WO2018079118A1 - Polyarylate resin and electrophotographic photoreceptor - Google Patents

Polyarylate resin and electrophotographic photoreceptor Download PDF

Info

Publication number
WO2018079118A1
WO2018079118A1 PCT/JP2017/033119 JP2017033119W WO2018079118A1 WO 2018079118 A1 WO2018079118 A1 WO 2018079118A1 JP 2017033119 W JP2017033119 W JP 2017033119W WO 2018079118 A1 WO2018079118 A1 WO 2018079118A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
general formula
unit represented
polyarylate resin
carbon atoms
Prior art date
Application number
PCT/JP2017/033119
Other languages
French (fr)
Japanese (ja)
Inventor
東 潤
健二 北口
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to CN201780062330.5A priority Critical patent/CN109803994A/en
Priority to JP2018547189A priority patent/JP6753471B2/en
Publication of WO2018079118A1 publication Critical patent/WO2018079118A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Definitions

  • the present invention relates to a polyarylate resin and an electrophotographic photosensitive member.
  • the electrophotographic photoreceptor is used in an electrophotographic image forming apparatus.
  • the electrophotographic photosensitive member for example, an electrophotographic photosensitive member having a single photosensitive layer is used.
  • the single photosensitive layer has a charge generation function and a charge transport function.
  • the surface layer of the electrophotographic photoreceptor described in Patent Document 1 contains, for example, a polyarylate resin obtained from a dihydric phenol component and a divalent carboxylic acid component shown in the following structural unit examples.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a polyarylate resin capable of suppressing the occurrence of filming of an electrophotographic photoreceptor when incorporated in a photosensitive layer. Another object of the present invention is to provide an electrophotographic photosensitive member that can suppress the occurrence of filming by containing such a polyarylate resin.
  • the polyarylate resin of the present invention contains a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
  • R 1 represents a hydrogen atom or a methyl group.
  • X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D).
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer.
  • the photosensitive layer includes a charge generator, a hole transport agent, and a binder resin.
  • the binder resin includes a polyarylate resin.
  • the polyarylate resin includes a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
  • R 1 represents a hydrogen atom or a methyl group.
  • X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D).
  • the filming of the electrophotographic photosensitive member can be suppressed when it is contained in the photosensitive layer. Moreover, according to the electrophotographic photosensitive member of the present invention, the occurrence of filming can be suppressed.
  • FIG. 1 shows a 1 H-NMR spectrum of a polyarylate resin represented by the chemical formula (PA-1). An enlarged view of the range of 6.90 ppm to 9.00 ppm of the 1 H-NMR spectrum shown in FIG. 3 is shown.
  • FIG. 4 shows an enlarged view of the range of 1.2 ppm to 4.5 ppm of the 1 H-NMR spectrum shown in FIG.
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • “polymer” is added after the compound name to indicate the polymer name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • an alkyl group having 1 to 8 carbon atoms an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, 1 carbon atom
  • an alkoxy group having 4 or less and a cycloalkane having 5 to 7 carbon atoms have the following meanings, respectively.
  • the alkyl group having 1 to 8 carbon atoms, the alkyl group having 1 to 6 carbon atoms and the alkyl group having 1 to 4 carbon atoms are each linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group Hexyl group, heptyl group or octyl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms are groups having 1 to 6 carbon atoms among the groups described as examples of alkyl groups having 1 to 8 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms are groups having 1 to 4 carbon atoms among the groups described as examples of alkyl groups having 1 to 8 carbon atoms.
  • the alkoxy group having 1 to 8 carbon atoms and the alkoxy group having 1 to 4 carbon atoms are each linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentyloxy, iso Examples include a pentyloxy group, a neopentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group.
  • Examples of the alkoxy group having 1 to 4 carbon atoms are groups having 1 to 4 carbon atoms among the groups described as examples of the alkoxy group having 1 to 8 carbon atoms.
  • a cycloalkane having 5 to 7 carbon atoms is unsubstituted.
  • Examples of the cycloalkane having 5 to 7 carbon atoms are cyclopentane, cyclohexane or cycloheptane.
  • the present embodiment relates to a polyarylate resin.
  • the polyarylate resin of this embodiment contains the repeating unit represented by General formula (1) and the repeating unit represented by General formula (2).
  • the polyarylate resin containing the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) may be referred to as a polyarylate resin (PA).
  • PA polyarylate resin
  • the repeating unit represented by General formula (1) and the repeating unit represented by General formula (2) may be described as a repeating unit (1) and a repeating unit (2), respectively.
  • R 1 represents a hydrogen atom or a methyl group.
  • X represents a divalent group represented by chemical formula (2A), (2B), (2C) or (2D).
  • the polyarylate resin (PA) of this embodiment has both a repeating unit (1) and a repeating unit (2). Therefore, when the polyarylate resin (PA) is contained in the photosensitive layer, filming of the electrophotographic photosensitive member (hereinafter sometimes referred to as a photosensitive member) can be suppressed. Filming is a phenomenon in which minute components adhere to and adhere to the surface of the photoreceptor.
  • An example of the minute component is a toner component, and more specifically, the toner or an external additive released from the toner.
  • Another example of the minute component is a non-toner component, and more specifically, a minute component (for example, paper dust) of the recording medium.
  • R 1 in general formulas (1) and (2) both represents a hydrogen atom.
  • R 1 in the general formulas (1) and (2) each represents a methyl group.
  • R 1 in the general formulas (1) and (2) is methyl, respectively. It is preferable to represent a group.
  • X in the general formula (2) is represented by the general formulas (2A) and (2B). Or a divalent group represented by (2D).
  • a preferred example of the repeating unit (1) is a repeating unit represented by the chemical formula (1-1) or (1-2).
  • the repeating unit represented by the chemical formula (1-1) and the repeating unit represented by the chemical formula (1-2) may be referred to as repeating units (1-1) and (1-2), respectively.
  • a more preferred example of the repeating unit (1) is the repeating unit (1-1).
  • a preferred example of the repeating unit (2) is a repeating unit represented by the chemical formula (2-1), (2-2), (2-3) or (2-4).
  • the repeating units represented by chemical formulas (2-1), (2-2), (2-3) and (2-4) are represented by repeating units (2-1), (2-2), Sometimes described as (2-3) and (2-4).
  • a more preferred example of the repeating unit (2) is the repeating unit (2-1), (2-2) or (2-3).
  • PA polyarylate resin
  • a more preferred embodiment is a polyarylate resin (PA) in which the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-3).
  • PA polyarylate resin
  • Each of the divalent groups is bonded to a carbonyl group in a positional relationship in which the molecular chain of the polyarylate resin (PA) is linear. Since the polyarylate resin (PA) has a group that forms such a positional relationship, in addition to the filming resistance of the photoreceptor, the abrasion resistance and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor are improved. Can do.
  • the number n 1 and repeating units (2) 2 preferably satisfies the following calculation formula (i). 0.30 ⁇ n 1 / (n 1 + n 2 ) ⁇ 0.70 (i)
  • N 1 / (n 1 + n 2) is to the sum of the number n 2 of the polyarylate resin number n 1 and repeating units of the repeating units (1) contained in (PA) (2), the repeating units (1 It represents the ratio of the number n 1 of).
  • the ratio n 1 / (n 1 + n 2 ) is 0.30 or more and 0.70 or less, the filming resistance, wear resistance, and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor can be improved in a balanced manner.
  • the ratio n 1 / (n 1 + n 2 ) is more preferably 0.40 or more and 0.60 or less, and further preferably 0.50.
  • the ratio n 2 / number n 2 of the repeating units (2) ( n 1 + n 2 ) is preferably 0.30 or more and 0.70 or less, more preferably 0.40 or more and 0.60 or less, and still more preferably 0.50.
  • n 1 represents the repeating unit (1-1) or (1-2) contained in the polyarylate resin (PA). It is equivalent to the number of When the repeating unit (2) is the repeating unit (2-1), (2-2), (2-3) or (2-4), n 2 is a repeating unit contained in the polyarylate resin (PA). This corresponds to the number of units (2-1), (2-2), (2-3) or (2-4).
  • Each of the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) is not a value obtained from one molecular chain, but is a value of the polyarylate resin (PA) contained in the photosensitive layer. It is an average value of values obtained from the whole (a plurality of molecular chains).
  • Each of the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) is measured, for example, by the following method.
  • a 1 H-NMR spectrum of polyarylate resin (PA) is measured using a proton nuclear magnetic resonance spectrometer.
  • CDCl 3 is used as a solvent, and tetramethylsilane (TMS) is used as an internal standard sample. From the ratio between the peak characteristic of the repeating unit (1) and the peak characteristic of the repeating unit (2) in the 1 H-NMR spectrum of the polyarylate resin (PA) obtained, the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) are calculated.
  • the arrangement of the repeating units (1) and (2) in the polyarylate resin (PA) is not particularly limited.
  • the polyarylate resin (PA) may be, for example, a random copolymer, an alternating copolymer, a periodic copolymer, or a block copolymer.
  • the random copolymer is a copolymer in which repeating units (1) and repeating units (2) are randomly arranged.
  • the alternating copolymer is a copolymer in which repeating units (1) and repeating units (2) are alternately arranged.
  • the periodic copolymer is a copolymer in which one or more repeating units (1) and one or more repeating units (2) are periodically arranged.
  • the block copolymer is a copolymer in which blocks formed from a plurality of repeating units (1) and blocks formed from a plurality of repeating units (2) are arranged.
  • the viscosity average molecular weight of the polyarylate resin (PA) is preferably 10,000 or more, more preferably 20,000 or more, further preferably 30,000 or more, and 50,000 or more. It is particularly preferred. When the viscosity average molecular weight of the polyarylate resin (PA) is 10,000 or more, the abrasion resistance of the binder resin is increased, and the charge transport layer or the single-layer type photosensitive layer is hardly worn. On the other hand, the viscosity average molecular weight of the binder resin is preferably 80,000 or less, and more preferably 60,000 or less.
  • the binder resin has a viscosity average molecular weight of 80,000 or less
  • the polyarylate resin (PA) is easily dissolved in the solvent for forming the charge transport layer or the solvent for forming the single-layer type photosensitive layer. There is a tendency that the formation of the layer-type photosensitive layer is facilitated.
  • the method for producing the polyarylate resin (PA) is not particularly limited.
  • Examples of the method for producing the polyarylate resin (PA) include a method of polycondensing an aromatic diol and an aromatic dicarboxylic acid for constituting a repeating unit of the polyarylate resin.
  • As the condensation polymerization method a known synthesis method (more specifically, solution polymerization, melt polymerization, interfacial polymerization, or the like) can be employed.
  • Two types of aromatic dicarboxylic acids for synthesizing polyarylate resin (PA) are used.
  • the two types of aromatic dicarboxylic acids for synthesizing the polyarylate resin (PA) may be referred to as a first aromatic dicarboxylic acid and a second aromatic dicarboxylic acid, respectively.
  • the first aromatic dicarboxylic acid is a compound represented by the chemical formula (DC-1).
  • a preferable example of the compound represented by the chemical formula (DC-1) is a compound represented by the chemical formula (DC-1-1) (hereinafter sometimes referred to as the compound (DC-1-1)). .
  • the second aromatic dicarboxylic acid is a compound represented by the chemical formula (DC-2), (DC-3), (DC-4) or (DC-5).
  • DC-2 chemical formula
  • DC-3 the compounds represented by the chemical formulas (DC-2), (DC-3), (DC-4) and (DC-5) are respectively represented by the compounds (DC-2), (DC-3), (DC -4) and (DC-5).
  • the first aromatic dicarboxylic acid and the second aromatic dicarboxylic acid may each be derivatized and used.
  • Examples of derivatives of aromatic dicarboxylic acids are aromatic dicarboxylic acid dichlorides, aromatic dicarboxylic acid dimethyl esters, aromatic dicarboxylic acid diethyl esters or aromatic dicarboxylic acid anhydrides.
  • Aromatic dicarboxylic acid dichloride is a compound in which two “—C ( ⁇ O) —OH” groups of an aromatic dicarboxylic acid are each replaced with a “—C ( ⁇ O) —Cl” group.
  • the aromatic diol for synthesizing the polyarylate resin (PA) is a compound represented by the chemical formulas (BP-1) and (BP-2) (hereinafter referred to as the compounds (BP-1) and (BP-2), respectively) May be described).
  • the aromatic diol for synthesizing the polyarylate resin (PA) may be used after being transformed into an aromatic diacetate.
  • a base and a catalyst may be added.
  • the base and catalyst can be appropriately selected from known bases and catalysts.
  • An example of a base is sodium hydroxide.
  • catalysts are benzyltributylammonium chloride, ammonium chloride, ammonium bromide, quaternary ammonium salts, triethylamine or trimethylamine.
  • the polyarylate resin (PA) may contain only the repeating unit (1) and the repeating unit (2) as a repeating unit.
  • the polyarylate resin (PA) may further include a repeating unit other than the repeating unit (1) and the repeating unit (2) in addition to the repeating unit (1) and the repeating unit (2).
  • the total content of the repeating unit (1) and the repeating unit (2) contained in the polyarylate resin (PA) is 80% by number or more based on the total number of the repeating units contained in the polyarylate resin (PA). Is more preferable, 90% by number or more is more preferable, and 100% by number is particularly preferable.
  • the polyarylate resin (PA) is a repeating unit ( 1) and repeating unit (2) only.
  • the polyarylate resin (PA) according to this embodiment has been described above.
  • the photoreceptor includes a conductive substrate and a photosensitive layer.
  • the photosensitive layer contains a charge generating agent, a hole transport agent, and a polyarylate resin (PA) as a binder resin.
  • the photoreceptor may be a single-layer photoreceptor or a laminated photoreceptor.
  • FIG. 1A to FIG. 1C are partial cross-sectional views showing an example of a photoreceptor 100 (laminated photoreceptor), and this photoreceptor 100 includes a polyarylate resin according to this embodiment.
  • a laminated photoreceptor as the photoreceptor 100 includes, for example, a conductive substrate 101 and a photosensitive layer 102.
  • the photosensitive layer 102 includes a charge generation layer 102a and a charge transport layer 102b.
  • the multilayer photoreceptor includes the charge generation layer 102 a and the charge transport layer 102 b as the photosensitive layer 102.
  • the charge transport layer 102b may be provided on the conductive substrate 101, and the charge generation layer 102a may be provided on the charge transport layer 102b.
  • the charge transport layer 102b is generally thicker than the charge generation layer 102a, the charge transport layer 102b is less likely to be damaged than the charge generation layer 102a. Therefore, in order to improve the abrasion resistance of the multilayer photoreceptor, as shown in FIG. 1A, a charge generation layer 102a is provided on the conductive substrate 101, and a charge transport layer 102b is provided on the charge generation layer 102a. It is preferable to be provided.
  • the multilayer photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a photosensitive layer 102, and an intermediate layer 103 (undercoat layer).
  • the intermediate layer 103 is provided between the conductive substrate 101 and the photosensitive layer 102.
  • the photosensitive layer 102 may be provided directly on the conductive substrate 101.
  • the photosensitive layer 102 is interposed on the conductive substrate 101 with an intermediate layer 103 interposed therebetween. May be provided.
  • a protective layer 104 may be provided on the photosensitive layer 102.
  • the thicknesses of the charge generation layer 102a and the charge transport layer 102b are not particularly limited as long as the functions as the respective layers can be sufficiently expressed.
  • the thickness of the charge generation layer 102a is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the charge transport layer 102b is preferably 2 ⁇ m or more and 100 ⁇ m or less, and more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the charge generation layer 102a in the photosensitive layer 102 contains a charge generation agent.
  • the charge generation layer 102a may contain a binder resin for a charge generation layer (hereinafter sometimes referred to as a base resin).
  • the charge generation layer 102a may contain an additive as necessary.
  • the charge transport layer 102b in the photosensitive layer 102 contains a binder resin and a hole transport agent.
  • the charge transport layer 102b may contain at least one of an electron acceptor compound and an additive as necessary.
  • the charge transport layer 102b containing a polyarylate resin (PA) is preferably disposed as the outermost surface layer of the photoreceptor 100.
  • PA polyarylate resin
  • FIGS. 2A to 2C are partial cross-sectional views showing another example (single-layer type photosensitive member) of the photosensitive member 100, and the photosensitive member 100 includes the polyarylate resin according to the present embodiment.
  • a single-layer type photoreceptor as the photoreceptor 100 includes, for example, a conductive substrate 101 and a photosensitive layer 102.
  • the single layer type photoreceptor as the photoreceptor 100 includes a single layer type photosensitive layer 102 c as the photosensitive layer 102.
  • the single-layer type photosensitive layer 102c is a single photosensitive layer 102.
  • the single layer type photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a single layer type photosensitive layer 102c, and an intermediate layer 103 (undercoat layer).
  • the intermediate layer 103 is provided between the conductive substrate 101 and the single-layer type photosensitive layer 102c.
  • the photosensitive layer 102 may be provided directly on the conductive substrate 101, or as shown in FIG. 2B, the photosensitive layer 102 is provided on the conductive substrate 101 via the intermediate layer 103. May be.
  • the single layer type photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a single layer type photosensitive layer 102c, and a protective layer 104.
  • the protective layer 104 is provided on the single-layer type photosensitive layer 102c.
  • the thickness of the single-layer type photosensitive layer 102c is not particularly limited as long as the function as the single-layer type photosensitive layer can be sufficiently expressed.
  • the thickness of the single-layer photosensitive layer 102c is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the single-layer type photosensitive layer 102c as the photosensitive layer 102 contains a charge generator, a binder resin, and a hole transport agent.
  • the single layer type photosensitive layer 102c may further contain an electron transport agent.
  • the single-layer type photosensitive layer 102c may contain an additive as necessary.
  • the photoreceptor 100 is a single-layer photoreceptor, the charge generator, the binder resin, the hole transport agent, and the components (for example, an electron transport agent or an additive) that are added as necessary are one layer.
  • the photosensitive layer 102 single-layer type photosensitive layer 102c.
  • the single-layer type photosensitive layer 102 c containing polyarylate resin (PA) is disposed as the outermost surface layer of the photoreceptor 100.
  • PA polyarylate resin
  • the binder resin includes the polyarylate resin (PA) described above.
  • PA polyarylate resin
  • the photosensitive layer may contain only polyarylate resin (PA) as a binder resin.
  • the photosensitive layer may further contain a binder resin other than the polyarylate resin (PA) (hereinafter sometimes referred to as other binder resin) in addition to the polyarylate resin (PA) as the binder resin.
  • the content of the polyarylate resin (PA) is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass with respect to the mass of the binder resin.
  • the photosensitive layer for example, the charge transport layer or the single-layer type photosensitive layer
  • PA the photosensitive layer as the binder resin. including.
  • thermoplastic resins examples include thermoplastic resins, thermosetting resins, and photocurable resins.
  • thermoplastic resin examples include polycarbonate resins, polyarylate resins other than polyarylate resins (PA), styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, acrylic acid polymers, Styrene-acrylic acid copolymer, polyethylene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin,
  • the resin examples include urethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyester resin, and polyether resin.
  • thermosetting resin a silicone resin, an epoxy resin, a phenol resin, a urea resin, or a melamine resin is mentioned, for example.
  • the photocurable resin include epoxy acrylic acid (acrylic acid adduct of epoxy compound) or urethane-acrylic acid (acrylic acid adduct of urethane compound).
  • binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hole transporting agent examples include triphenylamine derivatives, diamine derivatives (for example, N, N, N ′, N′-tetraphenylbenzidine derivatives, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′, N′-tetraphenylnaphthylenediamine derivative, N, N, N ′, N′-tetraphenylphenanthrylenediamine derivative or di (aminophenylethenyl) benzene derivative), oxadiazole series Compounds (eg, 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole), styryl compounds (eg, 9- (4-diethylaminostyryl) anthracene), carbazole compounds (eg, , Polyvinylcarbazole), organic polysilane compounds, pyrazoline compounds (for example, triphenylamine derivative
  • the hole transport agent may contain a compound represented by the general formula (10), (11) or (12) (hereinafter sometimes referred to as compound (10), (11) or (12)). preferable.
  • hole transport agents other than the compounds (10), (11) and (12) hereinafter, may be referred to as other hole transport agents
  • the compounds (10), (11) and (12), and other hole transport agents will be described.
  • Compound (10) is represented by the following general formula (10).
  • R 101 and R 108 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group optionally having an alkyl group having 1 to 8 carbon atoms. Or an alkoxy group having 1 to 8 carbon atoms.
  • R 103 , R 104 , R 105 , R 106 and R 107 may each independently have a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 1 to 8 carbon atoms.
  • a phenyl group or an alkoxy group having 1 to 8 carbon atoms is represented.
  • R 103 , R 104 , R 105 , R 106 and R 107 may be bonded to represent a cycloalkane having 5 to 7 carbon atoms.
  • R102 and R109 each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms.
  • b 1 and b 2 each independently represents an integer of 0 or more and 5 or less.
  • the alkyl group having 1 to 8 carbon atoms represented by R 101 to R 109 is preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Is more preferable, and a methyl group or an n-butyl group is still more preferable.
  • the phenyl group represented by R 101 to R 109 may have an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the phenyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group.
  • the alkoxy group having 1 to 8 carbon atoms represented by R 101 to R 109 is preferably an alkoxy group having 1 to 4 carbon atoms, and more preferably a methoxy group or an ethoxy group.
  • R 103 , R 104 , R 105 , R 106 and R 107 may be bonded to each other to represent a cycloalkane having 5 to 7 carbon atoms.
  • R 106 and R 107 adjacent one of R 103, R 104, R 105 , R 106 and R 107 may be bonded to each other to form a 5 carbon atoms to 7 cycloalkane.
  • the plurality of R 102 may be the same as or different from each other.
  • the plurality of R 109 may be the same as or different from each other. It is preferable that b 1 and b 2 each independently represent 0 or 1.
  • R 101 and R 108 preferably represent a phenyl group or a hydrogen atom having an alkyl group having 1 to 8 carbon atoms.
  • R 102 and R 109 preferably represent an alkyl group having 1 to 8 carbon atoms.
  • R 103 , R 104 , R 105 , R 106 and R 107 each preferably independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms. .
  • adjacent two of R 103 , R 104 , R 105 , R 106 and R 107 are bonded to each other to form a cycloalkane having 5 to 7 carbon atoms.
  • b 1 and b 2 each independently represent 0 or 1.
  • R 101 and R 108 each represent a hydrogen atom in the general formula (10).
  • Preferred examples of the compound (10) include compounds represented by the chemical formula (HTM-1), (HTM-2), (HTM-3) or (HTM-4) (hereinafter referred to as the compound (HTM-1), (HTM-2), (HTM-3) or (HTM-4) may be mentioned).
  • Compound (11) is represented by the following general formula (11).
  • R 111 and R 112 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group.
  • R113 , R114 , R115 , R116 , R117 and R118 each independently represents an alkyl group having 1 to 8 carbon atoms or a phenyl group.
  • d 1 and d 2 each independently represents 0 or 1;
  • d 3 , d 4 , d 5 and d 6 each independently represent an integer of 0 or more and 5 or less.
  • d 7 and d 8 each independently represents an integer of 0 or more and 4 or less.
  • the alkyl group having 1 to 8 carbon atoms represented by R 111 to R 118 is preferably an alkyl group having 1 to 4 carbon atoms, and is a methyl group or an ethyl group. Is more preferable.
  • the plurality of R 113 may be the same as or different from each other.
  • the plurality of R 114 may be the same as or different from each other.
  • the plurality of R 115 may be the same as or different from each other.
  • the plurality of R 116 may be the same as or different from each other.
  • d 7 represents an integer of 2 or more and 4 or less
  • the plurality of R 117 may be the same as or different from each other.
  • d 8 represents an integer of 2 or more and 4 or less
  • the plurality of R 118 may be the same as or different from each other.
  • R 111 and R 112 preferably each independently represent a hydrogen atom or a phenyl group.
  • R 113 , R 114 , R 115 , R 116 , R 117 and R 118 each independently preferably represents an alkyl having 1 to 8 carbon atoms.
  • d 1 and d 2 are the same as each other, and preferably represent 0 or 1.
  • d 3 and d 5 each preferably represent 0.
  • d 4 and d 6 are the same as each other, and preferably represent 0 or 2.
  • d 7 and d 8 each preferably represent 0.
  • d 1 and d 2 each represent 1.
  • R 111 and R 112 each preferably represent a hydrogen atom.
  • d 1 and d 2 each represent 1, and R 111 and R 112 each represent a hydrogen atom. Particularly preferred.
  • compound (11) include compounds represented by chemical formula (HTM-5), (HTM-6) or (HTM-7) (hereinafter referred to as compound (HTM-5), (HTM-6) or (It may be described as (HTM-7)).
  • Compound (12) is represented by the following general formula (12).
  • R 121 , R 122 , R 123 , R 124 , R 125 and R 126 are each independently an alkyl group having 1 to 8 carbon atoms, a phenyl group, or 1 to 8 carbon atoms.
  • the following alkoxy groups are represented. e 1 , e 2 , e 4 and e 5 each independently represents an integer of 0 or more and 5 or less. e 3 and e 6 each independently represents an integer of 0 or more and 4 or less.
  • the alkyl group having 1 to 8 carbon atoms represented by R 121 to R 126 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
  • the plurality of R 121 may be the same as or different from each other.
  • the plurality of R 122 may be the same as or different from each other.
  • the plurality of R 123 may be the same as or different from each other.
  • the plurality of R 124 may be the same as or different from each other.
  • the plurality of R 125 may be the same as or different from each other.
  • the plurality of R 126 may be the same as or different from each other.
  • the diphenylaminophenyl ethenyl group having R 124 , R 125 and R 126 is bonded to the ortho, meta or para position of the phenyl group to which the diphenylaminophenyl ethenyl having R 121 , R 122 and R 123 is bonded. .
  • e 1, e 2, e 4 and e 5 are each independently preferably represents an integer of 0 to 2 or less. one of e 1 and e 2 represents 0 and the other represents 2 and one of e 4 and e 5 represents 0 and the other represents 2, or e 1 , e 2 , e 4 and e 5 are each 1 Is more preferable. It is preferable that e 3 and e 6 each represent 0.
  • R 121 , R 122 , R 123 , R 124 , R 125 and R 126 each independently represents an alkyl group having 1 to 8 carbon atoms. It is preferable that e 1 , e 2 , e 4 and e 5 each independently represent an integer of 0 or more and 2 or less. It is preferable that e 3 and e 6 each represent 0. In order to improve the filming resistance and wear resistance of the photoreceptor, one of e 1 and e 2 represents 0 and the other represents 2, and one of e 4 and e 5 represents 0 and the other is 2 Is more preferable.
  • Preferable examples of the compound (12) include compounds represented by the chemical formula (HTM-8) or (HTM-9) (hereinafter sometimes referred to as the compound (HTM-8) or (HTM-9)). Is mentioned.
  • the compound (10), (11) or (12) is preferable as the hole transport agent.
  • compounds (HTM-1) to (HTM-9) are more preferable as the hole transporting agent.
  • the hole transporting agent is preferably the compound (10), (11) or (12), and more preferably the compound (10).
  • the hole transport agent may be a compound (HTM-1), (HTM-2), (HTM-3), (HTM-5) or (HTM-8) is preferred, and compound (HTM-2) or (HTM-3) is more preferred.
  • the hole transporting agent is preferably compound (10), (11) or (12), and compound (11) is more preferred. preferable.
  • the compound (HTM-1), (HTM-2), (HTM-3), (HTM) -4), (HTM-5) or (HTM-6) is preferred, and compound (HTM-5) or (HTM-6) is more preferred.
  • holes contained in the photosensitive layer (specifically, charge transport layer or single layer type photosensitive layer)
  • this one kind of hole transport agent is preferably compound (10), (11) or (12).
  • the positive layer contained in the photosensitive layer (specifically, a charge transport layer or a single-layer type photosensitive layer).
  • the pore transport agent and the binder resin are as follows. There is only one kind of hole transport agent, and this one kind of hole transport agent is the compound (10), (11) or (12).
  • the binder resin is a polyarylate resin (PA) in which the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-3).
  • the photosensitive layer may contain only the compound (10), (11) or (12) as a hole transport agent.
  • the photosensitive layer further contains a hole transport agent other than the compounds (10), (11) and (12) in addition to the compound (10), (11) or (12) as a hole transport agent. May be.
  • the hole transport agent contains the compound (10), (11) or (12)
  • the content of the compound (10), (11) or (12) is 80 masses with respect to the mass of the hole transport agent. % Or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • HTM-10 hole transporting agents
  • HTM-12 hole transporting agents
  • the content of the hole transport agent is preferably 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the binder resin contained in the charge transport layer. More preferably, it is 20 parts by mass or more and 100 parts by mass or less.
  • the content of the hole transport agent contained in the monolayer type photosensitive layer is 10 masses with respect to 100 parts by mass of the binder resin contained in the monolayer type photosensitive layer. It is preferably no less than 200 parts by mass and more preferably no greater than 10 parts by mass and no greater than 100 parts by mass.
  • charge generator examples include phthalocyanine pigments, perylene pigments, bisazo pigments, trisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, indigo pigments, azurenium pigments, cyanine Pigments, inorganic photoconductive materials (for example, selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide or amorphous silicon) powders, pyrylium pigments, ansanthrone pigments, triphenylmethane pigments, selenium pigments, toluidine pigments, Examples include pyrazoline pigments and quinacridone pigments.
  • a charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the phthalocyanine pigment examples include metal-free phthalocyanine or metal phthalocyanine.
  • the metal phthalocyanine examples include titanyl phthalocyanine, hydroxygallium phthalocyanine, or chlorogallium phthalocyanine.
  • Metal-free phthalocyanine is represented by the chemical formula (CGM-1).
  • Titanyl phthalocyanine is represented by the chemical formula (CGM-2).
  • the phthalocyanine pigment may be crystalline or non-crystalline.
  • the crystal shape of the phthalocyanine pigment (for example, ⁇ type, ⁇ type, Y type, V type or II type) is not particularly limited, and phthalocyanine pigments having various crystal shapes are used.
  • Examples of the crystal of metal-free phthalocyanine include a metal-free phthalocyanine X-type crystal (hereinafter sometimes referred to as X-type metal-free phthalocyanine).
  • Examples of the crystal of titanyl phthalocyanine include ⁇ -type, ⁇ -type, and Y-type crystals of titanyl phthalocyanine (hereinafter sometimes referred to as ⁇ -type, ⁇ -type, or Y-type titanyl phthalocyanine).
  • Examples of the crystal of hydroxygallium phthalocyanine include a V-type crystal of hydroxygallium phthalocyanine.
  • the charge generator is preferably a phthalocyanine pigment, more preferably a metal-free phthalocyanine or titanyl phthalocyanine, and even more preferably an X-type metal-free phthalocyanine or a Y-type titanyl phthalocyanine.
  • Y-type titanyl phthalocyanine is particularly preferred.
  • An santhrone pigment is preferably used as a charge generating agent in a photoreceptor applied to an image forming apparatus using a short wavelength laser light source (for example, a laser light source having a wavelength of 350 nm to 550 nm).
  • a short wavelength laser light source for example, a laser light source having a wavelength of 350 nm to 550 nm.
  • the content of the charge generating agent is preferably 0.1 parts by weight or more and 50 parts by weight or less, and 0.5 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the binder resin contained in the photosensitive layer. More preferably, it is more preferably 0.5 parts by mass or more and 4.5 parts by mass or less.
  • the charge transport layer may contain an electron acceptor compound.
  • the single layer type photosensitive layer may contain an electron transport agent.
  • electron transport agents and electron acceptor compounds include quinone compounds, diimide compounds, hydrazone compounds, thiopyran compounds, trinitrothioxanthone compounds, 3,4,5,7-tetranitro-9-fluorenone compounds, Examples thereof include dinitroanthracene compounds, dinitroacridine compounds, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroacridine, succinic anhydride, maleic anhydride or dibromomaleic anhydride.
  • quinone compounds examples include diphenoquinone compounds (eg, 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone), azoquinone compounds, anthraquinone compounds, naphthoquinone compounds, Examples thereof include nitroanthraquinone compounds and dinitroanthraquinone compounds.
  • An electron transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • An electron acceptor compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the electron transport agent contained in the single layer type photosensitive layer is 5 parts by mass with respect to 100 parts by mass of the binder resin contained in the single layer type photosensitive layer.
  • the amount is preferably 100 parts by mass or less and more preferably 10 parts by mass or more and 80 parts by mass or less.
  • the content of the electron acceptor compound contained in the charge transport layer is 0.1 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the binder resin contained in the charge transport layer. Part or less.
  • the hole transport agent and the binder resin are any one of the following combinations. It is preferable that the hole transporting agent and the binder resin are any of the following combinations, and the charge generating agent is Y-type titanyl phthalocyanine. It is preferable that the hole transport agent and the binder resin are any of the following combinations, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone.
  • the hole transport agent and the binder resin are any of the following combinations, the charge generator is Y-type titanyl phthalocyanine, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4 4,4′-diphenoquinone is preferred.
  • the binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-3), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9);
  • the binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-1), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9);
  • the binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-2), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (H
  • the hole transporting agent and the binder resin are any of the following combinations. More preferably, the hole transporting agent and the binder resin are any of the following combinations, and the charge generating agent is Y-type titanyl phthalocyanine. More preferably, the hole transporting agent and the binder resin are any of the following combinations, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone. .
  • the hole transport agent and the binder resin are any of the following combinations
  • the charge generator is Y-type titanyl phthalocyanine
  • the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4 More preferably, 4'-diphenoquinone.
  • the polyarylate resins (PA-1) to (PA-6) will be described later in Examples.
  • the binder resin is polyarylate resin (PA-1), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
  • the binder resin is polyarylate resin (PA-2), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
  • the binder resin is polyarylate resin (PA-3), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
  • the binder resin is polyarylate resin (PA-4), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6),
  • additives include deterioration inhibitors (for example, antioxidants, radical scavengers, singlet quenchers or ultraviolet absorbers), softeners, surface modifiers, extenders, thickeners, dispersion stabilizers. , Waxes, acceptors, donors, surfactants, plasticizers, sensitizers or leveling agents.
  • Antioxidants include, for example, hindered phenols (eg, di (tert-butyl) p-cresol), hindered amines, paraphenylenediamine, arylalkanes, hydroquinones, spirochromans, spirodinones or their derivatives, organic sulfur compounds or An organic phosphorus compound is mentioned.
  • the conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor.
  • the conductive substrate may be formed of a material having at least a surface portion having conductivity.
  • An example of the conductive substrate is a conductive substrate formed of a conductive material.
  • Another example of the conductive substrate is a conductive substrate coated with a conductive material.
  • the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, and brass. These conductive materials may be used alone or in combination of two or more (for example, as an alloy). Among these materials having conductivity, aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
  • the shape of the conductive substrate is appropriately selected according to the structure of the image forming apparatus.
  • Examples of the shape of the conductive substrate include a sheet shape or a drum shape.
  • the thickness of the conductive substrate is appropriately selected according to the shape of the conductive substrate.
  • the intermediate layer (undercoat layer) contains, for example, inorganic particles and a resin (intermediate layer resin) used for the intermediate layer.
  • the presence of the intermediate layer is considered to suppress the increase in resistance by smoothing the flow of current generated when the photosensitive member is exposed while maintaining an insulating state capable of suppressing the occurrence of leakage.
  • the inorganic particles include metal (for example, aluminum, iron or copper), metal oxide (for example, titanium oxide, alumina, zirconium oxide, tin oxide or zinc oxide) particles or non-metal oxide (for example, silica). Particles. These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
  • the intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer.
  • the intermediate layer may contain an additive. Examples of the additive are the same as those of the photosensitive layer.
  • ⁇ Method for producing photoconductor> As a method for producing a photoreceptor, an example of a method for producing a laminated photoreceptor and an example of a method for producing a single layer photoreceptor will be described.
  • the photosensitive layer forming step includes a charge generation layer forming step and a charge transport layer forming step.
  • a coating liquid for forming the charge generation layer (hereinafter, sometimes referred to as a charge generation layer coating liquid) is prepared.
  • a charge generation layer coating solution is applied onto the conductive substrate.
  • at least a part of the solvent contained in the applied charge generation layer coating solution is removed to form a charge generation layer.
  • the charge generation layer coating solution includes, for example, a charge generation agent, a base resin, and a solvent.
  • Such a charge generation layer coating solution is prepared by dissolving or dispersing a charge generation agent and a base resin in a solvent.
  • An additive may be added to the charge generation layer coating solution as necessary.
  • a coating liquid for forming the charge transport layer (hereinafter, sometimes referred to as a charge transport layer coating liquid) is prepared.
  • a charge transport layer coating solution is applied onto the charge generation layer.
  • at least a part of the solvent contained in the applied charge transport layer coating solution is removed to form a charge transport layer.
  • the coating solution for charge transport layer contains a hole transport agent, a polyarylate resin (PA) as a binder resin, and a solvent.
  • the charge transport layer coating solution can be prepared by dissolving or dispersing a hole transport agent and a polyarylate resin (PA) in a solvent. If necessary, one or more electron acceptor compounds and additives may be added to the charge transport layer coating solution.
  • a coating solution for forming a single layer type photosensitive layer (hereinafter sometimes referred to as a coating solution for a single layer type photosensitive layer) is prepared.
  • a single layer type photosensitive layer coating solution is coated on a conductive substrate.
  • at least a part of the solvent contained in the applied photosensitive layer coating solution is removed to form a single-layer type photosensitive layer.
  • the single-layer photosensitive layer coating solution contains, for example, a charge generator, a hole transport agent, a polyarylate resin (PA) as a binder resin, and a solvent.
  • Such a single-layer photosensitive layer coating solution is prepared by dissolving or dispersing a charge generating agent, a hole transporting agent, and a polyarylate resin (PA) as a binder resin in a solvent.
  • a charge generating agent e.g., a charge generating agent
  • a hole transporting agent e.g., a hole transporting agent
  • a polyarylate resin e.g., PA
  • One or more of an electron transport agent and an additive may be added to the coating solution for the photosensitive layer as necessary.
  • the solvent contained in the coating solution for charge generation layer, the coating solution for charge transport layer, and the coating solution for single-layer type photosensitive layer dissolves each component contained in the coating solution. Or if it can disperse
  • the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic carbonization, and the like.
  • Hydrogen more specifically, benzene, toluene, xylene, etc.
  • halogenated hydrocarbon more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.
  • ether more specifically, dimethyl ether
  • Diethyl ether, tetrahydrofuran ethylene glycol dimethyl ether, or diethylene glycol dimethyl ether
  • ketones more specifically, acetone, methyl ethyl ketone, or cyclohexanone
  • esters more specifically, ethyl acetate or methyl acetate, etc.
  • Methyl formaldehyde dimethylformamide
  • dimethyl sulfoxide are preferably used.
  • the solvent contained in the charge transport layer coating solution is preferably different from the solvent contained in the charge generation layer coating solution. This is because when the charge transport layer coating solution is applied onto the charge generation layer, it is preferable that the charge generation layer does not dissolve in the solvent of the charge transport layer coating solution.
  • Coating solution is prepared by mixing each component and dispersing in a solvent.
  • a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
  • the coating liquid may contain, for example, a surfactant or a leveling agent.
  • the method for applying the coating solution is not particularly limited as long as it is a method capable of uniformly applying the coating solution.
  • the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
  • the method for removing at least a part of the solvent contained in the coating solution is not particularly limited as long as it is a method capable of evaporating the solvent in the coating solution.
  • the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of performing heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned.
  • the heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
  • the method for manufacturing a photoreceptor may further include a step of forming an intermediate layer as necessary.
  • a known method can be selected as appropriate for the step of forming the intermediate layer.
  • the following charge generating agents were prepared as materials for forming the charge generating layer of the photoreceptor.
  • the following hole transport agent and binder resin were prepared as materials for forming the charge transport layer of the photoreceptor.
  • CGM-2 Y-type titanyl phthalocyanine represented by the chemical formula (CGM-2) described in the embodiment was prepared as a charge generating agent.
  • Binder resin Polyarylate resins (PA-1) to (PA-4) were produced as binder resins.
  • PA-1 polyarylate resin
  • the following polyarylate resin (PA-1) was prepared.
  • the polyarylate resin (PA-1) contained only the repeating unit (1-1) and the repeating unit (2-3) as repeating units.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-1) was 0.50.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-1) was 0.50.
  • a 2 L three-necked flask equipped with a thermometer and a three-way cock was used as a reaction vessel.
  • a reaction vessel 20.01 g (82.56 mmol) of 1,1-bis (4-hydroxy-3-methylphenyl) ethane (compound (BP-1) described in the embodiment), 0.124 g of tert-butylphenol ( 0.826 mmol), 7.84 g (196 mmol) of sodium hydroxide and 0.240 g (0.768 mmol) of benzyltributylammonium chloride.
  • the air in the reaction vessel was replaced with argon gas. 600 mL of water was added to the contents of the reaction vessel.
  • the contents of the reaction vessel were stirred at 20 ° C. for 1 hour.
  • the content of the reaction vessel was cooled until the temperature of the content of the reaction vessel reached 10 ° C. to obtain an alkaline aqueous solution A.
  • the chloroform solution B was added to the alkaline aqueous solution A. This initiated a polymerization reaction. While adjusting the temperature (liquid temperature) of the contents of the reaction vessel to 13 ⁇ 3 ° C., the contents of the reaction vessel were stirred for 3 hours to proceed the polymerization reaction. Subsequently, the upper layer (water layer) in the contents of the reaction vessel was removed using a decant to obtain an organic layer. Next, 500 mL of ion-exchanged water was put into a 2 L Erlenmeyer flask. The resulting organic layer was added to the flask contents.
  • PA-2 polyarylate resin
  • the polyarylate resin (PA-2) contained only the repeating unit (1-1) and the repeating unit (2-1) as repeating units.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA- 2 ) was 0.50.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA- 2 ) was 0.50.
  • a polyarylate resin (PA-2) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 11.47 g (38.9 mmol) of 4,4′-oxybisbenzoic acid dichloride (dichloride of compound (DC-5) described in the embodiment) was converted into dichloride 38. of compound (DC-2) described in the embodiment. Changed to 9 mmol.
  • the resulting polyarylate resin (PA-2) had a viscosity average molecular weight of 57,000.
  • PA-3 Preparation of polyarylate resin (PA-3)
  • the following polyarylate resin (PA-3) was prepared.
  • the polyarylate resin (PA-3) contained only the repeating unit (1-1) and the repeating unit (2-2) as repeating units.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-3) was 0.50.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-3) was 0.50.
  • a polyarylate resin (PA-3) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 11.47 g (38.9 mmol) of 4,4′-oxybisbenzoic acid dichloride (dichloride of the compound (DC-5) described in the embodiment) was converted into dichloride 38. of the compound (DC-3) described in the embodiment. Changed to 9 mmol.
  • the resulting polyarylate resin (PA-3) had a viscosity average molecular weight of 50,600.
  • polyarylate resin (PA-4) The following polyarylate resin (PA-4) was prepared.
  • the polyarylate resin (PA-4) contained only the repeating unit (1-2) and the repeating unit (2-4) as repeating units.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-4) was 0.50.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-4) was 0.50.
  • a polyarylate resin (PA-4) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 20.01 g (82.56 mmol) of 1,1-bis (4-hydroxy-3-methylphenyl) ethane (compound (BP-1) described in the embodiment) was added to the compound (BP-2 described in the embodiment). ) 82.56 mmol.
  • the resulting polyarylate resin (PA-4) had a viscosity average molecular weight of 57,000.
  • polyarylate resin (PA-5) The following polyarylate resin (PA-5) was prepared.
  • the polyarylate resin (PA-5) contained only the repeating unit (1-1) and the repeating unit (2-3) as repeating units.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-5) was 0.30.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-5) was 0.70.
  • a polyarylate resin (PA-5) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed.
  • the addition amount of 2,6-naphthalenedicarboxylic acid dichloride (dichloride of the compound (DC-1-1) described in the embodiment) was changed from 9.84 g (38.9 mmol) to 23.3 mmol.
  • the amount of 4,4'-oxybisbenzoic acid dichloride (the dichloride of the compound (DC-5) described in the embodiment) was changed from 11.47 g (38.9 mmol) to 54.5 mmol.
  • the resulting polyarylate resin (PA-5) had a viscosity average molecular weight of 50,100.
  • polyarylate resin (PA-6) The following polyarylate resin (PA-6) was prepared.
  • the polyarylate resin (PA-6) contained only the repeating unit (1-1) and the repeating unit (2-3) as the repeating unit.
  • the ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-6) was 0.70.
  • the ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-6) was 0.30.
  • a polyarylate resin (PA-6) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed.
  • the addition amount of 2,6-naphthalenedicarboxylic acid dichloride (dichloride of the compound (DC-1-1) described in the embodiment) was changed from 9.84 g (38.9 mmol) to 54.5 mmol.
  • the amount of 4,4'-oxybisbenzoic acid dichloride (dichloride of the compound (DC-6) described in the embodiment) added was changed from 11.47 g (38.9 mmol) to 23.3 mmol.
  • the resulting polyarylate resin (PA-6) had a viscosity average molecular weight of 50,800.
  • FIG. 3 shows the 1 H-NMR spectrum of polyarylate resin (PA-1).
  • FIG. 4 shows an enlarged view of the range from 6.90 ppm to 9.00 ppm of the 1 H-NMR spectrum shown in FIG.
  • FIG. 5 shows an enlarged view of the range of 1.2 ppm to 4.5 ppm of the 1 H-NMR spectrum shown in FIG. 3 to 5, the horizontal axis indicates the chemical shift (unit: ppm), and the vertical axis indicates the signal intensity (unit: arbitrary unit).
  • PA-1 polyarylate resin obtained from 1 H-NMR spectrum.
  • PA-6 As for the polyarylate resins (PA-2) to (PA-6), it was confirmed from the 1 H-NMR spectrum that the polyarylate resins (PA-2) to (PA-6) were obtained, respectively.
  • polyarylate resins represented by chemical formulas (PA-a) to (PA-f) (hereinafter sometimes referred to as polyarylate resins (PA-a) to (PA-f)) were also prepared.
  • the subscripts attached to the repeating units in the chemical formulas (PA-a) to (PA-f) indicate the ratio of the number of repeating units to which the subscripts are added to the total number of repeating units contained in the resin. .
  • the polyarylate resin (PA-a) had only a repeating unit represented by the following chemical formula (PA-a).
  • the viscosity average molecular weight of (PA-a) was 60,300.
  • the polyarylate resin (PA-b) had two types of repeating units represented by the following chemical formula (PA-b).
  • the viscosity average molecular weight of (PA-b) was 45,600.
  • the polyarylate resin (PA-c) had two types of repeating units represented by the following chemical formula (PA-c).
  • the viscosity average molecular weight of (PA-c) was 45,600.
  • the polyarylate resin (PA-d) had two types of repeating units represented by the following chemical formula (PA-d).
  • the viscosity average molecular weight of (PA-d) was 47,800.
  • the polyarylate resin (PA-e) had two types of repeating units represented by the following chemical formula (PA-e).
  • the viscosity average molecular weight of (PA-e) was 58,000.
  • the polyarylate resin (PA-f) had two types of repeating units represented by the following chemical formula (PA-f).
  • PA-f The viscosity average molecular weight of (PA-f) was 59,500.
  • Photoconductors (A-1) to (A-16) and (B-1) to (B-6) were produced using the charge generating agent, hole transporting agent and binder resin described above.
  • An intermediate layer was formed.
  • surface-treated titanium oxide (“Prototype SMT-A” manufactured by Teika Co., Ltd., average primary particle size 10 nm) was prepared. Specifically, titanium oxide was surface-treated with alumina and silica, and the surface-treated titanium oxide was further surface-treated with methylhydrogenpolysiloxane while being wet-dispersed.
  • an aluminum drum-shaped support (diameter 30 mm, total length 246 mm) was used. Subsequently, the applied intermediate layer coating solution was dried at 130 ° C. for 30 minutes to form an intermediate layer (film thickness: 1.5 ⁇ m) on the conductive substrate.
  • a charge generation layer was formed. Specifically, a Y-type titanyl phthalocyanine (1.5 parts by mass) and a polyvinyl acetal resin (“SREC BX-5” manufactured by Sekisui Chemical Co., Ltd.) (1 part by mass) as a base resin were mixed with propylene glycol monomethyl ether ( 40 parts by mass) and a solvent containing tetrahydrofuran (40 parts by mass). Using a bead mill, these materials and the solvent were mixed for 12 hours, and the materials were dispersed in the solvent to prepare a charge generation layer coating solution. The obtained coating solution for charge generation layer was filtered using a filter having an opening of 3 ⁇ m. Next, the obtained filtrate was applied on the intermediate layer using a dip coating method and dried at 50 ° C. for 5 minutes. As a result, a charge generation layer (thickness: 0.3 ⁇ m) was formed on the intermediate layer.
  • SREC BX-5 polyvinyl acetal resin
  • a charge transport layer was formed. Specifically, 50 parts by mass of the compound (HTM-1) as a hole transport agent and 2 parts by mass of a hindered phenol antioxidant (“Irganox (registered trademark) 1010” manufactured by BASF Corporation) as an additive, 2,3 parts by weight of 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone as an electron acceptor compound and 100 parts by weight of a polyarylate resin (PA-1) as a binder resin, It added with respect to the solvent containing 550 mass parts of tetrahydrofuran and 150 mass parts of toluene.
  • HTM-1 hindered phenol antioxidant
  • PA-1 polyarylate resin
  • the obtained coating solution for charge transport layer was applied onto the charge generation layer using a dip coating method and dried at 120 ° C. for 40 minutes. Thereby, a charge transport layer (film thickness 20 ⁇ m) was formed on the charge generation layer.
  • a photoreceptor (A-1) was obtained.
  • the photoreceptor (A-1) was a multilayer photoreceptor. In the photoreceptor (A-1), an intermediate layer was provided on the conductive substrate, a charge generation layer was provided on the intermediate layer, and a charge transport layer was provided on the charge generation layer.
  • Photoconductors (A-2) to (A-16) and (B-1) to (B-6) Photoconductors (A-2) to (A-16) and (B-1) to (B-1) are prepared in the same manner as the production of photoconductor (A-1) except that the following points (1) to (3) are changed. Each of (B-6) was produced.
  • PA-1 polyarylate resin
  • PA-1 polyarylate resin
  • Filming resistance was evaluated for each of the photoreceptors (A-1) to (A-6) and the photoreceptors (B-1) to (B-6). As evaluation of filming resistance, the following image evaluation and filming rate were evaluated.
  • the photoconductor was mounted on an evaluation machine.
  • the evaluation machine was a color printer (“C711dn” manufactured by Oki Data Corporation).
  • the toner cartridge of the evaluator was filled with cyan toner.
  • a high temperature and high humidity environment temperature 32 ° C. and relative humidity 85% RH: hereinafter sometimes referred to as HH environment
  • printing was performed on 2,000 sheets at intervals of 16 seconds using an evaluation machine.
  • printing was performed on 2,000 sheets at intervals of 16 seconds using an evaluation machine under a low-temperature and low-humidity environment (temperature: 10 ° C. and relative humidity: 15% RH: hereinafter sometimes referred to as LL environment).
  • the photoconductor was taken out of the evaluation machine, and the degree of toner filming on the surface of the photoconductor was observed. Specifically, the surface of the photoreceptor was observed using an optical microscope (“Sennar KK” manufactured by Nikon Corporation) to obtain an observation image. The field of view of the optical microscope was 1.7 mm ⁇ 2.1 mm square, and the observation magnification was 50 times. There were three observation points on the surface of the photoconductor (specifically, a region 25 mm from the upper end of the photoconductor, a region at the center, and a region 25 mm from the lower end).
  • Binary processing was performed on the observation image of the optical microscope. Specifically, using an image analysis software (Image J), a binarization process was performed on the observed image using the luminance value 180 as a threshold value.
  • the pixels constituting the observation image each had a luminance value of 0 or more and 255 or less.
  • a pixel having a luminance value less than the threshold corresponds to a region where filming has occurred.
  • a pixel having a luminance value equal to or higher than the threshold corresponds to a region where filming has not occurred.
  • the area ratio A was determined for each of the three observation images on the photoreceptor.
  • the number average value of the area ratio A was determined by dividing the sum of the three area ratios A by 3.
  • the number average value of the area ratio A was defined as the filming rate.
  • the filming rate obtained is shown in Table 1. Note that a lower filming rate indicates that filming is less likely to occur on the surface of the photoreceptor.
  • HTM and molecular weight indicate a hole transport agent and a viscosity average molecular weight, respectively.
  • the type of hole transporting agent was changed, and the electrical characteristics and abrasion resistance of the photoreceptor were also examined.
  • a wear test was performed on the test piece. Specifically, the test piece was attached to a rotary table of a rotary abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). Then, with the wear wheel (“CS-10” manufactured by Taber Co., Ltd.) having a load of 500 gf placed on the test piece, the turntable was rotated at a rotation speed of 60 rpm, and a 1000-turn wear test was performed. Subsequently, the mass M2 of the test piece after the wear test was measured. The wear loss (M1-M2), which is the change in the mass of the test piece before and after the test, was determined. Table 2 shows the obtained wear loss.
  • HTM molecular weight
  • V 0 and V L represent the hole transport agent, viscosity average molecular weight, charging potential and post-exposure potential, respectively.
  • the filming resistance evaluation results shown in Table 1 showed the following.
  • the photosensitive layers of the photoreceptors (A-1) to (A-6) are polyarylate containing, as a binder resin, a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2). Contains resin.
  • the photosensitive layers of the photoreceptors (A-1) to (A-6) contained any of polyarylate resins (PA-1) to (PA-6) as binder resins. Therefore, as is clear from Table 1, the photoreceptors (A-1) to (A-6) had good image evaluation, a low filming rate, and excellent filming resistance.
  • the photosensitive layers of the photoreceptors (B-1) to (B-6) include a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) as a binder resin. It did not contain polyarylate resin.
  • the photosensitive layers of the photoconductors (B-1) to (B-6) contained any of polyarylate resins (PA-a) to (PA-f) as binder resins.
  • Polyarylate resins (PA-a) to (PA-f) were not polyarylate resins containing a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2). Therefore, as is apparent from Table 1, the photoreceptors (B-1) to (B-6) had poor image evaluation, high filming rate, and poor filming resistance.
  • the photosensitive layers of the photoconductors (A-1) to (A-3) and (A-5) to (A-16) are used as a binder resin as a repeating unit represented by the general formula (1) and the general formula (2).
  • R 1 in the general formulas (1) and (2) represents a methyl group. Therefore, as is apparent from Table 2, the photoreceptors (A-1) to (A-3) and (A-5) to (A-16) have a small wear loss and are resistant to filming. Excellent wear resistance.
  • the photosensitive layers of the photoreceptors (A-1) to (A-14) are polyarylate containing a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) as a binder resin. Contains resin. Further, the photosensitive layers of the photoreceptors (A-1) to (A-14) contained the compound (10), (11) or (12) as a hole transport agent. Therefore, as is apparent from Table 2, in the photoreceptors (A-1) to (A-14), the absolute value of the post-exposure potential (V L ) is small, the filming resistance is improved, and the sensitivity characteristics are improved. It was particularly improved. In the photoreceptors (A-1) to (A-3) and (A-5) to (A-14), the film resistance and the wear resistance were improved, and the sensitivity characteristics were particularly improved. .
  • the polyarylate resin according to the present invention can suppress the occurrence of filming of the photoreceptor when it is contained in the photosensitive layer. Further, it has been shown that the photoreceptor according to the present invention can suppress the occurrence of filming.
  • the polyarylate resin according to the present invention can be used for a photoreceptor.
  • the photoreceptor according to the present invention can be used in an image forming apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A polyarylate resin includes repeating units represented by general formula (1) and repeating units represented by general formula (2). In general formulae (1) and (2), R1 represents a hydrogen atom or a methyl group. In general formula (2), X represents a bivalent group represented by chemical formula (2A), (2B), (2C), or (2D). An electrophotographic photoreceptor (100) comprises an electroconductive substrate (101) and a photosensitive layer (102). The photosensitive layer (102) includes a charge generating agent, a hole transport agent, and a binder resin. The binder resin includes the polyarylate resin. [Compound 1] [Compound 2] [Compound 3]

Description

ポリアリレート樹脂及び電子写真感光体Polyarylate resin and electrophotographic photosensitive member
 本発明は、ポリアリレート樹脂及び電子写真感光体に関する。 The present invention relates to a polyarylate resin and an electrophotographic photosensitive member.
 電子写真感光体は、電子写真方式の画像形成装置に用いられる。電子写真感光体としては、例えば、単層の感光層を備える電子写真感光体が用いられる。単層の感光層は、電荷発生の機能と電荷輸送の機能とを有する。 The electrophotographic photoreceptor is used in an electrophotographic image forming apparatus. As the electrophotographic photosensitive member, for example, an electrophotographic photosensitive member having a single photosensitive layer is used. The single photosensitive layer has a charge generation function and a charge transport function.
 特許文献1に記載の電子写真感光体の表面層は、例えば、二価フェノール成分と、下記構成単位例で示される二価カルボン酸成分とから得られるポリアリレート樹脂を含有する。 The surface layer of the electrophotographic photoreceptor described in Patent Document 1 contains, for example, a polyarylate resin obtained from a dihydric phenol component and a divalent carboxylic acid component shown in the following structural unit examples.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
特開平10-20514号公報Japanese Patent Laid-Open No. 10-20514
 しかし、特許文献1に記載の電子写真感光体では、フィルミングの発生を抑制することが困難であった。 However, in the electrophotographic photoreceptor described in Patent Document 1, it is difficult to suppress the occurrence of filming.
 本発明は、上述の課題に鑑みてなされたものであり、その目的は、感光層に含有させた場合に電子写真感光体のフィルミングの発生を抑制できるポリアリレート樹脂を提供することである。また、本発明の目的は、このようなポリアリレート樹脂を含有することで、フィルミングの発生を抑制できる電子写真感光体を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a polyarylate resin capable of suppressing the occurrence of filming of an electrophotographic photoreceptor when incorporated in a photosensitive layer. Another object of the present invention is to provide an electrophotographic photosensitive member that can suppress the occurrence of filming by containing such a polyarylate resin.
 本発明のポリアリレート樹脂は、一般式(1)で表される繰り返し単位と、一般式(2)で表される繰り返し単位とを含む。 The polyarylate resin of the present invention contains a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記一般式(1)及び(2)中、R1は、水素原子又はメチル基を表す。前記一般式(2)中、Xは、化学式(2A)、(2B)、(2C)又は(2D)で表される二価の基を表す。 In the general formulas (1) and (2), R 1 represents a hydrogen atom or a methyl group. In the general formula (2), X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の電子写真感光体は、導電性基体と、感光層とを備える。前記感光層は、電荷発生剤と正孔輸送剤とバインダー樹脂とを含む。前記バインダー樹脂は、ポリアリレート樹脂を含む。前記ポリアリレート樹脂は、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含む。 The electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer. The photosensitive layer includes a charge generator, a hole transport agent, and a binder resin. The binder resin includes a polyarylate resin. The polyarylate resin includes a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記一般式(1)及び(2)中、R1は、水素原子又はメチル基を表す。前記一般式(2)中、Xは、化学式(2A)、(2B)、(2C)又は(2D)で表される二価の基を表す。 In the general formulas (1) and (2), R 1 represents a hydrogen atom or a methyl group. In the general formula (2), X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明のポリアリレート樹脂によれば、感光層に含有させた場合に電子写真感光体のフィルミングの発生を抑制することができる。また、本発明の電子写真感光体によれば、フィルミングの発生を抑制することができる。 According to the polyarylate resin of the present invention, the filming of the electrophotographic photosensitive member can be suppressed when it is contained in the photosensitive layer. Moreover, according to the electrophotographic photosensitive member of the present invention, the occurrence of filming can be suppressed.
電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 電子写真感光体の一例を示す部分断面図であり、この電子写真感光体は本発明の実施形態に係るポリアリレート樹脂を含む。It is a fragmentary sectional view showing an example of an electrophotographic photosensitive member, and this electrophotographic photosensitive member contains polyarylate resin concerning an embodiment of the present invention. 化学式(PA-1)で表されるポリアリレート樹脂の1H-NMRスペクトルを示す。 1 shows a 1 H-NMR spectrum of a polyarylate resin represented by the chemical formula (PA-1). 図3に示す1H-NMRスペクトルの6.90ppm以上9.00ppm以下の範囲の拡大図を示す。An enlarged view of the range of 6.90 ppm to 9.00 ppm of the 1 H-NMR spectrum shown in FIG. 3 is shown. 図3に示す1H-NMRスペクトルの1.2ppm以上4.5ppm以下の範囲の拡大図を示す。FIG. 4 shows an enlarged view of the range of 1.2 ppm to 4.5 ppm of the 1 H-NMR spectrum shown in FIG.
 以下、本発明の実施形態について詳細に説明する。しかし、本発明は、以下の実施形態に何ら限定されない。本発明は、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨は限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The present invention can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, about the location where description overlaps, although description may be abbreviate | omitted suitably, the summary of invention is not limited.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。 Hereinafter, a compound and its derivatives may be generically named by adding “system” after the compound name. In addition, when “polymer” is added after the compound name to indicate the polymer name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
 以下、炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基、炭素原子数1以上4以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、炭素原子数1以上4以下のアルコキシ基及び炭素原子数5以上7以下のシクロアルカンは、何ら規定していなければ、各々次の意味である。 Hereinafter, an alkyl group having 1 to 8 carbon atoms, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, 1 carbon atom Unless otherwise specified, an alkoxy group having 4 or less and a cycloalkane having 5 to 7 carbon atoms have the following meanings, respectively.
 炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基及び炭素原子数1以上4以下のアルキル基は、各々、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基又はオクチル基が挙げられる。炭素原子数1以上6以下のアルキル基の例は、炭素原子数1以上8以下のアルキル基の例として述べた基のうち、炭素原子数が1以上6以下である基である。炭素原子数1以上4以下のアルキル基の例は、炭素原子数1以上8以下のアルキル基の例として述べた基のうち、炭素原子数が1以上4以下である基である。 The alkyl group having 1 to 8 carbon atoms, the alkyl group having 1 to 6 carbon atoms and the alkyl group having 1 to 4 carbon atoms are each linear or branched and unsubstituted. Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group Hexyl group, heptyl group or octyl group. Examples of the alkyl group having 1 to 6 carbon atoms are groups having 1 to 6 carbon atoms among the groups described as examples of alkyl groups having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms are groups having 1 to 4 carbon atoms among the groups described as examples of alkyl groups having 1 to 8 carbon atoms.
 炭素原子数1以上8以下のアルコキシ基及び炭素原子数1以上4以下のアルコキシ基は、各々、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基又はオクチルオキシ基が挙げられる。炭素原子数1以上4以下のアルコキシ基の例は、炭素原子数1以上8以下のアルコキシ基の例として述べた基のうち、炭素原子数が1以上4以下である基である。 The alkoxy group having 1 to 8 carbon atoms and the alkoxy group having 1 to 4 carbon atoms are each linear or branched and unsubstituted. Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentyloxy, iso Examples include a pentyloxy group, a neopentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group. Examples of the alkoxy group having 1 to 4 carbon atoms are groups having 1 to 4 carbon atoms among the groups described as examples of the alkoxy group having 1 to 8 carbon atoms.
 炭素原子数5以上7以下のシクロアルカンは、非置換である。炭素原子数5以上7以下のシクロアルカンの例は、シクロペンタン、シクロヘキサン又はシクロヘプタンである。 A cycloalkane having 5 to 7 carbon atoms is unsubstituted. Examples of the cycloalkane having 5 to 7 carbon atoms are cyclopentane, cyclohexane or cycloheptane.
 <ポリアリレート樹脂>
 本実施形態はポリアリレート樹脂に関する。本実施形態のポリアリレート樹脂は、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含む。以下、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂を、ポリアリレート樹脂(PA)と記載することがある。また、一般式(1)で表される繰り返し単位及び一般式(2)で表される繰り返し単位を、各々、繰り返し単位(1)及び繰り返し単位(2)と記載することがある。
<Polyarylate resin>
The present embodiment relates to a polyarylate resin. The polyarylate resin of this embodiment contains the repeating unit represented by General formula (1) and the repeating unit represented by General formula (2). Hereinafter, the polyarylate resin containing the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) may be referred to as a polyarylate resin (PA). Moreover, the repeating unit represented by General formula (1) and the repeating unit represented by General formula (2) may be described as a repeating unit (1) and a repeating unit (2), respectively.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(1)及び(2)中、R1は、水素原子又はメチル基を表す。一般式(2)中、Xは、化学式(2A)、(2B)、(2C)又は(2D)で表される二価の基を表す。 In the general formulas (1) and (2), R 1 represents a hydrogen atom or a methyl group. In general formula (2), X represents a divalent group represented by chemical formula (2A), (2B), (2C) or (2D).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本実施形態のポリアリレート樹脂(PA)は、繰り返し単位(1)及び繰り返し単位(2)の両方を有する。そのため、ポリアリレート樹脂(PA)は、感光層に含有された場合に、電子写真感光体(以下、感光体と記載することがある)のフィルミングの発生を抑制することができる。フィルミングは、感光体の表面に微小成分が付着して固着する現象である。微小成分の一例は、トナー成分であり、より具体的には、トナー又はトナーから遊離した外添剤である。微小成分の別の例は、非トナー成分であり、より具体的には記録媒体の微小成分(例えば、紙粉)である。 The polyarylate resin (PA) of this embodiment has both a repeating unit (1) and a repeating unit (2). Therefore, when the polyarylate resin (PA) is contained in the photosensitive layer, filming of the electrophotographic photosensitive member (hereinafter sometimes referred to as a photosensitive member) can be suppressed. Filming is a phenomenon in which minute components adhere to and adhere to the surface of the photoreceptor. An example of the minute component is a toner component, and more specifically, the toner or an external additive released from the toner. Another example of the minute component is a non-toner component, and more specifically, a minute component (for example, paper dust) of the recording medium.
 一般式(1)及び(2)中のR1は、何れも、水素原子を表す。或いは、一般式(1)及び(2)中のR1は、何れも、メチル基を表す。感光体の耐フィルミング性に加えて、感光体の耐摩耗性及び電気特性(特に感度特性)を向上させるためには、一般式(1)及び(2)中のR1が、各々、メチル基を表すことが好ましい。 R 1 in general formulas (1) and (2) both represents a hydrogen atom. Alternatively, R 1 in the general formulas (1) and (2) each represents a methyl group. In order to improve the abrasion resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor in addition to the filming resistance of the photoreceptor, R 1 in the general formulas (1) and (2) is methyl, respectively. It is preferable to represent a group.
 感光体の耐フィルミング性に加えて、感光体の耐摩耗性及び電気特性(特に感度特性)を向上させるためには、一般式(2)中のXが、一般式(2A)、(2B)又は(2D)で表される二価の基を表すことが好ましい。 In order to improve the abrasion resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor in addition to the filming resistance of the photoreceptor, X in the general formula (2) is represented by the general formulas (2A) and (2B). Or a divalent group represented by (2D).
 繰り返し単位(1)の好適な例は、化学式(1-1)又は(1-2)で表される繰り返し単位である。以下、化学式(1-1)で表される繰り返し単位及び化学式(1-2)で表される繰り返し単位を、各々、繰り返し単位(1-1)及び(1-2)と記載することがある。繰り返し単位(1)のより好適な例は、繰り返し単位(1-1)である。 A preferred example of the repeating unit (1) is a repeating unit represented by the chemical formula (1-1) or (1-2). Hereinafter, the repeating unit represented by the chemical formula (1-1) and the repeating unit represented by the chemical formula (1-2) may be referred to as repeating units (1-1) and (1-2), respectively. . A more preferred example of the repeating unit (1) is the repeating unit (1-1).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 繰り返し単位(2)の好適な例は、化学式(2-1)、(2-2)、(2-3)又は(2-4)で表される繰り返し単位である。以下、化学式(2-1)、(2-2)、(2-3)及び(2-4)で表される繰り返し単位を、各々、繰り返し単位(2-1)、(2-2)、(2-3)及び(2-4)と記載することがある。繰り返し単位(2)のより好適な例は、繰り返し単位(2-1)、(2-2)又は(2-3)である。 A preferred example of the repeating unit (2) is a repeating unit represented by the chemical formula (2-1), (2-2), (2-3) or (2-4). Hereinafter, the repeating units represented by chemical formulas (2-1), (2-2), (2-3) and (2-4) are represented by repeating units (2-1), (2-2), Sometimes described as (2-3) and (2-4). A more preferred example of the repeating unit (2) is the repeating unit (2-1), (2-2) or (2-3).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 感光体の耐フィルミング性、耐摩耗性及び電気特性(特に感度特性)を向上させるためには、繰り返し単位(1)と繰り返し単位(2)とが次のとおりであるポリアリレート樹脂(PA)が好ましい。
繰り返し単位(1)が繰り返し単位(1-1)であり、繰り返し単位(2)が繰り返し単位(2-1)であるか;
繰り返し単位(1)が繰り返し単位(1-1)であり、繰り返し単位(2)が繰り返し単位(2-2)であるか;又は
繰り返し単位(1)が繰り返し単位(1-1)であり、繰り返し単位(2)が繰り返し単位(2-3)である。
In order to improve the filming resistance, abrasion resistance and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor, a polyarylate resin (PA) in which the repeating unit (1) and the repeating unit (2) are as follows: Is preferred.
Whether the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-1);
The repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-2); or the repeating unit (1) is the repeating unit (1-1), The repeating unit (2) is the repeating unit (2-3).
 より好適な一態様として、繰り返し単位(1)が繰り返し単位(1-1)であり、繰り返し単位(2)が繰り返し単位(2-3)であるポリアリレート樹脂(PA)が挙げられる。このような構造を有するポリアリレート樹脂(PA)によれば、感光体の耐フィルミング性、耐摩耗性及び電気特性(特に感度特性)を更に向上させることができる。また、ポリアリレート樹脂(PA)が繰り返し単位(2-3)を含むことで、感光層形成用の溶剤に対するポリアリレート樹脂(PA)の溶解性を向上させることもできる。 A more preferred embodiment is a polyarylate resin (PA) in which the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-3). According to the polyarylate resin (PA) having such a structure, it is possible to further improve the filming resistance, abrasion resistance and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor. Further, when the polyarylate resin (PA) contains the repeating unit (2-3), the solubility of the polyarylate resin (PA) in the solvent for forming the photosensitive layer can be improved.
 より好適な別の態様として、繰り返し単位(1)が繰り返し単位(1-1)であり、繰り返し単位(2)が繰り返し単位(2-1)又は(2-2)であるポリアリレート樹脂(PA)も挙げられる。繰り返し単位(1-1)が有するナフチレン基、繰り返し単位(2-1)が有する化学式(2A)で表される二価の基、及び繰り返し単位(2-2)が有する化学式(2B)で表される二価の基は、各々、ポリアリレート樹脂(PA)の分子鎖が直線状となる位置関係でカルボニル基と結合する。ポリアリレート樹脂(PA)がこのような位置関係を形成する基を有することで、感光体の耐フィルミング性に加えて、感光体の耐摩耗性及び電気特性(特に感度特性)を向上させることができる。 As another more preferable embodiment, a polyarylate resin (PA) in which the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-1) or (2-2). ). A naphthylene group that the repeating unit (1-1) has, a divalent group that is represented by the chemical formula (2A) that the repeating unit (2-1) has, and a chemical formula (2B) that the repeating unit (2-2) has. Each of the divalent groups is bonded to a carbonyl group in a positional relationship in which the molecular chain of the polyarylate resin (PA) is linear. Since the polyarylate resin (PA) has a group that forms such a positional relationship, in addition to the filming resistance of the photoreceptor, the abrasion resistance and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor are improved. Can do.
 ポリアリレート樹脂(PA)に含まれる繰り返し単位(1)の数n1と繰り返し単位(2)の数n2とが、下記計算式(i)を満たすことが好ましい。
0.30≦n1/(n1+n2)≦0.70・・(i)
Polyarylate number n of the resin repeating units contained in the (PA) (1) The number n 1 and repeating units (2) 2 preferably satisfies the following calculation formula (i).
0.30 ≦ n 1 / (n 1 + n 2 ) ≦ 0.70 (i)
 「n1/(n1+n2)」は、ポリアリレート樹脂(PA)に含まれる繰り返し単位(1)の数n1と繰り返し単位(2)の数n2との和に対する、繰り返し単位(1)の数n1の比率を表す。比率n1/(n1+n2)が0.30以上0.70以下であると、感光体の耐フィルミング性、耐摩耗性及び電気特性(特に感度特性)をバランス良く向上させることができる。比率n1/(n1+n2)は0.40以上0.60以下であることがより好ましく、0.50であることが更に好ましい。 "N 1 / (n 1 + n 2)" is to the sum of the number n 2 of the polyarylate resin number n 1 and repeating units of the repeating units (1) contained in (PA) (2), the repeating units (1 It represents the ratio of the number n 1 of). When the ratio n 1 / (n 1 + n 2 ) is 0.30 or more and 0.70 or less, the filming resistance, wear resistance, and electrical characteristics (particularly sensitivity characteristics) of the photoreceptor can be improved in a balanced manner. . The ratio n 1 / (n 1 + n 2 ) is more preferably 0.40 or more and 0.60 or less, and further preferably 0.50.
 また、ポリアリレート樹脂(PA)に含まれる繰り返し単位(1)の数n1と繰り返し単位(2)の数n2との和に対する、繰り返し単位(2)の数n2の比率n2/(n1+n2)は、0.30以上0.70以下であることが好ましく、0.40以上0.60以下であることがより好ましく、0.50であることが更に好ましい。 Further, to the sum of the number n 2 of the number n 1 and repeating units of the repeating units (1) contained in the polyarylate resin (PA) (2), the ratio n 2 / number n 2 of the repeating units (2) ( n 1 + n 2 ) is preferably 0.30 or more and 0.70 or less, more preferably 0.40 or more and 0.60 or less, and still more preferably 0.50.
 繰り返し単位(1)が繰り返し単位(1-1)又は(1-2)である場合には、n1はポリアリレート樹脂(PA)に含まれる繰り返し単位(1-1)又は(1-2)の数に相当する。繰り返し単位(2)が繰り返し単位(2-1)、(2-2)、(2-3)又は(2-4)である場合には、n2はポリアリレート樹脂(PA)に含まれる繰り返し単位(2-1)、(2-2)、(2-3)又は(2-4)の数に相当する。 When the repeating unit (1) is the repeating unit (1-1) or (1-2), n 1 represents the repeating unit (1-1) or (1-2) contained in the polyarylate resin (PA). It is equivalent to the number of When the repeating unit (2) is the repeating unit (2-1), (2-2), (2-3) or (2-4), n 2 is a repeating unit contained in the polyarylate resin (PA). This corresponds to the number of units (2-1), (2-2), (2-3) or (2-4).
 比率n1/(n1+n2)及び比率n2/(n1+n2)の各々は、1本の分子鎖から得られる値ではなく、感光層に含有されるポリアリレート樹脂(PA)の全体(複数の分子鎖)から得られる値の平均値である。比率n1/(n1+n2)及び比率n2/(n1+n2)の各々は、例えば、次の方法で測定される。プロトン核磁気共鳴分光計を用いて、ポリアリレート樹脂(PA)の1H-NMRスペクトルを測定する。溶媒としてCDCl3を、内部標準試料としてテトラメチルシラン(TMS)を用いる。得られたポリアリレート樹脂(PA)の1H-NMRスペクトルにおける繰り返し単位(1)に特徴的なピークと繰り返し単位(2)に特徴的なピークとの比率から、比率n1/(n1+n2)及び比率n2/(n1+n2)の各々を算出する。 Each of the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) is not a value obtained from one molecular chain, but is a value of the polyarylate resin (PA) contained in the photosensitive layer. It is an average value of values obtained from the whole (a plurality of molecular chains). Each of the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) is measured, for example, by the following method. A 1 H-NMR spectrum of polyarylate resin (PA) is measured using a proton nuclear magnetic resonance spectrometer. CDCl 3 is used as a solvent, and tetramethylsilane (TMS) is used as an internal standard sample. From the ratio between the peak characteristic of the repeating unit (1) and the peak characteristic of the repeating unit (2) in the 1 H-NMR spectrum of the polyarylate resin (PA) obtained, the ratio n 1 / (n 1 + n 2 ) and the ratio n 2 / (n 1 + n 2 ) are calculated.
 ポリアリレート樹脂(PA)における繰返し単位(1)及び(2)の配列は、特に限定されない。ポリアリレート樹脂(PA)は、例えば、ランダム共重合体、交互共重合体、周期的共重合体又はブロック共重合体であってもよい。ランダム共重合体は、繰返し単位(1)と、繰返し単位(2)とがランダムに配列した共重合体である。交互共重合体は、繰返し単位(1)と繰り返し単位(2)とが交互に配列した共重合体である。周期的共重合体は、1つ又は複数の繰返し単位(1)と、1つ又は複数の繰返し単位(2)とが周期的に配列した共重合体である。ブロック共重合体は、複数の繰返し単位(1)から形成されるブロックと、複数の繰返し単位(2)から形成されるブロックとが配列した共重合体である。 The arrangement of the repeating units (1) and (2) in the polyarylate resin (PA) is not particularly limited. The polyarylate resin (PA) may be, for example, a random copolymer, an alternating copolymer, a periodic copolymer, or a block copolymer. The random copolymer is a copolymer in which repeating units (1) and repeating units (2) are randomly arranged. The alternating copolymer is a copolymer in which repeating units (1) and repeating units (2) are alternately arranged. The periodic copolymer is a copolymer in which one or more repeating units (1) and one or more repeating units (2) are periodically arranged. The block copolymer is a copolymer in which blocks formed from a plurality of repeating units (1) and blocks formed from a plurality of repeating units (2) are arranged.
 ポリアリレート樹脂(PA)の粘度平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが更に好ましく、50,000以上であることが特に好ましい。ポリアリレート樹脂(PA)の粘度平均分子量が10,000以上である場合、バインダー樹脂の耐摩耗性が高まり、電荷輸送層又は単層型感光層が摩耗しにくくなる。一方、バインダー樹脂の粘度平均分子量は、80,000以下であることが好ましく、60,000以下であることがより好ましい。バインダー樹脂の粘度平均分子量が80,000以下であると、ポリアリレート樹脂(PA)が電荷輸送層形成用の溶剤又は単層型感光層形成用の溶剤に溶解し易くなり、電荷輸送層又は単層型感光層の形成が容易になる傾向がある。 The viscosity average molecular weight of the polyarylate resin (PA) is preferably 10,000 or more, more preferably 20,000 or more, further preferably 30,000 or more, and 50,000 or more. It is particularly preferred. When the viscosity average molecular weight of the polyarylate resin (PA) is 10,000 or more, the abrasion resistance of the binder resin is increased, and the charge transport layer or the single-layer type photosensitive layer is hardly worn. On the other hand, the viscosity average molecular weight of the binder resin is preferably 80,000 or less, and more preferably 60,000 or less. When the binder resin has a viscosity average molecular weight of 80,000 or less, the polyarylate resin (PA) is easily dissolved in the solvent for forming the charge transport layer or the solvent for forming the single-layer type photosensitive layer. There is a tendency that the formation of the layer-type photosensitive layer is facilitated.
 ポリアリレート樹脂(PA)の製造方法は、特に限定されない。ポリアリレート樹脂(PA)の製造方法として、例えば、ポリアリレート樹脂の繰返し単位を構成するための芳香族ジオールと芳香族ジカルボン酸とを縮重合させる方法が挙げられる。縮重合させる方法は、公知の合成方法(より具体的には、溶液重合、溶融重合又は界面重合等)を採用することができる。 The method for producing the polyarylate resin (PA) is not particularly limited. Examples of the method for producing the polyarylate resin (PA) include a method of polycondensing an aromatic diol and an aromatic dicarboxylic acid for constituting a repeating unit of the polyarylate resin. As the condensation polymerization method, a known synthesis method (more specifically, solution polymerization, melt polymerization, interfacial polymerization, or the like) can be employed.
 ポリアリレート樹脂(PA)を合成するための芳香族ジカルボン酸は、2種使用される。以下、ポリアリレート樹脂(PA)を合成するための2種の芳香族ジカルボン酸を、各々、第1芳香族ジカルボン酸及び第2芳香族ジカルボン酸と記載することがある。 Two types of aromatic dicarboxylic acids for synthesizing polyarylate resin (PA) are used. Hereinafter, the two types of aromatic dicarboxylic acids for synthesizing the polyarylate resin (PA) may be referred to as a first aromatic dicarboxylic acid and a second aromatic dicarboxylic acid, respectively.
 第1芳香族ジカルボン酸は、化学式(DC-1)で表される化合物である。化学式(DC-1)で表される化合物の好適な例は、化学式(DC-1-1)で表される化合物(以下、化合物(DC-1-1)と記載することがある)である。 The first aromatic dicarboxylic acid is a compound represented by the chemical formula (DC-1). A preferable example of the compound represented by the chemical formula (DC-1) is a compound represented by the chemical formula (DC-1-1) (hereinafter sometimes referred to as the compound (DC-1-1)). .
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 第2芳香族ジカルボン酸は、化学式(DC-2)、(DC-3)、(DC-4)又は(DC-5)で表される化合物である。以下、化学式(DC-2)、(DC-3)、(DC-4)及び(DC-5)で表される化合物を、各々、化合物(DC-2)、(DC-3)、(DC-4)及び(DC-5)と記載することがある。 The second aromatic dicarboxylic acid is a compound represented by the chemical formula (DC-2), (DC-3), (DC-4) or (DC-5). Hereinafter, the compounds represented by the chemical formulas (DC-2), (DC-3), (DC-4) and (DC-5) are respectively represented by the compounds (DC-2), (DC-3), (DC -4) and (DC-5).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 第1芳香族ジカルボン酸及び第2芳香族ジカルボン酸は、各々、誘導体化して使用されてもよい。芳香族ジカルボン酸の誘導体の例は、芳香族ジカルボン酸ジクロライド、芳香族ジカルボン酸ジメチルエステル、芳香族ジカルボン酸ジエチルエステル又は芳香族ジカルボン酸無水物である。芳香族ジカルボン酸ジクロライドは、芳香族ジカルボン酸の2個の「-C(=O)-OH」基が各々「-C(=O)-Cl」基で置換された化合物である。 The first aromatic dicarboxylic acid and the second aromatic dicarboxylic acid may each be derivatized and used. Examples of derivatives of aromatic dicarboxylic acids are aromatic dicarboxylic acid dichlorides, aromatic dicarboxylic acid dimethyl esters, aromatic dicarboxylic acid diethyl esters or aromatic dicarboxylic acid anhydrides. Aromatic dicarboxylic acid dichloride is a compound in which two “—C (═O) —OH” groups of an aromatic dicarboxylic acid are each replaced with a “—C (═O) —Cl” group.
 ポリアリレート樹脂(PA)を合成するための芳香族ジオールは、化学式(BP-1)及び(BP-2)で表される化合物(以下、それぞれを化合物(BP-1)及び(BP-2)と記載することがある)である。ポリアリレート樹脂(PA)を合成するための芳香族ジオールは、芳香族ジアセテートに変形させて使用されてもよい。 The aromatic diol for synthesizing the polyarylate resin (PA) is a compound represented by the chemical formulas (BP-1) and (BP-2) (hereinafter referred to as the compounds (BP-1) and (BP-2), respectively) May be described). The aromatic diol for synthesizing the polyarylate resin (PA) may be used after being transformed into an aromatic diacetate.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 芳香族ジオールと芳香族ジカルボン酸との縮重合において、塩基及び触媒の一方又は両方を添加してもよい。塩基及び触媒は、公知の塩基及び触媒から適宜選択することができる。塩基の例は、水酸化ナトリウムである。触媒の例は、ベンジルトリブチルアンモニウムクロライド、アンモニウムクロライド、アンモニウムブロマイド、4級アンモニウム塩、トリエチルアミン又はトリメチルアミンである。 In the condensation polymerization of an aromatic diol and an aromatic dicarboxylic acid, one or both of a base and a catalyst may be added. The base and catalyst can be appropriately selected from known bases and catalysts. An example of a base is sodium hydroxide. Examples of catalysts are benzyltributylammonium chloride, ammonium chloride, ammonium bromide, quaternary ammonium salts, triethylamine or trimethylamine.
 ポリアリレート樹脂(PA)は繰り返し単位として繰り返し単位(1)及び繰り返し単位(2)のみを含んでいてもよい。或いは、ポリアリレート樹脂(PA)は、繰り返し単位(1)及び繰り返し単位(2)に加えて、繰り返し単位(1)及び繰り返し単位(2)以外の繰り返し単位を更に含んでもよい。ポリアリレート樹脂(PA)に含まれる繰り返し単位(1)及び繰り返し単位(2)の合計含有率は、ポリアリレート樹脂(PA)に含まれる繰り返し単位の総数に対して、80個数%以上であることが好ましく、90個数%以上であることがより好ましく、100個数%であることが特に好ましい。ポリアリレート樹脂(PA)に含まれる繰り返し単位の総数に対する繰り返し単位(1)及び繰り返し単位(2)の合計含有率が100個数%である場合、ポリアリレート樹脂(PA)は繰り返し単位として繰り返し単位(1)及び繰り返し単位(2)のみを含む。以上、本実施形態に係るポリアリレート樹脂(PA)について説明した。 The polyarylate resin (PA) may contain only the repeating unit (1) and the repeating unit (2) as a repeating unit. Alternatively, the polyarylate resin (PA) may further include a repeating unit other than the repeating unit (1) and the repeating unit (2) in addition to the repeating unit (1) and the repeating unit (2). The total content of the repeating unit (1) and the repeating unit (2) contained in the polyarylate resin (PA) is 80% by number or more based on the total number of the repeating units contained in the polyarylate resin (PA). Is more preferable, 90% by number or more is more preferable, and 100% by number is particularly preferable. When the total content of the repeating unit (1) and the repeating unit (2) with respect to the total number of repeating units contained in the polyarylate resin (PA) is 100% by number, the polyarylate resin (PA) is a repeating unit ( 1) and repeating unit (2) only. The polyarylate resin (PA) according to this embodiment has been described above.
 <感光体>
 次に、本実施形態に係るポリアリレート樹脂(PA)を含有する感光層を備える感光体について説明する。感光体は、導電性基体と感光層とを備える。感光層は、電荷発生剤と、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(PA)とを含む。感光体は、単層型感光体であってもよく、積層型感光体であってもよい。
<Photoconductor>
Next, a photoconductor provided with a photosensitive layer containing a polyarylate resin (PA) according to this embodiment will be described. The photoreceptor includes a conductive substrate and a photosensitive layer. The photosensitive layer contains a charge generating agent, a hole transport agent, and a polyarylate resin (PA) as a binder resin. The photoreceptor may be a single-layer photoreceptor or a laminated photoreceptor.
 (積層型感光体)
 以下、図1A~図1Cを参照して、感光体100が積層型感光体である場合の感光体100の構造について説明する。図1A~図1Cは、各々、感光体100の一例(積層型感光体)を示す部分断面図であり、この感光体100は本実施形態に係るポリアリレート樹脂を含む。
(Multilayer photoconductor)
Hereinafter, the structure of the photoconductor 100 when the photoconductor 100 is a laminated type photoconductor will be described with reference to FIGS. 1A to 1C. FIG. 1A to FIG. 1C are partial cross-sectional views showing an example of a photoreceptor 100 (laminated photoreceptor), and this photoreceptor 100 includes a polyarylate resin according to this embodiment.
 図1Aに示すように、感光体100としての積層型感光体は、例えば、導電性基体101と感光層102とを備える。感光層102は、電荷発生層102aと電荷輸送層102bとを含む。つまり、積層型感光体には、感光層102として、電荷発生層102aと電荷輸送層102bとが備えられる。 As shown in FIG. 1A, a laminated photoreceptor as the photoreceptor 100 includes, for example, a conductive substrate 101 and a photosensitive layer 102. The photosensitive layer 102 includes a charge generation layer 102a and a charge transport layer 102b. In other words, the multilayer photoreceptor includes the charge generation layer 102 a and the charge transport layer 102 b as the photosensitive layer 102.
 図1Bに示すように、感光体100としての積層型感光体では、導電性基体101上に電荷輸送層102bが設けられ、電荷輸送層102b上に電荷発生層102aが設けられてもよい。ただし、一般に電荷輸送層102bの膜厚は、電荷発生層102aの膜厚に比べ厚いため、電荷輸送層102bは電荷発生層102aに比べ破損し難い。このため、積層型感光体の耐摩耗性を向上させるためには、図1Aに示すように、導電性基体101上に電荷発生層102aが設けられ、電荷発生層102a上に電荷輸送層102bが設けられることが好ましい。 As shown in FIG. 1B, in the stacked type photoconductor as the photoconductor 100, the charge transport layer 102b may be provided on the conductive substrate 101, and the charge generation layer 102a may be provided on the charge transport layer 102b. However, since the charge transport layer 102b is generally thicker than the charge generation layer 102a, the charge transport layer 102b is less likely to be damaged than the charge generation layer 102a. Therefore, in order to improve the abrasion resistance of the multilayer photoreceptor, as shown in FIG. 1A, a charge generation layer 102a is provided on the conductive substrate 101, and a charge transport layer 102b is provided on the charge generation layer 102a. It is preferable to be provided.
 図1Cに示すように、感光体100としての積層型感光体は、導電性基体101と感光層102と中間層103(下引き層)とを備えていてもよい。中間層103は、導電性基体101と感光層102との間に備えられる。図1A及び図1Bに示すように、感光層102は導電性基体101上に直接備えられてもよいし、図1Cに示すように、感光層102は導電性基体101上に中間層103を介して備えられてもよい。なお、感光層102上には、保護層104(図2C参照)が設けられていてもよい。 As shown in FIG. 1C, the multilayer photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a photosensitive layer 102, and an intermediate layer 103 (undercoat layer). The intermediate layer 103 is provided between the conductive substrate 101 and the photosensitive layer 102. As shown in FIGS. 1A and 1B, the photosensitive layer 102 may be provided directly on the conductive substrate 101. As shown in FIG. 1C, the photosensitive layer 102 is interposed on the conductive substrate 101 with an intermediate layer 103 interposed therebetween. May be provided. Note that a protective layer 104 (see FIG. 2C) may be provided on the photosensitive layer 102.
 電荷発生層102a及び電荷輸送層102bの厚さは、それぞれの層としての機能を十分に発現できる限り、特に限定されない。電荷発生層102aの厚さは、0.01μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましい。電荷輸送層102bの厚さは、2μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 The thicknesses of the charge generation layer 102a and the charge transport layer 102b are not particularly limited as long as the functions as the respective layers can be sufficiently expressed. The thickness of the charge generation layer 102a is preferably 0.01 μm or more and 5 μm or less, and more preferably 0.1 μm or more and 3 μm or less. The thickness of the charge transport layer 102b is preferably 2 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.
 感光層102のうちの電荷発生層102aは、電荷発生剤を含有する。電荷発生層102aは、電荷発生層用バインダー樹脂(以下、ベース樹脂と記載することがある)を含有してもよい。電荷発生層102aは、必要に応じて、添加剤を含有してもよい。 The charge generation layer 102a in the photosensitive layer 102 contains a charge generation agent. The charge generation layer 102a may contain a binder resin for a charge generation layer (hereinafter sometimes referred to as a base resin). The charge generation layer 102a may contain an additive as necessary.
 感光層102のうちの電荷輸送層102bは、バインダー樹脂と正孔輸送剤とを含有する。電荷輸送層102bは、必要に応じて、電子アクセプター化合物及び添加剤の少なくとも1種を含有してもよい。 The charge transport layer 102b in the photosensitive layer 102 contains a binder resin and a hole transport agent. The charge transport layer 102b may contain at least one of an electron acceptor compound and an additive as necessary.
 フィルミングの発生を抑制するためには、ポリアリレート樹脂(PA)を含有する電荷輸送層102bが、感光体100の最表面層として配置されることが好ましい。以上、図1A~図1Cを参照して、感光体100が積層型感光体である場合の感光体100の構造について説明した。 In order to suppress the occurrence of filming, the charge transport layer 102b containing a polyarylate resin (PA) is preferably disposed as the outermost surface layer of the photoreceptor 100. The structure of the photoconductor 100 when the photoconductor 100 is a multilayer photoconductor has been described above with reference to FIGS. 1A to 1C.
 (単層型感光体)
 以下、図2A~図2Cを参照して、感光体100が単層型感光体である場合の感光体100の構造について説明する。図2A~図2Cは、各々、感光体100の別の例(単層型感光体)を示す部分断面図であり、この感光体100は本実施形態に係るポリアリレート樹脂を含む。
(Single layer type photoreceptor)
Hereinafter, the structure of the photoconductor 100 when the photoconductor 100 is a single layer type photoconductor will be described with reference to FIGS. 2A to 2C. 2A to 2C are partial cross-sectional views showing another example (single-layer type photosensitive member) of the photosensitive member 100, and the photosensitive member 100 includes the polyarylate resin according to the present embodiment.
 図2Aに示すように、感光体100としての単層型感光体は、例えば、導電性基体101と感光層102とを備える。感光体100としての単層型感光体には、感光層102として、単層型感光層102cが備えられる。単層型感光層102cは、一層の感光層102である。 As shown in FIG. 2A, a single-layer type photoreceptor as the photoreceptor 100 includes, for example, a conductive substrate 101 and a photosensitive layer 102. The single layer type photoreceptor as the photoreceptor 100 includes a single layer type photosensitive layer 102 c as the photosensitive layer 102. The single-layer type photosensitive layer 102c is a single photosensitive layer 102.
 図2Bに示すように、感光体100としての単層型感光体は、導電性基体101と、単層型感光層102cと、中間層103(下引き層)とを備えてもよい。中間層103は、導電性基体101と単層型感光層102cとの間に設けられる。図2Aに示すように、感光層102は導電性基体101上に直接備えられてもよいし、図2Bに示すように、感光層102は導電性基体101上に中間層103を介して備えられてもよい。 As shown in FIG. 2B, the single layer type photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a single layer type photosensitive layer 102c, and an intermediate layer 103 (undercoat layer). The intermediate layer 103 is provided between the conductive substrate 101 and the single-layer type photosensitive layer 102c. As shown in FIG. 2A, the photosensitive layer 102 may be provided directly on the conductive substrate 101, or as shown in FIG. 2B, the photosensitive layer 102 is provided on the conductive substrate 101 via the intermediate layer 103. May be.
 図2Cに示すように、感光体100としての単層型感光体は、導電性基体101と、単層型感光層102cと、保護層104とを備えてもよい。保護層104は、単層型感光層102c上に設けられる。 As shown in FIG. 2C, the single layer type photoreceptor as the photoreceptor 100 may include a conductive substrate 101, a single layer type photosensitive layer 102c, and a protective layer 104. The protective layer 104 is provided on the single-layer type photosensitive layer 102c.
 単層型感光層102cの厚さは、単層型感光層としての機能を十分に発現できる限り、特に限定されない。単層型感光層102cの厚さは、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましい。 The thickness of the single-layer type photosensitive layer 102c is not particularly limited as long as the function as the single-layer type photosensitive layer can be sufficiently expressed. The thickness of the single-layer photosensitive layer 102c is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 50 μm or less.
 感光層102としての単層型感光層102cは、電荷発生剤とバインダー樹脂と正孔輸送剤とを含有する。単層型感光層102cは、電子輸送剤を更に含有してもよい。単層型感光層102cは、必要に応じて、添加剤を含有してもよい。感光体100が単層型感光体である場合、電荷発生剤と、バインダー樹脂と、正孔輸送剤と、必要に応じて添加される成分(例えば、電子輸送剤又は添加剤)とは、一層の感光層102(単層型感光層102c)に含有される。 The single-layer type photosensitive layer 102c as the photosensitive layer 102 contains a charge generator, a binder resin, and a hole transport agent. The single layer type photosensitive layer 102c may further contain an electron transport agent. The single-layer type photosensitive layer 102c may contain an additive as necessary. When the photoreceptor 100 is a single-layer photoreceptor, the charge generator, the binder resin, the hole transport agent, and the components (for example, an electron transport agent or an additive) that are added as necessary are one layer. Of the photosensitive layer 102 (single-layer type photosensitive layer 102c).
 フィルミングの発生を抑制するためには、ポリアリレート樹脂(PA)を含有する単層型感光層102cが、感光体100の最表面層として配置されることが好ましい。以上、図2A~図2Cを参照して、感光体100が単層型感光体である場合の感光体100の構造について説明した。次に、積層型感光体及び単層型感光体について、更に詳細に説明する。 In order to suppress the occurrence of filming, it is preferable that the single-layer type photosensitive layer 102 c containing polyarylate resin (PA) is disposed as the outermost surface layer of the photoreceptor 100. The structure of the photoconductor 100 when the photoconductor 100 is a single layer type photoconductor has been described above with reference to FIGS. 2A to 2C. Next, the laminated type photoreceptor and the single layer type photoreceptor will be described in more detail.
 (バインダー樹脂)
 バインダー樹脂は、上述のポリアリレート樹脂(PA)を含む。感光層がポリアリレート樹脂(PA)を含むことで、上述したように、感光体のフィルミングの発生を抑制することができる。
(Binder resin)
The binder resin includes the polyarylate resin (PA) described above. By including the polyarylate resin (PA) in the photosensitive layer, it is possible to suppress filming of the photoreceptor as described above.
 感光層は、バインダー樹脂として、ポリアリレート樹脂(PA)のみを含有していてもよい。或いは、感光層は、バインダー樹脂として、ポリアリレート樹脂(PA)に加えて、ポリアリレート樹脂(PA)以外のバインダー樹脂(以下、その他のバインダー樹脂と記載することがある)を更に含んでいてもよい。ポリアリレート樹脂(PA)の含有率は、バインダー樹脂の質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが特に好ましい。ポリアリレート樹脂(PA)の含有率がバインダー樹脂の質量に対して100質量%であるとき、感光層(例えば、電荷輸送層又は単層型感光層)はバインダー樹脂としてポリアリレート樹脂(PA)のみを含む。 The photosensitive layer may contain only polyarylate resin (PA) as a binder resin. Alternatively, the photosensitive layer may further contain a binder resin other than the polyarylate resin (PA) (hereinafter sometimes referred to as other binder resin) in addition to the polyarylate resin (PA) as the binder resin. Good. The content of the polyarylate resin (PA) is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass with respect to the mass of the binder resin. When the content of the polyarylate resin (PA) is 100% by mass with respect to the mass of the binder resin, the photosensitive layer (for example, the charge transport layer or the single-layer type photosensitive layer) is only the polyarylate resin (PA) as the binder resin. including.
 その他のバインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリアリレート樹脂(PA)以外のポリアリレート樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、アクリル酸重合体、スチレン-アクリル酸共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル-酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂又はポリエーテル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂又はメラミン樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシアクリル酸(エポキシ化合物のアクリル酸付加物)又はウレタン-アクリル酸(ウレタン化合物のアクリル酸付加物)が挙げられる。これらのバインダー樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of other binder resins include thermoplastic resins, thermosetting resins, and photocurable resins. Examples of the thermoplastic resin include polycarbonate resins, polyarylate resins other than polyarylate resins (PA), styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, acrylic acid polymers, Styrene-acrylic acid copolymer, polyethylene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin, Examples of the resin include urethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyester resin, and polyether resin. As a thermosetting resin, a silicone resin, an epoxy resin, a phenol resin, a urea resin, or a melamine resin is mentioned, for example. Examples of the photocurable resin include epoxy acrylic acid (acrylic acid adduct of epoxy compound) or urethane-acrylic acid (acrylic acid adduct of urethane compound). These binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 (正孔輸送剤)
 正孔輸送剤としては、例えば、トリフェニルアミン誘導体、ジアミン誘導体(例えば、N,N,N’,N’-テトラフェニルベンジジン誘導体、N,N,N’,N’-テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’-テトラフェニルナフチレンジアミン誘導体、N,N,N’,N’-テトラフェニルフェナントリレンジアミン誘導体又はジ(アミノフェニルエテニル)ベンゼン誘導体)、オキサジアゾール系化合物(例えば、2,5-ジ(4-メチルアミノフェニル)-1,3,4-オキサジアゾール)、スチリル系化合物(例えば、9-(4-ジエチルアミノスチリル)アントラセン)、カルバゾール系化合物(例えば、ポリビニルカルバゾール)、有機ポリシラン化合物、ピラゾリン系化合物(例えば、1-フェニル-3-(p-ジメチルアミノフェニル)ピラゾリン)、ヒドラゾン系化合物、インドール系化合物、オキサゾール系化合物、イソオキサゾール系化合物、チアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピラゾール系化合物又はトリアゾール系化合物が挙げられる。正孔輸送剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Hole transport agent)
Examples of the hole transporting agent include triphenylamine derivatives, diamine derivatives (for example, N, N, N ′, N′-tetraphenylbenzidine derivatives, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′, N′-tetraphenylnaphthylenediamine derivative, N, N, N ′, N′-tetraphenylphenanthrylenediamine derivative or di (aminophenylethenyl) benzene derivative), oxadiazole series Compounds (eg, 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole), styryl compounds (eg, 9- (4-diethylaminostyryl) anthracene), carbazole compounds (eg, , Polyvinylcarbazole), organic polysilane compounds, pyrazoline compounds (for example, 1-phenyl-3- (p- Methylamino phenyl) pyrazoline), hydrazone compounds, indole compounds, oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compound, or triazole-based compounds. A hole transport agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 正孔輸送剤は、一般式(10)、(11)又は(12)で表される化合物(以下、化合物(10)、(11)又は(12)と記載することがある)を含むことが好ましい。また、正孔輸送剤としては、化合物(10)、(11)及び(12)以外の正孔輸送剤(以下、その他の正孔輸送剤と記載することがある)を使用することもできる。以下、化合物(10)、(11)及び(12)、並びにその他の正孔輸送剤について説明する。 The hole transport agent may contain a compound represented by the general formula (10), (11) or (12) (hereinafter sometimes referred to as compound (10), (11) or (12)). preferable. Moreover, as a hole transport agent, hole transport agents other than the compounds (10), (11) and (12) (hereinafter, may be referred to as other hole transport agents) can also be used. Hereinafter, the compounds (10), (11) and (12), and other hole transport agents will be described.
 化合物(10)は、下記一般式(10)で表される。 Compound (10) is represented by the following general formula (10).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(10)中、R101及びR108は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルキル基を有してもよいフェニル基、又は炭素原子数1以上8以下のアルコキシ基を表す。R103、R104、R105、R106及びR107は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルキル基を有してもよいフェニル基、又は炭素原子数1以上8以下のアルコキシ基を表す。或いは、R103、R104、R105、R106及びR107のうちの隣接する2つが結合して炭素原子数5以上7以下のシクロアルカンを表してもよい。R102及びR109は、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基又は炭素原子数1以上8以下のアルコキシ基を表す。b1及びb2は、各々独立に、0以上5以下の整数を表す。 In general formula (10), R 101 and R 108 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group optionally having an alkyl group having 1 to 8 carbon atoms. Or an alkoxy group having 1 to 8 carbon atoms. R 103 , R 104 , R 105 , R 106 and R 107 may each independently have a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 1 to 8 carbon atoms. A phenyl group or an alkoxy group having 1 to 8 carbon atoms is represented. Alternatively, two adjacent R 103 , R 104 , R 105 , R 106 and R 107 may be bonded to represent a cycloalkane having 5 to 7 carbon atoms. R102 and R109 each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms. b 1 and b 2 each independently represents an integer of 0 or more and 5 or less.
 一般式(10)中、R101~R109が表わす炭素原子数1以上8以下のアルキル基としては、炭素原子数1以上6以下のアルキル基が好ましく、炭素原子数1以上4以下のアルキル基がより好ましく、メチル基又はn-ブチル基が更に好ましい。 In general formula (10), the alkyl group having 1 to 8 carbon atoms represented by R 101 to R 109 is preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Is more preferable, and a methyl group or an n-butyl group is still more preferable.
 一般式(10)中、R101~R109が表わすフェニル基は、炭素原子数1以上8以下のアルキル基を有してもよい。フェニル基が有する炭素原子数1以上8以下のアルキル基としては、炭素原子数1以上6以下のアルキル基が好ましく、炭素原子数1以上4以下のアルキル基がより好ましく、メチル基が更に好ましい。 In general formula (10), the phenyl group represented by R 101 to R 109 may have an alkyl group having 1 to 8 carbon atoms. The alkyl group having 1 to 8 carbon atoms in the phenyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and still more preferably a methyl group.
 一般式(10)中、R101~R109が表わす炭素原子数1以上8以下のアルコキシ基としては、炭素原子数1以上4以下のアルコキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。 In general formula (10), the alkoxy group having 1 to 8 carbon atoms represented by R 101 to R 109 is preferably an alkoxy group having 1 to 4 carbon atoms, and more preferably a methoxy group or an ethoxy group.
 一般式(10)中、R103、R104、R105、R106及びR107のうちの隣接した二つが互いに結合して、炭素原子数5以上7以下のシクロアルカンを表してもよい。例えば、R103、R104、R105、R106及びR107のうちの隣接したR106及びR107が互いに結合して、炭素原子数5以上7以下のシクロアルカンを形成してもよい。R103、R104、R105、R106及びR107のうちの隣接した二つが互いに結合して炭素原子数5以上7以下のシクロアルカンを形成する場合、この炭素原子数5以上7以下のシクロアルカンはR103、R104、R105、R106及びR107が結合するフェニル基と縮合して二環縮合環基を形成する。この場合、炭素原子数5以上7以下のシクロアルカンとフェニル基との縮合部位は、二重結合を含んでもよい。R103、R104、R105、R106及びR107のうちの隣接した二つが互いに結合して表される炭素原子数5以上7以下のシクロアルカンとしては、シクロヘキサンが好ましい。 In the general formula (10), two adjacent ones of R 103 , R 104 , R 105 , R 106 and R 107 may be bonded to each other to represent a cycloalkane having 5 to 7 carbon atoms. For example, R 106 and R 107 adjacent one of R 103, R 104, R 105 , R 106 and R 107 may be bonded to each other to form a 5 carbon atoms to 7 cycloalkane. When two adjacent ones of R 103 , R 104 , R 105 , R 106 and R 107 are bonded to each other to form a cycloalkane having 5 to 7 carbon atoms, this cyclohexane having 5 to 7 carbon atoms The alkane is condensed with a phenyl group to which R 103 , R 104 , R 105 , R 106 and R 107 are bonded to form a bicyclic fused ring group. In this case, the condensation site between the cycloalkane having 5 to 7 carbon atoms and the phenyl group may contain a double bond. Cycloalkane having 5 or more and 7 or less carbon atoms represented by bonding of two adjacent ones out of R 103 , R 104 , R 105 , R 106 and R 107 is preferably cyclohexane.
 b1が2以上5以下の整数を表す場合、複数のR102は、互いに同一でも異なっていてもよい。b2が2以上5以下の整数を表す場合、複数のR109は、互いに同一でも異なっていてもよい。b1及びb2は、各々独立に、0又は1を表すことが好ましい。 When b 1 represents an integer of 2 or more and 5 or less, the plurality of R 102 may be the same as or different from each other. When b 2 represents an integer of 2 or more and 5 or less, the plurality of R 109 may be the same as or different from each other. It is preferable that b 1 and b 2 each independently represent 0 or 1.
 一般式(10)中、R101及びR108は、炭素原子数1以上8以下のアルキル基を有するフェニル基又は水素原子を表すことが好ましい。R102及びR109は、炭素原子数1以上8以下のアルキル基を表すことが好ましい。R103、R104、R105、R106及びR107は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表すことが好ましい。或いは、R103、R104、R105、R106及びR107のうち隣接した二つが互いに結合して炭素原子数5以上7以下のシクロアルカンを形成することが好ましい。b1及びb2は、各々独立に、0又は1を表すことが好ましい。感光体の耐フィルミング性及び耐摩耗性を向上させるためには、一般式(10)中、R101及びR108が各々水素原子を表すことがより好ましい。 In general formula (10), R 101 and R 108 preferably represent a phenyl group or a hydrogen atom having an alkyl group having 1 to 8 carbon atoms. R 102 and R 109 preferably represent an alkyl group having 1 to 8 carbon atoms. R 103 , R 104 , R 105 , R 106 and R 107 each preferably independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms. . Alternatively, it is preferable that adjacent two of R 103 , R 104 , R 105 , R 106 and R 107 are bonded to each other to form a cycloalkane having 5 to 7 carbon atoms. It is preferable that b 1 and b 2 each independently represent 0 or 1. In order to improve the filming resistance and wear resistance of the photoreceptor, it is more preferable that R 101 and R 108 each represent a hydrogen atom in the general formula (10).
 化合物(10)の好適な例としては、化学式(HTM-1)、(HTM-2)、(HTM-3)又は(HTM-4)で表される化合物(以下、化合物(HTM-1)、(HTM-2)、(HTM-3)又は(HTM-4)と記載することがある)が挙げられる。 Preferred examples of the compound (10) include compounds represented by the chemical formula (HTM-1), (HTM-2), (HTM-3) or (HTM-4) (hereinafter referred to as the compound (HTM-1), (HTM-2), (HTM-3) or (HTM-4) may be mentioned).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 化合物(11)は、下記一般式(11)で表される。 Compound (11) is represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 一般式(11)中、R111及びR112は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基又はフェニル基を表す。R113、R114、R115、R116、R117及びR118は、各々独立に、炭素原子数1以上8以下のアルキル基又はフェニル基を表す。d1及びd2は、各々独立に、0又は1を表す。d3、d4、d5及びd6は、各々独立に、0以上5以下の整数を表す。d7及びd8は、各々独立に、0以上4以下の整数を表す。 In general formula (11), R 111 and R 112 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group. R113 , R114 , R115 , R116 , R117 and R118 each independently represents an alkyl group having 1 to 8 carbon atoms or a phenyl group. d 1 and d 2 each independently represents 0 or 1; d 3 , d 4 , d 5 and d 6 each independently represent an integer of 0 or more and 5 or less. d 7 and d 8 each independently represents an integer of 0 or more and 4 or less.
 一般式(11)中、R111~R118が表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。 In general formula (11), the alkyl group having 1 to 8 carbon atoms represented by R 111 to R 118 is preferably an alkyl group having 1 to 4 carbon atoms, and is a methyl group or an ethyl group. Is more preferable.
 一般式(11)中、d3が2以上5以下の整数を表すとき、複数のR113は、互いに同一でも異なっていてもよい。d4が2以上5以下の整数を表すとき、複数のR114は、互いに同一でも異なっていてもよい。d5が2以上5以下の整数を表すとき、複数のR115は、互いに同一でも異なっていてもよい。d6が2以上5以下の整数を表すとき、複数のR116は、互いに同一でも異なっていてもよい。d7が2以上4以下の整数を表すとき、複数のR117は、互いに同一でも異なっていてもよい。d8が2以上4以下の整数を表すとき、複数のR118は、互いに同一でも異なっていてもよい。 In the general formula (11), when d 3 represents an integer of 2 or more and 5 or less, the plurality of R 113 may be the same as or different from each other. When d 4 represents an integer of 2 or more and 5 or less, the plurality of R 114 may be the same as or different from each other. When d 5 represents an integer of 2 or more and 5 or less, the plurality of R 115 may be the same as or different from each other. When d 6 represents an integer of 2 or more and 5 or less, the plurality of R 116 may be the same as or different from each other. When d 7 represents an integer of 2 or more and 4 or less, the plurality of R 117 may be the same as or different from each other. When d 8 represents an integer of 2 or more and 4 or less, the plurality of R 118 may be the same as or different from each other.
 一般式(11)中、R111及びR112は、各々独立に、水素原子又はフェニル基を表すことが好ましい。R113、R114、R115、R116、R117及びR118は、各々独立に、炭素原子数1以上8以下のアルキルを表すことが好ましい。d1及びd2は、互いに同じであり、0又は1を表すことが好ましい。d3及びd5は、各々0を表すことが好ましい。d4及びd6は、互いに同じであり、0又は2を表すことが好ましい。d7及びd8は、各々、0を表すことが好ましい。感光体の耐フィルミング性及び耐摩耗性を向上させるためには、d1及びd2は、各々、1を表すことがより好ましい。感光体の電気特性(特に感度特性)及び耐摩耗性を向上させるためには、R111及びR112は、各々、水素原子を表すことが好ましい。感光体の耐フィルミング性、電気特性(特に感度特性)及び耐摩耗性を向上させるためには、d1及びd2は各々1を表し、R111及びR112は各々水素原子を表すことが特に好ましい。 In general formula (11), R 111 and R 112 preferably each independently represent a hydrogen atom or a phenyl group. R 113 , R 114 , R 115 , R 116 , R 117 and R 118 each independently preferably represents an alkyl having 1 to 8 carbon atoms. d 1 and d 2 are the same as each other, and preferably represent 0 or 1. d 3 and d 5 each preferably represent 0. d 4 and d 6 are the same as each other, and preferably represent 0 or 2. d 7 and d 8 each preferably represent 0. In order to improve the filming resistance and wear resistance of the photoreceptor, it is more preferable that d 1 and d 2 each represent 1. In order to improve electrical characteristics (especially sensitivity characteristics) and wear resistance of the photoreceptor, R 111 and R 112 each preferably represent a hydrogen atom. In order to improve filming resistance, electrical characteristics (especially sensitivity characteristics) and abrasion resistance of the photoreceptor, d 1 and d 2 each represent 1, and R 111 and R 112 each represent a hydrogen atom. Particularly preferred.
 化合物(11)の好適な例としては、化学式(HTM-5)、(HTM-6)又は(HTM-7)で表される化合物(以下、化合物(HTM-5)、(HTM-6)又は(HTM-7)と記載することがある)が挙げられる。 Preferable examples of compound (11) include compounds represented by chemical formula (HTM-5), (HTM-6) or (HTM-7) (hereinafter referred to as compound (HTM-5), (HTM-6) or (It may be described as (HTM-7)).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 化合物(12)は、下記一般式(12)で表される。 Compound (12) is represented by the following general formula (12).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 一般式(12)中、R121、R122、R123、R124、R125及びR126は、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基又は炭素原子数1以上8以下のアルコキシ基を表す。e1、e2、e4及びe5は、各々独立に、0以上5以下の整数を表す。e3及びe6は、各々独立に、0以上4以下の整数を表す。 In the general formula (12), R 121 , R 122 , R 123 , R 124 , R 125 and R 126 are each independently an alkyl group having 1 to 8 carbon atoms, a phenyl group, or 1 to 8 carbon atoms. The following alkoxy groups are represented. e 1 , e 2 , e 4 and e 5 each independently represents an integer of 0 or more and 5 or less. e 3 and e 6 each independently represents an integer of 0 or more and 4 or less.
 一般式(12)中、R121~R126が表わす炭素原子数1以上8以下のアルキル基としては、炭素原子数1以上4以下のアルキル基が好ましく、メチル基又はエチル基がより好ましい。 In general formula (12), the alkyl group having 1 to 8 carbon atoms represented by R 121 to R 126 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
 一般式(12)中、e1が2以上5以下の整数を表すとき、複数のR121は、互いに同一でも異なっていてもよい。e2が2以上5以下の整数を表すとき、複数のR122は、互いに同一でも異なっていてもよい。e3が2以上4以下の整数を表すとき、複数のR123は、互いに同一でも異なっていてもよい。e4が2以上5以下の整数を表すとき、複数のR124は、互いに同一でも異なっていてもよい。e5が2以上5以下の整数を表すとき、複数のR125は、互いに同一でも異なっていてもよい。e6が2以上4以下の整数を表すとき、複数のR126は、互いに同一でも異なっていてもよい。 In the general formula (12), when e 1 represents an integer of 2 or more and 5 or less, the plurality of R 121 may be the same as or different from each other. When e 2 represents an integer of 2 or more and 5 or less, the plurality of R 122 may be the same as or different from each other. When e 3 represents an integer of 2 or more and 4 or less, the plurality of R 123 may be the same as or different from each other. When e 4 represents an integer of 2 or more and 5 or less, the plurality of R 124 may be the same as or different from each other. When e 5 represents an integer of 2 or more and 5 or less, the plurality of R 125 may be the same as or different from each other. When e 6 represents an integer of 2 or more and 4 or less, the plurality of R 126 may be the same as or different from each other.
 R124、R125及びR126を有するジフェニルアミノフェニルエテニル基は、R121、R122及びR123を有するジフェニルアミノフェニルエテニルが結合するフェニル基のオルト位、メタ位又はパラ位に結合する。 The diphenylaminophenyl ethenyl group having R 124 , R 125 and R 126 is bonded to the ortho, meta or para position of the phenyl group to which the diphenylaminophenyl ethenyl having R 121 , R 122 and R 123 is bonded. .
 一般式(12)中、e1、e2、e4及びe5は、各々独立に、0以上2以下の整数を表すことが好ましい。e1及びe2の一方が0を表し他方が2を表し且つe4及びe5の一方が0を表し他方が2を表すか、或いはe1、e2、e4及びe5が各々1を表すことがより好ましい。e3及びe6は、各々、0を表すことが好ましい。 In the general formula (12), e 1, e 2, e 4 and e 5 are each independently preferably represents an integer of 0 to 2 or less. one of e 1 and e 2 represents 0 and the other represents 2 and one of e 4 and e 5 represents 0 and the other represents 2, or e 1 , e 2 , e 4 and e 5 are each 1 Is more preferable. It is preferable that e 3 and e 6 each represent 0.
 一般式(12)中、R121、R122、R123、R124、R125及びR126は、各々独立に、炭素原子数1以上8以下のアルキル基を表すことが好ましい。e1、e2、e4及びe5は、各々独立に、0以上2以下の整数を表すことが好ましい。e3及びe6は、各々、0を表すことが好ましい。感光体の耐フィルミング性及び耐摩耗性を向上させるためには、e1及びe2の一方が0を表し他方が2を表し、且つe4及びe5の一方が0を表し他方が2を表すことがより好ましい。 In the general formula (12), it is preferable that R 121 , R 122 , R 123 , R 124 , R 125 and R 126 each independently represents an alkyl group having 1 to 8 carbon atoms. It is preferable that e 1 , e 2 , e 4 and e 5 each independently represent an integer of 0 or more and 2 or less. It is preferable that e 3 and e 6 each represent 0. In order to improve the filming resistance and wear resistance of the photoreceptor, one of e 1 and e 2 represents 0 and the other represents 2, and one of e 4 and e 5 represents 0 and the other is 2 Is more preferable.
 化合物(12)の好適な例としては、化学式(HTM-8)又は(HTM-9)で表される化合物(以下、化合物(HTM-8)又は(HTM-9)と記載することがある)が挙げられる。 Preferable examples of the compound (12) include compounds represented by the chemical formula (HTM-8) or (HTM-9) (hereinafter sometimes referred to as the compound (HTM-8) or (HTM-9)). Is mentioned.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 感光体の耐フィルミング性及び耐摩耗性に加えて電気特性(特に感度特性)を向上させるためには、正孔輸送剤としては、化合物(10)、(11)又は(12)が好ましい。同じ理由から、正孔輸送剤としては、化合物(HTM-1)~(HTM-9)がより好ましい。 In order to improve electrical characteristics (particularly sensitivity characteristics) in addition to filming resistance and abrasion resistance of the photoreceptor, the compound (10), (11) or (12) is preferable as the hole transport agent. For the same reason, compounds (HTM-1) to (HTM-9) are more preferable as the hole transporting agent.
 感光体の耐フィルミング性及び耐摩耗性を向上させるためには、正孔輸送剤としては、化合物(10)、(11)又は(12)が好ましく、化合物(10)がより好ましい。感光体の耐フィルミング性及び耐摩耗性を向上させるためには、正孔輸送剤としては、化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-5)又は(HTM-8)が好ましく、化合物(HTM-2)又は(HTM-3)がより好ましい。 In order to improve the filming resistance and abrasion resistance of the photoreceptor, the hole transporting agent is preferably the compound (10), (11) or (12), and more preferably the compound (10). In order to improve the filming resistance and abrasion resistance of the photoreceptor, the hole transport agent may be a compound (HTM-1), (HTM-2), (HTM-3), (HTM-5) or (HTM-8) is preferred, and compound (HTM-2) or (HTM-3) is more preferred.
 感光体の耐フィルミング性及び電気特性(特に感度特性)を向上させるためには、正孔輸送剤としては、化合物(10)、(11)又は(12)が好ましく、化合物(11)がより好ましい。感光体の耐フィルミング性及び電気特性(特に感度特性)を向上させるためには、正孔輸送剤としては、化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)又は(HTM-6)が好ましく、化合物(HTM-5)又は(HTM-6)がより好ましい。 In order to improve the filming resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor, the hole transporting agent is preferably compound (10), (11) or (12), and compound (11) is more preferred. preferable. In order to improve the filming resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor, the compound (HTM-1), (HTM-2), (HTM-3), (HTM) -4), (HTM-5) or (HTM-6) is preferred, and compound (HTM-5) or (HTM-6) is more preferred.
 感光体の耐フィルミング性、耐摩耗性及び電気特性(特に感度特性)を向上させるためには、感光層(具体的には、電荷輸送層又は単層型感光層)に含有される正孔輸送剤は1種のみであり、この1種の正孔輸送剤は化合物(10)、(11)又は(12)であることが好ましい。 In order to improve the filming resistance, abrasion resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor, holes contained in the photosensitive layer (specifically, charge transport layer or single layer type photosensitive layer) There is only one kind of transport agent, and this one kind of hole transport agent is preferably compound (10), (11) or (12).
 感光体の耐フィルミング性、耐摩耗性及び電気特性(特に感度特性)を更に向上させるためには、感光層(具体的には、電荷輸送層又は単層型感光層)に含有される正孔輸送剤及びバインダー樹脂が次のとおりであることが好ましい。正孔輸送剤は1種のみであり、この1種の正孔輸送剤は化合物(10)、(11)又は(12)である。バインダー樹脂が、繰り返し単位(1)が繰り返し単位(1-1)であり且つ繰り返し単位(2)が繰り返し単位(2-3)であるポリアリレート樹脂(PA)である。 In order to further improve the filming resistance, abrasion resistance and electrical characteristics (especially sensitivity characteristics) of the photoreceptor, the positive layer contained in the photosensitive layer (specifically, a charge transport layer or a single-layer type photosensitive layer). It is preferable that the pore transport agent and the binder resin are as follows. There is only one kind of hole transport agent, and this one kind of hole transport agent is the compound (10), (11) or (12). The binder resin is a polyarylate resin (PA) in which the repeating unit (1) is the repeating unit (1-1) and the repeating unit (2) is the repeating unit (2-3).
 感光層は、正孔輸送剤として、化合物(10)、(11)又は(12)のみを含んでいてもよい。或いは、感光層は、正孔輸送剤として、化合物(10)、(11)又は(12)に加えて、化合物(10)、(11)及び(12)以外の正孔輸送剤を更に含んでいてもよい。正孔輸送剤が化合物(10)、(11)又は(12)を含む場合、化合物(10)、(11)又は(12)の含有量は、正孔輸送剤の質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが特に好ましい。 The photosensitive layer may contain only the compound (10), (11) or (12) as a hole transport agent. Alternatively, the photosensitive layer further contains a hole transport agent other than the compounds (10), (11) and (12) in addition to the compound (10), (11) or (12) as a hole transport agent. May be. When the hole transport agent contains the compound (10), (11) or (12), the content of the compound (10), (11) or (12) is 80 masses with respect to the mass of the hole transport agent. % Or more, more preferably 90% by mass or more, and particularly preferably 100% by mass.
 その他の正孔輸送剤としては、下記化学式(HTM-10)~(HTM-12)で表される化合物(以下、化合物(HTM-10)~(HTM-12)と記載することがある)が挙げられる。 Examples of other hole transporting agents include compounds represented by the following chemical formulas (HTM-10) to (HTM-12) (hereinafter sometimes referred to as compounds (HTM-10) to (HTM-12)). Can be mentioned.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 感光体が積層型感光体である場合、正孔輸送剤の含有量は、電荷輸送層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、20質量部以上100質量部以下であることがより好ましい。 When the photoreceptor is a multilayer photoreceptor, the content of the hole transport agent is preferably 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the binder resin contained in the charge transport layer. More preferably, it is 20 parts by mass or more and 100 parts by mass or less.
 感光体が単層型感光体である場合、単層型感光層に含有される正孔輸送剤の含有量は、単層型感光層に含有されるバインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。 When the photoreceptor is a monolayer type photoreceptor, the content of the hole transport agent contained in the monolayer type photosensitive layer is 10 masses with respect to 100 parts by mass of the binder resin contained in the monolayer type photosensitive layer. It is preferably no less than 200 parts by mass and more preferably no greater than 10 parts by mass and no greater than 100 parts by mass.
 (電荷発生剤)
 電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン系顔料、ビスアゾ顔料、トリスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、無機光導電材料(例えば、セレン、セレン-テルル、セレン-ヒ素、硫化カドミウム又はアモルファスシリコン)の粉末、ピリリウム顔料、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料又はキナクリドン系顔料が挙げられる。電荷発生剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Charge generator)
Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, trisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, indigo pigments, azurenium pigments, cyanine Pigments, inorganic photoconductive materials (for example, selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide or amorphous silicon) powders, pyrylium pigments, ansanthrone pigments, triphenylmethane pigments, selenium pigments, toluidine pigments, Examples include pyrazoline pigments and quinacridone pigments. A charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 フタロシアニン系顔料としては、例えば、無金属フタロシアニン又は金属フタロシアニンが挙げられる。金属フタロシアニンとしては、例えば、チタニルフタロシアニン、ヒドロキシガリウムフタロシアニン又はクロロガリウムフタロシアニンが挙げられる。無金属フタロシアニンは、化学式(CGM-1)で表される。チタニルフタロシアニンは、化学式(CGM-2)で表される。フタロシアニン系顔料は、結晶であってもよく、非結晶であってもよい。フタロシアニン系顔料の結晶形状(例えば、α型、β型、Y型、V型又はII型)については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。 Examples of the phthalocyanine pigment include metal-free phthalocyanine or metal phthalocyanine. Examples of the metal phthalocyanine include titanyl phthalocyanine, hydroxygallium phthalocyanine, or chlorogallium phthalocyanine. Metal-free phthalocyanine is represented by the chemical formula (CGM-1). Titanyl phthalocyanine is represented by the chemical formula (CGM-2). The phthalocyanine pigment may be crystalline or non-crystalline. The crystal shape of the phthalocyanine pigment (for example, α type, β type, Y type, V type or II type) is not particularly limited, and phthalocyanine pigments having various crystal shapes are used.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 無金属フタロシアニンの結晶としては、例えば、無金属フタロシアニンのX型結晶(以下、X型無金属フタロシアニンと記載することがある)が挙げられる。チタニルフタロシアニンの結晶としては、例えば、チタニルフタロシアニンのα型、β型又はY型結晶(以下、α型、β型又はY型チタニルフタロシアニンと記載することがある)が挙げられる。ヒドロキシガリウムフタロシアニンの結晶としては、ヒドロキシガリウムフタロシアニンのV型結晶が挙げられる。 Examples of the crystal of metal-free phthalocyanine include a metal-free phthalocyanine X-type crystal (hereinafter sometimes referred to as X-type metal-free phthalocyanine). Examples of the crystal of titanyl phthalocyanine include α-type, β-type, and Y-type crystals of titanyl phthalocyanine (hereinafter sometimes referred to as α-type, β-type, or Y-type titanyl phthalocyanine). Examples of the crystal of hydroxygallium phthalocyanine include a V-type crystal of hydroxygallium phthalocyanine.
 例えば、デジタル光学式の画像形成装置(例えば、半導体レーザーのような光源を使用した、レーザービームプリンター又はファクシミリ)には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。700nm以上の波長領域で高い量子収率を有することから、電荷発生剤としては、フタロシアニン系顔料が好ましく、無金属フタロシアニン又はチタニルフタロシアニンがより好ましく、X型無金属フタロシアニン又はY型チタニルフタロシアニンが更に好ましく、Y型チタニルフタロシアニンが特に好ましい。 For example, for a digital optical image forming apparatus (for example, a laser beam printer or a facsimile using a light source such as a semiconductor laser), it is preferable to use a photoreceptor having sensitivity in a wavelength region of 700 nm or more. Since it has a high quantum yield in a wavelength region of 700 nm or more, the charge generator is preferably a phthalocyanine pigment, more preferably a metal-free phthalocyanine or titanyl phthalocyanine, and even more preferably an X-type metal-free phthalocyanine or a Y-type titanyl phthalocyanine. Y-type titanyl phthalocyanine is particularly preferred.
 短波長レーザー光源(例えば、350nm以上550nm以下の波長を有するレーザー光源)を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料が好適に用いられる。 An santhrone pigment is preferably used as a charge generating agent in a photoreceptor applied to an image forming apparatus using a short wavelength laser light source (for example, a laser light source having a wavelength of 350 nm to 550 nm).
 電荷発生剤の含有量は、感光層に含有されるバインダー樹脂100質量部に対して、0.1質量部以上50質量部以下であることが好ましく、0.5質量部以上30質量部以下であることがより好ましく、0.5質量部以上4.5質量部以下であることが特に好ましい。 The content of the charge generating agent is preferably 0.1 parts by weight or more and 50 parts by weight or less, and 0.5 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the binder resin contained in the photosensitive layer. More preferably, it is more preferably 0.5 parts by mass or more and 4.5 parts by mass or less.
 (電子輸送剤及び電子アクセプター化合物)
 感光体が積層型感光体である場合、電荷輸送層は電子アクセプター化合物を含有してもよい。また、感光体が単層型感光体である場合、単層型感光層は電子輸送剤を含有してもよい。
(Electron transfer agent and electron acceptor compound)
When the photoreceptor is a multilayer photoreceptor, the charge transport layer may contain an electron acceptor compound. When the photoreceptor is a single layer type photoreceptor, the single layer type photosensitive layer may contain an electron transport agent.
 電子輸送剤及び電子アクセプター化合物の例としては、キノン系化合物、ジイミド系化合物、ヒドラゾン系化合物、チオピラン系化合物、トリニトロチオキサントン系化合物、3,4,5,7-テトラニトロ-9-フルオレノン系化合物、ジニトロアントラセン系化合物、ジニトロアクリジン系化合物、テトラシアノエチレン、2,4,8-トリニトロチオキサントン、ジニトロベンゼン、ジニトロアクリジン、無水コハク酸、無水マレイン酸又はジブロモ無水マレイン酸が挙げられる。キノン系化合物としては、例えば、ジフェノキノン系化合物(例えば、3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノン)、アゾキノン系化合物、アントラキノン系化合物、ナフトキノン系化合物、ニトロアントラキノン系化合物又はジニトロアントラキノン系化合物が挙げられる。電子輸送剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。電子アクセプター化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of electron transport agents and electron acceptor compounds include quinone compounds, diimide compounds, hydrazone compounds, thiopyran compounds, trinitrothioxanthone compounds, 3,4,5,7-tetranitro-9-fluorenone compounds, Examples thereof include dinitroanthracene compounds, dinitroacridine compounds, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroacridine, succinic anhydride, maleic anhydride or dibromomaleic anhydride. Examples of quinone compounds include diphenoquinone compounds (eg, 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone), azoquinone compounds, anthraquinone compounds, naphthoquinone compounds, Examples thereof include nitroanthraquinone compounds and dinitroanthraquinone compounds. An electron transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type. An electron acceptor compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 感光体が単層型感光体である場合、単層型感光層に含有される電子輸送剤の含有量は、単層型感光層に含有されるバインダー樹脂100質量部に対して、5質量部以上100質量部以下であることが好ましく、10質量部以上80質量部以下であることがより好ましい。 When the photoreceptor is a single layer type photoreceptor, the content of the electron transport agent contained in the single layer type photosensitive layer is 5 parts by mass with respect to 100 parts by mass of the binder resin contained in the single layer type photosensitive layer. The amount is preferably 100 parts by mass or less and more preferably 10 parts by mass or more and 80 parts by mass or less.
 感光体が積層型感光体である場合、電荷輸送層に含有される電子アクセプター化合物の含有量は、電荷輸送層に含有されるバインダー樹脂100質量部に対して、0.1質量部以上20質量部以下であることが好ましい。 When the photoreceptor is a multilayer photoreceptor, the content of the electron acceptor compound contained in the charge transport layer is 0.1 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the binder resin contained in the charge transport layer. Part or less.
 (材料の組み合わせ)
 正孔輸送剤及びバインダー樹脂が、次に示す組み合わせの何れかであることが好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電荷発生剤がY型チタニルフタロシアニンであることが好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電子アクセプター化合物が3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノンであることが好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電荷発生剤がY型チタニルフタロシアニンであり、電子アクセプター化合物が3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノンであることが好ましい。
(Combination of materials)
It is preferable that the hole transport agent and the binder resin are any one of the following combinations. It is preferable that the hole transporting agent and the binder resin are any of the following combinations, and the charge generating agent is Y-type titanyl phthalocyanine. It is preferable that the hole transport agent and the binder resin are any of the following combinations, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone. The hole transport agent and the binder resin are any of the following combinations, the charge generator is Y-type titanyl phthalocyanine, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4 4,4′-diphenoquinone is preferred.
 バインダー樹脂が繰り返し単位(1-1)と繰り返し単位(2-3)とを含むポリアリレート樹脂であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂が繰り返し単位(1-1)と繰り返し単位(2-1)とを含むポリアリレート樹脂であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂が繰り返し単位(1-1)と繰り返し単位(2-2)とを含むポリアリレート樹脂であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;又は
バインダー樹脂が繰り返し単位(1-2)と繰り返し単位(2-4)とを含むポリアリレート樹脂であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかである。
The binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-3), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9);
The binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-1), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9);
The binder resin is a polyarylate resin containing a repeating unit (1-1) and a repeating unit (2-2), and the hole transporting agent is a compound (HTM-1), (HTM-2), (HTM-3) , (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9); or the binder resin is a repeating unit ( 1-2) and a polyarylate resin containing the repeating unit (2-4), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4) , (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9).
 正孔輸送剤及びバインダー樹脂が、次に示す組み合わせの何れかであることがより好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電荷発生剤がY型チタニルフタロシアニンであることがより好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電子アクセプター化合物が3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノンであることがより好ましい。正孔輸送剤及びバインダー樹脂が次に示す組み合わせの何れかであり、電荷発生剤がY型チタニルフタロシアニンであり、電子アクセプター化合物が3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノンであることがより好ましい。なお、ポリアリレート樹脂(PA-1)~(PA-6)については、各々、実施例で後述する。 More preferably, the hole transporting agent and the binder resin are any of the following combinations. More preferably, the hole transporting agent and the binder resin are any of the following combinations, and the charge generating agent is Y-type titanyl phthalocyanine. More preferably, the hole transporting agent and the binder resin are any of the following combinations, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone. . The hole transport agent and the binder resin are any of the following combinations, the charge generator is Y-type titanyl phthalocyanine, and the electron acceptor compound is 3,3 ′, 5,5′-tetra-tert-butyl-4 More preferably, 4'-diphenoquinone. The polyarylate resins (PA-1) to (PA-6) will be described later in Examples.
 バインダー樹脂がポリアリレート樹脂(PA-1)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂がポリアリレート樹脂(PA-2)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂がポリアリレート樹脂(PA-3)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂がポリアリレート樹脂(PA-4)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;
バインダー樹脂がポリアリレート樹脂(PA-5)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかであるか;又は
バインダー樹脂がポリアリレート樹脂(PA-6)であり、正孔輸送剤が化合物(HTM-1)、(HTM-2)、(HTM-3)、(HTM-4)、(HTM-5)、(HTM-6)、(HTM-7)、(HTM-8)及び(HTM-9)の何れかである。
The binder resin is polyarylate resin (PA-1), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
The binder resin is polyarylate resin (PA-2), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
The binder resin is polyarylate resin (PA-3), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
The binder resin is polyarylate resin (PA-4), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) or (HTM-9);
The binder resin is polyarylate resin (PA-5), and the hole transport agent is compound (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and (HTM-9); or the binder resin is a polyarylate resin (PA-6) and the hole transport agent is Compounds (HTM-1), (HTM-2), (HTM-3), (HTM-4), (HTM-5), (HTM-6), (HTM-7), (HTM-8) and ( HTM-9).
 以上、正孔輸送剤及びバインダー樹脂の好適な組み合わせについて説明した。 The preferred combination of the hole transport agent and the binder resin has been described above.
 (添加剤)
 添加剤としては、例えば、劣化防止剤(例えば、酸化防止剤、ラジカル捕捉剤、1重項消光剤又は紫外線吸収剤)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー、界面活性剤、可塑剤、増感剤又はレベリング剤が挙げられる。酸化防止剤としては、例えば、ヒンダードフェノール(例えば、ジ(tert-ブチル)p-クレゾール)、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン若しくはこれらの誘導体、有機硫黄化合物又は有機燐化合物が挙げられる。
(Additive)
Examples of additives include deterioration inhibitors (for example, antioxidants, radical scavengers, singlet quenchers or ultraviolet absorbers), softeners, surface modifiers, extenders, thickeners, dispersion stabilizers. , Waxes, acceptors, donors, surfactants, plasticizers, sensitizers or leveling agents. Antioxidants include, for example, hindered phenols (eg, di (tert-butyl) p-cresol), hindered amines, paraphenylenediamine, arylalkanes, hydroquinones, spirochromans, spirodinones or their derivatives, organic sulfur compounds or An organic phosphorus compound is mentioned.
 <導電性基体>
 導電性基体は、感光体の導電性基体として用いることができる限り、特に限定されない。導電性基体は、少なくとも表面部が導電性を有する材料で形成されていればよい。導電性基体の一例としては、導電性を有する材料で形成される導電性基体が挙げられる。導電性基体の別の例としては、導電性を有する材料で被覆される導電性基体が挙げられる。導電性を有する材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、インジウム、ステンレス鋼又は真鍮が挙げられる。これらの導電性を有する材料を単独で用いてもよいし、2種以上を組み合わせて(例えば、合金として)用いてもよい。これらの導電性を有する材料のなかでも、感光層から導電性基体への電荷の移動が良好であることから、アルミニウム又はアルミニウム合金が好ましい。
<Conductive substrate>
The conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor. The conductive substrate may be formed of a material having at least a surface portion having conductivity. An example of the conductive substrate is a conductive substrate formed of a conductive material. Another example of the conductive substrate is a conductive substrate coated with a conductive material. Examples of the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, and brass. These conductive materials may be used alone or in combination of two or more (for example, as an alloy). Among these materials having conductivity, aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
 導電性基体の形状は、画像形成装置の構造に合わせて適宜選択される。導電性基体の形状としては、例えば、シート状又はドラム状が挙げられる。また、導電性基体の厚さは、導電性基体の形状に応じて適宜選択される。 The shape of the conductive substrate is appropriately selected according to the structure of the image forming apparatus. Examples of the shape of the conductive substrate include a sheet shape or a drum shape. The thickness of the conductive substrate is appropriately selected according to the shape of the conductive substrate.
 <中間層>
 中間層(下引き層)は、例えば、無機粒子及び中間層に用いられる樹脂(中間層用樹脂)を含有する。中間層が存在することにより、リーク発生を抑制し得る程度の絶縁状態を維持しつつ、感光体を露光した時に発生する電流の流れを円滑にして、抵抗の上昇が抑えられると考えられる。
<Intermediate layer>
The intermediate layer (undercoat layer) contains, for example, inorganic particles and a resin (intermediate layer resin) used for the intermediate layer. The presence of the intermediate layer is considered to suppress the increase in resistance by smoothing the flow of current generated when the photosensitive member is exposed while maintaining an insulating state capable of suppressing the occurrence of leakage.
 無機粒子としては、例えば、金属(例えば、アルミニウム、鉄又は銅)、金属酸化物(例えば、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ又は酸化亜鉛)の粒子又は非金属酸化物(例えば、シリカ)の粒子が挙げられる。これらの無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the inorganic particles include metal (for example, aluminum, iron or copper), metal oxide (for example, titanium oxide, alumina, zirconium oxide, tin oxide or zinc oxide) particles or non-metal oxide (for example, silica). Particles. These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
 中間層用樹脂としては、中間層を形成する樹脂として用いることができる限り、特に限定されない。中間層は、添加剤を含有してもよい。添加剤の例は、感光層の添加剤の例と同じである。 The intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer. The intermediate layer may contain an additive. Examples of the additive are the same as those of the photosensitive layer.
 <感光体の製造方法>
 感光体の製造方法として、積層型感光体の製造方法の一例、及び単層型感光体の製造方法の一例を説明する。
<Method for producing photoconductor>
As a method for producing a photoreceptor, an example of a method for producing a laminated photoreceptor and an example of a method for producing a single layer photoreceptor will be described.
 (積層型感光体の製造方法)
 積層型感光体の製造方法において、感光層形成工程は、電荷発生層形成工程と電荷輸送層形成工程とを有する。電荷発生層形成工程では、まず、電荷発生層を形成するための塗布液(以下、電荷発生層用塗布液と記載することがある)を調製する。電荷発生層用塗布液を導電性基体上に塗布する。次いで、塗布した電荷発生層用塗布液に含まれる溶剤の少なくとも一部を除去して電荷発生層を形成する。電荷発生層用塗布液は、例えば、電荷発生剤と、ベース樹脂と、溶剤とを含む。このような電荷発生層用塗布液は、電荷発生剤及びベース樹脂を溶剤に溶解又は分散させることにより調製される。電荷発生層用塗布液は、必要に応じて添加剤を加えてもよい。
(Manufacturing method of laminated photoreceptor)
In the method for producing a multilayer photoreceptor, the photosensitive layer forming step includes a charge generation layer forming step and a charge transport layer forming step. In the charge generation layer forming step, first, a coating liquid for forming the charge generation layer (hereinafter, sometimes referred to as a charge generation layer coating liquid) is prepared. A charge generation layer coating solution is applied onto the conductive substrate. Next, at least a part of the solvent contained in the applied charge generation layer coating solution is removed to form a charge generation layer. The charge generation layer coating solution includes, for example, a charge generation agent, a base resin, and a solvent. Such a charge generation layer coating solution is prepared by dissolving or dispersing a charge generation agent and a base resin in a solvent. An additive may be added to the charge generation layer coating solution as necessary.
 電荷輸送層形成工程では、まず、電荷輸送層を形成するための塗布液(以下、電荷輸送層用塗布液と記載することがある)を調製する。電荷輸送層用塗布液を電荷発生層上に塗布する。次いで、塗布した電荷輸送層用塗布液に含まれる溶剤の少なくとも一部を除去して電荷輸送層を形成する。電荷輸送層用塗布液は、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(PA)と、溶剤とを含む。電荷輸送層用塗布液は、正孔輸送剤と、ポリアリレート樹脂(PA)とを溶剤に溶解又は分散させることにより調製することができる。電荷輸送層用塗布液には、必要に応じて電子アクセプター化合物及び添加剤の1以上を加えてもよい。 In the charge transport layer forming step, first, a coating liquid for forming the charge transport layer (hereinafter, sometimes referred to as a charge transport layer coating liquid) is prepared. A charge transport layer coating solution is applied onto the charge generation layer. Next, at least a part of the solvent contained in the applied charge transport layer coating solution is removed to form a charge transport layer. The coating solution for charge transport layer contains a hole transport agent, a polyarylate resin (PA) as a binder resin, and a solvent. The charge transport layer coating solution can be prepared by dissolving or dispersing a hole transport agent and a polyarylate resin (PA) in a solvent. If necessary, one or more electron acceptor compounds and additives may be added to the charge transport layer coating solution.
 (単層型感光体の製造方法)
 単層型感光体の製造方法において、感光層形成工程では、単層型感光層を形成するための塗布液(以下、単層型感光層用塗布液と記載することがある)を調製する。単層型感光層用塗布液を導電性基体上に塗布する。次いで、塗布した感光層用塗布液に含まれる溶剤の少なくとも一部を除去して単層型感光層を形成する。単層型感光層用塗布液は、例えば、電荷発生剤と、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(PA)と、溶剤とを含む。このような単層型感光層用塗布液は、電荷発生剤と、正孔輸送剤と、バインダー樹脂としてのポリアリレート樹脂(PA)とを溶剤に溶解又は分散させることにより調製する。感光層用塗布液は、必要に応じて電子輸送剤及び添加剤の1以上を加えてもよい。
(Method for producing single-layer type photoreceptor)
In the method for producing a single layer type photoreceptor, in the photosensitive layer forming step, a coating solution for forming a single layer type photosensitive layer (hereinafter sometimes referred to as a coating solution for a single layer type photosensitive layer) is prepared. A single layer type photosensitive layer coating solution is coated on a conductive substrate. Next, at least a part of the solvent contained in the applied photosensitive layer coating solution is removed to form a single-layer type photosensitive layer. The single-layer photosensitive layer coating solution contains, for example, a charge generator, a hole transport agent, a polyarylate resin (PA) as a binder resin, and a solvent. Such a single-layer photosensitive layer coating solution is prepared by dissolving or dispersing a charge generating agent, a hole transporting agent, and a polyarylate resin (PA) as a binder resin in a solvent. One or more of an electron transport agent and an additive may be added to the coating solution for the photosensitive layer as necessary.
 電荷発生層用塗布液、電荷輸送層用塗布液及び単層型感光層用塗布液(以下、塗布液と記載することがある)に含有される溶剤は、塗布液に含まれる各成分を溶解又は分散できれば、特に限定されない。溶剤としては、例えば、アルコール(より具体的には、メタノール、エタノール、イソプロパノール、又はブタノール等)、脂肪族炭化水素(より具体的には、n-ヘキサン、オクタン、又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン、又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素、又はクロロベンゼン等)、エーテル(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、又はジエチレングリコールジメチルエーテル等)、ケトン(より具体的には、アセトン、メチルエチルケトン、又はシクロヘキサノン等)、エステル(より具体的には、酢酸エチル又は酢酸メチル等)、ジメチルホルムアルデヒド、ジメチルホルムアミド、又はジメチルスルホキシドが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの溶剤のうち、非ハロゲン溶剤(ハロゲン化炭化水素以外の溶剤)を用いることが好ましい。 The solvent contained in the coating solution for charge generation layer, the coating solution for charge transport layer, and the coating solution for single-layer type photosensitive layer (hereinafter sometimes referred to as coating solution) dissolves each component contained in the coating solution. Or if it can disperse | distribute, it will not specifically limit. Examples of the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic carbonization, and the like. Hydrogen (more specifically, benzene, toluene, xylene, etc.), halogenated hydrocarbon (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ether (more specifically, dimethyl ether) , Diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, or diethylene glycol dimethyl ether), ketones (more specifically, acetone, methyl ethyl ketone, or cyclohexanone), esters (more specifically, ethyl acetate or methyl acetate, etc.), Methyl formaldehyde, dimethylformamide, or dimethyl sulfoxide. These solvents may be used alone or in combination of two or more. Of these solvents, non-halogen solvents (solvents other than halogenated hydrocarbons) are preferably used.
 電荷輸送層用塗布液に含有される溶剤は、電荷発生層用塗布液に含有される溶剤と、異なることが好ましい。電荷発生層上に電荷輸送層用塗布液を塗布する場合に、電荷発生層が電荷輸送層用塗布液の溶剤に溶解しないことが好ましいからである。 The solvent contained in the charge transport layer coating solution is preferably different from the solvent contained in the charge generation layer coating solution. This is because when the charge transport layer coating solution is applied onto the charge generation layer, it is preferable that the charge generation layer does not dissolve in the solvent of the charge transport layer coating solution.
 塗布液は、それぞれ各成分を混合し、溶剤に分散することにより調製される。混合又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー又は超音波分散器を用いることができる。 Coating solution is prepared by mixing each component and dispersing in a solvent. For mixing or dispersing, for example, a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
 各成分の分散性又は形成される各々の層の表面平滑性を向上させるために、塗布液は、例えば、界面活性剤又はレベリング剤を含有してもよい。 In order to improve the dispersibility of each component or the surface smoothness of each layer formed, the coating liquid may contain, for example, a surfactant or a leveling agent.
 塗布液を塗布する方法としては、塗布液を均一に塗布できる方法であれば、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法又はバーコート法が挙げられる。 The method for applying the coating solution is not particularly limited as long as it is a method capable of uniformly applying the coating solution. Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
 塗布液に含まれる溶剤の少なくとも一部を除去する方法としては、塗布液中の溶剤を蒸発させ得る方法であれば、特に限定されない。除去する方法としては、例えば、加熱、減圧、又は加熱と減圧との併用が挙げられる。より具体的には、高温乾燥機、又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間である。 The method for removing at least a part of the solvent contained in the coating solution is not particularly limited as long as it is a method capable of evaporating the solvent in the coating solution. Examples of the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of performing heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned. The heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
 なお、感光体の製造方法は、必要に応じて中間層を形成する工程を更に有してもよい。中間層を形成する工程は、公知の方法を適宜選択することができる。 Note that the method for manufacturing a photoreceptor may further include a step of forming an intermediate layer as necessary. A known method can be selected as appropriate for the step of forming the intermediate layer.
 以下、実施例を用いて本発明を更に具体的に説明する。しかし、本発明は実施例の範囲に何ら限定されない。 Hereinafter, the present invention will be described more specifically using examples. However, the present invention is not limited to the scope of the examples.
 感光体の電荷発生層を形成するための材料として、以下の電荷発生剤を準備した。また、感光体の電荷輸送層を形成するための材料として、以下の正孔輸送剤及びバインダー樹脂を準備した。 The following charge generating agents were prepared as materials for forming the charge generating layer of the photoreceptor. In addition, the following hole transport agent and binder resin were prepared as materials for forming the charge transport layer of the photoreceptor.
 (電荷発生剤)
 電荷発生剤として、実施形態で述べた化学式(CGM-2)で表されるY型チタニルフタロシアニンを準備した。
(Charge generator)
A Y-type titanyl phthalocyanine represented by the chemical formula (CGM-2) described in the embodiment was prepared as a charge generating agent.
 (正孔輸送剤)
 正孔輸送剤として、実施形態で述べた化合物(HTM-1)~(HTM-12)を準備した。
(Hole transport agent)
The compounds (HTM-1) to (HTM-12) described in the embodiment were prepared as hole transport agents.
 (バインダー樹脂)
 バインダー樹脂として、ポリアリレート樹脂(PA-1)~(PA-4)の各々を作製した。
(Binder resin)
Polyarylate resins (PA-1) to (PA-4) were produced as binder resins.
 [ポリアリレート樹脂(PA-1)の作製]
 下記のポリアリレート樹脂(PA-1)を作成した。ポリアリレート樹脂(PA-1)は、繰り返し単位として、繰り返し単位(1-1)及び繰り返し単位(2-3)のみを含んでいた。ポリアリレート樹脂(PA-1)の比率n1/(n1+n2)は0.50であった。ポリアリレート樹脂(PA-1)の比率n2/(n1+n2)は0.50であった。
[Preparation of polyarylate resin (PA-1)]
The following polyarylate resin (PA-1) was prepared. The polyarylate resin (PA-1) contained only the repeating unit (1-1) and the repeating unit (2-3) as repeating units. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-1) was 0.50. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-1) was 0.50.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 ポリアリレート樹脂(PA-1)の作成において、反応容器として、温度計及び三方コックを備える容量2Lの三口フラスコを用いた。反応容器に、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン(実施形態で述べた化合物(BP-1))20.01g(82.56ミリモル)、tert-ブチルフェノール0.124g(0.826ミリモル)、水酸化ナトリウム7.84g(196ミリモル)、ベンジルトリブチルアンモニウムクロライド0.240g(0.768ミリモル)を入れた。反応容器内の空気をアルゴンガスで置換した。反応容器の内容物に水600mLを加えた。反応容器の内容物を20℃で1時間攪拌した。次いで、反応容器の内容物の温度が10℃になるまで反応容器の内容物を冷却して、アルカリ性水溶液Aを得た。 In preparing the polyarylate resin (PA-1), a 2 L three-necked flask equipped with a thermometer and a three-way cock was used as a reaction vessel. In a reaction vessel, 20.01 g (82.56 mmol) of 1,1-bis (4-hydroxy-3-methylphenyl) ethane (compound (BP-1) described in the embodiment), 0.124 g of tert-butylphenol ( 0.826 mmol), 7.84 g (196 mmol) of sodium hydroxide and 0.240 g (0.768 mmol) of benzyltributylammonium chloride. The air in the reaction vessel was replaced with argon gas. 600 mL of water was added to the contents of the reaction vessel. The contents of the reaction vessel were stirred at 20 ° C. for 1 hour. Next, the content of the reaction vessel was cooled until the temperature of the content of the reaction vessel reached 10 ° C. to obtain an alkaline aqueous solution A.
 一方、2,6-ナフタレンジカルボン酸ジクロライド(実施形態で述べた化合物(DC-1-1)のジクロライド)9.84g(38.9ミリモル)、及び4,4’-オキシビス安息香酸ジクロライド(実施形態で述べた化合物(DC-5)のジクロライド)11.47g(38.9ミリモル)を、クロロホルム(アミレン添加品)300gに溶解させた。これにより、クロロホルム溶液Bを得た。 Meanwhile, 9.84 g (38.9 mmol) of 2,6-naphthalenedicarboxylic acid dichloride (dichloride of the compound (DC-1-1) described in the embodiment) and 4,4′-oxybisbenzoic acid dichloride (embodiment) 11.47 g (38.9 mmol) of the compound (DC-5) dichloride described in 1) was dissolved in 300 g of chloroform (amylene-added product). Thereby, chloroform solution B was obtained.
 反応容器内のアルカリ性水溶液Aを10℃で攪拌しながら、アルカリ性水溶液Aにクロロホルム溶液Bを投入した。これにより、重合反応を開始させた。反応容器の内容物の温度(液温)を13±3℃に調節しながら、反応容器の内容物を3時間攪拌して重合反応を進行させた。次いで、デカントを用いて反応容器の内容物における上層(水層)を除去し、有機層を得た。次いで、容量2Lの三角フラスコに、イオン交換水500mLを入れた。フラスコ内容物に、得られた有機層を加えた。フラスコ内容物に、クロロホルム300g及び酢酸6mLを更に加えた。次いで、フラスコ内容物を、室温で30分間攪拌した。その後、デカントを用いてフラスコ内容物における上層(水層)を除去し、有機層を得た。分液ロートを用いて、得られた有機層をイオン交換水500mLで洗浄した。イオン交換水による洗浄を8回繰り返した。その結果、水洗した有機層が得られた。 While the alkaline aqueous solution A in the reaction vessel was stirred at 10 ° C., the chloroform solution B was added to the alkaline aqueous solution A. This initiated a polymerization reaction. While adjusting the temperature (liquid temperature) of the contents of the reaction vessel to 13 ± 3 ° C., the contents of the reaction vessel were stirred for 3 hours to proceed the polymerization reaction. Subsequently, the upper layer (water layer) in the contents of the reaction vessel was removed using a decant to obtain an organic layer. Next, 500 mL of ion-exchanged water was put into a 2 L Erlenmeyer flask. The resulting organic layer was added to the flask contents. To the flask contents, 300 g of chloroform and 6 mL of acetic acid were further added. The flask contents were then stirred at room temperature for 30 minutes. Thereafter, the upper layer (aqueous layer) in the flask contents was removed using a decant to obtain an organic layer. The obtained organic layer was washed with 500 mL of ion exchange water using a separatory funnel. Washing with ion-exchanged water was repeated 8 times. As a result, an organic layer washed with water was obtained.
 次に、水洗した有機層をろ過し、ろ液を得た。容量3Lのビーカーに1.5Lのメタノールを入れた。ビーカー内のメタノールに得られたろ液をゆっくりと滴下し、沈殿物を得た。沈殿物をろ過により取り出した。取り出した沈殿物を温度70℃で12時間真空乾燥させた。その結果、ポリアリレート樹脂(PA-1)が得られた。ポリアリレート樹脂(PA-1)の収量は30.0gであり、収率は87.0モル%であった。得られたポリアリレート樹脂(PA-1)の粘度平均分子量は、55,400であった。 Next, the organic layer washed with water was filtered to obtain a filtrate. 1.5 L of methanol was placed in a 3 L beaker. The obtained filtrate was slowly added dropwise to methanol in a beaker to obtain a precipitate. The precipitate was removed by filtration. The taken out precipitate was vacuum-dried at a temperature of 70 ° C. for 12 hours. As a result, a polyarylate resin (PA-1) was obtained. The yield of polyarylate resin (PA-1) was 30.0 g, and the yield was 87.0 mol%. The resulting polyarylate resin (PA-1) had a viscosity average molecular weight of 55,400.
 [ポリアリレート樹脂(PA-2)の作製]
 下記のポリアリレート樹脂(PA-2)を作成した。ポリアリレート樹脂(PA-2)は、繰り返し単位として、繰り返し単位(1-1)及び繰り返し単位(2-1)のみを含んでいた。ポリアリレート樹脂(PA-2)の比率n1/(n1+n2)は0.50であった。ポリアリレート樹脂(PA-2)の比率n2/(n1+n2)は0.50であった。
[Preparation of polyarylate resin (PA-2)]
The following polyarylate resin (PA-2) was prepared. The polyarylate resin (PA-2) contained only the repeating unit (1-1) and the repeating unit (2-1) as repeating units. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA- 2 ) was 0.50. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA- 2 ) was 0.50.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 具体的には、次の点を変更した以外は、ポリアリレート樹脂(PA-1)の作製と同じ方法で、ポリアリレート樹脂(PA-2)を作製した。4,4’-オキシビス安息香酸ジクロライド(実施形態で述べた化合物(DC-5)のジクロライド)11.47g(38.9ミリモル)を、実施形態で述べた化合物(DC-2)のジクロライド38.9ミリモルに変更した。得られたポリアリレート樹脂(PA-2)の粘度平均分子量は、57,000であった。 Specifically, a polyarylate resin (PA-2) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 11.47 g (38.9 mmol) of 4,4′-oxybisbenzoic acid dichloride (dichloride of compound (DC-5) described in the embodiment) was converted into dichloride 38. of compound (DC-2) described in the embodiment. Changed to 9 mmol. The resulting polyarylate resin (PA-2) had a viscosity average molecular weight of 57,000.
 [ポリアリレート樹脂(PA-3)の作製]
 下記のポリアリレート樹脂(PA-3)を作成した。ポリアリレート樹脂(PA-3)は、繰り返し単位として、繰り返し単位(1-1)及び繰り返し単位(2-2)のみを含んでいた。ポリアリレート樹脂(PA-3)の比率n1/(n1+n2)は0.50であった。ポリアリレート樹脂(PA-3)の比率n2/(n1+n2)は0.50であった。
[Preparation of polyarylate resin (PA-3)]
The following polyarylate resin (PA-3) was prepared. The polyarylate resin (PA-3) contained only the repeating unit (1-1) and the repeating unit (2-2) as repeating units. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-3) was 0.50. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-3) was 0.50.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 具体的には、次の点を変更した以外は、ポリアリレート樹脂(PA-1)の作製と同じ方法で、ポリアリレート樹脂(PA-3)を作製した。4,4’-オキシビス安息香酸ジクロライド(実施形態で述べた化合物(DC-5)のジクロライド)11.47g(38.9ミリモル)を、実施形態で述べた化合物(DC-3)のジクロライド38.9ミリモルに変更した。得られたポリアリレート樹脂(PA-3)の粘度平均分子量は、50,600であった。 Specifically, a polyarylate resin (PA-3) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 11.47 g (38.9 mmol) of 4,4′-oxybisbenzoic acid dichloride (dichloride of the compound (DC-5) described in the embodiment) was converted into dichloride 38. of the compound (DC-3) described in the embodiment. Changed to 9 mmol. The resulting polyarylate resin (PA-3) had a viscosity average molecular weight of 50,600.
 [ポリアリレート樹脂(PA-4)の作製]
 下記のポリアリレート樹脂(PA-4)を作成した。ポリアリレート樹脂(PA-4)は、繰り返し単位として、繰り返し単位(1-2)及び繰り返し単位(2-4)のみを含んでいた。ポリアリレート樹脂(PA-4)の比率n1/(n1+n2)は0.50であった。ポリアリレート樹脂(PA-4)の比率n2/(n1+n2)は0.50であった。
[Preparation of polyarylate resin (PA-4)]
The following polyarylate resin (PA-4) was prepared. The polyarylate resin (PA-4) contained only the repeating unit (1-2) and the repeating unit (2-4) as repeating units. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-4) was 0.50. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-4) was 0.50.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 具体的には、次の点を変更した以外は、ポリアリレート樹脂(PA-1)の作製と同じ方法で、ポリアリレート樹脂(PA-4)を作製した。1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン(実施形態で述べた化合物(BP-1))20.01g(82.56ミリモル)を、実施形態で述べた化合物(BP-2)82.56ミリモルに変更した。得られたポリアリレート樹脂(PA-4)の粘度平均分子量は、57,000であった。 Specifically, a polyarylate resin (PA-4) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. 20.01 g (82.56 mmol) of 1,1-bis (4-hydroxy-3-methylphenyl) ethane (compound (BP-1) described in the embodiment) was added to the compound (BP-2 described in the embodiment). ) 82.56 mmol. The resulting polyarylate resin (PA-4) had a viscosity average molecular weight of 57,000.
 [ポリアリレート樹脂(PA-5)の作製]
 下記のポリアリレート樹脂(PA-5)を作成した。ポリアリレート樹脂(PA-5)は、繰り返し単位として、繰り返し単位(1-1)及び繰り返し単位(2-3)のみを含んでいた。ポリアリレート樹脂(PA-5)の比率n1/(n1+n2)は0.30であった。ポリアリレート樹脂(PA-5)の比率n2/(n1+n2)は0.70であった。
[Preparation of polyarylate resin (PA-5)]
The following polyarylate resin (PA-5) was prepared. The polyarylate resin (PA-5) contained only the repeating unit (1-1) and the repeating unit (2-3) as repeating units. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-5) was 0.30. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-5) was 0.70.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 具体的には、次の点を変更した以外は、ポリアリレート樹脂(PA-1)の作製と同じ方法で、ポリアリレート樹脂(PA-5)を作製した。2,6-ナフタレンジカルボン酸ジクロライド(実施形態で述べた化合物(DC-1-1)のジクロライド)の添加量を、9.84g(38.9ミリモル)から、23.3ミリモルに変更した。また、4,4’-オキシビス安息香酸ジクロライド(実施形態で述べた化合物(DC-5)のジクロライド)の添加量を、11.47g(38.9ミリモル)から54.5ミリモルに変更した。得られたポリアリレート樹脂(PA-5)の粘度平均分子量は、50,100であった。 Specifically, a polyarylate resin (PA-5) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. The addition amount of 2,6-naphthalenedicarboxylic acid dichloride (dichloride of the compound (DC-1-1) described in the embodiment) was changed from 9.84 g (38.9 mmol) to 23.3 mmol. In addition, the amount of 4,4'-oxybisbenzoic acid dichloride (the dichloride of the compound (DC-5) described in the embodiment) was changed from 11.47 g (38.9 mmol) to 54.5 mmol. The resulting polyarylate resin (PA-5) had a viscosity average molecular weight of 50,100.
 [ポリアリレート樹脂(PA-6)の作製]
 下記のポリアリレート樹脂(PA-6)を作成した。ポリアリレート樹脂(PA-6)は、繰り返し単位として、繰り返し単位(1-1)及び繰り返し単位(2-3)のみを含んでいた。ポリアリレート樹脂(PA-6)の比率n1/(n1+n2)は0.70であった。ポリアリレート樹脂(PA-6)の比率n2/(n1+n2)は0.30であった。
[Preparation of polyarylate resin (PA-6)]
The following polyarylate resin (PA-6) was prepared. The polyarylate resin (PA-6) contained only the repeating unit (1-1) and the repeating unit (2-3) as the repeating unit. The ratio n 1 / (n 1 + n 2 ) of the polyarylate resin (PA-6) was 0.70. The ratio n 2 / (n 1 + n 2 ) of the polyarylate resin (PA-6) was 0.30.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 具体的には、次の点を変更した以外は、ポリアリレート樹脂(PA-1)の作製と同じ方法で、ポリアリレート樹脂(PA-6)を作製した。2,6-ナフタレンジカルボン酸ジクロライド(実施形態で述べた化合物(DC-1-1)のジクロライド)の添加量を、9.84g(38.9ミリモル)から、54.5ミリモルに変更した。また、4,4’-オキシビス安息香酸ジクロライド(実施形態で述べた化合物(DC-6)のジクロライド)の添加量を、11.47g(38.9ミリモル)から23.3ミリモルに変更した。得られたポリアリレート樹脂(PA-6)の粘度平均分子量は、50,800であった。 Specifically, a polyarylate resin (PA-6) was produced in the same manner as the production of the polyarylate resin (PA-1) except that the following points were changed. The addition amount of 2,6-naphthalenedicarboxylic acid dichloride (dichloride of the compound (DC-1-1) described in the embodiment) was changed from 9.84 g (38.9 mmol) to 54.5 mmol. The amount of 4,4'-oxybisbenzoic acid dichloride (dichloride of the compound (DC-6) described in the embodiment) added was changed from 11.47 g (38.9 mmol) to 23.3 mmol. The resulting polyarylate resin (PA-6) had a viscosity average molecular weight of 50,800.
 次に、プロトン核磁気共鳴分光計(日本分光株式会社製、300MHz)を用いて、作製したポリアリレート樹脂(PA-1)~(PA-6)の各々の1H-NMRスペクトルを測定した。溶媒としてCDCl3を用いた。内部標準試料としてテトラメチルシラン(TMS)を用いた。これらのうちポリアリレート樹脂(PA-1)を代表例として挙げる。 Next, 1 H-NMR spectra of each of the prepared polyarylate resins (PA-1) to (PA-6) were measured using a proton nuclear magnetic resonance spectrometer (manufactured by JASCO Corporation, 300 MHz). CDCl 3 was used as the solvent. Tetramethylsilane (TMS) was used as an internal standard sample. Of these, polyarylate resin (PA-1) is given as a representative example.
 図3は、ポリアリレート樹脂(PA-1)の1H-NMRスペクトルを示す。図4は、図3に示す1H-NMRスペクトルの6.90ppm以上9.00ppm以下の範囲の拡大図を示す。図5は、図3に示す1H-NMRスペクトルの1.2ppm以上4.5ppm以下の範囲の拡大図を示す。図3~図5中、横軸は化学シフト(単位:ppm)を示し、縦軸は信号強度(単位:任意単位)を示す。1H-NMRスペクトルにより、ポリアリレート樹脂(PA-1)が得られていることを確認した。ポリアリレート樹脂(PA-2)~(PA-6)についても、1H-NMRスペクトルにより、それぞれポリアリレート樹脂(PA-2)~(PA-6)が得られていることを確認した。 FIG. 3 shows the 1 H-NMR spectrum of polyarylate resin (PA-1). FIG. 4 shows an enlarged view of the range from 6.90 ppm to 9.00 ppm of the 1 H-NMR spectrum shown in FIG. FIG. 5 shows an enlarged view of the range of 1.2 ppm to 4.5 ppm of the 1 H-NMR spectrum shown in FIG. 3 to 5, the horizontal axis indicates the chemical shift (unit: ppm), and the vertical axis indicates the signal intensity (unit: arbitrary unit). From 1 H-NMR spectrum, it was confirmed that polyarylate resin (PA-1) was obtained. As for the polyarylate resins (PA-2) to (PA-6), it was confirmed from the 1 H-NMR spectrum that the polyarylate resins (PA-2) to (PA-6) were obtained, respectively.
 バインダー樹脂として、化学式(PA-a)~(PA-f)で表されるポリアリレート樹脂(以下、ポリアリレート樹脂(PA-a)~(PA-f)と記載することがある)も準備した。なお、化学式(PA-a)~(PA-f)中の繰り返し単位に付された添え字は、樹脂に含まれる繰り返し単位の総数に対する、添え字が付された繰り返し単位の数の比率を示す。 As the binder resin, polyarylate resins represented by chemical formulas (PA-a) to (PA-f) (hereinafter sometimes referred to as polyarylate resins (PA-a) to (PA-f)) were also prepared. . The subscripts attached to the repeating units in the chemical formulas (PA-a) to (PA-f) indicate the ratio of the number of repeating units to which the subscripts are added to the total number of repeating units contained in the resin. .
 ポリアリレート樹脂(PA-a)は、下記化学式(PA-a)で表される繰り返し単位のみを有していた。(PA-a)の粘度平均分子量は、60,300であった。 The polyarylate resin (PA-a) had only a repeating unit represented by the following chemical formula (PA-a). The viscosity average molecular weight of (PA-a) was 60,300.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 ポリアリレート樹脂(PA-b)は、下記化学式(PA-b)で表される2種の繰り返し単位を有していた。(PA-b)の粘度平均分子量は、45,600であった。 The polyarylate resin (PA-b) had two types of repeating units represented by the following chemical formula (PA-b). The viscosity average molecular weight of (PA-b) was 45,600.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 ポリアリレート樹脂(PA-c)は、下記化学式(PA-c)で表される2種の繰り返し単位を有していた。(PA-c)の粘度平均分子量は、45,600であった。 The polyarylate resin (PA-c) had two types of repeating units represented by the following chemical formula (PA-c). The viscosity average molecular weight of (PA-c) was 45,600.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 ポリアリレート樹脂(PA-d)は、下記化学式(PA-d)で表される2種の繰り返し単位を有していた。(PA-d)の粘度平均分子量は、47,800であった。 The polyarylate resin (PA-d) had two types of repeating units represented by the following chemical formula (PA-d). The viscosity average molecular weight of (PA-d) was 47,800.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 ポリアリレート樹脂(PA-e)は、下記化学式(PA-e)で表される2種の繰り返し単位を有していた。(PA-e)の粘度平均分子量は、58,000であった。 The polyarylate resin (PA-e) had two types of repeating units represented by the following chemical formula (PA-e). The viscosity average molecular weight of (PA-e) was 58,000.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 ポリアリレート樹脂(PA-f)は、下記化学式(PA-f)で表される2種の繰り返し単位を有していた。(PA-f)の粘度平均分子量は、59,500であった。 The polyarylate resin (PA-f) had two types of repeating units represented by the following chemical formula (PA-f). The viscosity average molecular weight of (PA-f) was 59,500.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 <感光体の製造>
 上述した電荷発生剤、正孔輸送剤及びバインダー樹脂を用いて、感光体(A-1)~(A-16)及び(B-1)~(B-6)を製造した。
<Manufacture of photoconductor>
Photoconductors (A-1) to (A-16) and (B-1) to (B-6) were produced using the charge generating agent, hole transporting agent and binder resin described above.
 (感光体(A-1)の製造)
 中間層を形成した。まず、表面処理された酸化チタン(テイカ株式会社製「試作品SMT-A」、平均一次粒径10nm)を準備した。詳しくは、アルミナとシリカとを用いて酸化チタンを表面処理し、表面処理された酸化チタンを湿式分散しながらメチルハイドロジェンポリシロキサンを用いて更に表面処理したものを準備した。次いで、表面処理された酸化チタン(2質量部)と、ポリアミド樹脂(東レ株式会社製「アミラン(登録商標)CM8000」、ポリアミド6、ポリアミド12、ポリアミド66及びポリアミド610の四元共重合ポリアミド樹脂)(1質量部)とを、メタノール(10質量部)、ブタノール(1質量部)及びトルエン(1質量部)を含む溶剤に対して添加した。ビーズミルを用いて、これらの材料及び溶剤を5時間混合し、溶剤中に材料を分散させた。これにより、中間層用塗布液を調製した。得られた中間層用塗布液を、目開き5μmのフィルターを用いてろ過した。その後、ディップコート法を用いて、導電性基体の表面に中間層用塗布液を塗布した。導電性基体としては、アルミニウム製のドラム状支持体(直径30mm、全長246mm)を用いた。続いて、塗布した中間層用塗布液を130℃で30分間乾燥させて、導電性基体上に中間層(膜厚1.5μm)を形成した。
(Manufacture of photoconductor (A-1))
An intermediate layer was formed. First, surface-treated titanium oxide (“Prototype SMT-A” manufactured by Teika Co., Ltd., average primary particle size 10 nm) was prepared. Specifically, titanium oxide was surface-treated with alumina and silica, and the surface-treated titanium oxide was further surface-treated with methylhydrogenpolysiloxane while being wet-dispersed. Next, surface-treated titanium oxide (2 parts by mass) and a polyamide resin (quaternary polyamide resin of “Amilan (registered trademark) CM8000”, polyamide 6, polyamide 12, polyamide 66 and polyamide 610 manufactured by Toray Industries, Inc.) (1 part by mass) was added to a solvent containing methanol (10 parts by mass), butanol (1 part by mass) and toluene (1 part by mass). Using a bead mill, these materials and the solvent were mixed for 5 hours to disperse the materials in the solvent. This prepared the coating liquid for intermediate | middle layers. The obtained intermediate layer coating solution was filtered using a filter having an opening of 5 μm. Then, the intermediate layer coating solution was applied to the surface of the conductive substrate using a dip coating method. As the conductive substrate, an aluminum drum-shaped support (diameter 30 mm, total length 246 mm) was used. Subsequently, the applied intermediate layer coating solution was dried at 130 ° C. for 30 minutes to form an intermediate layer (film thickness: 1.5 μm) on the conductive substrate.
 次に、電荷発生層を形成した。詳しくは、Y型チタニルフタロシアニン(1.5質量部)と、ベース樹脂としてのポリビニルアセタール樹脂(積水化学工業株式会社製「エスレックBX-5」)(1質量部)とを、プロピレングリコールモノメチルエーテル(40質量部)及びテトラヒドロフラン(40質量部)を含む溶剤に添加した。ビーズミルを用いて、これらの材料及び溶剤を12時間混合し、溶剤中に材料を分散させて、電荷発生層用塗布液を作製した。得られた電荷発生層用塗布液を、目開き3μmのフィルターを用いてろ過した。次いで、得られたろ過液を、中間層上にディップコート法を用いて塗布し、50℃で5分間乾燥させた。これにより、中間層上に電荷発生層(膜厚0.3μm)を形成した。 Next, a charge generation layer was formed. Specifically, a Y-type titanyl phthalocyanine (1.5 parts by mass) and a polyvinyl acetal resin (“SREC BX-5” manufactured by Sekisui Chemical Co., Ltd.) (1 part by mass) as a base resin were mixed with propylene glycol monomethyl ether ( 40 parts by mass) and a solvent containing tetrahydrofuran (40 parts by mass). Using a bead mill, these materials and the solvent were mixed for 12 hours, and the materials were dispersed in the solvent to prepare a charge generation layer coating solution. The obtained coating solution for charge generation layer was filtered using a filter having an opening of 3 μm. Next, the obtained filtrate was applied on the intermediate layer using a dip coating method and dried at 50 ° C. for 5 minutes. As a result, a charge generation layer (thickness: 0.3 μm) was formed on the intermediate layer.
 次に、電荷輸送層を形成した。詳しくは、正孔輸送剤としての化合物(HTM-1)50質量部と、添加剤としてのヒンダードフェノール酸化防止剤(BASF株式会社製「イルガノックス(登録商標)1010」)2質量部と、電子アクセプター化合物としての3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジフェノキノン2質量部と、バインダー樹脂としてのポリアリレート樹脂(PA-1)100質量部とを、テトラヒドロフラン550質量部及びトルエン150質量部を含む溶剤に対して添加した。これらを混合し、溶剤中に材料を分散させて、電荷輸送層用塗布液を調製した。得られた電荷輸送層用塗布液を、電荷発生層上にディップコート法を用いて塗布し、120℃で40分間乾燥させた。これにより、電荷発生層上に電荷輸送層(膜厚20μm)を形成した。その結果、感光体(A-1)が得られた。感光体(A-1)は、積層型感光体であった。感光体(A-1)において、導電性基体上に中間層が、中間層上に電荷発生層が、電荷発生層上に電荷輸送層が備えられていた。 Next, a charge transport layer was formed. Specifically, 50 parts by mass of the compound (HTM-1) as a hole transport agent and 2 parts by mass of a hindered phenol antioxidant (“Irganox (registered trademark) 1010” manufactured by BASF Corporation) as an additive, 2,3 parts by weight of 3,3 ′, 5,5′-tetra-tert-butyl-4,4′-diphenoquinone as an electron acceptor compound and 100 parts by weight of a polyarylate resin (PA-1) as a binder resin, It added with respect to the solvent containing 550 mass parts of tetrahydrofuran and 150 mass parts of toluene. These were mixed and the material was dispersed in a solvent to prepare a coating solution for a charge transport layer. The obtained coating solution for charge transport layer was applied onto the charge generation layer using a dip coating method and dried at 120 ° C. for 40 minutes. Thereby, a charge transport layer (film thickness 20 μm) was formed on the charge generation layer. As a result, a photoreceptor (A-1) was obtained. The photoreceptor (A-1) was a multilayer photoreceptor. In the photoreceptor (A-1), an intermediate layer was provided on the conductive substrate, a charge generation layer was provided on the intermediate layer, and a charge transport layer was provided on the charge generation layer.
 (感光体(A-2)~(A-16)及び(B-1)~(B-6)の製造)
 下記(1)~(3)の点を変更した以外は、感光体(A-1)の製造と同じ方法で、感光体(A-2)~(A-16)及び(B-1)~(B-6)の各々を製造した。
(1)感光体(A-1)の製造においてはバインダー樹脂としてポリアリレート樹脂(PA-1)を使用したが、感光体(A-2)~(A-16)及び(B-1)~(B-6)の各々の製造においては表1及び表2に示す種類のバインダー樹脂を使用した。
(2)感光体(A-1)の製造においては正孔輸送剤として化合物(HTM-1)を使用したが、感光体(A-2)~(A-15)及び(B-1)~(B-6)の各々の製造においては表1及び表2に示す種類の正孔輸送剤を使用した。
(3)感光体(A-1)の製造においては正孔輸送剤として化合物(HTM-1)を50質量部使用したが、感光体(A-16)の製造においては化合物(HTM-11)25質量部と化合物(HTM-12)25質量部とを使用した。
(Production of photoconductors (A-2) to (A-16) and (B-1) to (B-6))
Photoconductors (A-2) to (A-16) and (B-1) to (B-1) are prepared in the same manner as the production of photoconductor (A-1) except that the following points (1) to (3) are changed. Each of (B-6) was produced.
(1) In the production of the photoreceptor (A-1), polyarylate resin (PA-1) was used as the binder resin, but the photoreceptors (A-2) to (A-16) and (B-1) to In each production of (B-6), binder resins of the types shown in Tables 1 and 2 were used.
(2) In the production of the photoreceptor (A-1), the compound (HTM-1) was used as the hole transport agent, but the photoreceptors (A-2) to (A-15) and (B-1) to In each production of (B-6), hole transport agents of the types shown in Table 1 and Table 2 were used.
(3) In the production of the photoreceptor (A-1), 50 parts by mass of the compound (HTM-1) was used as a hole transport agent. However, in the production of the photoreceptor (A-16), the compound (HTM-11) was used. 25 parts by mass and 25 parts by mass of the compound (HTM-12) were used.
 <評価>
 まず、バインダー樹脂の種類を変化させて、感光体の耐フィルミング性について検討した。
<Evaluation>
First, the filming resistance of the photoreceptor was examined by changing the type of the binder resin.
 <耐フィルミング性の評価>
感光体(A-1)~(A-6)及び感光体(B-1)~(B-6)の各々に対して、耐フィルミング性の評価を行った。耐フィルミング性の評価として、以下に示す画像評価及びフィルミング率の評価を行った。
<Evaluation of filming resistance>
Filming resistance was evaluated for each of the photoreceptors (A-1) to (A-6) and the photoreceptors (B-1) to (B-6). As evaluation of filming resistance, the following image evaluation and filming rate were evaluated.
 (画像評価)
 感光体を評価機に搭載した。評価機は、カラープリンター(株式会社沖データ製「C711dn」)であった。評価機のトナーカートリッジにシアントナーを充填した。高温高湿環境(温度32℃及び相対湿度85%RH:以下、HH環境と記載することがある)下で、評価機を用いて、2,000枚の用紙に16秒間隔で印刷した。次いで、低温低湿環境(温度10℃及び相対湿度15%RH:以下、LL環境と記載することがある)下で、評価機を用いて、2,000枚の用紙に16秒間隔で印刷した。LL環境下で2,000枚の用紙に印刷した後、評価機を2時間静置した。次いで、LL環境下にてソリッド画像(画像濃度100%)を1枚印字した。ソリッド画像を評価画像とした。目視で評価画像を観察し、画像の欠けの有無を確認した。下記基準で画像を評価した。画像評価の結果を、表1に示す。なお、感光体の表面にフィルミングが発生すると、画像に欠けが現れる傾向がある。
(Image evaluation)
The photoconductor was mounted on an evaluation machine. The evaluation machine was a color printer (“C711dn” manufactured by Oki Data Corporation). The toner cartridge of the evaluator was filled with cyan toner. Under a high temperature and high humidity environment (temperature 32 ° C. and relative humidity 85% RH: hereinafter sometimes referred to as HH environment), printing was performed on 2,000 sheets at intervals of 16 seconds using an evaluation machine. Next, printing was performed on 2,000 sheets at intervals of 16 seconds using an evaluation machine under a low-temperature and low-humidity environment (temperature: 10 ° C. and relative humidity: 15% RH: hereinafter sometimes referred to as LL environment). After printing on 2,000 sheets in the LL environment, the evaluation machine was allowed to stand for 2 hours. Next, one solid image (image density 100%) was printed in an LL environment. The solid image was used as the evaluation image. The evaluation image was visually observed to confirm whether the image was missing. Images were evaluated according to the following criteria. Table 1 shows the results of the image evaluation. In addition, when filming occurs on the surface of the photoconductor, there is a tendency that a chip appears in the image.
 (評価基準)
良好:画像の欠けが確認されなかった。
不良:画像の欠けが確認された。
(Evaluation criteria)
Good: No missing image was confirmed.
Defect: A missing image was confirmed.
 (フィルミング率の評価)
 上述の画像評価において評価画像を印刷した後、感光体を評価機から取り出し、感光体の表面におけるトナーフィルミングの発生の程度を観察した。具体的には、光学顕微鏡(株式会社ニコン社製「セナーK・K」)を用いて感光体表面を観察し、観察画像を得た。光学顕微鏡の視野は、1.7mm×2.1mm角であり、観察倍率は50倍であった。感光体の表面の観察箇所は、3箇所(具体的には、感光体の上端から25mmの領域、中央部の領域、及び下端から25mmの領域)であった。
(Evaluation of filming rate)
After the evaluation image was printed in the image evaluation described above, the photoconductor was taken out of the evaluation machine, and the degree of toner filming on the surface of the photoconductor was observed. Specifically, the surface of the photoreceptor was observed using an optical microscope (“Sennar KK” manufactured by Nikon Corporation) to obtain an observation image. The field of view of the optical microscope was 1.7 mm × 2.1 mm square, and the observation magnification was 50 times. There were three observation points on the surface of the photoconductor (specifically, a region 25 mm from the upper end of the photoconductor, a region at the center, and a region 25 mm from the lower end).
 光学顕微鏡の観察画像に対して二値化処理を施した。具体的には、画像解析ソフトウェア(Image J)を用いて、観察画像に対して輝度値180を閾値とした二値化処理を行った。観察画像を構成する画素は、各々、0以上255以下の輝度値を有していた。閾値未満の輝度値を有する画素は、フィルミングが発生している領域に対応する。一方、閾値以上の輝度値を有する画素は、フィルミングが発生していない領域に対応する。 Binary processing was performed on the observation image of the optical microscope. Specifically, using an image analysis software (Image J), a binarization process was performed on the observed image using the luminance value 180 as a threshold value. The pixels constituting the observation image each had a luminance value of 0 or more and 255 or less. A pixel having a luminance value less than the threshold corresponds to a region where filming has occurred. On the other hand, a pixel having a luminance value equal to or higher than the threshold corresponds to a region where filming has not occurred.
 二値化した画像を画像解析し、画像全体に対する付着物の面積の割合を算出した。具体的には、二値化処理によりフィルミングが発生している領域の面積(At)と、フィルミングが発生していない領域の面積(An)とを求めた。得られたAt及びAnから、下記計算式に従って、フィルミングが発生している領域の面積比率(A)を求めた。
 面積比率A[%]=[At/(At+An)]×100
The binarized image was subjected to image analysis, and the ratio of the area of the adhered material to the entire image was calculated. Specifically, the area (At) of the region where filming occurred due to the binarization process and the area (An) of the region where filming did not occur were obtained. From the obtained At and An, the area ratio (A) of the region where filming occurred was obtained according to the following calculation formula.
Area ratio A [%] = [At / (At + An)] × 100
 感光体の3箇所の観察画像の各々について面積比率Aを求めた。3箇所の面積比率Aの和を3で除することにより、面積比率Aの数平均値を求めた。面積比率Aの数平均値をフィルミング率とした。得られたフィルミング率を、表1に示す。なお、フィルミング率が低いほど、感光体の表面にフィルミングが発生し難いことを示す。 The area ratio A was determined for each of the three observation images on the photoreceptor. The number average value of the area ratio A was determined by dividing the sum of the three area ratios A by 3. The number average value of the area ratio A was defined as the filming rate. The filming rate obtained is shown in Table 1. Note that a lower filming rate indicates that filming is less likely to occur on the surface of the photoreceptor.
 表1中、HTM及び分子量は、各々、正孔輸送剤及び粘度平均分子量を示す。 In Table 1, HTM and molecular weight indicate a hole transport agent and a viscosity average molecular weight, respectively.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 次に、バインダー樹脂の種類に加えて、正孔輸送剤の種類を変化させて、感光体の電気特性及び耐摩耗性についても検討した。 Next, in addition to the type of binder resin, the type of hole transporting agent was changed, and the electrical characteristics and abrasion resistance of the photoreceptor were also examined.
 <電気特性の評価>
 感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の各々に対して、電気特性の評価を行った。電気特性の評価として、帯電特性の評価及び感度特性の評価を行った。帯電特性の評価として、以下に示す帯電電位の評価を行った。感度特性の評価として、以下に示す感度電位(以下、露光後電位と記載する)の評価を行った。電気特性の評価環境は、温度23℃且つ相対湿度50%RHであった。
<Evaluation of electrical characteristics>
The electrical characteristics of each of the photoreceptors (A-1) to (A-16) and the photoreceptors (B-1) to (B-6) were evaluated. As the evaluation of electrical characteristics, charging characteristics and sensitivity characteristics were evaluated. As the evaluation of the charging characteristics, the following charging potential was evaluated. As the evaluation of the sensitivity characteristics, the following sensitivity potential (hereinafter referred to as post-exposure potential) was evaluated. The evaluation environment of electrical characteristics was a temperature of 23 ° C. and a relative humidity of 50% RH.
 (帯電電位V0の評価)
 ドラム感度試験機(ジェンテック株式会社製)を用いて、感光体の回転数31rpm及び感光体への流れ込み電流-10μAの条件下で、感光体を帯電させた。帯電させた感光体の表面電位を測定した。測定した表面電位を感光体の帯電電位(V0、単位:-V)とした。測定された感光体の帯電電位(V0)を、表2に示す。
(Evaluation of charging potential V 0 )
Using a drum sensitivity tester (Gentec Co., Ltd.), the photosensitive member was charged under the conditions of a rotational speed of the photosensitive member of 31 rpm and a current flowing into the photosensitive member of −10 μA. The surface potential of the charged photoreceptor was measured. The measured surface potential was defined as the charging potential (V 0 , unit: −V) of the photoreceptor. Table 2 shows the measured charging potential (V 0 ) of the photoreceptor.
 (露光後電位VLの評価)
 ドラム感度試験機(ジェンテック株式会社製)を用いて、感光体の表面を-600Vに帯電させた。次いで、単色光(波長:780nm、露光量:0.8μJ/cm2)をハロゲンランプの光からバンドパスフィルターを用いて取り出し、感光体の表面に照射した。単色光の照射終了から80ミリ秒が経過した時点の感光体の表面電位を測定した。測定した表面電位を感光体の露光後電位(VL、単位:-V)とした。測定された感光体の露光後電位(VL)を、表2に示す。
(Evaluation of post-exposure potential VL )
Using a drum sensitivity tester (Gentec Co., Ltd.), the surface of the photoreceptor was charged to −600V. Next, monochromatic light (wavelength: 780 nm, exposure amount: 0.8 μJ / cm 2 ) was taken out from the light of the halogen lamp using a bandpass filter and irradiated on the surface of the photoreceptor. The surface potential of the photoreceptor was measured when 80 milliseconds had elapsed from the end of monochromatic light irradiation. The measured surface potential was defined as the post-exposure potential (V L , unit: −V) of the photoreceptor. Table 2 shows the measured post-exposure potential (V L ) of the photoreceptor.
 <耐摩耗性の評価>
 感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の電荷輸送層の各々に対して、耐摩耗性を評価した。まず、感光体の製造において調製した電荷輸送層用塗布液を、アルミパイプ(直径78mm)に巻きつけたポリプロピレンシート(厚さ0.3mm)に塗布した。電荷輸送層用塗布液を塗布したポリプロピレンシートを、120℃で40分間乾燥させた。これにより、ポリプロピレンシート上に厚さ20μmの電荷輸送層(評価用シート)が形成された。続けて、ポリプロピレンシートから評価用シートを剥離した。そして、剥離された評価用シートをウィール(テーバー社製「S-36」)に貼り付けて、試験片を得た。得られた試験片の質量(摩耗試験前における試験片の質量)M1を測定した。
<Evaluation of wear resistance>
The wear resistance of each of the charge transport layers of the photoreceptors (A-1) to (A-16) and the photoreceptors (B-1) to (B-6) was evaluated. First, the charge transport layer coating solution prepared in the production of the photoreceptor was applied to a polypropylene sheet (thickness 0.3 mm) wound around an aluminum pipe (diameter 78 mm). The polypropylene sheet coated with the charge transport layer coating solution was dried at 120 ° C. for 40 minutes. Thereby, a charge transport layer (evaluation sheet) having a thickness of 20 μm was formed on the polypropylene sheet. Subsequently, the evaluation sheet was peeled from the polypropylene sheet. Then, the peeled evaluation sheet was attached to a wheel (“S-36” manufactured by Taber) to obtain a test piece. The mass of the obtained test piece (the mass of the test piece before the wear test) M1 was measured.
 次いで、試験片に対して摩耗試験を行った。詳しくは、試験片をロータリーアブレージョンテスタ(株式会社東洋精機製作所製)の回転台に取り付けた。そして、試験片上に荷重500gfの摩耗輪(テーバー社製「CS-10」)を乗せた状態で、回転台を回転速度60rpmで回転させて、1000回転の摩耗試験を行った。続けて、摩耗試験後における試験片の質量M2を測定した。そして、試験前後の試験片の質量変化である摩耗減量(M1-M2)を求めた。求めた摩耗減量を、表2に示す。 Next, a wear test was performed on the test piece. Specifically, the test piece was attached to a rotary table of a rotary abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). Then, with the wear wheel (“CS-10” manufactured by Taber Co., Ltd.) having a load of 500 gf placed on the test piece, the turntable was rotated at a rotation speed of 60 rpm, and a 1000-turn wear test was performed. Subsequently, the mass M2 of the test piece after the wear test was measured. The wear loss (M1-M2), which is the change in the mass of the test piece before and after the test, was determined. Table 2 shows the obtained wear loss.
 表2中、HTM、分子量、V0及びVLは、各々、正孔輸送剤、粘度平均分子量、帯電電位及び露光後電位を示す。 In Table 2, HTM, molecular weight, V 0 and V L represent the hole transport agent, viscosity average molecular weight, charging potential and post-exposure potential, respectively.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 表1に示す耐フィルミング性の評価結果から、次のことが示された。感光体(A-1)~(A-6)の感光層は、バインダー樹脂として、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂を含有していた。具体的には、感光体(A-1)~(A-6)の感光層は、バインダー樹脂として、ポリアリレート樹脂(PA-1)~(PA-6)の何れかを含有していた。そのため、表1から明らかなように、感光体(A-1)~(A-6)では、画像評価が良好であり、フィルミング率が低く、耐フィルミング性に優れていた。 The filming resistance evaluation results shown in Table 1 showed the following. The photosensitive layers of the photoreceptors (A-1) to (A-6) are polyarylate containing, as a binder resin, a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2). Contains resin. Specifically, the photosensitive layers of the photoreceptors (A-1) to (A-6) contained any of polyarylate resins (PA-1) to (PA-6) as binder resins. Therefore, as is clear from Table 1, the photoreceptors (A-1) to (A-6) had good image evaluation, a low filming rate, and excellent filming resistance.
 一方、感光体(B-1)~(B-6)の感光層は、バインダー樹脂として、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂を含有していなかった。具体的には、感光体(B-1)~(B-6)の感光層は、バインダー樹脂として、ポリアリレート樹脂(PA-a)~(PA-f)の何れかを含有していたが、ポリアリレート樹脂(PA-a)~(PA-f)は一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂ではなかった。そのため、表1から明らかなように、感光体(B-1)~(B-6)では、画像評価が不良であり、フィルミング率が高く、耐フィルミング性に劣っていた。 On the other hand, the photosensitive layers of the photoreceptors (B-1) to (B-6) include a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) as a binder resin. It did not contain polyarylate resin. Specifically, the photosensitive layers of the photoconductors (B-1) to (B-6) contained any of polyarylate resins (PA-a) to (PA-f) as binder resins. Polyarylate resins (PA-a) to (PA-f) were not polyarylate resins containing a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2). Therefore, as is apparent from Table 1, the photoreceptors (B-1) to (B-6) had poor image evaluation, high filming rate, and poor filming resistance.
 また、表2に示す耐摩耗性の評価結果から、次のことが示された。感光体(A-1)~(A-3)及び(A-5)~(A-16)の感光層は、バインダー樹脂として、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂を含有していた。更に、一般式(1)及び(2)中のR1がメチル基を表していた。そのため、表2から明らかなように、感光体(A-1)~(A-3)及び(A-5)~(A-16)では、摩耗減量が小さく、耐フィルミング性に加えて耐摩耗性にも優れていた。 Moreover, the following was shown from the evaluation result of abrasion resistance shown in Table 2. The photosensitive layers of the photoconductors (A-1) to (A-3) and (A-5) to (A-16) are used as a binder resin as a repeating unit represented by the general formula (1) and the general formula (2). And a polyarylate resin containing a repeating unit represented by: Further, R 1 in the general formulas (1) and (2) represents a methyl group. Therefore, as is apparent from Table 2, the photoreceptors (A-1) to (A-3) and (A-5) to (A-16) have a small wear loss and are resistant to filming. Excellent wear resistance.
 更に、表2に示す電気特性(特に感度特性)の評価結果から、次のことが示された。感光体(A-1)~(A-14)の感光層は、バインダー樹脂として、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含むポリアリレート樹脂を含有していた。更に、感光体(A-1)~(A-14)の感光層は、正孔輸送剤として、化合物(10)、(11)又は(12)を含有していた。そのため、表2から明らかなように、感光体(A-1)~(A-14)では、露光後電位(VL)の絶対値が小さく、耐フィルミング性が向上しつつ、感度特性が特に向上していた。また、感光体(A-1)~(A-3)及び(A-5)~(A-14)では、耐フィルミング性及び耐摩耗性が向上しつつ、感度特性が特に向上していた。 Further, the evaluation results of the electrical characteristics (particularly sensitivity characteristics) shown in Table 2 showed the following. The photosensitive layers of the photoreceptors (A-1) to (A-14) are polyarylate containing a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2) as a binder resin. Contains resin. Further, the photosensitive layers of the photoreceptors (A-1) to (A-14) contained the compound (10), (11) or (12) as a hole transport agent. Therefore, as is apparent from Table 2, in the photoreceptors (A-1) to (A-14), the absolute value of the post-exposure potential (V L ) is small, the filming resistance is improved, and the sensitivity characteristics are improved. It was particularly improved. In the photoreceptors (A-1) to (A-3) and (A-5) to (A-14), the film resistance and the wear resistance were improved, and the sensitivity characteristics were particularly improved. .
 以上のことから、本発明に係るポリアリレート樹脂は、感光層に含有させた場合に感光体のフィルミングの発生を抑制できることが示された。また、本発明に係る感光体は、フィルミングの発生を抑制できることが示された。 From the above, it was shown that the polyarylate resin according to the present invention can suppress the occurrence of filming of the photoreceptor when it is contained in the photosensitive layer. Further, it has been shown that the photoreceptor according to the present invention can suppress the occurrence of filming.
 本発明に係るポリアリレート樹脂は、感光体に利用することができる。本発明に係る感光体は、画像形成装置に利用することがきる。 The polyarylate resin according to the present invention can be used for a photoreceptor. The photoreceptor according to the present invention can be used in an image forming apparatus.

Claims (15)

  1.  一般式(1)で表される繰り返し単位と、一般式(2)で表される繰り返し単位とを含む、ポリアリレート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     (前記一般式(1)及び(2)中、R1は、水素原子又はメチル基を表し、
     前記一般式(2)中、Xは、化学式(2A)、(2B)、(2C)又は(2D)で表される二価の基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    A polyarylate resin comprising a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (1) and (2), R 1 represents a hydrogen atom or a methyl group,
    In the general formula (2), X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D). )
    Figure JPOXMLDOC01-appb-C000003
  2.  前記一般式(1)及び(2)中、R1は、メチル基を表す、請求項1に記載のポリアリレート樹脂。 The polyarylate resin according to claim 1 , wherein R 1 in the general formulas (1) and (2) represents a methyl group.
  3.  前記一般式(1)で表される繰り返し単位は、化学式(1-1)で表される繰り返し単位であり、
     前記一般式(2)で表される繰り返し単位は、化学式(2-1)、(2-2)又は(2-3)で表される繰り返し単位である、請求項1に記載のポリアリレート樹脂。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    The repeating unit represented by the general formula (1) is a repeating unit represented by the chemical formula (1-1),
    The polyarylate resin according to claim 1, wherein the repeating unit represented by the general formula (2) is a repeating unit represented by the chemical formula (2-1), (2-2), or (2-3). .
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  4.  前記一般式(1)で表される繰り返し単位は、化学式(1-1)で表される繰り返し単位であり、
     前記一般式(2)で表される繰り返し単位は、化学式(2-3)で表される繰り返し単位である、請求項1に記載のポリアリレート樹脂。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The repeating unit represented by the general formula (1) is a repeating unit represented by the chemical formula (1-1),
    The polyarylate resin according to claim 1, wherein the repeating unit represented by the general formula (2) is a repeating unit represented by the chemical formula (2-3).
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  5.  前記一般式(1)で表される繰り返し単位の数n1と前記一般式(2)で表される繰り返し単位の数n2とが、下記計算式(i)を満たす、請求項1に記載のポリアリレート樹脂。
    0.30≦n1/(n1+n2)≦0.70・・・(i)
    The number n 1 of repeating units represented by the general formula (1) and the number n 2 of repeating units represented by the general formula (2) satisfy the following formula (i). Polyarylate resin.
    0.30 ≦ n 1 / (n 1 + n 2 ) ≦ 0.70 (i)
  6.  導電性基体と、感光層とを備え、
     前記感光層は、電荷発生剤と正孔輸送剤とバインダー樹脂とを含み、
     前記バインダー樹脂は、ポリアリレート樹脂を含み、
     前記ポリアリレート樹脂は、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とを含む、電子写真感光体。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
     (前記一般式(1)及び(2)中、R1は、水素原子又はメチル基を表し、
     前記一般式(2)中、Xは、化学式(2A)、(2B)、(2C)又は(2D)で表される二価の基を表す。)
    Figure JPOXMLDOC01-appb-C000012
    Comprising a conductive substrate and a photosensitive layer;
    The photosensitive layer includes a charge generator, a hole transport agent, and a binder resin,
    The binder resin includes a polyarylate resin,
    The polyarylate resin is an electrophotographic photoreceptor including a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (In the general formulas (1) and (2), R 1 represents a hydrogen atom or a methyl group,
    In the general formula (2), X represents a divalent group represented by the chemical formula (2A), (2B), (2C) or (2D). )
    Figure JPOXMLDOC01-appb-C000012
  7.  前記一般式(1)及び(2)中、R1は、メチル基を表す、請求項6に記載の電子写真感光体。 The electrophotographic photoreceptor according to claim 6, wherein R 1 in the general formulas (1) and (2) represents a methyl group.
  8.  前記一般式(1)で表される繰り返し単位は、化学式(1-1)で表される繰り返し単位であり、
     前記一般式(2)で表される繰り返し単位は、化学式(2-1)、(2-2)又は(2-3)で表される繰り返し単位である、請求項6に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000013
    The repeating unit represented by the general formula (1) is a repeating unit represented by the chemical formula (1-1),
    The electrophotographic photosensitive member according to claim 6, wherein the repeating unit represented by the general formula (2) is a repeating unit represented by the chemical formula (2-1), (2-2), or (2-3). body.
    Figure JPOXMLDOC01-appb-C000013
  9.  前記一般式(1)で表される繰り返し単位は、化学式(1-1)で表される繰り返し単位であり、
     前記一般式(2)で表される繰り返し単位は、化学式(2-3)で表される繰り返し単位である、請求項6に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    The repeating unit represented by the general formula (1) is a repeating unit represented by the chemical formula (1-1),
    The electrophotographic photosensitive member according to claim 6, wherein the repeating unit represented by the general formula (2) is a repeating unit represented by the chemical formula (2-3).
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
  10.  前記一般式(1)で表される繰り返し単位の数n1と前記一般式(2)で表される繰り返し単位の数n2とが、下記計算式(i)を満たす、請求項6に記載の電子写真感光体。
    0.30≦n1/(n1+n2)≦0.70・・・(i)
    The number n 1 of repeating units represented by the general formula (1) and the number n 2 of repeating units represented by the general formula (2) satisfy the following formula (i). Electrophotographic photoreceptor.
    0.30 ≦ n 1 / (n 1 + n 2 ) ≦ 0.70 (i)
  11.  前記正孔輸送剤は、一般式(10)、(11)又は(12)で表される化合物を含む、請求項6に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000016
     (前記一般式(10)中、
     R101及びR108は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルキル基を有してもよいフェニル基、又は炭素原子数1以上8以下のアルコキシ基を表し、
     R103、R104、R105、R106及びR107は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルキル基を有してもよいフェニル基、又は炭素原子数1以上8以下のアルコキシ基を表すか、R103、R104、R105、R106及びR107のうちの隣接する2つが結合して炭素原子数5以上7以下のシクロアルカンを表してもよく、
     R102及びR109は、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基又は炭素原子数1以上8以下のアルコキシ基を表し、
     b1及びb2は、各々独立に、0以上5以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000017
     (前記一般式(11)中、
     R111及びR112は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基又はフェニル基を表し、
     R113、R114、R115、R116、R117及びR118は、各々独立に、炭素原子数1以上8以下のアルキル基又はフェニル基を表し、
     d1及びd2は、各々独立に、0又は1を表し、
     d3、d4、d5及びd6は、各々独立に、0以上5以下の整数を表し、
     d7及びd8は、各々独立に、0以上4以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000018
     (前記一般式(12)中、
     R121、R122、R123、R124、R125及びR126は、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基又は炭素原子数1以上8以下のアルコキシ基を表し、
     e1、e2、e4及びe5は、各々独立に、0以上5以下の整数を表し、
     e3及びe6は、各々独立に、0以上4以下の整数を表す。)
    The electrophotographic photosensitive member according to claim 6, wherein the hole transport agent includes a compound represented by the general formula (10), (11), or (12).
    Figure JPOXMLDOC01-appb-C000016
    (In the general formula (10),
    R 101 and R 108 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group optionally having an alkyl group having 1 to 8 carbon atoms, or 1 or more carbon atoms. Represents 8 or less alkoxy groups,
    R 103 , R 104 , R 105 , R 106 and R 107 may each independently have a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkyl group having 1 to 8 carbon atoms. Represents a phenyl group or an alkoxy group having 1 to 8 carbon atoms, or two adjacent ones of R 103 , R 104 , R 105 , R 106 and R 107 are bonded to each other to have 5 to 7 carbon atoms May represent cycloalkane,
    R 102 and R 109 each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms,
    b 1 and b 2 each independently represents an integer of 0 or more and 5 or less. )
    Figure JPOXMLDOC01-appb-C000017
    (In the general formula (11),
    R 111 and R 112 each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a phenyl group,
    R 113 , R 114 , R 115 , R 116 , R 117 and R 118 each independently represents an alkyl group having 1 to 8 carbon atoms or a phenyl group,
    d 1 and d 2 each independently represent 0 or 1,
    d 3 , d 4 , d 5 and d 6 each independently represents an integer of 0 or more and 5 or less,
    d 7 and d 8 each independently represents an integer of 0 or more and 4 or less. )
    Figure JPOXMLDOC01-appb-C000018
    (In the general formula (12),
    R 121 , R 122 , R 123 , R 124 , R 125 and R 126 each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms,
    e 1 , e 2 , e 4 and e 5 each independently represents an integer of 0 or more and 5 or less,
    e 3 and e 6 each independently represents an integer of 0 or more and 4 or less. )
  12.  前記感光層に含有される前記正孔輸送剤は1種のみであり、前記正孔輸送剤は前記一般式(10)、(11)又は(12)で表される化合物である、請求項11に記載の電子写真感光体。 The hole transport agent contained in the photosensitive layer is only one kind, and the hole transport agent is a compound represented by the general formula (10), (11) or (12). The electrophotographic photoreceptor described in 1.
  13.  前記感光層に含有される前記正孔輸送剤は1種のみであり、前記正孔輸送剤は前記一般式(10)、(11)又は(12)で表される化合物であり、
     前記一般式(1)で表される繰り返し単位は、化学式(1-1)で表される繰り返し単位であり、
     前記一般式(2)で表される繰り返し単位は、化学式(2-3)で表される繰り返し単位である、請求項11に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    The hole transport agent contained in the photosensitive layer is only one kind, and the hole transport agent is a compound represented by the general formula (10), (11) or (12),
    The repeating unit represented by the general formula (1) is a repeating unit represented by the chemical formula (1-1),
    The electrophotographic photosensitive member according to claim 11, wherein the repeating unit represented by the general formula (2) is a repeating unit represented by the chemical formula (2-3).
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
  14.  前記感光層は、電荷発生層と電荷輸送層とを含み、
     前記電荷発生層は、前記電荷発生剤を含み、
     前記電荷輸送層は、前記正孔輸送剤と前記バインダー樹脂とを含む、請求項6に記載の電子写真感光体。
    The photosensitive layer includes a charge generation layer and a charge transport layer,
    The charge generation layer includes the charge generation agent,
    The electrophotographic photosensitive member according to claim 6, wherein the charge transport layer includes the hole transport agent and the binder resin.
  15.  前記電荷輸送層は、電子アクセプター化合物を更に含む、請求項14に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 14, wherein the charge transport layer further contains an electron acceptor compound.
PCT/JP2017/033119 2016-10-31 2017-09-13 Polyarylate resin and electrophotographic photoreceptor WO2018079118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780062330.5A CN109803994A (en) 2016-10-31 2017-09-13 Polyarylate resin and Electrophtography photosensor
JP2018547189A JP6753471B2 (en) 2016-10-31 2017-09-13 Polyarylate resin and electrophotographic photosensitive member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213093 2016-10-31
JP2016-213093 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079118A1 true WO2018079118A1 (en) 2018-05-03

Family

ID=62024778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033119 WO2018079118A1 (en) 2016-10-31 2017-09-13 Polyarylate resin and electrophotographic photoreceptor

Country Status (3)

Country Link
JP (1) JP6753471B2 (en)
CN (1) CN109803994A (en)
WO (1) WO2018079118A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022148136A (en) * 2021-03-24 2022-10-06 京セラドキュメントソリューションズ株式会社 Polyarylate resin, and electrophotographic photoreceptor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131623A (en) * 1989-10-18 1991-06-05 Kawasaki Steel Corp Polyarylate resin having improved hydrolytic resistance and production thereof
JPH11174699A (en) * 1997-12-15 1999-07-02 Fuji Xerox Co Ltd Electro-photoreceptor and electrophotographic device
JP2000143788A (en) * 1998-11-10 2000-05-26 Fuji Xerox Co Ltd Terminal blocked type polyester, its production and film formed product
JP2011202129A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Polyester resin, and optical material, film and image display device using the same
JP2012196809A (en) * 2011-03-18 2012-10-18 Fujifilm Corp Forming method of polyester resin film
JP2014231613A (en) * 2005-11-24 2014-12-11 三菱化学株式会社 Polyarylate resin for photosensitive layer of electrophotographic photoreceptor
JP2016031472A (en) * 2014-07-29 2016-03-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive body
JP2016050186A (en) * 2014-08-29 2016-04-11 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative, method for producing triphenylamine derivative, and electrophotographic photoreceptor
JP2017146548A (en) * 2016-02-19 2017-08-24 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2017145368A (en) * 2016-02-19 2017-08-24 ユニチカ株式会社 Polyarylate resin and film comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621167B2 (en) * 1995-10-31 2005-02-16 ユニチカ株式会社   Binder for electrophotographic photoreceptor
US6936388B2 (en) * 2001-03-23 2005-08-30 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming method, image forming apparatus, and image forming apparatus processing unit using same
JP5640801B2 (en) * 2010-02-24 2014-12-17 三菱化学株式会社 Image forming apparatus and electrophotographic cartridge
JP6078084B2 (en) * 2015-02-02 2017-02-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131623A (en) * 1989-10-18 1991-06-05 Kawasaki Steel Corp Polyarylate resin having improved hydrolytic resistance and production thereof
JPH11174699A (en) * 1997-12-15 1999-07-02 Fuji Xerox Co Ltd Electro-photoreceptor and electrophotographic device
JP2000143788A (en) * 1998-11-10 2000-05-26 Fuji Xerox Co Ltd Terminal blocked type polyester, its production and film formed product
JP2014231613A (en) * 2005-11-24 2014-12-11 三菱化学株式会社 Polyarylate resin for photosensitive layer of electrophotographic photoreceptor
JP2011202129A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Polyester resin, and optical material, film and image display device using the same
JP2012196809A (en) * 2011-03-18 2012-10-18 Fujifilm Corp Forming method of polyester resin film
JP2016031472A (en) * 2014-07-29 2016-03-07 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive body
JP2016050186A (en) * 2014-08-29 2016-04-11 京セラドキュメントソリューションズ株式会社 Triphenylamine derivative, method for producing triphenylamine derivative, and electrophotographic photoreceptor
JP2017146548A (en) * 2016-02-19 2017-08-24 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2017145368A (en) * 2016-02-19 2017-08-24 ユニチカ株式会社 Polyarylate resin and film comprising the same

Also Published As

Publication number Publication date
JP6753471B2 (en) 2020-09-09
CN109803994A (en) 2019-05-24
JPWO2018079118A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6747514B2 (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP6635072B2 (en) Polyarylate resin and electrophotographic photoreceptor
JP6500996B2 (en) Electrophotographic photoreceptor
JP6888517B2 (en) Polyarylate resin and electrophotographic photosensitive member
JP6387974B2 (en) Electrophotographic photoreceptor
JP6665811B2 (en) Electrophotographic photoreceptor
JP6658473B2 (en) Polyarylate resin and electrophotographic photoreceptor
CN109283809B (en) Electrophotographic photoreceptor
JP2019020673A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019020674A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6760240B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6773127B2 (en) Electrophotographic photosensitive member
JP6642732B2 (en) Electrophotographic photoreceptor
JP4386820B2 (en) Electrophotographic photoreceptor for wet development
WO2018079118A1 (en) Polyarylate resin and electrophotographic photoreceptor
CN107728440B (en) Polyarylate resin and electrophotographic photoreceptor
JP2020181008A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6432530B2 (en) Electrophotographic photoreceptor
JP7183678B2 (en) Compound mixture, electrophotographic photoreceptor, and method for producing compound mixture
JP6763354B2 (en) Electrophotographic photosensitive member
JP6741145B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP6579073B2 (en) Electrophotographic photoreceptor
JP2019200273A (en) Method for manufacturing electrophotographic photoreceptor, coating liquid for forming photosensitive layer, and electrophotographic photoreceptor
JP2020118767A (en) Electrophotographic photoreceptor
JP2018194702A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864389

Country of ref document: EP

Kind code of ref document: A1