WO2018076987A1 - 一种钨铜合金及其制备方法 - Google Patents

一种钨铜合金及其制备方法 Download PDF

Info

Publication number
WO2018076987A1
WO2018076987A1 PCT/CN2017/103339 CN2017103339W WO2018076987A1 WO 2018076987 A1 WO2018076987 A1 WO 2018076987A1 CN 2017103339 W CN2017103339 W CN 2017103339W WO 2018076987 A1 WO2018076987 A1 WO 2018076987A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
carbide
tungsten
cerium
copper
Prior art date
Application number
PCT/CN2017/103339
Other languages
English (en)
French (fr)
Inventor
林海英
Original Assignee
林海英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林海英 filed Critical 林海英
Publication of WO2018076987A1 publication Critical patent/WO2018076987A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder

Definitions

  • the present invention relates to a tungsten copper alloy and a method of preparing the same.
  • a tungsten-copper alloy is an alloy composed of tungsten and copper. Commonly used alloys have a copper content of 10 ⁇ 3 ⁇ 4 ⁇ 50%. The alloy is prepared by powder metallurgy method, and has good electrical and thermal conductivity, good high temperature strength and certain plasticity. At very high temperatures, such as above 3000 ° C, the copper in the alloy is liquefied and evaporated, which absorbs a large amount of heat and lowers the surface temperature of the material. So this type of material is also known as metal sweating material.
  • Tungsten-copper composite material is a two-phase structure pseudo-alloy composed mainly of tungsten and copper. It is a metal-based composite material. Due to the large difference in physical properties of copper and tungsten, it cannot be produced by fusion casting. Generally, powder alloy is used. Technology for production.
  • Tungsten-copper alloys have a wide range of applications, most of which are used in aerospace, aerospace, electronics, power, metallurgy, machinery, sports equipment and other industries. Secondly, it is also used to manufacture high-voltage electrical equipment for arc ablation and high-temperature components such as rocket nozzle throat lining and tail rudder. It is also used as electrode for electric machining, high temperature mold and other requirements for electrical and thermal conductivity and high temperature. The occasion. However, the strength of tungsten-copper alloys currently on the market is insufficient.
  • a tungsten-copper alloy comprising the following raw materials in parts by weight: 150-152 parts of tungsten carbide powder, 48-5 parts of copper powder, 2-4 parts of calcium, 1-3 parts of bismuth, bismuth chloride 1-3 parts, 2-4 parts of titanium carbide, 2-4 parts of strontium carbide, 1-3 parts of zirconium carbide, 5-7 parts of boron carbide, 1-3 parts of bismuth, 1-3 parts of bismuth, 1-3 parts of bismuth 2-4 parts of hexachloroethane, 2-4 parts of copper chloride, 5-7 parts of tungsten hexachloride and 1-3 parts of silicon nitride.
  • the following raw materials by weight ratio 152 parts of tungsten carbide powder, 48 parts of copper powder, 2 parts of calcium, 1 part of bismuth, 1 part of cerium chloride, 2 parts of titanium carbide, 2 parts of cerium carbide 1 part of zirconium carbide, 5 parts of boron carbide, 1 part of bismuth, 1 part of bismuth, 1 part of hydrazine, 2 parts of hexachloroethane, 2 parts of copper chloride, 5 parts of tungsten hexachloride and 1 part of silicon nitride.
  • the following raw materials by weight ratio 150 parts of tungsten carbide powder, 50 parts of copper powder, 4 parts of calcium, 3 parts of cerium, 3 parts of cerium chloride, 4 parts of titanium carbide, 4 parts of cerium carbide 3 parts of zirconium carbide, 7 parts of boron carbide, 3 parts of cerium, 3 parts of cerium, 3 parts of cerium, 4 parts of hexachloroethane, 4 parts of copper chloride, 7 parts of tungsten hexachloride and 3 parts of silicon nitride.
  • the following raw materials by weight ratio 151 parts of tungsten carbide powder, 49 parts of copper powder, 3 parts of calcium, 2 parts of bismuth, 2 parts of cerium chloride, 3 parts of titanium carbide, 3 parts of strontium carbide 2 parts of zirconium carbide, 6 parts of boron carbide, 2 parts of bismuth, 2 parts of bismuth, 2 parts of bismuth, 3 parts of hexachloroethane, 3 parts of copper chloride, 6 parts of tungsten hexachloride and 2 parts of silicon nitride.
  • Another technical problem to be solved by the present invention is to provide a method for preparing a tungsten-copper alloy, which includes the following steps.
  • step 2) 2-4 parts of hexachloroethane, 2-4 parts of copper chloride, 5-7 parts of tungsten hexachloride and 1-3 parts of silicon nitride are poured together into the liquid obtained in step 1) Refining in a mixed metal, stirring well to obtain a mixed liquid metal, ready for use
  • the beneficial effects of the invention are: modification of tungsten by adding rare earth elements such as lanthanum, cerium, lanthanum, etc., so that the phase structure and microstructure of tungsten are greatly changed, and titanium carbide and lanthanum carbide are added. Zirconium carbide and boron carbide are further strengthened to give the finished product excellent strength.
  • a tungsten-copper alloy comprising the following raw materials in parts by weight: 152 parts of tungsten carbide powder, 48 parts of copper powder, 2 parts of calcium, 1 part of strontium, 1 part of cerium chloride, 2 parts of titanium carbide, 2 parts of cerium carbide, 1 part of zirconium carbide, 5 parts of boron carbide, 1 part of cerium, 1 part of cerium, 1 part of cerium, 1 part of hexachloroethane 2 parts, 2 parts of copper chloride, 5 parts of tungsten hexachloride and 1 part of silicon nitride.
  • a method for preparing a tungsten-copper alloy includes the following steps:
  • a tungsten-copper alloy comprising the following raw materials in parts by weight: 152 parts of tungsten carbide powder, 48 parts of copper powder, 2 parts of calcium, 1 part of bismuth, 1 part of cerium chloride, 2 parts of titanium carbide, carbonization 2 parts, 1 part of zirconium carbide, 5 parts of boron carbide, 1 part of bismuth, 1 part of bismuth, 1 part of bismuth, 2 parts of hexachloroethane, 2 parts of copper chloride, 5 parts of tungsten hexachloride and silicon nitride 1 Share.
  • a method for preparing a tungsten-copper alloy includes the following steps:
  • a tungsten-copper alloy comprising the following parts by weight: 150 parts of tungsten carbide powder, 50 parts of copper powder, 4 parts of calcium, 3 parts of bismuth, 3 parts of cerium chloride, 4 parts of titanium carbide, carbonization 4 parts, 3 parts of zirconium carbide, 7 parts of boron carbide, 3 parts of cerium, 3 parts of cerium, 3 parts of cerium, 4 parts of hexachloroethane, 4 parts of copper chloride, 7 parts of tungsten hexachloride and silicon nitride 3 Share.
  • a method for preparing a tungsten-copper alloy comprising the steps of:
  • a tungsten-copper alloy comprising the following raw materials in parts by weight: 151 parts of tungsten carbide powder, 49 parts of copper powder, 3 parts of calcium, 2 parts of bismuth, 2 parts of cerium chloride, 3 parts of titanium carbide, carbonization 3 parts, 2 parts of zirconium carbide, 6 parts of boron carbide, 2 parts of bismuth, 2 parts of bismuth, 2 parts of bismuth, 3 parts of hexachloroethane, 3 parts of copper chloride, 6 parts of tungsten hexachloride and silicon nitride 2 Share.
  • a method for preparing a tungsten-copper alloy comprising the steps of:
  • the tungsten-copper alloy of the present invention was used as an experimental group, and the existing tungsten-copper alloy was used as a control group for a control experiment.
  • the specific results are shown in the following table:
  • the tungsten-copper alloy of the present invention has higher hardness and compressive strength than the conventional conventional tungsten-copper alloy.
  • the tungsten is modified by adding rare earth elements such as lanthanum, cerium, lanthanum, etc., so that the phase structure and microstructure of the tungsten are greatly changed, and titanium carbide, lanthanum carbide, zirconium carbide and boron carbide are added. Further strengthening, the finished product has excellent strength.
  • rare earth elements such as lanthanum, cerium, lanthanum, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

一种钨铜合金,包括以下重量份数配比的原料:碳化钨粉150-152份、铜粉48-50份、钙2-4份、碲1-3份、氯化钡1-3份、碳化钛2-4份、碳化钽2-4份、碳化锆1-3份、碳化硼5-7份、铥1-3份、镱1-3份、镥1-3份、六氯乙烷2-4份、氯化铜2-4份、六氯化钨5-7份和氮化硅1-3份,该钨铜合金强度高。

Description

说明书 发明名称:一种钨铜合金及其制备方法
技术领域
[0001] 本发明涉及一种钨铜合金及其制备方法。
背景技术
[0002] 钨铜合金是钨和铜组成的合金。 常用合金的含铜量为 10<¾〜50%。 合金用粉末 冶金方法制取, 具有很好的导电导热性, 较好的高温强度和一定的塑性。 在很 高的温度下, 如 3000°C以上, 合金中的铜被液化蒸发, 大量吸收热量, 降低材料 表面温度。 所以这类材料也称为金属发汗材料。 钨铜复合材料是以钨、 铜元素 为主组成的一种两相结构假合金, 是金属基复合材料.由于金属铜和钨物性差异 较大, 因此不能采用熔铸法进行生产, 一般采用粉末合金技术进行生产。
[0003] 钨铜合金有较广泛的用途, 其中一大部分应用于航天、 航空、 电子、 电力、 冶 金、 机械、 体育器材等行业。 其次也要用来制造抗电弧烧蚀的高压电器幵关的 触头和火箭喷管喉衬、 尾舵等高温构件, 也用作电加工的电极、 高温模具以及 其他要求导电导热性能和高温使用的场合。 然而, 目前市面上的钨铜合金强度 不足。
[0004]
技术问题
[0005] 目前市面上的钨铜合金强度不足。
[0006]
问题的解决方案
技术解决方案
[0007] 为解决上述问题, 本发明采用如下技术方案:
[0008] 一种钨铜合金, 包括以下重量份数配比的原料: 碳化钨粉 150-152份、 铜粉 48-5 0份、 钙 2-4份、 碲 1-3份、 氯化钡 1-3份、 碳化钛 2-4份、 碳化钽 2-4份、 碳化锆 1-3 份、 碳化硼 5-7份、 铥 1-3份、 镱 1-3份、 镥 1-3份、 六氯乙烷 2-4份、 氯化铜 2-4份 、 六氯化钨 5-7份和氮化硅 1-3份。 [0009] 进一步的, 包括以下重量份数配比的原料: 碳化钨粉 152份、 铜粉 48份、 钙 2份 、 碲 1份、 氯化钡 1份、 碳化钛 2份、 碳化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份 、 镱 1份、 镥 1份、 六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份。
[0010] 进一步的, 包括以下重量份数配比的原料: 碳化钨粉 150份、 铜粉 50份、 钙 4份 、 碲 3份、 氯化钡 3份、 碳化钛 4份、 碳化钽 4份、 碳化锆 3份、 碳化硼 7份、 铥 3份 、 镱 3份、 镥 3份、 六氯乙烷 4份、 氯化铜 4份、 六氯化钨 7份和氮化硅 3份。
[0011] 进一步的, 包括以下重量份数配比的原料: 碳化钨粉 151份、 铜粉 49份、 钙 3份 、 碲 2份、 氯化钡 2份、 碳化钛 3份、 碳化钽 3份、 碳化锆 2份、 碳化硼 6份、 铥 2份 、 镱 2份、 镥 2份、 六氯乙烷 3份、 氯化铜 3份、 六氯化钨 6份和氮化硅 2份。
[0012] 本发明要解决的另一技术问题是提供一种钨铜合金的制备方法, 包括以下步骤
[0013] 1) 将碳化钨粉 150-152份、 铜粉 48-50份、 2-4份、 碲 1-3份、 氯化钡 1-3份、 碳 化钛 2-4份、 碳化钽 2-4份、 碳化锆 1-3份、 碳化硼 5-7份、 铥 1-3份、 镱 1-3份和镥 1-
3份一起倒入到金属熔炼炉中, 然后加热至 900°C, 待所有原料完全熔化后进行搅 拌, 制得液体金属, 备用;
[0014] 2) 将六氯乙烷 2-4份、 氯化铜 2-4份、 六氯化钨 5-7份和氮化硅 1-3份一起倒入到 步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得混合液体金属, 备用
[0015] 3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨铜合金。
发明的有益效果
有益效果
[0016] 本发明的有益效果是: 通过添加有铥、 镱、 镥等稀土元素对钨进行改性, 使得 钨的相结构和微观组织都发生很大的变化, 并且添加了碳化钛、 碳化钽、 碳化 锆和碳化硼进行进一步加强, 使得成品具有优秀的强度。
[0017]
实施该发明的最佳实施例
本发明的最佳实施方式
[0018] 一种钨铜合金, 包括以下重量份数配比的原料: 碳化钨粉 152份、 铜粉 48份、 钙 2份、 碲 1份、 氯化钡 1份、 碳化钛 2份、 碳化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份、 镱 1份、 镥 1份、 六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份。
[0019] 一种钨铜合金的制备方法包括以下步骤:
[0020] 1) 将碳化钨粉 152份、 铜粉 48份、 钙 2份、 碲 1份、 氯化钡 1份、 碳化钛 2份、 碳 化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份、 镱 1份和镥 1份一起倒入到金属熔炼 炉中, 然后加热至 900°C, 待所有原料完全熔化后进行搅拌, 制得液体金属, 备 用;
[0021] 2) 将六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份一起倒入到步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得混合液体金属, 备用;
[0022] 3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨铜合金。
本发明的实施方式
[0023] 实施例 1 :
[0024] 一种钨铜合金, 包括以下重量份数配比的原料: 碳化钨粉 152份、 铜粉 48份、 钙 2份、 碲 1份、 氯化钡 1份、 碳化钛 2份、 碳化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份、 镱 1份、 镥 1份、 六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份。
[0025] 一种钨铜合金的制备方法包括以下步骤:
[0026] 1) 将碳化钨粉 152份、 铜粉 48份、 钙 2份、 碲 1份、 氯化钡 1份、 碳化钛 2份、 碳 化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份、 镱 1份和镥 1份一起倒入到金属熔炼 炉中, 然后加热至 900°C, 待所有原料完全熔化后进行搅拌, 制得液体金属, 备 用;
[0027] 2) 将六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份一起倒入到步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得混合液体金属, 备用;
[0028] 3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨铜合金。
[0029] 实施例 2:
[0030] 一种钨铜合金, 包括以下重量份数配比的原料: 碳化钨粉 150份、 铜粉 50份、 钙 4份、 碲 3份、 氯化钡 3份、 碳化钛 4份、 碳化钽 4份、 碳化锆 3份、 碳化硼 7份、 铥 3份、 镱 3份、 镥 3份、 六氯乙烷 4份、 氯化铜 4份、 六氯化钨 7份和氮化硅 3份。 [0031] 一种钨铜合金的制备方法, 包括以下步骤:
[0032] 1) 将碳化钨粉 150份、 铜粉 50份、 钙 4份、 碲 3份、 氯化钡 3份、 碳化钛 4份、 碳 化钽 4份、 碳化锆 3份、 碳化硼 7份、 铥 3份、 镱 3份和镥 3份一起倒入到金属熔炼 炉中, 然后加热至 900°C, 待所有原料完全熔化后进行搅拌, 制得液体金属, 备 用;
[0033] 2) 将六氯乙烷 4份、 氯化铜 4份、 六氯化钨 7份和氮化硅 3份一起倒入到步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得混合液体金属, 备用;
[0034] 3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨铜合金。
[0035] 实施例 3:
[0036] 一种钨铜合金, 包括以下重量份数配比的原料: 碳化钨粉 151份、 铜粉 49份、 钙 3份、 碲 2份、 氯化钡 2份、 碳化钛 3份、 碳化钽 3份、 碳化锆 2份、 碳化硼 6份、 铥 2份、 镱 2份、 镥 2份、 六氯乙烷 3份、 氯化铜 3份、 六氯化钨 6份和氮化硅 2份。
[0037] 一种钨铜合金的制备方法, 包括以下步骤:
[0038] 1) 将碳化钨粉 151份、 铜粉 49份、 钙 3份、 碲 2份、 氯化钡 2份、 碳化钛 3份、 碳 化钽 3份、 碳化锆 2份、 碳化硼 6份、 铥 2份、 镱 2份和镥 2份一起倒入到金属熔炼 炉中, 然后加热至 900°C, 待所有原料完全熔化后进行搅拌, 制得液体金属, 备 用;
[0039] 2) 将六氯乙烷 3份、 氯化铜 3份、 六氯化钨 6份和氮化硅 2份一起倒入到步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得混合液体金属, 备用;
[0040] 3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨铜合金。
[0041] 实验例
[0042] 将本发明的钨铜合金作为实验组, 现有的钨铜合金作为对照组进行对照实验, 具体结果如下表所示:
[]
Figure imgf000006_0001
[0043] 通过对 2组实验进行检査, 本发明的钨铜合金与现有的普通的钨铜合金相比 硬度和抗压强度高。
[0044] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何不经过创造性劳动想到的变化或替换, 都应涵盖在本发明的保护范围内。 工业实用性
[0045] 通过添加有铥、 镱、 镥等稀土元素对钨进行改性, 使得钨的相结构和微观组织 都发生很大的变化, 并且添加了碳化钛、 碳化钽、 碳化锆和碳化硼进行进一步 加强, 使得成品具有优秀的强度。

Claims

权利要求书
[权利要求 1] 一种钨铜合金, 其特征在于, 包括以下重量份数配比的原料: 碳化钨 粉 150-152份、 铜粉 48-50份、 丐 2-4份、 碲 1-3份、 氯化钡 1-3份、 碳化 钛 2-4份、 碳化钽 2-4份、 碳化锆 1-3份、 碳化硼 5-7份、 铥 1-3份、 镱 1-3 份、 镥 1-3份、 六氯乙烷 2-4份、 氯化铜 2-4份、 六氯化钨 5-7份和氮化 硅 1-3份。
[权利要求 2] 如权利要求 1所述的一种钨铜合金, 其特征在于, 包括以下重量份数 配比的原料: 碳化钨粉 152份、 铜粉 48份、 钙 2份、 碲 1份、 氯化钡 1份 、 碳化钛 2份、 碳化钽 2份、 碳化锆 1份、 碳化硼 5份、 铥 1份、 镱 1份、 镥 1份、 六氯乙烷 2份、 氯化铜 2份、 六氯化钨 5份和氮化硅 1份。
[权利要求 3] 如权利要求 1所述的一种钨铜合金, 其特征在于, 包括以下重量份数 配比的原料: 碳化钨粉 150份、 铜粉 50份、 钙 4份、 碲 3份、 氯化钡 3份 、 碳化钛 4份、 碳化钽 4份、 碳化锆 3份、 碳化硼 7份、 铥 3份、 镱 3份、 镥 3份、 六氯乙烷 4份、 氯化铜 4份、 六氯化钨 7份和氮化硅 3份。
[权利要求 4] 如权利要求 1所述的一种钨铜合金, 其特征在于, 包括以下重量份数 配比的原料: 碳化钨粉 151份、 铜粉 49份、 钙 3份、 碲 2份、 氯化钡 2份 、 碳化钛 3份、 碳化钽 3份、 碳化锆 2份、 碳化硼 6份、 铥 2份、 镱 2份、 镥 2份、 六氯乙烷 3份、 氯化铜 3份、 六氯化钨 6份和氮化硅 2份。
[权利要求 5] 一种钨铜合金的制备方法, 其特征在于, 包括以下步骤:
1) 将碳化钨粉 150-152份、 铜粉 48-50份、 钙 2-4份、 碲 1-3份、 氯化钡 1-3份、 碳化钛 2-4份、 碳化钽 2-4份、 碳化锆 1-3份、 碳化硼 5-7份、 铥 1-3份、 镱 1-3份和镥 1-3份一起倒入到金属熔炼炉中, 然后加热至 900
°C, 待所有原料完全熔化后进行搅拌, 制得液体金属, 备用;
2) 将六氯乙烷 2-4份、 氯化铜 2-4份、 六氯化钨 5-7份和氮化硅 1-3份一 起倒入到步骤 1) 制得的液体混合金属中进行精炼, 充分搅拌, 制得 混合液体金属, 备用;
3) 将步骤 2) 制得的混合液体金属倒入到压铸机中进行压铸, 即得钨 铜合金。
PCT/CN2017/103339 2016-10-25 2017-09-26 一种钨铜合金及其制备方法 WO2018076987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610940186.8 2016-10-25
CN201610940186.8A CN106399793A (zh) 2016-10-25 2016-10-25 一种钨铜合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2018076987A1 true WO2018076987A1 (zh) 2018-05-03

Family

ID=58013481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103339 WO2018076987A1 (zh) 2016-10-25 2017-09-26 一种钨铜合金及其制备方法

Country Status (2)

Country Link
CN (1) CN106399793A (zh)
WO (1) WO2018076987A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399793A (zh) * 2016-10-25 2017-02-15 林海英 一种钨铜合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383242A (ja) * 1986-09-25 1988-04-13 Nok Corp 耐ア−ク性導電材料
CN1485870A (zh) * 2002-08-08 2004-03-31 株式会社东芝 真空断路器
JP2012134014A (ja) * 2010-12-21 2012-07-12 Toshiba Corp 真空バルブ用接点材料
CN106399793A (zh) * 2016-10-25 2017-02-15 林海英 一种钨铜合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383242A (ja) * 1986-09-25 1988-04-13 Nok Corp 耐ア−ク性導電材料
CN1485870A (zh) * 2002-08-08 2004-03-31 株式会社东芝 真空断路器
JP2012134014A (ja) * 2010-12-21 2012-07-12 Toshiba Corp 真空バルブ用接点材料
CN106399793A (zh) * 2016-10-25 2017-02-15 林海英 一种钨铜合金及其制备方法

Also Published As

Publication number Publication date
CN106399793A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US2189387A (en) Method of making hard compositions
US8647534B2 (en) Copper-carbon composition
CN106756174B (zh) 一种高品质铜铬合金的致密化工艺
CN103898386A (zh) 一种铝钼铌铜锆中间合金及其制备方法
CN101967569B (zh) 一种含钨钛合金的熔炼方法
CN109402530B (zh) 一种硼基非晶合金材料及其制备方法
CN103898324B (zh) 一种铝钽合金的制备方法
CN104928507A (zh) 一种混合熔盐体系中铝热还原制备铝钪中间合金的方法
CN105618723B (zh) 一种基于惰性气氛的钛合金自耗电极凝壳熔炼铸造工艺
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
CN105177346A (zh) 一种钨铜电接触材料及其制备方法
WO2018076987A1 (zh) 一种钨铜合金及其制备方法
CN108251670B (zh) 耐高温金属间化合物合金的制备方法
CN104264082B (zh) 一种氮元素掺杂强韧化金属玻璃复合材料及其制备方法
CN105908020B (zh) 一种铝‑钨复合材料的制备方法
CN109266945B (zh) 一种高强韧高熵合金及其制备方法
CN104928540B (zh) 一种铝铌硅钛中间合金及其制备方法
JP7340875B2 (ja) 共晶組織を含有する銅チタン合金及びその調製方法
CN106148794B (zh) 一种掺杂纳米铁粉的铜钨合金及其制备方法
CN105132777A (zh) 一种钼铜电触头材料及其制备方法
CN105903953B (zh) 一种粉末冶金用不锈钢/石墨烯复合粉体及其制备方法
CN104384750A (zh) 一种无铅铜基非晶钎焊料
CN107974579A (zh) 一种稀土铝合金
US2124020A (en) Metal alloy
CN107904471B (zh) 低密度耐磨蚀硬质合金材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17863377

Country of ref document: EP

Kind code of ref document: A1