WO2018076132A1 - 波束测量的方法及装置 - Google Patents

波束测量的方法及装置 Download PDF

Info

Publication number
WO2018076132A1
WO2018076132A1 PCT/CN2016/103036 CN2016103036W WO2018076132A1 WO 2018076132 A1 WO2018076132 A1 WO 2018076132A1 CN 2016103036 W CN2016103036 W CN 2016103036W WO 2018076132 A1 WO2018076132 A1 WO 2018076132A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
signal strength
target
signal quality
Prior art date
Application number
PCT/CN2016/103036
Other languages
English (en)
French (fr)
Inventor
杨宁
林亚男
许华
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201680090359.XA priority Critical patent/CN109891764B/zh
Priority to KR1020197012749A priority patent/KR20190067196A/ko
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to MX2019004769A priority patent/MX2019004769A/es
Priority to JP2019521668A priority patent/JP2020502862A/ja
Priority to EP16919656.5A priority patent/EP3525359A4/en
Priority to PCT/CN2016/103036 priority patent/WO2018076132A1/zh
Priority to RU2019116095A priority patent/RU2720583C1/ru
Priority to AU2016427904A priority patent/AU2016427904B2/en
Priority to CA3041553A priority patent/CA3041553A1/en
Priority to US16/344,638 priority patent/US11108450B2/en
Priority to TW106130663A priority patent/TWI746631B/zh
Publication of WO2018076132A1 publication Critical patent/WO2018076132A1/zh
Priority to IL266225A priority patent/IL266225B2/en
Priority to PH12019500925A priority patent/PH12019500925A1/en
Priority to ZA2019/02824A priority patent/ZA201902824B/en
Priority to US17/390,355 priority patent/US20210359740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and apparatus for beam measurement.
  • the network side device to which the cell belongs is allocated a beam suitable for the terminal to transmit data, and the network side device may be based on the location of the terminal.
  • Information by adjusting the beamforming of the beam, thereby improving the signal quality and/or signal strength of the signal transmitted by the terminal.
  • the method for improving the quality of the terminal transmission signal by adjusting the beamforming only by the network side device increases the burden on the network side device.
  • the invention provides a method and a device for beam measurement, so as to reduce the quality of the transmission signal of the terminal and the burden of the network side device only by adjusting the beamforming of the network side device.
  • a method for beam measurement includes: the terminal performs measurement on the at least one beam according to the measurement configuration information, where the measurement configuration information is used to measure the at least one beam; and the terminal is configured according to the at least one The measurement result of the beam determines a target beam and/or a target cell, the target beam and/or the target cell being a beam and/or a cell that the terminal can camp on.
  • the method further includes: the terminal receiving the measurement configuration information sent by the network side device.
  • the at least one beam belongs to the same cell.
  • the target beam that can be camped on among the multiple beams in the cell is selected by the terminal according to the measurement result of the at least one beam in the same cell, thereby improving the quality of communication between the terminal and the network side device.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells respectively.
  • the target beam that can be camped on among multiple beams in multiple cells is selected by the terminal according to the measurement result of multiple beams in different cells, thereby improving the quality of communication between the terminal and the network side device.
  • the determining, by the terminal, the target beam and/or the target cell according to the measurement result of the at least one beam including And determining, by the terminal, the measurement result of the multiple cells according to the measurement result of the multiple beams; and determining, by the terminal, the target cell from the multiple cells according to the measurement result of the multiple cells.
  • the terminal determines the measurement result of the cell to which the beam belongs according to the measurement result of the beam, and selects multiple cells in the cell to transmit the cell with better signal quality as the target cell, and avoids determining the target cell based on the measurement result of only one beam. The case where the overall signal transmission quality of the target cell to which the selected target beam belongs is low.
  • the method further includes: the terminal, according to a measurement result of a beam in the target cell, The target beam is determined in a beam in the target cell.
  • the target beam is selected by the terminal in a cell with better overall signal quality in multiple beams in the cell, and the overall signal transmission quality of the target cell to which the target beam selected by the terminal belongs is avoided when the target cell is determined only according to the measurement result of a certain beam. Lower case.
  • the method further includes: determining, by the terminal, the at least one device according to the measurement result of the at least one beam Selecting a beam and/or at least one candidate cell, the at least one candidate beam and/or the at least one candidate cell being capable of camping when the target beam and/or the target cell are undetectable Beam and / or cell.
  • the candidate cell and/or the candidate beam are also determined, thereby improving the continuity of communication between the terminal and the network side device.
  • the determining, by the terminal, the target beam and/or the target cell according to the measurement result of the at least one beam including The terminal determines the target beam and/or the target cell based on signal strength and/or signal quality of the at least one beam transmission signal.
  • the terminal determines the target beam and/or the target cell according to signal strength and/or signal quality of the at least one beam transmission signal, including: the terminal transmitting a signal according to the at least one beam Signal strength and/or signal quality, determining a beam having the best signal strength and/or signal quality of the transmitted signal in the at least one beam, the signal strength and/or signal quality of the transmitted signal being the best beam as described Target beam.
  • the measurement configuration information includes at least one of the following information: a frequency priority, a first signal strength threshold a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold, wherein the frequency priority is used to indicate a frequency of a beam or a priority of a frequency of the cell, where the first signal strength threshold is used to indicate a minimum value of a signal strength of the beam transmission signal, the first signal quality threshold is used to indicate a minimum value of a signal quality of the beam transmission signal, and the second signal strength threshold is used to indicate a threshold value at which the terminal starts measuring the beam The second signal quality threshold is used to indicate a threshold value at which the terminal starts measuring the beam.
  • the terminal determines, according to a signal strength and/or a signal quality of the at least one beam transmission signal, a target beam and/or the target cell, comprising: the signal strength and/or signal quality of the signal transmitted by the terminal according to each of the at least one beam, and the first signal strength threshold and/or the a first signal quality threshold, the target beam and/or the target cell being determined.
  • the terminal transmits a signal strength and/or a signal according to each of the at least one beam.
  • Quality, and the first signal strength threshold and/or the first signal quality threshold determining the target beam and/or the target cell, including: the signal strength of the terminal according to the at least one beam transmission signal And/or signal quality, and the first signal strength threshold and/or the first signal quality threshold, determining a set of cells and/or a set of beams; the terminal determining transmissions from the set of cells or the set of beams
  • the cell/or beam with the best signal strength and/or signal quality of the signal is the target cell or target beam.
  • the terminal according to the signal strength and/or signal quality of the at least one beam transmission signal, and the first Determining the target beam and/or the target cell, the signal strength threshold and/or the first signal quality threshold, including: the signal strength of the terminal according to the at least one beam transmission signal Degree and/or signal quality, and the first signal strength threshold and/or the first signal quality threshold, determining a set of cells or a set of beams; the terminal sorting cells in the set of cells according to criteria, and Determining the target cell according to the sorting result, or the terminal sorts the beams in the beam set according to the criterion, and determines the target beam according to the sorting result.
  • the terminal according to the signal strength and/or signal quality of the at least one beam transmission signal, and the first a signal strength threshold and/or a first signal quality threshold, determining the target beam and/or the target cell, comprising: the signal strength and/or signal quality of the terminal according to the at least one beam transmission signal, and the Determining a set of cells or a set of beams by a first signal strength threshold and/or the first signal quality threshold; the terminal determining the target beam or the target from the set of cells or the set of beams according to a frequency priority A cell, the frequency priority is used to indicate a frequency priority of a frequency of a cell or a frequency priority of a frequency of a beam.
  • the method before the determining, by the terminal, the measurement result of the at least one beam, the method further includes: the terminal Determining that a signal strength and/or signal quality of a cell transmission signal serving the terminal is lower than a second signal strength and/or a second signal quality threshold; or determining, by the terminal, a signal strength of a beam transmission signal served by the terminal And/or the signal quality is lower than the second signal strength and/or the second signal quality threshold.
  • the terminal receives measurement configuration information of each of the at least one beam sent by the network side device,
  • the method includes: receiving, by the terminal, dedicated signaling sent by a network side device, where the dedicated signaling includes measurement configuration information of each of the at least one beam.
  • the terminal receives measurement configuration information of each of the at least one beam sent by the network side device,
  • the method includes: receiving, by the terminal, system information sent by a network side device, where the system information includes measurement configuration information of each of the at least one beam.
  • a second aspect provides a method for beam measurement, including: a network side device transmitting measurement configuration information of at least one beam to a terminal, where the measurement configuration information is used to measure a beam; and the network side device passes the target beam And/or the target cell transmitting information, the target beam and/or the target cell measuring, by the terminal, the at least one beam according to the measurement configuration information of the at least one beam, and according to the at least one beam Determined by the measurement result
  • the standard beam and/or the target cell are beams and/or cells that the terminal can camp on.
  • the at least one beam belongs to the same cell.
  • the target beam that can be camped on among the multiple beams in the cell is selected by the terminal according to the measurement result of the at least one beam in the same cell, thereby improving the quality of communication between the terminal and the network side device.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells respectively.
  • the target beam that can be camped on among multiple beams in multiple cells is selected by the terminal according to the measurement result of multiple beams in different cells, thereby improving the quality of communication between the terminal and the network side device.
  • the measurement configuration information includes at least one of the following information: a frequency priority, a first signal strength threshold a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold, wherein the frequency priority is used to indicate a frequency of a beam or a priority of a frequency of the cell, where the first signal strength threshold is used to indicate a minimum value of a signal strength of the beam transmission signal, the first signal quality threshold is used to indicate a minimum value of a signal quality of the beam transmission signal, and the second signal strength threshold is used to indicate a threshold value at which the terminal starts measuring the beam The second signal quality threshold is used to indicate a threshold value at which the terminal starts measuring the beam.
  • the network side device sends the measurement configuration information of the at least one beam to the terminal, including: the network The side device sends dedicated signaling to the terminal, and the dedicated signaling includes measurement configuration information of the at least one beam.
  • the network side device sends the measurement configuration information of the at least one beam to the terminal, including: the network The side device sends system information to the terminal, and the system information includes measurement configuration information of the at least one beam.
  • an apparatus for beam measurement comprising means for performing the method of the first aspect.
  • an apparatus for beam measurement comprising means for performing the method of the second aspect.
  • an apparatus for beam measurement comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the first aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • an apparatus for beam measurement comprising: a memory, a processor, an input/output interface, a communication interface, and a bus system.
  • the memory, the processor, the input/output interface, and the communication interface are connected by a bus system for storing instructions for executing instructions stored by the memory, and when the instructions are executed, the processor passes The communication interface performs the method of the second aspect, and controls the input/output interface to receive input data and information, and output data such as an operation result.
  • a computer readable storage medium for storing program code for transmitting a search request, the program code for executing the method instructions of the first aspect.
  • a computer readable storage medium for storing program code for transmitting a search request, the program code for performing the method instructions of the second aspect.
  • FIG. 1 is a schematic diagram showing an application scenario of a method for beam measurement according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an application scenario of a method of beam measurement according to another embodiment of the present invention.
  • FIG. 3 shows a schematic flow chart of a method of beam measurement according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart showing a method of beam measurement according to another embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • FIG. 6 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • FIG. 7 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • FIG. 8 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • NR 5G New Radio
  • a terminal may be referred to as a terminal device or a user equipment (User Equipment, UE), which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., and may be accessed via a wireless access network (for example, The Radio Access Network (RAN) communicates with one or more core networks, which may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • UE User Equipment
  • Mobile Terminal mobile terminal
  • the Radio Access Network communicates with one or more core networks, which may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized , handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (APCESS POINT, AP) in the WLAN, GSM or Code Division Multiple Access (CDMA).
  • Base station Base Transceiver Station, BTS
  • BTS Base Transceiver Station
  • Node B, NB base station
  • a relay station or an access point or an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • FIG. 1 is a schematic diagram showing an application scenario of a method for beam measurement according to an embodiment of the present invention. It can be seen from the application scenario shown in FIG. 1 that one channel can exist for control channel transmission. Signaling beam (not shown in Figure 1), there may be multiple beams for data channel transmission (see beam 1 and beam 2 in Figure 1), that is, one cell within the cell can be used for control The "wide beam" of channel transmission signaling covers the entire cell, and the entire cell can be covered by a plurality of "narrow beams" for data channel transmission signaling.
  • FIG. 2 is a schematic diagram showing an application scenario of a method of beam measurement according to another embodiment of the present invention. It can be seen from the application scenario shown in FIG. 2 that there may be multiple “narrow beams” for controlling channel transmission control signaling in one cell (see beam 1 and beam 2 shown in FIG. 2 ). There may also be a plurality of "narrow beams” for data channel transmission data (see beam 3 and beam 4 shown in Figure 2).
  • the terminal 1 can perform control signaling interaction with the network side device through the beam 2, the terminal 1 can transmit data through the beam 3 and the network side device, and the terminal 2 can perform control signaling interaction with the network side device through the beam 1 , and the terminal 2 can Data is transmitted through the beam 4 and the network side device.
  • the terminal when the terminal performs signaling interaction with the base station in the idle state, the terminal can perform signaling interaction with the network side device through a “narrow beam” for controlling channel transmission control signaling.
  • the terminal can also perform data transmission with the network side device through a "narrow beam” for transmitting data on the data channel.
  • the beam for controlling channel transmission control signaling between the terminal and the network side device, and the beam for transmitting data between the terminal and the network side device for the data channel may be the same or different beams, which should be understood. 2
  • the difference between the beam for the control channel transmission control signaling between the terminal and the network side device and the beam for the data channel transmission data between the terminal and the network side device are taken as an example.
  • the high shaping gain of the "narrow beam” relative to the “wide beam” can be utilized to improve the signal quality and/or signal strength of the transmitted signal between the terminal and the network side device.
  • FIG. 3 shows a schematic flow chart of a method of beam measurement according to an embodiment of the present invention. It should be understood that the method shown in FIG. 3 can be used in the application scenarios shown in FIG. 1 and FIG. 2, and can be applied to other application scenarios, which is not specifically limited in this embodiment of the present invention.
  • the method shown in Figure 3 includes:
  • the terminal performs measurement on the at least one beam according to the measurement configuration information, where the measurement configuration information is used to perform measurement on the at least one beam.
  • the at least one beam may be a beam for controlling channel transmission signaling, and/or a beam for data channel transmission.
  • the beam for controlling channel transmission signaling may be the same beam as the beam for data channel transmission, and the beam for controlling channel transmission signaling may be different from the beam for data channel transmission. Beam.
  • the terminal may be a terminal in an idle state, and may refer to a non-access stratum (NAS) or an access layer (Access Stratum) between the terminal and the network side device.
  • NAS non-access stratum
  • Access Stratum access layer
  • the at least one beam may correspond to one measurement configuration information.
  • at least one beam measured by the terminal may include beam 1, beam 2, and beam 3, and the beam 1, beam 2, and beam 3 may correspond to one measurement configuration information. That is, the measurement configuration information may include the beam ID of the beam 1, the beam ID of the beam 2, and the beam ID of the beam 3. If the measurement configuration information is at least one measurement configuration information, the at least one beam and the at least one measurement configuration The information may be a one-to-one correspondence, that is, each measurement configuration information may include a beam ID of a beam to be measured.
  • the at least one beam may belong to the same cell, and the at least one beam may also belong to different cells.
  • a part of the at least one beam may belong to one cell (for example, a first cell), and beams other than the beam belonging to the first cell in the at least one beam may belong to another One cell (eg, a second cell).
  • the first cell may be a neighboring cell of the second cell.
  • the measurement configuration information may include a measurement ID corresponding to a measurement object identifier (for example, a beam ID), a measurement amount configuration configured to indicate a measurement quantity, a frequency priority, and a frequency priority.
  • a priority indicating a frequency of the beam or a frequency of the cell;
  • a second signal strength threshold is used to indicate a threshold at which the terminal starts measuring the beam;
  • the second signal quality threshold is used for the second signal quality threshold A threshold value indicating that the terminal starts measuring the beam.
  • the measurement configuration information is measurement configuration information used for beam measurement, and similar to the measurement configuration information measured by the cell in the prior art, the information content of the cell included in the cell measurement configuration information may be configured as a beam. Related information content.
  • the serving cell quality threshold in the measurement configuration information of the cell may be configured as a serving beam quality threshold.
  • the foregoing measurement configuration information may further include configuration information related to beamforming.
  • the measurement configuration information may include information such as an antenna port number of the transmit beam.
  • the terminal determines, according to the measurement result of the at least one beam, a target beam and/or a target cell, where the target beam and/or the target cell is a beam and/or a cell that the terminal can camp on.
  • each of the beams corresponds to a cell, and after determining the target beam that can be camped on, the terminal determines the cell to which the beam belongs, and the cell is the target cell.
  • the measurement result of the at least one beam may refer to the measurement result of each of the at least one beam in the one measurement result, and may also refer to the one-to-one correspondence between the at least one beam and the at least one measurement result, which is not specifically limited by the present invention.
  • the method shown in FIG. 3 further includes: the terminal receiving the measurement configuration information sent by the network side device.
  • measurement configuration information may be sent by the network side device to the terminal, or may be measurement configuration information in the measurement configuration database maintained by the terminal.
  • the manner in which the terminal obtains measurement configuration information is not specifically limited in this embodiment of the present invention.
  • the terminal receives measurement configuration information of each of the at least one beam sent by the network side device, where the terminal receives the dedicated signaling sent by the network side device, where the dedicated signaling includes the Measurement configuration information for each of at least one of the beams.
  • the terminal receives measurement configuration information of each of the at least one beam sent by the network side device, where the terminal receives system information sent by the network side device, where the system information includes the at least one Measurement configuration information for each of the beams.
  • the determining, by the terminal, the target beam and/or the target cell according to the measurement result of the at least one beam including: determining, by the terminal, the multiple according to the measurement result of the multiple beams The measurement result of the cells; the terminal determines the target cell from the plurality of cells according to the measurement result of the multiple cells.
  • the measurement result of the foregoing multiple cells is determined based on the measurement result of the beam in the cell, and may be a measurement result of the cell obtained by weighted averaging or averaging the measurement results of the multiple beams in the cell; It may refer to a cell in which the measurement result of the first beam measured by the terminal meets the beam of the preset threshold when the terminal measures the beam, (the policy is only applicable to the terminal selecting the target cell for the first time); After the measurement is performed, the cell in which the best beam is measured is the target cell. The terminal may determine that the beam measurement result satisfies the threshold percentage or the cell with the largest absolute number is the target cell. It should be understood that the manner in which the measurement result of the cell is determined from the measurement results of the multiple beams is not specifically limited in the embodiment of the present invention.
  • the measurement result of the cell 1 is Q 1 , Q 2 , Q 3 , ..., Q n .
  • the measurement results corresponding to the n beams in the cell 1 are Q 1 , Q 2 , Q 3 ... Q n , respectively, and the measurement result of the cell 1 is Where a 1 , a 2 , a 3 ... a n represent the weighted weight of each beam in the cell 1.
  • weighting weight may be configured by the network side device for the terminal, or may be maintained by the terminal itself, which is not specifically limited by the present invention.
  • the method further includes: determining, by the terminal, the target beam from a beam in the target cell according to a measurement result of a beam in the target cell.
  • the terminal may select a beam with the best beam measurement result in the target cell as the target beam, and may randomly select one beam as the target beam in multiple beams whose measurement result is higher than the measurement threshold.
  • one beam can be randomly selected from the target cell as the target beam, which is not specifically limited in this embodiment of the present invention.
  • the method further includes: determining, by the terminal, the at least one candidate beam and/or the at least one candidate cell according to the measurement result of the at least one beam, the at least one candidate beam And/or at least one candidate cell is a beam and/or cell that the terminal can camp on when the target beam and/or the target cell cannot be detected.
  • the determining, by the terminal, the target beam and/or the target cell according to the measurement result of the at least one beam including: the terminal according to the signal strength of the at least one beam transmission signal and/or Signal quality, determining the target beam and/or the target cell.
  • the measurement result of the above beam may refer to the signal strength and/or signal quality of the beam transmission signal, and may also refer to the signal strength and/or signal quality of the processed beam transmission signal.
  • the measurement result of the beam may refer to the beam.
  • the signal strength and/or signal quality of the transmitted signal is added with an offset amount or the like, and the present invention does not limit the specific presentation form of the measurement result.
  • the terminal determines the target beam and/or the target cell according to signal strength and/or signal quality of the at least one beam transmission signal, including: the terminal according to the Determining a signal strength and/or a signal quality of the at least one beam transmission signal, determining a beam having the best signal strength and/or signal quality of the transmitted signal in the at least one beam, the signal strength and/or signal quality of the transmission signal being best The beam is the target beam.
  • the terminal determines the target beam and/or the target cell according to signal strength and/or signal quality of the at least one beam transmission signal, including: the terminal according to the Determining the target beam and the signal strength and/or signal quality of each of the at least one beam, and a first signal strength threshold and/or a first signal quality threshold / or the target cell.
  • first signal strength threshold and/or the first signal quality threshold may be preset, or the network side device may be configured by the terminal, and the first signal strength threshold and/or the first signal quality threshold may also be The network side device is sent to the terminal by using the measurement configuration information, which is not specifically limited in the present invention.
  • the terminal determines the target beam and according to a signal strength and/or a signal quality of the at least one beam transmission signal, and a first signal strength threshold and/or a first signal quality threshold.
  • the target cell comprising: the terminal determining the cell according to the signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the first signal quality threshold a set or a set of beams; the terminal determines the target cell from the set of cells according to a cell priority, or the terminal determines the target beam from the set of beams according to a beam priority.
  • the terminal determines the target beam and according to a signal strength and/or a signal quality of the at least one beam transmission signal, and a first signal strength threshold and/or a first signal quality threshold.
  • the target cell comprising: the terminal determining the cell according to the signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the first signal quality threshold a set or a set of beams; the terminal determining the target beam or the target cell from the set of cells or the set of beams according to a frequency priority, the frequency priority being used to indicate a frequency priority of a frequency of a cell or The frequency priority of the frequency of the beam.
  • the terminal transmits a signal strength and/or a signal quality of the signal according to each of the at least one beam, and the first signal strength threshold and/or the first signal. Determining, by the quality threshold, the target beam and/or the target cell, comprising: the signal strength and/or signal quality of the terminal according to the at least one beam transmission signal, and the first signal strength threshold and/or Determining a first signal quality threshold, determining a cell set or a beam set; the terminal determining, from the set of cells or the set of beams, a cell/or beam with a best signal strength and/or signal quality of a transmission signal as a target cell or Target beam.
  • the method before the determining, by the terminal, the measurement result of the at least one beam, the method further includes: determining, by the terminal, a signal strength and/or a signal quality of a cell transmission signal served by the terminal Lower than the second signal strength and/or the second signal quality threshold; or the terminal determines that the signal strength and/or signal quality of the beam transmission signal served by the terminal is lower than the second signal strength and/or the second signal quality Threshold.
  • the foregoing second signal strength threshold and/or the second signal quality threshold may be preset, or the network side device may be configured for the terminal, and the second signal strength threshold and/or the second signal quality threshold may also be The network side device is sent to the terminal by using the measurement configuration information, which is not specifically limited in the present invention.
  • FIG. 4 is a schematic flow chart showing a method of beam measurement according to another embodiment of the present invention. It should be understood that the method shown in FIG. 4 corresponds to the method shown in FIG. 3. For the sake of brevity, specific details are not described herein again.
  • the method shown in Figure 4 includes:
  • the network side device sends measurement configuration information of the at least one beam to the terminal, where the measurement configuration information is used to measure the beam.
  • the network side device sends information by using the target beam and/or the target cell, where the target beam and/or the target cell is the at least one of the terminal according to the measurement configuration information of the at least one beam.
  • the beam is measured and determined based on the measurement of the at least one beam, the target beam and/or the target cell being a beam and/or a cell that the terminal can camp on.
  • the network side device sending the information by using the target beam and/or the target cell may refer to that the network side device sends the information by using the target beam and/or the target cell in a broadcast manner, and may also refer to that the network side device passes the The target beam and/or the target cell send information to the terminal, and may also refer to that the network side device communicates with the terminal by using the target beam and/or the target cell.
  • the at least one beam belongs to the same cell.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells.
  • the measurement configuration information includes at least one of the following: a frequency priority, a first signal strength threshold, a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold.
  • the frequency priority is used to indicate a frequency of a beam or a frequency of a cell
  • the first signal strength threshold is used to indicate a minimum value of a signal strength of a beam transmission signal
  • the first signal quality threshold is used.
  • indicating a minimum value of a signal quality of the beam transmission signal where the second signal strength threshold is used to indicate a threshold value for the terminal to start measuring the beam, and the second signal quality threshold is used to indicate that the terminal starts to measure the beam. Threshold.
  • the network side device sends the measurement configuration information of the at least one beam to the terminal, where the network side device sends the dedicated signaling to the terminal, where the dedicated signaling includes Measuring configuration information of at least one beam.
  • the network side device sends at least one wave to the terminal.
  • the measurement configuration information of the bundle includes: the network side device sending system information to the terminal, where the system information includes measurement configuration information of the at least one beam.
  • FIG. 5 and FIG. 7 can implement the various steps in FIG. 3.
  • FIG. 6 and FIG. 8 can implement the various steps in FIG. 4. To avoid repetition, details are not described herein again.
  • FIG. 5 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • the apparatus 500 shown in FIG. 5 includes a measurement module 510 and a first determination module 520.
  • the measuring module 510 is configured to measure at least one beam according to the measurement configuration information, where the measurement configuration information is used to measure the at least one beam;
  • a first determining module 520 configured to determine, according to the measurement result of the at least one beam, a target beam and/or a target cell, where the target beam and/or the target cell is a beam and/or the target cell can reside Community.
  • the device further includes: a receiving module, configured to receive the measurement configuration information sent by the network side device.
  • the at least one beam belongs to the same cell.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells.
  • the first determining module is specifically configured to: determine, according to the measurement result of the multiple beams, a measurement result of the multiple cells; according to the measurement result of the multiple cells, Determining the target cell in the plurality of cells.
  • the apparatus further includes: a second determining module, configured to determine the target beam from a beam in the target cell according to a measurement result of a beam in the target cell.
  • a second determining module configured to determine the target beam from a beam in the target cell according to a measurement result of a beam in the target cell.
  • the apparatus further includes: a third determining module, configured to determine, according to the measurement result of the at least one beam, at least one candidate beam and/or at least one candidate cell, where the at least one candidate cell An alternate beam and/or at least one candidate cell is a beam and/or cell that the terminal can camp on when the target beam and/or the target cell are undetectable.
  • a third determining module configured to determine, according to the measurement result of the at least one beam, at least one candidate beam and/or at least one candidate cell, where the at least one candidate cell An alternate beam and/or at least one candidate cell is a beam and/or cell that the terminal can camp on when the target beam and/or the target cell are undetectable.
  • the first determining module is specifically configured to: determine the target beam and/or the target cell according to signal strength and/or signal quality of the at least one beam transmission signal.
  • the first determining module is further configured to: determine, according to signal strength and/or signal quality of the at least one beam transmission signal, a signal strength of the transmitted signal in the at least one beam / or beam of the best signal quality, the beam with the best signal strength and / or signal quality of the transmitted signal is the target beam.
  • the measurement configuration information includes at least one of the following: a frequency priority, a first signal strength threshold, a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold.
  • the frequency priority is used to indicate a frequency of a beam or a frequency of a cell
  • the first signal strength threshold is used to indicate a minimum value of a signal strength of a beam transmission signal
  • the first signal quality threshold is used.
  • indicating a minimum value of a signal quality of the beam transmission signal where the second signal strength threshold is used to indicate a threshold value for the terminal to start measuring the beam, and the second signal quality threshold is used to indicate that the terminal starts to measure the beam. Threshold.
  • the first determining module is further configured to: according to signal strength and/or signal quality of each of the at least one beam, and the first signal strength threshold And/or the first signal quality threshold, determining the target beam and/or the target cell.
  • the first determining module is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the a first signal quality threshold, determining a set of cells and/or a set of beams; determining, from the set of cells or the set of beams, a cell/or beam having a best signal strength and/or signal quality of the transmitted signal as a target cell or a target beam .
  • the first determining module is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the a first signal quality threshold, determining a cell set or a beam set; sorting cells in the cell set according to a criterion, determining the target cell according to the sorting result, or sorting beams in the beam set according to a criterion, And determining the target beam according to the sorting result.
  • the first determining module is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the a signal quality threshold, determining a set of cells or a set of beams; determining the target beam or the target cell from the set of cells or the set of beams according to a frequency priority, wherein the frequency priority is used to indicate a frequency of a cell Frequency priority of the frequency priority or the frequency of the beam.
  • the apparatus further includes: a fourth determining module, configured to determine The signal strength and/or signal quality of the cell transmission signal serving the terminal is lower than the second signal strength and/or the second signal quality threshold; or the fourth determining module is further configured to determine that the terminal is serving The signal strength and/or signal quality of the beam transmission signal is lower than the second signal strength and/or the second signal quality threshold.
  • a fourth determining module configured to determine The signal strength and/or signal quality of the cell transmission signal serving the terminal is lower than the second signal strength and/or the second signal quality threshold
  • the fourth determining module is further configured to determine that the terminal is serving The signal strength and/or signal quality of the beam transmission signal is lower than the second signal strength and/or the second signal quality threshold.
  • the receiving module is specifically configured to: receive dedicated signaling sent by the network side device, where the dedicated signaling includes measurement configuration information of each of the at least one beam.
  • the receiving module is further configured to: receive system information sent by the network side device, where the system information includes measurement configuration information of each of the at least one beam.
  • FIG. 6 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • the apparatus 600 shown in FIG. 6 includes a first transmitting module 610 and a communication module 620.
  • a first sending module 610 configured to send, to the terminal, measurement configuration information of at least one beam, where the measurement configuration information is used to measure a beam;
  • the communication module 620 is configured to send information by using the target beam and/or the target cell, where the target beam and/or the target cell is the at least one beam of the terminal according to the measurement configuration information of the at least one beam.
  • the measurement is performed and determined according to the measurement result of the at least one beam, the target beam and/or the target cell being a beam and/or a cell that the terminal can camp on.
  • the at least one beam belongs to the same cell.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells.
  • the measurement configuration information includes at least one of the following: a frequency priority, a first signal strength threshold, a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold.
  • the frequency priority is used to indicate a frequency of a beam or a frequency of a cell
  • the first signal strength threshold is used to indicate a minimum value of a signal strength of a beam transmission signal
  • the first signal quality threshold is used.
  • indicating a minimum value of a signal quality of the beam transmission signal where the second signal strength threshold is used to indicate a threshold value for the terminal to start measuring the beam, and the second signal quality threshold is used to indicate that the terminal starts to measure the beam. Threshold.
  • the communications module is specifically configured to: send dedicated signaling to the terminal, where the dedicated signaling includes measurement configuration information of the at least one beam.
  • the communications module is further configured to: send to the terminal System information, the system information including measurement configuration information of the at least one beam.
  • FIG. 7 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • the apparatus 700 for data transmission shown in FIG. 7 includes a memory 710, a processor 720, an input/output interface 730, a communication interface 740, and a bus system 750.
  • the memory 710, the processor 720, the input/output interface 730, and the communication interface 740 are connected by a bus system 750 for storing instructions for executing instructions stored in the memory 720 to control input/
  • the output interface 730 receives the input data and information, outputs data such as an operation result, and controls the communication interface 740 to transmit a signal.
  • the processor 720 is configured to measure, according to the measurement configuration information, the at least one beam, where the measurement configuration information is used to perform measurement on the at least one beam;
  • the processor 720 is further configured to determine, according to the measurement result of the at least one beam, a target beam and/or a target cell, where the target beam and/or the target cell is a beam and/or the terminal can reside. Or community.
  • the processor 720 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 740 enables communication between device 700 for signal detection and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 710 can include read only memory and random access memory and provides instructions and data to the processor 720.
  • a portion of processor 720 can also include a non-volatile random access memory.
  • the processor 720 can also store information of the device type.
  • the bus system 750 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 750 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 720 or an instruction in a form of software.
  • the steps of the method for beam measurement disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 710, and the processor 720 reads the information in the memory 710.
  • the steps of the above method are completed in combination with the hardware. To avoid repetition, it will not be described in detail here.
  • the communications interface is configured to receive the measurement configuration information sent by the network side device.
  • the at least one beam belongs to the same cell.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells.
  • the processor is specifically configured to: determine, according to the measurement result of the multiple beams, a measurement result of the multiple cells; according to the measurement result of the multiple cells, from the The target cell is determined in a plurality of cells.
  • the processor is configured to determine the target beam from a beam in the target cell according to a measurement result of a beam in the target cell.
  • the apparatus further includes: a third determining module, configured to determine, according to the measurement result of the at least one beam, at least one candidate beam and/or at least one candidate cell, where the at least one candidate cell An alternate beam and/or at least one candidate cell is a beam and/or cell that the terminal can camp on when the target beam and/or the target cell are undetectable.
  • a third determining module configured to determine, according to the measurement result of the at least one beam, at least one candidate beam and/or at least one candidate cell, where the at least one candidate cell An alternate beam and/or at least one candidate cell is a beam and/or cell that the terminal can camp on when the target beam and/or the target cell are undetectable.
  • the processor is specifically configured to determine the target beam and/or the target cell according to signal strength and/or signal quality of the at least one beam transmission signal.
  • the processor is further configured to: determine, according to signal strength and/or signal quality of the at least one beam transmission signal, a signal strength of the transmission signal in the at least one beam and/or The beam with the best signal quality, the beam with the best signal strength and/or signal quality of the transmitted signal being the target beam.
  • the measurement configuration information includes at least one of the following: a frequency priority, a first signal strength threshold, a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold.
  • the frequency priority is used to indicate a frequency of a beam or a frequency of a cell
  • the first signal strength threshold is used to indicate a minimum value of a signal strength of a beam transmission signal
  • the first signal quality threshold is used.
  • indicating a minimum value of a signal quality of the beam transmission signal where the second signal strength threshold is used to indicate a threshold value for the terminal to start measuring the beam, and the second signal quality threshold is used to indicate that the terminal starts to measure the beam. Threshold.
  • the processor is further configured to: according to signal strength and/or signal quality of each of the at least one beam, and the first signal strength The threshold and/or the first signal quality threshold determines the target beam and/or the target cell.
  • the processor is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the first a signal quality threshold, determining a set of cells and/or a set of beams; determining, from the set of cells or the set of beams, a cell/or beam whose signal strength and/or signal quality of the transmitted signal is best is a target cell or a target beam.
  • the processor is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the first a signal quality threshold, determining a cell set or a beam set; sorting cells in the cell set according to a criterion, and determining the target cell according to the sorting result, or sorting beams in the beam set according to a criterion, and according to the The sorting result determines the target beam.
  • the processor is further configured to: according to signal strength and/or signal quality of the at least one beam transmission signal, and the first signal strength threshold and/or the first signal a quality threshold, determining a set of cells or a set of beams; determining the target beam or the target cell from the set of cells or the set of beams according to a frequency priority, wherein the frequency priority is used to indicate a frequency priority of a frequency of the cell The frequency priority of the frequency of the stage or beam.
  • the processor is further configured to determine that a signal strength and/or a signal quality of a cell transmission signal serving the terminal is lower than a second signal strength and/or a second signal quality threshold; or
  • the fourth determining module is further configured to determine that a signal strength and/or a signal quality of a beam transmission signal serving the terminal is lower than a second signal strength and/or a second signal quality threshold.
  • the communications interface is specifically configured to: receive dedicated signaling sent by the network side device, where the dedicated signaling includes measurement configuration information of each of the at least one beam.
  • the communications interface is further configured to: receive system information sent by the network side device, where the system information includes measurement configuration information of each of the at least one beam.
  • FIG. 8 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • FIG. 8 shows a schematic block diagram of an apparatus for beam measurement according to an embodiment of the present invention.
  • the apparatus 800 for data transmission shown in FIG. 8 includes a memory 810, a processor 820, an input/output interface 830, a communication interface 840, and a bus system 850.
  • the memory 810, the processor 820, the input/output interface 830, and the communication interface 840 are connected by a bus system 850 for storing instructions for the processor.
  • the 820 is configured to execute instructions stored by the memory 820 to control the input/output interface 830 to receive input data and information, output data such as operation results, and control the communication interface 840 to transmit signals.
  • a communication interface 840 configured to send, to the terminal, measurement configuration information of the at least one beam, where the measurement configuration information is used to measure the beam;
  • the communication interface 840 is further configured to send information by using the target beam and/or the target cell, where the target beam and/or the target cell is the measurement configuration information of the terminal according to the at least one beam.
  • the at least one beam is measured and determined according to the measurement result of the at least one beam, the target beam and/or the target cell being a beam and/or a cell that the terminal can camp on.
  • the processor 820 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • the integrated circuit is used to implement the related program to implement the technical solution provided by the embodiment of the present invention.
  • communication interface 840 enables communication between device 800 for signal detection and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 810 can include read only memory and random access memory and provides instructions and data to the processor 820.
  • a portion of processor 820 may also include a non-volatile random access memory.
  • the processor 820 can also store information of the device type.
  • the bus system 850 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 850 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 820 or an instruction in a form of software.
  • the steps of the method for beam measurement disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 810, and the processor 820 reads the information in the memory 810 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the at least one beam belongs to the same cell.
  • the at least one beam is multiple beams, and the multiple beams belong to multiple cells.
  • the measurement configuration information includes at least one of the following: a frequency priority, a first signal strength threshold, a first signal quality threshold, a second signal strength threshold, and a second signal quality threshold.
  • the frequency priority is used to indicate a frequency of a beam or a frequency of a cell
  • the first signal strength threshold is used to indicate a minimum value of a signal strength of a beam transmission signal
  • the first signal quality threshold is used.
  • indicating a minimum value of a signal quality of the beam transmission signal where the second signal strength threshold is used to indicate a threshold value for the terminal to start measuring the beam, and the second signal quality threshold is used to indicate that the terminal starts to measure the beam. Threshold.
  • the communications module is specifically configured to: send dedicated signaling to the terminal, where the dedicated signaling includes measurement configuration information of the at least one beam.
  • the communications module is further configured to: send system information to the terminal, where the system information includes measurement configuration information of the at least one beam.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present invention may be integrated in one processing unit. It is also possible that each unit physically exists alone, or two or more units may be integrated in one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种波束测量的方法和装置,包括:终端根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。通过终端根据至少一个波束的测量结果,确定可以驻留的目标波束和/或目标小区,从而无需网络侧设备为该终端确定可以驻留的目标波束和/或目标小区,以减轻网络侧设备的负担。

Description

波束测量的方法及装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及波束测量的方法及装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,终端在接入小区之后,该小区所属的网络侧设备为终端分配该终端适合的用于传输数据的波束,该网络侧设备可以根据终端的位置信息,通过调整波束的波束赋形,从而提高终端传输信号的信号质量和/或信号强度。但是,当接入该网络侧设备的终端数量非常多,分布范围大,并且移动速度快时,仅通过网络侧设备调整波束赋形的提高终端传输信号的质量方法,会增加网络侧设备负担。
发明内容
本发明提供一种波束测量的方法及装置,以减少网络侧设备仅通过调整波束赋形提高终端传输信号质量,网络侧设备负担。
第一方面,提供一种波束测量的方法,包括:终端根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
通过终端根据至少一个波束的测量结果,确定可以驻留的目标波束和/或目标小区,从而无需网络侧设备为该终端确定可以驻留的目标波束和/或目标小区,以减轻网络侧设备的负担。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:所述终端接收网络侧设备发送的所述测量配置信息。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述至少一个波束属于相同的小区。
通过终端根据相同小区中至少一个波束的测量结果,在该小区中的多个波束中选择可以驻留的目标波束,从而提高终端与网络侧设备间通信的质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的 实现方式中,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
通过终端根据不同小区中的多个波束的测量结果,在多个小区中的多个波束中选择可以驻留的目标波束,从而提高终端与网络侧设备间通信的质量。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:所述终端根据所述多个波束的测量结果,确定所述多个小区的测量结果;所述终端根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
通过终端根据波束的测量结果确定波束所属小区的测量结果,选择小区中的多个波束整体传输信号质量较好的小区作为目标小区,避免了仅根据某个波束的测量结果确定目标小区时,终端选择的目标波束所属的目标小区的整体信号传输质量较低的情况。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述方法还包括:所述终端根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
通过终端在小区内多个波束整体传输信号质量较好的小区内选择目标波束,避免了仅根据某个波束的测量结果确定目标小区时,终端选择的目标波束所属的目标小区的整体信号传输质量较低的情况。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述方法还包括:所述终端根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
通过终端确定目标小区和/或目标波束时,也确定备选小区和/或备选波束,从而提高终端和网络侧设备之间通信的连续性。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的 实现方式中,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合和/或波束集合;所述终端从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强 度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;所述终端按照准则对所述小区集合中的小区进行排序,并根据排序结果确定所述目标小区,或所述终端按照准则对所述波束集合中的波束进行排序,并根据排序结果确定所述目标波束。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;所述终端根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端确定所述至少一个波束的测量结果之前,所述方法还包括:所述终端确定为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或所述终端确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:所述终端接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
结合第一方面或上述任一种可能的实现方式,在第一方面的一种可能的实现方式中,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:所述终端接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
第二方面,提供一种波束测量的方法,包括:网络侧设备向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量;所述网络侧设备通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目 标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
通过终端根据至少一个波束的测量结果,确定可以驻留的目标波束和/或目标小区,从而无需网络侧设备为该终端确定可以驻留的目标波束和/或目标小区,以减轻网络侧设备的负担。
结合第二方面,在第二方面的一种可能的实现方式中,所述至少一个波束属于相同的小区。
通过终端根据相同小区中至少一个波束的测量结果,在该小区中的多个波束中选择可以驻留的目标波束,从而提高终端与网络侧设备间通信的质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
通过终端根据不同小区中的多个波束的测量结果,在多个小区中的多个波束中选择可以驻留的目标波束,从而提高终端与网络侧设备间通信的质量。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述网络侧设备向所述终端发送至少一个波束的测量配置信息,包括:所述网络侧设备向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
结合第二方面或上述任一种可能的实现方式,在第二方面的一种可能的实现方式中,所述网络侧设备向所述终端发送至少一个波束的测量配置信息,包括:所述网络侧设备向所述终端发送系统信息,所述系统信息包括所述至少一个波束的测量配置信息。
第三方面,提供一种波束测量的装置,所述装置包括用于执行第一方面中的方法的模块。
第四方面,提供一种波束测量的装置,所述装置包括用于执行第二方面中的方法的模块。
第五方面,提供一种波束测量的装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第一方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第六方面,提供一种波束测量的装置,所述装置包括:存储器、处理器、输入/输出接口、通信接口和总线系统。其中,存储器、处理器、输入/输出接口和通信接口通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,当所述指令被执行时,所述处理器通过所述通信接口执行第二方面的方法,并控制输入/输出接口接收输入的数据和信息,输出操作结果等数据。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储发送搜索请求的方法的程序代码,所述程序代码用于执行第一方面中的方法指令。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储发送搜索请求的方法的程序代码,所述程序代码用于执行第二方面中的方法指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例的波束测量的方法的应用场景的示意图。
图2示出了本发明另一实施例的波束测量的方法的应用场景的示意图。
图3示出了本发明实施例的波束测量的方法的示意性流程图。
图4示出了本发明另一实施例的波束测量的方法的示意性流程图。
图5示出了本发明实施例的波束测量的装置的示意性框图。
图6示出了本发明实施例的波束测量的装置的示意性框图。
图7示出了本发明实施例的波束测量的装置的示意性框图。
图8示出了本发明实施例的波束测量的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE),5G新空口(New Radio,NR)等。
还应理解,终端(Terminal)可称之为终端设备或用户设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
还应理解,网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(ACCESS POINT,AP),GSM或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(Node B,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
为了便于理解,先介绍根据本发明实施例的波束测量的方法的应用场景。
图1示出了本发明实施例的波束测量的方法的应用场景的示意图。从图1所示的应用场景中可以看出,一个小区中可以存在一个用于控制信道传输 信令的波束(图1中未示出),可以存在多个用于数据信道传输数据的波束(参见图1中波束1和波束2),也就是说,该小区内可以通过一个用于控制信道传输信令的“宽波束”覆盖整个小区,可以通过多个用于数据信道传输信令的“窄波束”覆盖整个小区。
图2示出了本发明另一实施例的波束测量的方法的应用场景的示意图。从图2所示的应用场景中可以看出,一个小区中可以存在多个用于控制信道传输控制信令的“窄波束”(参见图2所示的波束1和波束2),该小区中还可以存在多个用于数据信道传输数据的“窄波束”(参见图2所示的波束3和波束4)。终端1可以通过波束2与网络侧设备进行控制信令的交互,终端1可以通过波束3与网络侧设备传输数据,终端2可以通过波束1与网络侧设备进行控制信令的交互,终端2可以通过波束4与网络侧设备传输数据。也就是说,终端在空闲态与基站进行信令交互时,可以通过用于控制信道传输控制信令的“窄波束”与网络侧设备进行信令交互。该终端还可以通过用于数据信道传输数据的“窄波束”与网络侧设备进行数据传输。其中,终端和网络侧设备之间用于控制信道传输控制信令的波束,和终端和网络侧设备之间用于数据信道传输数据的波束可以相同,也可以是不同的波束,应理解,图2仅以终端和网络侧设备之间用于控制信道传输控制信令的波束,和终端和网络侧设备之间用于数据信道传输数据的波束不同为例进行说明。
需要说明的是,可以利用“窄波束”相对于“宽波束”而言较高的赋形增益,提高终端和网络侧设备之间传输信号的信号质量和/或信号强度。
图3示出了本发明实施例的波束测量的方法的示意性流程图。应理解,图3所示的方法可以使用于图1和图2所示的应用场景,还可以适用于其他应用场景,本发明实施例对此不作具体限定。图3所示的方法包括:
310,终端根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量。
具体地,上述至少一个波束可以是用于控制信道传输信令的波束,和/或用于数据信道传输数据的波束。进一步地,上述用于控制信道传输信令的波束可以和用于数据信道传输数据的波束为相同的波束,上述用于控制信道传输信令的波束可以和用于数据信道传输数据的波束为不同的波束。
上述终端可以是处于空闲态的终端,可以指该终端和网络侧设备之间没有建立非接入层(Non-access stratum,NAS)或接入层(Access Stratum, AS)信令连接。
应理解,上述至少一个波束可以对应于一个测量配置信息,例如,终端测量的至少一个波束可以包括波束1、波束2和波束3,该波束1、波束2和波束3可以对应于一个测量配置信息,也就是说,该测量配置信息可以包含波束1的波束ID、波束2的波束ID和波束3的波束ID;若测量配置信息为至少一个测量配置信息时,上述至少一个波束和至少一个测量配置信息可以是一一对应的关系,也就是说,每个测量配置信息可以包含一个待测量波束的波束ID。
可选地,上述至少一个波束可以属于相同的小区,上述至少一个波束也可以分别属于不同的小区。
例如,至少一个波束包括多个波束时,该至少一个波束中的一部分波束可以属于一个小区(例如,第一小区),该至少一个波束中除属于第一小区中的波束外的波束可以属于另一个小区(例如,第二小区)。第一小区可以是第二小区的邻小区。
可选地,上述测量配置信息可以包括测量ID,该测量ID对应一个测量对象标识(例如,波束ID);测量量配置,该测量量配置用于指示测量量;频率优先级,频率优先级用于指示波束的频率或小区的频率的优先级;第二信号强度门限,第二信号强度门限用于指示终端开始对波束进行测量的门限值;第二信号质量门限,第二信号质量门限用于指示终端开始对波束进行测量的门限值。
需要说明的是,该测量配置信息是用于波束测量的测量配置信息,类似于现有技术中小区测量的测量配置信息,可以将小区测量配置信息中包含的小区相关的信息内容,配置为波束相关的信息内容。例如,可以将小区的测量配置信息中的服务小区质量门限配置为服务波束质量门限。
可选地,上述测量配置信息还可以包括波束赋形相关的配置信息,例如,该测量配置信息可以包括发射波束的天线端口号等信息。
320,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
具体地,每个波束对应于一个小区,终端确定了能够驻留的目标波束之后,也就确定了该波束属于的小区,该小区即为目标小区。
上述至少一个波束的测量结果,可以指该一个测量结果中包括至少一个波束中每个波束的测量结果,还可以指至少一个波束与至少一个测量结果一一对应,本发明对此不作具体限定。
可选地,作为一个实施例,图3所示的方法还包括:所述终端接收网络侧设备发送的所述测量配置信息。
应理解,上述测量配置信息可以是网络侧设备向终端发送的,还可以是终端维护的测量配置数据库中的测量配置信息。本发明实施例对于终端获取测量配置信息的方式不作具体限定。
可选地,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:所述终端接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
可选地,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:所述终端接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
可选地,作为一个实施例,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:所述终端根据所述多个波束的测量结果,确定所述多个小区的测量结果;所述终端根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
具体地,上述多个小区的测量结果是基于小区中的波束的测量结果确定的,可以指通过对该小区内的多个波束的测量结果进行加权平均或者平均后得到的小区的测量结果;还可以指终端在对波束进行测量时,该终端测量的第一个波束的测量结果满足预设门限的波束所在的小区,(该策略仅适用于终端初次选择目标小区);还可以指终端对波束进行测量后,测量结果最好的波束所在小区为目标小区;还可以指终端在对波束进行测量之后,确定波束测量结果满足门限的百分比数量或绝对数量最多的小区为目标小区。应理解,本发明实施例对从上述多个波束的测量结果确定小区的测量结果的方式不作具体限定。
例如,小区1中的n个波束对应的测量结果分别为Q1,Q2,Q3……Qn,则小区1的测量结果为
Figure PCTCN2016103036-appb-000001
小区1中的n个波束对应的测量结果分别为Q1,Q2,Q3……Qn,则小 区1的测量结果为
Figure PCTCN2016103036-appb-000002
其中,a1,a2,a3……an,表示小区1内每个波束的加权权重。
需要说明的是,上述加权权重可以是网络侧设备为终端配置的,还可以是终端自己维护的,本发明对此不作具体限定。
可选地,作为一个实施例,所述方法还包括:所述终端根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
具体地,上述终端在确定目标小区之后,可以选择该目标小区中波束测量结果最好的波束作为目标波束,还可以在测量结果高于测量结果门限的多个波束中随机选择一个波束作为目标波束,还可以直接从目标小区中随机选择一个波束作为目标波束,本发明实施例对此不作具体限定。
可选地,作为一个实施例,所述方法还包括:所述终端根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
可选地,作为一个实施例,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
应理解,上述波束的测量结果可以指波束传输信号的信号强度和/或信号质量,还可以指经过处理的波束传输信号的信号强度和/或信号质量,例如,为波束的测量结果可以指波束传输信号的信号强度和/或信号质量添加偏置量等,本发明对于测量结果的具体呈现形式不作限定。
可选地,作为一个实施例,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
可选地,作为一个实施例,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和 /或所述目标小区。
应理解,上述第一信号强度门限和/或第一信号质量门限可以是预设的,还可以是网络侧设备为终端配置的,该第一信号强度门限和/或第一信号质量门限还可以是网络侧设备通过测量配置信息发送至终端,本发明对此不作具体限定。
可选地,作为一个实施例,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;所述终端根据小区优先级从所述小区集合中确定所述目标小区,或所述终端根据波束优先级从所述波束集合中确定所述目标波束。
可选地,作为一个实施例,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;所述终端根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
可选地,作为一个实施例,所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;所述终端从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
可选地,作为一个实施例,所述终端确定所述至少一个波束的测量结果之前,所述方法还包括:所述终端确定为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或所述终端确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
应理解,上述第二信号强度门限和/或第二信号质量门限可以是预设的,还可以是网络侧设备为终端配置的,该第二信号强度门限和/或第二信号质量门限还可以是网络侧设备通过测量配置信息发送至终端,本发明对此不作具体限定。
图4示出了本发明另一实施例的波束测量的方法的示意性流程图。应理解,图4所示的方法和图3所示的方法相对应,为了简洁,具体细节在此不再赘述。图4所示的方法包括:
410,网络侧设备向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量。
420,所述网络侧设备通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
具体地,上述网络侧设备通过所述目标波束和/或目标小区发送信息可以指网络侧设备通过所述目标波束和/或目标小区以广播的方式发送信息,还可以指网络侧设备通过所述目标波束和/或目标小区向上述终端发送信息,还可以指网络侧设备通过所述目标波束和/或目标小区与上述终端进行通信。
可选地,作为一个实施例,所述至少一个波束属于相同的小区。
可选地,作为一个实施例,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
可选地,作为一个实施例,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
可选地,作为一个实施例,所述网络侧设备向所述终端发送至少一个波束的测量配置信息,包括:所述网络侧设备向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
可选地,作为一个实施例,所述网络侧设备向所述终端发送至少一个波 束的测量配置信息,包括:所述网络侧设备向所述终端发送系统信息,所述系统信息包括所述至少一个波束的测量配置信息。
上文结合图1至图4详细的说明了描述了本发明实施例的波束测量的方法,下面结合图5至图8详细描述本发明实施例的波束测量的装置。应理解,图5和图7所示的装置能够实现图3中的各个步骤,图6和图8所示的装置能够实现图4中的各个步骤,为避免重复,在此不再详细赘述。
图5示出了本发明实施例的波束测量的装置的示意性框图。图5所示的装置500包括:测量模块510和第一确定模块520。
测量模块510,用于根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;
第一确定模块520,用于根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
可选地,作为一个实施例,所述装置还包括:接收模块,用于接收网络侧设备发送的所述测量配置信息。
可选地,作为一个实施例,所述至少一个波束属于相同的小区。
可选地,作为一个实施例,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
可选地,作为一个实施例,所述第一确定模块具体用于:根据所述多个波束的测量结果,确定所述多个小区的测量结果;根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
可选地,作为一个实施例,所述装置还包括:第二确定模块,用于根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
可选地,作为一个实施例,所述装置还包括:第三确定模块,用于根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
可选地,作为一个实施例,所述第一确定模块具体用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
可选地,作为一个实施例,所述第一确定模块具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
可选地,作为一个实施例,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
可选地,作为一个实施例,所述第一确定模块具体还用于:根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区。
可选地,作为一个实施例,所述第一确定模块具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合和/或波束集合;从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
可选地,作为一个实施例,所述第一确定模块具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;按照准则对所述小区集合中的小区进行排序,并根据排序结果确定所述目标小区,或按照准则对所述波束集合中的波束进行排序,并根据排序结果确定所述目标波束。
可选地,作为一个实施例,所述第一确定模块还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
可选地,作为一个实施例,所述装置还包括:第四确定模块,用于确定 为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或所述第四确定模块,还用于确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
可选地,作为一个实施例,所述接收模块具体用于:接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
可选地,作为一个实施例,所述接收模块具体还用于:接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
图6示出了本发明实施例的波束测量的装置的示意性框图。图6所示的装置600包括:第一发送模块610和通信模块620。
第一发送模块610,用于向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量;
通信模块620,用于通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
可选地,作为一个实施例,所述至少一个波束属于相同的小区。
可选地,作为一个实施例,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
可选地,作为一个实施例,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
可选地,作为一个实施例,所述通信模块具体用于:向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
可选地,作为一个实施例,所述通信模块具体还用于:向所述终端发送 系统信息,所述系统信息包括所述至少一个波束的测量配置信息。
图7示出了本发明实施例的波束测量的装置的示意性框图。图7所示的数据传输的装置700包括:存储器710、处理器720、输入/输出接口730、通信接口740和总线系统750。其中,存储器710、处理器720、输入/输出接口730和通信接口740通过总线系统750相连,该存储器710用于存储指令,该处理器720用于执行该存储器720存储的指令,以控制输入/输出接口730接收输入的数据和信息,输出操作结果等数据,并控制通信接口740发送信号。
处理器720,用于根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;
所述处理器720,还用于根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
应理解,在本发明实施例中,该处理器720可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口740使用例如但不限于收发器一类的收发装置,来实现信号检测的装置700与其他设备或通信网络之间的通信。
该存储器710可以包括只读存储器和随机存取存储器,并向处理器720提供指令和数据。处理器720的一部分还可以包括非易失性随机存取存储器。例如,处理器720还可以存储设备类型的信息。
该总线系统750除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统750。
在实现过程中,上述方法的各步骤可以通过处理器720中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的波束测量的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器710,处理器720读取存储器710中的信息, 结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述通信接口,用于接收网络侧设备发送的所述测量配置信息。
可选地,作为一个实施例,所述至少一个波束属于相同的小区。
可选地,作为一个实施例,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
可选地,作为一个实施例,所述处理器具体用于:根据所述多个波束的测量结果,确定所述多个小区的测量结果;根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
可选地,作为一个实施例,所述处理器,用于根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
可选地,作为一个实施例,所述装置还包括:第三确定模块,用于根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
可选地,作为一个实施例,所述处理器具体用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
可选地,作为一个实施例,所述处理器具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
可选地,作为一个实施例,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
可选地,作为一个实施例,所述处理器具体还用于:根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强 度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区。
可选地,作为一个实施例,所述处理器具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合和/或波束集合;从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
可选地,作为一个实施例,所述处理器具体还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;按照准则对所述小区集合中的小区进行排序,并根据排序结果确定所述目标小区,或按照准则对所述波束集合中的波束进行排序,并根据排序结果确定所述目标波束。
可选地,作为一个实施例,所述处理器还用于:根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
可选地,作为一个实施例,所述处理器还用于确定为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或所述第四确定模块,还用于确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
可选地,作为一个实施例,所述通信接口具体用于:接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
可选地,作为一个实施例,所述通信接口具体还用于:接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
图8示出了本发明实施例的波束测量的装置的示意性框图。图8示出了根据本发明实施例的波束测量的装置的示意性框图。图8所示的数据传输的装置800包括:存储器810、处理器820、输入/输出接口830、通信接口840和总线系统850。其中,存储器810、处理器820、输入/输出接口830和通信接口840通过总线系统850相连,该存储器810用于存储指令,该处理器 820用于执行该存储器820存储的指令,以控制输入/输出接口830接收输入的数据和信息,输出操作结果等数据,并控制通信接口840发送信号。
通信接口840,用于向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量;
所述通信接口840,还用于通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
应理解,在本发明实施例中,该处理器820可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
还应理解,通信接口840使用例如但不限于收发器一类的收发装置,来实现信号检测的装置800与其他设备或通信网络之间的通信。
该存储器810可以包括只读存储器和随机存取存储器,并向处理器820提供指令和数据。处理器820的一部分还可以包括非易失性随机存取存储器。例如,处理器820还可以存储设备类型的信息。
该总线系统850除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统850。
在实现过程中,上述方法的各步骤可以通过处理器820中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的波束测量的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器810,处理器820读取存储器810中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,所述至少一个波束属于相同的小区。
可选地,作为一个实施例,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
可选地,作为一个实施例,所述测量配置信息包括下列信息中的至少一种:频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
可选地,作为一个实施例,所述通信模块具体用于:向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
可选地,作为一个实施例,所述通信模块具体还用于:向所述终端发送系统信息,所述系统信息包括所述至少一个波束的测量配置信息
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种波束测量的方法,其特征在于,包括:
    终端根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;
    所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端接收网络侧设备发送的所述测量配置信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述至少一个波束属于相同的小区。
  4. 如权利要求1或2所述的方法,其特征在于,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
  5. 如权利要求4所述的方法,其特征在于,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:
    所述终端根据所述多个波束的测量结果,确定所述多个小区的测量结果;
    所述终端根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述终端根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,包括:
    所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
  9. 如权利要求8所述的方法,其特征在于,所述终端根据所述至少一 个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:
    所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述测量配置信息包括下列信息中的至少一种:
    频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,
    其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
  11. 如权利要求10所述的方法,其特征在于,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区,包括:
    所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区。
  12. 如权利要求11所述的方法,其特征在于,所述终端根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:
    所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合和/或波束集合;
    所述终端从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
  13. 如权利要求11所述的方法,其特征在于,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或 第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:
    所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;
    所述终端按照准则对所述小区集合中的小区进行排序,并根据排序结果确定所述目标小区,或
    所述终端按照准则对所述波束集合中的波束进行排序,并根据排序结果确定所述目标波束。
  14. 如权利要求11所述的方法,其特征在于,所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及第一信号强度门限和/或第一信号质量门限,确定所述目标波束和/或所述目标小区,包括:
    所述终端根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;
    所述终端根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
  15. 如权利要求10所述的方法,其特征在于,所述终端确定所述至少一个波束的测量结果之前,所述方法还包括:
    所述终端确定为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或
    所述终端确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
  16. 如权利要求1-15中任一项所述的方法,其特征在于,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:
    所述终端接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
  17. 如权利要求1-15中任一项所述的方法,其特征在于,所述终端接收网络侧设备发送的至少一个波束的中的每个波束的测量配置信息,包括:
    所述终端接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
  18. 一种波束测量的方法,其特征在于,包括:
    网络侧设备向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量;
    所述网络侧设备通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
  19. 如权利要求18所述的方法,其特征在于,所述至少一个波束属于相同的小区。
  20. 如权利要求18所述的方法,其特征在于,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
  21. 如权利要求18-20中任一项所述的方法,其特征在于,所述测量配置信息包括下列信息中的至少一种:
    频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,
    其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
  22. 如权利要求18-21中任一项所述的方法,其特征在于,所述网络侧设备向所述终端发送至少一个波束的测量配置信息,包括:
    所述网络侧设备向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
  23. 如权利要求18-21中任一项所述的方法,其特征在于,所述网络侧设备向所述终端发送至少一个波束的测量配置信息,包括:
    所述网络侧设备向所述终端发送系统信息,所述系统信息包括所述至少一个波束的测量配置信息。
  24. 一种波束测量的装置,其特征在于,包括:
    测量模块,用于根据测量配置信息对至少一个波束进行测量,所述测量配置信息用于对所述至少一个波束进行测量;
    第一确定模块,用于根据所述至少一个波束的测量结果,确定目标波束和/或目标小区,所述目标波束和/或所述目标小区为所述终端能够驻留的波束和/或小区。
  25. 如权利要求24所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收网络侧设备发送的所述测量配置信息。
  26. 如权利要求24或25所述的装置,其特征在于,所述至少一个波束属于相同的小区。
  27. 如权利要求24或25所述的装置,其特征在于,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
  28. 如权利要求27所述的装置,其特征在于,所述第一确定模块具体用于:
    根据所述多个波束的测量结果,确定所述多个小区的测量结果;
    根据所述多个小区的测量结果,从所述多个小区中确定所述目标小区。
  29. 如权利要求28所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于根据所述目标小区中的波束的测量结果,从所述目标小区中的波束中确定所述目标波束。
  30. 如权利要求24-29中任一项所述的装置,其特征在于,所述装置还包括:
    第三确定模块,用于根据所述至少一个波束的测量结果,确定至少一个备选波束和/或至少一个备选小区,所述至少一个备选波束和/或至少一个备选小区为所述终端在所述目标波束和/或所述目标小区无法检测到时能够驻留的波束和/或小区。
  31. 如权利要求24-30中任一项所述的装置,其特征在于,所述第一确定模块具体用于:
    根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述目标波束和/或所述目标小区。
  32. 如权利要求31所述的装置,其特征在于,所述第一确定模块具体还用于:
    根据所述至少一个波束传输信号的信号强度和/或信号质量,确定所述至少一个波束中传输信号的信号强度和/或信号质量最好的波束,所述传输信号的信号强度和/或信号质量最好的波束为所述目标波束。
  33. 如权利要求24-32中任一项所述的装置,其特征在于,所述测量配置信息包括下列信息中的至少一种:
    频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门限和第二信号质量门限,
    其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
  34. 如权利要求33所述的装置,其特征在于,所述第一确定模块具体还用于:
    根据所述至少一个波束中的每个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定所述目标波束和/或所述目标小区。
  35. 如权利要求34所述的装置,其特征在于,所述第一确定模块具体还用于:
    根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合和/或波束集合;
    从所述小区集合或所述波束集合中确定传输信号的信号强度和/或信号质量最好的小区/或波束为目标小区或目标波束。
  36. 如权利要求34所述的装置,其特征在于,所述第一确定模块具体还用于:
    根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;
    按照准则对所述小区集合中的小区进行排序,并根据排序结果确定所述目标小区,或
    按照准则对所述波束集合中的波束进行排序,并根据排序结果确定所述目标波束。
  37. 如权利要求34所述的装置,其特征在于,所述第一确定模块还用于:
    根据所述至少一个波束传输信号的信号强度和/或信号质量,以及所述第 一信号强度门限和/或所述第一信号质量门限,确定小区集合或波束集合;
    根据频率优先级从所述小区集合或所述波束集合中确定所述目标波束或所述目标小区,所述频率优先级用于指示小区的频率的频率优先级或波束的频率的频率优先级。
  38. 如权利要求33所述的装置,其特征在于,所述装置还包括:
    第四确定模块,用于确定为所述终端服务的小区传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限;或
    所述第四确定模块,还用于确定为所述终端服务的波束传输信号的信号强度和/或信号质量低于第二信号强度和/或第二信号质量门限。
  39. 如权利要求24-38中任一项所述的装置,其特征在于,所述接收模块具体用于:
    接收网络侧设备发送的专用信令,所述专用信令包括所述至少一个波束的中的每个波束的测量配置信息。
  40. 如权利要求24-38中任一项所述的装置,其特征在于,所述接收模块具体还用于:
    接收网络侧设备发送的系统信息,所述系统信息包括所述至少一个波束的中的每个波束的测量配置信息。
  41. 一种波束测量的装置,其特征在于,包括:
    第一发送模块,用于向终端发送至少一个波束的测量配置信息,所述测量配置信息用于对波束进行测量;
    通信模块,用于通过所述目标波束和/或目标小区发送信息,所述目标波束和/或目标小区为所述终端根据所述至少一个波束的所述测量配置信息对所述至少一个波束进行测量,并根据所述至少一个波束的测量结果确定的,所述目标波束和/或目标小区为所述终端能够驻留的波束和/或小区。
  42. 如权利要求41所述的装置,其特征在于,所述至少一个波束属于相同的小区。
  43. 如权利要求41所述的装置,其特征在于,所述至少一个波束为多个波束,所述多个波束分别属于多个小区。
  44. 如权利要求41-43中任一项所述的装置,其特征在于,所述测量配置信息包括下列信息中的至少一种:
    频率优先级、第一信号强度门限、第一信号质量门限、第二信号强度门 限和第二信号质量门限,
    其中,所述频率优先级用于指示波束的频率或小区的频率的优先级,所述第一信号强度门限用于指示波束传输信号的信号强度的最小值,所述第一信号质量门限用于指示波束传输信号的信号质量的最小值,所述第二信号强度门限用于指示终端开始对波束进行测量的门限值,所述第二信号质量门限用于指示终端开始对波束进行测量的门限值。
  45. 如权利要求41-44中任一项所述的装置,其特征在于,所述通信模块具体用于:
    向所述终端发送专用信令,所述专用信令包括所述至少一个波束的测量配置信息。
  46. 如权利要求41-44中任一项所述的装置,其特征在于,所述通信模块具体还用于:
    向所述终端发送系统信息,所述系统信息包括所述至少一个波束的测量配置信息。
PCT/CN2016/103036 2016-10-24 2016-10-24 波束测量的方法及装置 WO2018076132A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CA3041553A CA3041553A1 (en) 2016-10-24 2016-10-24 Beam measurement method and apparatus
AU2016427904A AU2016427904B2 (en) 2016-10-24 2016-10-24 Beam measurement method and apparatus
MX2019004769A MX2019004769A (es) 2016-10-24 2016-10-24 Metodo y aparato de medicion de haz.
KR1020197012749A KR20190067196A (ko) 2016-10-24 2016-10-24 빔 측정 방법 및 장치
EP16919656.5A EP3525359A4 (en) 2016-10-24 2016-10-24 JET METHOD AND DEVICE
PCT/CN2016/103036 WO2018076132A1 (zh) 2016-10-24 2016-10-24 波束测量的方法及装置
US16/344,638 US11108450B2 (en) 2016-10-24 2016-10-24 Beam measurement method and apparatus
CN201680090359.XA CN109891764B (zh) 2016-10-24 2016-10-24 波束测量的方法及装置
JP2019521668A JP2020502862A (ja) 2016-10-24 2016-10-24 ビーム測定方法及び装置
RU2019116095A RU2720583C1 (ru) 2016-10-24 2016-10-24 Способ измерения параметров луча и устройство
TW106130663A TWI746631B (zh) 2016-10-24 2017-09-07 波束測量的方法及裝置
IL266225A IL266225B2 (en) 2016-10-24 2019-04-24 Beam measurement method and device
PH12019500925A PH12019500925A1 (en) 2016-10-24 2019-04-24 Beam measurement method and apparatus
ZA2019/02824A ZA201902824B (en) 2016-10-24 2019-05-06 Beam measurement method and apparatus
US17/390,355 US20210359740A1 (en) 2016-10-24 2021-07-30 Beam measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103036 WO2018076132A1 (zh) 2016-10-24 2016-10-24 波束测量的方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/344,638 A-371-Of-International US11108450B2 (en) 2016-10-24 2016-10-24 Beam measurement method and apparatus
US17/390,355 Continuation US20210359740A1 (en) 2016-10-24 2021-07-30 Beam measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2018076132A1 true WO2018076132A1 (zh) 2018-05-03

Family

ID=62023055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103036 WO2018076132A1 (zh) 2016-10-24 2016-10-24 波束测量的方法及装置

Country Status (14)

Country Link
US (2) US11108450B2 (zh)
EP (1) EP3525359A4 (zh)
JP (1) JP2020502862A (zh)
KR (1) KR20190067196A (zh)
CN (1) CN109891764B (zh)
AU (1) AU2016427904B2 (zh)
CA (1) CA3041553A1 (zh)
IL (1) IL266225B2 (zh)
MX (1) MX2019004769A (zh)
PH (1) PH12019500925A1 (zh)
RU (1) RU2720583C1 (zh)
TW (1) TWI746631B (zh)
WO (1) WO2018076132A1 (zh)
ZA (1) ZA201902824B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143055A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 一种测量配置方法及装置、终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016427904B2 (en) * 2016-10-24 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Beam measurement method and apparatus
CN109716815B (zh) 2016-11-04 2020-11-24 Oppo广东移动通信有限公司 波束测量的方法、终端和网络设备
EP3665949A4 (en) * 2017-08-11 2021-05-05 Telefonaktiebolaget LM Ericsson (publ) PROCESSES AND APPARATUS FOR PERFORMING A NEW RADIO CELL SELECTION / RESELECTION
US11558626B2 (en) * 2018-02-20 2023-01-17 Netgear, Inc. Battery efficient wireless network connection and registration for a low-power device
CN111263394B (zh) * 2018-12-17 2022-07-08 维沃移动通信有限公司 信号资源测量方法及终端
US11800507B2 (en) * 2019-04-03 2023-10-24 Qualcomm Incorporated UE feedback for beam combinations for transmission reception points
CN115529624A (zh) * 2021-06-26 2022-12-27 华为技术有限公司 一种移动性管理方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104115419A (zh) * 2011-12-16 2014-10-22 三星电子株式会社 在毫米波宽带通信中增强可靠性的方法和装置
WO2016018121A1 (en) * 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting beams in a beamforming based system
CN105519167A (zh) * 2013-07-04 2016-04-20 韩国电子通信研究院 移动通信系统中用于支持多连接的控制方法和用于支持多连接的设备
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289826B1 (en) 2002-04-16 2007-10-30 Faulkner Interstices, Llc Method and apparatus for beam selection in a smart antenna system
US7242955B2 (en) 2003-12-18 2007-07-10 Motorola, Inc. Method and apparatus for optimal multiple beam transmit weightings for beam to beam handoff in a switched beam system
US8401507B2 (en) 2007-12-21 2013-03-19 Motorola Mobility Llc Automatic gain control for beamformed signals
RU2595784C2 (ru) 2011-03-31 2016-08-27 Нек Корпорейшн Радиотерминал, радиостанция, устройство управления и способ управления связью в системе радиосвязи
KR20130028397A (ko) 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
US9948375B2 (en) 2013-08-05 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system
US9565611B2 (en) 2013-11-04 2017-02-07 Telefonaktiebolaget L M Ericsson (Publ) Wireless device, network node and methods therein, computer programs and computer-readable mediums comprising the computer programs, for cell monitoring for cell reselection
JP6482179B2 (ja) * 2014-03-20 2019-03-13 株式会社Nttドコモ ユーザ装置及び基地局
CN106664131A (zh) 2014-07-25 2017-05-10 株式会社Ntt都科摩 基站、用户装置以及无线通信网络
EP2988429A1 (en) 2014-08-19 2016-02-24 Alcatel Lucent Coordinated beam forming in a heterogeneous radio communication network
KR102213181B1 (ko) 2014-09-12 2021-02-05 삼성전자 주식회사 필터 뱅크 기반의 무선 통신 시스템에서 채널 상태 정보 보고 및 자원 할당 방법 및 장치
KR102363547B1 (ko) * 2014-11-26 2022-02-17 삼성전자주식회사 빔포밍을 이용한 통신 방법 및 장치
US20160190707A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Antenna structure based on millimeter wave and operation method thereof
CN105813134B (zh) 2014-12-30 2020-01-03 杭州华为数字技术有限公司 频率优先级调整方法和装置
US20160262077A1 (en) * 2015-03-05 2016-09-08 Mediatek (Beijing) Inc. Methods and apparatus for cell selection/reselection in millimeter wave system
US20200028599A1 (en) * 2016-09-22 2020-01-23 Huawei Technologies Co., Ltd. Measurement Configuration Method and Apparatus
BR112019006199B1 (pt) 2016-09-30 2024-01-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd Método de gestão de feixes, dispositivo terminal para gestão de feixes, e primeiro dispositivo de rede
AU2016427904B2 (en) * 2016-10-24 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Beam measurement method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104115419A (zh) * 2011-12-16 2014-10-22 三星电子株式会社 在毫米波宽带通信中增强可靠性的方法和装置
CN105519167A (zh) * 2013-07-04 2016-04-20 韩国电子通信研究院 移动通信系统中用于支持多连接的控制方法和用于支持多连接的设备
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
WO2016018121A1 (en) * 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Method and apparatus for measuring and reporting beams in a beamforming based system
CN106374984A (zh) * 2015-07-20 2017-02-01 中兴通讯股份有限公司 一种波束更新的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143055A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 一种测量配置方法及装置、终端
CN112703806A (zh) * 2019-01-11 2021-04-23 Oppo广东移动通信有限公司 一种测量配置方法及装置、终端
CN112703806B (zh) * 2019-01-11 2022-10-21 Oppo广东移动通信有限公司 一种测量配置方法及装置、终端

Also Published As

Publication number Publication date
US20200067580A1 (en) 2020-02-27
CN109891764B (zh) 2022-08-09
TWI746631B (zh) 2021-11-21
US11108450B2 (en) 2021-08-31
IL266225B2 (en) 2023-06-01
IL266225A (en) 2019-06-30
KR20190067196A (ko) 2019-06-14
CA3041553A1 (en) 2018-05-03
RU2720583C1 (ru) 2020-05-12
AU2016427904B2 (en) 2022-04-07
JP2020502862A (ja) 2020-01-23
EP3525359A1 (en) 2019-08-14
US20210359740A1 (en) 2021-11-18
TW201817182A (zh) 2018-05-01
PH12019500925A1 (en) 2019-12-02
MX2019004769A (es) 2019-07-01
EP3525359A4 (en) 2019-10-23
AU2016427904A1 (en) 2019-06-06
CN109891764A (zh) 2019-06-14
ZA201902824B (en) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2018076132A1 (zh) 波束测量的方法及装置
JP7228634B2 (ja) ビーム測定方法、端末及びネットワーク装置
WO2019184690A1 (zh) 确定波束失败检测参考信号bfd rs资源的方法和设备
CN112954734A (zh) 一种通信方法和装置,测量方法和测量装置,存储介质
WO2019090763A1 (zh) 选择小区的方法、终端设备和网络设备
WO2018000439A1 (zh) 无线通信的方法和装置
EP3266259B1 (en) Enable access point availability prediction
US11172476B2 (en) Signal processing method and apparatus
EP3266252B1 (en) Access point availability prediction
US20240137904A1 (en) Positioning method and apparatus, and terminal and storage medium
EP3182757B1 (en) Load distributing method and network-side device in heterogeneous network
CN111328085B (zh) 用于配置辅小区的方法和通信装置
WO2017054137A1 (zh) 确定数据传输方案的方法和设备
RU2747209C1 (ru) Способ передачи сигналов, терминальное устройство и сетевое устройство
WO2019109355A1 (zh) 传输信息的方法、终端设备和网络设备
WO2020135868A1 (zh) 信号的处理方法及装置
TW201705787A (zh) 無線電功率模式切換技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521668

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3041553

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012749

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008302

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016919656

Country of ref document: EP

Effective date: 20190506

ENP Entry into the national phase

Ref document number: 2016427904

Country of ref document: AU

Date of ref document: 20161024

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019008302

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190424