature of the corresponding cooling roll 14 from each cooling temperature sensor 14c.
 制御装置17は、各加熱ロール13の追従用電動モータ15と各冷却駆動ロールの追従用電動モータ15とに接続され、各追従用電動モータ15にそれぞれ駆動トルクに関する指令値を送信して任意の駆動トルクTdを出力するように制御することができる。また、制御装置17は、各追従用電動モータ15から実駆動トルクをそれぞれ取得することができる。 The control device 17 is connected to the follow-up electric motor 15 of each heating roll 13 and the follow-up electric motor 15 of each cooling drive roll. Control can be performed to output the drive torque Td. Further, the control device 17 can acquire the actual driving torque from each of the follow-up electric motors 15.
 制御装置17は、各パウダークラッチ16に接続され、任意の伝達トルクに関する指令値を送信して任意の伝達トルク以下で入力軸16aと出力軸16bとの間でトルク伝達される状態に制御することができる。 The control device 17 is connected to each powder clutch 16 and transmits a command value related to an arbitrary transmission torque to control the torque to be transmitted between the input shaft 16a and the output shaft 16b below the arbitrary transmission torque. Can do.
 このように構成される縦延伸装置5は、複数の低速駆動ロール8によって熱可塑性フィルムFを吸着保持しながら所定の単位送り出し量で繰り出す。縦延伸装置5は、低速駆動ロール8から繰り出された熱可塑性フィルムFを複数の加熱ロール13によって所定の温度まで加熱する。一方、縦延伸装置5は、加熱ロール13で加熱された熱可塑性フィルムFを複数の高速駆動ロール9によって吸着保持しながら所定の単位繰り入れ量で繰り入れる。これにより、縦延伸装置5は、加熱された熱可塑性フィルムFを所定の繰り出し速度における単位繰り出し量と所定の繰り入れ速度による単位繰り入れ量との差分だけ縦延伸させる。そして、縦延伸装置5は、熱可塑性フィルムFを複数の冷却ロール14によって所定の温度まで冷却する。縦延伸装置5は、複数の低速駆動ロール8と複数の高速駆動ロール9との間隔を広げて熱可塑性フィルムFを延伸させることで、熱可塑性フィルムFの単位時間当たりの伸び量が少なくなり、延伸時のフィルムに対する負荷を小さくすることができる。なお、本実施形態において、アクチュエータは、低速用電動モータ11、高速用電動モータ12および追従用電動モータ15からなる電動モータから構成されているがこれに限定するものではなく、駆動装置であればよい。 The longitudinal stretching apparatus 5 configured as described above feeds the thermoplastic film F by a plurality of low-speed drive rolls 8 while adsorbing and holding the thermoplastic film F by a predetermined unit feed amount. The longitudinal stretching device 5 heats the thermoplastic film F fed from the low-speed drive roll 8 to a predetermined temperature by the plurality of heating rolls 13. On the other hand, the longitudinal stretching device 5 feeds the thermoplastic film F heated by the heating roll 13 by a predetermined unit feed amount while adsorbing and holding the thermoplastic film F by the plurality of high-speed drive rolls 9. Thereby, the longitudinal stretching apparatus 5 stretches the heated thermoplastic film F longitudinally by the difference between the unit feeding amount at a predetermined feeding speed and the unit feeding amount at a predetermined feeding speed. Then, the longitudinal stretching device 5 cools the thermoplastic film F to a predetermined temperature with a plurality of cooling rolls 14. The longitudinal stretching device 5 extends the interval between the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9 to stretch the thermoplastic film F, thereby reducing the amount of elongation per unit time of the thermoplastic film F, The load on the film during stretching can be reduced. In the present embodiment, the actuator is constituted by an electric motor including the low-speed electric motor 11, the high-speed electric motor 12, and the follow-up electric motor 15. However, the present invention is not limited to this, and any actuator can be used. Good.
 以下では、図3、図6と図7とを用いて、複数の低速駆動ロール8と複数の高速駆動ロール9とにおける熱可塑性フィルムFの保持の態様、ならびに低速駆動ロール8、複数の高速駆動ロール9、複数の加熱ロール13および複数の冷却ロール14による熱可塑性フィルムFの延伸時の態様について説明する。なお、本実施形態において、縦延伸装置5は、四本の低速駆動ロール8、三本の高速駆動ロール9、四本の加熱ロール13および四本の冷却ロール14から構成されているがこれに限定されるものではない。 Hereinafter, with reference to FIGS. 3, 6, and 7, the manner of holding the thermoplastic film F in the plurality of low-speed drive rolls 8 and the plurality of high-speed drive rolls 9, and the low-speed drive roll 8, the plurality of high-speed drives The aspect at the time of extending | stretching of the thermoplastic film F by the roll 9, the some heating roll 13, and the some cooling roll 14 is demonstrated. In the present embodiment, the longitudinal stretching device 5 includes four low-speed drive rolls 8, three high-speed drive rolls 9, four heating rolls 13, and four cooling rolls 14. It is not limited.
 図3に示すように、本実施形態における縦延伸装置5の複数の低速駆動ロール8は、所定のラップ角でそれぞれの低速側搬送面8aに巻きつけられている熱可塑性フィルムFを搬送面の全面に形成されている孔によって吸着保持している。つまり、各低速駆動ロール8は、熱可塑性フィルムFのうち低速側搬送面8aに接触している面の全域を吸着保持している。このため、各低速駆動ロール8は、ニップローラによって押圧保持している場合よりも小さい圧力で熱可塑性フィルムFを保持することができる。また、各低速駆動ロール8は、気体である空気によって熱可塑性フィルムFが低速側搬送面8aに押し付けられている。このため、各低速駆動ロール8は、固体であるニップローラによって押圧保持している場合よりも均一な圧力で熱可塑性フィルムFを保持することができる。つまり、各低速駆動ロール8は、熱可塑性フィルムFに局所的な圧力集中が生じにくい。これにより、本実施形態における低速駆動ロール8は、熱可塑性フィルムFを吸着保持することで熱可塑性フィルムFの表面における転写キズの発生を抑制することができる。複数の高速駆動ロール9についても同様である。 As shown in FIG. 3, the plurality of low-speed drive rolls 8 of the longitudinal stretching apparatus 5 in the present embodiment uses the thermoplastic film F wound around each low-speed side conveyance surface 8 a at a predetermined wrap angle on the conveyance surface. Adsorption is held by holes formed on the entire surface. That is, each low-speed drive roll 8 sucks and holds the entire area of the thermoplastic film F that is in contact with the low-speed transport surface 8a. For this reason, each low-speed drive roll 8 can hold the thermoplastic film F with a smaller pressure than the case where it is pressed and held by the nip roller. In each low-speed drive roll 8, the thermoplastic film F is pressed against the low-speed transport surface 8a by air that is a gas. For this reason, each low-speed drive roll 8 can hold | maintain the thermoplastic film F by a more uniform pressure than the case where it press-holds with the nip roller which is solid. That is, each low-speed drive roll 8 is unlikely to cause local pressure concentration on the thermoplastic film F. Thereby, the low speed drive roll 8 in the present embodiment can suppress the generation of transfer scratches on the surface of the thermoplastic film F by adsorbing and holding the thermoplastic film F. The same applies to the plurality of high-speed drive rolls 9.
 次に、図4、図6および図7を用いて、複数の低速駆動ロール8、複数の高速駆動ロール9、複数の加熱ロール13および複数の冷却ロール14における滑り抑制制御について説明する。なお、本実施形態において、加熱ロール13における滑り抑制制御について説明し、同様の制御が行われる複数の低速駆動ロール8、複数の高速駆動ロール9および複数の冷却ロール14ついての説明を省略する。 Next, slip suppression control in the plurality of low-speed drive rolls 8, the plurality of high-speed drive rolls 9, the plurality of heating rolls 13, and the plurality of cooling rolls 14 will be described with reference to FIGS. In the present embodiment, the slip suppression control in the heating roll 13 will be described, and the description of the plurality of low-speed drive rolls 8, the plurality of high-speed drive rolls 9, and the plurality of cooling rolls 14 in which similar control is performed will be omitted.
 図6に示すように、本実施形態における縦延伸装置5の各加熱ロール13は、所定のラップ角でそれぞれの加熱搬送面13aに熱可塑性フィルムFが巻きつけられている。複数の加熱ロール13は、それぞれに接続されている追従用電動モータ15(図4参照)によって、熱可塑性フィルムFに追従するように回転駆動されている。つまり、加熱ロール13は、熱可塑性フィルムFの搬送速度Vtに同期するように制御される。熱可塑性フィルムFは、縦方向に延伸されることで、搬送速度Vtが低速駆動ロール8の所定の繰り出し速度から高速駆動ロール9の所定の繰り入れ速度まで大きくなりながら搬送されている。このため、熱可塑性フィルムFは、その搬送経路位置によって搬送速度Vtが異なる。従って、複数の加熱ロール13は、配置毎に異なる熱可塑性フィルムFの搬送速度Vtに追従できるように独立して回転速度Vr(周速度)が制御されるように構成されている。 As shown in FIG. 6, the thermoplastic film F is wound around each heating conveyance surface 13a of each heating roll 13 of the longitudinal stretching apparatus 5 in this embodiment at a predetermined wrap angle. The plurality of heating rolls 13 are rotationally driven so as to follow the thermoplastic film F by a follow-up electric motor 15 (see FIG. 4) connected thereto. That is, the heating roll 13 is controlled to synchronize with the transport speed Vt of the thermoplastic film F. The thermoplastic film F is transported while being stretched in the vertical direction so that the transport speed Vt increases from a predetermined feed speed of the low-speed drive roll 8 to a predetermined feed speed of the high-speed drive roll 9. For this reason, as for the thermoplastic film F, the conveyance speed Vt changes with the conveyance path positions. Accordingly, the plurality of heating rolls 13 are configured such that the rotational speed Vr (circumferential speed) is independently controlled so as to be able to follow the transport speed Vt of the thermoplastic film F that differs for each arrangement.
 図4に示すように、複数の加熱ロール13は、それぞれのパウダークラッチ16(図4参照)を介して接続されている追従用電動モータ15との間での伝達トルクが制限されている。各パウダークラッチ16には、入力軸16aに追従用電動モータ15の駆動トルクTdが伝達され、出力軸16bに加熱ロール13を所定の速度で回転させるために必要な回転トルクTrとして伝達されている。パウダークラッチ16は、入力軸16aに伝達されている駆動トルクTdと出力軸16bに伝達されている回転トルクTrとの間に規定値Tg以上の差が生じると入力軸16aと出力軸16bとがずれて入力軸16aと出力軸16bとの間に回転速度差が生じる。 As shown in FIG. 4, the plurality of heating rolls 13 are limited in transmission torque with the follow-up electric motor 15 connected via the respective powder clutch 16 (see FIG. 4). In each powder clutch 16, the driving torque Td of the follow-up electric motor 15 is transmitted to the input shaft 16a, and is transmitted to the output shaft 16b as the rotational torque Tr necessary for rotating the heating roll 13 at a predetermined speed. . In the powder clutch 16, when a difference of a predetermined value Tg or more occurs between the driving torque Td transmitted to the input shaft 16a and the rotational torque Tr transmitted to the output shaft 16b, the input shaft 16a and the output shaft 16b The rotational speed difference is generated between the input shaft 16a and the output shaft 16b.
 複数の加熱ロール13のうち任意の位置に配置されている一の加熱ロール13は、その回転速度Vrから定まる周速度が熱可塑性フィルムFの搬送速度Vtに一致するように追従用電動モータ15に回転駆動されている。熱可塑性フィルムFの搬送速度Vtが基準搬送速度Vt0の場合、追従用電動モータ15は、一の加熱ロール13の回転速度Vrから定まる周速度が熱可塑性フィルムFの搬送速度Vtに一致するために必要な駆動トルクTdを基準駆動トルクTd0として制御されている。 One heating roll 13 arranged at an arbitrary position among the plurality of heating rolls 13 is provided to the follow-up electric motor 15 so that the peripheral speed determined from the rotation speed Vr matches the transport speed Vt of the thermoplastic film F. It is rotationally driven. When the transport speed Vt of the thermoplastic film F is the reference transport speed Vt0, the follow-up electric motor 15 is configured so that the peripheral speed determined from the rotational speed Vr of the one heating roll 13 matches the transport speed Vt of the thermoplastic film F. The necessary drive torque Td is controlled as the reference drive torque Td0.
 図6(a)に示すように、熱可塑性フィルムFの搬送速度Vtが基準搬送速度Vt0であり、搬送速度Vtと一の加熱ロール13の回転速度Vrにより定まる周速度とが一致している場合、搬送されている熱可塑性フィルムFによって加熱ロール13の回転速度Vrが影響を受けない。
 図7に示すように、熱可塑性フィルムFが搬送速度Vt0で搬送されている時間t1までの間、パウダークラッチ16の入力軸16aと出力軸16bに伝達されている駆動トルクTdと出力軸16bに伝達されている回転トルクTrとがそれぞれ基準駆動トルクTd0になる。つまり、パウダークラッチ16の入力軸16aと出力軸16bとの間に規定値Tg以上の差が生じていないので、入力軸16aと出力軸16bとがずれることなく、各軸が同じ回転速度Vrで回転している(図6(a)参照)。この結果、加熱ロール13は、搬送されている熱可塑性フィルムFに追従して回転しているので熱可塑性フィルムFと加熱ロール13の搬送面との間で滑りの発生が抑制される。
As shown in FIG. 6A, the transport speed Vt of the thermoplastic film F is the reference transport speed Vt0, and the transport speed Vt and the peripheral speed determined by the rotational speed Vr of the one heating roll 13 coincide with each other. The rotational speed Vr of the heating roll 13 is not affected by the thermoplastic film F being conveyed.
As shown in FIG. 7, the drive torque Td transmitted to the input shaft 16a and the output shaft 16b of the powder clutch 16 and the output shaft 16b until the time t1 when the thermoplastic film F is transported at the transport speed Vt0. The transmitted rotational torque Tr becomes the reference driving torque Td0. That is, there is no difference greater than the specified value Tg between the input shaft 16a and the output shaft 16b of the powder clutch 16, so that the input shaft 16a and the output shaft 16b do not deviate and each shaft has the same rotational speed Vr. It is rotating (see FIG. 6A). As a result, since the heating roll 13 rotates following the thermoplastic film F being conveyed, the occurrence of slippage between the thermoplastic film F and the conveyance surface of the heating roll 13 is suppressed.
 図6(b)に示すように、一の加熱ロール13において、熱可塑性フィルムFの搬送速度Vtが基準搬送速度Vt0よりも大きくなり、一の加熱ロール13の回転速度Vrにより定まる周速度よりも大きい搬送速度Vt1になった場合、熱可塑性フィルムFによって加熱ロール13の回転速度Vrを大きくする方向に外力Fr1が加わる。これにより、パウダークラッチ16の出力軸16bは、出力軸16bに伝達されている回転トルクTrが変動する。パウダークラッチ16は、入力軸16aに伝達されている駆動トルクTdとパウダークラッチ16の出力軸16bに伝達されている回転トルクTrとの間に規定値Tg以上の差が生じると、入力軸16aと出力軸16bとの位相がずれて入力軸16aと出力軸16bとの間に回転速度差が生じる。つまり、一の加熱ロール13の回転速度Vr(周速度)は、熱可塑性フィルムFからの外力Fr1によって、熱可塑性フィルムFの搬送速度Vt1と一致する周速度である回転速度Vr1まで大きくなる。この結果、一の加熱ロール13は、熱可塑性フィルムFの搬送速度Vtが大きくなっても、外力Fr1によって熱可塑性フィルムFに追従して回転速度Vrが大きくなるので熱可塑性フィルムFと一の加熱ロール13の搬送面との間で滑りの発生が抑制される。 As shown in FIG. 6B, in one heating roll 13, the conveyance speed Vt of the thermoplastic film F is larger than the reference conveyance speed Vt0 and is higher than the peripheral speed determined by the rotation speed Vr of the one heating roll 13. When the conveyance speed Vt1 becomes high, the external force Fr1 is applied in the direction in which the rotational speed Vr of the heating roll 13 is increased by the thermoplastic film F. Thereby, the rotational torque Tr transmitted to the output shaft 16b of the output shaft 16b of the powder clutch 16 varies. When a difference of a specified value Tg or more occurs between the driving torque Td transmitted to the input shaft 16a and the rotational torque Tr transmitted to the output shaft 16b of the powder clutch 16, the powder clutch 16 and the input shaft 16a The phase with the output shaft 16b is shifted, and a rotational speed difference is generated between the input shaft 16a and the output shaft 16b. That is, the rotational speed Vr (peripheral speed) of one heating roll 13 is increased to a rotational speed Vr1 that is a peripheral speed that matches the transport speed Vt1 of the thermoplastic film F by the external force Fr1 from the thermoplastic film F. As a result, the one heating roll 13 is heated with the thermoplastic film F because the rotational speed Vr increases following the thermoplastic film F by the external force Fr1 even if the conveyance speed Vt of the thermoplastic film F increases. The occurrence of slippage between the roll 13 and the conveying surface is suppressed.
 図7に示すように、一の加熱ロール13を回転駆動している一の追従用電動モータ15の駆動トルクTdは、熱可塑性フィルムFからの外力Fr1が一の加熱ロール13の回転を助ける方向に作用することで、時間t1から時間t2までの間に駆動トルクTd1まで減少する。制御装置17は、一の追従用電動モータ15の駆動トルクTdの減少を検出すると、減少した一の追従用電動モータ15の駆動トルクTd1を増加させるように制御する。つまり、制御装置17は、一の加熱ロール13の回転速度Vrが回転速度Vr1になるように駆動トルクTdを制御する(図6(b)参照)。これにより、加熱ロール13は、熱可塑性フィルムFの搬送速度Vtに追従するように回転される。 As shown in FIG. 7, the driving torque Td of one follow-up electric motor 15 that rotationally drives one heating roll 13 is a direction in which the external force Fr1 from the thermoplastic film F assists the rotation of the one heating roll 13. As a result, the driving torque Td1 decreases from time t1 to time t2. When the control device 17 detects a decrease in the drive torque Td of the one follow-up electric motor 15, the control device 17 performs control so as to increase the reduced drive torque Td1 of the one follow-up electric motor 15. That is, the control device 17 controls the drive torque Td so that the rotation speed Vr of one heating roll 13 becomes the rotation speed Vr1 (see FIG. 6B). Thereby, the heating roll 13 is rotated so as to follow the transport speed Vt of the thermoplastic film F.
 図6(c)に示すように、一の加熱ロール13において、熱可塑性フィルムFの搬送速度Vtが一の加熱ロール13の回転速度Vrにより定まる周速度よりも小さい搬送速度Vt2になった場合、熱可塑性フィルムFによって加熱ロール13の回転速度Vrを小さくする方向に外力Fr2が加わり、パウダークラッチ16の出力軸16bに伝達されている回転トルクTrが変動する。パウダークラッチ16の入力軸16aに伝達されている駆動トルクTdとパウダークラッチ16の出力軸16bに伝達されている回転トルクTrとの間に規定値Tg以上の差が生じると、パウダークラッチ16は、入力軸16aと出力軸16bとの位相がずれて入力軸16aと出力軸16bとの間に回転速度差が生じる。つまり、一の加熱ロール13は、回転速度Vr(周速度)が熱可塑性フィルムFからの外力Fr2によって、熱可塑性フィルムFの搬送速度Vt2と一致する周速度である回転速度Vr2まで小さくなる。この結果、一の加熱ロール13は、熱可塑性フィルムFの搬送速度Vtが小さくなっても、外力Fr2によって熱可塑性フィルムFに追従して回転速度Vrが小さくなるので熱可塑性フィルムFと一の加熱ロール13の搬送面との間で滑りの発生が抑制される。 As shown in FIG. 6 (c), in one heating roll 13, when the conveyance speed Vt of the thermoplastic film F becomes a conveyance speed Vt2 smaller than the peripheral speed determined by the rotation speed Vr of the one heating roll 13, An external force Fr2 is applied in the direction of decreasing the rotational speed Vr of the heating roll 13 by the thermoplastic film F, and the rotational torque Tr transmitted to the output shaft 16b of the powder clutch 16 varies. When a difference of a specified value Tg or more occurs between the driving torque Td transmitted to the input shaft 16a of the powder clutch 16 and the rotational torque Tr transmitted to the output shaft 16b of the powder clutch 16, the powder clutch 16 The phase of the input shaft 16a and the output shaft 16b is shifted, and a rotational speed difference is generated between the input shaft 16a and the output shaft 16b. That is, the one heating roll 13 has a rotational speed Vr (peripheral speed) that is reduced to a rotational speed Vr2 that is a peripheral speed that matches the transport speed Vt2 of the thermoplastic film F by the external force Fr2 from the thermoplastic film F. As a result, the one heating roll 13 can be heated together with the thermoplastic film F because the rotational speed Vr decreases following the thermoplastic film F by the external force Fr2 even if the transport speed Vt of the thermoplastic film F decreases. The occurrence of slippage between the roll 13 and the conveying surface is suppressed.
 図7に示すように、一の加熱ロール13を回転駆動している一の追従用電動モータ15の駆動トルクTdは、熱可塑性フィルムFからの外力Fr2が一の加熱ロール13の回転を妨げる方向に作用することで、時間t3から時間t4の間に駆動トルクTd2まで増加する。制御装置17は、一の追従用電動モータ15の駆動トルクTdの増加を検出すると、増加した一の追従用電動モータ15の駆動トルクTd2を減少させるように制御する。つまり、制御装置17は、一の加熱ロール13の回転速度Vrが回転速度Vr2になるように制御する。これにより、加熱ロール13は、熱可塑性フィルムFの搬送速度Vtに追従するように回転される。 As shown in FIG. 7, the driving torque Td of the one follow-up electric motor 15 that rotationally drives the one heating roll 13 is the direction in which the external force Fr2 from the thermoplastic film F hinders the rotation of the one heating roll 13. As a result, the driving torque Td2 increases from time t3 to time t4. When the control device 17 detects an increase in the drive torque Td of the one follow-up electric motor 15, the control device 17 performs control so as to reduce the increased drive torque Td2 of the one follow-up electric motor 15. That is, the control device 17 performs control so that the rotation speed Vr of one heating roll 13 becomes the rotation speed Vr2. Thereby, the heating roll 13 is rotated so as to follow the transport speed Vt of the thermoplastic film F.
 このように構成することで、縦延伸装置5は、熱可塑性フィルムFが所定の延伸割合で延伸されるので速度変動が生じにくい。さらに、縦延伸装置5は、複数の加熱ロール13と複数の冷却ロール14とが熱可塑性フィルムFに能動的に追従するように制御されているので、加熱ロール13と冷却ロール14とによる熱可塑性フィルムFの搬送時の抵抗が小さい。従って、縦延伸装置5は、低速駆動ロール8と高速駆動ロール9とにおいて、熱可塑性フィルムFをニップローラによって押圧して滑りを抑制するための摩擦力を付与する必要がない。また、縦延伸装置5は、熱可塑性フィルムFの搬送速度Vtに基づいて複数の加熱ロール13と複数の冷却ロール14との回転速度Vrが独立してトルク制御される。さらに、熱可塑性フィルムFの搬送速度Vtが変動した場合、パウダークラッチ16の作用により加熱ロール13または冷却ロール14が追従用電動モータ15の制御と関係なく熱可塑性フィルムFに追従して回転される。従って、縦延伸装置5は、加熱ロール13と熱可塑性フィルムFとの間で滑りが発生しない。これにより、縦延伸時の熱可塑性フィルムFにおいて転写傷や擦り傷等の発生を抑制することができる。 With this configuration, the longitudinal stretching apparatus 5 is less likely to cause speed fluctuations because the thermoplastic film F is stretched at a predetermined stretching ratio. Furthermore, since the longitudinal stretching apparatus 5 is controlled so that the plurality of heating rolls 13 and the plurality of cooling rolls 14 actively follow the thermoplastic film F, the thermoplasticity by the heating roll 13 and the cooling roll 14 is controlled. The resistance when the film F is conveyed is small. Therefore, the longitudinal stretching device 5 does not need to apply a frictional force for suppressing slippage by pressing the thermoplastic film F with the nip roller in the low-speed drive roll 8 and the high-speed drive roll 9. Further, in the longitudinal stretching device 5, the rotational speeds Vr of the plurality of heating rolls 13 and the plurality of cooling rolls 14 are independently torque controlled based on the conveyance speed Vt of the thermoplastic film F. Furthermore, when the conveyance speed Vt of the thermoplastic film F changes, the heating roll 13 or the cooling roll 14 is rotated following the thermoplastic film F regardless of the control of the follow-up electric motor 15 by the action of the powder clutch 16. . Therefore, the longitudinal stretching apparatus 5 does not slip between the heating roll 13 and the thermoplastic film F. Thereby, generation | occurrence | production of a transfer flaw, an abrasion, etc. can be suppressed in the thermoplastic film F at the time of longitudinal stretching.
 以上、本実施形態における縦延伸装置5は、クラッチとしてパウダークラッチ16が用いられているがこれに限定するものではなく、伝達トルクを任意の値に制御することができるものであればよい。また、縦延伸装置5は、熱可塑性フィルムFを加熱ロール13の加熱搬送面13aに接触させることで熱可塑性フィルムFを一面ずつ交互に加熱しているがこれに限定されるものではなく、密閉タイプのエア加熱ノズルによる加熱によって、熱可塑性フィルムFを同時に両面から加熱してもよい。上述の実施形態は、代表的な形態を示したに過ぎず、一実施形態の骨子を逸脱しない範囲で種々変形して実施することができる。さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 As described above, the longitudinal stretching device 5 in the present embodiment uses the powder clutch 16 as a clutch, but is not limited to this, and any device can be used as long as the transmission torque can be controlled to an arbitrary value. Moreover, although the longitudinal stretch apparatus 5 heats the thermoplastic film F alternately one surface at a time by making the thermoplastic film F contact the heating conveyance surface 13a of the heating roll 13, it is not limited to this, and is sealed The thermoplastic film F may be simultaneously heated from both sides by heating with a type of air heating nozzle. The above-described embodiments are merely representative, and various modifications can be made without departing from the scope of one embodiment. It goes without saying that the present invention can be embodied in various forms, and the scope of the present invention is indicated by the description of the scope of claims, and the equivalent meanings of the scope of claims, and all the scopes within the scope of the claims. Includes changes.
  5  縦延伸装置
  8  低速駆動ロール
  9  高速駆動ロール
 13  加熱ロール
 8a  低速側搬送面
 8b  低速側吸引孔
 9a  低速側搬送面
 9b  高速側搬送面
 15  追従用電動モータ
DESCRIPTION OF SYMBOLS 5 Longitudinal drawing apparatus 8 Low speed drive roll 9 High speed drive roll 13 Heating roll 8a Low speed side conveyance surface 8b Low speed side suction hole 9a Low speed side conveyance surface 9b High speed side conveyance surface 15 Following electric motor

Claims (4)

  1.  加熱ロールによって加熱された熱可塑性フィルムを、複数の低速駆動ロールと前記低速駆動ロールよりも周速が大きい複数の高速駆動ロールとの周速差によって延伸する縦延伸装置において
     前記複数の低速駆動ロールと前記複数の高速駆動ロールとが、前記熱可塑性フィルムの搬送面に複数の吸引孔を有するサクションロールから構成され、
     隣り合う前記低速駆動ロールと前記高速駆動ロールとの間に複数の加熱ロールが設けられ、
     前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとにアクチュエータがそれぞれ設けられ、前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとをそれぞれ独立して回転駆動可能に構成され、
     前記アクチュエータ毎の出力トルクが前記アクチュエータ毎に設定される目標値に一致するように制御される縦延伸装置。
    In a longitudinal stretching apparatus for stretching a thermoplastic film heated by a heating roll by a peripheral speed difference between a plurality of low-speed driving rolls and a plurality of high-speed driving rolls having a peripheral speed larger than that of the low-speed driving rolls, the plurality of low-speed driving rolls And the plurality of high-speed drive rolls are composed of a suction roll having a plurality of suction holes on the transport surface of the thermoplastic film,
    A plurality of heating rolls are provided between the adjacent low-speed drive roll and the high-speed drive roll,
    Actuators are provided in the plurality of low-speed drive rolls, the plurality of high-speed drive rolls, and the plurality of heating rolls, respectively, and the plurality of low-speed drive rolls, the plurality of high-speed drive rolls, and the plurality of heating rolls are independent of each other. Is configured to be rotationally driven,
    A longitudinal stretching apparatus controlled so that an output torque for each actuator matches a target value set for each actuator.
  2.  前記複数の低速駆動ロールと前記複数の高速駆動ロールと前記複数の加熱ロールとに前記アクチュエータがそれぞれトルク制御装置を介して接続され、
     前記出力トルクと前記目標値との差が規定値よりも大きい場合、そのアクチュエータに接続されているトルク制御装置の出力軸の回転速度を維持するように、そのトルク制御装置の入力軸と出力軸との間に回転速度差が生じ、前記出力トルクと前記目標値との差が規定値よりも小さい場合、そのアクチュエータに接続されているトルク制御装置の入力軸と出力軸との間に回転速度差が生じないように構成される請求項1に記載の縦延伸装置。
    The actuators are respectively connected to the plurality of low-speed drive rolls, the plurality of high-speed drive rolls, and the plurality of heating rolls via a torque control device,
    When the difference between the output torque and the target value is larger than a specified value, the input shaft and the output shaft of the torque control device are maintained so as to maintain the rotational speed of the output shaft of the torque control device connected to the actuator. If the difference between the output torque and the target value is smaller than the specified value, the rotation speed between the input shaft and the output shaft of the torque control device connected to the actuator The longitudinal stretching apparatus according to claim 1, wherein the longitudinal stretching apparatus is configured not to cause a difference.
  3.  前記トルク制御装置がパウダークラッチから構成され、前記目標値に基づいてそのトルク伝達量が制御される請求項2に記載の縦延伸装置。 The longitudinal stretching device according to claim 2, wherein the torque control device is configured by a powder clutch, and a torque transmission amount is controlled based on the target value.
  4.  前記複数の加熱ロールがそれぞれ独立して温度制御可能に構成される請求項1から請求項3のいずれか一項に記載の縦延伸装置。 The longitudinal stretching apparatus according to any one of claims 1 to 3, wherein each of the plurality of heating rolls is configured to be independently temperature-controllable.
PCT/JP2017/036207 2016-10-31 2017-10-05 Longitudinal drawing device WO2018079213A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197015283A KR20190076016A (en) 2016-10-31 2017-10-05 Longitudinal elongation device
CN201780076171.4A CN110049856B (en) 2016-10-31 2017-10-05 Longitudinal stretching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213894 2016-10-31
JP2016213894A JP6622680B2 (en) 2016-10-31 2016-10-31 Longitudinal stretching device

Publications (1)

Publication Number Publication Date
WO2018079213A1 true WO2018079213A1 (en) 2018-05-03

Family

ID=62023484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036207 WO2018079213A1 (en) 2016-10-31 2017-10-05 Longitudinal drawing device

Country Status (4)

Country Link
JP (1) JP6622680B2 (en)
KR (1) KR20190076016A (en)
CN (1) CN110049856B (en)
WO (1) WO2018079213A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211772A (en) * 2020-01-21 2021-08-06 霍索卡瓦阿尔彼股份公司 Apparatus and method for uniaxial length change of a film web
WO2021185830A1 (en) * 2020-03-20 2021-09-23 Windmöller & Hölscher Kg Stretching device and method for stretching a plastic film in the transport direction thereof
WO2023001961A1 (en) * 2021-07-22 2023-01-26 Windmöller & Hölscher Kg Avoidance of scratches on the film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733410A1 (en) * 2019-05-02 2020-11-04 Henkel AG & Co. KGaA Process for bonding flexible films and device for carrying out the same
CN113352586B (en) * 2021-06-15 2022-08-26 广东金明精机股份有限公司 Vacuum metal stretching roller for longitudinal stretching of film
CN113686243B (en) * 2021-08-24 2023-11-03 凌云光技术股份有限公司 Method for measuring relative stretching amount of printing material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310439A (en) * 1987-06-12 1988-12-19 Toshiba Corp Control device for drawing machine
JP2002254509A (en) * 2001-02-28 2002-09-11 Fuji Photo Film Co Ltd Stretching apparatus
JP2008524011A (en) * 2004-12-16 2008-07-10 ブリュックナー マシーネンバウ ゲーエムベーハー Device and method for driving preheating roller device of calendar device
JP2008213332A (en) * 2007-03-05 2008-09-18 Fujifilm Corp Manufacturing method of stretched film, stretched film manufactured by the method, and phase difference film
JP2013082149A (en) * 2011-10-11 2013-05-09 Ube Industries Ltd Stretching device and method of forming polyimide film using the same
JP2016044295A (en) * 2014-08-27 2016-04-04 日東電工株式会社 Method for producing porous polytetrafluoroethylene sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983108A (en) * 1995-09-12 1997-03-28 Matsushita Electric Ind Co Ltd Method and device for manufacturing circuit substrate
JP2008221722A (en) 2007-03-14 2008-09-25 Fujifilm Corp Process and apparatus for longitudinally stretching thermoplastic resin film
CN102917858B (en) * 2010-03-31 2015-12-09 宇部兴产株式会社 The method of stretcher and its manufacture polyimide film of use
EP2697424B1 (en) * 2011-04-15 2016-05-18 Valmet Technologies, Inc. A suction roll and a method of operating such a suction roll
JP5819876B2 (en) * 2013-03-26 2015-11-24 富士フイルム株式会社 Method for producing stretched film
JP6362486B2 (en) * 2014-09-08 2018-07-25 株式会社日本触媒 Manufacturing method of optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310439A (en) * 1987-06-12 1988-12-19 Toshiba Corp Control device for drawing machine
JP2002254509A (en) * 2001-02-28 2002-09-11 Fuji Photo Film Co Ltd Stretching apparatus
JP2008524011A (en) * 2004-12-16 2008-07-10 ブリュックナー マシーネンバウ ゲーエムベーハー Device and method for driving preheating roller device of calendar device
JP2008213332A (en) * 2007-03-05 2008-09-18 Fujifilm Corp Manufacturing method of stretched film, stretched film manufactured by the method, and phase difference film
JP2013082149A (en) * 2011-10-11 2013-05-09 Ube Industries Ltd Stretching device and method of forming polyimide film using the same
JP2016044295A (en) * 2014-08-27 2016-04-04 日東電工株式会社 Method for producing porous polytetrafluoroethylene sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211772A (en) * 2020-01-21 2021-08-06 霍索卡瓦阿尔彼股份公司 Apparatus and method for uniaxial length change of a film web
WO2021185830A1 (en) * 2020-03-20 2021-09-23 Windmöller & Hölscher Kg Stretching device and method for stretching a plastic film in the transport direction thereof
WO2023001961A1 (en) * 2021-07-22 2023-01-26 Windmöller & Hölscher Kg Avoidance of scratches on the film

Also Published As

Publication number Publication date
CN110049856A (en) 2019-07-23
JP2018069639A (en) 2018-05-10
KR20190076016A (en) 2019-07-01
JP6622680B2 (en) 2019-12-18
CN110049856B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP6622680B2 (en) Longitudinal stretching device
TWI629159B (en) Stretched film production method and film stretching apparatus
KR102121629B1 (en) Method for manufacturing functional film and web conveyance device
JP2009203055A (en) Method for manufacturing web roll
TW200812892A (en) Feeding mechanism for continuous processing of elongate base material, processing apparatus and thin film forming apparatus using the same, and elongate member produced thereby
JP5819876B2 (en) Method for producing stretched film
JP6264823B2 (en) Recording medium heating apparatus, printing system, and pretreatment system
JP6190637B2 (en) Stretched film manufacturing method and manufacturing apparatus thereof
JP2013167715A (en) Image forming apparatus and image forming system
JP5647649B2 (en) Knurling device, knurling method, film roll manufacturing method
WO2016067916A1 (en) Grooved roller, and apparatus and method for manufacturing plastic film using same
JP6899691B2 (en) Transport device, transport method
WO2018223684A1 (en) Roll forming device for plastic floor
JP2016219529A (en) Film manufacturing apparatus
JP5803796B2 (en) Processing method for long resin film
JP6634207B2 (en) Longitudinal stretching device
JP6036608B2 (en) Coating equipment
JP4908158B2 (en) Film manufacturing apparatus and film manufacturing method
JP6442376B2 (en) Polymer film
JP7471559B1 (en) Sheet vacuum laminating equipment
JP4219783B2 (en) Method and apparatus for heating metal foil
KR101552935B1 (en) Roll imprinting apparatus and method thereof
JP2021134017A (en) Heating control device for sheet-like object
JP2020527195A (en) Heat treatment equipment for vacuum chambers, deposition equipment for depositing materials on flexible substrates, heat treatment methods for flexible substrates in vacuum chambers, and methods for processing flexible substrates.
JP2004314358A (en) Method for heating and pressing product to be processed by double belt machine and the double belt machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015283

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17864500

Country of ref document: EP

Kind code of ref document: A1