WO2018076580A1 - 无线网络双边加速传输方法和系统 - Google Patents

无线网络双边加速传输方法和系统 Download PDF

Info

Publication number
WO2018076580A1
WO2018076580A1 PCT/CN2017/074219 CN2017074219W WO2018076580A1 WO 2018076580 A1 WO2018076580 A1 WO 2018076580A1 CN 2017074219 W CN2017074219 W CN 2017074219W WO 2018076580 A1 WO2018076580 A1 WO 2018076580A1
Authority
WO
WIPO (PCT)
Prior art keywords
client
server
transmission
network
protocol
Prior art date
Application number
PCT/CN2017/074219
Other languages
English (en)
French (fr)
Inventor
陈伟龙
陈文生
陈晓彬
Original Assignee
网宿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网宿科技股份有限公司 filed Critical 网宿科技股份有限公司
Priority to EP17864829.1A priority Critical patent/EP3370387B1/en
Priority to US15/770,314 priority patent/US10594844B2/en
Publication of WO2018076580A1 publication Critical patent/WO2018076580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/164Adaptation or special uses of UDP protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • H04W36/185Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection using make before break

Definitions

  • the present invention relates to the field of wireless network transmission, and in particular, to a wireless network bilateral acceleration transmission method and system.
  • the protocols adopted by the Internet transport layer are mainly Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
  • TCP Transmission Control Protocol
  • UDP User Datagram Protocol
  • the former is a reliable transmission protocol based on connection, and has functions such as flow control and congestion control.
  • the latter is unconnected and unreliable.
  • Transmission protocol the current network transmission mainly uses the transmission control protocol. Before the transmitting end and the receiving end transmit data, they must agree on the relevant information of the transmission control protocol connection, which needs to be negotiated and established through the three-way handshake mechanism of the transmission control protocol.
  • the method for connecting the existing transmission control protocol is as shown in FIG. 1.
  • the client performs step S101, and the client sends a handshake signal SYN message to the server.
  • the server proceeds to step S102, and the server sends a SYN+ACK message to the client, indicating that the server has received the SYN message.
  • the client After receiving the message sent by the server, the client finally performs step S103 to send an ACK to the server, indicating that the data sent by the server has confirmed that the reception is correct.
  • the client and the server are to perform data transmission, proceeding to step S104, the client sends a data transmission request to the server; in step S105, after receiving the transmission request sent by the client, the server performs a first window with the client. transmission.
  • the method used by the transmission control protocol to estimate the estimated network bandwidth is a slow start mechanism.
  • the sender sets an initial value for the transmission window. This is the response of the sender to the receiving end. The maximum amount of data that can be sent before the acknowledgement (ACK).
  • ACK acknowledgement
  • the slow start mechanism will cause the sender to add a transmission control protocol segment to the transmission window, which can send two new transmission control protocol packets. This growth process continues until transmission. The window reaches the threshold or a packet loss occurs.
  • the slow start phase of the Transmission Control Protocol is often referred to as the "exponential growth" phase because The amount of data transmitted by the Transmission Control Protocol connection is rapidly approaching the actual available bandwidth to the network link.
  • the main features of the wireless network (2G/3G/4G/WIFI) are: (1) limited bandwidth and large bandwidth difference of different networks; (2) large delay fluctuations, network switching comparison Frequent; (3) Random packet loss due to signal attenuation or noise interference. If latency is an important factor limiting performance for fixed-line connections, it can be a more important performance bottleneck for wireless connections because wireless networks have much longer latency than fixed networks. The delay of the wireless network is large and network switching occurs. Once the network handover occurs, the transmission control protocol client must re-establish a connection with the server to continue to transmit data. If the network switching is frequent, the two parties will spend more on establishing a transmission control protocol connection.
  • each Transmission Control Protocol connection must undergo a slow start phase, that is, the Transmission Control Protocol connection cannot fully utilize the maximum bandwidth of the network link from the outset.
  • the effect of the slow start phase will be small due to the long transmission time.
  • the transmission window has not reached the threshold but the request has been completed.
  • Slow start limits the amount of available transfers, which is detrimental to the transmission of small amounts of data.
  • a more useful method is to set different initial transmission windows according to the type of network connected by the transmission control protocol.
  • appropriately increasing the initial transmission window is particularly advantageous for speeding up the transmission of small data volumes, but the transmission control protocol cannot separately set an initial transmission window for each connection, and all connections must share the same initial window. That is to say, for the transmission control protocol connection, the 3G/4G network with larger bandwidth must also have the same initial transmission window as the smaller bandwidth 2G network, which is very disadvantageous for the transmission of small requests under the 3G/4G network.
  • the problems existing in the prior art are as follows: (1) The client and the server need to perform a three-way handshake before establishing a connection, so that the time for creating a transmission control protocol connection is large; (2) the transmission control protocol connection cannot be Set the corresponding initial window for different networks; (3) The transmission control protocol connection needs to be reconnected when the network is switched.
  • embodiments of the present invention provide a method and system for wireless network bilateral acceleration transmission.
  • the technical solution is as follows:
  • a wireless network bilateral acceleration transmission method includes the following steps:
  • the client and the server construct a bilateral accelerated transmission protocol based on the user datagram protocol
  • the client and server transmit data based on a bilateral accelerated transmission protocol.
  • the client registers with the server, and obtains the universal unique identifier of the client from the server;
  • the server sends the client's universal unique identifier to the client, and sets the initial transmission window and other protocol parameters according to the network type of the client.
  • the client sends a data transmission request including the universal unique identifier to the server, and feeds back information to the server during the data transmission process;
  • the server receives the data transmission request that is sent by the client and includes the universal unique identifier, and performs data transmission including the universal unique identifier with the client through an initial transmission window and other protocol parameters set by the server.
  • the method for setting the initial transmission window is: setting the initial transmission window to different values for different network types; setting the initial transmission window value to 10 for 2G networks; setting the initial transmission window value to 20 for 3G networks; For the 4G network, set the initial transmission window value to 30; for the WIFI network, set the initial transmission window value to 15.
  • protocol parameters include: a slow start threshold and an initial value of a timeout retransmission time.
  • the wireless network bilateral acceleration transmission method further includes:
  • the client When a network switch occurs on the client, the client sends new network information to the server.
  • the server receives the new network information sent by the client, and updates the transmission window and other protocol parameters corresponding to the client on the server according to the universal unique identifier and the new network information of the client;
  • the client and server continue with the data transfer containing the universally unique identifier.
  • a wireless network bilateral accelerated transmission system includes:
  • the client and the server, the client and the server construct a bilateral accelerated transmission protocol based on the user datagram protocol, and then establish a connection for data transmission according to the bilateral accelerated transmission protocol.
  • the client includes:
  • a registration module for collecting information of the client and registering with the server
  • the first transceiver module is connected to the registration module and configured to send information to the server and receive information sent by the server to the client.
  • the server includes:
  • a setting module configured to process registration information of the registration module, generate a universal unique identifier of the client, and set an initial transmission window and a transmission protocol parameter according to the network type of the client;
  • the second transceiver module is connected to the setting module and the first transceiver module, and is configured to receive information sent by the client to the server, and send information to the client.
  • the registration module further includes: a network sub-module, configured to identify network type information of the client.
  • the setting module further includes: a management sub-module, configured to manage client information, and process update information when the client network is switched.
  • the client further includes: an inspection module, connected to the first transceiver module, configured to periodically generate a heartbeat packet, and send a heartbeat packet to the server by using the first transceiver module.
  • an inspection module connected to the first transceiver module, configured to periodically generate a heartbeat packet, and send a heartbeat packet to the server by using the first transceiver module.
  • the server further includes: a release module, connected to the second transceiver module, configured to determine a client active state according to the heartbeat packet, and if the heartbeat packet is not received after the timeout, the second transceiver module is released between the second transceiver module and the first transceiver module. Connection.
  • a release module connected to the second transceiver module, configured to determine a client active state according to the heartbeat packet, and if the heartbeat packet is not received after the timeout, the second transceiver module is released between the second transceiver module and the first transceiver module. Connection.
  • the technical solution provided by the embodiment of the present invention has the beneficial effects that the protocol of the present invention can set different initial transmission windows according to different network types of the client, which cannot be implemented by the transmission control protocol connection. It has a good effect for accelerating the transmission of data transmission, especially small requests, and can shorten the time overhead of network bandwidth detection estimation.
  • the network switching of the mobile terminal is relatively frequent.
  • the transmission control protocol needs to re-create the connection to continue communication.
  • the protocol of the present invention does not need to re-establish the connection, and can reduce the time cost of re-establishing the connection when the network is switched.
  • FIG. 1 is a flow chart of a conventional wireless network transmission method in the prior art
  • FIG. 2 is a flowchart of a method for bilateral accelerated transmission of a wireless network according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for bilateral accelerated transmission of a wireless network according to Embodiment 1 of the present invention.
  • FIG. 4 is a system structural diagram of a bilateral acceleration transmission of a wireless network according to Embodiment 2 of the present invention.
  • FIG. 5 is a system structural diagram of a bilateral acceleration transmission of a wireless network according to Embodiment 2 of the present invention.
  • FIG. 6 is a system structural diagram of a bilateral acceleration transmission of a wireless network according to Embodiment 2 of the present invention.
  • the present invention provides a wireless network bilateral acceleration transmission method, as shown in FIG. 2, comprising the following steps: Step S201, the client and the server construct a bilateral accelerated transmission protocol based on a User Datagram Protocol (UDP); Step S202, the client and the The server performs data transmission based on a bilateral accelerated transmission protocol.
  • Step S201 the client and the server construct a bilateral accelerated transmission protocol based on a User Datagram Protocol (UDP);
  • UDP User Datagram Protocol
  • Step S202 the client and the The server performs data transmission based on a bilateral accelerated transmission protocol.
  • Step S301 the client initializes.
  • the client receives the command, starts the client, restores the parameters of the client to the initial default values, and makes the entire client reach the default state, ready to establish a connection with the server.
  • the specific items of the initialization include: obtaining information about the mobile device, including system type (Android, iOS, etc.), Internet Protocol address (IP), physical address (MAC), network type (WIFI/2G/3G/4G), carrier Type (IMSI, International Mobile Subscriber Identification Number), Equipment Identification Number (IMEI, International Mobile Equipment Identity), etc.; check configuration information, such as the server Internet Protocol address and port of the acceleration node.
  • Step S302 the client registers with the server, and obtains a universal unique identifier (UUID) of the client from the server.
  • the registration request includes: system type, network type, carrier type, device identification number, physical address, and so on.
  • Step S303 the server sends the universal unique identifier of the client to the client, and sets an initial transmission window and other protocol parameters according to the network type of the client.
  • the server After receiving the registration request from the client, the server generates a globally unique identification number, that is, the universal unique identifier is returned to the client.
  • the composition of the universal unique identifier includes: the current date and time, the clock sequence, and a globally unique Institute of Electrical and Electronics Engineers (IEEE) machine identification number.
  • IEEE Institute of Electrical and Electronics Engineers
  • the universal unique identifier under the 2G network may be 4cdbc040- 657a-4847-b266-7e31d9e2c3d9, in other embodiments, a universally unique identification code such as a 3G, 4G or WIFI network is similar.
  • the universal unique identifier can be generated and guaranteed uniquely according to the client's system type, physical address, device identification number, registration time, and random number generation algorithm, and can be applied to various networks.
  • the universal unique identifier is used to identify the connection, and all subsequent message interaction processes of both parties need to carry the universal unique identifier.
  • the server manages a connection table and maintains the network protocol address, port, network type and other information of each client according to the universal unique identifier. During the idle period, both parties have a heartbeat mechanism to detect whether the peer is alive .
  • TCP Transmission Control Protocol
  • the purpose of this phase is to detect the estimated network bandwidth and avoid the sudden transmission of large amounts of data in a short period of time and cause network congestion.
  • the initial window setting data amount is transmitted first. After receiving the acknowledgement message (ACK) of the peer reply, the transmission window is increased, and then the data transmission is continued, so that the round-trip interaction is sent/confirmed until there is a loss.
  • the package or window grows to the threshold. Shortening the interaction process in the slow start phase is of great significance for accelerating the entire transmission process. Different wireless networks have different bandwidths and delays.
  • the Transmission Control Protocol is a protocol implemented at the system kernel level, and the initial transmission window cannot be set individually for each connection.
  • the invention constructs a reliable transmission protocol at the application layer based on the user datagram protocol, and can set different initial transmission windows for connections of different network types.
  • the server sets different initial transmission windows according to different network types such as the client 2G, 3G, 4G, or WIFI, reduces the interaction time in the slow start phase, and can fully utilize the network in a shorter time.
  • the available broadband is particularly advantageous for speeding up the transmission of network transmissions, especially for small data volumes.
  • the 2G network can set the initial value of the transmission window to 10; the 3G network can set the initial value of the transmission window to 20; the 4G network can set the initial value of the transmission window to 30; the WIFI network can The initial value of the transfer window is set to 15.
  • the 2G network can set the slow start threshold bandwidth to about 200Kbps, the timeout retransmission time (RTO) to 300 ⁇ 1000ms, and the 3G network to set the slow start threshold bandwidth.
  • the initial value of the timeout retransmission time is 100 to 200 ms;
  • the 4G network can set the slow start threshold bandwidth to about 10 Mbps, and the initial timeout retransmission time is less than 100 ms.
  • the sending speed of the sending end When the sending speed of the sending end is close to the set slow start threshold bandwidth speed, it may be needed Adjust the sending speed to avoid congestion and packet loss.
  • the value of the slow start threshold bandwidth speed will be adjusted according to the network conditions during the actual transmission.
  • the timeout retransmission time of the WIFI network is similar to 4G. If the data packet sent by the sender exceeds the set timeout retransmission time and has not received the acknowledgement packet from the peer end, the retransmission will be performed.
  • the timeout retransmission time is adjusted based on the round trip delay (RTT) measured during subsequent data transmission. More protocol parameters can be referred to the implementation of the BIC and CUBIC congestion control algorithms of the Transmission Control Protocol.
  • Step S304 the client sends a data transmission request including the universal unique identifier to the server, and feeds back information to the server during the data transmission.
  • Step S305 The server receives the data transmission request sent by the client and includes the universal unique identifier, and performs data transmission including the universal unique identifier with the client through an initial transmission window and other protocol parameters set by the server.
  • the protocol refers to the three-way handshake mechanism of the transmission control protocol when establishing a connection to establish a reliable transmission connection.
  • the connection type of the protocol in this embodiment is a long connection, which always maintains and reuses existing connections as much as possible without frequently creating and releasing connections.
  • the method of the present invention further includes:
  • Step S306 when the network switching occurs on the client, the client sends new network information to the server.
  • the access network type of the client changes, for example, when the client enters the 4G network environment from the WIFI network environment or enters the 3G network from the 2G network, the client sends information to the server to notify the new network information.
  • Step S307 the server receives the new network information sent by the client, and updates the transmission window and other protocol parameters corresponding to the client on the server according to the universal unique identifier of the client and the new network information.
  • Transmission Control Protocol connections are identified based on network protocol addresses and ports. Once a network switch causes the network protocol address to change, the connection must be re-established before the two parties can continue data interaction. This may cause the transmission process to be interrupted for a while. In a network with a large delay, the overhead of re-establishing the connection will be greater, resulting in greater transmission delay.
  • the transport layer uses a connectionless user datagram protocol
  • the application layer uses a universal unique identifier to uniquely identify the connection.
  • the universal unique identifier does not change.
  • the client monitors the network switch event. Once the network switch occurs, the server can be notified in real time to update the client's related information, try to ensure seamless handover of the transmission process, and reduce the transmission delay.
  • Step S308 the client and the server continue to perform data transmission including the universal unique identifier.
  • the protocol of the present invention can set different initial transmission windows according to different network types of the client, which cannot be realized by the transmission control protocol connection. It has a good effect for accelerating the transmission of data transmission, especially small requests, and can shorten the time overhead of network bandwidth detection estimation.
  • the network switching of the mobile terminal is relatively frequent. In this case, the transmission control protocol needs to re-create the connection to continue communication.
  • the protocol of the present invention does not need to re-establish the connection, and can reduce the time cost of re-establishing the connection when the network is switched.
  • the present invention also provides a wireless network bilateral acceleration transmission system.
  • the client 100 and the server 200 are configured.
  • the client 100 and the server 200 construct a bilateral accelerated transmission protocol based on the user datagram protocol, and then according to the bilateral accelerated transmission.
  • the protocol establishes a connection for data transmission.
  • the client 100 includes a registration module 101 and a first transceiver module 102; the server 200 includes a setup module 201 and a second transceiver module 202.
  • the registration module 101 also includes a network sub-module, and the setting module 201 further includes a management sub-module.
  • the client 100 When the client 100 establishes a connection with the server 200, the client 100 first initializes to the initial default state, and then the registration module 101 collects the registration information of the client 100, including the system type, network type, carrier type, device identification number, and physical. Address, etc.
  • the first transceiver module 102 initiates a connection request to the second transceiver module 202, and sends registration information of the client 100.
  • the second transceiver module 202 After receiving the connection request of the first transceiver module 102, the second transceiver module 202 receives the registration information of the client 100, and the setting module 201 generates the universality of the client 100 according to the registration information of the client 100 received by the second transceiver module 202.
  • the unique identification code is sent to the first transceiver module 102 by the second transceiver module 202, and the transmission window and the transmission protocol parameters are set on the server 200 according to the network type of the client 100.
  • the client 100 After the first transceiver module 102 receives the universal unique identifier sent by the second transceiver module 202, the client 100 initiates a data transmission request carrying the universal unique identifier to the server 200 through the first transceiver module 102.
  • the server 200 uses the traffic and congestion control mechanism to reliably transmit the carrier to the client 100 through the second transceiver module 202. Data for a universal unique identifier.
  • the first transceiver module 102 of the client 100 receives the data carried by the second transceiver module 202 of the server 200 and carries the universal unique identifier.
  • the traffic and congestion control of the protocol of the present invention are also mainly divided into a slow start phase and a congestion avoidance phase.
  • the send window grows rapidly until it reaches slow
  • the threshold is started or packet loss occurs.
  • the congestion avoidance state is entered.
  • the size of the transmission window is reduced and the packet loss information is processed.
  • the protocol of the invention can ensure reliable transmission of data, and handles cases such as packet loss and disorder.
  • the data packets sent by the server 200 are all identified by a unique serial number.
  • the client 100 will reply the confirmation message after receiving the data, and the server 200 adjusts the transmission speed according to the confirmation message information, and calculates the round-trip delay to determine the packet loss information. Wait.
  • the network sub-module of the registration module 101 collects the network status information of the client 100 from time to time.
  • the first transceiver module 102 receives the data sent by the second transceiver module 202, and simultaneously transmits the transmission progress, the network signal status, and the network type status to the management submodule of the setting module 201 through the second transceiver module 202.
  • the management sub-module of the setting module 201 manages related information of the client 100, including the transmission progress, the network environment, whether the connection status is normal or has packet loss, packet loss rate, retransmission ratio, round-trip delay, and the like.
  • the update information of the client 100 at the time of network switching is processed.
  • the network sub-module of the registration module 101 collects the current new network status information, and the new network information is obtained. It is sent to the server 200 through the first transceiver module 102.
  • the management sub-module of the setting module 201 receives the new network information through the second transceiver module 202, the setting module 201 resets the transmission window and the transmission protocol parameters in accordance with the new network environment according to the new network information, and maintains the first transceiver module 102.
  • the network information refers to information such as the network type, carrier information, and Internet protocol address where the client is located.
  • the client 100 also includes an inspection module 103, which also includes a release module 203.
  • the checking module 103 periodically generates a heartbeat packet, and sends the heartbeat packet to the server 200 through the first transceiver module 102 to prove that the client 100 is in an active state.
  • the release module 203 determines the active state of the client 100 by using the heartbeat packet received by the second transceiver module 202. If the second transceiver module 202 does not receive the heartbeat packet after the timeout, the client 100 is no longer in an active state.
  • the release module 203 controls the second transceiver module 202 to release the connection with the first transceiver module 102.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Abstract

本发明公开了一种无线网络双边加速传输方法和系统,包括以下步骤:客户端和服务端基于用户数据报协议构建双边加速传输协议;客户端和服务端基于双边加速传输协议进行数据传输。本发明的协议可以根据客户端不同的网络类型设置不同的初始传输窗口,是传输控制协议连接无法实现的。对于加快数据传输特别是小请求的传输具有比较好的效果,能够缩短网络带宽探测估算的时间开销。移动端的网络切换会比较频繁,传输控制协议在这种情况下需要重新创建连接才能继续通信,本发明的协议不需要重新建立连接,可以减少网络切换时重建连接的时间开销。

Description

无线网络双边加速传输方法和系统 技术领域
本发明涉及无线网络传输领域,特别涉及一种无线网络双边加速传输方法和系统。
背景技术
互联网传输层采用的协议主要是传输控制协议(TCP)和用户数据报协议(UDP),前者是基于连接的可靠的传输协议,有流量控制和拥塞控制等功能,后者是无连接不可靠的传输协议,目前网络传输主要采用传输控制协议。发送端与接收端在传输数据之前,必须就传输控制协议连接的相关信息达成一致,这需要通过传输控制协议的三次握手机制来协商及建立。
现有传输控制协议连接的方法如图1所示,首先在客户端进行步骤S101,客户端向服务端发送握手信号SYN消息。服务端收到SYN消息后,进行步骤S102,服务端向客户端发送SYN+ACK消息,表示服务端已经收到SYN消息。客户端收到服务端发来的消息后,最后进行步骤S103,向服务端发送ACK,表示服务端发来的数据已经确认接收无误。客户端和服务端要进行数据传输时,继续进行步骤S104,客户端向服务端发送数据传输请求;步骤S105,服务端接收到客户端发来的传输请求后,与客户端之间进行首窗口传输。
在客户端和服务端之间的传输控制协议连接在建立之初,双方都不清楚网络链路的可用带宽是多少,因此首先要有一个探测估算的机制,然后还需要根据网络状态的不断变化来动态调整传输速度。传输控制协议用来探测估算网络带宽的方法是慢启动(slow start)机制,发送端在传输控制协议连接建立的时候会为传输窗口设置一个初始值,这是发送端在收到接收端回复的确认报文(ACK)之前可以发送的最大数据量。以后每收到一个确认报文,慢启动机制会让发送端将传输窗口增加一个传输控制协议报文段,这就可以多发送两个新的传输控制协议分组,这个增长过程会一直持续到传输窗口达到门限值或者发生分组丢失。传输控制协议的慢启动阶段通常被称为“指数增长”阶段,因为 传输控制协议连接传输的数据量在向网络链路的实际可用带宽迅速地逼近。
对比传统的固网(有线网络),无线网络(2G/3G/4G/WIFI)的主要特点有:(1)带宽有限且不同网络的带宽差异大;(2)时延波动大,网络切换比较频繁;(3)由于信号衰减或者噪声干扰导致随机丢包多。如果时延对于固网连接是限制性能的重要因素,那么它对无线连接会是更重要的性能瓶颈,因为无线网络的时延要比固网大得多。无线网络的时延大而且会发生网络切换,一旦发生网络切换,传输控制协议客户端必须和服务端重新建立连接才能继续传输数据。如果网络切换比较频繁,那么双方在建立传输控制协议连接上耗费的开销就会比较多。
无论网络带宽有多大,每个传输控制协议连接都必须经历慢启动阶段,也就是传输控制协议连接不可能一开始就能完全利用网络链路的最大带宽。对于大数据量请求的传输,由于传输时间比较长,慢启动阶段的影响会比较小,但是对于小数据量请求的传输,常常会出现传输窗口还没达到门限值但是请求就已经完成的情况。慢启动限制了可用的传输量,这对小数据量的传输很不利。
为了缩短慢启动过程所经历的时间同时为了降低网络拥塞的概率,比较有用的方法是根据传输控制协议连接的网络类型来设置不同的初始传输窗口。对于带宽比较大的网络,适当增大初始传输窗口对于加快小数据量的传输特别有利,但是传输控制协议无法为每条连接单独设置初始传输窗口,所有连接必须共用同样的初始窗口。也就是对传输控制协议连接而言,带宽比较大的3G/4G网络也必须和带宽比较小2G网络设置相同的初始传输窗口,这对小请求在3G/4G网络下的传输非常不利。
综上所述,现有技术存在的问题是:(1)客户端与服务端需要三次握手之后才能建立连接,使得创建一个传输控制协议连接的时间开销较大;(2)传输控制协议连接无法为不同网络设置对应的初始窗口;(3)传输控制协议连接在网络切换时需重新进行连接。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种无线网络双边加速传输方法和系统。所述技术方案如下:
一方面,一种无线网络双边加速传输方法,包括以下步骤:
客户端和服务端基于用户数据报协议构建双边加速传输协议;
客户端和服务端基于双边加速传输协议进行数据传输。
进一步的,客户端和服务端基于用户数据报协议构建双边加速传输协议的具体步骤包括:
客户端向服务端注册,从服务端获取客户端的通用唯一识别码;
服务端向客户端发送客户端的通用唯一识别码,同时根据客户端的网络类型设置初始传输窗口及其他协议参数。
进一步的,客户端和服务端基于双边加速传输协议进行数据传输的具体步骤为:
客户端向服务端发送包含所述通用唯一识别码的数据传输请求,并在数据传输过程中向服务端反馈信息;
服务端接收客户端发送的所述包含通用唯一识别码的数据传输请求,通过服务端设置的初始传输窗口和其他协议参数,与客户端进行包含所述通用唯一识别码的数据传输。
进一步的,设置初始传输窗口的方法为:对于不同网络类型,将初始传输窗口设置为不同值;对于2G网络,设置初始传输窗口值为10;对于3G网络,设置初始传输窗口值为20;对于4G网络,设置初始传输窗口值为30;对于WIFI网络,设置初始传输窗口值为15。
进一步的,其他协议参数包括:慢启动门限和超时重传时间初始值。
进一步的,无线网络双边加速传输方法还包括:
当客户端发生网络切换时,客户端向服务端发送新网络信息;
服务端接收客户端发送的新网络信息,并根据客户端的通用唯一识别码和新网络信息,在服务端更新客户端对应的传输窗口及其他协议参数;
客户端和服务端继续进行包含通用唯一识别码的数据传输。
另一方面,一种无线网络双边加速传输系统,包括:
客户端和服务器,客户端和服务器基于用户数据报协议构建双边加速传输协议,然后再根据双边加速传输协议建立连接进行数据传输。
进一步的,客户端包括:
注册模块,用于收集客户端的信息,并向服务器注册;
第一收发模块,与注册模块连接,用于向服务器发送信息,并接收服务器发送给客户端的信息。
进一步的,服务器包括:
设置模块,用于处理注册模块的注册信息,生成客户端的通用唯一识别码,并根据客户端的网络类型设置初始传输窗口及传输协议参数;
第二收发模块,与设置模块和第一收发模块连接,用于接收客户端发给服务器的信息,并向客户端发送信息。
进一步的,注册模块还包括:网络子模块,用于识别客户端的网络类型信息。
进一步的,设置模块还包括:管理子模块,用于管理客户端信息,处理客户端网络切换时的更新信息。
可选的,客户端还包括:检查模块,与第一收发模块连接,用于定时生成心跳包,并通过第一收发模块向服务器发送心跳包。
可选的,服务器还包括:释放模块,与第二收发模块连接,用于根据心跳包判断客户端活跃状态,若超时未收到心跳包则使第二收发模块释放与第一收发模块之间的连接。
本发明实施例提供的技术方案带来的有益效果是:本发明的协议可以根据客户端不同的网络类型设置不同的初始传输窗口,是传输控制协议连接无法实现的。对于加快数据传输特别是小请求的传输具有比较好的效果,能够缩短网络带宽探测估算的时间开销。移动端的网络切换会比较频繁,传输控制协议在这种情况下需要重新创建连接才能继续通信,本发明的协议不需要重新建立连接,可以减少网络切换时重建连接的时间开销。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中传统无线网络传输的方法流程图;
图2是本发明实施例一提供的无线网络双边加速传输的方法流程图;
图3是本发明实施例一提供的无线网络双边加速传输的方法流程图;
图4是本发明实施例二提供的无线网络双边加速传输的系统结构图;
图5是本发明实施例二提供的无线网络双边加速传输的系统结构图;
图6是本发明实施例二提供的无线网络双边加速传输的系统结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本发明提供一种无线网络双边加速传输方法,如图2所示,包括以下步骤:步骤S201,客户端和服务端基于用户数据报协议(UDP)构建双边加速传输协议;步骤S202,客户端和服务端基于双边加速传输协议进行数据传输。
具体的,如图3所示:
步骤S301,客户端初始化。客户端收到指令,启动客户端,将客户端的各项参数恢复到初始的默认值,使整个客户端达到默认状态,为与服务端建立连接作好准备。初始化的具体项目内容包括:获取移动设备的信息,包括系统类型(Android,iOS等)、互联网协议地址(IP)、物理地址(MAC)、网络类型(WIFI/2G/3G/4G)、运营商类型(IMSI,International Mobile Subscriber Identification Number)、设备识别号(IMEI,International Mobile Equipment Identity)等;检查配置信息,比如加速节点的服务器互联网协议地址和端口等。
步骤S302,客户端向服务端注册,从服务端获取客户端的通用唯一识别码(UUID)。注册请求内容包括:系统类型、网络类型、运营商类型、设备识别号、物理地址等。
步骤S303,服务端向客户端发送客户端的通用唯一识别码,同时根据客户端的网络类型设置初始传输窗口及其他协议参数。服务端收到客户端的注册请求后,生成一个全局唯一的标识号即通用唯一识别码返回给客户端。通用唯一识别码的组成包括:当前日期和时间、时钟序列以及全局唯一的电气和电子工程师协会(IEEE)机器识别号,例如在本实施例中,2G网络下的通用唯一识别 码可以是4cdbc040-657a-4847-b266-7e31d9e2c3d9,在其他实施例中如3G、4G或WIFI网络下的通用唯一识别码也与此类似。通用唯一识别码可以根据客户端的系统类型、物理地址、设备标识号、注册时间以及随机数生成算法来生成并保证唯一性,可以适用于各种网络。通用唯一识别码用于标识该连接,双方后续的所有消息交互过程都需要携带这个通用唯一识别码。服务端会管理一个连接表,根据通用唯一识别码来维护每个客户端的网络协议地址、端口、网络类型等信息。在空闲时段,双方会有心跳机制,用于探测对端是否存活
任何的传输控制协议(TCP)连接在开始传输数据时,首先都需要经历慢启动阶段,这个阶段的目的是探测估算网络带宽,避免短时间内突然传输大量的数据导致网络拥塞。在慢启动阶段,首先传输初始窗口设定数据量,在收到对端回复的确认报文(ACK)后,增大传输窗口,然后继续传输数据,如此发送/确认往返交互,直到有发生丢包或者窗口增长到门限值。缩短慢启动阶段的这种交互过程对加速整个传输过程的意义比较大。不同的无线网络,带宽和时延差别很大,为了缩短慢启动过程同时降低发生网络拥塞的可能性,需要为不同网络类型的连接设定不同的初始传输窗口。传输控制协议是实现在系统内核层级上的协议,无法单独为每个连接设定初始传输窗口。本发明基于用户数据报协议在应用层构建可靠传输协议,可以为不同网络类型的连接设置不同的初始传输窗口。在本实施例中,服务端根据客户端2G、3G、4G或WIFI等不同的网络类型,设置不同的初始传输窗口,减少慢启动阶段的交互时间,能够在较短时间内更充分的利用网络的可用宽带,对加快网络传输尤其是小数据量请求的传输特别有利。
对于初始传输窗口的设置,2G网络可以将传输窗口的初始值设置为10;3G网络可以将传输窗口的初始值设置为20;4G网络可以将传输窗口的初始值设置为30;WIFI网络可以将传输窗口的初始值设置为15。
对于其他协议参数的设置,2G网络可以设置慢启动门限(slow start threshold)带宽为200Kbps左右,超时重传时间(Retransmit Timout,RTO)初始值为300~1000ms;3G网络可以设置慢启动门限带宽为1Mbps左右,超时重传时间初始值为100~200ms;4G网络可以设置慢启动门限带宽为10Mbps左右,超时重传时间初始值为100ms以内。
当发送端的发送速度接近设置的慢启动门限带宽速度的时候,就可能需要 调整发送速度,尽量避免发生拥塞丢包,慢启动门限带宽速度的值会在实际传输过程中根据网络状况进行调整。WIFI网络的超时重传时间类似4G,发送端发出的数据包如果超过了设定的超时重传时间还没有收到对端的确认报文,则会进行重传。超时重传时间会根据后续数据传输过程中测量到的往返时延(RTT)来进行调整。更多协议参数可参考传输控制协议的BIC和CUBIC拥塞控制算法的实现。
步骤S304,客户端向服务端发送包含该通用唯一识别码的数据传输请求,并在数据传输过程中向服务端反馈信息。
步骤S305,服务端接收客户端发送的包含该通用唯一识别码的数据传输请求,通过服务端设置的初始传输窗口和其他协议参数,与客户端进行包含该通用唯一识别码的数据传输。在本实施例中,协议在建立连接时会参照传输控制协议的三次握手机制,以建立可靠的传输连接。本实施例中的协议的连接类型是长连接,它总是尽可能维护并复用现有的连接,而不会频繁地创建和释放连接。
可选的,本发明的方法还包括:
步骤S306,当客户端发生网络切换时,客户端向服务端发送新网络信息。当客户端的接入网络类型发生变化,如客户端从WIFI网络环境进入4G网络环境或由2G网络进入3G网络时,客户端向服务端发送信息,通告新的网络信息。
步骤S307,服务端接收客户端发送的新网络信息,并根据客户端的通用唯一识别码和新网络信息,在服务端更新客户端对应的传输窗口及其他协议参数。传输控制协议连接是基于网络协议地址和端口来标识的。一旦有网络切换导致网络协议地址发生变化,就必须要重新建立连接,之后双方才能继续进行数据交互。这可能导致传输过程会有一段时间的中断。在时延大的网络,重建连接的开销会更大,导致更大的传输延迟。本发明的协议,传输层采用无连接的用户数据报协议,应用层采用通用唯一识别码来唯一标识连接,即使发生网络切换导致网络协议地址变化,通用唯一识别码也不会改变。客户端会监测网络切换事件,一旦发生网络切换,可以实时通知服务端更新客户端的相关信息,尽量保证传输过程的无缝切换,减少传输延迟。
步骤S308,客户端和服务端继续进行包含该通用唯一识别码的数据传输。
本发明的协议可以根据客户端不同的网络类型设置不同的初始传输窗口,是传输控制协议连接无法实现的。对于加快数据传输特别是小请求的传输具有比较好的效果,能够缩短网络带宽探测估算的时间开销。移动端的网络切换会比较频繁,传输控制协议在这种情况下需要重新创建连接才能继续通信,本发明的协议不需要重新建立连接,可以减少网络切换时重建连接的时间开销。
实施例二
本发明还提供一种无线网络双边加速传输系统,如图4所示,包括客户端100和服务器200,客户端100和服务器200基于用户数据报协议构建双边加速传输协议,然后再根据双边加速传输协议建立连接进行数据传输。
如图5所示,客户端100包括注册模块101和第一收发模块102;服务器200包括设置模块201和第二收发模块202。注册模块101还包括网络子模块,设置模块201还包括管理子模块。
客户端100与服务器200建立连接时,客户端100首先进行初始化,达到初始默认状态,然后注册模块101收集客户端100的注册信息,包括系统类型、网络类型、运营商类型、设备识别号、物理地址等。第一收发模块102向第二收发模块202发起连接请求,发送客户端100的注册信息。第二收发模块202收到第一收发模块102的连接请求后,接收客户端100的注册信息,设置模块201根据第二收发模块202收到的客户端100的注册信息,生成客户端100的通用唯一识别码,并通过第二收发模块202将该通用唯一识别码发送给第一收发模块102,同时根据客户端100的网络类型在服务器200上设置好传输窗口和传输协议参数。
第一收发模块102收到第二收发模块202发送的通用唯一识别码后,客户端100通过第一收发模块102向服务器200发起携带该通用唯一识别码的数据传输请求。第二收发模块202接收到第一收发模块102发送的携带该通用唯一识别码的数据传输请求后,服务器200采用流量和拥塞控制机制,通过第二收发模块202可靠地向客户端100传输携带该通用唯一识别码的数据。客户端100的第一收发模块102接收服务器200的第二收发模块202发送的携带该通用唯一识别码的数据。类似传输控制协议,本发明协议的流量和拥塞控制也主要分为慢启动阶段和拥塞避免阶段。慢启动阶段,发送窗口快速增长,直到达到慢 启动阈值或者有发生丢包,这时进入拥塞避免状态,这时会降低发送窗口大小,并处理丢包信息。本发明协议可以保证数据的可靠传输,并处理丢包、乱序等情况。服务器200发送的数据包都有用唯一的序列号来标识,客户端100在收到数据后会回复确认报文,服务器200根据确认报文信息来调整发送速度,统计往返时延,判定丢包信息等。
传输过程中,注册模块101的网络子模块时时收集客户端100的网络状况信息。第一收发模块102在接收第二收发模块202发送的数据的同时,时时将传输进度、网络信号状况及网络类型状况通过第二收发模块202反馈给设置模块201的管理子模块。设置模块201的管理子模块管理客户端100的相关信息,包括传输进度、网络环境、连接状态是否正常或有丢包、丢包率、重传比、往返时延等。处理客户端100在网络切换时的更新信息。
当客户端100所在网络环境发生变化,如客户端100从WIFI网络进入4G网络或由2G网络进入3G网络时,注册模块101的网络子模块收集到当前新的网络状况信息,将新的网络信息通过第一收发模块102发送给服务器200。设置模块201的管理子模块通过第二收发模块202接收到新的网络信息后,设置模块201根据新的网络信息,重新设置符合新网络环境的传输窗口和传输协议参数,保持第一收发模块102和第二收发模块202的连接。在本实施例中,网络信息指客户端所处的网络类型、运营商信息、互联网协议地址等信息。
如图6所示是本系统的另一种实施方式。客户端100还包括检查模块103,服务器200还包括释放模块203。
检查模块103定时生成心跳包,并通过第一收发模块102向服务器200发送该心跳包,证明客户端100处于活跃状态。释放模块203通过第二收发模块202接收到的心跳包来判断客户端100的活跃状态,如果第二收发模块202超时未收到心跳包,则说明客户端100已不再处于活跃状态,此时释放模块203控制第二收发模块202释放与第一收发模块102之间的连接。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种无线网络双边加速传输方法,其特征在于,包括以下步骤:
    客户端和服务端基于用户数据报协议构建双边加速传输协议;
    所述客户端和所述服务端基于所述双边加速传输协议进行数据传输。
  2. 如权利要求1所述的无线网络双边加速传输方法,其特征在于,所述客户端和服务端基于用户数据报协议构建双边加速传输协议的具体步骤包括:
    所述客户端向所述服务端注册,从所述服务端获取所述客户端的通用唯一识别码;
    所述服务端向所述客户端发送所述客户端的通用唯一识别码,同时根据所述客户端的网络类型设置初始传输窗口及其他协议参数。
  3. 如权利要求2所述的无线网络双边加速传输方法,其特征在于,所述客户端和所述服务端基于所述双边加速传输协议进行数据传输的具体步骤为:
    所述客户端向所述服务端发送包含所述通用唯一识别码的数据传输请求,并在所述数据传输过程中向所述服务端反馈信息;
    所述服务端接收所述客户端发送的包含所述通用唯一识别码的数据传输请求,通过所述服务端设置的初始传输窗口和其他协议参数,与所述客户端进行包含所述通用唯一识别码的数据传输。
  4. 如权利要求3所述的无线网络双边加速传输方法,其特征在于,
    所述设置初始传输窗口的方法为:对于不同网络类型,将所述初始传输窗口设置为不同值;对于2G网络,设置所述初始传输窗口值为10;对于3G网络,设置所述初始传输窗口值为20;对于4G网络,设置所述初始传输窗口值为30;对于WIFI网络,设置所述初始传输窗口值为15;
    所述其他协议参数包括:慢启动门限和超时重传时间初始值。
  5. 如权利要求4所述的无线网络双边加速传输方法,其特征在于,所述无线网络双边加速传输方法还包括:
    当所述客户端发生网络切换时,所述客户端向所述服务端发送新网络信息;
    所述服务端接收所述客户端发送的新网络信息,并根据所述客户端的通用唯一识别码和新网络信息,在所述服务端更新所述客户端对应的传输窗口及其他协议参数;
    所述客户端和所述服务端继续进行包含所述通用唯一识别码的数据传输。
  6. 无线网络双边加速传输系统,其特征在于,包括:客户端和服务器,所述客户端和服务器基于用户数据报协议构建双边加速传输协议,然后再根据所述双边加速传输协议建立连接进行数据传输。
  7. 如权利要求6所述的无线网络双边加速传输系统,其特征在于,所述客户端包括:
    注册模块,用于收集所述客户端的信息,并向所述服务器注册;
    第一收发模块,与所述注册模块连接,用于向所述服务器发送信息,并接收所述服务器发送给所述客户端的信息。
  8. 如权利要求7所述的无线网络双边加速传输系统,其特征在于,所述服务器包括:
    设置模块,用于处理所述注册模块的注册信息,生成所述客户端的通用唯一识别码,并根据所述客户端的网络类型设置初始传输窗口及传输协议参数;
    第二收发模块,与所述设置模块和所述第一收发模块连接,用于接收所述客户端发给所述服务器的信息,并向所述客户端发送信息。
  9. 如权利要求8所述的无线网络双边加速传输系统,其特征在于,
    所述注册模块还包括:网络子模块,用于识别所述客户端的网络类型信息;
    所述设置模块还包括:管理子模块,用于管理所述客户端信息,处理所述客户端网络切换时的更新信息。
  10. 如权利要求9所述的无线网络双边加速传输系统,其特征在于,
    所述客户端还包括:检查模块,与所述第一收发模块连接,用于定时生成 心跳包,并通过所述第一收发模块向所述服务器发送心跳包;
    所述服务器还包括:释放模块,与所述第二收发模块连接,用于根据所述心跳包判断所述客户端活跃状态,若超时未收到所述心跳包则使所述第二收发模块释放与所述第一收发模块之间的连接。
PCT/CN2017/074219 2016-10-25 2017-02-21 无线网络双边加速传输方法和系统 WO2018076580A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17864829.1A EP3370387B1 (en) 2016-10-25 2017-02-21 Two-sided acceleration transmission method and system for wireless network
US15/770,314 US10594844B2 (en) 2016-10-25 2017-02-21 Method and system for wireless network bilateral accelerated transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610938700.4A CN106453356B (zh) 2016-10-25 2016-10-25 无线网络双边加速传输方法和系统
CN201610938700.4 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018076580A1 true WO2018076580A1 (zh) 2018-05-03

Family

ID=58179112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074219 WO2018076580A1 (zh) 2016-10-25 2017-02-21 无线网络双边加速传输方法和系统

Country Status (4)

Country Link
US (1) US10594844B2 (zh)
EP (1) EP3370387B1 (zh)
CN (1) CN106453356B (zh)
WO (1) WO2018076580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217605A (zh) * 2020-09-07 2021-01-12 网宿科技股份有限公司 传输策略的选择方法、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172179B (zh) * 2017-06-05 2020-02-18 网宿科技股份有限公司 一种双边加速传输方法和系统
CN109218222B (zh) * 2017-06-30 2021-06-22 华为技术有限公司 一种实现发送端调速的方法、装置和系统
CN113014512B (zh) * 2021-03-14 2022-12-09 白杨 基于n:m连接动态映射的网络连接加速转发方法
EP4338396A2 (en) * 2021-06-14 2024-03-20 Huawei Technologies Co., Ltd. Supporting multiple border gateway protocol (bgp) sessions using multiple quic streams
CN115550417B (zh) * 2022-08-16 2023-06-06 北京连山科技股份有限公司 一种减少多链路设备不同运营商之间传输延时的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054123A1 (en) * 2008-08-30 2010-03-04 Liu Yong Method and device for hign utilization and efficient flow control over networks with long transmission latency
US20140122732A1 (en) * 2012-10-31 2014-05-01 Huawei Technologies Co., Ltd. Data Packet Transmission Method and Related Device and System
CN104170353A (zh) * 2013-12-27 2014-11-26 华为技术有限公司 Tcp链路配置方法、装置及设备
CN104717041A (zh) * 2015-04-01 2015-06-17 北京百度网讯科技有限公司 数据传输方法和装置
CN105207949A (zh) * 2014-06-12 2015-12-30 中国移动通信集团内蒙古有限公司 一种tcp优化方法和系统、sp服务器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371734A (en) * 1993-01-29 1994-12-06 Digital Ocean, Inc. Medium access control protocol for wireless network
US5912888A (en) * 1994-06-09 1999-06-15 U.S. Robotics Access Corp. Digital network access server
US7120666B2 (en) * 2002-10-30 2006-10-10 Riverbed Technology, Inc. Transaction accelerator for client-server communication systems
US7360237B2 (en) * 2004-07-30 2008-04-15 Lehman Brothers Inc. System and method for secure network connectivity
US9344533B2 (en) 2012-10-23 2016-05-17 Microsoft Technology Licensing, Llc Receive window auto-tuning
US8681768B2 (en) * 2010-09-21 2014-03-25 Vantrix Corporation System and method of pacing real time media transmission over a broadband channel using micro bursting
US8849899B1 (en) * 2011-01-30 2014-09-30 Israel L'Heureux Accelerated delivery of media content via peer caching
US9628542B2 (en) * 2012-08-24 2017-04-18 Akamai Technologies, Inc. Hybrid HTTP and UDP content delivery
CN103002031B (zh) * 2012-12-03 2016-07-13 惠州Tcl移动通信有限公司 一种控制访问无线路由设备的方法及系统
CN104079625A (zh) * 2014-05-14 2014-10-01 深圳市信锐网科技术有限公司 数据传输加速方法和装置
CN105245528B (zh) * 2015-10-20 2019-02-12 北京小鸟听听科技有限公司 一种基于用户数据报协议(udp)的控制命令传输方法、发送端和接收端
CN105592096A (zh) * 2015-12-30 2016-05-18 Tcl集团股份有限公司 网络设备快速连接方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054123A1 (en) * 2008-08-30 2010-03-04 Liu Yong Method and device for hign utilization and efficient flow control over networks with long transmission latency
US20140122732A1 (en) * 2012-10-31 2014-05-01 Huawei Technologies Co., Ltd. Data Packet Transmission Method and Related Device and System
CN104170353A (zh) * 2013-12-27 2014-11-26 华为技术有限公司 Tcp链路配置方法、装置及设备
CN105207949A (zh) * 2014-06-12 2015-12-30 中国移动通信集团内蒙古有限公司 一种tcp优化方法和系统、sp服务器
CN104717041A (zh) * 2015-04-01 2015-06-17 北京百度网讯科技有限公司 数据传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370387A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217605A (zh) * 2020-09-07 2021-01-12 网宿科技股份有限公司 传输策略的选择方法、设备及存储介质
CN112217605B (zh) * 2020-09-07 2023-10-20 网宿科技股份有限公司 传输策略的选择方法、设备及存储介质

Also Published As

Publication number Publication date
EP3370387B1 (en) 2020-07-29
CN106453356A (zh) 2017-02-22
EP3370387A1 (en) 2018-09-05
CN106453356B (zh) 2019-08-02
US10594844B2 (en) 2020-03-17
US20190075189A1 (en) 2019-03-07
EP3370387A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2018076580A1 (zh) 无线网络双边加速传输方法和系统
US11522790B2 (en) Multipath data transmission processing method and network device
US10075987B2 (en) Multipath TCP subflow establishing on single IP connection
CA3042605C (en) Packet sending method and apparatus, chip, and terminal
EP2647175B1 (en) Facilitating device-to-device communication
US8751669B2 (en) Method and arrangement to maintain a TCP connection
JP5097620B2 (ja) マルチパス通信システム
WO2011153693A1 (zh) 保持网络nat绑定的方法
JP6777650B2 (ja) Tcpトンネル及びネイティブtcp情報に基づくバンドリングシナリオにおけるパケットのスケジューリングのための方法及びシステム
US20150180789A1 (en) Maximum Transmission Unit negotiation method and data terminal
Betzler et al. Congestion control for CoAP cloud services
KR100804082B1 (ko) 통신 구축동안 중복 협상들을 회피하기 위한 방법 및 장치
JP2017028589A (ja) 通信装置、無線通信装置、および通信方法
US20220225163A1 (en) Communications device, infrastructure equipment and methods
JP5775214B2 (ja) 適応性の伝送キュー長を用いたデータパケット損失低減システムおよび方法
JP2017073636A (ja) 中継装置、及び中継方法
KR101692654B1 (ko) 콘텐츠 전달 방법
EP3038312A1 (en) Data transmission method, user equipment and proxy equipment
WO2013152614A1 (zh) 一种基于应用层数据的网络接入系统和方法
WO2019196853A1 (zh) Tcp加速方法及装置
JP3741421B2 (ja) データ通信方法及び通信端末装置
US9877264B2 (en) Apparatus and method for reducing transmission delay of HTTP protocol and processing load of HTTP server in wireless communications network
CN113950099A (zh) 一种网络拥塞控制方法及设备
Kumar et al. Device‐centric data reordering and buffer management for mobile Internet using Multipath Transmission Control Protocol
US9877342B1 (en) Method and system for managing a multi-message exchange over a wireless channel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017864829

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE