WO2018074803A1 - Wireless power transmission device - Google Patents

Wireless power transmission device Download PDF

Info

Publication number
WO2018074803A1
WO2018074803A1 PCT/KR2017/011427 KR2017011427W WO2018074803A1 WO 2018074803 A1 WO2018074803 A1 WO 2018074803A1 KR 2017011427 W KR2017011427 W KR 2017011427W WO 2018074803 A1 WO2018074803 A1 WO 2018074803A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless power
transmitter
power
terminal
Prior art date
Application number
PCT/KR2017/011427
Other languages
French (fr)
Korean (ko)
Inventor
임성현
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2018074803A1 publication Critical patent/WO2018074803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • H01F2005/027Coils wound on non-magnetic supports, e.g. formers wound on formers for receiving several coils with perpendicular winding axes, e.g. for antennae or inductive power transfer

Definitions

  • the present embodiment relates to wireless power transmission, and more particularly, to a wireless power transmission apparatus.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as high frequency, microwaves, and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the present embodiment is to solve the problems of the prior art described above, an object of the present embodiment is to provide a wireless power transmission device for wireless charging.
  • Another object of the present embodiment is to provide a wireless power transmission apparatus for reducing the internal resistance of the wireless power transmission apparatus and thereby maximizing wireless charging efficiency.
  • Another object of the present embodiment is to provide a wireless power transmission apparatus that reduces the manufacturing cost of the wireless power transmission apparatus and increases the operation efficiency of the apparatus.
  • Wireless power transmission apparatus includes a substrate; A first coil formed on the substrate; And a second coil formed to correspond to the first coil, wherein the first coil and the second coil are connected in parallel with different types of coils having different resistance values.
  • the present embodiment may have the effect of reducing the resistance value by configuring the coil as a heterogeneous coil in the wireless power transmission apparatus.
  • This embodiment may have an effect of reducing the manufacturing cost of the wireless power transmission apparatus by the coil configuration.
  • This embodiment may have the effect of increasing the charging efficiency by using a plurality of coils without a separate configuration.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment.
  • FIG. 3 is a diagram for describing a detection signal transmission procedure in a wireless charging system according to one embodiment.
  • FIG. 4 is a state transition diagram for explaining a power transmission procedure by a magnetic induction method.
  • FIG. 5 is a state transition diagram for explaining a wireless power transmission procedure by a magnetic resonance method.
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
  • FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
  • FIG. 8 is an equivalent circuit diagram of a coil unit of the wireless power transmitter according to the present embodiment.
  • FIG. 9 is a top view of the transmitting coil unit according to the present embodiment.
  • FIG. 10 is an exploded perspective view of the transmitting coil unit according to the present embodiment.
  • FIG 11 is a top view and a side view of a transmitting coil unit according to the present embodiment.
  • FIG. 13 is a perspective view of a transmission coil unit according to another exemplary embodiment.
  • FIG. 14 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
  • FIG. 15 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
  • the top (bottom) or the bottom (bottom) when described as being formed on the “top” or “bottom” of each component, the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) when expressed as “up (up) or down (down)” may include the meaning of the down direction as well as the up direction based on one component.
  • a device equipped with a function for transmitting wireless power on the wireless charging system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter for convenience of description.
  • a transmitter side, a wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, Receivers, receivers and the like can be used interchangeably.
  • the transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power.
  • the transmitter may comprise at least one wireless power transmission means.
  • the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to the embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in a small electronic device such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, a wearable device such as a smart watch, but is not limited thereto. If the device is equipped with a wireless power receiver according to the present invention, the battery can be charged. It is enough.
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • a wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 20 that receives the received power. Can be configured.
  • the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission.
  • the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
  • the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other.
  • the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
  • the in-band communication and the out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, the in-band communication and the out-of-band communication may provide one-way communication or half-duplex communication.
  • the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto.
  • the wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
  • bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
  • the wireless power receiver 20 may obtain various state information of the electronic device 30.
  • the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like.
  • the information may be obtained from the electronic device 30 and may be utilized for wireless power control.
  • the wireless power transmitter 10 may transmit a predetermined packet indicating whether to support fast charging to the wireless power receiver 20.
  • the wireless power receiver 20 may notify the electronic device 30 when it is determined that the connected wireless power transmitter 10 supports the fast charging mode.
  • the electronic device 30 may indicate that fast charging is possible through predetermined display means provided, for example, it may be a liquid crystal display.
  • the user of the electronic device 30 may control the wireless power transmitter 10 to operate in the fast charge mode by selecting a predetermined fast charge request button displayed on the liquid crystal display.
  • the electronic device 30 may transmit a predetermined quick charge request signal to the wireless power receiver 20.
  • the wireless power receiver 20 may convert the normal low power charging mode into the fast charging mode by generating a charging mode packet corresponding to the received fast charging request signal to the wireless power transmitter 10.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
  • the wireless power receiver 20 may be configured with a plurality of wireless power receivers, and a plurality of wireless power receivers are connected to one wireless power transmitter 10 so that the wireless Charging may also be performed.
  • the wireless power transmitter 10 may distribute and transmit power to the plurality of wireless power receivers in a time division manner, but is not limited thereto.
  • the wireless power transmitter 10 may distribute and transmit power to a plurality of wireless power receivers by using different frequency bands allocated for each wireless power receiver.
  • the number of wireless power receivers that can be connected to one wireless power transmitter 10 may include at least one of required power for each wireless power receiver, a state of charge of a battery, power consumption of an electronic device, and available power of the wireless power transmitter. Can be adaptively determined based on the
  • the wireless power transmitter 10 may be configured with a plurality of wireless power transmitters.
  • the wireless power receiver 20 may be connected to a plurality of wireless power transmitters at the same time, and may simultaneously receive power from the connected wireless power transmitters and perform charging.
  • the number of wireless power transmitters connected to the wireless power receiver 20 is adaptively based on the required power of the wireless power receiver 20, the state of charge of the battery, the power consumption of the electronic device, the available power of the wireless power transmitter, and the like. Can be determined.
  • FIG 3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
  • the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113. Each transmission coil may overlap some other area with another transmission coil, and the wireless power transmitter may detect a predetermined detection signal 117, 127 for detecting the presence of the wireless power receiver through each transmission coil, for example, Digital ping signals are sent sequentially in a predefined order.
  • the wireless power transmitter sequentially transmits the detection signal 117 through the primary detection signal transmission procedure illustrated in FIG. 110, and receives a signal strength indicator from the wireless power receiver 115.
  • the strength indicator 116 can identify the received transmission coils 111, 112.
  • the wireless power transmitter sequentially transmits the detection signal 127 through the secondary detection signal transmission procedure shown in FIG. 120, and transmits power among the transmission coils 111 and 112 where the signal strength indicator 126 is received.
  • the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
  • the wireless power transmitter Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil and performs wireless charging using the selected transmitting coil. .
  • FIG. 4 is a state transition diagram for explaining a power transmission procedure by a magnetic induction method.
  • power transmission from a transmitter to a receiver according to a magnetic induction method is largely selected as a selection phase 410, a ping phase 420, an identification and configuration phase 430, It may be divided into a power transfer phase 440.
  • the selection step 410 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining the power transmission.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to the ping step 420 (S401).
  • the transmitter transmits a very short pulse of an analog ping signal, and may detect whether an object exists in an active area of the interface surface based on a change in current of a transmitting coil.
  • ping step 420 when an object is detected, the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If the transmitter does not receive a response signal (for example, a signal strength indicator) from the receiver in response to the digital ping in step 420, it may transition back to the selection step 410 (S402). In addition, in the ping step 420, when the transmitter receives a signal indicating that power transmission is completed, that is, a charging completion signal, from the receiver, the transmitter may transition to the selection step 410 (S403).
  • a response signal for example, a signal strength indicator
  • the transmitter may transition to the identification and configuration step 430 for collecting receiver identification and receiver configuration and status information (S404).
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to the selection step (410) (S405).
  • the transmitter may transition to the power transmission step 240 for transmitting the wireless power (S406).
  • the transmitter receives an unexpected packet, the desired packet has not been received for a predefined time, or a violation of a preset power transfer contract occurs. transfer contract violation), if the filling is completed, the transition to the selection step (410) (S407).
  • the transmitter may transition to the identification and configuration step 430 (S408).
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • FIG. 5 is a state transition diagram for explaining a wireless power transmission procedure by a magnetic resonance method.
  • power transmission from a transmitter to a receiver according to a magnetic resonance method may include a standby phase (510), a digital ping phase (520), an identification phase (530), and a power transmission. It may be divided into a power transfer phase 540 and an end of charge phase 550.
  • the waiting step 510 may be a step of transitioning when a specific error or a specific event is detected while performing a receiver identification procedure for power transmission or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on a charging surface. If the transmitter detects that an object is placed on the charging surface or the RXID retry is in progress, the transmitter may transition to the digital ping step 520 (S501).
  • RXID is a unique identifier assigned to a PMA compatible receiver.
  • the transmitter transmits a very short pulse of analog ping, and an object is placed on the active surface of the interface surface-for example, the charging bed-based on the current change of the transmitting coil. You can detect if it exists.
  • the transmitter transitioned to digital ping step 520 sends a digital ping signal to identify whether the detected object is a PMA compatible receiver.
  • the receiver may modulate the received digital ping signal according to the PMA communication protocol to transmit a predetermined response signal to the transmitter.
  • the response signal may include a signal strength indicator indicating the strength of the power received by the receiver.
  • the transmitter may transition to the identification step 530 (S502).
  • the transmitter may transition to the standby step 510.
  • the Foreign Object may be a metallic object including coins, keys, and the like.
  • the transmitter may transition to the waiting step 510 if the receiver identification procedure fails or the receiver identification procedure needs to be re-executed and if the receiver identification procedure has not been completed for a predefined time ( S504).
  • the transmitter transitions to the power transmission step 540 in the identification step 530 and starts charging (S505).
  • the transmitter goes to standby step 510 if the desired signal is not received within a predetermined time (Time Out), or if the FO is detected or the voltage of the transmitting coil exceeds a predefined threshold. It may transition (S506).
  • the transmitter may transition to the charging completion step 550 (S507).
  • the transmitter may transition to the standby state 510 (S509).
  • the transmitter may transition from the charging completion step 550 to the digital ping step 520 (S510).
  • the transmitter when the transmitter receives an end of charge (EOC) request from the receiver, the transmitter may transition to the charging completion step 550 (S508 and S511).
  • EOC end of charge
  • FIG. 6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
  • the wireless power transmitter 600 may include a power converter 610, a power transmitter 620, a communicator 630, a controller 640, and a sensor 650. It should be noted that the configuration of the wireless power transmitter 600 is not necessarily an essential configuration, and may include more or fewer components.
  • the power converter 610 may perform a function of converting the power into power of a predetermined intensity.
  • the power converter 610 may include a DC / DC converter 611 and an amplifier 612.
  • the DC / DC converter 611 may perform a function of converting DC power supplied from the power supply unit 660 into DC power having a specific intensity according to a control signal of the controller 640.
  • the sensing unit 650 may measure the voltage / current of the DC-converted power and provide the same to the control unit 640. In addition, the sensing unit 650 may measure the internal temperature of the wireless power transmitter 600 to determine whether overheating occurs, and provide the measurement result to the controller 640. For example, the controller 640 may adaptively block power supply from the power supply unit 650 or block power supply to the amplifier 612 based on the voltage / current value measured by the sensing unit 650. Can be. To this end, one side of the power converter 610 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power supply unit 650, or cut off the power supplied to the amplifier 612.
  • the amplifier 612 may adjust the intensity of the DC / DC converted power according to the control signal of the controller 640.
  • the controller 640 may receive power reception state information or (and) power control signal of the wireless power receiver through the communication unit 630, and may be based on the received power reception state information or (and) power control signal.
  • the amplification factor of the amplifier 612 can be dynamically adjusted.
  • the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil.
  • the power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
  • the power transmitter 620 may include a multiplexer 621 (or a multiplexer) and a transmission coil 622.
  • the power transmitter 620 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
  • the carrier generator may generate a specific frequency for converting the output DC power of the amplifier 612 received through the multiplexer 621 into AC power having a specific frequency.
  • the AC signal generated by the carrier generator is mixed with the output terminal of the multiplexer 621 to generate AC power.
  • this is only one embodiment, and the other example is before the amplifier 612. Note that it may be mixed in stages or later.
  • Frequency of AC power delivered to each transmission coil may be different from each other, and another embodiment each using a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each transmission coil It is also possible to set different resonant frequencies for each transmission coil.
  • the wireless power transmitter may include the plurality of transmission coils. Even if including the power can be transmitted using the same resonance frequency.
  • the power transmitter 620 includes a multiplexer 621 and a plurality of transmit coils 622—that is, a first to control the output power of the amplifier 612 to be transmitted to the transmit coil. To n-th transmission coils.
  • the controller 640 may transmit power through time division multiplexing for each transmission coil.
  • three wireless power receivers i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils.
  • the controller 640 may control the multiplexer 621 to control power to be transmitted through a specific transmission coil in a specific time slot.
  • the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment.
  • By controlling the amplification factor of the amplifier 612 of the wireless power receiver may be controlled to transmit power.
  • the controller 640 may control the multiplexer 621 to sequentially transmit the sensing signals through the first to nth transmitting coils 622 during the first sensing signal transmission procedure.
  • the controller 640 may identify a time point at which the detection signal is transmitted by using the timer 655.
  • the control unit 640 controls the multiplexer 621 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent.
  • the timer 650 may transmit a specific event signal to the controller 640 at a predetermined period during the ping transmission step.
  • the controller 640 controls the multiplexer 621 to transmit the specific event signal.
  • the digital ping can be sent through the coil.
  • control unit 640 stores a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 632 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 640 controls the multiplexer 621 so that the detection signal may be transmitted only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, the controller 640 transmits the second sensed signal to the transmit coil in which the signal strength indicator having the largest value is received when there are a plurality of transmit coils in which the signal intensity indicator is received during the first sensed signal transmit procedure. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 621 may be controlled according to the determination result.
  • the modulator 631 may modulate the control signal generated by the controller 640 and transmit the modulated control signal to the multiplexer 621.
  • the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
  • the demodulator 632 may demodulate the detected signal and transmit the demodulated signal to the controller 640.
  • the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like.
  • EC error correction
  • EOC end of charge
  • the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
  • the demodulator 632 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 640 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
  • the wireless power transmitter 600 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
  • the wireless power transmitter 600 may not only transmit wireless power using the transmission coil 622 but also exchange various information with the wireless power receiver through the transmission coil 622.
  • the wireless power transmitter 600 further includes a separate coil corresponding to each of the transmission coils 622 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
  • the wireless power transmitter 600 and the wireless power receiver perform in-band communication by way of example.
  • this is only one embodiment, and is a frequency band used for wireless power signal transmission.
  • Short-range bidirectional communication may be performed through a frequency band different from that of FIG.
  • the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
  • the wireless power transmitter 600 may adaptively provide a fast charging mode and a general low power charging mode according to a request of the wireless power receiver.
  • the wireless power transmitter 600 may transmit a signal of a predetermined pattern-a business card called a first packet-for convenience of description.
  • the wireless power receiver 600 may identify that the wireless power transmitter 600 being connected is capable of fast charging.
  • the wireless power receiver may transmit a predetermined first response packet to the wireless power transmitter 600 requesting fast charging.
  • the wireless power transmitter 600 may automatically switch to the fast charging mode and start fast charging.
  • the first packet is transmitted through the transmission coil 622.
  • the first packet may be sent in the identification and configuration step 430 of FIG. 4 or the identification step 530 of FIG. 5.
  • information for identifying whether fast charging is supported may be encoded and transmitted in the digital ping signal transmitted by the wireless power transmitter 600.
  • the wireless power receiver may transmit a predetermined charging mode packet to the wireless power transmitter 600 in which the charging mode is set to fast charging.
  • the wireless power transmitter 600 and the wireless power receiver may control an internal operation so that power corresponding to the fast charging mode may be transmitted and received.
  • the over voltage judgment criteria, the over temperature judgment criteria, the low voltage / high voltage judgment criteria, the optimum voltage Values such as level (Optimum Voltage Level), power control offset, etc. may be changed and set.
  • the threshold voltage for determining the overvoltage may be set to be high to enable fast charging.
  • the threshold temperature may be set to be high in consideration of the temperature rise due to the fast charging.
  • the power control offset value which means the minimum level at which power is controlled in the transmitter, may be set to a larger value than the general low power charging mode so that the power control offset value may quickly converge to a desired target power level in the fast charging mode.
  • FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
  • the wireless power receiver 700 includes a receiving coil 710, a rectifier 720, a DC / DC converter 730, a load 740, a sensing unit 750, and a communication unit ( 760), and may include a main controller 770.
  • the communication unit 760 may include at least one of a demodulator 761 and a modulator 762.
  • the wireless power receiver 700 illustrated in the example of FIG. 7 is illustrated as being capable of exchanging information with the wireless power transmitter 600 through in-band communication, this is only one embodiment.
  • the communication unit 760 according to the embodiment may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
  • the AC power received through the receiving coil 710 may be transferred to the rectifier 720.
  • the rectifier 720 may convert AC power into DC power and transmit the DC power to the DC / DC converter 730.
  • the DC / DC converter 730 may convert the strength of the rectifier output DC power into a specific intensity required by the load 740 and then transfer it to the load 740.
  • the receiving coil 710 may include a plurality of receiving coils (not shown), that is, the first to nth receiving coils.
  • Frequency of AC power delivered to each receiving coil may be different from each other, another embodiment is a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each receiving coil It is also possible to set a different resonant frequency for each receiving coil by using a.
  • the sensing unit 750 may measure the intensity of the rectifier 720 output DC power and provide the same to the main controller 770. In addition, the sensing unit 750 may measure the strength of the current applied to the receiving coil 710 according to the wireless power reception, and may transmit the measurement result to the main controller 770. In addition, the sensing unit 750 may measure the internal temperature of the wireless power receiver 700 and provide the measured temperature value to the main controller 770.
  • the main controller 770 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 762.
  • the signal modulated by the modulator 762 may be transmitted to the wireless power transmitter 600 through the receiving coil 710 or a separate coil (not shown).
  • the main controller 770 may determine that a sensing signal has been received. When the sensing signal is received, a signal strength indicator corresponding to the sensing signal may be modulated.
  • the demodulator 761 demodulates an AC power signal or a rectifier 720 output DC power signal between the receiving coil 710 and the rectifier 720 to identify whether a detection signal is received, and then, the main subject of the identification result. It may be provided to the unit 770. In this case, the main controller 770 may control the signal strength indicator corresponding to the sensing signal to be transmitted through the modulator 762.
  • FIG. 8 is an equivalent circuit diagram of a coil unit of the wireless power transmitter according to the present embodiment
  • FIG. 9 is a top view of the transmitting coil unit according to the present embodiment
  • FIG. 10 is an exploded perspective view of the transmitting coil unit according to the present embodiment
  • 11 is a top view and a side view of a transmitting coil unit according to the present embodiment.
  • the transmission coil unit includes a plurality of transmission coils 810 and 820 of different types.
  • the transmitting coil unit includes a first coil 810 formed of a pattern coil formed on a flexible printed circuit board (FPCB) and a second coil 820 formed to be wound in correspondence with the first coil.
  • the second coil may include a crimped coil that compresses and attaches the material wound in the form of a copper winding coil or a coil. That is, the first coil and the second coil each include a coil having a heterogeneous material or form.
  • the first coil 810 and the second coil 820 are connected in parallel to each other.
  • the first coil 810 and the second coil 820 have different resistance values.
  • the second coil 820 has a low resistance value compared to the first coil 810. Since the first coil 810 is formed on the flexible circuit board, and the second coil 820 has a form of a wound copper coil, the first coil 810 and the second coil 820 constitute a material of the coil. And the second coil 820 has a lower resistance value than the first coil 810 by the characteristics.
  • Inductances of the first coil 810 and the second coil 820 may be the same. Alternatively, inductances of the first coil 810 and the second coil 820 may be different. In this case, the inductance of the second coil 820 may be lower than the inductance of the first coil 810.
  • the first coil 810 is disposed in an outer region of the substrate 800, and the second coil 820 is formed of the substrate 800 on which the first coil 810 is not disposed. It may be disposed in the inner region. In this case, the first coil 810 and the second coil 820 may be formed on the same layer of the substrate 800.
  • first coil 810 and the second coil 820 are disposed on the same layer as the upper surface of the substrate 800 is described, but is not limited thereto.
  • the first coil 810 and the second coil 820 may be formed.
  • the first coil 810 is a pattern coil and may be configured in the form of a circle or a polygon having a predetermined angle.
  • the first coil 810 is formed on the substrate 800 by a laminating process and an etching process.
  • the first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the first coil 810.
  • the second coil 820 may be disposed on the substrate 800.
  • the second coil 820 is composed of a winding coil.
  • the second coil 820 may be configured in a circular or polygonal shape having a predetermined angle.
  • the second coil 820 may include a first terminal 821 formed at one end and a second terminal 822 formed at the other end of the second coil 820. At this time, the first terminal 811 of the first coil 810 and the first terminal 821 of the second coil 820 are connected, and the second terminal 821 of the first coil 810 and the second coil ( The second terminal 822 of 820 is connected.
  • the first coil 810 and the second coil 820 may have a parallel connection structure in which the first terminals 811 and 821 and the second terminals 812 and 822 are connected. At this time, the first terminal 811 of the first coil 810 and the first terminal 821 of the second coil 820 and the second terminal 812 and the second coil 820 of the first coil 820.
  • the second terminal 822 may be directly connected. Or by connecting portions 833 and 834.
  • the connecting parts 830: 831, 832, 833, and 834 may be conductive patterns.
  • the conductive pattern may be formed on the substrate 800 by a laminating process and an etching process.
  • the contact part 840 is in electrical contact with the terminal device, and the first coil 810 and the second coil 820 are connected in parallel, and are connected to the connection part 830 connected in parallel.
  • the contact 840 includes a first contact 841 and a second contact 842.
  • the first contact part 841 is connected to a first connection part 831 connected to a first terminal 811 of the first coil 810 and a second terminal 821 of the second coil 820.
  • the second contact portion 842 is connected to a second connection portion 832 to which the second terminal 812 of the first coil 810 and the second terminal 822 of the second coil 820 are connected.
  • first connection part 831 which is drawn out from the first terminal 811 of the first coil 810, is connected to the first contact part 841, and is drawn out from the second terminal 812 of the first coil 810.
  • the second connection portion 832 is connected to the second contact portion 842.
  • a first coil 810 may be formed on the substrate 800, and a second coil 820 may be disposed inside the substrate 800.
  • the first coil 810 is disposed in an outer region of the substrate 800
  • the second coil 820 is disposed in an inner region of the substrate 800 such that the first coil 810 and the second coil (
  • the structure in which 820 is connected in parallel without overlapping has been described.
  • the present invention is not limited thereto and may have a structure in which the first coil 810 and the second coil 820 may be disposed to be stacked in the vertical direction. In addition to the various embodiments will be described later.
  • the first coil 810 and the second coil 820 may have an effect of reducing the resistance value compared to the case where the coils having the same resistance value are configured. have.
  • the amount of change in inductance and the amount of change in resistance according to the configuration of the coil to be applied to the present embodiment will be described.
  • an exemplary view is a graph showing a change in inductance value 1211 for each frequency according to a conventional coil configuration and a change in inductance value 1212 for each frequency according to a coil configuration applied in the present embodiment.
  • An exemplary diagram is a graph showing a change in resistance value 1221 for each frequency according to a conventional coil configuration and a resistance value 1222 for each frequency according to a coil configuration applied in the present embodiment.
  • the inductance value 1211 when the same coil having the same resistance value is conventionally disposed on both sides of the substrate and the coil having the different resistance value according to the present embodiment are the same surface or stacked on the substrate.
  • the difference and change in inductance value 1212 when connected in parallel are kept constant for each frequency, and the difference does not appear large.
  • the resistance value 1222 according to the coil configuration according to the present embodiment is compared with the resistance value 1221 according to the conventional coil configuration while maintaining the inductance value as shown in the graph (a). ) Decreases. That is, when one coil has a lower resistance value than the other coil compared with the conventional configuration of the coil having the same resistance value, the synthetic resistance value is reduced by the coil having the low resistance value.
  • the inductance may be kept constant compared to the conventional method of forming the same coil on both sides, and thus the resistance value may be reduced.
  • first coil 810 and the second coil 820 are directly contacted or connected by one connection part.
  • another connection structure of the first coil 810 and the second coil 820 will be described with reference to FIGS. 13 and 14.
  • FIG. 13 is a perspective view of a transmission coil unit according to another embodiment
  • FIG. 14 is an exploded perspective view of a transmission coil unit according to another embodiment.
  • the first coil 810 is disposed in the outer region of the substrate 800, and the second coil 820 is inside the substrate 800 in which the first coil 810 is not disposed. May be placed in the area.
  • the first coil 810 and the second coil 820 may be formed on the same layer of the substrate 800.
  • a structure in which the first coil 810 and the second coil 820 are disposed on the same layer as the upper surface of the substrate 800 has been described, but is not limited thereto.
  • the coil 810 and the second coil 9820 may be formed in a structure in which the coil 810 and the second coil 9820 are disposed.
  • the first coil 810 is a pattern coil and may be configured in a circular or polygonal shape having a predetermined angle.
  • the first coil 810 is formed on the substrate 800 by a laminating process and an etching process.
  • the first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the second coil 810.
  • the second coil 820 may be disposed on the substrate 800.
  • the second coil 820 is composed of a winding coil.
  • the second coil 820 may be configured in a circular or polygonal shape having a predetermined angle.
  • the second coil 820 may include a first terminal 8721 formed at one end and a second terminal 822 formed at the other end of the second coil 820.
  • the first terminal 811, the second terminal 812 of the first coil 810, and the first terminal 821 and the second terminal 822 of the second coil 820 are connected to the connecting portions 830: 831, 832, 833, and 834, respectively.
  • the contact part 840 is a first contact part 841 connected to the first connection part 831 of the first coil 810, and a second contact part 842 connected to the second connection part 832 of the first coil 810.
  • the third contact part 843 is connected to the first connection part 833 of the second coil 820, and the fourth contact part 834 is connected to the second connection part 834 of the second coil 820.
  • the first contact part 841 and the third contact part 843 are connected to each other.
  • the connection lead 851 is connected.
  • the second contact part 842 and the fourth contact part 844 have a second contact point.
  • the connection lead 852 is connected. Therefore, the contact portion 840 is connected, so that the first coil 810 and the second coil 820 may be connected in parallel.
  • the first coil 810 and the second coil 820 are disposed on the same layer as the upper or lower surface of the substrate 800, and the second coil 820 is inside the substrate 800. It can be formed by being bonded to the adhesive member on,
  • first coil 810 and the second coil 820 are disposed on the same plane of the substrate so as not to overlap the outer region and the inner region.
  • first coil 810 and the second coil 820 are stacked in the vertical direction and connected in parallel will be described in detail with reference to FIG. 15.
  • FIG. 15 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
  • the first coil 810 is disposed on the substrate 800.
  • the first coil 810 is a pattern coil, and may be configured in the form of a circle or a polygon having a predetermined angle.
  • the first coil 810 is formed on the substrate 800 by a laminating process and an etching process.
  • the first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the first coil 810.
  • the second coil 890 is formed to have a corresponding size of the first coil 810. Specifically, the second coil 890 is stacked in the vertical direction of the first coil 810 and connected in parallel. Preferably, the second coil 890 may be disposed on the upper surface of the second coil 890 in a size corresponding to that of the first coil 810 so as to be connected in parallel.
  • the second coil 890 may be configured in a circular or polygonal shape having a predetermined angle to correspond to the first coil 810.
  • the second coil 890 may include a first terminal 891 formed at one end and a second terminal 892 formed at the other end of the second coil 890. At this time, the first terminal 811 of the first coil 810 and the first terminal 891 of the second coil 890 are connected, and the second terminal 812 of the first coil 810 and the second coil ( The second terminal 821 of 890 is connected.
  • the first coil 810 and the second coil 890 may have a parallel connection structure in which the first terminals 811 and 891 and the second terminals 812 and 892 are connected. At this time, the first terminal 811 of the first coil 810 and the first terminal 891 of the second coil 890 and the second terminal 812 and the second coil 890 of the first coil 820.
  • the second terminal 892 of may be directly connected. Or by a connection.
  • the structure in which the first coil 810 and the second coil 890 are stacked in the vertical direction at a corresponding size and position is disposed on the substrate 800.
  • the present invention is not limited thereto, and when the first coil 810 is disposed on the lower surface of the substrate 800, the second coil 890 may be disposed below the vertical direction of the first coil 810.
  • the manufacturing process may be simplified and the cost may be reduced.

Abstract

A wireless power transmission device, according to the present embodiment, comprises: a substrate; a first coil formed on the substrate; and a second coil formed so as to correspond to the first coil, wherein the first coil and the second coil are different types of coils having different resistance values and are connected in parallel.

Description

무선전력 송신 장치Wireless power transmitter
본 실시 예는 무선 전력 전송에 관한 것으로, 상세하게, 무선전력 송신 장치에 관한 것이다.The present embodiment relates to wireless power transmission, and more particularly, to a wireless power transmission apparatus.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.Recently, with the rapid development of information and communication technology, a ubiquitous society based on information and communication technology is being made.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다. In order for telecommunications devices to be connected anytime and anywhere, sensors incorporating computer chips with communication functions must be installed in all social facilities. Therefore, the problem of power supply of these devices and sensors is a new problem. In addition, as the number of mobile devices such as Bluetooth handsets and music players such as iPods has increased rapidly, charging a battery has required users time and effort. In recent years, wireless power transmission technology has been attracting attention as a way to solve this problem.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 고주파, Microwave, 레이저 등과 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다. Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as high frequency, microwaves, and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.To date, energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.The magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.The magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
다양한 방식에 의한 무선전력 전송에 있어서 무선 충전의 효율성을 증대시키기 위하여 무선전력 송신 장치에서 전력 전송을 위한 다양한 코일 형태가 제안되고 있다. 하지만 종래의 코일 형태의 경우 저항값 저감을 위하여 실시 되는 다양한 형태의 코일 구조는 재료비 및 가공비를 포함하는 제조비용이 높은데 반면 충전의 효율성은 높지 않은 문제점이 있다.In order to increase the efficiency of wireless charging in wireless power transmission by various methods, various coil types for power transmission in a wireless power transmission apparatus have been proposed. However, in the case of the conventional coil type, various types of coil structures implemented to reduce the resistance value have a high manufacturing cost including a material cost and a processing cost, while the charging efficiency is not high.
따라서 무선충전의 효율을 증대시키기 위해서는 코일의 제조 비용을 저감하고 내부 저항값을 최소화하는 것이 중요하다. Therefore, in order to increase the efficiency of wireless charging, it is important to reduce the manufacturing cost of the coil and minimize the internal resistance value.
본 실시 예는 상술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 실시 예의 목적은 무선충전을 위한 무선전력 송신 장치를 제공하는 것이다.The present embodiment is to solve the problems of the prior art described above, an object of the present embodiment is to provide a wireless power transmission device for wireless charging.
본 실시 예에 다른 목적은 무선전력 송신 장치의 내부 저항을 저감시키고 그에 따른 무선 충전효율을 극대화 시키기 위한 무선전력 송신 장치를 제공하는 것이다.Another object of the present embodiment is to provide a wireless power transmission apparatus for reducing the internal resistance of the wireless power transmission apparatus and thereby maximizing wireless charging efficiency.
본 실시 예의 또 다른 목적은 무선전력 송신 장치의 제조 비용을 절감하고, 장치의 동작 효율성을 증대시키는 무선전력 송신 장치를 제공하는 것이다.Another object of the present embodiment is to provide a wireless power transmission apparatus that reduces the manufacturing cost of the wireless power transmission apparatus and increases the operation efficiency of the apparatus.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 실시 예에 따른 무선전력 송신장치는 기판; 상기 기판 상에 형성되는 제1 코일; 상기 제1 코일에 대응하게 형성되는 제2 코일을 포함하고, 상기 제1 코일과 상기 제2 코일은 저항값이 상이한 이종의 코일이 병렬로 연결된다.Wireless power transmission apparatus according to the present embodiment includes a substrate; A first coil formed on the substrate; And a second coil formed to correspond to the first coil, wherein the first coil and the second coil are connected in parallel with different types of coils having different resistance values.
본 실시 예에 따른 장치에 대한 효과에 대해 설명하면 다음과 같다.The effects on the apparatus according to the present embodiment will be described below.
본 실시 예는 무선전력 송신 장치 내에 코일을 이종의 코일로 구성함으로써, 저항값을 저감하는 효과를 가질 수 있다.The present embodiment may have the effect of reducing the resistance value by configuring the coil as a heterogeneous coil in the wireless power transmission apparatus.
본 실시 예는 코일 구성에 의하여 무선전력 송신 장치의 제조 비용을 절감하는 효과를 가질 수 있다.This embodiment may have an effect of reducing the manufacturing cost of the wireless power transmission apparatus by the coil configuration.
본 실시 예는 별도의 구성없이 복수의 코일을 이용하여 충전 효율을 증대시킬 수 있는 효과를 가질 수 있다.This embodiment may have the effect of increasing the charging efficiency by using a plurality of coils without a separate configuration.
본 실시 예에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present embodiment are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to facilitate understanding of the present invention, and provide embodiments of the present invention together with the detailed description. However, the technical features of the present invention are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment.
도 1은 일 실시 예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.1 is a block diagram illustrating a wireless charging system according to an embodiment.
도 2는 다른 실시 예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.2 is a block diagram illustrating a wireless charging system according to another embodiment.
도 3은 일 실시 예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.3 is a diagram for describing a detection signal transmission procedure in a wireless charging system according to one embodiment.
도 4는 자기유도 방식에 의한 전력 전송 절차를 설명하기 위한 상태 천이도이다.4 is a state transition diagram for explaining a power transmission procedure by a magnetic induction method.
도 5는 자기공진 방식에 의한 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.5 is a state transition diagram for explaining a wireless power transmission procedure by a magnetic resonance method.
도 6은 일 실시 예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
도 7은 상기 도 6에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
도 8은 본 실시 예에 따른 무선 전력 송신기의 코일부 등가 회로도이다.8 is an equivalent circuit diagram of a coil unit of the wireless power transmitter according to the present embodiment.
도 9는 본 실시 예에 따른 송신 코일부의 상면도이다.9 is a top view of the transmitting coil unit according to the present embodiment.
도 10은 본 실시 예에 따른 송신 코일부의 분해 사시도이다.10 is an exploded perspective view of the transmitting coil unit according to the present embodiment.
도 11은 본 실시 예에 따른 송신 코일부의 상면도 및 측면도이다.11 is a top view and a side view of a transmitting coil unit according to the present embodiment.
도 12는 본 실시 예에 따라 구성되는 송신 코일부에 의해 가변된 성능을 보여주는 그래프이다.12 is a graph showing performance varied by the transmitting coil unit configured according to the present embodiment.
도 13은 다른 실시 예에 따른 송신 코일부의 연결 사시도이다.13 is a perspective view of a transmission coil unit according to another exemplary embodiment.
도 14는 다른 실시 예에 따른 송신 코일부의 분해 사시도이다.14 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
도 15는 또 다른 실시 예에 따른 송신 코일부의 분해 사시도이다.15 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
이하, 본 발명의 실시 예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.Hereinafter, an apparatus and various methods to which embodiments of the present invention are applied will be described in more detail with reference to the accompanying drawings. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiments, when described as being formed on the "top" or "bottom" of each component, the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components. In addition, when expressed as "up (up) or down (down)" may include the meaning of the down direction as well as the up direction based on one component.
실시예의 설명에 있어서, 무선 충전 시스템상에서 무선 전력을 송신하는 기능이 탑재된 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 기능이 탑재된 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.In the description of the embodiment, a device equipped with a function for transmitting wireless power on the wireless charging system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter for convenience of description. , A transmitter side, a wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably. In addition, as a representation of a device equipped with a function for receiving wireless power from the wireless power transmitter, for convenience of description, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, Receivers, receivers and the like can be used interchangeably.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.The transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power. To this end, the transmitter may comprise at least one wireless power transmission means. Herein, the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field. Here, the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
또한, 본 발명의 실시 예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.In addition, the receiver according to the embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters. Here, the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌, 스마트 워치와 같은 웨어러블 디바이스 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.The receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in a small electronic device such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, a wearable device such as a smart watch, but is not limited thereto. If the device is equipped with a wireless power receiver according to the present invention, the battery can be charged. It is enough.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
도 1을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(20)로 구성될 수 있다.Referring to FIG. 1, a wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 20 that receives the received power. Can be configured.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다. 다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.For example, the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission. In another example, the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다. 여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.For example, the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other. Here, the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
상기 인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지는 않으며, 다른 실시 예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.The in-band communication and the out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, the in-band communication and the out-of-band communication may provide one-way communication or half-duplex communication.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로 정보를 전송하는 것일 수도 있다. For example, the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto. The wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다. In the half-duplex communication method, bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
본 발명의 실시 예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다. 일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다. The wireless power receiver 20 according to an embodiment of the present disclosure may obtain various state information of the electronic device 30. For example, the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like. The information may be obtained from the electronic device 30 and may be utilized for wireless power control.
특히, 본 발명의 실시 예에 따른 무선 전력 송신단(10)은 고속 충전 지원 여부를 지시하는 소정 패킷을 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 접속된 무선 전력 송신단(10)이 고속 충전 모드를 지원하는 것으로 확인된 경우, 이를 전자 기기(30)에 알릴 수 있다. 전자 기기(30)는 구비된 소정 표시 수단-예를 들면, 액정 디스플레이일 수 있음-을 통해 고속 충전이 가능함을 표시할 수 있다.In particular, the wireless power transmitter 10 according to an embodiment of the present invention may transmit a predetermined packet indicating whether to support fast charging to the wireless power receiver 20. The wireless power receiver 20 may notify the electronic device 30 when it is determined that the connected wireless power transmitter 10 supports the fast charging mode. The electronic device 30 may indicate that fast charging is possible through predetermined display means provided, for example, it may be a liquid crystal display.
또한, 전자 기기(30) 사용자는 액정 표시 수단에 표시된 소정 고속 충전 요청 버튼을 선택하여 무선 전력 송신단(10)이 고속 충전 모드로 동작하도록 제어할 수도 있다. 이 경우, 전자 기기(30)는 사용자에 의해 고속 충전 요청 버튼이 선택되면, 소정 고속 충전 요청 신호를 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 수신된 고속 충전 요청 신호에 상응하는 충전 모드 패킷을 생성하여 무선 전력 송신단(10)에 전송함으로써, 일반 저전력 충전 모드를 고속 충전 모드로 전환시킬 수 있다. In addition, the user of the electronic device 30 may control the wireless power transmitter 10 to operate in the fast charge mode by selecting a predetermined fast charge request button displayed on the liquid crystal display. In this case, when the quick charge request button is selected by the user, the electronic device 30 may transmit a predetermined quick charge request signal to the wireless power receiver 20. The wireless power receiver 20 may convert the normal low power charging mode into the fast charging mode by generating a charging mode packet corresponding to the received fast charging request signal to the wireless power transmitter 10.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.2 is a block diagram illustrating a wireless charging system according to another embodiment of the present invention.
일 예로, 도면 부호 200a에 도시된 바와 같이, 무선 전력 수신단(20)은 복수의 무선 전력 수신 장치로 구성될 수 있으며, 하나의 무선 전력 송신단(10)에 복수의 무선 전력 수신 장치가 연결되어 무선 충전을 수행할 수도 있다. 이때, 무선 전력 송신단(10)은 시분할 방식으로 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있으나, 이에 한정되지는 않으며. 다른 일 예로, 무선 전력 송신단(10)은 무선 전력 수신 장치 별 할당된 상이한 주파수 대역을 이용하여 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있다.For example, as illustrated by reference numeral 200a, the wireless power receiver 20 may be configured with a plurality of wireless power receivers, and a plurality of wireless power receivers are connected to one wireless power transmitter 10 so that the wireless Charging may also be performed. In this case, the wireless power transmitter 10 may distribute and transmit power to the plurality of wireless power receivers in a time division manner, but is not limited thereto. As another example, the wireless power transmitter 10 may distribute and transmit power to a plurality of wireless power receivers by using different frequency bands allocated for each wireless power receiver.
이때, 하나의 무선 전력 송신 장치(10)에 연결 가능한 무선 전력 수신 장치의 개수는 무선 전력 수신 장치 별 요구 전력, 배터리 충전 상태, 전자 기기의 전력 소비량 및 무선 전력 송신 장치의 가용 전력 중 적어도 하나에 기반하여 적응적으로 결정될 수 있다.In this case, the number of wireless power receivers that can be connected to one wireless power transmitter 10 may include at least one of required power for each wireless power receiver, a state of charge of a battery, power consumption of an electronic device, and available power of the wireless power transmitter. Can be adaptively determined based on the
다른 일 예로, 도면 부호 200b에 도시된 바와 같이, 무선 전력 송신단(10)은 복수의 무선 전력 송신 장치로 구성될 수도 있다. 이 경우, 무선 전력 수신단(20)은 복수의 무선 전력 송신 장치와 동시에 연결될 수 있으며, 연결된 무선 전력 송신 장치들로부터 동시에 전력을 수신하여 충전을 수행할 수도 있다. 이때, 무선 전력 수신단(20)과 연결된 무선 전력 송신 장치의 개수는 무선 전력 수신단(20)의 요구 전력, 배터리 충전 상태, 전자 기기의 전력 소비량, 무선 전력 송신 장치의 가용 전력 등에 기반하여 적응적으로 결정될 수 있다.As another example, as shown at 200b, the wireless power transmitter 10 may be configured with a plurality of wireless power transmitters. In this case, the wireless power receiver 20 may be connected to a plurality of wireless power transmitters at the same time, and may simultaneously receive power from the connected wireless power transmitters and perform charging. In this case, the number of wireless power transmitters connected to the wireless power receiver 20 is adaptively based on the required power of the wireless power receiver 20, the state of charge of the battery, the power consumption of the electronic device, the available power of the wireless power transmitter, and the like. Can be determined.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.3 is a view for explaining a detection signal transmission procedure in a wireless charging system according to an embodiment of the present invention.
일 예로, 무선 전력 송신기는 3개의 송신 코일(111, 112, 113)이 장착될 수 있다. 각각의 송신 코일은 일부 영역이 다른 송신 코일과 서로 중첩될 수 있으며, 무선 전력 송신기는 각각의 송신 코일을 통해 무선 전력 수신기의 존재를 감지하기 위한 소정 감지 신호(117, 127)-예를 들면, 디지털 핑 신호-를 미리 정의된 순서로 순차적으로 송출한다.For example, the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113. Each transmission coil may overlap some other area with another transmission coil, and the wireless power transmitter may detect a predetermined detection signal 117, 127 for detecting the presence of the wireless power receiver through each transmission coil, for example, Digital ping signals are sent sequentially in a predefined order.
상기 도 3에 도시된 바와 같이, 무선 전력 송신기는 도면 번호 110에 도시된 1차 감지 신호 송출 절차를 통해 감지 신호(117)를 순차적으로 송출하고, 무선 전력 수신기(115)로부터 신호 세기 지시자(Signal Strength Indicator, 116)가 수신된 송신 코일(111, 112)을 식별할 수 있다. 연이어, 무선 전력 송신기는 도면 번호 120에 도시된 2차 감지 신호 송출 절차를 통해 감지 신호(127)를 순차적으로 송출하고, 신호 세기 지시자(126)가 수신된 송신 코일(111, 112) 중 전력 전송 효율(또는 충전 효율)-즉, 송신 코일과 수신 코일 사이의 정렬 상태-이 좋은 송신 코일을 식별하고, 식별된 송신 코일을 통해 전력이 송출되도록-즉, 무선 충전이 이루어지도록- 제어할 수 있다. As shown in FIG. 3, the wireless power transmitter sequentially transmits the detection signal 117 through the primary detection signal transmission procedure illustrated in FIG. 110, and receives a signal strength indicator from the wireless power receiver 115. The strength indicator 116 can identify the received transmission coils 111, 112. Subsequently, the wireless power transmitter sequentially transmits the detection signal 127 through the secondary detection signal transmission procedure shown in FIG. 120, and transmits power among the transmission coils 111 and 112 where the signal strength indicator 126 is received. The efficiency (or charging efficiency)-that is, the alignment between the transmitting coil and the receiving coil-can identify a good transmitting coil and control that power can be sent through the identified transmitting coil-i.e. wireless charging is made. .
상기의 도 3에서 보여지는 바와 같이, 무선 전력 송신기가 2회의 감지 신호 송출 절차를 수행하는 이유는 어느 송신 코일에 무선 전력 수신기의 수신 코일이 잘 정렬되어 있는지를 보다 정확하게 식별하기 위함이다.As shown in FIG. 3, the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
만약, 상기한 도 3의 도면 번호 110 및 120에 도시된 바와 같이, 제1 송신 코일(111), 제2 송신 코일(112)에 신호 세기 지시자(116, 126)가 수신된 경우, 무선 전력 송신기는 제1 송신 코일(111)과 제2 송신 코일(112) 각각에 수신된 신호 세기 지시자(126)에 기반하여 가장 정렬이 잘된 송신 코일을 선택하고, 선택된 송신 코일을 이용하여 무선 충전을 수행한다.If the signal strength indicators 116 and 126 are received at the first transmission coil 111 and the second transmission coil 112, as shown in the reference numerals 110 and 120 of FIG. 3, the wireless power transmitter. Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil and performs wireless charging using the selected transmitting coil. .
도 4는 자기유도 방식에 의한 전력 전송 절차를 설명하기 위한 상태 천이도이다.4 is a state transition diagram for explaining a power transmission procedure by a magnetic induction method.
도 4를 참조하면, 자기유도 방식에 따른 송신기로부터 수신기로의 전력 전송은 크게 선택 단계 Selection Phase, 410), 핑 단계(Ping Phase, 420), 식별 및 구성 단계(Identification and Configuration Phase, 430), 전력 전송 단계(Power Transfer Phase, 440) 단계로 구분될 수 있다.Referring to FIG. 4, power transmission from a transmitter to a receiver according to a magnetic induction method is largely selected as a selection phase 410, a ping phase 420, an identification and configuration phase 430, It may be divided into a power transfer phase 440.
선택 단계(410)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(410)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(420)로 천이할 수 있다(S401). 선택 단계(410)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다. The selection step 410 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining the power transmission. Here, specific errors and specific events will be apparent from the following description. In addition, in the selection step 410, the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to the ping step 420 (S401). In the selection step 410, the transmitter transmits a very short pulse of an analog ping signal, and may detect whether an object exists in an active area of the interface surface based on a change in current of a transmitting coil.
핑 단계(420)에서 송신기는 물체가 감지되면, 수신기를 활성화시키고, 수신기가 WPC 표준이 호환되는 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(420)에서 송신기는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 지시자-을 수신기로부터 수신하지 못하면, 다시 선택 단계(410)로 천이할 수 있다(S402). 또한, 핑 단계(420)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 신호-를 수신하면, 선택 단계(410)로 천이할 수도 있다(S403).In ping step 420, when an object is detected, the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If the transmitter does not receive a response signal (for example, a signal strength indicator) from the receiver in response to the digital ping in step 420, it may transition back to the selection step 410 (S402). In addition, in the ping step 420, when the transmitter receives a signal indicating that power transmission is completed, that is, a charging completion signal, from the receiver, the transmitter may transition to the selection step 410 (S403).
핑 단계(420)가 완료되면, 송신기는 수신기 식별 및 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(430)로 천이할 수 있다(S404).When the ping step 420 is completed, the transmitter may transition to the identification and configuration step 430 for collecting receiver identification and receiver configuration and status information (S404).
식별 및 구성 단계(430)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(410)로 천이할 수 있다(S405).In the identification and configuration step 430, the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to the selection step (410) (S405).
수신기에 대한 식별 및 구성이 완료되면, 송신기는 무선 전력을 전송하는 전력 전송 단계(240)로 천이할 수 있다(S406).When the identification and configuration of the receiver is completed, the transmitter may transition to the power transmission step 240 for transmitting the wireless power (S406).
전력 전송 단계(440)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(410)로 천이할 수 있다(S407).In the power transfer step 440, the transmitter receives an unexpected packet, the desired packet has not been received for a predefined time, or a violation of a preset power transfer contract occurs. transfer contract violation), if the filling is completed, the transition to the selection step (410) (S407).
또한, 전력 전송 단계(440)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 식별 및 구성 단계(430)로 천이할 수 있다(S408).In addition, in the power transmission step 440, if it is necessary to reconfigure the power transmission contract in accordance with the change in the transmitter state, the transmitter may transition to the identification and configuration step 430 (S408).
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.The power transmission contract may be set based on state and characteristic information of the transmitter and the receiver. For example, the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
도 5는 자기공진 방식에 의한 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.5 is a state transition diagram for explaining a wireless power transmission procedure by a magnetic resonance method.
도 5를 참조하면, 자기공진 방식에 따른 송신기로부터 수신기로의 전력 전송은 대기 단계(Standby Phase, 510), 디지털 핑 단계(Digital Ping Phase, 520), 식별 단계(Identification Phase, 530), 전력 전송 단계(Power Transfer Phase, 540) 단계 및 충전 완료 단계(End of Charge Phase, 550)로 구분될 수 있다.Referring to FIG. 5, power transmission from a transmitter to a receiver according to a magnetic resonance method may include a standby phase (510), a digital ping phase (520), an identification phase (530), and a power transmission. It may be divided into a power transfer phase 540 and an end of charge phase 550.
대기 단계(510)는 파워 전송을 위한 수신기 식별 절차를 수행하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 대기 단계(510)에서 송신기는 충전 표면(Charging Surface)에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 충전 표면에 물체가 놓여진 것이 감지되거나 RXID 재시도가 진행중인 경우, 디지털 핑 단계(520)로 천이할 수 있다(S501). 여기서, RXID는 PMA 호환 수신기에 할당되는 고유 식별자이다. 대기 단계(510)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping)을 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면-예를 들면, 충전 베드-의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.The waiting step 510 may be a step of transitioning when a specific error or a specific event is detected while performing a receiver identification procedure for power transmission or maintaining power transmission. Here, specific errors and specific events will be apparent from the following description. In addition, in the waiting step 510, the transmitter may monitor whether an object exists on a charging surface. If the transmitter detects that an object is placed on the charging surface or the RXID retry is in progress, the transmitter may transition to the digital ping step 520 (S501). Here, RXID is a unique identifier assigned to a PMA compatible receiver. In the standby stage 510, the transmitter transmits a very short pulse of analog ping, and an object is placed on the active surface of the interface surface-for example, the charging bed-based on the current change of the transmitting coil. You can detect if it exists.
디지털 핑 단계(520)로 천이된 송신기는 감지된 물체가 PMA 호환 수신기인지를 식별하기 위한 디지털 핑 신호를 송출한다. 송신기가 전송한 디지털 핑 신호에 의해 수신기에 충분한 전력이 공급되는 경우, 수신기는 수신된 디지털 핑 신호를 PMA 통신 프로토콜에 따라 변조하여 소정 응답 시그널을 송신기에 전송할 수 있다. 여기서, 응답 시그널은 수신기에 수신된 전력의 세기를 지시하는 신호 세기 지시자가 포함될 수 있다. 디지털 핑 단계(520)에서 송신기는 유효한 응답 시그널이 수신되면, 식별 단계(530)로 천이할 수 있다(S502).The transmitter transitioned to digital ping step 520 sends a digital ping signal to identify whether the detected object is a PMA compatible receiver. When sufficient power is supplied to the receiver by the digital ping signal transmitted by the transmitter, the receiver may modulate the received digital ping signal according to the PMA communication protocol to transmit a predetermined response signal to the transmitter. Here, the response signal may include a signal strength indicator indicating the strength of the power received by the receiver. In the digital ping step 520, if a valid response signal is received, the transmitter may transition to the identification step 530 (S502).
만약, 디지털 핑 단계(520)에서, 응답 시그널이 수신되지 않거나, PMA 호환 수신기가 아닌 것으로 확인되면-즉, FOD(Foreign Object Detection)인 경우-, 송신기는 대기 단계(510)로 천이할 수 있다(S503). 일 예로, FO(Foreign Object)는 동전, 키 등을 포함하는 금속성 물체일 수 있다.If, at the digital ping step 520, no response signal is received or is determined to be not a PMA compatible receiver, i.e., Foreign Object Detection (FOD), the transmitter may transition to the standby step 510. (S503). For example, the Foreign Object (FO) may be a metallic object including coins, keys, and the like.
식별 단계(530)에서, 송신기는 수신기 식별 절차가 실패하거나 수신기 식별 절차를 재수행하여야 하는 경우 및 미리 정의된 시간 동안 수신기 식별 절차를 완료하지 못한 경우에 대기 단계(510)로 천이할 수 있다(S504).In the identification step 530, the transmitter may transition to the waiting step 510 if the receiver identification procedure fails or the receiver identification procedure needs to be re-executed and if the receiver identification procedure has not been completed for a predefined time ( S504).
송신기는 수신기 식별에 성공하면, 식별 단계(530)에서 전력 전송 단계(540)로 천이하여 충전을 개시할 수 있다(S505).If the transmitter succeeds in identifying the receiver, the transmitter transitions to the power transmission step 540 in the identification step 530 and starts charging (S505).
전력 전송 단계(540)에서, 송신기는 원하는 신호가 미리 정해진 시간 이내에 수신되지 않거나(Time Out), FO가 감지되거나, 송신 코일의 전압이 미리 정의된 기준치를 초과하는 경우, 대기 단계(510)으로 천이할 수 있다(S506).In power transmission step 540, the transmitter goes to standby step 510 if the desired signal is not received within a predetermined time (Time Out), or if the FO is detected or the voltage of the transmitting coil exceeds a predefined threshold. It may transition (S506).
또한, 전력 전송 단계(540)에서, 송신기는 내부 구비된 온도 센서에 의해 감지된 온도가 소정 기준치를 초과하는 경우, 충전 완료 단계(550)로 천이할 수 있다(S507).In addition, in the power transmission step 540, if the temperature sensed by the temperature sensor provided therein exceeds a predetermined reference value, the transmitter may transition to the charging completion step 550 (S507).
충전 완료 단계(550)에서, 송신기는 수신기가 충전 표면에서 제거된 것이 확인되면, 대기 상태(510)으로 천이할 수 있다(S509).In the charging completion step 550, if it is confirmed that the receiver is removed from the charging surface, the transmitter may transition to the standby state 510 (S509).
또한, 송신기는 Over Temperature 상태에서, 일정 시간 경과 후 측정된 온도가 기준치 이하로 떨어진 경우, 충전 완료 단계(550)에서 디지털 핑 단계(520)로 천이할 수 있다(S510).In addition, when the temperature measured after a predetermined time elapses below the reference value in the over temperature state, the transmitter may transition from the charging completion step 550 to the digital ping step 520 (S510).
디지털 핑 단계(520) 또는 전력 전송 단계(540)에서, 송신기는 수신기로부터 EOC(End Of Charge) 요청이 수신되면, 충전 완료 단계(550)로 천이할 수도 있다(S508 및 S511).In the digital pinging step 520 or the power transmission step 540, when the transmitter receives an end of charge (EOC) request from the receiver, the transmitter may transition to the charging completion step 550 (S508 and S511).
도 6은 일 실시예에 따른 무선 전력 송신기의 구조를 설명하기 위한 블록도이다.6 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
도 6을 참조하면, 무선전력 송신기(600)는 전력 변환부(610), 전력 전송부(620), 통신부(630), 제어부(640), 센싱부(650)를 포함하여 구성될 수 있다. 상기한 무선 전력 송신기(600)의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다.Referring to FIG. 6, the wireless power transmitter 600 may include a power converter 610, a power transmitter 620, a communicator 630, a controller 640, and a sensor 650. It should be noted that the configuration of the wireless power transmitter 600 is not necessarily an essential configuration, and may include more or fewer components.
도 6에 도시된 바와 같이, 전력 변환부(610)는 전원부(660)로부터 전원이 공급되면, 이를 소정 세기의 전력으로 변환하는 기능을 수행할 수 있다.As shown in FIG. 6, when power is supplied from the power supply unit 660, the power converter 610 may perform a function of converting the power into power of a predetermined intensity.
이를 위해, 전력 변환부(610)는 DC/DC 변환부(611), 증폭기(612)를 포함하여 구성될 수 있다.To this end, the power converter 610 may include a DC / DC converter 611 and an amplifier 612.
DC/DC 변환부(611)는 전원부(660)로부터 공급된 DC 전력을 제어부(640)의 제어 신호에 따라 특정 세기의 DC 전력으로 변환하는 기능을 수행할 수 있다.The DC / DC converter 611 may perform a function of converting DC power supplied from the power supply unit 660 into DC power having a specific intensity according to a control signal of the controller 640.
이때, 센싱부(650)는 DC 변환된 전력의 전압/전류 등을 측정하여 제어부(640)에 제공할 수 있다. 또한, 센싱부(650)는 과열 발생 여부 판단을 위해 무선 전력 송신기(600)의 내부 온도를 측정하고, 측정 결과를 제어부(640)에 제공할 수도 있다. 일 예로, 제어부(640)는 센싱부(650)에 의해 측정된 전압/전류 값에 기반하여 적응적으로 전원부(650)로부터의 전원 공급을 차단하거나, 증폭기(612)에 전력이 공급되는 것을 차단할 수 있다. 이를 위해, 전력 변환부(610)의 일측에는 전원부(650)로부터 공급되는 전원을 차단하거나, 증폭기(612)에 공급되는 전력을 차단하기 위한 소정 전력 차단 회로가 가 더 구비될 수도 있다.In this case, the sensing unit 650 may measure the voltage / current of the DC-converted power and provide the same to the control unit 640. In addition, the sensing unit 650 may measure the internal temperature of the wireless power transmitter 600 to determine whether overheating occurs, and provide the measurement result to the controller 640. For example, the controller 640 may adaptively block power supply from the power supply unit 650 or block power supply to the amplifier 612 based on the voltage / current value measured by the sensing unit 650. Can be. To this end, one side of the power converter 610 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power supply unit 650, or cut off the power supplied to the amplifier 612.
증폭기(612)는 DC/DC 변환된 전력의 세기를 제어부(640)의 제어 신호에 따라 조정할 수 있다. 일 예로, 제어부(640)는 통신부(630)를 통해 무선 전력 수신기의 전력 수신 상태 정보 또는(및) 전력 제어 신호를 수신할 수 있으며, 수신된 전력 수신 상태 정보 또는(및) 전력 제어 신호에 기반하여 증폭기(612)의 증폭률을 동적으로 조정할 수 있다. 일 예로, 전력 수신 상태 정보는 정류기 출력 전압의 세기 정보, 수신 코일에 인가되는 전류의 세기 정보 등을 포함할 수 있으나, 이에 한정되지는 않는다. 전력 제어 신호는 전력 증가를 요청하기 위한 신호, 전력 감소를 요청하기 위한 신호 등을 포함할 수 있다. The amplifier 612 may adjust the intensity of the DC / DC converted power according to the control signal of the controller 640. For example, the controller 640 may receive power reception state information or (and) power control signal of the wireless power receiver through the communication unit 630, and may be based on the received power reception state information or (and) power control signal. The amplification factor of the amplifier 612 can be dynamically adjusted. For example, the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil. The power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
전력 전송부(620)는 다중화기(621)(또는 멀티플렉서), 송신 코일(622)을 포함하여 구성될 수 있다. 또한, 전력 전송부(620)는 전력 전송을 위한 특정 동작 주파수를 생성하기 위한 반송파 생성기(미도시)를 더 포함할 수도 있다.The power transmitter 620 may include a multiplexer 621 (or a multiplexer) and a transmission coil 622. In addition, the power transmitter 620 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
반송파 생성기는 다중화기(621)를 통해 전달 받은 증폭기(612)의 출력 DC 전력을 특정 주파수를 갖는 AC 전력으로 변환하기 위한 특정 주파수를 생성할 수 있다. 이상의 설명에서는 반송파 생성기에 의해 생성된 교류 신호가 다중화기(621)의 출력단에 믹싱되어 교류 전력이 생성되는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 증폭기(612) 이전단 또는 이후단에 믹싱될 수도 있음을 주의해야 한다. The carrier generator may generate a specific frequency for converting the output DC power of the amplifier 612 received through the multiplexer 621 into AC power having a specific frequency. In the above description, the AC signal generated by the carrier generator is mixed with the output terminal of the multiplexer 621 to generate AC power. However, this is only one embodiment, and the other example is before the amplifier 612. Note that it may be mixed in stages or later.
일 실시예에 따른 각각의 송신 코일에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있고, 다른 일 실시예는 LC 공진 특성을 송신 코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 송신 코일 별 공진주파수를 상이하게 설정할 수도 있다.Frequency of AC power delivered to each transmission coil according to one embodiment may be different from each other, and another embodiment each using a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each transmission coil It is also possible to set different resonant frequencies for each transmission coil.
그러나, 복수의 송신 코일 각각에서 발생되는 공진 주파수가 상이한 경우, 이를 제어하는 별도의 주파수 제어기가 필요하여 무선 전력 송신기의 크기가 커질 수 있고, 따라서, 일 실시예에서는 무선 전력 송신기가 복수의 송신 코일을 포함하더라도 동일한 공진 주파수를 이용하여 전력을 전송할 수 있다.However, when the resonant frequencies generated in each of the plurality of transmission coils are different, a separate frequency controller for controlling the same may be required, thereby increasing the size of the wireless power transmitter. Thus, in one embodiment, the wireless power transmitter may include the plurality of transmission coils. Even if including the power can be transmitted using the same resonance frequency.
도 6에 도시된 바와 같이, 전력 전송부(620)는 증폭기(612)의 출력 전력이 송신 코일에 전달되는 것을 제어하기 위한 다중화기(621)와 복수의 송신 코일(622)-즉, 제1 내지 제n 송신 코일-을 포함하여 구성될 수 있다.As shown in FIG. 6, the power transmitter 620 includes a multiplexer 621 and a plurality of transmit coils 622—that is, a first to control the output power of the amplifier 612 to be transmitted to the transmit coil. To n-th transmission coils.
일 실시예에 따른 제어부(640)는 복수의 무선 전력 수신기가 연결된 경우, 송신 코일 별 시분할 다중화를 통해 전력을 전송할 수도 있다. 예를 들어, 무선 전력 송신기(600)에 3개의 무선 전력 수신기-즉, 제1 내지 3 무선 전력 수신기-가 각각 3개의 서로 다른 송신 코일-즉, 제1 내지 3 송신 코일-을 통해 식별된 경우, 제어부(640)는 다중화기(621)를 제어하여, 특정 타임 슬롯에 특정 송신 코일을 통해 전력이 송출될 수 있도록 제어할 수 있다. 이때, 송신 코일 별 할당된 타임 슬롯의 길이에 따라 해당 무선 전력 수신기로 전송되는 전력의 양이 제어될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 송신 코일 별 할당된 타임 슬롯 동안의 증폭기(612) 증폭률을 제어하여 무선 전력 수신기 별 송출 전력을 제어할 수도 있다.When a plurality of wireless power receivers are connected, the controller 640 according to an embodiment may transmit power through time division multiplexing for each transmission coil. For example, in the wireless power transmitter 600, three wireless power receivers, i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils. The controller 640 may control the multiplexer 621 to control power to be transmitted through a specific transmission coil in a specific time slot. In this case, the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment. By controlling the amplification factor of the amplifier 612 of the wireless power receiver may be controlled to transmit power.
제어부(640)는 제1차 감지 신호 송출 절차 동안 제1 내지 제n 송신 코일(622)을 통해 감지 신호가 순차적으로 송출될 수 있도록 다중화기(621)를 제어할 수 있다. 이때, 제어부(640)는 감지 신호가 전송될 시점을 타이머(655)를 이용하여 식별할 수 있으며, 감지 신호 전송 시점이 도래하면, 다중화기(621)를 제어하여 해당 송신 코일을 통해 감지 신호가 송출될 수 있도록 제어할 수 있다. 일 예로, 타이머(650)는 핑 전송 단계 동안 소정 주기로 특정 이벤트 신호를 제어부(640)에 송출할 수 있으며, 제어부(640)는 해당 이벤트 신호가 감지되면, 다중화기(621)를 제어하여 해당 송신 코일을 통해 디지털 핑이 송출될 수 있도록 제어할 수 있다.The controller 640 may control the multiplexer 621 to sequentially transmit the sensing signals through the first to nth transmitting coils 622 during the first sensing signal transmission procedure. In this case, the controller 640 may identify a time point at which the detection signal is transmitted by using the timer 655. When the detection signal transmission time arrives, the control unit 640 controls the multiplexer 621 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent. For example, the timer 650 may transmit a specific event signal to the controller 640 at a predetermined period during the ping transmission step. When the corresponding event signal is detected, the controller 640 controls the multiplexer 621 to transmit the specific event signal. The digital ping can be sent through the coil.
또한, 제어부(640)는 제1차 감지 신호 송출 절차 동안 복조부(632)로부터 어느 송신 코일을 통해 신호 세기 지시자(Signal Strength Indicator)가 수신되었는지를 식별하기 위한 소정 송신 코일 식별자 및 해당 송신 코일을 통해 수신된 신호 세기 지시자를 수신할 수 있다. 연이어, 제2차 감지 신호 송출 절차에서 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일(들)을 통해서만 감지 신호가 송출될 수 있도록 다중화기(621)를 제어할 수도 있다. 다른 일 예로, 제어부(640)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일이 복수개인 경우, 가장 큰 값을 갖는 신호 세기 지시자가 수신된 송신 코일을 제2차 감지 신호 송출 절차에서 감지 신호를 가장 먼저 송출할 송신 코일로 결정하고, 결정 결과에 따라 다중화기(621)를 제어할 수도 있다. In addition, the control unit 640 stores a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 632 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 640 controls the multiplexer 621 so that the detection signal may be transmitted only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, the controller 640 transmits the second sensed signal to the transmit coil in which the signal strength indicator having the largest value is received when there are a plurality of transmit coils in which the signal intensity indicator is received during the first sensed signal transmit procedure. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 621 may be controlled according to the determination result.
변조부(631)는 제어부(640)에 의해 생성된 제어 신호를 변조하여 다중화기(621)에 전달할 수 있다. 여기서, 제어 신호를 변조하기 위한 변조 방식은 FSK(Frequency Shift Keying) 변조 방식, 맨체스터 코딩(Manchester Coding) 변조 방식, PSK(Phase Shift Keying) 변조 방식, 펄스 폭 변조(Pulse Width Modulation) 방식, 차등 2단계(Differential bi-phase) 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.The modulator 631 may modulate the control signal generated by the controller 640 and transmit the modulated control signal to the multiplexer 621. Here, the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
복조부(632)는 송신 코일을 통해 수신되는 신호가 감지되면, 감지된 신호를 복조하여 제어부(640)에 전송할 수 있다. 여기서, 복조된 신호에는 신호 세기 지시자, 무선 전력 전송 중 전력 제어를 위한 오류 정정(EC: Error Correction) 지시자, 충전 완료(EOC: End Of Charge) 지시자, 과전압/과전류/과열 지시자 등이 포함될 수 있으나, 이에 한정되지는 않으며, 무선 전력 수신기의 상태를 식별하기 위한 각종 상태 정보가 포함될 수 있다.When a signal received through the transmitting coil is detected, the demodulator 632 may demodulate the detected signal and transmit the demodulated signal to the controller 640. Here, the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like. However, the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
또한, 복조부(632)는 복조된 신호가 어느 송신 코일로부터 수신된 신호인지를 식별할 수 있으며, 식별된 송신 코일에 상응하는 소정 송신 코일 식별자를 제어부(640)에 제공할 수도 있다. In addition, the demodulator 632 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 640 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
일 예로, 무선 전력 송신기(600)는 무선 전력 전송에 사용되는 동일한 주파수를 이용하여 무선 전력 수신기와 통신을 수행하는 인밴드(In-Band) 통신을 통해 상기 신호 세기 지시자를 획득할 수 있다. For example, the wireless power transmitter 600 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
또한, 무선 전력 송신기(600)는 송신 코일(622)을 이용하여 무선 전력을 송출할 수 있을 뿐만 아니라 송신 코일(622)을 통해 무선 전력 수신기와 각종 정보를 교환할 수도 있다. 다른 일 예로, 무선 전력 송신기(600)는 송신 코일(622)-즉, 제1 내지 제n 송신 코일)에 각각 대응되는 별도의 코일을 추가로 구비하고, 구비된 별도의 코일을 이용하여 무선 전력 수신기와 인밴드 통신을 수행할 수도 있음을 주의해야 한다.In addition, the wireless power transmitter 600 may not only transmit wireless power using the transmission coil 622 but also exchange various information with the wireless power receiver through the transmission coil 622. As another example, the wireless power transmitter 600 further includes a separate coil corresponding to each of the transmission coils 622 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
이상이 도 6의 설명에서는 무선 전력 송신기(600)와 무선 전력 수신기가 인밴드 통신을 수행하는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 무선 전력 신호 전송에 사용되는 주파수 대역과 상이한 주파수 대역을 통해 근거리 양방향 통신을 수행할 수 있다. 일 예로, 근거리 양방향 통신은 저전력 블루투스 통신, RFID 통신, UWB 통신, 지그비 통신 중 어느 하나일 수 있다.In the description of FIG. 6, the wireless power transmitter 600 and the wireless power receiver perform in-band communication by way of example. However, this is only one embodiment, and is a frequency band used for wireless power signal transmission. Short-range bidirectional communication may be performed through a frequency band different from that of FIG. For example, the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신기(600)는 무선 전력 수신기의 요청에 따라 고속 충전 모드 및 일반 저전력 충전 모드를 적응적으로 제공할 수도 있다.In particular, the wireless power transmitter 600 according to an embodiment of the present invention may adaptively provide a fast charging mode and a general low power charging mode according to a request of the wireless power receiver.
무선 전력 송신기(600)는 고속 충전 모드가 지원 가능한 경우, 소정 패턴의 신호-이하 설명의 편의를 위해, 제1 패킷이라 명함-를 송출할 수 있다. 무선 전력 수신기(600)는 제1 패킷이 수신되면, 접속중인 무선 전력 송신기(600)가 고속 충전이 가능함을 식별할 수 있다. When the fast charging mode is supported, the wireless power transmitter 600 may transmit a signal of a predetermined pattern-a business card called a first packet-for convenience of description. When the first packet is received, the wireless power receiver 600 may identify that the wireless power transmitter 600 being connected is capable of fast charging.
특히, 무선 전력 수신기는 고속 충전이 필요한 경우, 고속 충전을 요청하는 소정 제1 응답 패킷을 무선 전력 송신기(600) 에 전송할 수 있다.In particular, when fast charging is required, the wireless power receiver may transmit a predetermined first response packet to the wireless power transmitter 600 requesting fast charging.
특히, 무선 전력 송신기(600)는 상기 제1 응답 패킷이 수신 후 소정 시간이 경과하면, 자동으로 고속 충전 모드로 전환하여 고속 충전을 개시할 수 있다.In particular, when a predetermined time elapses after the first response packet is received, the wireless power transmitter 600 may automatically switch to the fast charging mode and start fast charging.
일 예로, 무선 전력 송신기(600)의 제어부(640)는 상기한 도 4 내지 도 5의 전력 전송 단계(440 또는 540)로 천이한 경우, 제1 패킷이 송신 코일(622)을 통해 송출되도록 제어할 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 예는 상기 도 4의 식별 및 구성 단계(430) 또는 도 5의 식별 단계(530)에서 제1 패킷이 송출될 수도 있다.For example, when the control unit 640 of the wireless power transmitter 600 transitions to the power transmission step 440 or 540 of FIGS. 4 to 5, the first packet is transmitted through the transmission coil 622. However, this is only one embodiment, and in another embodiment of the present invention, the first packet may be sent in the identification and configuration step 430 of FIG. 4 or the identification step 530 of FIG. 5.
또 다른 일 실시예는 무선 전력 송신기(600)가 송출하는 디지털 핑 신호에 고속 충전 지원 가능 여부를 식별할 수 있는 정보가 인코딩되어 전송될 수도 있음을 주의해야 한다.In another embodiment, it should be noted that information for identifying whether fast charging is supported may be encoded and transmitted in the digital ping signal transmitted by the wireless power transmitter 600.
무선 전력 수신기는 전력 전송 단계의 어느 시점에서든 고속 충전이 필요하면, 충전 모드가 고속 충전으로 설정된 소정 충전 모드 패킷을 무선 전력 송신기(600)에 전송할 수도 있다. 여기서, 충전 모드 패킷의 세부 구성은 후술할 도 7 내지 11의 설명을 통해 보다 명확히 하도록 한다. 물론, 무선 전력 송신기(600)와 무선 전력 수신기는 충전 모드가 고속 충전 모드로 변경된 경우, 고속 충전 모드에 상응하는 전력이 송출 및 수신 가능할 수 있도록 내부 동작을 제어할 수 있다. 일 예로, 충전 모드가 일반 저전력 충전 모드에서 고속 충전 모드로 변경된 경우, 과전압(Over Voltage) 판단 기준, 과열(Over Temperature) 판단 기준, 저전압(Low Voltage)/고전압(High Voltage) 판단 기준, 최적 전압 레벨(Optimum Voltage Level), 전력 제어 옵셋 등의 값이 변경 설정될 수 있다. If the wireless power receiver needs fast charging at any point in the power transmission step, the wireless power receiver may transmit a predetermined charging mode packet to the wireless power transmitter 600 in which the charging mode is set to fast charging. Here, the detailed configuration of the charging mode packet to be more clearly through the description of Figures 7 to 11 to be described later. Of course, when the charging mode is changed to the fast charging mode, the wireless power transmitter 600 and the wireless power receiver may control an internal operation so that power corresponding to the fast charging mode may be transmitted and received. For example, when the charging mode is changed from the normal low power charging mode to the fast charging mode, the over voltage judgment criteria, the over temperature judgment criteria, the low voltage / high voltage judgment criteria, the optimum voltage Values such as level (Optimum Voltage Level), power control offset, etc. may be changed and set.
일 예로, 충전 모드가 일반 저전력 충전 모드에서 고속 충전 모드로 변경된 경우, 과전압(Over Voltage) 판단을 위한 임계 전압이 고속 충전이 가능하도록 높게 설정될 수 있다. 또 다른 일 예로, 과열 발생 여부를 판단하기 임계 온도가 고속 충전에 따른 온도 상승을 고려하여 높게 설정될 수 있다. 또 다른 일 예로, 송신기에서의 전력이 제어되는 최소 레벨을 의미하는 전력 제어 옵셋 값은 고속 충전 모드에서 빠르게 원하는 목표 전력 레벨로 수렴 가능하도록 일반 저전력 충전 모드에 비해 큰 값으로 설정될 수도 있다.For example, when the charging mode is changed from the normal low power charging mode to the fast charging mode, the threshold voltage for determining the overvoltage may be set to be high to enable fast charging. As another example, the threshold temperature may be set to be high in consideration of the temperature rise due to the fast charging. As another example, the power control offset value, which means the minimum level at which power is controlled in the transmitter, may be set to a larger value than the general low power charging mode so that the power control offset value may quickly converge to a desired target power level in the fast charging mode.
도 7은 상기 도 6에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.FIG. 7 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 6.
도 7을 참조하면, 무선 전력 수신기(700)는 수신 코일(710), 정류기(720), 직류/직류 변환기(DC/DC Converter, 730), 부하(740), 센싱부(750), 통신부(760), 주제어부(770)를 포함하여 구성될 수 있다. 여기서, 통신부(760)는 복조부(761) 및 변조부(762) 중 적어도 하나를 포함하여 구성될 수 있다.Referring to FIG. 7, the wireless power receiver 700 includes a receiving coil 710, a rectifier 720, a DC / DC converter 730, a load 740, a sensing unit 750, and a communication unit ( 760), and may include a main controller 770. Herein, the communication unit 760 may include at least one of a demodulator 761 and a modulator 762.
상기한 도 7의 예에 도시된 무선 전력 수신기(700)는 인밴드 통신을 통해 무선 전력 송신기(600)와 정보를 교환할 수 있는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 다른 일 실시예에 따른 통신부(760)는 무선 전력 신호 전송에 사용되는 주파수 대역과는 상이한 주파수 대역을 통해 근거리 양방향 통신을 제공할 수도 있다. Although the wireless power receiver 700 illustrated in the example of FIG. 7 is illustrated as being capable of exchanging information with the wireless power transmitter 600 through in-band communication, this is only one embodiment. The communication unit 760 according to the embodiment may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
수신 코일(710)을 통해 수신되는 AC 전력은 정류부(720)에 전달할 수 있다. 정류기(720)는 AC 전력을 DC 전력으로 변환하여 직류/직류 변환기(730)에 전송할 수 있다. 직류/직류 변환기(730)는 정류기 출력 DC 전력의 세기를 부하(740)에 의해 요구되는 특정 세기로 변환한 후 부하(740)에 전달할 수 있다. 또한 수신 코일(710)은 복수의 수신 코일(미도시)-즉, 제1 내지 제n 수신 코일-을 포함하여 구성될 수 있다. 일 실시예에 따른 각각의 수신 코일(미도시)에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있고, 다른 일 실시예는 LC 공진 특성을 수신 코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 수신 코일 별 공진주파수를 상이하게 설정할 수도 있다.AC power received through the receiving coil 710 may be transferred to the rectifier 720. The rectifier 720 may convert AC power into DC power and transmit the DC power to the DC / DC converter 730. The DC / DC converter 730 may convert the strength of the rectifier output DC power into a specific intensity required by the load 740 and then transfer it to the load 740. In addition, the receiving coil 710 may include a plurality of receiving coils (not shown), that is, the first to nth receiving coils. Frequency of AC power delivered to each receiving coil (not shown) according to one embodiment may be different from each other, another embodiment is a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each receiving coil It is also possible to set a different resonant frequency for each receiving coil by using a.
센싱부(750)는 정류기(720) 출력 DC 전력의 세기를 측정하고, 이를 주제어부(770)에 제공할 수 있다. 또한, 센싱부(750)는 무선 전력 수신에 따라 수신 코일(710)에 인가되는 전류의 세기를 측정하고, 측정 결과를 주제어부(770)에 전송할 수도 있다. 또한, 센싱부(750)는 무선 전력 수신기(700)의 내부 온도를 측정하고, 측정된 온도 값을 주제어부(770)에 제공할 수도 있다. The sensing unit 750 may measure the intensity of the rectifier 720 output DC power and provide the same to the main controller 770. In addition, the sensing unit 750 may measure the strength of the current applied to the receiving coil 710 according to the wireless power reception, and may transmit the measurement result to the main controller 770. In addition, the sensing unit 750 may measure the internal temperature of the wireless power receiver 700 and provide the measured temperature value to the main controller 770.
일 예로, 주제어부(770)는 측정된 정류기 출력 DC 전력의 세기가 소정 기준치 와 비교하여 과전압 발생 여부를 판단할 수 있다. 판단 결과, 과전압이 발생된 경우, 과전압이 발생되었음을 알리는 소정 패킷을 생성하여 변조부(762)에 전송할 수 있다. 여기서, 변조부(762)에 의해 변조된 신호는 수신 코일(710) 또는 별도의 코일(미도시)을 통해 무선 전력 송신기(600)에 전송될 수 있다. 또한, 주제어부(770)는 정류기 출력 DC 전력의 세기가 소정 기준치 이상인 경우, 감지 신호가 수신된 것으로 판단할 수 있으며, 감지 신호 수신 시, 해당 감지 신호에 대응되는 신호 세기 지시자가 변조부(762)를 통해 무선 전력 송신기(600)에 전송될 수 있도록 제어할 수 있다. 다른 일 예로, 복조부(761)는 수신 코일(710)과 정류기(720) 사이의 AC 전력 신호 또는 정류기(720) 출력 DC 전력 신호를 복조하여 감지 신호의 수신 여부를 식별한 후 식별 결과를 주제어부(770)에 제공할 수 있다. 이때, 주제어부(770)는 감지 신호에 대응되는 신호 세기 지시자가 변조부(762)를 통해 전송될 수 있도록 제어할 수 있다.As an example, the main controller 770 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 762. Here, the signal modulated by the modulator 762 may be transmitted to the wireless power transmitter 600 through the receiving coil 710 or a separate coil (not shown). In addition, when the intensity of the rectifier output DC power is greater than or equal to a predetermined reference value, the main controller 770 may determine that a sensing signal has been received. When the sensing signal is received, a signal strength indicator corresponding to the sensing signal may be modulated. ) To be transmitted to the wireless power transmitter 600. As another example, the demodulator 761 demodulates an AC power signal or a rectifier 720 output DC power signal between the receiving coil 710 and the rectifier 720 to identify whether a detection signal is received, and then, the main subject of the identification result. It may be provided to the unit 770. In this case, the main controller 770 may control the signal strength indicator corresponding to the sensing signal to be transmitted through the modulator 762.
도 8은 본 실시 예에 따른 무선 전력 송신기의 코일부 등가 회로도이고, 도 9는 본 실시 예에 따른 송신 코일부의 상면도이고, 도 10은 본 실시 예에 따른 송신 코일부의 분해 사시도이고, 도 11은 본 실시 예에 따른 송신 코일부의 상면도 및 측면도이다.8 is an equivalent circuit diagram of a coil unit of the wireless power transmitter according to the present embodiment, FIG. 9 is a top view of the transmitting coil unit according to the present embodiment, FIG. 10 is an exploded perspective view of the transmitting coil unit according to the present embodiment, 11 is a top view and a side view of a transmitting coil unit according to the present embodiment.
도 8 내지 도 11을 참조하면, 본 실시 예에 따른 송신 코일부는 서로 다른 종류의 복수개 송신 코일들(810, 820)을 포함한다. 예를 들어 송신 코일부는 연성회로기판(FPCB)에 형성되는 패턴 코일로 형성되는 제1 코일(810)과 상기 제1 코일에 대응하게 권선되어 형성되는 제2 코일(820)을 포함한다. 이때 제2 코일은 구리 권선 코일 또는 코일 형태로 권선된 물질을 압착하여 부착하는 압착 코일을 포함할 수 있다. 즉, 제1 코일과 제2 코일은 각각 이종의 물질 또는 형태를 가지는 코일을 포함한다.8 to 11, the transmission coil unit according to the present embodiment includes a plurality of transmission coils 810 and 820 of different types. For example, the transmitting coil unit includes a first coil 810 formed of a pattern coil formed on a flexible printed circuit board (FPCB) and a second coil 820 formed to be wound in correspondence with the first coil. In this case, the second coil may include a crimped coil that compresses and attaches the material wound in the form of a copper winding coil or a coil. That is, the first coil and the second coil each include a coil having a heterogeneous material or form.
도 8에 도시된 바와 같이 제1 코일(810)과 제2 코일(820)은 상호 병렬로 연결된다. 이때 제1 코일(810)과 제2 코일(820)은 각각 상이한 저항값을 가진다. 구체적으로 제1 코일(810)에 대비하여 제2 코일(820)은 낮은 저항값을 가진다. 제1 코일(810)의 경우 연성회로기판에 형성되고, 제2 코일820)은 권선된 구리 코일의 형태를 가지므로, 제1 코일(810)과 제2 코일(820)은 코일을 구성하는 물질 및 그 특성에 의하여 제2 코일(820)이 제1 코일(810)에 비해 낮은 저항값을 가지게 된다.As shown in FIG. 8, the first coil 810 and the second coil 820 are connected in parallel to each other. In this case, the first coil 810 and the second coil 820 have different resistance values. In detail, the second coil 820 has a low resistance value compared to the first coil 810. Since the first coil 810 is formed on the flexible circuit board, and the second coil 820 has a form of a wound copper coil, the first coil 810 and the second coil 820 constitute a material of the coil. And the second coil 820 has a lower resistance value than the first coil 810 by the characteristics.
제1 코일(810)과 제2 코일(820)의 인덕턴스는 동일할 수 있다. 또는 제1 코일(810)과 제2 코일(820)의 인덕턴스는 상이할 수 있다. 이때 제2 코일(820)의 인덕턴스는 제1 코일(810)의 인덕턴스 보다 낮을 수 있다. Inductances of the first coil 810 and the second coil 820 may be the same. Alternatively, inductances of the first coil 810 and the second coil 820 may be different. In this case, the inductance of the second coil 820 may be lower than the inductance of the first coil 810.
도 9 및 도 10에 도시된 바와 같이 제1 코일(810)은 기판(800)의 외측 영역에 배치되고, 제2 코일(820)은 제1 코일(810)이 배치되지 않은 기판(800)의 내측 영역에 배치될 수 있다. 이 경우 제1 코일(810)과 제2 코일(820)은 기판(800)의 동일 레이어에 형성될 수 있다. 9 and 10, the first coil 810 is disposed in an outer region of the substrate 800, and the second coil 820 is formed of the substrate 800 on which the first coil 810 is not disposed. It may be disposed in the inner region. In this case, the first coil 810 and the second coil 820 may be formed on the same layer of the substrate 800.
또한 본 실시 예에서는 기판(800)의 상면 동일 레이어에 제1 코일(810)과 제2 코일(820)이 배치되는 구조를 설명하지만 이에 한정되지 않으며, 기판(800)의 하부면 동일 레이어에 제1 코일(810)과 제2 코일(820)이 배치되는 구조로 형성될 수 있다. Also, in the present exemplary embodiment, a structure in which the first coil 810 and the second coil 820 are disposed on the same layer as the upper surface of the substrate 800 is described, but is not limited thereto. The first coil 810 and the second coil 820 may be formed.
제1 코일(810)은 패턴 코일로서, 원형 또는 소정의 각을 가지는 다각형의 형태로 구성될 수 있다. 제1 코일(810)은 라미네이팅 공정과 에칭 공정에 의해 기판(800) 상에 형성된다. 제1 코일(810)은 일단에 형성되는 제1 단자(811) 및 제1 코일(810)의 타단에 형성되는 제2 단자(812)를 포함할 수 있다.The first coil 810 is a pattern coil and may be configured in the form of a circle or a polygon having a predetermined angle. The first coil 810 is formed on the substrate 800 by a laminating process and an etching process. The first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the first coil 810.
제2 코일(820)은 기판(800) 상에 배치될 수 있다. 제2 코일(820)은 권선 코일로 구성된다. 제2 코일(820)은 원형 또는 소정의 각을 가지는 다각형 형태로 구성될 수 있다. 제2 코일(820)은 일단에 형성되는 제1 단자(821)와 제2 코일(820)의 타단에 형성되는 제2 단자(822)를 포함할 수 있다. 이때 제1 코일(810)의 제1 단자(811)와 제2 코일(820)의 제1 단자(821)는 연결되고, 제1 코일(810)의 제2 단자(821)와 제2 코일(820)의 제2 단자(822)는 연결된다.The second coil 820 may be disposed on the substrate 800. The second coil 820 is composed of a winding coil. The second coil 820 may be configured in a circular or polygonal shape having a predetermined angle. The second coil 820 may include a first terminal 821 formed at one end and a second terminal 822 formed at the other end of the second coil 820. At this time, the first terminal 811 of the first coil 810 and the first terminal 821 of the second coil 820 are connected, and the second terminal 821 of the first coil 810 and the second coil ( The second terminal 822 of 820 is connected.
구체적으로, 제1 코일(810)과 제2 코일(820)은 각각의 제1 단자(811, 821)와 제2 단자(812, 822)가 연결되는 병렬 연결 구조를 가질 수 있다. 이때, 제1 코일(810)의 제1 단자(811)와 제2 코일(820)의 제1 단자(821) 및 제1 코일(820)의 제2 단자(812)와 제2 코일(820)의 제2 단자(822)는 직접 연결될 수 있다. 또는 연결부(833,834)에 의해 연결될 수 있다. In detail, the first coil 810 and the second coil 820 may have a parallel connection structure in which the first terminals 811 and 821 and the second terminals 812 and 822 are connected. At this time, the first terminal 811 of the first coil 810 and the first terminal 821 of the second coil 820 and the second terminal 812 and the second coil 820 of the first coil 820. The second terminal 822 may be directly connected. Or by connecting portions 833 and 834.
연결부(830:831, 832, 833, 834)는 도선 패턴일 수 있다. 도선 패턴은 라미네이팅 공정과 에칭 공정에 의해 기판(800) 상에 형성될 수 있다. The connecting parts 830: 831, 832, 833, and 834 may be conductive patterns. The conductive pattern may be formed on the substrate 800 by a laminating process and an etching process.
접촉부(840)는 단말장치와 전기적으로 접촉하며, 제1 코일(810)고 제2 코일(820)이 병렬로 연결되고, 상기 병렬 연결되어 인출되는 연결부(830)와 된다. The contact part 840 is in electrical contact with the terminal device, and the first coil 810 and the second coil 820 are connected in parallel, and are connected to the connection part 830 connected in parallel.
접촉부(840)는 제1 접촉부(841)와 제2 접촉부(842)를 포함한다. 제1 접촉부(841)는 제1 코일(810)의 제1 단자(811)와 제2 코일(820)의 제2 단자(821)가 연결된 제1 연결부(831)가 연결된다. 제2 접촉부(842)는 제1 코일(810)의 제2 단자(812)와 제2 코일(820)의 제2 단자(822)가 연결된 제2 연결부(832)가 연결된다.The contact 840 includes a first contact 841 and a second contact 842. The first contact part 841 is connected to a first connection part 831 connected to a first terminal 811 of the first coil 810 and a second terminal 821 of the second coil 820. The second contact portion 842 is connected to a second connection portion 832 to which the second terminal 812 of the first coil 810 and the second terminal 822 of the second coil 820 are connected.
구체적으로 제1 코일(810)의 제1 단자(811)로부터 인출되는 제1 연결부(831)가 제1 접촉부(841)에 연결되고, 제1 코일(810)의 제2 단자(812)로부터 인출되는 제2 연결부(832)가 제2 접촉부(842)에 연결된다.In detail, the first connection part 831, which is drawn out from the first terminal 811 of the first coil 810, is connected to the first contact part 841, and is drawn out from the second terminal 812 of the first coil 810. The second connection portion 832 is connected to the second contact portion 842.
도 11에 도시된 바와 같이 기판(800)에는 제1 코일(810)이 형성되고, 기판(800)의 내측에는 제2 코일(820)이 배치될 수 있다.As illustrated in FIG. 11, a first coil 810 may be formed on the substrate 800, and a second coil 820 may be disposed inside the substrate 800.
일 실시 예에서는 제1 코일(810)이 기판(800)의 외측 영역에 배치되고, 기판(800)의 내측 영역에 제2 코일(820)이 배치되어 제1 코일(810)과 제2 코일(820)이 중첩되지 않게 상호 병렬 연결되는 구조를 설명하였다. 하지만 이에 한정되지 않으며, 제1 코일(810)과 제2 코일(820)이 수직방향으로 적층되게 배치될 수 있는 구조를 가질 수 있다. 이외에도 다양한 실시 예에 대해서는 후술한다.In an embodiment, the first coil 810 is disposed in an outer region of the substrate 800, and the second coil 820 is disposed in an inner region of the substrate 800 such that the first coil 810 and the second coil ( The structure in which 820 is connected in parallel without overlapping has been described. However, the present invention is not limited thereto and may have a structure in which the first coil 810 and the second coil 820 may be disposed to be stacked in the vertical direction. In addition to the various embodiments will be described later.
상기와 같이 제1 코일(810)과 제2 코일(820)은 상이한 저항값을 가지고, 상호 병렬 연결되어 구성됨으로써, 동일한 저항값의 코일로 구성되는 경우와 비교하여 저항값의 저감 효과를 가질 수 있다. 이하 도 12를 참조하여, 본 실시 예에 적용되는 코일의 구성에 따른 인덕턴스의 변화량 및 저항값의 변화량에 대해 설명한다.As described above, since the first coil 810 and the second coil 820 have different resistance values and are connected in parallel with each other, the first coil 810 and the second coil 820 may have an effect of reducing the resistance value compared to the case where the coils having the same resistance value are configured. have. Hereinafter, with reference to FIG. 12, the amount of change in inductance and the amount of change in resistance according to the configuration of the coil to be applied to the present embodiment will be described.
도 12는 본 실시 예에 따라 구성되는 송신 코일부에 의해 가변된 성능을 보여주는 그래프이다.12 is a graph showing performance varied by the transmitting coil unit configured according to the present embodiment.
도 12를 참조하면 (a) 예시도는 종래의 코일 구성에 따른 주파수별 인덕턴스값(1211)과 본 실시 예에서 적용되는 코일 구성에 따른 주파수별 인덕턴스값(1212)의 변화를 나타낸 그래프이다. (b) 예시도는 종래의 코일 구성에 따른 주파수별 저항값(1221)과 본 실시 예에서 적용되는 코일 구성에 따른 주파수별 저항값(1222)의 변화를 나타낸 그래프이다.Referring to FIG. 12, (a) an exemplary view is a graph showing a change in inductance value 1211 for each frequency according to a conventional coil configuration and a change in inductance value 1212 for each frequency according to a coil configuration applied in the present embodiment. (b) An exemplary diagram is a graph showing a change in resistance value 1221 for each frequency according to a conventional coil configuration and a resistance value 1222 for each frequency according to a coil configuration applied in the present embodiment.
그래프 (a)를 참조하면, 종래의 동일한 저항값을 가지는 동일한 코일을 기판의 양면에 배치하는 경우의 인덕턴스값(1211)과 본 실시 예에 따라 상이한 저항값을 가지는 코일을 기판에 동일면 또는 적층하여 병렬로 연결하는 경우의 인덕턴스 값(1212)의 차이 및 변화는 주파수별로 일정하게 유지되며 차이값이 크게 나타나지 않는다. 그에 비하여 그래프 (b)참조하면, 그래프(a)에서와 같이 일정하게 인덕턴스값을 유지하면서도 종래의 코일 구성에 따른 저항값(1221)과 비교하여 본 실시 예에 따른 코일 구성에 따른 저항값(1222)은 감소되는 현상을 보인다. 즉, 종래의 동일 저항값을 가지는 코일의 구성과 비교하여 어느 하나의 코일이 다른 하나의 코일에 대비하여 낮은 저항값을 가지게 되면, 낮은 저항값을 가지는 코일에 의해 합성 저항값이 감소하게 된다.Referring to the graph (a), the inductance value 1211 when the same coil having the same resistance value is conventionally disposed on both sides of the substrate and the coil having the different resistance value according to the present embodiment are the same surface or stacked on the substrate. The difference and change in inductance value 1212 when connected in parallel are kept constant for each frequency, and the difference does not appear large. On the other hand, referring to the graph (b), the resistance value 1222 according to the coil configuration according to the present embodiment is compared with the resistance value 1221 according to the conventional coil configuration while maintaining the inductance value as shown in the graph (a). ) Decreases. That is, when one coil has a lower resistance value than the other coil compared with the conventional configuration of the coil having the same resistance value, the synthetic resistance value is reduced by the coil having the low resistance value.
따라서 이종의 저항값을 가지는 코일을 복수로 배치하는 경우 동일한 코일을 양면으로 형성하는 종래와 대비하여 인덕턴스는 일정하게 유지하며 그에 따른 저항값의 감소 효과를 가질 수 있다,Therefore, in the case where a plurality of coils having different resistance values are arranged, the inductance may be kept constant compared to the conventional method of forming the same coil on both sides, and thus the resistance value may be reduced.
일 실시 예에서는 제1 코일(810)과 제2 코일(820)이 직접 접촉되어 연결되거나 하나의 연결부에 의하여 연결되는 구조를 설명하였다. 이하 도 13 및 도 14를 참조하여 제1 코일(810)과 제2 코일(820)의 다른 연결 구조에 대해 설명한다.In an embodiment, the structure in which the first coil 810 and the second coil 820 are directly contacted or connected by one connection part has been described. Hereinafter, another connection structure of the first coil 810 and the second coil 820 will be described with reference to FIGS. 13 and 14.
도 13은 다른 실시 예에 따른 송신 코일부의 연결 사시도이고, 도 14는 다른 실시 예에 따른 송신 코일부의 분해 사시도이다.13 is a perspective view of a transmission coil unit according to another embodiment, and FIG. 14 is an exploded perspective view of a transmission coil unit according to another embodiment.
도 13 및 도 14를 참조하면, 제1 코일(810)은 기판(800)의 외측 영역에 배치되고, 제2 코일(820)은 제1 코일(810)이 배치되지 않은 기판(800)의 내측 영역에 배치될 수 있다. 이 경우 제1 코일(810)과 제2 코일(820)은 기판(800)의 동일 레이어에 형성될 수 있다. 또한 본 실시 예에서는 기판(800)의 상면 동일 레이어에 제1 코일(810)과 제2 코일(820)이 배치되는 구조를 설명하였지만 이에 한정되지 않으며 기판(800)의 하부면 동일 레이어에 제1 코일(810)과 제2 코일9820)이 배치되는 구조로 형성될 수 있다.13 and 14, the first coil 810 is disposed in the outer region of the substrate 800, and the second coil 820 is inside the substrate 800 in which the first coil 810 is not disposed. May be placed in the area. In this case, the first coil 810 and the second coil 820 may be formed on the same layer of the substrate 800. In addition, in the present exemplary embodiment, a structure in which the first coil 810 and the second coil 820 are disposed on the same layer as the upper surface of the substrate 800 has been described, but is not limited thereto. The coil 810 and the second coil 9820 may be formed in a structure in which the coil 810 and the second coil 9820 are disposed.
제1 코일(810)은 패턴 코일로서, 원형 또는 소정의 각을 가지는 다각형 형태로 구성될 수 있다. 제1 코일(810)은 라미네이팅 공정과 에칭 공정에 의해 기판(800)상에 형성된다. 제1 코일(810)은 일단에 형성되는 제1 단자(811) 및 제2 코일(810)의 타단에 형성되는 제2 단자(812)를 포함할 수 있다. The first coil 810 is a pattern coil and may be configured in a circular or polygonal shape having a predetermined angle. The first coil 810 is formed on the substrate 800 by a laminating process and an etching process. The first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the second coil 810.
제2 코일(820)은 기판(800) 상에 배치도리 수 있다. 제2 코일(820)은 권선 코일로 구성된다. 제2 코일(820)은 원형 또는 소정의 각을 가진 다각형 형태로 구성될 수 있다. 제2 코일(820)은 일단에 형성되는 제1 단자(8821)와 제2 코일(820)의 타단에 형성되는 제2 단자(822)를 포함할 수 있다. The second coil 820 may be disposed on the substrate 800. The second coil 820 is composed of a winding coil. The second coil 820 may be configured in a circular or polygonal shape having a predetermined angle. The second coil 820 may include a first terminal 8721 formed at one end and a second terminal 822 formed at the other end of the second coil 820.
제1 코일(810)의 제1 단자(811), 제2 단자(812) 및 제2 코일(820)의 제1 단자(821), 제2 단자(822)는 각각 연결부(830:831,832,833,834)에 의해 접촉부(840:841,842,843,844)에 연결될 수 있다. The first terminal 811, the second terminal 812 of the first coil 810, and the first terminal 821 and the second terminal 822 of the second coil 820 are connected to the connecting portions 830: 831, 832, 833, and 834, respectively. By contact 840: 841,842,843,844.
접촉부(840)는 제1 코일(810)의 제1 연결부(831)와 연결되는 제1 접촉부(841), 제1 코일(810)의 제2 연결부(832)와 연결되는 제2 접촉부(842), 제2 코일(820)의 제1 연결부(833)와 연결되는 제3 접촉부(843) 및 제2 코일(820)의 제2 연결부(834)와 연결되는 제4 접촉부(834)를 포함한다.The contact part 840 is a first contact part 841 connected to the first connection part 831 of the first coil 810, and a second contact part 842 connected to the second connection part 832 of the first coil 810. The third contact part 843 is connected to the first connection part 833 of the second coil 820, and the fourth contact part 834 is connected to the second connection part 834 of the second coil 820.
이때 제1 코일(810)의 제1 단자(811)와 제2 코일(820)의 제1 단자(821)를 병렬로 연결하기 위하여 제1 접촉부(841)와 제3 접촉부(843)가 제1 연결 도선(851)으로 연결된다. 또한 제1 코일(810)이 제2 단자(812)와 제2 코일(820)의 제2 단자(822)를 병렬로 연결하기 위하여 제2 접촉부(842)와 제4 접촉부(844)가 제2 연결도선(852)으로 연결된다. 따라서 접촉부(840)가 연결됨으로써, 제1 코일(810)과 제2 코일(820)이 병렬 연결되는 구조를 가질 수 있다.In this case, in order to connect the first terminal 811 of the first coil 810 and the first terminal 821 of the second coil 820 in parallel, the first contact part 841 and the third contact part 843 are connected to each other. The connection lead 851 is connected. Also, in order for the first coil 810 to connect the second terminal 812 and the second terminal 822 of the second coil 820 in parallel, the second contact part 842 and the fourth contact part 844 have a second contact point. The connection lead 852 is connected. Therefore, the contact portion 840 is connected, so that the first coil 810 and the second coil 820 may be connected in parallel.
일 실시 예 및 다른 실시 예에 따른 제1 코일(810)과 제2 코일(820)은 기판(800)의 상면 또는 하면 동일 레이어에 배치되고, 제2 코일(820)은 기판(800)의 내측에 접착부재에 의해 접착되어 형성될 수 있다,The first coil 810 and the second coil 820 are disposed on the same layer as the upper or lower surface of the substrate 800, and the second coil 820 is inside the substrate 800. It can be formed by being bonded to the adhesive member on,
일 실시 예 및 다른 실시 예에서는 제1 코일(810)과 제2 코일(820)이 기판의 동일 평면 상에 외측 영역과 내측영역에 중첩되지 않도록 배치되는 구조에 대해 설명하였다. 이하 또 다른 실시 예에서는 도 15를 참조하여 제1 코일(810)과 제2 코일(820)이 수직방향으로 적층되어 병렬 연결되는 구조에 대하여 상세히 설명한다.In one embodiment and another embodiment, a structure in which the first coil 810 and the second coil 820 are disposed on the same plane of the substrate so as not to overlap the outer region and the inner region has been described. Hereinafter, a structure in which the first coil 810 and the second coil 820 are stacked in the vertical direction and connected in parallel will be described in detail with reference to FIG. 15.
도 15는 또 다른 실시 예에 따른 송신 코일부의 분해 사시도이다.15 is an exploded perspective view of a transmitting coil unit according to another exemplary embodiment.
도 15를 참조하면, 제1 코일(810)은 기판(800)에 배치된다. 이때 제1 코일(810)은 패턴 코일로서, 원형 또는 소정의 각을 가지는 다각형의 형태로 구성될 수 있다. 제1 코일(810)은 라미네이팅 공정과 에칭 공정에 의해 기판(800) 상에 형성된다. 제1 코일(810)은 일단에 형성되는 제1 단자(811) 및 제1 코일(810)의 타단에 형성되는 제2 단자(812)를 포함할 수 있다.Referring to FIG. 15, the first coil 810 is disposed on the substrate 800. In this case, the first coil 810 is a pattern coil, and may be configured in the form of a circle or a polygon having a predetermined angle. The first coil 810 is formed on the substrate 800 by a laminating process and an etching process. The first coil 810 may include a first terminal 811 formed at one end and a second terminal 812 formed at the other end of the first coil 810.
제2 코일(890)은 제1 코일(810)의 대응하는 크기를 갖게 형성된다. 구체적으로 제2 코일(890)은 제1 코일(810)의 수직 방향으로 적층되어 병렬 연결된다. 바람직하게 제2 코일(890)은 제1 코일(810)와 대응하는 크기로 상면에 적층되어 병렬 연결되게 배치될 수 있다. The second coil 890 is formed to have a corresponding size of the first coil 810. Specifically, the second coil 890 is stacked in the vertical direction of the first coil 810 and connected in parallel. Preferably, the second coil 890 may be disposed on the upper surface of the second coil 890 in a size corresponding to that of the first coil 810 so as to be connected in parallel.
제2 코일(890)은제1 코일(810)에 대응하게 원형 또는 소정의 각을 가지는 다각형 형태로 구성될 수 있다. 제2 코일(890)은 일단에 형성되는 제1 단자(891)와 제2 코일(890)의 타단에 형성되는 제2 단자(892)를 포함할 수 있다. 이때 제1 코일(810)의 제1 단자(811)와 제2 코일(890)의 제1 단자(891)는 연결되고, 제1 코일(810)의 제2 단자(812)와 제2 코일(890)의 제2 단자(821)는 연결된다.The second coil 890 may be configured in a circular or polygonal shape having a predetermined angle to correspond to the first coil 810. The second coil 890 may include a first terminal 891 formed at one end and a second terminal 892 formed at the other end of the second coil 890. At this time, the first terminal 811 of the first coil 810 and the first terminal 891 of the second coil 890 are connected, and the second terminal 812 of the first coil 810 and the second coil ( The second terminal 821 of 890 is connected.
구체적으로, 제1 코일(810)과 제2 코일(890)은 각각의 제1 단자(811, 891)와 제2 단자(812, 892)가 연결되는 병렬 연결 구조를 가질 수 있다. 이때, 제1 코일(810)의 제1 단자(811)와 제2 코일(890)의 제1 단자(891) 및 제1 코일(820)의 제2 단자(812)와 제2 코일(890)의 제2 단자(892)는 직접 연결될 수 있다. 또는 연결부에 의해 연결될 수 있다. In detail, the first coil 810 and the second coil 890 may have a parallel connection structure in which the first terminals 811 and 891 and the second terminals 812 and 892 are connected. At this time, the first terminal 811 of the first coil 810 and the first terminal 891 of the second coil 890 and the second terminal 812 and the second coil 890 of the first coil 820. The second terminal 892 of may be directly connected. Or by a connection.
상기와 같이 또 다른 실시 예에서는 제1 코일(810)과 제2 코일(890)이 대응하는 크기 및 위치에 수직방향으로 적층되어 기판(800)의 상부에 배치되는 구조를 설명하였다. 하지만 이에 한정되지 않으며, 기판(800)의 하부면에 제1 코일(810)이 배치되는 경우 상기 제1 코일(810)의 수직방향 하부로 제2 코일(890)이 배치되도록 할 수 있다.As described above, in another exemplary embodiment, the structure in which the first coil 810 and the second coil 890 are stacked in the vertical direction at a corresponding size and position is disposed on the substrate 800. However, the present invention is not limited thereto, and when the first coil 810 is disposed on the lower surface of the substrate 800, the second coil 890 may be disposed below the vertical direction of the first coil 810.
따라서 본 실시 예에서는 상이한 저항값을 가지는 복수의 코일을 병렬 연결하여 구성함으로써, 제조 공정의 간소화 및 비용의 절감 효과를 가질 수 있다.Therefore, in the present embodiment, by configuring a plurality of coils having different resistance values in parallel, the manufacturing process may be simplified and the cost may be reduced.
또한 본 실시 예에 따라 저항값을 저감시키고, 전력 전송의 효율을 증가시키는 효과를 가질 수 있다.In addition, according to the present embodiment, it is possible to reduce the resistance value and increase the efficiency of power transmission.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 안되며 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The foregoing detailed description should not be construed as limiting in all respects, but should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Claims (10)

  1. 기판;Board;
    상기 기판 상에 형성되는 제1 코일;A first coil formed on the substrate;
    상기 제1 코일에 대응하게 형성되는 제2 코일을 포함하고,A second coil formed corresponding to the first coil,
    상기 제1 코일과 상기 제2 코일은 저항값이 상이한 이종의 코일이 병렬로 연결되는 무선전력 송신장치.The first coil and the second coil is a wireless power transmission apparatus in which heterogeneous coils having different resistance values are connected in parallel.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 코일은 패턴 코일이고,The first coil is a pattern coil,
    상기 제2 코일은 권선 코일을 포함하는 무선전력 송신장치.The second coil is a wireless power transmitter including a winding coil.
  3. 제1항에 잇어서In accordance with claim 1
    상기 제1 코일은 패턴 코일이고,The first coil is a pattern coil,
    상기 제2 코일은 권선 코일을 압착하여 형성되는 압착 코일을 포함하는 무선전력 송신장치.The second coil is a wireless power transmission apparatus including a compression coil formed by pressing a winding coil.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 코일과 상기 제2 코일은 동일 레이어에 배치되는 무선전력 송신장치.And the first coil and the second coil are disposed on the same layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 코일과 상기 제2 코일은 동일한 인덕턴스 값을 가지는 무선전력 송신장치.The first coil and the second coil is a wireless power transmitter having the same inductance value.
  6. 제1항에 있어서,The method of claim 1,
    상기 제 코일은 상기 기판의 외측 영역에 배치되고,The first coil is disposed in the outer region of the substrate,
    상기 제2 코일은 상기 기판의 내측 영역에 배치되는 무선전력 송신장치.And the second coil is disposed in an inner region of the substrate.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 코일은 일단에 제1 단자, 타단에 제2 단자를 포함하고,The first coil includes a first terminal at one end and a second terminal at the other end,
    상기 제2 코일은 일단에 제1 단자, 타단에 제2 단자를 포함하고,The second coil includes a first terminal at one end and a second terminal at the other end,
    상기 제1 코일의 제1 단자는 상기 제2 코일의 제1 단자와 연결되고, 상기 제1 코일의 제2 단자는 상기 제2 코일의 제2 단자와 연결되는 무선전력 송신장치.And a first terminal of the first coil is connected to a first terminal of the second coil, and a second terminal of the first coil is connected to a second terminal of the second coil.
  8. 제1항에 있어서,The method of claim 1,
    상기 제2 코일은 상기 제1 코일의 수직으로 적층되어 배치되는 무선전력 송신장치.The second coil is a wireless power transmission device disposed in a vertical stack of the first coil.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 코일과 상기 제2 코일의 크기는 동일하게 형성되는 무선전력 송신장치.Wireless power transmitter is the same size as the size of the first coil and the second coil.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 코일은 상기 제1 코일 보다 작게 형성되는 무선전력 송신장치.The second coil is formed smaller than the first coil wireless power transmitter.
PCT/KR2017/011427 2016-10-18 2017-10-17 Wireless power transmission device WO2018074803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160134883A KR20180042578A (en) 2016-10-18 2016-10-18 Apparatus for transmitting wireless power
KR10-2016-0134883 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074803A1 true WO2018074803A1 (en) 2018-04-26

Family

ID=62018616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011427 WO2018074803A1 (en) 2016-10-18 2017-10-17 Wireless power transmission device

Country Status (2)

Country Link
KR (1) KR20180042578A (en)
WO (1) WO2018074803A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019231168A1 (en) * 2018-05-30 2019-12-05 엘지이노텍 주식회사 Wireless charging coil
KR102209058B1 (en) * 2020-08-14 2021-01-28 아비코전자 주식회사 Power Conversion Unit for Wireless Power Transmitter
EP4220895A1 (en) 2021-01-29 2023-08-02 Samsung Electronics Co., Ltd. Electronic apparatus for transmitting wireless power and wireless charging method using same
US11848573B2 (en) 2021-04-08 2023-12-19 Samsung Electronics Co., Ltd. Wireless power transmission apparatus and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035196A (en) * 2009-09-30 2011-04-06 한국전기연구원 Spiral antenna and wireless power transmission device using spiral antenna
KR20130108050A (en) * 2012-03-23 2013-10-02 엘지이노텍 주식회사 Wireless power receiver and method of manufacturing the same
KR20150125525A (en) * 2014-04-30 2015-11-09 삼성전기주식회사 Wireless power receiver and electronic device comprising the same
KR101594380B1 (en) * 2015-03-04 2016-02-16 엘지전자 주식회사 Mobile terminal and coil antenna moduel
KR20160057278A (en) * 2014-11-13 2016-05-23 엘지전자 주식회사 Wireless power transmitter,wireless power receiver, and wireless charging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035196A (en) * 2009-09-30 2011-04-06 한국전기연구원 Spiral antenna and wireless power transmission device using spiral antenna
KR20130108050A (en) * 2012-03-23 2013-10-02 엘지이노텍 주식회사 Wireless power receiver and method of manufacturing the same
KR20150125525A (en) * 2014-04-30 2015-11-09 삼성전기주식회사 Wireless power receiver and electronic device comprising the same
KR20160057278A (en) * 2014-11-13 2016-05-23 엘지전자 주식회사 Wireless power transmitter,wireless power receiver, and wireless charging system
KR101594380B1 (en) * 2015-03-04 2016-02-16 엘지전자 주식회사 Mobile terminal and coil antenna moduel

Also Published As

Publication number Publication date
KR20180042578A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2017065413A1 (en) Multi-coil wireless charging method and device and system therefor
WO2019022438A1 (en) Coil device and wireless charging device comprising same
WO2017094997A1 (en) Wireless charging device, wireless power transmission method therefor, and recording medium for same
WO2018074803A1 (en) Wireless power transmission device
WO2017061716A1 (en) Wireless charging device alignment guiding method and device and system for same
WO2014038862A1 (en) Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same
WO2017043841A1 (en) Wireless power transmitter and method for controlling same
WO2017078256A1 (en) Multi-coil wireless charging method and device and system therefor
WO2017078285A1 (en) Wireless power transmitter
WO2014010951A1 (en) Wireless power transmitter, wireless power receiver, and method for controlling same
WO2013036067A2 (en) Wireless power receiver and control method thereof
WO2016133322A1 (en) Wireless power transmission device and wireless power transmission method
WO2019039898A1 (en) Apparatus and method for performing communication in wireless power transmission system
WO2017138713A1 (en) Wireless power device having plurality of transmission coils and driving method therefor
CN109247039A (en) Wireless charging method and its device and system
WO2017142234A1 (en) Wireless charging method and apparatus and system therefor
WO2019151693A1 (en) Wireless charging receiver for improving antenna performance
WO2019045350A2 (en) Method and device for wireless power transmission
WO2017138712A1 (en) Wireless charging method, and device and system therefor
WO2018101677A1 (en) Wireless power receiving device
WO2018151441A1 (en) Wireless power transmitter having electromagnetic shielding structure
WO2019013480A1 (en) Wireless charging device having wireless communication coil
WO2018182165A1 (en) Wireless power transmitter and method for controlling wireless power transmitter
WO2019194419A1 (en) Wireless charging device
WO2021167341A1 (en) Wireless power reception device, wireless power transmission device, and method for transmitting/receiving messages between wireless power reception device and wireless power transmission device using data transmission stream

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862149

Country of ref document: EP

Kind code of ref document: A1