WO2018077262A1 - 一种用于自动驾驶的传感器 - Google Patents

一种用于自动驾驶的传感器 Download PDF

Info

Publication number
WO2018077262A1
WO2018077262A1 PCT/CN2017/108341 CN2017108341W WO2018077262A1 WO 2018077262 A1 WO2018077262 A1 WO 2018077262A1 CN 2017108341 W CN2017108341 W CN 2017108341W WO 2018077262 A1 WO2018077262 A1 WO 2018077262A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser emitting
line
emitting device
laser
linear laser
Prior art date
Application number
PCT/CN2017/108341
Other languages
English (en)
French (fr)
Inventor
张舒怡
Original Assignee
张舒怡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张舒怡 filed Critical 张舒怡
Publication of WO2018077262A1 publication Critical patent/WO2018077262A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a sensor for automatic driving, which is mainly used for detecting an obstacle that may be encountered on the entire front projection surface in an automatic driving process or an assist driving system, and is also applicable to a train, a ship, etc. In the automatic driving or assisted driving of the vehicle.
  • the self-driving car is becoming a hot spot for research and development.
  • the detection of obstacles on the moving direction of the car mainly depends on radar, laser scanning ranging, video camera, etc., wherein the video camera is generally used to detect road signs. Lines, lights, and the like, the extension is used to detect people, other cars, etc. (depending on the perfection of big data), the most successful driverless car is relying on LIDAR, but the current LIDAR design is cumbersome and expensive. Google's early driverless cars cost only $80,000 on LIDAR. Not only that, today's self-driving cars tend to travel on structural roads with obvious markings, and the technology is not very mature.
  • the present invention proposes a method for low-cost detection of non-structural roads (non-cooperative targets), non-structural obstacles (non-cooperative targets) into structural roads, and structural obstacles (cooperative targets).
  • a low-cost, wide-ranging obstacle detection sensor is designed.
  • the present invention is designed in such a manner as: a sensor for automatic driving, characterized in that at least one linear laser emitting device 1 facing the front ground is provided on the vehicle, which is lower or higher at the front of the vehicle.
  • At least one digital imaging module 2 is disposed at the linear laser emitting device, and the digital imaging module 2 is mainly used for taking the projection line of the linear laser line 1 at a projection position in front of the vehicle into the CCD or CMOS photosensitive element of the imaging module, according to the The shape of the laser line on the photosensitive element can determine whether the projection line of the laser line on the ground is blocked by other objects (obstacle), except for the laser line (cooperative target), other objects (non-cooperative targets) in the photosensitive element The imaging on can be ignored. Because the general obstacles are all falling (with feet), especially the wheels of the car, which can be detected on the ground in front, then the obstacles will exist.
  • the linear laser emitting device of the present invention has the following five design schemes:
  • the linear laser emitting device is a plurality of word line laser emitting heads arranged side by side on the same plane, and a word line opening angle of each of the word line laser emitting heads is In the same plane, these juxtaposed line laser heads are placed on a box or frame.
  • the linear laser emitting device is a plurality of point laser emitting heads arranged in a circular shape disposed on a turntable, each of the point laser emitting heads facing away from the center of the circle and disposed in a box Or inside the casing, there is a light-transmissive window in the front part of the box or the casing, and the turntable is driven by the motor.
  • the linear laser emitting device includes a bottom plate that can swing back and forth around a rotating axis at an angle, and at least one layer of a plurality of spot laser emitting heads or a small opening angle are arranged in parallel or radially on the bottom plate.
  • the line laser emitting head rotates back and forth, and the point laser emitting head or the small-line laser emitting head projects a laser line composed of a discontinuous point or a short line segment on the front projection surface, and drives the bottom plate to rotate back and forth. It is an electromagnet or motor that repeatedly supplies power intermittently.
  • the linear laser emitting device is at least one spot laser emitting head or a small-line laser emitting head that drives the laser signal on a multi-column or multi-cone mirror that can rotate at a high speed. , through the multi-column or multi-cone mirror rotation reflection, forming a straight line-like arc on the road.
  • the cross section of the cylindrical mirror may be a regular polygon or a polygon other than a regular polygon, and each cylinder or cone reflection surface may have at least one plane or at least one surface.
  • the linear laser emitting device is at least one spot laser emitting head or a small-line laser emitting head that rotates the laser signal on a mirror that oscillates back and forth around a rotating axis at an angle.
  • a laser line composed of a discontinuous point or a short line segment is projected on the front projection surface by a mirror swinging and reflecting at a certain angle.
  • the reflection surface of the mirror is located on the front surface of the mirror, and may be a plane or a plurality of strips. Plane or surface.
  • the linear laser emitting device further includes an up-and-down angle deflecting mechanism, and the deflecting mechanism rotates to direct the linear laser light emitted by the linear laser device to different horizontal angles in front.
  • the linear laser emitting device further has a lifting mechanism, and the lifting mechanism can adjust the linear laser emitting device Located at the height of the vehicle.
  • the linear laser emitting device 1 can also be mounted at a fixed height on a vehicle.
  • the digital imaging module is generally disposed at a half-height position of the vehicle, which can take into account the viewing angle of the imaging module.
  • a general linear laser emitting device is disposed on the top of the vehicle, and the linear laser light is emitted toward the front and the lower side of the traffic tool, and the projection surface is perpendicular to the plane of the central axis of the vehicle.
  • the present invention is to improve the brightness of the segment line laser, to ensure the same angle of the entire line laser, and to see the laser line in the digital imaging module at a distance.
  • FIG. 1 (a, b, c, d) is a schematic diagram of the front obstacle discrimination (where a', b', c', d' are respectively a, b
  • FIG. 2 is a schematic diagram of the distance calculation of the front obstacle in the present invention.
  • FIG. 3 is a schematic view showing a mounting structure of a sensor according to a first aspect of the present invention in a car, wherein FIG. 3a is a side view of the structure, and FIGS. 3b and 3c are top views of the two structures.
  • FIG. 4 is a schematic view showing a mounting structure of a sensor according to a second aspect of the present invention in a car, wherein FIG. 4a is a side view of the structure, and FIG. 4b is a top view of the structure.
  • 5(a, b) and 6 are schematic structural views of a linear laser emitting device according to a second aspect of the present invention.
  • FIG. 7 (a, b, c) is a schematic structural view of a linear laser emitting device according to a third aspect of the present invention, wherein
  • FIG. 5a is a side view of the structure, and Figs. 5b and 5c are top views of the oscillating working state.
  • 8 (a, b, c, d) is a schematic view of the direction of the laser line in the swinging process of the third aspect of the present invention, wherein 8a, 8b are point laser emitting heads; 8c, 8d are one Word line laser emitting head.
  • FIGS. 9 to 10 are schematic structural views of a linear laser emitting device according to a fourth aspect of the present invention.
  • FIG. 11 (a, b, c) is a schematic view of the direction in which the laser line of the fourth scheme is irradiated during the rotation.
  • FIG. 12 is a schematic view of a mirror of another linear laser emitting device capable of transforming horizontal angles according to a fourth aspect. [0025] FIG.
  • 13 (a, b, c, d) is a schematic structural view of a linear laser emitting device according to a fifth aspect of the present invention
  • 13a, 13b are structural side views (two operating states of the swing)
  • Figs. 13c and 13d are top views of the oscillating working state.
  • 14(a, b) is a schematic view showing the direction in which the laser line is irradiated during the swinging process of the fifth scheme.
  • 15 (a, b) is a schematic view showing an angular deflection structure of a linear laser emitting device according to a fifth aspect of the present invention.
  • 16 (a, b, c, d, e, f) is a schematic view of a linear laser emitting device with an up-and-down angle deflecting mechanism.
  • At least one linear laser emitting device 1 facing the front ground is disposed on the vehicle, and at least one digital imaging module 2 is disposed at a position lower or higher than the linear laser emitting device near the front panel of the vehicle, substantially disposed It is the half-height position of the vehicle, which can take into account the angle of view of the imaging module.
  • the digital imaging module is mainly used to ingest the projection line of the linear laser line at the projection position in front of the vehicle into the CCD of the imaging module.
  • CMOS complementary metal-oxide-semiconductor
  • the laser line on the ground is stably projected at a fixed position (because the road has a certain slope, the projected laser line is not necessarily a straight line), as shown in Figure la/la', there are obstacles ⁇ A part of the laser line shines on the raised obstacle, and its projection on the imaging module moves up (recording the first time moving up the )), as shown in Figure lb/lb', lc/lc', according to the upward shift
  • the amount of displacement can calculate the distance of the obstacle, and according to the moving speed of the vehicle, it can be calculated how long the vehicle will encounter the obstacle, how the vehicle should move, if there is a pit (step) on the road ahead, then The laser line that should be in the expected position will move down or be invisible, as shown in Figure ld/ld'. This situation also indicates that there is an obstacle in front and cannot be crossed (it can also be determined by empirical calculation by calculating the offset of the downward movement) This drop can pass the vehicle).
  • the oblique downward angle of the linear laser emitting head and the linear laser line projection position on the photosensitive element it is even possible to calculate the position of the obstacle from the vehicle, as shown in FIG. 2 of the linear laser emitting device.
  • the light exit is A (the height from the ground is AB), and the emitted light shines on the road at point D, once it encounters obstacles on the road.
  • the magnification ratio calculated according to the focal length and the magnification is k, where AB, OG, GB, OQ are known (fixed value), RQ, PQ are based on the density of the pixel points (and the distance between pixel points), on C
  • the absolute length can be calculated.
  • the actual length (substituting the formula ⁇ ) is also multiplied by the magnification ratio k, which can be seen as known (known). It is assumed that the distance of the obstacle LM from D is x, that is, the length of the DM is X.
  • the default magnification ratio k is 1:
  • x (RP*DG/((AB*OQ/(DG+GB))-(RQ-RP))
  • DG-x is OG*OQ/RQ-RP*OG*OQ/(RQ*(AB*OQ/(OG*OQ/RQ+GB)-PQ)) is an obstacle from the front end of the vehicle (lens) the distance.
  • the digital imaging module 2 is generally disposed at a half-height position of the vehicle, and the linear laser emitting device 1 can be disposed at the top of the automobile, which can take into account the viewing angle of the imaging module.
  • close-range detection does not necessarily make sense (can’t stop
  • the digital imaging module 2 can also be placed on the top, and the linear laser emitting device 1 is placed close to the ground (
  • the linear laser emitting device 1 is a combination of a plurality of juxtaposed laser emitting heads 11 arranged side by side on the same plane, and these juxtaposed in-line laser emitting heads 11 are disposed in a box In the body 10, each of the word line laser emitting heads 11 may be parallel to each other, or slightly inclined outward (in a fan shape), and the opening angle of each of the word line laser emitting heads 11 is in the same direction (the sides of the opening angle are On the same plane), the general linear laser emitting device 1 is disposed on the top of the vehicle, and the linear laser light is emitted toward the front and the lower side of the vehicle, and the projection surface is perpendicular to the plane of the central axis of the vehicle, as shown in FIG.
  • a plurality of inline laser emitting heads 11 may also be disposed on different planes (at different positions of the vehicle), and the inline or different directions of the inline laser heads 11 are directly directed to the front and the lower sides of the vehicle.
  • This setting method is used to process the data on the imaging module, and the calculation amount is large; it may not necessarily be a word line, such as " ⁇ " word line, "three” word line (three-layer one-word line), etc., oblique The next illumination or small angle rotates back and forth.
  • the laser signal in the far side is weak, and it is not necessarily able to be projected on the photosensitive element.
  • the green laser is relatively bright, and the linear laser emitting head with higher brightness can be used.
  • Variable power amplifiers power the laser emitters, boost power in strong sunlight, enhance the brightness of linear lasers, or provide multiple laser heads with different powers in parallel, with strong sunlight and maximum brightness (power)
  • Laser head work generally strong ⁇ , brightness (power) medium laser head work, no sunlight ⁇ , brightness (power) minimum laser head work, can be manually selected or automatically selected (via sensitized sensor), to the photosensitive element can feel Until the shadow of the linear laser.
  • the linear laser emitting device 1 is composed of at least one layer of a plurality of word line laser emitting heads 11 and a long strip-shaped housing 10 on which the word line laser emitting heads 11 are mounted, and one layer is a case 10 .
  • Each or the entire line of laser emitting heads 11 facing the laser emitting device 1 may be open or provided with a light-transmissive panel (such as glass or resin) at the box 10 of the laser emitting device 1 to protect against dust, another In terms of reducing the resistance, this panel can also be a convex lens in the up and down direction (thickness in the left and right direction, aspherical mirror), which can further focus the linear laser (thinning the line).
  • a light-transmissive panel such as glass or resin
  • this panel can also be a convex lens in the up and down direction (thickness in the left and right direction, aspherical mirror), which can further focus the linear laser (thinning the line).
  • the linear laser emitting device 1 is a plurality of spot laser emitting heads 12 arranged in a circular shape on a turntable (generally circular) 17, each of the spot laser emitting heads 12 is away from the center of the circle (toward the outside), is disposed in a box 10 or a casing, and has a light-transmissive window 19 at the front of the casing 10 or the casing, and the turntable 17 is driven by a motor.
  • a general linear laser emitting device 1 is disposed on the top of the vehicle, and the emitted linear laser light is directed toward the front lower side of the traffic tool, and the projection surface is perpendicular to the plane of the central axis of the vehicle, as shown in FIG.
  • the projection line of the rotating laser is actually an arc.
  • the projection distance is far away and can be regarded as an approximate straight line. The recognition of the close distance on the imaging module needs to be treated as a circular arc.
  • the linear laser emitting device 1 is composed of at least one layer of the dot laser emitting heads 12 and a rotating casing 10 on which the laser heads are mounted, and one layer is a casing 10.
  • the plurality of (for example, three layers) different horizontal angles of the point-like laser emitting head 12 disposed at a long distance, a medium distance, and a close distance may be layered from high to low in a box or cover.
  • the laser color of each of the spotted laser emitting heads is preferably different.
  • the front of the cabinet or the casing 10 may be open or provided with a light-transmissive panel (such as glass or resin), and the panel may be dust-proof on the one hand, and reduce the resistance on the other hand, and the panel may also be a convex lens. Further focusing on the laser.
  • a light-transmissive panel such as glass or resin
  • a support rod 8 is disposed at a top end of the vehicle, a support hole 8 has a circular hole at the top thereof, a rotation shaft 50 is disposed in the hole through the bearing, and the rotation shaft 50 is laterally fixed to the outer edge of the local gear with the snail gear 52.
  • a motor 80 is supported at both ends of the rotating shaft 50.
  • the motor preferably uses a DC disk motor 80, and a linear laser emitting device 1 is disposed on the rotor 85 of the motor 80 (here, the ring is distributed more) a point laser emitting head 12), at least one layer of laser emitting heads 12 are disposed on the bottom plate of the linear laser emitting device 1, and these point laser emitting heads 12 are connected with their bottom plates (turntables) 17 to rotate; 50 is also provided with a support plate 18 which rotates synchronously with the rotating shaft.
  • a linear laser emitting device 1 is disposed on the rotor 85 of the motor 80 (here, the ring is distributed more) a point laser emitting head 12), at least one layer of laser emitting heads 12 are disposed on the bottom plate of the linear laser emitting device 1, and these point laser emitting heads 12 are connected with their bottom plates (turntables) 17 to rotate; 50 is also provided with a support plate 18 which rotates synchronously with the rotating shaft.
  • the outer edge of the support plate 18 is fixed with a casing, that is, the casing 10 of the linear laser emitting device, and a window 19 is arranged in front of the casing (can be covered with a light-transmitting material)
  • a motor is disposed near the top of the support rod 8.
  • a worm is disposed on the output shaft of the motor as the drive shaft 51.
  • the drive shaft 51 meshes with the gear 52 disposed on the side of the rotary shaft 50, and the motor start gear 52 rotates and rotates.
  • the shaft 50 and the bottom plate (turntable) 17, the point laser emitting head 12, the motor 80, and the casing together make a reciprocating bending motion (heading, bowing), as shown in Figs.
  • Elastic slip ring at the bottom of the turntable 17 84 (similar to the carbon brush of the DC motor), in contact with the conductive ring under the stator of the motor 80, the slip ring 84 can also be placed at the edge of the bottom plate (turntable) 17, and contact with the conductive cover (including aluminum) to take power, support
  • the inside of the rod 8 (or the groove outside the support rod 8) generally includes five wires (the power line of the motor 80, the drive motor line (two) that drives the drive shaft 52 to be reversed, the ground line and the spot laser emitting head 12 power cord, you can also use the support rod 8 as a ground wire, of course, you can also set a few more lines, including the frequency adjustment line to adjust the motor speed, the laser head of each layer separately, etc.).
  • an annular distributed conductive contact may be disposed on the motor stator under the turntable 17 or on the inner wall of the cover or on the support plate 18, and each laser head has a belt disposed on the slip ring.
  • the linear laser emitting device 1 of the method adopts the point laser emitting head 12 as a light source, and may also be a circularly distributed one-line laser emitting head 11 having a small opening angle, and is disposed on the same plane and horizontally.
  • the angle of the laser beam head 11 of the corner line is the same direction (the sides of the corners are on the same plane), and the advantage of using the spot laser head 12 is that the laser line formed is brighter, the word line laser
  • the advantage of the launch head 11 is that the laser break line is composed of a short segment of a line segment, and the line shape is more complete.
  • the laser emitting head is attached to the inclined surface, and there are a plurality of projection lines (interrupted lines) in front. It is preferable to set a positioning device such as a code wheel on the turntable (chassis) of this structure, knowing that it is currently facing
  • a positioning device such as a code wheel on the turntable (chassis) of this structure, knowing that it is currently facing
  • the angle of the laser emitting head 12 of the window 19 is also known as the imaging position of the laser line on the imaging module 2 under normal conditions (barrier-free, flat surface).
  • the linear laser emitting device 1 includes a bottom plate 16 which is rotatable around a rotating shaft 50 at a fixed angle.
  • the bottom plate 16 is arranged in parallel or radially with a plurality of point laser emitting heads 12 or a small angle line.
  • the laser emitting head 11 is oscillated by swinging back and forth, and the spot laser emitting head 12 or the small-line laser emitting head 11 projects a laser line composed of a discontinuous point or a short line segment on the front projection surface, and drives the bottom plate 16
  • Rotating back and forth is an electromagnet 58 or a motor that intermittently supplies power or supplies power in forward and reverse intervals.
  • two electromagnets 58 are respectively disposed at two ends of the bottom plate 16 side, and the electromagnets 58 repeatedly overlap the iron blocks (plates) 60 disposed at the two ends of the bottom plate 16 to achieve the bottom plate 16
  • a plurality of (multilayer or one layer) point laser emitting heads 12 are oscillated by rotating back and forth around the rotating shaft 50, or the iron block (plate) 60 of the outer peripheral edge of the bottom plate 16 is a magnetic body, which is close to the side of the electromagnet 58.
  • One of the polarities in the N/S" the electromagnet 58 only needs to be provided, and the magnetic body 60 is attracted or repelled by the forward and reverse power supply.
  • the rotating shaft 50 itself is fixed and connected to the bottom plate 16 through a bearing; or the rotating shaft 50 is fixed to the bottom plate 16 and rotated by a fixed bearing. If the motor driving bottom plate 16 is rotated back and forth, the motor output shaft can be rotated. Axis 50.
  • a bottom plate 16 is further disposed on the bottom plate 16 to surround the point laser emitting head 12 or a small-line laser emitting head 11 having a small opening angle, and the laser emitting head facing the box 10 can be open or transparent.
  • Panel such as glass or resin
  • This panel can also be a convex lens in the up and down direction (thickness in the left and right direction, aspherical mirror), which can further focus the linear laser (thin the line instead of the line) Shorten).
  • the electromagnet 58 attracts the iron block 60 with noise, and may not directly contact the suction (the gap distance is separated by a slight distance), and an elastic body 61 such as a spring or a rubber is disposed adjacent to the collision between the iron block 60 and the electromagnet 58.
  • the electromagnet 58 can be disposed on both sides of the bottom plate 16 (Fig. 7, Fig. 8a/8b), and can also be disposed on both sides of the bottom plate 16 (Fig. 8c/8d).
  • the housing 10 and the rotating shaft 50, the electromagnet 58 or the motor are disposed on a base 18, of course, a larger housing 10, surrounding the laser emitting head (with a window facing), an electromagnet 58, Base 18.
  • the linear laser device 1 of a plurality of (for example, three) different horizontal angles respectively disposed at a long distance, a medium distance, and a close distance may be laminated in a box 10 from high to low, Or each has its own box 10, and the angle of the back and forth rotation of each of the linear laser emitting devices 1 is large, and the angle toward the farthest angle is small (the laser head selects the spot laser emitting head 12), and is oriented toward the nearest line.
  • the laser emitting device 1 has a large angle of swinging back and forth, and the projected laser line is long, and can cover a large range.
  • the linear laser emitting device 1 is at least one spot laser emitting head 12 or a word line laser emitting head 11 having a small opening angle, and the laser signal is applied to a multi-cylindrical or multi-cone mirror 7 which can rotate at a high speed. Through the rotational reflection of the multi-cylindrical or multi-conical mirror 7, an arc resembling a straight line is formed. As shown in Figure 9, 11, the cylinder surface
  • the cross section of the mirror 7 may be a regular polygon or a polygon of a non-normal polygon, and each cylinder or cone reflection surface may have at least one plane or at least one curved surface.
  • the linear laser strikes the density of the bright spot or the bright line segment on the road surface, so as to prevent the vehicle speed from being fast, the single point or the line segment scanning will miss the short distance before and after. Obstacle
  • a plurality of side-by-side laser emitting heads arranged in parallel or annularly distributed on the same plane or a single-line laser emitting head having a small opening angle may be parallel to each other on the same cylinder or tapered surface or adjacent to two On a point/line segment with different cylinders or cones.
  • a plurality of side-by-side laser emitting heads distributed on different planes or a single-line laser emitting head having a small opening angle may be different on the same cylinder or cone or adjacent two cylinders or cones On the point/line segment, or a plurality of juxtaposed point-like laser emitting heads or a small-line one-line laser emitting head are struck on the same point/line segment in different directions.
  • the multi-cylindrical or multi-conical mirror 7 is not necessarily all cylindrical or tapered, but also can be switched from cylindrical to multi-conical, or cylindrical to tapered. Interval, as shown in Figure 12.
  • One or more cross-sections of a plurality of different chord lengths of a point laser head 12 or a small-line laser head 11 with a small angle (the chord length affects the laser-reflected projection line)
  • the length of the laser, the angle of the cone affects the projection distance of the linear laser, and there are a plurality of different angles of the cone (the angle between the cone and the horizontal plane is different (for example, the angle of each surface is different).
  • the upper and lower angle deflection mechanism of the complete linear laser emitting device can be omitted, and the rotating shaft 72 of the mirror 7 of this structure is preferably provided with a positioning device such as a code wheel.
  • the point laser emitting head 12 or the small-line laser head 11 having a small opening angle may be disposed above or below the mirror 7, and the lower casing 10 may be disposed at the base of the entire linear laser emitting device. Together ( Figure 9) .
  • the support rod of the upper case 10 is disposed at any position that does not affect the laser emission and reflection.
  • the fixed rod can also be disposed, and the rotating motor of the mirror 7 is disposed on the mirror 7. Internally, it is best to use an outer rotor motor (such as a disc motor). In this case, the fixed rod can replace the support rod.
  • the linear laser emitting device is at least one spot laser emitting head 12 or a small-line laser emitting head 11 that rotates the laser signal at a fixed angle around a rotating shaft 50.
  • the mirror 71 On the mirror 71, the mirror 71 is oscillated and reflected at a constant angle, and a laser line composed of a discontinuous point or a short line segment is projected on the front projection surface, and the reflection surface of the mirror is located on the front surface of the mirror.
  • the surface is preferably a strip-shaped concave surface for further focusing of the laser.
  • a point laser emitting head or a small-line laser emitting head with a small opening angle may be disposed in front of the mirror 71 (front upper or lower front), and a box 10 may be disposed to surround the point laser emitting head or sheet
  • the small-angle line laser emitting head can be opened or provided with a light-transmissive panel at the casing 10 facing the laser emitting head.
  • the reflecting surface of the mirror 71 is vertical or inclined.
  • the drive mirror 71 is oscillated back and forth by an electromagnet 58 or a motor.
  • the linear laser strikes the density of the bright spot or the bright line segment on the road surface, so as to prevent the vehicle speed from being fast, the single point or the line segment scanning will miss the front and rear distance.
  • the obstacle may be placed at a different or the same position of the mirror 71 by a plurality of side-by-side (parallel or radial arrangement, fan-shaped arrangement) point-shaped laser emitting heads or small-angle one-line laser emitting heads.
  • a plurality of parallel point-like laser emitting heads or a small-angle one-line laser emitting head may have a plurality of layers stacked on the bottom plate 16 with each layer facing a different horizontal angle.
  • a laser emitting head or a word line laser emitting head having a small opening angle may be different in each orientation.
  • the laser emitting head or the word line laser emitting head having a small opening angle may also be in groups of one, the groups are oriented in the same direction, and the groups are oriented differently.
  • two electromagnets 58 are disposed at both ends of the mirror, and the electromagnets 58 repeatedly overlap the iron blocks (plates) 60 disposed at the two ends of the bottom plate 16 of the mirror 71 to achieve reflection.
  • the mirror 71 is oscillated by rotating back and forth around the rotating shaft 50.
  • the mirror 71—the outer edge of the iron block (plate) 60 is a magnetic body, close to the electromagnet 58—the side is a polarity of “N/S”, and the electromagnet 58 only needs to be provided one by the forward and reverse. Power supply
  • the magnetic body 60 is joined or repelled.
  • the rotating shaft 50 itself is fixed and connected to the bottom plate 16 through a bearing; or the rotating shaft 50 is fixed to the bottom plate 16 and rotated by a fixed bearing. If the motor driving bottom plate 16 is rotated back and forth, the motor output shaft can be rotated. Axis 50, as shown in Figure 15.
  • the electromagnet 58 attracts the iron block 60 with noise, and may not directly contact the suction (the gap distance is separated by a slight distance), and an elastic body 61 such as a spring or a rubber is disposed adjacent to the iron block 60 and the electromagnet 58 from colliding.
  • the electromagnets 58 may be disposed on both sides of the bottom plate 16 (Fig. 13) or on both sides of the bottom plate 16 (Fig. 14a/14b).
  • the casing 10 and the mirror 71, the rotating shaft 50, the electromagnet 58 or the motor are disposed on a base 18. If the laser emitting head is located below the mirror 71, the casing 10 can be integrated with the base 18, or the casing
  • the driving portion surrounding the base and the mirror 71 and the mirror 71 is provided with an open or light-transmissive panel window at the direction of the reflecting surface
  • the linear laser device 1 may be disposed at a plurality of (for example, three) different horizontal angles respectively disposed at a long distance, a medium distance, and a short distance, and one of the plurality of linear laser devices may be disposed above the front side.
  • the angle of rotation of the mirror 71 of 1 may be different, the angle of rotation toward a long distance is small, and the angle of close rotation is large.
  • the linear laser emitting device 1 can be provided with an up-and-down angle deflecting mechanism 5 that rotates the linear laser light emitted from the linear laser device 1 toward different angles forward. According to the speed of the vehicle (car), the horizontal angle of the linear laser emitting device 1 (between the ground) is automatically controlled. The faster the vehicle speed is, the smaller the angle is.
  • the angle deflecting mechanism can be the up and down rotating mechanism 5 Or swing mechanism.
  • the drive shaft 51 that drives the deflection (rotation) can be driven by a stepper motor or a servo motor (steering gear) with or without a speed reduction mechanism.
  • the angle deflection mechanism can also be fixed in a circular (one-way) circular rotation manner, and the other end (or the middle) can be lifted and lowered by a screw driven by a nut.
  • This method can be driven by a common DC motor plus code wheel control or a stepping motor.
  • the rotating mechanism or the swinging mechanism 5 can rotate the linear laser to some angles, and by rotating, the linear laser is transmitted to different angles in the front horizontal direction, for example, the vehicle according to the speed and the safe braking distance according to the speed of the automatic driving (or the assisting driving device) Detecting distant obstacles (such as 100 meters outside) or medium distance (30 50 meters), near (within 10 meters) different obstacles, this turning (pendulum) moving direction is to rotate the laser line from near to far, this turn (pendulum) The direction of motion is upward (pendulum) to the point where the linear laser can be illuminated to the front of the vehicle. This turn (pendulum) can be used to detect whether the road ahead is lower than the vehicle. Degrees of beams, branches and other obstacles.
  • the linear laser emitting device 1 may not be provided with the upper and lower angle deflecting mechanism 5, and the linear laser emitting device faces a fixed angle, and a plurality of layers of laser emitting heads 11 facing in different directions may be disposed, as shown in FIG. Four layers, respectively facing forward (detecting whether the highest point of the vehicle will collide with the bridge, tunnel, etc. in front), front down (100 meters or so distance), medium distance (about 50 meters), front lower (close distance) )
  • the rotating shaft 50 of the left and right ends (or at least one end) of the linear laser emitting device 1 is held by the support arm 59 (can be held by a copper sleeve or a bearing), and the rotating shaft 50 of the intermediate position (or another section)
  • the gear is arranged to be meshed with the gear on the drive shaft 51 through a transition gear 52, as shown in Fig. 16 (a), the drive shaft is driven by a servo motor, a stepping motor or a DC motor with a reduction gear (may be a stepping motor)
  • the motor shaft); the rotating shaft 50 of the casing 10 can also be the output shaft of the motor, or there is only one gear between them.
  • the tail portion of the linear laser emitting device may also be provided with an arc-shaped rack 53 that meshes with a gear driven by the driving shaft 51, and is driven to rotate by a certain angle by a rack and pinion, as shown in FIG. 16(b); the tail portion may also be set.
  • the arcuate snail teeth mesh with a motor-driven turbine and are driven to rotate at a certain angle by means of a worm gear.
  • the advantage of the worm gear is self-locking and large reduction ratio.
  • the linear laser emitting device can also perform a reciprocating (oscillating) motion by the rotation of the cam 54 (eccentric wheel) and the spring 55, as shown in Fig. 16 (c).
  • the linear laser emitting device can also be driven to reciprocate by means of the crank 56 link 57, as shown in Fig. 16(d), which shows the two positions of the casing 10 after reciprocating motion.
  • the reciprocating (oscillating) motion of the linear laser emitting device can also be controlled by the on and off of the electromagnet 58, as shown in FIG. 16(e), the electromagnet 58 is disposed on one of the left and right sides of the bottom of the case (or The two sides are arranged), the electric ⁇ electromagnet 58 sucks the iron block at the bottom of the box body 10, and the power-off ⁇ linear laser emitting device is pulled back by the spring 55; or the electromagnet 58 is disposed above the linear laser emitting device, such as In Fig.
  • the electromagnet 58 is energized to suck the iron block (plate) 60 above the linear laser emitting device, and the electromagnet 58 is deenergized, and the linear laser emitting device rotates back due to gravity.
  • the electromagnet 58 attracts the iron block 60.
  • the rotation mechanism 5 is rotatable by the housing 10 of the linear laser emitting device 1, and of course, the linear rotation is also possible.
  • the bottom plate of the light-emitting device 1 and the entire rotating mechanism 5 are also located in the casing 10.
  • the driving portion of the rotating shaft 50 may also be provided with one of the left and right ends of the linear laser emitting device 1, and the other end is a bearing shaft that is fixed by rotation.
  • the linear laser emitting device 1 can also be mounted at a fixed height on a vehicle.
  • the linear laser emitting device 1 may be disposed on a top cover of a vehicle, or may be supported by a fixing bracket (jack), or further include a lifting mechanism of a linear laser emitting device 1 (adjustable linear shape) The height of the laser emitting device 1 on the vehicle).
  • a lifting mechanism of a linear laser emitting device 1 adjusted linear shape
  • the height of the laser emitting device 1 on the vehicle may be aerodynamically designed.
  • the horizontal inclination of the linear laser emitting device loaded on the lifting mechanism before and after the lifting can be adjusted by the level and the motor-driven angular rotation adjusting device or by the mechanical gyroscope regardless of the inclination of the lifting rod or the angle of lifting
  • the entire set of linear laser emitting devices 1 are oriented toward the front lower and lower fixed positions.
  • the so-called digital imaging module is mainly a camera system including a camera, a digital imaging component (CCD or CMOS array), an input and output circuit, a digital processing module (DSP) and the like, and a typical application such as a camera or an optical mouse.
  • the imaging and processing system, the camera system of the mobile phone, etc., the camera preferably uses a wide-angle camera, and a filter or a polarizing plate can be disposed at the front end of the imaging module.
  • the filter and the polarizing plate can be integrated into the imaging module ( After the camera), this digital imaging module can also be set on the same plane, such as one on each side to expand the angle of view.
  • the digital imaging module is not necessarily located on the vehicle housing, but can also be boring (window) on the housing and the imaging device can be retracted a distance from the interior of the vehicle.
  • the lens can be shielded by a light-transmissive glass (or resin), or it can be shielded by a filter or a polarizer.
  • the filter can also be used in the window mode (hiccup or close) or lift or pan, usually used at night, that is, the filter is removed during the day and moved in at night.
  • the imaging device 2 may be provided in plurality, such as a telephoto 21, a wide angle, a telephoto at a medium and a long distance, and a wide angle at a near distance, and a telephoto camera 21 (imaging device) is disposed at a height near the chassis, and the wide angle is set at a wide angle.
  • the car is near half height.
  • an imaging can be set for the distant (about 100 meters), medium distance (about 50 meters), and near (about 10 meters).
  • each imaging device separately tracks the changes of the three laser lines in the far, middle and near distances, because the range of laser line imaging can be roughly defined on the photosensitive sensor according to the empirical value, and because of the fixed distance ( For example, 50 meters) has a fixed viewing angle ⁇ , the distance RQ between the projections of the imaging sensor R and Q is fixed, and the illumination point L of the laser on the obstacle is only below the R point at the projection point of the imaging sensor.
  • the DSP can mainly deal with a comparison between R to Q (line) Small imaging sensor monitoring area, of course, in order to balance the inclination of the road and monitor the depression on the road, or because of the movement of the imaging position caused by the vibration during the driving of the car, it is necessary to increase the height range of the R point, the smaller The amount of data processing is guaranteed (interval between imaging intervals).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种用于自动驾驶的传感器,其特征是在交通工具上设置至少一个朝向前方地面的线状激光发射装置(1),在交通工具前部低于或高于线状激光发射装置(1)处设置至少一个数字成像模块(2),数字成像模块(2)主要用于将线状激光线在交通工具前方投影位置的投影线摄入成像模块(2)的CCD或CMOS感光元件上,根据激光线在感光元件上的位置形状,就能判别激光线在地面的投影线有没有被障碍物遮挡住,线状激光发射装置(1)的光源为点状激光发射头(12)或张角小的一字线激光发射头(11),不仅可将一字线延长,还可提高线状激光的亮度。

Description

一种用于自动驾驶的传感器
技术领域
[0001] 本发明涉及一种用于自动驾驶的传感器, 主要用于汽车在自动驾驶过程中或辅 助驾驶系统中检测前方整个投影面上可能碰到的障碍物, 也可适应于火车、 船 舶等交通工具的自动驾驶或辅助驾驶中。
背景技术
[0002] 目前自动驾驶的汽车正成为研发的热点, 对于汽车移动方向 (一般是前方) 上 障碍物的检测主要依赖雷达、 激光扫描测距、 视频摄像头等方式, 其中视频摄 像头一般为检测道路标志线、 信号灯之类, 延伸的使用方式是检测人、 其他汽 车等 (依赖大数据的完善) , 目前最成功的无人驾驶汽车靠的是 LIDAR, 只是 目前 LIDAR的设计笨重且价格不菲。 谷歌早期的无人驾驶汽车只在 LIDAR上就 花了 8万美元。 不仅如此, 现在的自动驾驶汽车往往在有明显标志线的结构性道 路上行驶, 技术并不是很成熟。
技术问题
[0003] 本发明提出了一种将非结构性道路 (非合作目标) 、 非结构性障碍物 (非合作 目标) 变成结构性道路、 结构性障碍物 (合作目标) 低成本检测的方法, 设计 了配套的低成本、 覆盖面广的障碍检测传感器。
问题的解决方案
技术解决方案
[0004] 本发明是这样设计的: 一种用于自动驾驶的传感器, 其特征是在交通工具上 设置至少一个朝向前方地面的线状激光发射装置 1, 在交通工具前部低于或高于 线状激光发射装置处设置至少一个数字成像模块 2, 数字成像模块 2主要用于将 线状激光线 1在交通工具前方投影位置的投影线摄入成像模块的 CCD或 CMOS感 光元件上, 根据该激光线在感光元件上的位置形状, 就能判别激光线在地面的 投影线有没有被其他物体 (障碍物) 遮挡住, 除了激光线 (合作目标) , 其他 物体 (非合作目标) 在感光元件上的成像可被忽略。 因为一般的障碍物都落地 (有脚) , 尤其汽车的轮子, 在前方地面上能被检测到, 那么障碍物也就存在
。 本发明的线状激光发射装置有下列 5种设计方案:
[0005] (1) 所述的线状激光发射装置为在同一平面上并列设置的多个张角小的一字 线激光发射头, 每个一字线激光发射头的一字线张角在同一个平面内, 这些并 列的一字线激光发射头设置在一个箱体或框架上。
[0006] (2) 所述的线状激光发射装置为设置在一转盘上的呈圆环形分布的多个点状 激光发射头, 每个点状激光发射头背离圆心, 设置在一个箱体或罩壳内, 箱体 或罩壳内前部有透光的窗口, 转盘由电机驱动。
[0007] (3) 线状激光发射装置包括一个能够围绕一根旋转轴一定角度来回旋转摆动 的底板, 底板上平行或放射状排列至少一层多个点状激光发射头或张角小的一 字线激光发射头, 通过来回旋转摆动, 点状激光发射头或张角小的一字线激光 发射头在前方投影面上投射出断续点或短线段构成的激光线, 驱动底板来回旋 转摆动的是反复断续供电的电磁铁或电机。
[0008] (4) 线状激光发射装置是至少一个点状激光发射头或张角小的一字线激光发 射头将激光信号打在一个可以高速旋转的多柱面或多锥面反射镜上, 通过多柱 面或多锥面镜的旋转反射, 在路上形成类似直线的弧线。 柱面反射镜的横截面 可以是正多边形或非正多边形的多边形, 每个柱面或锥面反射面可以至少一个 平面或至少一个曲面。
[0009] (5) 线状激光发射装置是至少一个点状激光发射头或张角小的一字线激光发 射头将激光信号打在一个围绕一根旋转轴一定角度来回旋转摆动的反射镜上, 通过反射镜一定角度的来回摆动及反射, 在前方投影面上投射出断续点或短线 段构成的激光线, 反射镜的反射面位于反射镜的前表面, 可以为一个平面或多 个条状平面或曲面。
[0010] 所述的线状激光发射装置有多个, 每个朝向前方不同的水平角度, 或者一个线 状激光发射装置设置的激光发射头分多层, 每层朝向朝向不同的水平角度。
[0011] 所述的线状激光发射装置还带有上下角度偏转机构, 偏转机构转动吋将线状激 光装置发射的线状激光朝向前方不同的水平角度。
[0012] 所述的线状激光发射装置还带有升降机构, 升降机构能调整线状激光发射装置 位于交通工具上的高度。
[0013] 所述的线状激光发射装置 1也可安装在交通工具上的固定高度。
[0014] 数字成像模块大致设置的位置是交通工具的半高位置, 可以兼顾成像模块的视 角。 一般线状激光发射装置设置在交通工具顶部, 所发出的线状激光朝向交通 工具前下方, 投射面垂直于交通工具的中轴线所在的平面。
发明的有益效果
有益效果
[0015] 本发明是为了提高段线状激光的亮度, 保证整段线状激光总的张角的同吋, 在 较远处还能在数字成像模块中看到激光线。
对附图的简要说明
附图说明
[0016] 图 1 (a、 b、 c、 d) 为前方障碍物判别示意图 (其中 a'、 b'、 c'、 d'分别为 a、 b
、 c、 d的成像示意图) 。
[0017] 图 2为本发明前方障碍物距离计算原理图。
[0018] 图 3为本发明第一种方案的传感器在轿车上的安装结构示意图, 其中图 3a为结 构侧面图, 图 3b、 3c为两种结构俯视图。
[0019] 图 4为本发明第二种方案的传感器在轿车上的一种安装结构示意图, 其中图 4a 为结构侧面图, 图 4b为结构俯视图。
[0020] 图 5 (a、 b) 、 6为本发明的第二种方案线状激光发射装置结构示意图。
[0021] 图 7 (a、 b、 c) 为本发明的第三种方案线状激光发射装置结构示意图, 其中图
5a为结构侧面图, 图 5b、 5c为摆动工作状态俯视图。
[0022] 图 8 (a、 b、 c、 d) 为本发明的第三种方案线激光线在摆动过程中照射的方向 示意图, 其中 8a、 8b为点状激光发射头; 8c、 8d为一字线激光发射头。
[0023] 图 9~10为本发明的第四种方案线状激光发射装置结构示意图。
[0024] 图 11 (a、 b、 c) 为第四种方案激光线在转动过程中照射的方向示意图。
[0025] 图 12为第四种方案另一种可变换水平夹角的线状激光发射装置的反射镜示意图
[0026] 图 13 (a、 b、 c、 d) 为本发明第五种方案的线状激光发射装置结构示意图, 其 中图 13a、 13b为结构侧面图 (摆动的两种工作状态) , 图 13c、 13d为摆动工作状 态俯视图。
[0027] 图 14 (a、 b) 为第五种方案激光线在摆动过程中照射的方向示意图。
[0028] 图 15 (a、 b) 为本发明第五种方案的线状激光发射装置一种角度偏转结构示意 图。
[0029] 图 16 (a、 b、 c、 d、 e、 f) 为带上下角度偏转机构的线状激光发射装置的示意 图。
[0030] 实施例:
[0031] 在交通工具上设置至少一个朝向前方地面的线状激光发射装置 1, 在交通工具 前面板附近低于或高于线状激光发射装置处设置至少一个数字成像模块 2, 大致 设置的位置是交通工具的半高位置, 可以兼顾成像模块的视角, 数字成像模块 主要用于将线状激光线在交通工具前方投影位置的投影线摄入成像模块的 CCD
(或 CMOS) 感光元件上, 根据该激光线在感光元件上的位置形状, 就能判别激 光线在地面的投影线有没有被其他物体 (障碍物) 遮挡住, 除了激光线 (合作 目标) , 其他物体 (非合作目标) 在感光元件上的成像可被忽略。 因为一般的 障碍物都落地 (有脚) , 尤其汽车的轮子, 在前方地面上能被检测到, 那么障 碍物也就存在。
[0032] 无障碍吋, 地面上的激光线稳定投影在固定位置 (因为马路有一定的斜度, 投 影的激光线并不一定是一直线) , 如图 la/la', 有障碍凸起吋, 一部分激光线照 在凸起的障碍上, 其在成像模块上的投影会上移 (记录下首次上移的吋间) , 如图 lb/lb'、 lc/lc' , 根据上移的偏移量, 能计算出障碍物的距离, 并根据交通 工具移动速度, 可计算交通工具多长吋间会遇到该障碍, 交通工具应该如何动 作, 如果前方道路上有坑 (台阶) , 那么在预期位置上应该有的激光线就会下 移或者看不见, 如图 ld/ld', 这种情况也表明前方有障碍, 不能跨越 (也可通过 计算下移的偏移量, 根据经验值确定这个落差交通工具能通过) 。
[0033] 进一步, 根据线状激光发射头的斜向下的角度、 感光元件上的线状激光线投影 位置, 甚至能够计算出障碍物离交通工具的位置, 如图 2线状激光发射装置的出 光处为 A (离地高度为 AB) , 射出的光线照到路面上 D点, 一旦遇到路上的障碍 物 (比如一个路障) , 部分光会被挡住, 在 L处出现亮点 (线段) , 成像装置的 镜头 E中心点为 0, 该点离地高度为 OG; 感光元件 C (CCD) 水平方向对应 0点 处为 Q点, D点在 C上的成像处为 R点, L点在 C上的成像处为 P点 (其实 D、 L 、 N、 R、 P点并不在一个平面上, 图中为这些点的投影面) , DR与障碍物 LM ( 取其高度) 相交于 N点, AD与地面的夹角为 α, DR与地面的夹角为 。 根据焦距 与放大倍数计算所得的放大比例为 k, 的其中 AB、 OG、 GB、 OQ为已知 (固定 值) , RQ、 PQ根据像素点的密度 (及像素点间隔的距离) , 在 C上绝对的长度 可以计算得知, 实际长度 (代入下来公式吋) 还要乘上放大比例 k, 看做可知 ( 已知) , 假设障碍物 LM离 D的距离为 x, 即 DM的长度为 X则, 图中方便起见默认 放大比例 k为 1 :
[0034] ·.·
Figure imgf000007_0001
RQ/OQ= OG/DG ] .·. DG= OG*OQ/RQ
[0035] .· tg = AB/DB 即 tga=AB/ (DG+GB) = AB/ (OG*OQ/RQ +GB)
[0036] ·.· LN=LM-MN= x* (tga- tgp)
[0037] ·.· (DG-DM) /OQ=LN/RP即 (DG-x) /OQ=LN/RP
[0038] (DG-x) /OQ= x* (tga- tgp) /RP
[0039] 即 (DG-x) /OQ= x* (AB/ (DG +GB) - RQ/OQ) /RP
[0040] x=(RP*DG/ ((AB*OQ/(DG+GB))-(RQ-RP))
[0041] 其中 RQ-RP=PQ, 所以简化后:
[0042] x=RP*DG/ (AB*OQ/(DG+GB)-PQ); DG=OG*OQ/RQ
[0043] .-.x=RP*OG*OQ/(RQ*(AB*OQ/(OG*OQ/RQ+GB)-PQ))
[0044] DG-x即 OG*OQ/RQ-RP*OG*OQ/(RQ*(AB*OQ/(OG*OQ/RQ+GB)-PQ))为障碍物 离交通工具前端 (镜头) 的距离。
[0045] 根据当吋的交通工具的速度及刹车距离, 计算出交通工具还能前行多久 (或多 少距离) 就需要改变方向, 并根据障碍物左右两侧的情况确定往左右或者后方 哪个方向移动, 或者根据移动趋势变更移动方向为左后或者右后。
[0046] 对于汽车等多数交通工具, 数字成像模块 2大致设置的位置是交通工具的半高 位置, 可以将线状激光发射装置 1设置在汽车的顶部, 可以兼顾成像模块的视角 。 对于火车或轮船一类惯性大的交通工具, 近距离检测不一定有意义 (停不住 , 也可将数字成像模块 2甚至在顶部, 线状激光发射装置 1设置在靠近地面 (
[0047] 1) 线状激光发射装置 1为在同一平面上设置的多个并列的张角小的一字线激光 发射头 11的组合, 这些并列的一字线激光发射头 11设置在一个箱体 10内, 每个 一字线激光发射头 11可以互相平行, 或略向外倾斜 (呈扇形) 设置, 每个一字 线激光发射头 11的张角为同一的方向 (张角的边在同一平面上) , 一般线状激 光发射装置 1设置在交通工具顶部, 发出的线状激光朝向交通工具前下方, 投射 面垂直于交通工具的中轴线所在的平面, 如图 3。
[0048] 也可在不同平面 (在交通工具的不同位置) 上设置多个一字线激光发射头 11, 一字线激光发射头 11同向或不同向, 直接射向交通工具的前下方, 这种设置方 式在处理成像模块上的数据吋, 计算量较大; 也可以不一定是一字线, 比如"田 "字线、 "三"字线 (三层一字线) 等, 斜向下的照射或小角度来回旋转。
[0049] 在太阳光强烈的场合, 远方的激光信号微弱, 不一定能在感光元件上得到投影 , 一般绿色激光比较亮, 可采用这种亮度较高颜色的线状激光发射头, 还可采 用可变功耗的功率放大器给激光发射头供电, 在太阳光强烈的场合, 提高功率 , 增强线状激光的亮度, 或者并排提供多个不同功率的激光头, 阳光强烈吋, 亮度 (功率) 最大的激光头工作, 一般强烈吋, 亮度 (功率) 中等的激光头工 作, 无阳光吋, 亮度 (功率) 最小的激光头工作, 可人工选择或自动选择 (通 过感光传感器) , 以感光元件能感觉到线状激光的影子为止。
[0050] 线状激光发射装置 1由至少一层并列的多个一字线激光发射头 11及安装这些一 字线激光发射头 11的长条状箱体 10组成, 一层为一个箱体 10。
[0051] 可在朝向远距离、 中距离、 近距离分别设置的多层 (比如三层) 不同水平夹角 的一字线激光发射头 11, 每层为一个箱体 10, 或者分层由高至低叠合在一个箱 体 10内, 每层一字线激光发射头的激光颜色最好不同。
[0052] 每个或整条一字线激光发射头 11朝向的激光发射装置 1的箱体 10处可敞幵或设 置透光的面板 (比如玻璃或树脂) , 一方面可防尘, 另一方面可减小阻力, 这 个面板还可是上下方向的凸透镜 (左右方向等厚, 非球面镜) , 可对线状激光 进一步聚焦 (将线变细) 。 [0053] 2) 所述的线状激光发射装置 1为设置在一转盘 (一般为圆形) 17上的呈圆环形 分布的多个点状激光发射头 12, 每个点状激光发射头 12背离圆心 (朝向外侧) , 设置在一个箱体 10或罩壳内, 箱体 10或罩壳内前部有透光的窗口 19, 转盘 17 由电机驱动。
[0054] 一般线状激光发射装置 1设置在交通工具顶部, 所发出的线状激光朝向交通工 具前下方, 投射面垂直于交通工具的中轴线所在的平面, 如图 4。 旋转的激光的 投影线其实是弧线, 投射距离较远吋可看作近似的直线, 在成像模块上近距离 的识别需要作为圆弧线处理。
[0055] 线状激光发射装置 1由至少一层环列的点状激光发射头 12及安装这些激光头的 旋转的箱体 10组成, 一层为一个箱体 10。
[0056] 可在朝向远距离、 中距离、 近距离分别设置的多层 (比如三层) 不同水平夹角 的点状激光发射头 12, 分层由高至低叠合在一个箱体或罩壳 10内, 每层点状激 光发射头的激光颜色最好不同。
[0057] 箱体或罩壳 10的前方处可敞幵或设置透光的面板 (比如玻璃或树脂) , 设置面 板一方面可防尘, 另一方面可减小阻力, 这个面板还可是凸透镜, 对激光进一 步聚焦。
[0058] 在交通工具的顶端设置一支撑杆 8, 支撑杆 8顶部有一圆孔, 孔内通过轴承设置 一根旋转轴 50, 旋转轴 50—侧固定一外沿局部带蜗形齿的齿轮 52, 旋转轴 50的 两端托举一电机 80, 为了轻薄的缘故, 该电机最好用直流盘式电机 80, 电机 80 的转子 85上设置线状激光发射装置 1 (此处为环形分布的多个点状激光发射头 12 ) , 线状激光发射装置 1的底板上设置至少一层点状激光发射头 12, 这些点状激 光发射头 12连带它们的底板 (转盘) 17—起转动; 旋转轴 50局部还设置与旋转 轴同步转动的支撑板 18, 支撑板 18外缘固定一罩壳, 也就是线状激光发射装置 的箱体 10, 箱体前面设置一块窗口 19 (可用透光材料遮盖) , 支撑杆 8靠近顶部 的地方设置一电机, 电机的输出轴上设置蜗杆作为驱动轴 51, 驱动轴 51与旋转 轴 50—侧设置的齿轮 52啮合, 电机启动齿轮 52转动连带旋转轴 50及底板 (转盘 ) 17、 点状激光发射头 12、 电机 80、 罩壳一起做往复弯转运动 (抬头、 低头) , 如图 5a、 5b, 因为点状激光发射头 12需要供电, 可在转盘 17底部设置弹性滑环 84 (类似直流电机的碳刷) , 与电机 80的定子下的导电环接触, 滑环 84也可设 置在底板 (转盘) 17的边缘, 与导电的罩壳 (含铝) 接触取电, 支撑杆 8内 (或 支撑杆 8外的凹槽内) 一般含五根导线 (电机 80的电源线、 驱动驱动轴 52正反转 的驱动电机线 (2根) 、 地线及点状激光发射头 12的电源线, 也可将支撑杆 8本 身作为地线, 当然也可多设置几根线, 包括调节电机转速的调频线、 各层的激 光头分别供电等) 。
[0059] 为了省电及延长激光头寿命, 可在转盘 17下的电机定子上或罩壳内壁局部或支 撑板 18上设置环形分布的导电触点, 每个激光头都有带设置在滑环的取电触点 , 当激光头转到窗口 19附近吋, 取电 (滑环上的取电触点与电机定子上或罩壳 局部或支撑板 18上设置的导电触点接触) 点亮激光头, 激光头转离窗口 19吋滑 环上的取电触点接触的是绝缘体, 激光头停止供电。
[0060] 本方法的线状激光发射装置 1采用点状激光发射头 12作光源外, 还可以是环形 分布的张角小的一字线激光发射头 11, 同一平面上设置的与水平方向夹角一直 的一字线激光发射头 11的张角为同一的方向 (张角的边在同一平面上) , 用点 状激光发射头 12的好处是形成的激光线亮度更高, 一字线激光发射头 11的好处 是激光断续线是由一小段一小段线段构成的, 线形更完整。
[0061] 因为本方法的点状激光发射头 12的转动特性, 一种简单的方法是环形分布、 转 动的点状激光发射头 12的朝向 (与水平面的夹角) 有多种, 比如每个都不一样
(从朝向前下方至朝向偏前上方) 、 只有几个 (连续或间隔) 一样, 如图 6, 或 者转盘 17上沿非水平, 而是阶梯状抬高或呈由低到高的斜面, 点状激光发射头 贴合在斜面上, 那么在前方的投影线 (断续线) 就有多条, 这种结构的转盘 ( 底盘) 上最好设置码盘一类的定位装置, 知道目前正对窗口 19的激光发射头 12 的角度, 也就知道正常情况 (无障碍吋、 地表平坦) 下激光线在成像模块 2上应 该的成像位置。
3) 线状激光发射装置 1包括一个能够围绕一根旋转轴 50—定角度来回旋转摆动 的底板 16, 底板 16上平行或放射状排列多个点状激光发射头 12或张角小的一字 线激光发射头 11, 通过来回旋转摆动, 点状激光发射头 12或张角小的一字线激 光发射头 11在前方投影面上投射出断续点或短线段构成的激光线, 驱动底板 16 来回旋转摆动的是反复断续供电或正反向间隔供电的电磁铁 58或电机。
[0063] 如图 7, 分别在底板 16—侧两端设置两个电磁铁 58, 电磁铁 58反复间隔吸合设 置在底板 16—侧两端的铁块 (板) 60, 达到让底板 16上的多个 (多层或一层) 点状激光发射头 12围绕旋转轴 50通过来回旋转摆动, 或者底板 16—侧外沿的铁 块 (板) 60为磁性体, 靠近电磁铁 58—侧为 "N/S"中的一种极性, 电磁铁 58只需 要设置一个, 通过正反向供电吸合或排斥磁性体 60。
[0064] 旋转轴 50本身固定, 与底板 16通过轴承连接; 或者旋转轴 50与底板 16固定在一 起, 通过固定的轴承旋转, 如果是电机驱动底板 16来回旋转摆动, 那么电机输 出轴可以就是旋转轴 50。
[0065] 底板 16上还设置一个箱体 10围住点状激光发射头 12或张角小的一字线激光发射 头 11, 激光发射头朝向的箱体 10处可敞幵或设置透光的面板 (比如玻璃或树脂
) , 一方面可防尘, 另一方面可减小阻力, 这个面板还可是上下方向的凸透镜 (左右方向等厚, 非球面镜) , 可对线状激光进一步聚焦 (将线变细而非将线 变短) 。
[0066] 电磁铁 58吸合铁块 60有噪音, 可以不直接接触吸合 (相隔丝毫的间隙距离) , 旁边设置弹簧或橡胶等弹性体 61, 阻碍铁块 60与电磁铁 58的碰撞。
[0067] 电磁铁 58除了可设置在底板 16—侧两端外 (如图 7、 图 8a/8b) ,也可设置在底板 16两侧 (如图 8c/8d) 。
[0068] 箱体 10及旋转轴 50、 电磁铁 58或电机设置在一底座 18上, 当然也可是一个更大 的箱体 10, 包围住激光发射头 (朝向处有窗口) 、 电磁铁 58、 底座 18。
[0069] 可在朝向远距离、 中距离、 近距离分别设置的多个 (比如三个) 不同水平夹角 的线状激光装置 1, 分层由高至低叠合在一个箱体 10内, 或者各自有各自的箱体 10, 每个线状激光发射装置 1的来回旋转摆动的角度有大小, 朝向最远的角度小 (激光头选用点状激光发射头 12) , 朝向最近处的线状激光发射装置 1的来回旋 转摆动的角度大, 投射的激光线长, 能够覆盖较大的范围。
4) 线状激光发射装置 1是至少一个点状激光发射头 12或张角小的一字线激光发 射头 11将激光信号打在一个可以高速旋转的多柱面或多锥面反射镜 7上, 通过多 柱面或多锥面反射镜 7的旋转反射, 形成类似直线的弧线。 如图 9、 11, 柱面反 射镜 7的横截面可以是正多边形或非正多边形的多边形, 每个柱面或锥面反射面 可以至少一个平面或至少一个曲面。
[0071] 为了保证激光断续点或短线段的连续性, 保证线状激光打到路面上的亮点或亮 线段的密度, 以防车速快吋, 单个点或线段扫描吋会漏掉前后距离短的障碍物
, 可以用多个并列的点状激光发射头或张角小的一字线激光发射头打在同一个 柱面或锥面或相邻两个柱面或锥面上甚至同一个点 /线段上。
[0072] 多个并列的分布在同一个平面上平行或环形分布的点状激光发射头或张角小的 一字线激光发射头相互平行可打在同一个柱面或锥面或相邻两个柱面或锥面不 同的点 /线段上。
[0073] 多个并列的分布在不同平面上的点状激光发射头或张角小的一字线激光发射头 可打在同一个柱面或锥面或相邻两个柱面或锥面不同的点 /线段上, 或者多个并 列的点状激光发射头或张角小的一字线激光发射头不同方向打在同一个点 /线段 上。
[0074] 因为本发明的反射面的转动特性, 多柱面或多锥面反射镜 7不一定全是柱面或 锥面, 也可柱面到多锥面切换, 或可柱面到锥面间隔布置, 如图 12。 一个或多 个同一个面或不同面设置的点状激光发射头 12或张角小的一字线激光发射头 11 射向的多种不同弦长的横截面 (弦长影响激光反射后投射线状激光的长度、 锥 面的角度影响线状激光的反射后的投射距离) , 且存在多个不同角度锥面 (锥 面与水平面的夹角有多种 (比如每个面角度都不一样, 从激光反射后朝向前下 方至朝向偏前上方) 的反射镜 7、 反射镜周边或者只有几个 (连续或间隔) 反射 面 (包括角度与激光照射处横截面的弦长) 一样, 如图 12, 那么在前方的投影 线 (断续线) 就有多条、 朝向前方不同角度 (弦长影响激光反射后投射线状激 光的长度、 锥面的角度影响线状激光的反射后的投射距离) , 可省去整套线状 激光发射装置的上下角度偏转机构, 这种结构的反射镜 7的旋转轴 72上最好设置 码盘一类的定位装置, 知道目前朝向前方的反射镜 7的反射面角度, 也就知道正 常情况 (无障碍吋、 地表平坦) 下线状激光在成像模块 2上应该的成像位置。
[0075] 点状激光发射头 12或张角小的一字线激光发射头 11可设置在反射镜 7的上方或 下方, 在下方吋箱体 10可与整个线状激光发射装置的底座设置在一起 (如图 9) 。 在上方吋箱体 10的支撑杆设置在不影响激光发射和反射的任意位置, 图 9、 11 中旋转轴 72设置的部位也可设置固定杆, 将反射镜 7的旋转电机设置在反射镜 7 内部, 最好采用外转子电机 (比如盘式电机), 这种情况下, 固定杆可替代支撑杆
[0076] 5) 线状激光发射装置是至少一个点状激光发射头 12或张角小的一字线激光发 射头 11将激光信号打在一个围绕一根旋转轴 50—定角度来回旋转摆动的反射镜 7 1上, 通过反射镜 71—定角度的来回摆动及反射, 在前方投影面上投射出断续点 或短线段构成的激光线, 反射镜的反射面位于反射镜的前表面, 可以为一个平 面或多个条状平面或曲面 (截面为多条折线) 或曲面 (一个或多个) , 曲面最 好为条状凹面, 可对激光进一步聚焦。
[0077] 点状激光发射头或张角小的一字线激光发射头可设置在反射镜 71的前方 (前上 方或前下方) , 可设置一个箱体 10围住点状激光发射头或张角小的一字线激光 发射头, 激光发射头朝向的箱体 10处可敞幵或设置透光的面板。
[0078] 反射镜 71的反射面垂直或倾斜。
[0079] 驱动反射镜 71来回旋转摆动的是电磁铁 58或电机。
[0080] 为了保证激光断续点或短线段的连续性, 保证线状激光打到路面上的亮点或亮 线段的密度, 以防车速快吋, 单个点或线段扫描吋会漏掉前后距离短的障碍物 , 可以用多个并列 (平行或放射状排列、 扇形排列) 的点状激光发射头或张角 小的一字线激光发射头打在反射镜 71不同或相同的位置。
[0081] 并列的多个点状激光发射头或张角小的一字线激光发射头可以有多层, 多层叠 合在底板 16上, 每层朝向不同的水平夹角。
[0082] 激光发射头或张角小的一字线激光发射头可以每个朝向都不同。
[0083] 激光发射头或张角小的一字线激光发射头还可以几个一组, 一组朝向相同, 各 组朝向不同。
[0084] 如图 13, 在反射镜一侧两端设置两个电磁铁 58, 电磁铁 58反复间隔吸合设置在 反射镜 71的底板 16—侧两端的铁块 (板) 60, 达到让反射镜 71围绕旋转轴 50通 过来回旋转摆动。 或者反射镜 71—侧外沿的铁块 (板) 60为磁性体, 靠近电磁 铁 58—侧为 "N/S"中的一种极性, 电磁铁 58只需要设置一个, 通过正反向供电吸 合或排斥磁性体 60。
[0085] 旋转轴 50本身固定, 与底板 16通过轴承连接; 或者旋转轴 50与底板 16固定在一 起, 通过固定的轴承旋转, 如果是电机驱动底板 16来回旋转摆动, 那么电机输 出轴可以就是旋转轴 50, 如图 15。
[0086] 电磁铁 58吸合铁块 60有噪音, 可以不直接接触吸合 (相隔丝毫的间隙距离) , 旁边设置弹簧或橡胶等弹性体 61, 阻碍铁块 60与电磁铁 58的碰撞。
[0087] 电磁铁 58除了可设置在底板 16—侧两端外 (如图 13) ,也可设置在底板 16两侧 ( 如图图 14a/14b) 。
[0088] 箱体 10及反射镜 71、 旋转轴 50、 电磁铁 58或电机设置在一底座 18上, 如果激光 发射头位于反射镜 71下方, 箱体 10可与底座 18合一, 或者箱体包围底座及反射 镜 71、 反射镜 71的驱动部分, 在反射面朝向处设置敞幵的或带透光面板的窗口
[0089] 可在朝向远距离、 中距离、 近距离分别设置的多个 (比如三个) 不同水平夹角 的线状激光装置 1, 前偏上方也可设置一个, 这多个线状激光装置 1的反射镜 71 的摆动回转角度可不同, 朝向远距离回转的角度小, 近距离回转的角度大。
[0090] 线状激光发射装置 1可设置上下角度偏转机构 5, 偏转机构 5转动吋将线状激光 装置 1发射的线状激光朝向前方不同角度。 根据交通工具 (汽车) 的速度, 自动 控制这个线状激光发射装置 1 (与地面之间的) 水平夹角, 交通工具速度越快, 夹角越小, 这个角度偏转机构可以是上下转动机构 5或摆动机构。 驱动偏转 (旋 转) 的驱动轴 51可由带或不带减速机构的步进电机或伺服电机 (舵机) 驱动。 角度偏转机构也可以一端 (或中部) 圆形可旋转方式固定, 另一端 (或中部) 用一根由螺母驱动的丝杆升降, 这种方式可用普通直流电机加码盘控制或步进 电机驱动。 转动机构或摆动机构 5能将线状激光转动一些角度, 通过转动, 将线 状激光传递到前方水平方向不同角度, 比如自动驾驶 (或带辅助驾驶装置) 的 车辆根据速度及安全刹车距离, 需要检测远处 (比如 100米幵外) 还是中距离 ( 30 50米) , 近处 (10米以内) 不同的障碍, 这种转 (摆) 动方向是将激光线由 近至远转动, 这个转 (摆) 动方向是向上转 (摆) 动至能将线状激光照射至交 通工具前方等高范围, 可通过这个转 (摆) 动检测前方道路有没有低于车辆高 度的横梁、 树枝等障碍。
[0091] 当然线状激光发射装置 1也可不设置上下角度偏转机构 5, 线状激光发装置朝向 固定角度, 可设置多层朝向不同方向的一字线激光发射头 11, 如图 7中依次设置 了四层, 分别朝向前偏上 (检测交通工具得最高点是否会碰撞前方的桥梁、 隧 道等) , 前偏下 (100米左右距离) 、 中距离 (50米左右) 、 前下方 (近距离)
[0092] 线状激光发射装置 1的左右两端 (或至少一端) 的旋转轴 50被支撑臂 59夹持 ( 可通过铜套或轴承夹持) , 中间位置 (或者另一段) 的旋转轴 50上设置齿轮, 通过一个过渡齿轮 52与驱动轴 51上的齿轮啮合, 如图 16 (a) , 驱动轴由伺服电 机、 步进电机或带减速齿轮的直流电机加码盘驱动 (可以是步进电机的电机轴 ) ; 箱体 10的旋转轴 50也可以就是电机的输出轴, 或者之间只有一个齿轮。
[0093] 线状激光发射装置的尾部也可设置弧线形齿条 53, 与驱动轴 51驱动的齿轮啮合 , 以齿轮齿条方式驱动旋转一定角度, 如图 16 (b) ; 尾部也可设置弧线形蜗形 齿, 与一电机驱动的涡轮啮合, 以蜗轮蜗杆的方式驱动旋转一定角度, 蜗轮蜗 杆的好处是自锁与大减速比。
[0094] 线状激光发射装置也可通过凸轮 54 (偏心轮) 旋转加弹簧 55拉伸回复的方式作 往复 (摆动) 运动, 如图 16 (c) 。
[0095] 线状激光发射装置也可通过曲柄 56连杆 57的方式驱动作往复运动, 如图 16 (d ) , 图中画出了箱体 10通过往复运动后的两个位置。
[0096] 线状激光发射装置的往复 (摆动) 运动也可通过电磁铁 58的通断控制,如图 16 ( e) , 电磁铁 58设置在箱体的底部左右两侧中的一侧 (或两侧都设置) , 通电吋 电磁铁 58吸合箱体 10底部的铁块, 断电吋线状激光发射装置被弹簧 55拉回; 或 者将电磁铁 58设置在线状激光发射装置的上方, 如图 16 (f) , 电磁铁 58通电吋 吸合线状激光发射装置上方的铁块 (板) 60, 电磁铁 58断电吋由于重力作用线 状激光发射装置旋转回落。 电磁铁 58吸合铁块 60有噪音, 可以不直接接触吸合 (相隔丝毫的间隙距离) , 旁边设置弹簧或橡胶等弹性体 61, 阻碍铁块 60与电 磁铁 58的碰撞。
[0097] 转动机构 5可转动的是线状激光发射装置 1的箱体 10, 当然也可转动的是线状激 光发射装置 1的底板, 整个转动机构 5也位于箱体 10内。
[0098] 旋转轴 50的驱动部分还可设置在线状激光发射装置 1的左右两端中的一端, 另 一端以轴承固定旋转的支撑轴。
[0099] 所述的线状激光发射装置 1也可安装在交通工具上的固定高度。
[0100] 所述的线状激光发射装置 1可设置在交通工具的顶盖上, 或者用固定支架 (顶 杆) 支起, 或者还包含一线状激光发射装置 1的升降机构 (可调节线状激光发射 装置 1在交通工具上的高度) 。 另外为了交通工具的气动性能, 箱体 10或框架 ( 指不含在箱体 10内的部件) 迎风 (或漏风) 的一面形状应符合空气动力学的设 计。 对于加载在升降机构的线状激光发射装置在升降前后需朝向的水平倾角可 通过水平仪加电机驱动的角度旋转调整装置调整角度或通过机械陀螺仪的方式 悬挂, 不论升降杆顶端倾斜或升降的角度不同, 整套线状激光发射装置 1均朝向 前下方固定位置。
[0101] 所谓数字成像模块主要为包括摄像头、 数字成像元器件 (CCD或 CMOS阵列) 、 输入输出电路、 数字处理模块 (DSP) 等部件集成在一起的摄像系统, 典型的 应用比如相机、 光学鼠标的成像及处理系统、 手机的摄像头系统等, 摄像头最 好采用广角摄像头, 在成像模块的前端还可设置滤光镜、 偏振片, 当然也可将 滤光镜、 偏振片集成在成像模块内 (摄像头后) , 这个数字成像模块也可在同 一平面上设置多个, 比如左右各一个, 以扩展视角。 数字成像模块不一定设置 在交通工具外壳上, 也可在外壳上幵孔 (窗口) 、 成像装置向交通工具内部缩 进一段距离。 镜头为了防尘, 可设置透光性好的玻璃 (或树脂) 片遮挡, 或用 滤光镜、 偏振片挡灰, 为了避免对面来车的灯光照射引起的曝光过度, 还可在 镜头前或后安装所谓的红外截止滤光片, 该滤光片也可采用窗口方式 (打幵或 关闭) 或升降或平移方式, 一般在晚间使用, 即白天将滤光片移去, 晚上移进
[0102] 成像装置 2可以设置多个, 比如一个长焦 21, 一个广角, 中远距离采用长焦的 , 近处用广角的, 长焦相机 21 (成像装置) 设置在底盘附近高度, 广角设置在 汽车半高位置附近。 为了提高成像装置处理数据的速度 (帧 /每秒) , 可以针对 远处 (约 100米) 、 中距离 (约 50米) 、 近处 (10米左右) , 分别设置一个成像 装置, 每个成像装置分别跟踪处理远处、 中距离、 近处三段激光线的变化情况 , 因为可以根据经验值, 大致在感光传感器上划定激光线成像的范围, 且因为 固定的距离 (比如 50米) 有固定的视角 β,在成像传感器的投影 R与 Q之间的距离 R Q是固定的, 而激光在障碍物上的照射点 L在成像传感器的投影 Ρ点只会处于 R点 以下, 从 R点出向 Q点移动, 直至越过 Q点继续向下或移动过程中消失 (低于视 角或者移出监控道路范围) ,那么 DSP就可主要处理 R到 Q点 (线) 之间的一个较 小的成像传感器监控区域, 当然, 为了兼顾道路的倾斜度及监控道路上的凹陷 , 或者因为汽车行驶过程中的抖动造成的成像位置移动, 需适当加大些 R点的高 度范围, 较小的数据处理量保证速度 (成像间隔吋间) 。

Claims

权利要求书
一种用于自动驾驶的传感器, 其特征是在交通工具上设置至少一个朝 向前方地面的线状激光发射装置 (1), 在交通工具前部低于或高于线 状激光发射装置 (1)处设置至少一个数字成像模块 (2), 数字成像模块( 2)主要用于将线状激光线 (1)在交通工具前方投影位置上的投影线摄入 成像模块的 CCD或 CMOS感光元件上。
根据权利要求 1所述的一种用于自动驾驶的传感器, 其特征是所述的 线状激光发射装置 (1)为在同一平面上设置的多个张角小的一字线激 光发射头 (11), 每个一字线激光发射头 (11)的一字线张角在同一个平 面内, 这些并列的一字线激光发射头 (11)设置在一个箱体 (10)或框架 上。
根据权利要求 1所述的线状激光发射装置 (1)为设置在一圆形转盘 (17) 上的呈圆环形分布的多个点状激光发射头 (12)或张角小的一字线激光 发射头 (11) , 每个激光发射头 (12)背离圆心, 设置在一个箱体 (10) 或罩壳内, 箱体 (10)或罩壳前部有透光的窗口 (19), 转盘 (17)由电机驱 动, 转盘 (17)旋转吋激光发射头一起转动, 一字线激光发射头 (11)的 张角均垂直于交通工具的中轴线所在的面。
根据权利要求 1所述的线状激光发射装置 (1)包括一个能够围绕一根旋 转轴 (50)—定角度来回旋转摆动的底板 (16), 底板 (16)上平行或放射状 排列至少一层多个点状激光发射头 (12)或张角小的一字线激光发射头( 11) , 通过来回旋转摆动, 点状激光发射头 (12)或张角小的一字线激光 发射头 (11)在前方投影面上投射出断续点或短线段构成的激光线, 驱 动底板 (16)来回旋转摆动的是反复断续供电或正反向间隔供电的电磁 铁 (58)或电机, 一字线激光发射头 (11)的张角均垂直于交通工具的中 轴线所在的面。
根据权利要求 1所述的线状激光发射装置 (1)是至少一个点状激光发射 头 (12) 或张角小的一字线激光发射头 (11)将激光信号打在一个高速旋 转的柱面或锥面反射镜 (7)上, 通过柱面或锥面镜 (7)的旋转反射, 在 路上形成类似直线的弧线,反射镜 (7)的横截面可以是正多边形或非正 多边形的多边形, 反射镜 (7) 的反射面可以平面或曲面, 一字线激 光发射头 (11)的张角均垂直于交通工具的中轴线所在的面。
根据权利要求 1所述的线状激光发射装置是至少一个点状激光发射头 ( 12)或张角小的一字线激光发射头 (11)将激光信号打在一个围绕一根旋 转轴 (50)—定角度来回旋转摆动的反射镜 (71)上, 通过反射镜 (71)—定 角度的来回摆动及反射, 在前方投影面上投射出断续点或短线段构成 的激光线, 反射镜 (71)的反射面位于反射镜 (71)的前表面, 可以为一 个平面或多个平面或曲面, 一字线激光发射头 (11)的张角均垂直于交 通工具的中轴线所在的面。
根据权利要求 1所述的一种用于自动驾驶的传感器, 其特征是所述的 线状激光发射装置 (1)有多个, 每个朝向前方不同的水平角度, 或者 线状激光发射装置 (1)内设置的激光发射头分多层, 每层朝向朝向不 同的水平角度。
根据权利要求 1所述的一种用于自动驾驶的传感器, 其特征是所述的 线状激光发射装置 (1)还带有上下角度偏转机构 (5) , 偏转机构 (5)转动 吋将线状激光装置 (1)发射的线状激光朝向前方不同的水平角度。 根据权利要求 1所述的一种用于自动驾驶的传感器, 其特征是所述的 线状激光发射装置 (1)还带有升降机构, 升降机构能调整线状激光发 射装置 (1)位于交通工具上的高度。
根据权利要求 1所述的一种用于自动驾驶的传感器, 其特征是所述的 线状激光发射装置 (1)安装在交通工具上的固定高度。
PCT/CN2017/108341 2016-10-31 2017-10-30 一种用于自动驾驶的传感器 WO2018077262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967560.3 2016-10-31
CN201610967560.3A CN108008411A (zh) 2016-10-31 2016-10-31 一种用于自动驾驶的传感器

Publications (1)

Publication Number Publication Date
WO2018077262A1 true WO2018077262A1 (zh) 2018-05-03

Family

ID=62024385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108341 WO2018077262A1 (zh) 2016-10-31 2017-10-30 一种用于自动驾驶的传感器

Country Status (2)

Country Link
CN (1) CN108008411A (zh)
WO (1) WO2018077262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831192A (zh) * 2018-09-07 2018-11-16 吉林大学 汽车交通路口防碰撞行驶轨迹引导线激光投射系统及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389360B (zh) * 2019-07-30 2024-06-18 南京理工大学 一种用于小型无人机的360°环视成像与激光告警装置
CN111551125B (zh) * 2019-12-04 2021-05-25 青岛腾信汽车网络科技服务有限公司 车辆碰撞变形辅助测量装置进行变形测量方法
CN113296117B (zh) * 2020-04-22 2023-08-08 追觅创新科技(苏州)有限公司 障碍物识别方法、装置及存储介质
CN113581252A (zh) * 2021-07-21 2021-11-02 南京苏莱瑞新技术有限公司 一种基于多传感器融合的障碍物检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166024A1 (en) * 2007-01-10 2008-07-10 Omron Corporation Image processing apparatus, method and program thereof
CN104228830A (zh) * 2014-09-01 2014-12-24 江苏大学 一种集成自动泊车车位探测和行车安全车距预警装置及其方法
CN205062629U (zh) * 2015-06-01 2016-03-02 南京理工技术转移中心有限公司 一种路面检测装置
CN106403905A (zh) * 2016-10-31 2017-02-15 张舒怡 一种用于自动驾驶的传感器
CN106500668A (zh) * 2016-10-31 2017-03-15 张舒怡 一种用于自动驾驶的传感器
CN106515729A (zh) * 2016-10-31 2017-03-22 张舒怡 一种用于自动驾驶的传感器
CN106546998A (zh) * 2016-10-31 2017-03-29 张舒怡 一种用于自动驾驶的传感器
CN106546225A (zh) * 2016-10-31 2017-03-29 张舒怡 一种用于自动驾驶的传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166024A1 (en) * 2007-01-10 2008-07-10 Omron Corporation Image processing apparatus, method and program thereof
CN104228830A (zh) * 2014-09-01 2014-12-24 江苏大学 一种集成自动泊车车位探测和行车安全车距预警装置及其方法
CN205062629U (zh) * 2015-06-01 2016-03-02 南京理工技术转移中心有限公司 一种路面检测装置
CN106403905A (zh) * 2016-10-31 2017-02-15 张舒怡 一种用于自动驾驶的传感器
CN106500668A (zh) * 2016-10-31 2017-03-15 张舒怡 一种用于自动驾驶的传感器
CN106515729A (zh) * 2016-10-31 2017-03-22 张舒怡 一种用于自动驾驶的传感器
CN106546998A (zh) * 2016-10-31 2017-03-29 张舒怡 一种用于自动驾驶的传感器
CN106546225A (zh) * 2016-10-31 2017-03-29 张舒怡 一种用于自动驾驶的传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831192A (zh) * 2018-09-07 2018-11-16 吉林大学 汽车交通路口防碰撞行驶轨迹引导线激光投射系统及其控制方法
CN108831192B (zh) * 2018-09-07 2023-09-22 吉林大学 汽车交通路口防碰撞行驶轨迹引导线激光投射系统及其控制方法

Also Published As

Publication number Publication date
CN108008411A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
WO2018077262A1 (zh) 一种用于自动驾驶的传感器
WO2018077291A1 (zh) 一种用于自动驾驶的传感器
CN106546998B (zh) 一种用于自动驾驶的传感器
EP3401838B1 (en) Vehicle headlamp
WO2018077287A1 (zh) 一种用于自动驾驶的传感器
WO2018077286A1 (zh) 一种用于自动驾驶的传感器
WO2018077289A1 (zh) 一种用于机器人的障碍检测传感器
EP2397751A2 (en) Illuminating system and thin plate shield illuminating apparatus
CN108656150A (zh) 一种机器人检测障碍的传感器
WO2018077263A1 (zh) 一种用于自动驾驶的传感器
CN108663689A (zh) 一种用于交通工具检测障碍的传感器
CN107054204A (zh) 自适应照明灯及车辆
US11993201B2 (en) Method for controlling modules for projecting pixelated light beams for a vehicle
WO2019183742A1 (zh) 一种用于交通工具检测障碍的传感器
CN218936165U (zh) 一种具备影像图效果的星空灯
US11208032B2 (en) Vehicle capable of projecting light onto road and control method therefor
WO2019183743A1 (zh) 一种用于移动物体检测障碍的传感器
CN206914221U (zh) 自适应照明灯及车辆
JP3208702B2 (ja) 光レーダ装置
JP2001101574A (ja) レーザセンサを用いた車両検出装置
CN213389816U (zh) 一种用于测绘作业中的警示装置
WO2023039836A1 (zh) 照明单元、车灯及车辆
CN209928015U (zh) 电子装置
CN207893683U (zh) 一种车辆用头灯
CN108663688A (zh) 一种用于移动物体检测障碍的传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864284

Country of ref document: EP

Kind code of ref document: A1