WO2018076492A1 - 一种煤层气井脉冲爆震致裂增渗方法 - Google Patents

一种煤层气井脉冲爆震致裂增渗方法 Download PDF

Info

Publication number
WO2018076492A1
WO2018076492A1 PCT/CN2016/110047 CN2016110047W WO2018076492A1 WO 2018076492 A1 WO2018076492 A1 WO 2018076492A1 CN 2016110047 W CN2016110047 W CN 2016110047W WO 2018076492 A1 WO2018076492 A1 WO 2018076492A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
electrode
positive electrode
negative electrode
bed
Prior art date
Application number
PCT/CN2016/110047
Other languages
English (en)
French (fr)
Inventor
林柏泉
闫发志
张祥良
孔佳
刘厅
朱传杰
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US15/767,880 priority Critical patent/US10858913B2/en
Priority to AU2016424227A priority patent/AU2016424227B2/en
Priority to RU2018115666A priority patent/RU2683438C1/ru
Publication of WO2018076492A1 publication Critical patent/WO2018076492A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/17Interconnecting two or more wells by fracturing or otherwise attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells

Definitions

  • the invention relates to a pulse blasting cracking and infiltration method, in particular to a pulse blasting cracking and osmosis method suitable for coalbed methane efficient mining.
  • Coalbed methane is a kind of clean energy. China's shallow coalbed methane resource reserves of 2000m are the third in the world and have great development potential. However, the geological conditions for the occurrence of coalbed methane in China are complex, and coalbed methane mining is generally faced with the problems of high mining cost and low mining efficiency.
  • gas stimulation, hydraulic fracturing and multi-branch horizontal wells have been applied to the stimulation of coalbed methane wells. Among them, hydraulic fracturing is the most commonly used technical means in coalbed methane mining.
  • the conventional hydraulic fracturing technology has a small number of cracks formed in the coal seam, and the crack extension range is small, and the overall fracturing effect is not good, eventually resulting in a low yield of the single gas well of the coalbed methane.
  • the patent publication number is CN 104832149A, and the name "an unconventional natural gas reservoir anti-reflection method for electric pulse assisted hydraulic fracturing" is formed by injecting a certain pressure of water into a borehole and then discharging it in water by using a discharge device.
  • Patent Publication No. CN105370257A entitled “A method for high-power electric detonation assisted hydraulic fracturing stimulation of coalbed methane wells", is to combine hydraulic fracturing and high-voltage electric pulse organically, using high-voltage electric pulse device in fracturing fluid
  • the shock wave formed by the medium discharge effectively increases the number of cracks in the coal seam.
  • the shock wave formed by the discharge in water propagates around the spherical wave, and the effective influence range is relatively small.
  • the object of the present invention is to overcome the problems existing in the prior art and provide a pulse detonation cracking and infiltration method for a coalbed methane well, which directly acts on a coal reservoir by utilizing high energy generated by high-voltage electric pulse discharge.
  • the coal layer between the positive electrode and the negative electrode forms a plasma channel, and the huge energy instantaneously passes through the plasma channel, and the high-temperature thermal expansion force and the shock wave formed on the coal seam cause the coal seam to form a large number of cracks and expand the primary crack. It can effectively increase the number of cracks in the coal seam and the length of the extended crack, create favorable conditions for the flow of coalbed methane, and have a good application prospect in the production of coalbed methane wells.
  • the method for pulse blasting cracking and infiltration of a coalbed methane well of the present invention has the following steps:
  • the fixed platform with positive electrode and the high-voltage pulse device installed on the fixed platform are lowered through the derrick to the coal seam in the positive electrode CBM wellbore Infiltration site, will Another fixed stage mounted with a negative electrode is lowered through the derrick to a pre-enhancement portion of the coal seam in the negative electrode coalbed methane wellbore, and the negative electrode is connected to the positive electrode through a cable;
  • the high-voltage electric pulse switch Turn on the high-voltage electric pulse switch and charge the high-voltage pulse device through the cable.
  • the high-voltage pulse device discharges through the positive electrode to the coal seam between the positive electrode and the negative electrode, and discharges 10-100 times. , disconnect the high voltage electric pulse switch;
  • Coalbed methane extraction begins with conventional techniques.
  • the high-voltage pulse device has a discharge frequency of 5-30 Hz and a voltage range of 500-9000 KV.
  • the distance between the positive electrode coalbed methane wellbore and the negative electrode coalbed methane wellbore is 150-1200 m.
  • the high voltage pulse device includes a capacitor and a pulse trigger coupled to the capacitor.
  • the present invention utilizes the huge energy generated by high-power electric pulses to break down the coal seam between the positive electrode and the negative electrode, and instantaneously passes huge energy in the plasma channel formed in the coal layer, forming a high-temperature thermal expansion force and a shock wave action.
  • the coal body around the wall of the plasma channel causes a large number of cracks in the coal seam and expands the primary crack, which can effectively increase the number of cracks in the coal seam and the length of the extended crack, and the gas permeability coefficient of the coal body can be increased by 150-350 times.
  • the utility model has the advantages of simple construction process, convenient operation, safety and reliability, and effectively improves the production of single-well coalbed methane, and has wide practicality in the technical field.
  • FIG. 1 is a schematic view of a pulse detonation cracking and infiltration system of a coalbed methane well according to the present invention
  • Figure 2 is a structural diagram of a high voltage electric pulse device
  • FIG. 1 and FIG. 2 show the pulse detonation cracking and infiltration method of the coalbed methane well of the present invention, and the specific steps are as follows:
  • the positive electrode coalbed methane well 2 and the negative electrode coalbed methane well 3 are constructed from the ground facing the coal seam 1.
  • the distance between the positive electrode coalbed gas wellbore 2 and the negative electrode coalbed methane wellbore 3 is 150-1200 m.
  • the fixed stage 4 on which the positive electrode 5 is mounted and the high-voltage pulse device 7 provided on the fixed stage 4 are lowered by the derrick 11 to the coal seam 1 in the positive electrode coalbed methane well 2
  • the high voltage pulse device 7 comprises a capacitor 13 and a pulse generator 14 connected to the capacitor 13.
  • the other fixed stage 4 on which the negative electrode 6 is mounted is lowered through the derrick 11 to the pre-enhancement portion of the coal seam 1 in the negative electrode coalbed methane well 3, and the negative electrode 6 passes through the cable 12 and the positive electrode CBM wellbore 2 in the high pressure pulse device 7 Capacitor 13 is connected;
  • the high voltage pulse device 7 passes between the positive electrode 5 and the negative electrode 6 through the positive electrode 5.
  • the coal layer discharges, after discharging 10-100 times, turns off the high-voltage electric pulse switch 9; the high-voltage pulse device 7 has a discharge frequency of 5-30 Hz and a voltage range of 500-9000 KV. For example, discharging at a frequency of 5 Hz to the coal seam between the positive electrode 5 and the negative electrode 6, after discharging 15 times, disconnecting the high voltage electric pulse switch 9;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Circuit Breakers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种煤层气井脉冲爆震致裂增渗方法,适用于低透气性煤层(1)的煤层气井开采;首先,从地面向煤层(1)施工正电极煤层气井筒(2)和负电极煤层气井筒(3),将安装有正电极(5)的固定台(4)和高压脉冲装置(7)通过井架(11)下放至正电极煤层气井筒(2)中煤层预增渗部位,将安装有负电极(6)的另一固定台(4)通过井架(11)下放至负电极煤层气井筒(3)中煤层预增渗部位;然后利用高压电击穿正电极(5)和负电极(6)之间的煤层(1),对正电极煤层气井筒(2)和负电极煤层气井筒(3)进行煤层气抽采。利用高压电脉冲产生的高能量,直接作用煤储层(1),在正电极(5)和负电极(6)之间的煤层(1)形成等离子体通道,巨大的能量在瞬间通过等离子体通道,形成的高温热膨胀力和冲击波作用于煤层(1),有效增加煤层(1)内裂缝数量,为煤层(1)气流动创造良好条件。

Description

一种煤层气井脉冲爆震致裂增渗方法 技术领域
本发明涉及一种脉冲爆震致裂增渗方法,尤其是一种适用于煤层气高效开采的煤层气井脉冲爆震致裂增渗方法。
背景技术
煤层气是一种洁净能源,我国埋深2000m以浅的煤层气地质资源储量居世界第三位,具有很大的开发潜力。但是,我国煤层气赋存地质条件复杂,煤层气开采普遍面临着开采成本高、开采效率低的问题。为了提高煤层气产量,注气驱替、水力压裂和多分支水平井等增产措施被应用于煤层气井增产改造中,其中,水力压裂是目前煤层气开采中最常用的技术手段。但是,常规的水力压裂技术在煤层内形成的裂缝数量较少,且裂缝延伸范围较小,整体压裂效果不好,最终导致煤层气单井产量低。
近几十年来,高功率电脉冲技术得到了快速发展,国内对利用高功率电脉冲技术来实现储层增透的方法进行了一些研究。如专利公开号为CN 104832149A,名称为“一种电脉冲辅助水力压裂的非常规天然气储层增透方法”,是通过向钻孔中注入一定压力的水,然后利用放电设备在水中放电形成的空化效应和水激波来增加储层的渗透率,但由于水中放电形成的冲击波是以球形波形式向周围扩散,冲击波在向周围传播的过程中急速衰减,因此该方法的有效影响范围比较有限,效率比较低。专利公开号为CN105370257A,名称为“一种煤层气井高功率电爆震辅助水力压裂增产方法”,是将水力压裂和高压电脉冲有机结合起来,利用高压电脉冲装置在压裂液中放电形成的冲击波有效增加煤层内裂缝数量,但该方法存在水中放电形成的冲击波以球形波向周围传播,有效影响范围相对较小的问题。
发明内容
技术问题:本发明的目的是克服已有技术中存在的问题,提供一种煤层气井脉冲爆震致裂增渗方法,通过利用高压电脉冲放电产生的高能量,直接作用于煤储层,在正电极和负电极之间的煤层形成等离子体通道,巨大的能量在瞬间通过等离子体通道,形成的高温热膨胀力和冲击波作用于煤层,使煤层形成大量的裂缝,并使原生裂隙扩展。能够有效地增加煤层内的裂缝数量和延伸裂缝的长度,为煤层气流动创造良好条件,在煤层气井增产方面具有良好的应用前景。
技术方案:本发明的煤层气井脉冲爆震致裂增渗方法,其步骤如下:
a.从地面向煤层施工正电极煤层气井筒和负电极煤层气井筒,将安装有正电极的固定台和设在固定台上的高压脉冲装置通过井架下放至正电极煤层气井筒中的煤层预增渗部位,将 安装有负电极的另一个固定台通过井架下放至负电极煤层气井筒中的煤层预增渗部位,所述的负电极通过电缆与正电极连接;
b.通过控制台调节正电极煤层气井筒和负电极煤层气井筒中的固定台,使固定台的上部与井筒壁紧密接触,然后,分别使两个固定台上的正电极和负电极均与井筒壁紧密接触,且正电极和负电极在同一水平上相向安置;
c.接通高压电脉冲开关,通过电缆向高压脉冲装置充电,当达到设定放电电压时,高压脉冲装置通过正电极向正电极和负电极之间的煤层放电,放电10-100次后,断开高压电脉冲开关;
d.将正电极煤层气井筒中安装有正电极的固定台和高压脉冲装置移出正电极煤层气井筒,将负电极煤层气井筒中安装有负电极的另一固定台移出负电极煤层气井筒,按常规技术开始进行煤层气抽采。
所述的高压脉冲装置的放电频率为5-30Hz,电压范围在500-9000KV。
所述的正电极煤层气井筒和负电极煤层气井筒之间的距离为150-1200m。
所述的高压脉冲装置包括电容和与电容相连的脉冲触发器。
有益效果:本发明利用高功率电脉冲产生的巨大能量将正电极和负电极之间的煤层击穿,在煤层中形成的等离子体通道内瞬间通过了巨大能量,形成的高温热膨胀力和冲击波作用于等离子体通道壁周围的煤体,使煤层形成大量的裂缝,并使原生裂隙扩展,能够有效地增加煤层内的裂缝数量和延伸裂缝的长度,煤体透气性系数可提高150-350倍,其施工工艺简单,操作方便,安全可靠,有效地提高了单井煤层气产量,在本技术领域内具有广泛的实用性。
附图说明
图1是本发明的煤层气井脉冲爆震致裂增渗系统示意图;
图2是高压电脉冲装置结构图;
图中:1-煤层,2-正电极煤层气井筒,3-负电极煤层气井筒,4-固定台,5-正电极,6-负电极,7-高压脉冲装置,8-控制台,9-高压电脉冲开关,10-电缆,11-井架,12-电缆,13-电容,14-脉冲触发器。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
图1图2所示,本发明的煤层气井脉冲爆震致裂增渗方法,具体步骤如下:
(1)、从地面向煤层1施工正电极煤层气井筒2和负电极煤层气井筒3,所述的正电极煤层气井筒2和负电极煤层气井筒3之间的距离为150-1200m。将安装有正电极5的固定台4和设在固定台4上的高压脉冲装置7通过井架11下放至正电极煤层气井筒2中的煤层1预增 渗部位,所述的高压脉冲装置7包括电容13和与电容13相连的脉冲发生器14。将安装有负电极6的另一个固定台4通过井架11下放至负电极煤层气井筒3中煤层1预增渗部位,负电极6通过电缆12与正电极煤层气井筒2中高压脉冲装置7的电容13连接;
(2)、通过控制台8调节正电极煤层气井筒2和负电极煤层气井筒3中的固定台4,使固定台4上部与井筒壁紧密接触,然后,使正电极煤层气井筒2中固定台4上的正电极5和负电极煤层气井筒3中固定台4上的负电极6均与井筒壁紧密接触,且正电极5和负电极6在同一水平上相向安置;
(3)、接通高压电脉冲开关9,通过电缆10向高压脉冲装置7充电,当达到设定放电电压时,高压脉冲装置7通过正电极5向正电极5和负电极6之间的煤层放电,放电10-100次后,断开高压电脉冲开关9;所述的高压脉冲装置7的放电频率为5-30Hz,电压范围在500-9000KV。如以5Hz的频率向正电极5和负电极6之间的煤层放电,放电15次后,断开高压电脉冲开关9;
(4)、将正电极煤层气井筒2中安装有正电极5的固定台4和高压脉冲装置7移出正电极煤层气井筒2,将负电极煤层气井筒3中安装有负电极6的另一个固定台4移出负电极煤层气井筒3,按现有技术对正电极煤层气井筒2和负电极煤层气井筒3进行煤层气抽采。

Claims (4)

  1. 一种煤层气井脉冲爆震致裂增渗方法,其特征在于包括如下步骤:
    a.从地面向煤层(1)施工正电极煤层气井筒(2)和负电极煤层气井筒(3),将安装有正电极(5)的固定台(4)和设在固定台(4)上的高压脉冲装置(7)通过井架(11)下放至正电极煤层气井筒(2)中的煤层(1)预增渗部位,将安装有负电极(6)的另一个固定台(4)通过井架(11)下放至负电极煤层气井筒(3)中的煤层(1)预增渗部位,所述的负电极(6)通过电缆(12)与高压脉冲装置(7)连接;
    b.通过控制台(8)调节正电极煤层气井筒(2)和负电极煤层气井筒(3)中的固定台(4),使固定台(4)的上部与井筒壁紧密接触,然后,分别使两个固定台(4)上的正电极(5)和负电极(6)均与井筒壁紧密接触,且正电极(5)和负电极(6)在同一水平上相向安置;
    c.接通高压电脉冲开关(9),通过电缆(10)向高压脉冲装置(7)充电,当达到设定放电电压时,高压脉冲装置(7)通过正电极(5)向正电极(5)和负电极(6)之间的煤层放电,放电10-100次后,断开高压电脉冲开关(9);
    d.将正电极煤层气井筒(2)中安装有正电极(5)的固定台(4)和高压脉冲装置(7)移出正电极煤层气井筒(2),将负电极煤层气井筒(3)中安装有负电极(6)的另一个固定台(4)移出负电极煤层气井筒(3),按常规技术开始进行煤层气抽采。
  2. 根据权利要求1所述的一种煤层气井脉冲爆震致裂增渗方法,其特征在于:所述的高压脉冲装置(7)的放电频率为5-30Hz,电压范围在500-9000KV。
  3. 根据权利要求1所述的一种煤层气井脉冲爆震致裂增渗方法,其特征在于:所述的正电极煤层气井筒(2)和负电极煤层气井筒(3)之间的距离为150-1200m。
  4. 根据权利要求1所述的一种煤层气井脉冲爆震致裂增渗方法,其特征在于:所述的高压脉冲装置(7)包括电容(13)和与电容(13)相连的脉冲触发器(14)。
PCT/CN2016/110047 2016-10-28 2016-12-15 一种煤层气井脉冲爆震致裂增渗方法 WO2018076492A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/767,880 US10858913B2 (en) 2016-10-28 2016-12-15 Permeability enhancement method for coalbed methane wells by using electric pulse detonation fracturing technology
AU2016424227A AU2016424227B2 (en) 2016-10-28 2016-12-15 Permeability enhancement method for coalbed methane wells by using electric pulse detonation fracturing technology
RU2018115666A RU2683438C1 (ru) 2016-10-28 2016-12-15 Способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610970304X 2016-10-28
CN201610970304.XA CN106285608A (zh) 2016-10-28 2016-10-28 一种煤层气井脉冲爆震致裂增渗方法

Publications (1)

Publication Number Publication Date
WO2018076492A1 true WO2018076492A1 (zh) 2018-05-03

Family

ID=57720843

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/110047 WO2018076492A1 (zh) 2016-10-28 2016-12-15 一种煤层气井脉冲爆震致裂增渗方法
PCT/CN2017/089964 WO2018076737A1 (zh) 2016-10-28 2017-06-26 一种煤层气井脉冲爆震致裂增渗方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089964 WO2018076737A1 (zh) 2016-10-28 2017-06-26 一种煤层气井脉冲爆震致裂增渗方法

Country Status (5)

Country Link
US (1) US10858913B2 (zh)
CN (1) CN106285608A (zh)
AU (1) AU2016424227B2 (zh)
RU (1) RU2683438C1 (zh)
WO (2) WO2018076492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109779610A (zh) * 2019-02-01 2019-05-21 西安闪光能源科技有限公司 基于可控冲击波技术的增透钻孔有效作用半径测定方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285608A (zh) * 2016-10-28 2017-01-04 中国矿业大学 一种煤层气井脉冲爆震致裂增渗方法
CN107630717B (zh) * 2017-09-18 2020-02-07 中国矿业大学 一种电脉冲与煤层注水相协同的煤层增透方法
CN108318528A (zh) * 2018-01-09 2018-07-24 中国石油天然气股份有限公司 电脉冲压裂的工作参数的确定方法和装置
CN109026129A (zh) * 2018-08-15 2018-12-18 山东安益矿用设备有限公司 高低负压管路智能转换调控技术
CN109162755B (zh) * 2018-09-11 2020-07-28 中国矿业大学 一种电脉冲与注浆加固相结合的石门揭煤方法
CN110388207B (zh) * 2019-06-13 2020-11-03 太原理工大学 微波加热消减厚硬顶板及遗留煤柱复合强矿压的方法
CN110273684B (zh) * 2019-06-13 2021-01-29 太原理工大学 等离子体u式消减厚硬顶板及遗留煤柱复合强矿压的方法
CN110344827B (zh) * 2019-06-13 2021-01-15 太原理工大学 等离子体弱化下伏煤层开采厚硬顶板强矿压的方法和装置
CN110344828B (zh) * 2019-06-13 2020-12-15 太原理工大学 等离子体l式消减厚硬顶板及遗留煤柱复合强矿压的方法
CN110388206B (zh) * 2019-06-13 2020-11-27 太原理工大学 一种等离子体上行致裂残采区遗留煤柱的方法和装置
CN110374596B (zh) * 2019-06-13 2020-12-25 太原理工大学 等离子体h式消减厚硬顶板及遗留煤柱复合强矿压的方法
CN111929422A (zh) * 2020-07-13 2020-11-13 中国矿业大学 一种煤层高压电脉冲致裂增渗范围的测定方法
CN112648873B (zh) * 2020-12-22 2022-03-18 东北大学 一种干热岩高压脉冲复合水压致裂热储方法
CN112943210A (zh) * 2021-02-08 2021-06-11 中国矿业大学 一种电脉冲协同超声波的煤层气强化开采方法
CN113216921B (zh) * 2021-05-26 2022-11-18 西南石油大学 致密储层压裂前电脉冲预处理的冲击波能量优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084638A (en) * 1975-10-16 1978-04-18 Probe, Incorporated Method of production stimulation and enhanced recovery of oil
CN104453827A (zh) * 2014-11-06 2015-03-25 中国矿业大学 一种高能电爆震提高煤层透气性的方法
CN104832149A (zh) * 2015-05-16 2015-08-12 太原理工大学 一种电脉冲辅助水力压裂的非常规天然气储层增透方法
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法
CN104863628A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种利用脉冲爆震波致裂增透掩护煤巷掘进方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU571109A1 (ru) * 1974-06-12 1978-05-15 Всесоюзный Научно-Исследовательский Институт Использования Газа В Народном Хозяйстве, Подземного Хранения Нефти, Нефтепродуктов И Сжиженных Газов "Внимпромгаз" Способ соединени скважин
US4997044A (en) * 1989-12-01 1991-03-05 Stack Walter E Apparatus for generating hydraulic shock waves in a well
UA19253A (uk) * 1990-07-30 1997-12-25 Державний Макіївський Науково-Дослідний Інститут По Безпеці Робіт В Гірничій Промисловості Спосіб дегазації вугільhого пласта
US8082989B2 (en) * 2008-08-19 2011-12-27 Flow Industries Ltd. Method for impulse stimulation of oil and gas well production
CN102155254B (zh) * 2011-02-28 2013-05-22 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
CN102562067A (zh) * 2012-01-17 2012-07-11 河南省煤层气开发利用有限公司 利用脉冲致裂实现治理冲击地压的方法
CN102720528B (zh) * 2012-07-03 2014-05-14 中国矿业大学 煤矿井下重复脉动水力压裂强化瓦斯抽采方法
RU2518581C2 (ru) * 2012-07-17 2014-06-10 Александр Петрович Линецкий Способ разработки нефтегазовых, сланцевых  и угольных месторождений
US9840898B2 (en) * 2013-12-13 2017-12-12 Chevron U.S.A. Inc. System and methods for controlled fracturing in formations
CN103726820A (zh) * 2014-01-20 2014-04-16 甘孜州康盛地热有限公司 一种地热脉冲压力波压裂系统及压裂方法
CN104061014B (zh) * 2014-07-07 2016-03-02 太原理工大学 一种基于高压电脉冲的煤层增透实验装置
CN105370257B (zh) 2015-11-06 2018-09-14 中国矿业大学 一种煤层气井高功率电爆震辅助水力压裂增产方法
CN106053169A (zh) * 2016-05-24 2016-10-26 山西大同大学 冲击波增渗煤层模拟实验的试件及基于其完成的实验方法
CN106285608A (zh) * 2016-10-28 2017-01-04 中国矿业大学 一种煤层气井脉冲爆震致裂增渗方法
CN106593388B (zh) * 2016-12-22 2019-02-22 中国矿业大学 一种煤层气井电脉冲解堵增渗方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084638A (en) * 1975-10-16 1978-04-18 Probe, Incorporated Method of production stimulation and enhanced recovery of oil
CN104453827A (zh) * 2014-11-06 2015-03-25 中国矿业大学 一种高能电爆震提高煤层透气性的方法
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法
CN104863628A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种利用脉冲爆震波致裂增透掩护煤巷掘进方法
CN104832149A (zh) * 2015-05-16 2015-08-12 太原理工大学 一种电脉冲辅助水力压裂的非常规天然气储层增透方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109779610A (zh) * 2019-02-01 2019-05-21 西安闪光能源科技有限公司 基于可控冲击波技术的增透钻孔有效作用半径测定方法

Also Published As

Publication number Publication date
AU2016424227A1 (en) 2018-05-17
CN106285608A (zh) 2017-01-04
WO2018076737A1 (zh) 2018-05-03
AU2016424227B2 (en) 2019-05-16
US10858913B2 (en) 2020-12-08
US20200240246A1 (en) 2020-07-30
RU2683438C1 (ru) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2018076492A1 (zh) 一种煤层气井脉冲爆震致裂增渗方法
CN108222838B (zh) 一种电脉冲破岩钻头的破岩实验装置
US9951597B1 (en) Downhole coal seam pulse detonation wave directional fracturing permeability-increasing method
WO2018113227A1 (zh) 一种煤层气井电脉冲解堵增渗方法
CN104863628B (zh) 一种利用脉冲爆震波致裂增透掩护煤巷掘进方法
CN108397182B (zh) 电脉冲协同液氮冻融增透煤层的装置及方法
CN105370257B (zh) 一种煤层气井高功率电爆震辅助水力压裂增产方法
CN108361061B (zh) 低渗煤层电爆震及微波辅助液氮冻融增透装置及方法
CN105298462A (zh) 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
CN105952426B (zh) 一种基于液电脉冲激波的油井解堵增产装置
CN104832149A (zh) 一种电脉冲辅助水力压裂的非常规天然气储层增透方法
WO2021189660A1 (zh) 一种安全环保的岩石爆破装置及方法
CN205876286U (zh) 电磁高频脉冲解堵造缝增产工具
CN207988947U (zh) 一种电脉冲破岩钻头及其实验装置
CN104533514A (zh) 一种钻孔内热驱替式强化抽采方法
CN211777300U (zh) 一种井下大功率液电脉冲发生器
CN208168927U (zh) 低渗煤层电爆震及微波辅助液氮冻融增透装置
CN206816239U (zh) 一种页岩频谱共振储层的改造装置
CN105201477A (zh) 一种用于油页岩原位体积破碎定向造缝方法
CN209603968U (zh) 一种高温气体辅助涡流加热装置
CN208168859U (zh) 电脉冲协同液氮冻融增透煤层的装置
CN201915918U (zh) 一种油气井下液电压裂复合射孔装置
CN103352717A (zh) 一种提高煤层瓦斯/煤层气抽放率的方法
CN112648873B (zh) 一种干热岩高压脉冲复合水压致裂热储方法
CN108386168B (zh) 一种利用聚能脉冲进行稠油开采的设备及其使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018115666

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016424227

Country of ref document: AU

Date of ref document: 20161215

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920173

Country of ref document: EP

Kind code of ref document: A1