WO2019231168A1 - Wireless charging coil - Google Patents

Wireless charging coil Download PDF

Info

Publication number
WO2019231168A1
WO2019231168A1 PCT/KR2019/006173 KR2019006173W WO2019231168A1 WO 2019231168 A1 WO2019231168 A1 WO 2019231168A1 KR 2019006173 W KR2019006173 W KR 2019006173W WO 2019231168 A1 WO2019231168 A1 WO 2019231168A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
winding
terminal
resistance
line
Prior art date
Application number
PCT/KR2019/006173
Other languages
French (fr)
Korean (ko)
Inventor
이기민
김진복
김형래
임수찬
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180062168A external-priority patent/KR20190136447A/en
Priority claimed from KR1020190023102A external-priority patent/KR20200104589A/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2019231168A1 publication Critical patent/WO2019231168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • An embodiment relates to a wireless charging coil.
  • Portable terminals such as mobile phones and laptops include a battery that stores power and circuits for charging and discharging the battery. In order for the battery of the terminal to be charged, power must be supplied from an external charger.
  • the terminal is supplied with commercial power and converted into a voltage and a current corresponding to the battery to supply electrical energy to the battery through the terminal of the battery.
  • Supply method This terminal supply method is accompanied by the use of a physical cable (cable) or wire. Therefore, when handling a lot of terminal supply equipment, many cables occupy considerable working space, are difficult to organize, and are not good in appearance.
  • the terminal supply method may cause problems such as instantaneous discharge phenomenon due to different potential difference between the terminals, burnout and fire caused by foreign substances, natural discharge, deterioration of battery life and performance.
  • a charging system (hereinafter referred to as a "wireless charging system") and a control method using a method of transmitting power wirelessly have been proposed.
  • the wireless charging system was not basically installed in some portable terminals in the past, and the consumer had to separately purchase a wireless charging receiver accessory, so the demand for the wireless charging system was low, but wireless charging users are expected to increase rapidly. It is expected to be equipped with wireless charging function.
  • the quality factor becomes important.
  • the quality factor should also be high.
  • the quality factor Q is proportional to the inductance L and inversely proportional to the resistance R, as shown in equation (1).
  • the length of the antenna i.e. the total length of the coil, must be long.
  • the resistance is also increased, so that it is difficult to increase the quality factor.
  • the AC resistance at this time can be expressed as Equation 2.
  • R ac represents the AC resistance
  • R dc represents the DC resistance
  • Ys represents the resistance component due to the skin effect
  • Yp represents the resistance component due to the proximity effect.
  • the skin effect refers to a phenomenon in which the AC current does not flow evenly in the cross section of the coil in which the AC current flows, and the AC current flows in the periphery area with little or no AC current flowing at all. This epidermal effect becomes more severe at higher frequencies.
  • FIG. 1A when an alternating current flows through the coil 1, the current density J is distributed at the periphery of the coil 1 and not at the center of the coil 1, so that the alternating current is applied to the coil 1. Does not flow to the center of the flow, but only flows to the periphery of the coil (1).
  • Proximity effect refers to a phenomenon in which the current density flowing in a coil is concentrated to one side when an AC current flows in adjacent coils. This proximity effect is exacerbated as the frequency increases and the spacing between adjacent coils narrows.
  • FIG. 1B when an alternating current flows through the coils 3 and 5 adjacent to each other, the current density J of each coil 3 and 5 is distributed in an area far from each other and is not distributed in an area adjacent to each other. do.
  • the coils 3 and 5 are affected by not only the skin effect but also the proximity effect.
  • the AC resistance is increased due to the resistance component (Ys) due to the skin effect and the resistance component (Yp) due to the proximity effect.
  • the gap between the coils has not been reduced to increase the inductance, and even though the gap between the coils is reduced, the AC resistance is increased and the quality factor is rather low.
  • the optimal wireless charging coil for improving the quality coefficient by reducing the AC resistance was difficult.
  • the embodiment provides a wireless charging coil having a new structure.
  • the embodiment provides a wireless charging coil capable of suppressing an increase in AC resistance.
  • the embodiment provides a wireless charging coil that can increase the quality factor in a limited area.
  • the embodiment provides a wireless charging coil capable of minimizing the occupied area of the coil.
  • the embodiment provides a wireless charging coil capable of suppressing the generation of the phase difference.
  • the embodiment provides a wireless charging coil capable of an optimal design that can improve the quality factor.
  • the embodiment provides a wireless charging coil that can reduce the skin resistance to reduce the AC resistance.
  • the embodiment provides a wireless charging coil capable of reducing the AC resistance by reducing the proximity effect.
  • the embodiment provides a wireless charging coil that can reduce the AC resistance.
  • the embodiment provides a wireless charging coil that can improve the charging efficiency.
  • the wireless charging coil the first terminal; A winding part connected to the first terminal and including a first division region; And a second terminal connected to the winding part.
  • the first terminal does not overlap an imaginary straight line passing through the center of the winding portion and the second terminal.
  • the winding part may include a second divided region and a non-divided region between the first divided region and the second divided region.
  • At least one of the first terminal and the second terminal may not overlap an imaginary straight line passing through the center of the winding part and the non-divided area.
  • the first divided area may be divided into two conductive lines.
  • the second divided area may be divided into three conductive lines.
  • the two conductive wires of the first divided area are commonly connected to the first terminal, the two conductive wires of the first divided area are commonly connected to the non-divided area, and the three of the second divided area are connected.
  • Two conductive lines may be commonly connected to the non-divided area, and the three conductive lines of the second divided area may be commonly connected to the second terminal.
  • the line width of one of the three conductive lines in the second divided region may be different from the line width of the other conductive line.
  • the line width of the conductive line of the first divided region may be greater than the line width of the conductive line of the second divided region.
  • the line spacing of the conductive lines of the first divided region may be the same as the line spacing of the conductive lines of the second divided region.
  • the non-divided region includes a first conductor region connected to the first divided region, a third conductor region connected to the second divided region, and a second conductor region disposed between the first conductor region and the third conductor region. It may include.
  • the effect of the wireless charging coil according to the embodiment is as follows.
  • the coil pattern includes at least two or more conductors separated or branched by the slit, and the width of the separated or branched conductor is specified, whereby the DC resistance becomes small, By reducing the difference between the DC resistance and the AC resistance and increasing the inductance, the quality factor can be significantly improved.
  • the coil pattern comprises at least two or more conductors separated or branched by slits, and by specifying the width of the separated or branched conductors, the spacing between the winding lines included in the coil pattern is reduced. It can be reduced, improving the quality factor and minimizing the occupied area occupied by the coil pattern, making the product compact. In addition, even if the distance between the winding line is reduced, there is an effect of reducing the difference between the DC resistance and the AC resistance during AC operation.
  • the coil pattern includes at least two or more conductors separated or branched by the slit, and by specifying the width of the separated or branched conductors, the spacing between the winding lines is reduced to inductance with respect to the same area. This increases the coefficient of quality compared to the same area in the end.
  • the first lead and the second lead are connected by at least one or more connection lines, thereby reducing the phase difference of AC power.
  • the coil may be divided into two to reduce the resistance component due to the skin effect and / or the resistance component due to the proximity effect. As the resistance component due to the resistance component and / or the proximity effect is reduced, the AC resistance is also reduced, and thus the quality factor is increased to increase the charging efficiency.
  • the line width of the coil that is wound along the direction from the center of the winding portion toward the outside of the winding portion increases, so that the cross-sectional area of the coil increases in proportion to the increase in the length of the coil so that There is an advantage that the quality factor can be increased because the AC resistance is not increased by suppressing the increase.
  • the second split of the second divided region than the number of conductors of the first split structure of the first divided region and the second divided region which are arranged before and after the non-divided region of the winding part.
  • the quality factor can be improved due to the reduction.
  • the first terminal and the second terminal connected to both ends of the winding portion and the non-dividing region when the first terminal and the second terminal connected to both ends of the winding portion and the non-dividing region is disposed on the winding portion, the first terminal passes through the center and the second terminal of the winding portion;
  • the first terminal, the non-divided area, and the second terminal by not overlapping with the second virtual straight line passing through the first virtual straight line or the center of the winding part and the non-dividing area or the second terminal do not overlap with the second virtual straight line.
  • the quality factor can be improved by reducing the AC current by removing the resistance component (Yp) due to the proximity effect generated in between.
  • 1A is a diagram illustrating skin effect in a single coil.
  • FIG. 1B is a diagram illustrating a proximity effect in coils adjacent to each other.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to an embodiment.
  • FIG. 3 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
  • FIG. 4 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 3.
  • FIG. 5 is an exploded perspective view of a wireless power transmitter according to an embodiment.
  • FIG. 6 shows a wireless power receiver according to an embodiment.
  • FIG. 7A is a plan view illustrating the wireless charging coil module according to the first embodiment.
  • FIG. 7B is a cross-sectional view illustrating the wireless charging coil module according to the first embodiment.
  • FIG. 8A illustrates resistance and inductance according to a width of a coil in a structure in which a shield is attached to a coil pattern.
  • FIG. 8B illustrates a resistance ratio and a quality factor according to a width of a coil in a structure in which a shield is attached to a coil pattern.
  • 9A illustrates resistance and inductance according to a width of a coil in a structure in which a shield is attached to a coil pattern.
  • 9B illustrates a resistance ratio and a quality factor according to a width of a coil in a structure in which a shield is attached to a coil pattern.
  • 10A is a plan view illustrating a wireless charging coil module according to a third embodiment.
  • 10B is a sectional view showing a wireless charging coil module according to a third embodiment.
  • FIG. 11A illustrates resistance and inductance according to the width of the coil in a structure in which a shield is attached to the coil pattern.
  • FIG. 11B illustrates the resistance ratio and the quality factor according to the width of the coil in the structure in which the shielding material is attached to the coil pattern.
  • FIG. 12A is a plan view illustrating a wireless charging coil module according to a fourth embodiment.
  • FIG. 12B is a sectional view showing a wireless charging coil module according to a fourth embodiment.
  • FIG. 13 is a plan view illustrating a wireless charging coil module according to a fifth embodiment.
  • FIG. 14 to 19 are views for explaining a method of manufacturing a wireless charging coil according to the embodiment.
  • 20 is a plan view illustrating a wireless charging coil module according to a sixth embodiment.
  • FIG. 21 is an enlarged view illustrating region A of FIG. 20.
  • FIG. 22 is an enlarged view illustrating region B of FIG. 20.
  • FIG. 23 is a cross-sectional view taken along the line X-Y in the wireless charging coil module shown in FIG.
  • 25 is an exploded perspective view of an electronic device according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be “connected”, “coupled” or “connected”.
  • the apparatus for transmitting wireless power on the wireless power charging system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a wireless power transmitter for convenience of description.
  • a wireless power transmitter, a wireless charging device, etc. will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Terminals and the like may be used interchangeably.
  • the wireless power receiver may be provided with at least one wireless power transmission scheme, and may simultaneously receive wireless power from two or more wireless power transmitters.
  • the wireless power transmission method may include at least one of an electromagnetic induction method, an electromagnetic resonance method, and an RF wireless power transmission method.
  • the wireless power transmitter and the wireless power receiver constituting the wireless power system may exchange control signals or information through in-band communication or BLE (Bluetooth Low Energy) communication.
  • in-band communication and BLE communication may be performed by a pulse width modulation method, a frequency modulation method, a phase modulation method, an amplitude modulation method, an amplitude and phase modulation method, or the like.
  • the wireless power receiver may transmit various control signals and information to the wireless power transmitter by generating a feedback signal by switching ON / OFF the current induced through the receiving coil in a predetermined pattern.
  • the information transmitted by the wireless power receiver may include various state information including received power strength information.
  • the wireless power transmitter may calculate the charging efficiency or the power transmission efficiency based on the received power strength information.
  • FIG. 2 is a block diagram illustrating a wireless charging system according to an embodiment.
  • the wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 30 that receives the received power. Can be configured.
  • the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission.
  • the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
  • the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other.
  • the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
  • In-band communication and out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, in-band communication and out-of-band communication may provide one-way communication or half-duplex communication.
  • the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto.
  • the wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
  • bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
  • the wireless power receiver 20 may obtain various state information of the electronic device 30.
  • the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like.
  • the information may be obtained from the electronic device 30 and may be utilized for wireless power control.
  • FIG. 3 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
  • the wireless power transmitter 200 may largely include a power converter 210, a power transmitter 220, a communicator 230, a controller 240, and a sensor 250.
  • the configuration of the wireless power transmitter 200 is not necessarily an essential configuration, and may include more or fewer components.
  • the power converter 210 may perform a function of converting the power into power of a predetermined intensity.
  • the power converter 210 may convert the power supplied from the power supply unit 260 into power for wireless transmission.
  • the power transmitter 220 may include a multiplexer 221 (or a multiplexer) and a transmission coil 222.
  • the power transmitter 220 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
  • the power transmitter 220 may include a multiplexer 221 and a plurality of transmitter coils 222 to control transmission of output power of the power converter 210 to a transmitter coil. And first through n-th transmission coils.
  • the control unit 240 may transmit power through time division multiplexing for each transmission coil.
  • the wireless power transmitter 200 three wireless power receivers, that is, the first to third wireless power receivers, are identified through three different transmitting coils, that is, the first to third transmitting coils, respectively.
  • the controller 240 may control the multiplexer 221 to control power to be transmitted through a specific transmission coil in a specific time slot.
  • the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the allocated time slot for each transmitting coil, but this is only one embodiment.
  • Another example is an amplifier during an allocated time slot for each transmitting coil.
  • the output power of each wireless power receiver may be controlled by controlling the amplification rate.
  • the control unit 240 may control the multiplexer 221 to sequentially transmit the detection signals through the first to nth transmission coils 222 during the first detection signal transmission procedure.
  • control unit 240 supplies a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 232 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 240 controls the multiplexer 221 to transmit the detection signal only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, when there are a plurality of transmitting coils receiving the signal strength indicator during the first sensing signal transmitting procedure, the controller 240 sends the second sensing signal to the transmitting coil in which the signal strength indicator having the largest value is received. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 221 may be controlled according to the determination result.
  • the modulator 231 may modulate the control signal generated by the controller 240 and transmit the modulated control signal to the multiplexer 221.
  • the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
  • the demodulator 232 may demodulate the detected signal and transmit the demodulated signal to the controller 240.
  • the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like.
  • EC error correction
  • EOC end of charge
  • the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
  • the demodulator 232 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 240 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
  • the wireless power transmitter 200 may obtain a signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
  • the wireless power transmitter 200 may transmit wireless power using the transmission coil 222, and may also exchange various information with the wireless power receiver through the transmission coil 222.
  • the wireless power transmitter 200 further includes a separate coil corresponding to each of the transmission coils 222 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
  • the wireless power transmitter 200 and the wireless power receiver perform in-band communication by way of example.
  • this is only one embodiment, and is a frequency band used for wireless power signal transmission.
  • Short-range bidirectional communication may be performed through a frequency band different from that of FIG.
  • the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
  • FIG. 4 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 3.
  • the wireless power receiver 300 includes a receiving coil 310, a rectifier 320, a DC / DC converter 330, a load 340, a communication unit 360, and a main control unit ( 370 may be configured.
  • the communicator 360 may include at least one of a demodulator 361 and a modulator 362.
  • the wireless power receiver 300 illustrated in the example of FIG. 4 is illustrated as being capable of exchanging information with the wireless power transmitter through in-band communication, this is only one embodiment, and in another embodiment.
  • the communication unit 360 may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
  • the AC power received through the receiving coil 310 may be transmitted to the rectifier 320.
  • the rectifier 320 may convert AC power into DC power and transmit the DC power to the DC / DC converter 330.
  • the DC / DC converter 330 may convert the strength of the rectifier output DC power into a specific intensity required by the load 340 and then transmit the converted power to the load 340.
  • the receiving coil 310 may be configured to include a plurality of receiving coils (not shown), that is, the first to n-th receiving coil.
  • Frequency of AC power delivered to each receiving coil may be different from each other, and another embodiment is a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each receiving coil It is also possible to set different resonant frequency for each receiving coil by using a.
  • the sensing unit 350 may measure the intensity of the rectifier 320 output DC power and provide the same to the main controller 370. Alternatively, the sensing unit 350 may measure the strength of the current applied to the receiving coil 310 according to the wireless power reception, and transmit the measurement result to the main control unit 370.
  • the sensing unit 350 may measure the internal temperature of the wireless power receiver 300 and provide the measured temperature value to the main controller 370.
  • the main controller 370 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 362.
  • the signal modulated by the modulator 362 may be transmitted to the wireless power transmitter through the receiving coil 310 or a separate coil (not shown).
  • the main controller 370 may determine that the sensing signal is received when the intensity of the rectifier output DC power is greater than or equal to a predetermined reference value. When the sensing signal is received, a signal strength indicator corresponding to the sensing signal may be modulated by the modulator 362.
  • the demodulator 361 demodulates an AC power signal or a rectifier 320 output DC power signal between the receiving coil 310 and the rectifier 320 to identify whether a detection signal is received, and then, the main subject of the identification result.
  • the unit 370 may be provided.
  • the main controller 370 may control a signal strength indicator corresponding to the sensing signal to be transmitted through the modulator 362.
  • FIG. 5 is an exploded perspective view of a wireless power transmitter according to an embodiment.
  • the wireless power transmitter according to the embodiment may be the wireless power transmitter 10 shown in FIG. 2 or the wireless power transmitter 200 shown in FIG. 3.
  • the wireless power transmitter may include a first bracket 400, a first substrate 500, a second bracket 600, a shielding material 605, a transmission coil 610, and a second substrate ( 700). It should be noted that the above-described configuration of the wireless power transmitter is not necessarily an essential configuration, and may include more or fewer components.
  • the first and second substrates 500 and 700 may be printed circuit boards (PCBs) or flexible printed circuit boards (FPCBs), but are not limited thereto.
  • PCBs printed circuit boards
  • FPCBs flexible printed circuit boards
  • the first bracket 400 may be fastened to the second bracket 600. That is, the first bracket 400 and the second bracket 600 may be fastened using bolts such as screws.
  • the first substrate 500 may be located on the first bracket 400.
  • the first substrate 500 may be fastened to the first bracket 400 and / or the second bracket 600.
  • a screw may be fastened to the second bracket 600 by passing through the first bracket 400 and the first substrate 500.
  • the circuit unit includes a multiplexer 221 shown in FIG. 3, a wireless charging communication unit 230, a timer 255, a sensing unit 250, a control unit 240, and a wireless charging communication unit shown in FIG. 4 ( 360, the main control unit 370, and the sensing unit 350 are not limited thereto.
  • the first substrate 500 may have a rigid rectangular shape, but is not limited thereto. Therefore, the first substrate 500 may support the shielding material 605, the transmission coil 610, and the like disposed on the upper surface. In addition, an area of the first substrate 500 may be larger than an area of the transmission coil 610 and an area of the shielding material 605.
  • One side of the first substrate 500 may include a terminal unit 660.
  • the circuit part of the first substrate 500 may be electrically connected to the circuit parts of the transmission coil 610 and the second substrate 700 by using the terminal part.
  • the terminal portion may be formed of a plurality of pins or pads, but is not limited thereto.
  • the shield 605 may be disposed on the top surface of the first substrate 500.
  • the shielding material 605 may be disposed in the opening 601 of the second substrate 700 on the upper surface of the first substrate 500.
  • the shielding material 605 may be disposed under the second substrate 700 and over the first substrate 500. In this case, the area of the shielding material 605 may be larger than the area of the opening 601 of the second substrate 700. Thus, the edge region of the shield 605 may overlap the frame 603 of the second substrate 700.
  • the shielding material 605 may be disposed on the second substrate 700. In this case, the area of the shielding material 605 may be larger than the area of the opening 601 of the second substrate 700. Thus, the edge region of the shield 605 may overlap the frame 603 of the second substrate 700.
  • the area of the shielding material 605 may be larger than that of the transmission coil 610.
  • the transmission coil 610 may be disposed on the shield 605.
  • the transmission coil 610 may include one or more transmission coils 620 to 640.
  • the one or more transmission coils 620 to 640 may be one or more transmission coils of the wireless power transmitter or one or more reception coils of the wireless power receiver.
  • each of the transmission coils 620 to 640 may be wound by the same number of turns.
  • the present invention is not limited thereto and may be wound around different turns.
  • the plurality of transmission coils 620 to 640 may have the same inductance.
  • the present invention is not limited thereto and may have different inductances.
  • the plurality of transmission coils 620 to 640 may be arranged in one or more layers. More specifically, the plurality of transmission coils 620 to 640 may include first to third transmission coils 620 to 640.
  • the second transmission coil 630 and the third transmission coil 640 may be arranged parallel to each other on the same layer, that is, the first layer.
  • the first transmission coil 620 may be disposed on a second layer different from the first layer. For example, some areas of the first transmission coil 620 may be disposed to overlap some areas of the second transmission coil 630 and other areas overlap with some areas of the third transmission coil 640. I never do that.
  • the plurality of transmission coils 620 to 640 may be disposed on different layers to expand the charging region to efficiently transmit wireless power.
  • the first transmission coil 620 may be disposed on the same layer as the substrate 400.
  • the transmission coil 610 may be coated with an insulating material or coated with an insulating layer on the outer surface.
  • the area of the shielding material 605 may be larger than the area occupied by the first to third transmission coils 620 to 640.
  • the batch occupancy area may be a total area occupied by the first to third transmission coils 620 to 640. Therefore, the electromagnetic fields generated by the first to third transmission coils 620 to 640 may be shielded by the shielding material 605 so as not to affect the circuit part or the outside mounted on the first substrate 500.
  • the shield 605 may be disposed on the bottom surface of the transmission coil 610.
  • the upper surface of the shielding material 605 may be in contact with the lower surface of the transmission coil 610, specifically, the lower surfaces of the second and third transmission coils 630 and 640, but is not limited thereto.
  • an adhesive or an adhesive member (not shown) is disposed between the upper surface of the shield 605 and the lower surfaces of the second and third transmission coils 630 and 640 so that the second and third transmission coils 630 may be disposed on the shield 605. , 640 may be fixed.
  • the shielding material 605 may guide the wireless power generated from the transmission coil 610 disposed above, in the charging direction, and may protect various circuit parts mounted below the first substrate 500 from electromagnetic fields.
  • the second substrate 700 may be disposed on the transmission coil 610 or the second bracket 600.
  • the second substrate 700 may be fastened to the second bracket 600 by using bolts such as screws.
  • the overall thickness of the layer and the second layer may be greater than the thickness of the second bracket 600.
  • some regions of both ends of the second bracket 600 may have first and second protrusions 602 and 604 protruding upward.
  • the second substrate 700 is fastened to the first and second protrusions protruding from both ends of the second bracket 600, so that at least an upper surface of the first transmission coil 620 is lower than the lower surface of the second substrate 700. Since the first transmission coil 620 is not damaged due to contact with the lower surface of the second substrate 700, the first transmission coil 620 may be prevented from being contacted.
  • a circuit unit such as the near field communication units 270 and 380 illustrated in FIG. 3 or 4 may be mounted on the upper surface of the second substrate 700.
  • wireless communication coils 280 and 390 may be disposed in a pattern on the upper surface of the second substrate 700.
  • the wireless communication coils 280 and 390 may have at least one turn.
  • both ends of the wireless communication coils 280 and 390 may be electrically connected to circuit units such as the short range communication units 270 and 380 through via holes.
  • the circuit portion of the second substrate 700 may be electrically connected to the controller (240 of FIG. 3) or the main controller (370 of FIG. 4) mounted on the first substrate 500 using, for example, a cable or a bus line. Can be.
  • FIG. 6 shows a wireless power receiver according to an embodiment.
  • the wireless power receiver 800 may be the wireless power receiver 20 illustrated in FIG. 2 or the wireless power receiver 300 illustrated in FIG. 4.
  • the wireless power receiver shown in FIG. 6 may be referred to as a multi-mode antenna module.
  • the wireless power receiver 800 includes a printed circuit board 860, a first antenna 810, a second antenna 820, a first connection terminal 840, and a second connection terminal. 850 may be configured.
  • the first antenna 810 may be a wireless charging coil of the embodiment.
  • the operating frequency of the first antenna 810 may be about 110 KHz to about 205 KHz.
  • the wireless power receiver 800 includes a printed circuit board 860, a first antenna 810 disposed in a patterned area in a central area of the printed circuit board 860, and a first local area for wireless charging.
  • the second antenna 820 is pattern-printed and disposed on the outer side of the first antenna 810 for wireless communication, and the outer side of the second antenna 820 so as not to overlap the second antenna 820 for the second short range wireless communication.
  • the third antenna 830 and the first connection terminal 840 and the second antenna 820 and the third antenna for connecting both ends of the first connection pattern corresponding to the first antenna 810 are pattern-printed on
  • the second connection terminal 850 may be configured to connect both ends of the second to third connection patterns respectively corresponding to 830.
  • first connection terminal 840 and the second connection terminal 850 may be physically disposed on the printed circuit board 850.
  • first connection terminal 840 and the second connection terminal 850 may be physically formed on the printed circuit board 860 so that the first connection pattern does not overlap the second antenna 820 and the third antenna 830. Can be arranged separately.
  • connection pattern of each antenna may be formed by lead wires extending from both ends of the antenna, or branched at a specific position of the antenna.
  • the position where the connection pattern and the connection terminal of each antenna are arranged may be arranged to minimize the length of the connection pattern.
  • the first short range wireless communication may be Magnetic Secure Transmission (MST), and the second short range wireless communication may be Near Field Communication (NFC).
  • MST Magnetic Secure Transmission
  • NFC Near Field Communication
  • the operating frequency in the MST is, for example, 3.24MHz
  • the operating frequency in the NFC may be, for example, 13.56MHz.
  • the first short range wireless communication may be NFC
  • the second short range wireless communication may be MST.
  • the first short range wireless communication and the second short range wireless communication may correspond to any one of NFC, RFID communication, Bluetooth communication, Ultra Wideband (UWB) communication, MST communication, Apple Pay communication, and Google Pay communication, respectively. have.
  • NFC NFC
  • RFID communication RFID communication
  • Bluetooth communication Ultra Wideband (UWB) communication
  • MST communication Apple Pay communication
  • Google Pay communication Google Pay communication
  • the pattern of the antenna may be disposed on the printed circuit board 360 such that the separation distance between the second antenna 320 and the third antenna 330 is maintained at least 1 mm.
  • the second antenna 320 and the third antenna 330 are the printed circuit board 360 so that the deviation of the separation distance between the second antenna 320 and the third antenna 330 is maintained below a predetermined first reference value. Can be placed in.
  • a pattern of the corresponding antenna may be disposed on the printed circuit board 360 so that the separation distance between the first antenna 310 and the second antenna 320 is maintained at least 0.5 mm.
  • the first antenna 310 and the second antenna 320 are printed circuit board 360 so that the deviation of the separation distance between the first antenna 310 and the second antenna 320 is maintained below a predetermined second reference value. Can be placed in.
  • the first antenna 310 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through the through holes (not shown) disposed on the printed circuit board 360 may mutually be printed. Can be conductive. Through this, the resistance component of the first antenna can be reduced, and thus the reception sensitivity of the antenna can be improved.
  • the second antenna 320 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through through holes (not shown) disposed in the printed circuit board 360 may be formed. May be conductive to each other. Through this, the resistance component of the second antenna can be reduced, and thus the reception sensitivity of the corresponding antenna can be improved.
  • the third antenna 330 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through through holes (not shown) disposed in the printed circuit board 360. This can be mutually conductive. Through this, the resistance component of the third antenna can be reduced, and thus the reception sensitivity of the corresponding antenna can be improved.
  • At least one of the first antenna 310, the second antenna 320, and the third antenna 330 may be pattern printed on both surfaces of the printed circuit board 360, respectively. Corresponding antenna patterns printed on both sides may be connected to each other through a through hole (not shown) disposed at 360. Through this, the resistance component of the antenna can be reduced, and thus the reception sensitivity of the antenna can be improved.
  • the first antenna 310 may be printed on the printed circuit board 360 in a circular pattern having a predetermined inner diameter, and the first connection terminal may be disposed outside the inner diameter. It is only one embodiment.
  • the transmission coil 610 of FIG. 5 and / or the reception coil 810 of FIG. 6 of the wireless power transmitter described above may be referred to as a wireless charging coil described below.
  • the radius of the coil should be less than or equal to the skin depth.
  • the skin depth ⁇ can be represented by Equation 3.
  • represents the skin depth
  • represents the permeability
  • represents the conductivity
  • f may represent the operating frequency
  • the resistance component (Ys) and the proximity effect due to the skin effect shown in Equation 2 are obtained.
  • the resistive component Yp due to can be made substantially zero.
  • DC resistance (R dc ) can be represented as shown in Equation 4.
  • represents the resistivity
  • l represents the length of the coil
  • S represents the cross-sectional area of the coil.
  • the wireless charging coil module according to the first to fifth embodiments below can suppress the increase of the AC resistance (R ac ) while maintaining the DC resistance (R dc ) at a constant level.
  • FIG. 7A is a plan view illustrating the wireless charging coil module according to the first embodiment
  • FIG. 7B is a cross-sectional view illustrating the wireless charging coil module according to the first embodiment.
  • the wireless charging coil module 900 may provide a film 901.
  • the film 901 may serve as a substrate for forming the wireless charging coils 903 and 906.
  • the wireless charging coils 903 and 906 can be protected and supported.
  • the film 901 may be formed of a thin material and a flexible material.
  • the film 901 may be polyimide (PI) or polyethylene terephthalate (PET).
  • the wireless charging coil module 900 may provide a shielding material 907.
  • the shielding material 907 may shield the electromagnetic fields of the wireless charging coils 903 and 906.
  • the shielding material 907 may include a metal material.
  • the shielding material 907 may be made of, for example, a ferrite material, but is not limited thereto.
  • the shield 907 may support the wireless charging coils 903 and 906.
  • the area of the shielding material 907 may be larger than that of the wireless charging coils 903 and 906.
  • the shield 907 may be disposed under the film 901.
  • the shield 907 may be attached to the film 901 using an adhesive (not shown). Since the adhesive is very thin, the shield 907 may be considered to be in contact with the bottom surface of the film 901.
  • the adhesive may be made of a material having excellent heat dissipation performance and insulation properties.
  • the wireless charging coil module 900 may provide a heat dissipation material 909.
  • the heat dissipation material 909 may be disposed under the shielding material 907.
  • the heat dissipation material 909 may be attached to the shielding material 907 using an adhesive (not shown).
  • the heat dissipation material 909 may be in contact with the bottom surface of the shielding material 907.
  • the heat dissipation material 909 may be made of a metal material.
  • the heat dissipation material 909 may be made of copper (Cu), but is not limited thereto.
  • the heat dissipation material 909 may be disposed inside the shielding material 907.
  • the heat dissipating material 909 may be particles or beads having a plate shape or excellent heat dissipation characteristics.
  • the heat dissipation material 909 may support the wireless charging coils 903 and 906 and the shielding material 907.
  • the heat dissipation material 909 may discharge heat generated from the wireless charging coils 903 and 906 to the outside.
  • optimization of the thickness of the heat dissipating material 909 is required.
  • the thickness of the heat dissipation material 909 may be 2 to 5 times thicker than the thickness of the shielding material 907.
  • the heat dissipation material 909 may be selectively adopted according to the heat generation state of the wireless charging coil module 900. For example, when heat generation of the wireless charging coil module 900 hardly occurs, the heat dissipation material 909 may be omitted.
  • the wireless charging coil module 900 may provide the wireless charging coils 903 and 906.
  • the wireless charging coils 903 and 906 are members for receiving wireless power from the wireless power transmitter, and may be, for example, the first antenna 810 shown in FIG. 6.
  • the wireless charging coils 903 and 906 may include a coil portion 903.
  • the coil unit 903 may be disposed on an upper surface of the film 901. Although not shown, the coil 903 may be disposed directly on the upper surface of the shield 907.
  • the coil unit 903 may include a coil pattern 904 wound in a spiral shape.
  • the coil pattern 904 may include a plurality of winding lines 904_1 to 904_13.
  • 7A and 7B illustrate first to thirteenth winding lines 904_1 to 904_13 having 13 turns with the coil pattern 904 for convenience of description.
  • the coil unit 903 according to the first embodiment may include less than 13 winding lines or more than 13 winding lines.
  • the distance D1 between two adjacent winding lines may be 1 ⁇ or less.
  • An interval D1 between two adjacent winding lines may be 200 ⁇ m or less.
  • An interval D1 between two adjacent winding lines may be 150 ⁇ m or less.
  • the process capability can reduce the distance between the two winding lines to 150 ⁇ m, the process limit, two winding lines above 350 ⁇ m due to the increase in the AC resistance due to the skin effect and / or the proximity effect.
  • the process limit two winding lines above 350 ⁇ m due to the increase in the AC resistance due to the skin effect and / or the proximity effect.
  • the winding lines 904_1 to 904_13 may be spaced apart from each other.
  • the gap D1 between the winding lines 904_1 to 904_13 may have a minimum gap allowed in the process.
  • the distance D1 between the winding lines 904_1 to 904_13 may be approximately 150 ⁇ m due to a process limit due to the etching method of the rolled steel sheet. Due to the process error, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 ⁇ 50 ⁇ m. Due to the process error, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 ⁇ 5 ⁇ m. When the process capability is improved, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 ⁇ m or less.
  • each of the winding lines 904_1 to 904_13 may be separated into the first conductive line 904a and the second conductive line 904b by the slit 911.
  • the thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 1 ⁇ or less.
  • the thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 150 ⁇ m or less.
  • the thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 120 ⁇ m or less.
  • the coil pattern 904 according to the first embodiment may be formed by a process method by an etching method of a rolled steel sheet. This process method will be described later (see FIGS. 14 to 19).
  • This process method makes it possible to form a much higher height than the conventional coil pattern of the FPCB type, it is possible to make a coil having a large cross-sectional area and a low resistance.
  • the coil pattern of the conventional FPCB type has a high resistance due to the limited height of the coil.
  • two layers of coils are formed on both sides in order to secure a predetermined level or more of resistance. If the coil is formed on both sides, there is a disadvantage that the process is complicated and the material cost increases.
  • the coil pattern 904 according to the first embodiment may be formed in, for example, a quadrangle having a thickness and a width, but is not limited thereto. Coils made of a rolled steel sheet method may have a relatively constant cross section compared to other types of coils.
  • the inner diameter of the coil pattern 904 according to the first embodiment may be, for example, 20 mm or more.
  • the outer diameter of the coil pattern 904 may be 50 mm or less.
  • An outer diameter of the coil pattern 904 may be 48 mm to 50 mm or less.
  • the outer diameter can only be limited to the size of the smartphone in which the coil pattern is disposed. Accordingly, the outer diameter is limited to a maximum of 50m.
  • the diameter of the hollow part 906 was inevitably formed within 20 mm.
  • the DC resistance Rdc may be lowered and the difference between the DC resistance Rdc and the AC resistance Rac may be minimized during the AC operation.
  • Equation 2 Although the DC resistance Rdc is constant, the AC resistance may increase as the skin resistance and proximity effect are more affected.
  • the DC resistance Rdc is lowered, and the influence of the skin effect and the proximity effect can be reduced or minimized.
  • This can be expressed as the ratio of AC resistance to DC resistance (Rac / Rdc).
  • the AC resistance (Rac) is closer to the DC resistance (Rdc), so that the ratio (AC / Rdc) of the AC resistance and the DC resistance can converge to almost one.
  • a ratio (Rac / Rdc) of an AC resistance and a DC resistance may be 10% or less.
  • the ratio of AC resistance to DC resistance (Rac / Rdc) of less than 10% may mean that the DC resistance (Rdc) is less than 10% of the AC resistance (Rac).
  • the ratio of AC resistance and DC resistance (Rac / Rdc) in the coil module state after installing the shielding material is A difference of 50% to 70% occurs. This is because the shielding material further amplifies the skin effect and / or the proximity effect in the coil pattern 904. Therefore, before mounting the shielding material, the ratio (AC / Rdc) of the AC resistance and the DC resistance of the coil pattern 904 should be reduced in the pure coil state.
  • the ratio Rac / Rdc can be made small.
  • the coil pattern 904 may have a ratio (Rac / Rdc) of an AC resistance and a DC resistance within 5%.
  • the coil pattern 904 may have a ratio (Rac / Rdc) of an AC resistance and a DC resistance within 3%.
  • the shielding material 907 when the shielding material 907 is disposed on one side of the coil patterns 904 of the wireless charging coils 903 and 906, the ratio of the AC resistance and the DC resistance under the influence of the shielding material 907 (Rac / Rdc) This may be different from the case where only the coil pattern 904 is disposed.
  • the structure in which only the coil pattern 904 is disposed may be referred to as a bare coil structure, and the structure formed by combining the coil pattern 904 and the shielding material 907 may be referred to as a structure in which a shielding material is attached to the coil pattern. .
  • a ratio (Rac / Rdc) of AC resistance and DC resistance may be 50% or less.
  • the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be 30% or less.
  • a ratio (Rac / Rdc) of AC resistance and DC resistance may be 20% or less.
  • the inductance of the bare coil structure may be greater than or equal to 6.3 ⁇ H.
  • the inductance of the bare coil structure may be 6.5 ⁇ H or more.
  • the inductance may be 10.5 ⁇ H or more in a structure in which a shielding material is attached to the coil pattern.
  • inductance may be 11 ⁇ H or more in a structure in which a shielding material is attached to the coil pattern.
  • the quality factor Q may be 16 or more in a bare coil structure.
  • the quality factor Q may be 16.5 or more in a bare coil structure.
  • the conventional quality factor Q is 4 to 5, whereas in the bale coil structure according to the first embodiment, the quality factor Q may be increased by three times or more.
  • the coil pattern 904 may have a quality factor Q of 21 or more in a structure in which a shielding material is attached to the coil pattern.
  • the coil pattern 904 may have a quality factor Q of 22 or more in a structure in which a shielding material is attached to the coil pattern.
  • the quality factor Q is 7 to 8, whereas in the structure in which the shielding material is attached to the coil pattern according to the first embodiment, the quality factor Q is increased by three times or more. Can be.
  • the wireless charging coils 903 and 906 may include a hollow portion 906.
  • the hollow part 906 may be formed inside the coil pattern 904.
  • the hollow part 906 may be an empty area in which the coil pattern 904 is not disposed.
  • the hollow part 906 may have a substantially circular shape or a rectangular shape, but is not limited thereto.
  • the plurality of winding lines 904_1 to 904_13 of the coil unit 903 may be spirally wound along the circumference of the hollow part 906.
  • the first terminal 905a is disposed on one side of the coil pattern 904, that is, the hollow portion 906, adjacent to the inner side of the coil pattern 904, and the other side of the coil pattern 904 and the coil pattern 904.
  • the second terminal 905b may be disposed in an area adjacent to the outside.
  • one side of the coil pattern 904 is a partial region of the innermost winding line (eg, the first winding line 904_1)
  • the other side of the coil pattern 904 is the outermost winding line (eg, the first winding line).
  • 13 may be a partial region of the winding line 904_13.
  • the coil pattern 904 may be connected to the first terminal 905a and wound in a helical direction, and then connected to the second terminal 905b.
  • the winding direction can be clockwise or counterclockwise.
  • the coil pattern 904 and the first and second terminals 905a and 905b may be integrally formed.
  • the first and second terminals 905a and 905b may be formed separately from the coil pattern 904 and then electrically connected to the coil pattern 904 by a bonding process.
  • the width W of each of the first and second terminals 905a and 905b may be equal to or greater than the distance D1 between the winding lines 904_1 to 904_13.
  • the first and second terminals 905a and 905b may be electrically connected to a circuit unit for supplying power. For example, when an AC voltage is applied to the first and second terminals 905a and 905b, a current may flow in the coil pattern 904 in a clockwise or counterclockwise direction periodically based on the hollow part 906.
  • the wireless charging coils 903 and 906 are connected to the first terminal 905a adjacent to the hollow portion 906 to extend the connection member extending across the coil pattern 904 to the outside of the coil pattern 904. It may include.
  • the connection member extending out of the coil pattern 904 may be connected to a connection terminal disposed adjacent to the second terminal 905b.
  • An insulating layer may be disposed between the connecting member and the coil pattern 904 to prevent an electrical short between the connecting member and the coil pattern 904.
  • the connection member may be formed of the same metal material as the coil pattern 904, but is not limited thereto.
  • the coil unit 903 may include a first conductive line 904a, a second conductive line 904b, and a slit 911.
  • the slit 911 is an area where the first conductive line 904a and the second conductive line 904b do not exist and may be referred to as an opening, a hole, a hole, or a recess.
  • the first conductive line 904a and the second conductive line 904b may be separated or branched by the slit 911.
  • the thickness T of each of the first conductive line 904a and the second conductive line 904b may be 1 ⁇ or less.
  • the thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 150 ⁇ m or less.
  • the thickness T of each of the first conductive line 904a and the second conductive line 904b may be 120 ⁇ m or less.
  • the width D2 of the slit 911 may be 1 ⁇ or less.
  • the width D2 of the slit 911 according to the embodiment may be 200 ⁇ m or less.
  • the width D2 of the slit 911 according to the embodiment may be 150 ⁇ m or less.
  • the width D2 of the slit may be a gap between the winding lines 904_1 to 904_13.
  • the first conductive line 904a, the second conductive line 904b, and the slit 911 may be provided in the coil pattern 904, that is, the entire area of the plurality of winding lines 904_1 to 904_13.
  • the slit 911 is formed along a length direction of the winding lines 904_1 to 904_13 from one region of the coil pattern 904 connected to the first terminal 905a, that is, one region of the first winding line 904_1.
  • the other side of the coil pattern 904 connected to the second terminal 905b, that is, up to one region of the thirteenth winding line 904_13 may be formed.
  • the first conductive line 904a and the second conductive line 904b separated or branched by the slit 911 formed as described above may also be a region of the thirteenth winding line 904_13 from one region of the first winding line 904_1. It can be formed up to.
  • the first conductive line 904a may have the same width W in each of the first winding line 904_1 to the thirteenth winding line 904_13, but the embodiment is not limited thereto.
  • the second conductive line 904b may have the same width W in each of the first winding line 904_1 to the thirteenth winding line 904_13, but the embodiment is not limited thereto.
  • the coil unit 903 may include a first connector 913a and a second connector 913b.
  • the first connector 913a may be located in one region of the first winding line 904_1
  • the second connector 913b may be located in one region of the thirteenth winding line 904_13.
  • the first connecting portion 913a connects the first conductive line 904a and the second conductive line 904b in one region of the first winding line 904_1
  • the second connecting portion 913b connects the thirteenth winding line 904_13.
  • the first conductive line 904a and the second conductive line 904b may be connected in one region of the region.
  • the first winding line 904_1 may be integrally formed with the first connection part 913a, and the thirteenth winding line 904_13 may be integrally formed with the second connection part 913b.
  • first connector 913a is included in the first terminal 905a instead of the coil pattern 904, and the second connector 913b is included in the second terminal 905b instead of the coil pattern 904.
  • the first connector 913a, the second connector 913b, and the first and second terminals 905a and 905b may be integrally formed.
  • each of the first and second conductive wires 904a and 904b may have a width of 2 ⁇ ⁇ 50 ⁇ m (2 ⁇ -50 ⁇ m to 2 ⁇ + 50 ⁇ m).
  • each of the first and second conductive wires 904a and 904b may have a width of 2 ⁇ ⁇ 5 ⁇ m (2 ⁇ 5 ⁇ m to 2 ⁇ + 5 ⁇ m).
  • the skin depth ⁇ or delta or delta may vary depending on the operating frequency used in the wireless charging coils 903 and 906, as shown in Equation 3.
  • the magnetic permeability ⁇ and the electrical conductivity ⁇ can be represented as shown in Table 1 under the assumption that they have a constant.
  • each of the first conductive wire 904a and the second conductive wire 904b may be 370 ⁇ m, that is, 2 ⁇ or less.
  • the coil pattern 904 standard used in each of the bare coil structure and the structure in which the shielding material is attached to the coil pattern may be shown in Table 2.
  • the shield 907 may consist of four layers and have a shielding rate of 1400.
  • the width of 900 ⁇ m which is the width of the first embodiment, may be the sum of the width of the first conductive line 904a, the width of the second conductive line 904b, and the width of the slit 911, that is, the width of the winding lines 904_1 to 904_13.
  • the width of each of the first conductive wire 904a and the second conductive wire 904b may be 370 ⁇ m or less.
  • the width of each of the first conductive line 904a and the second conductive line 904b may have a range of 320 to 420 ⁇ m in consideration of a process error.
  • each of the first and second conductive wires 904a and 904b may have a width of 365 to 375 ⁇ m.
  • each of the first conductive wire 904a and the second conductive wire 904b may be 375 ⁇ m, and the width of the slit 911 may be 150 ⁇ m. Therefore, 900 ⁇ m which is the sum of the width of the first conductive wire 904a, the width of the second conductive wire 904b, and the width of the slit 911, that is, the interval between the first conductive wire 904a and the second conductive wire 904b. Can be calculated.
  • the measured values in the bare coil structure of the coil pattern 904 according to the embodiment may be shown in Table 3.
  • the inductance L measured at the coil pattern 904 in the bare coil structure is 6.68, and the AC resistance Rac and the DC resistance Rdc have the same resistance value, that is, 0.32 ⁇ , and the quality Coefficient (Q) is 16.53, and the ratio of AC resistance and DC resistance (Rac / Rdc) may be one. Therefore, the quality factor Q in the first embodiment may be 16 or more.
  • the inductance L can be larger than in the related art.
  • the quality factor Q is significantly increased compared with the conventional art.
  • the ratio of AC resistance and DC resistance (Rac / Rdc) was measured to be equal to the maximum ratio (1). From this, when the coil pattern 904 is designed as shown in Table 2, it can be confirmed that there is no effect of the skin effect and the proximity effect.
  • FIG. 8A shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern
  • FIG. 8B shows the resistance ratio and the quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do.
  • FIGS. 8A and 8B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
  • the inductance of the comparative example was 9.69 mu H, whereas the inductance of the first example was 11.6 mu H, which was 19.7% or more larger than the comparative example.
  • the DC resistance of the comparative example is 0.491 ⁇ , whereas the DC resistance of the first embodiment is smaller, 0.336 ⁇ .
  • the AC resistance of the comparative example is 0.65 ⁇ , while the AC resistance of the first embodiment is smaller, 0.418 ⁇ .
  • the ratio of DC resistance Rdc and AC resistance Rac differs by 32% in the comparative example, the ratio of DC resistance Rdc and AC resistance Rac of the first embodiment is 24% to 30% or less. It can be seen that the decrease.
  • the inductance is larger, the DC resistance and the AC resistance are smaller, and the difference between the DC resistance and the AC resistance is smaller than that of the comparative example.
  • the quality factor of the comparative example is 11.99, whereas the quality factor of the first example is 22.32, which is 86.2% higher than that of the comparative example. Accordingly, the maximum quality factor can be secured, and the power transmission efficiency can be significantly improved.
  • the inductance (L) in the bare coil structure is 6.68 ⁇ H
  • the inductance (L) in the structure with the shielding material attached to the coil pattern is 11.6, than in the bare coil structure Increased even more.
  • the quality factor Q in the bare coil structure is 16.53
  • the quality factor Q in the structure in which the shielding material is attached to the coil pattern is 22.32, which is further increased than in the bare coil structure.
  • each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911.
  • the width of each of the first conductive wire 904a and the second conductive wire 904b less than or equal to 2 ⁇ , the DC resistance (or AC resistance) is reduced and the inductance is increased, so that the quality coefficient is remarkably improved. Can be.
  • each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911.
  • the width of each of the first conductive wire 904a and the second conductive wire 904b is less than or equal to 2 ⁇ , the gap between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality coefficient and to improve the coil pattern 904.
  • the occupied area can be minimized, making the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
  • each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911. Since the width of each of the first conductive wire 904a and the second conductive wire 904b is less than or equal to 2 ⁇ , the distance between the winding lines 904_1 to 904_13 is reduced compared to the comparative example, thereby increasing the inductance with respect to the same area, resulting in a comparison with the same area. Can improve the quality factor.
  • each of the winding lines 904_1 to 904_13 of the coil pattern 904 has a slit between the first lead 904a, the second lead 904b, and the first lead 904a and the second lead 904b.
  • Inclusion of 911 is the same as the first embodiment, but differs from the first embodiment in that the widths of the winding lines 904_1 to 904_13 of the coil pattern 904 are different.
  • the width W of each of the first conductive line 904a and the second conductive line 904b of some of the winding lines is greater than or equal to 2 ⁇ and the other of the other winding lines.
  • the width W of each of the first conductive line 904a and the second conductive line 904b may be 2 ⁇ or less.
  • the winding line having a width of 2 ⁇ or more may be disposed near the outer side of the coil pattern 904.
  • the width W of each of the first conductive line 904a and the second conductive line 904b of each of the remaining winding lines except for the first winding line 904_1, that is, the second to thirteenth winding lines 904_2 to 904_13 may be It may be 2 ⁇ or more.
  • a winding line having a width of 2 ⁇ or more may be disposed between the first winding line 904_1 and the thirteenth winding line 904_13, but is not limited thereto.
  • the width W of each of the two to five winding lines among the winding lines 904_1 to 904_13 of the coil pattern 904 is greater than or equal to 2 ⁇ , and the width W of each of the remaining winding lines is less than or equal to 2 ⁇ .
  • the width W of each of the second winding line 904_2 to the fourth winding line 904_4 is greater than or equal to 2 ⁇
  • the width W of each of the first winding line 904_1 and the fifth to thirteenth winding lines 904_13 ( W) may be 2 ⁇ or less.
  • First winding line 904_1 900 ⁇ m Spacing between winding lines 150 ⁇ m Second winding line 904_2 1,000 ⁇ m Spacing between winding lines 150 ⁇ m Third winding line 904_3 1,000 ⁇ m Spacing between winding lines 150 ⁇ m Fourth winding line 904_4 1,000 ⁇ m Spacing between winding lines 150 ⁇ m Fifth winding line 904_5 950 ⁇ m Spacing between winding lines 150 ⁇ m Sixth winding line 904_6 950 ⁇ m Spacing between winding lines 150 ⁇ m Seventh winding line 904_7 950 ⁇ m Spacing between winding lines 150 ⁇ m Eighth winding line 904_8 950 ⁇ m Spacing between winding lines 150 ⁇ m 9th winding line 904_9 950 ⁇ m Spacing between winding lines 150 ⁇ m Tenth winding line 904_10 950 ⁇ m Spacing between winding lines 150 ⁇ m Eleventh winding line 904_11 950
  • the interval between the slits is 150 ⁇ m and the width of each of the first conductive line 904a and the second conductive line 904b of each of the winding lines 904_1 to 904_13 may be the same.
  • each of the first and second conductive wires 904a and 904b of the first winding line 904_1 may have a width of 375 ⁇ m.
  • a width of each of the first conductive line 904a and the second conductive line 904b of each of the second to fourth winding lines 904_2 to 904_4 may be 425 ⁇ m.
  • Each of the first and second conductive lines 904a and 904b of the fifth to thirteenth winding lines 904_5 to 904_13 may have a width of 400 ⁇ m.
  • 2 ⁇ has been set to 400 ⁇ m. From this, the width of each of the first and second conductive wires 904a and 904b of the second to fourth winding lines 904_2 to 904_4 is greater than or equal to 2 ⁇ , whereas the first and fifth to thirteenth winding lines 904_1
  • Each of the first and second conductive wires 904a and 904b 904_5 to 904_13 may have a width of 2 ⁇ or less.
  • the coil pattern 904 standard used in the experiment may be shown in Table 5.
  • the shield 907 may consist of four layers and have a shielding rate of 1400.
  • the inductance L measured at the coil pattern 904 is 6.32, the AC resistance Rac is 0.3 ⁇ , the DC resistance Rdc is 0.295 ⁇ , and the quality factor (Q) is 16.94, and the ratio of AC resistance to DC resistance (Rac / Rdc) may be 1.02.
  • the inductance L can be larger than in the related art.
  • the quality factor Q is significantly increased compared with the conventional art.
  • the ratio of AC resistance and DC resistance (Rac / Rdc) was measured at about 2%, and when the coil pattern 904 is designed as shown in Tables 4 and 5, the effects of the skin effect and the proximity effect were remarkable.
  • Figure 9a shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern
  • Figure 9b shows the resistance ratio and quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do.
  • the data shown in FIGS. 9A and 9B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
  • the inductance of the comparative example was 9.69 ⁇ H, while the inductance of the second example was 10.9 ⁇ H, which was 12.48% or more larger than that of the comparative example.
  • the DC resistance of the comparative example is 0.491 ⁇ , whereas the DC resistance of the second embodiment is smaller, 0.308 ⁇ .
  • the AC resistance of the comparative example is 0.65 ⁇ , while the AC resistance of the second embodiment is smaller, 0.414 ⁇ .
  • the inductance is larger and the DC resistance and the AC resistance are smaller than those of the comparative example.
  • the quality factor of the comparative example is 11.99, whereas the quality factor of the second example is 21.27, which is 77.4% higher than that of the comparative example. Accordingly, the maximum quality factor can be secured, and the power transmission efficiency can be significantly improved.
  • the conducting wire 904b and the width of each of the second conducting wire 904b and the second conducting wire 904b being less than or equal to 2 ⁇ , the DC resistance (or AC resistance) becomes small and the inductance becomes large, which is represented by Equation 1. As can be seen, the quality factor can be significantly improved.
  • the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality factor. It is possible to improve and to minimize the occupied area occupied by the coil pattern 904, which makes the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
  • the conductive wire 904b included and the width of each of the second conductive wire 904b and the second conductive wire 904b being less than or equal to 2 ⁇ , the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to provide the same area. Inductance is increased, which in turn can improve the quality factor for the same area.
  • the third embodiment consists solely of the coil pattern 904, except that the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 is a specific multiple of the skin depth. Same as the example.
  • the same components as those of the first and second embodiments are denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first and second embodiments.
  • FIG. 10A is a plan view illustrating the wireless charging coil module according to the third embodiment
  • FIG. 10B is a cross-sectional view illustrating the wireless charging coil module according to the third embodiment.
  • the wireless charging coil module 920 may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909. Can be.
  • the wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
  • the wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
  • the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 may be 4 ⁇ to 5 ⁇ .
  • An interval between each winding line 904_1 to 904_13 may be 150 ⁇ m or less.
  • the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 15%.
  • the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 10%.
  • the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 5%.
  • the shielding material 907 is disposed on one side of the coil patterns 904 of the wireless charging coils 903 and 906, the ratio of AC resistance and DC resistance (Rac / Rdc) is affected by the shielding material 907. Only 904 may be different than if disposed.
  • the structure in which only the coil pattern 904 is disposed may be referred to as a bare coil structure, and the structure formed by combining the coil pattern 904 and the shielding material 907 may be referred to as a structure in which a shielding material is attached to the coil pattern. .
  • the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be 70% or less.
  • a ratio (Rac / Rdc) of AC resistance and DC resistance may be 50% or less.
  • the inductance L may be 10.5 ⁇ H or more. In the structure in which the shielding material is attached to the coil pattern, the inductance L may be 11 ⁇ H or more.
  • the quality factor Q may be 16 or more. In the bare coil structure, the quality factor Q may be 18 or more.
  • the quality factor Q may be 20 or more.
  • the quality factor Q may be increased more in the structure in which the shielding material is attached to the coil pattern than in the bare coil structure.
  • the coil pattern 904 standard used in the experiment may be shown in Table 7.
  • the shield 907 may consist of four layers and have a shielding rate of 1400.
  • Experimental Example 1 has a width of each of the winding lines 904_1 to 904_13 is 1 ⁇
  • Experimental Example 2 has a width of 2 ⁇ of each of the winding lines 904_1 to 904_13
  • Experimental Example 3 shows a width of each of the winding lines 904_1 to 904_13. The width is 3 ⁇ .
  • Experimental Example 4 has a width of 4 ⁇ of each winding line 904_1 to 904_13
  • Experimental Example 5 has a width of 4.3 ⁇ of each winding line 904_1 to 904_13
  • Experimental Example 6 shows a width of each of the winding lines 904_1 to 904_13.
  • the width may be 5 ⁇ .
  • the measured values in the bare coil structure of the coil pattern 904 according to the embodiment may be shown in Table 8.
  • the quality factor was more than 16 in Experimental Examples 4 to 6 in the bare coil structure. From this, the quality factor of the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 was increased from 4 ⁇ to 5 ⁇ .
  • 11A shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern
  • FIG. 11B shows the resistance ratio and the quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do.
  • the data shown in FIGS. 11A and 11B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
  • the quality coefficient of the comparative example was larger than that of the comparative example.
  • the quality coefficients in Experimental Examples 4 to 6 were remarkably improved, and among them, the highest quality coefficient was obtained in Example 5 (the width of the winding line was 4.3 ⁇ ).
  • the quality coefficient of Experimental Example 4 was improved by 68.9% compared to the Comparative Example.
  • the quality factor of Experimental Example 5 was improved by 76% compared to the comparative example.
  • the quality factor of Experimental Example 6 is improved by 70% compared to the comparative example.
  • the wireless charging coil module 920 according to the third embodiment, by setting the width of each coil pattern 904 to 4 ⁇ to 5 ⁇ , the DC resistance (or AC resistance) is reduced and the inductance is increased to be represented by Equation (1). As can be seen, the quality factor can be significantly improved.
  • the width of each coil pattern 904 to 4 ⁇ to 5 ⁇ , the interval between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality coefficient In this case, the area occupied by the coil pattern 904 can be minimized, thereby making the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
  • the wireless charging coil module 920 according to the third embodiment, by the width of each coil pattern 904 to 4 ⁇ to 5 ⁇ , the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example, the inductance compared to the same area Can be increased to improve the quality factor for the same area.
  • the fourth embodiment is the same as the second embodiment except that the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903.
  • the same components as those of the first to third embodiments are denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first to third embodiments.
  • FIG. 12A is a plan view illustrating a wireless charging coil module according to a fourth embodiment
  • FIG. 12B is a cross-sectional view illustrating a wireless charging coil module according to a fourth embodiment.
  • the wireless charging coil module 930 may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909. Can be.
  • the wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
  • the wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
  • the first conductive wire 904a and the second conductive wire separated by the slit 911 in some winding lines ( 904b) may be included.
  • the coil unit 903 may include a first connection part 915a and a second connection part 915b.
  • the first connection part 915a connects the first conductive line 904a and the second conductive line 904b in one region of the seventh winding line 904_7 that meets the end of a specific winding line, for example, the sixth winding line 904_6.
  • the second connector 915b may connect the first conductive line 904a and the second conductive line 904b in one region of the thirteenth winding line 904_13 adjacent to the second terminal 905b.
  • the width of each of the first to sixth winding lines 904_1 to 904_6 not including the first conductive line 904a and the second conductive line 904b is 4 ⁇ to 5 ⁇ , and the seventh to seventh layers.
  • a width of each of the first conductive line 904a and the second conductive line 904b included in each of the 13 winding lines 904_7 to 904_13 may be 2 ⁇ or less.
  • the interval between the first conductive line 904a and the second conductive line 904b included in each of the seventh to thirteenth winding lines 904_7 to 904_13, that is, the width of the slit 911, is the first to sixth winding line 904_1.
  • the distance between the adjacent coil patterns 904 and 904_6 may be equal to or smaller than the distance between the adjacent coil patterns 904.
  • the distance between the coil patterns 904 adjacent to each other between the first to sixth winding lines 904_1 to 904_6 is 150 ⁇ m
  • the first conductive line included in each of the seventh to thirteenth winding lines 904_7 to 904_13 may be 150 ⁇ m or less.
  • the width thereof may increase from the first winding line to the sixth winding lines 904_1 to 904_6.
  • the width of each of the first and second conductive lines 904a and 904b included in each of the seventh to thirteenth winding lines 904_7 to 904_13 increases.
  • the width of the first conductive line 904a of the eighth winding line 904_8 may be greater than the width of the first conductive line 904a of the seventh winding line 904_7.
  • the width of the first conductive line 904a of the tenth winding line 904_10 may be greater than the width of the first conductive line 904a of the ninth winding line 904_9.
  • the width of the second lead 904b of the eighth winding line 904_8 may be greater than the width of the second lead 904b of the seventh winding line 904_7.
  • the width of the second conductive line 904b of the tenth winding line 904_10 may be greater than the width of the second conductive line 904b of the ninth winding line 904_9.
  • the width of the first conductive line 904a and the width of the second conductive line 904b of each of the seventh to thirteenth winding lines 904_7 to 904_13 may be the same, but is not limited thereto.
  • some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911.
  • 904b and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil portion 903, so that the DC resistance (or AC resistance) becomes small.
  • the coefficient of quality can be remarkably improved as shown in Equation (1).
  • some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911. 904b, and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903, so that the gap between the winding lines 904_1 to 904_13 is increased. It can be reduced compared to the comparative example to improve the quality factor and to minimize the occupied area occupied by the coil pattern 904, which makes the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
  • some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911. 904b, and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903, so that the gap between the winding lines 904_1 to 904_13 is increased. As compared with the comparative example, it is reduced, and thus the inductance to the same area is increased, thereby improving the quality factor compared to the same area.
  • the fifth embodiment is the same as the first embodiment except that at least one connection line 917 is provided which electrically connects the separated first and second leads 904a and 904b.
  • the same components as those in the first to fourth embodiments will be denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first to fourth embodiments.
  • FIG. 13 is a plan view illustrating a wireless charging coil module according to a fifth embodiment.
  • the wireless charging coil module 940 may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909.
  • the wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
  • the wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
  • Each of the coil patterns 904 may include a first conductive line 904a, a second conductive line 904b, and a slit 911.
  • the first wire 904a and the second wire 904b may be separated by the slit 911.
  • the coil unit 903 may include first and second connection parts 913a and 913b electrically connecting the first and second conductive wires 904a and 904b on one side and the other side thereof.
  • the first connector 913a may be located adjacent to the first terminal 905a
  • the second connector 913b may be located adjacent to the second terminal 905b.
  • first connector 913a may be included in the first terminal 905a
  • second connector 913b may be included in the second terminal 905b.
  • the coil unit 903 may include at least one connection line 917 for electrically connecting the first conductive line 904a and the second conductive line 904b.
  • the connection line may be integrally formed with the first conductive line 904a and the second conductive line 904b.
  • the connection line may be disposed across the slit 911. Connection lines may be arranged at regular intervals, but is not limited thereto. For example, as shown in FIG. 13, the first connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904 along the 2 o'clock direction and the 5 o'clock direction as shown in FIG.
  • a second connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904, and the first conductive line 904a and the second conductive line of each coil pattern 904 along the 7 o'clock direction.
  • a third connection line connecting the conductive line 904b and a fourth connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904 along the 10 o'clock direction may be included.
  • connection line may be referred to as a bridge.
  • the slits of each coil pattern 904 may be divided into at least one or more slits by at least one or more connection lines.
  • the tenth winding line 904_10 includes three connection lines, four slits may be formed by the three connection lines.
  • the first conductive wire 904a is formed by at least one connection line.
  • the second conductive line 904b can be suppressed from generating a phase difference of AC power.
  • the coil pattern 904 is separated into the first conductive wire 904a and the second conductive wire 904b by the slit 911 and connected to one or more connection lines.
  • the DC resistance or AC resistance
  • the inductance is increased, so that the quality coefficient can be remarkably improved.
  • the distance between the winding lines 904_1 to 904_13 is compared by connecting the first conductive wire 904a and the second conductive wire 904b by one or more connection lines.
  • the quality factor is improved and the occupied area occupied by the coil pattern 904 can be minimized, thereby making the product compact.
  • the AC resistance does not increase, thereby suppressing the AC resistance.
  • the distance between the winding lines 904_1 to 904_13 is compared by connecting the first conductive wire 904a and the second conductive wire 904b by one or more connection lines. It can be reduced compared to the example, and the inductance to the same area is increased, thereby improving the quality factor for the same area.
  • FIG. 14 to 19 are views for explaining a method of manufacturing a wireless charging coil according to the embodiment.
  • the conductor 1201, the adhesive layer 1700, and the film 1800 may be prepared.
  • the conductor 1201 may be formed of copper or an alloy including copper. Copper may be used in the form of a rolled foil, an electrolytic foil.
  • the conductor 1201 may have various thicknesses depending on the specifications of the required product. In an embodiment, the thickness of the conductor 1201 may be 150 ⁇ m or less, but this is only an example. According to an exemplary embodiment, the thickness of the conductor 1201 may be 120 ⁇ m.
  • the adhesive layer 1700 is used to reinforce the adhesive force between the conductor 1201 and the film 1800, and a thermosetting resin may be used, but is not limited thereto.
  • the thickness of the adhesive layer 1700 may be 17 ⁇ m, but this is only an example.
  • the film 1800 serves to protect the conductor 1201 in a process in which the conductor 1201 forms a constant conductive pattern. Specifically, the film 1800 may protect the conductor 1201 to support the conductor 1201 to form a predetermined conductive pattern in an etching process to be described later.
  • the film 1800 may be a polyimide (PI) film or a polyethylene terephthalate (PET) film, but is not limited thereto.
  • PI polyimide
  • PET polyethylene terephthalate
  • the conductor 1201 and the film 1800 may be attached through the adhesive layer 1700.
  • the attachment may be a laminating process.
  • the laminating process is a process of bonding materials of different materials by applying predetermined heat and pressure.
  • a photosensitive film 1900 may be attached to an upper surface of the conductor 1201.
  • the photosensitive film 1900 is used to form a constant conductive pattern by etching the conductor 1201, and a film of UV exposure type or LDI exposure type may be used.
  • a photosensitive coating liquid may be applied to the upper surface of the conductor 1201 instead of the photosensitive film 1900.
  • the photosensitive film 1900 may be exposed and developed to form a mask pattern 1910.
  • the mask pattern 1910 may be formed on an upper surface of a position where a predetermined conductive pattern is to be formed through the exposure and development processes.
  • Exposure means irradiating light to the photosensitive film 1900 by dividing a portion where a conductive pattern is to be formed from a portion where a conductive pattern is not to be formed. That is, exposure is a process of irradiating light to the part in which a conductive pattern is not formed.
  • the development means a process of removing a portion irradiated with light by exposure.
  • the mask pattern 1910 may be formed at a portion where the coil part (see 903 of the first to fifth embodiments) is to be formed by the exposure and development processes. A portion of the conductor 1201 exposed by the mask pattern 1910 may be etched.
  • the conductor 1201 corresponding to a portion where the mask pattern 1910 is not formed may be etched through an etching process. Etching is a process of etching and removing the conductor 1201 in a portion where the mask pattern 1910 is not formed by using a material that chemically reacts with the conductor 1201 in the portion where the mask pattern 1910 is not formed. it means.
  • the conductor 1201 may be patterned by wet or dry etching.
  • the mask pattern 1910 is removed, whereby the coil portion 903 including the coil patterns (see 904 of the first to fifth embodiments) and the first and second terminals 905a and 905b. This can be formed.
  • FIG. 20 is a plan view illustrating a wireless charging coil module according to a sixth embodiment
  • FIG. 21 is an enlarged view of region A of FIG. 20
  • FIG. 22 is an enlarged view of region B of FIG. 20
  • Figure 23 is a cross-sectional view taken along the X-Y line in the wireless charging coil module shown in FIG.
  • the wireless charging coil module 2000 may include a film 2001.
  • the film 2001 may serve as a substrate for forming the wireless charging coil 2002.
  • the film 2001 may protect and support the wireless charging coil 2002.
  • the film 2001 may be formed of a thin material and a flexible material.
  • the film 2001 may be polyimide (PI) or polyethylene terephthalate (PET).
  • PI polyimide
  • PET polyethylene terephthalate
  • the film 2001 may be formed above or below the wireless charging coil 2002.
  • the film 2001 may be formed both above and below the wireless charging coil 2002.
  • the wireless charging coil module 2000 may include a shielding material 2007.
  • the shielding material 2007 may shield the electromagnetic field of the wireless charging coil 2002.
  • the shielding material 2007 may include, for example, a ferrite material or a ribbon material, but is not limited thereto.
  • the shielding material 2007 may support the wireless charging coil 2002.
  • the area of the shielding material 2007 may be equal to or larger than that of the wireless charging coil 2002.
  • the shielding material 2007 may be disposed under the film 2001.
  • the shielding material 2007 may be attached to the film 2001 using an adhesive (not shown). Since the adhesive is very thin, the shield 2007 may be considered to be in contact with the bottom surface of the film 2001.
  • the adhesive may be made of a material having excellent heat dissipation performance and insulation properties.
  • the wireless charging coil module 2000 may include a heat dissipation 2009.
  • the heat dissipation member 2009 may be disposed under the shielding material 2007.
  • the heat dissipation member 2009 may be attached to the shielding material 2007 using an adhesive (not shown).
  • the heat dissipation member 2009 may be in contact with the bottom surface of the shielding member 2007.
  • the heat radiator 2009 may be made of a metal material.
  • the heat dissipation member 2009 may include copper (Cu), but is not limited thereto.
  • one or more heat dissipators 2009 may be disposed inside the shield 2007.
  • the heat dissipation member 2009 may be particles or beads having a plate shape or excellent heat dissipation characteristics.
  • one or more shields 2007 may be disposed inside the heat shield 2009.
  • the heat dissipation member 2009 may support the wireless charging coil 2002 and the shielding material 2007.
  • the heat dissipation member 2009 may release heat generated from the wireless charging coil 2002 to the outside.
  • the greater the thickness of the heat dissipation member 2009 the better the heat dissipation performance.
  • the thickness of the heat dissipation member 2009 may be 2 to 5 times thicker than the thickness of the shielding material 2007.
  • the heat dissipation member 2009 may be selectively adopted according to the heat generation state of the wireless charging coil module 2000. For example, when heat generation of the wireless charging coil module 2000 does not occur, the heat dissipation member 2009 may be omitted.
  • the wireless charging coil module 2000 may include a wireless charging coil 2002.
  • the wireless charging coil 2002 is a member for receiving wireless power from the wireless power transmitter, and may be, for example, the first antenna 810 illustrated in FIG. 6, but is not limited thereto.
  • the wireless charging coil 2002 may include a winding portion (2003).
  • the wireless charging coil 2002 may include a hollow portion 2006 surrounded by the winding portion 2003.
  • the winding part 2003 may be disposed on an upper surface of the film 2001.
  • the winding part 2003 may be directly disposed on the upper surface of the shielding material 2007.
  • the first terminal 2005a may be disposed on one side of the winding portion 2003, that is, the hollow portion 2006 adjacent to the inside of the winding portion 2003.
  • the second terminal 2005b may be disposed on the other side of the winding part 2003, that is, an area adjacent to the outside of the winding part 2003.
  • the wireless charging coil 2002 may include a connection member connected to the first terminal 2005a adjacent to the hollow portion 2006 and extending outward of the coil pattern 2004 across the coil pattern 2004. Can be.
  • the connection member extending outward of the coil pattern 2004 may be connected to a connection terminal disposed adjacent to the second terminal 2005b.
  • An insulating layer may be disposed between the connecting member and the coil pattern 2004 to prevent an electrical short between the connecting member and the coil pattern 2004.
  • the connection member may be formed of the same metal material as the coil pattern 2004, but is not limited thereto.
  • one side of the winding unit 2003 may be connected to the first terminal 2005a, and the other side of the winding unit 2003 may be connected to the second terminal 2005b.
  • the winding part 2003 may be wound a plurality of times.
  • the winding direction of the winding part 2003 may be clockwise or counterclockwise.
  • the winding part 2003, the first terminal 2005a, and the second terminal 2005b may be integrally formed.
  • the winding part 2003, the first terminal 2005a, and the second terminal 2005b may be made of a metal material.
  • the first and second terminals 2005a and 2005b may be electrically connected to the winding part 2003 by a bonding process.
  • the first and second terminals 2005a and 2005b may be electrically connected to a circuit unit for supplying power. For example, when an AC voltage is applied to the first and second terminals 2005a and 2005b, a current may flow in the coil pattern 2004 in a clockwise or counterclockwise direction periodically based on the hollow portion 2006.
  • the coil of the winding part 2003 may have a split structure. That is, the coil of the winding part 2003 may be divided (or separated) into the first-first conductive wire 2021a and the first-second conductive wire 2021b by the opening 2021c (opening).
  • the opening 2021c may be referred to as a slit, crevice, hole, hole, or the like.
  • the first-first conductive wire 2021a may be referred to as a first split
  • the first-second conductive wire 2021b may be referred to as a second split.
  • the coil line width or diameter of the coil of the winding part 2003 may exceed 2 ⁇ .
  • may be the skin depth represented by Equation 3.
  • the skin depth ⁇ may be 185 micrometers.
  • the resistance component Ys due to the skin effect and / or the resistance component Yp due to the proximity effect are increased. That is, when the coil line width or diameter of the coil of the winding part 2003 exceeds 2 ⁇ , as shown in FIG. 1A, no current flows to the center region of the coil of the winding part 2003, which is a resistance component (Ys). ) Leads to an increase. In addition, when the coil of the winding part 2003 exceeds 2 ⁇ , as shown in FIG. 1B, current does not flow in close proximity to the surfaces facing each other in the coils adjacent to each other, which is caused by an increase in the resistance component Yp. Can lead to.
  • the coil of the winding portion 2003 has a split structure so that the wire widths or diameters of the conductive wires 2021a and 2021b of the coil are set to 2 ⁇ or less, so that the resistance component Ys and / or due to the skin effect are obtained.
  • the resistance component (Yp) due to the proximity effect can be reduced.
  • the AC resistance (Rac) is also reduced, thereby increasing the quality factor (Q), thereby improving charging efficiency.
  • the winding portion 2003 is divided into two conductive wires 2021a and 2021b by one opening 2021c, even if the wire width or diameter of each of the conductive wires 2021a and 2021b becomes 2 ⁇ or less, the winding portion 2003 A coil length of the winding part 2003, specifically, two conductive wires 2021a and 2021b may increase along a direction from the inside of the winding part 2003 to the outside of the winding part 2003.
  • the DC resistance R dc increases.
  • the two conductive wires 2021a and 2021b of the winding part 2003 are directed from the inside of the winding part 2003 to the outside of the winding part 2003.
  • the cross-sectional area (S) of) must be increased.
  • the line width or diameter of the coil of the winding part 2003 may increase in a direction from the inside of the winding part 2003 to the outside of the winding part 2003. That is, the line widths or diameters of the two conductive wires 2021a and 2021b of the winding part 2003 may increase along a direction from the inside of the winding part 2003 to the outside of the winding part 2003.
  • the line widths or diameters of the two conductive wires 2021a and 2021b of the winding portion 2003 increase along the direction from the inside of the winding portion 2003 to the outside of the winding portion 2003, the inside of the winding portion 2003 is increased.
  • the line width or diameter of the two conductive wires 2021a, 2021b of the winding portion 2003 exceeds 2 ⁇ , and thus the resistance component Ys and / or the proximity due to the skin effect again. There arises a problem that the resistance component (Yp) is increased due to the effect.
  • the specific point may be a point where the line width or diameter of the conductive wires 2021a and 2021b of the winding part 2003 exceeds 2 ⁇ .
  • the coil of the winding part 2003 between the outside of the winding part 2003 may have another split structure to solve this problem. That is, the coil of the winding part 2003 located between the inside of the winding part 2003 and the specific point has a first split structure, and the winding part 2003 located between the specific point and the outside of the winding part 2003 is provided.
  • the coil of may have a second split structure.
  • the coil of the winding part 2003 may be divided into the first-first conductive wire 2021a and the first-second conductive wire 2021b by one opening 2021c.
  • the second split structure may be divided into the second-first conductive line 2022a, the second-two conductive line 2022b, and the second-three conductive line 2022c by the two openings 2022d and 2022e.
  • the specific point is an area for connecting or connecting the first split structure and the second split structure, and may be a non-divided area 2023.
  • the non-divided area 2023 may be referred to as an intermediate area, an intermediate area, a connection area, a joint area, or the like.
  • the coil of the winding portion 2003 between the inside of the winding portion 2003 and the specific point has a first split structure
  • the coil of the winding portion 2003 between the specific point and the outside of the winding portion 2003 has a first split structure. Since the coil has a second split structure, the line width or diameter of the conducting wire of the coil of the winding part 2003 between the specific point and the outside of the winding part 2003 is also less than or equal to 2 ⁇ so that the resistance component Ys and The quality factor Q may be improved due to the reduction of the AC resistance Rac by reducing the resistance component Yp due to the proximity effect.
  • the winding part 2003 may include a first winding part 2021 and a second winding part 2022 that are spirally wound.
  • the second winding part 2022 may surround the first winding part 2021.
  • the winding direction of the first winding unit 2021 and the winding direction of the second winding unit 2022 may be the same.
  • the winding direction of the first winding unit 2021 and the winding direction of the second winding unit 2022 may be counterclockwise.
  • the first winding part 2021 may be wound m times. One side of the first winding part 2021 may be connected to the first terminal 2005a.
  • the second winding part 2022 may be wound n times. One side of the second winding unit 2022 may be connected to the other side of the first winding unit, and the other side of the second winding unit 2022 may be connected to the second terminal 2005b.
  • m may be greater than n. That is, the first winding part 2021 may be wound more than the second winding part 2022.
  • the windings 2003 may have 13 turns or less.
  • the first winding portion 2021 may have six turns, and the second winding portion 2022 may have six turns.
  • the first winding unit 2021 may have a 20th turn, and the second winding unit 2022 may have 4 turns.
  • the first winding part 2021 may be positioned in the first divided area 2030 between the first terminal 2005a and the non-divided area 2023 to have a first split structure.
  • the second winding part 2022 may be positioned in the second divided area 2031 between the non-divided area 2023 and the second terminal 2005b to have a second split structure.
  • the first winding part 2021, the non-dividing area 2023, and the second winding part 2022 may be integrally formed.
  • the first terminal 2005a, the first winding part 2021, the non-dividing area 2023, the second winding part 2022, and the second terminal 2005b may be integrally formed.
  • the first winding part 2021 may include the first-first conductive wire 2021a and the first-second conductive wire 2021b divided by one opening 2021c.
  • the first-first conductive wire 2021a and the first-second conductive wire 2021b may be commonly connected to the first terminal 2005a.
  • the first-first conductive wire 2021a and the first-second conductive wire 2021b may be commonly connected to the non-divided area 2023.
  • the second winding part 2022 may include a 2-1 lead wire 2022a, a 2-2 lead wire 2022b, and a 2-3 lead wire 2022c divided by two openings 2022d and 2022e. have.
  • the first opening 2022d divides the second-conducting wire 2022a and the second-two conducting wire 2022b, and the second opening 2022e opens the second-two conducting wire 2022b and the second-3. It may be divided into the conductive wire 2022c.
  • the 2-1 conductive wire 2022a, the 2-2 conductive wire 2022b, and the 2-3 conductive wire 2022c may be commonly connected to the non-divided area 2023.
  • the 2-1th conductive wire 2022a, the 2-2nd conductive wire 2022b, and the 2-3rd conductive wire 2022c may be commonly connected to the second terminal 2005b.
  • the first divided area 2030 is an area formed by the first split structure of the first winding part 2021 wound between the first terminal 2005a and the non-divided area 2023.
  • the second divided area 2031 may be an area formed by the second split structure of the second winding part 2022 wound between the non-divided area 2023 and the second terminal 2005b. That is, in the first division area 2030, the coil of the first winding part 2021 has m times of the 1-1 lead wire 2021a and the 1-2 lead wire 2021b divided by one opening 2021c. Can be wound.
  • the coil of the second winding part 2022 may include the second-first conductive wire 2022a and the second-second conductive wire 2022a divided by the first opening 2022d and the second opening 2022e. 2022b) and the second and third conductive wires 2022c may be wound n times.
  • the 2-1 conductive wire 2022a, the 2-2 conductive wire 2022b, and the 2-3 conductive wire 2022c may be commonly connected to the non-divided area 2023 and the other side may be commonly connected to the second terminal 2005b. .
  • the line width W1 of the coil of the first winding part 2021 includes the line width w11 of the first-first conductor 2021a, the line width w12 of the first-two conductor 2021b, and the first-first conductor 2021a. ) And the distance d1 between the first and second conductive lines 2021b.
  • An interval d1 between the first-first conductive line 2021a and the first-second conductive line 2021b may be the width of the opening 2021c.
  • the line width w11 of the first-first conductive wire 2021a and the line width w12 of the first-second conductive wire 2021b may be the same.
  • the line width w11 of the first-first conducting wire 2021a and the line width w12 of the first-first conducting wire 2021b are the distance d1 between the first-first conducting wire 2021a and the first-second conducting wire 2021b. May be greater than).
  • the line width W2 of the coil of the second winding part 2022 includes the line width w21 of the 2-1 lead wire 2022a, the line width w22 of the 2-2 lead wire 2022b, and the second-3 lead wire 2022c. ),
  • the line width w23, the interval d21 between the 2-1st conductor 2022a and the 2-2nd conductor 2022b, and between the 2-2nd conductor 2022b and the 2nd-3rd conductor 2022c It can be the sum of the intervals d22.
  • the line width of one of the 2-1 lead wires 2022a, the 2-2 lead wires 2022b, and the 2-3 lead wires 2022c may be different from that of the other wire.
  • the line width w22 of the second-conductor wire 2022b may be smaller than the line width w21 of the second-conductor wire 2022a or the line width w23 of the second-conductor wire 2022b.
  • the line width W2 of the coil of the second winding unit 2022 may be larger than the line width W1 of the coil of the first winding unit 2021.
  • Line widths w11 and w12 of the first-first conductive wire 2021a or the first-second conductive wire 2021b of the first winding part 2021 may correspond to the second-first conductive wire 2022a of the second winding part 2022, It may be larger than the line widths w21, w22, and w23 of the second-conductor wire 2022b or the second-conductor wire 2022c.
  • the line widths w11 and w12 of the first-first conductive wire 2021a or the first-second conductive wire 2021b of the first winding part 2021 may be 250 micrometers to 380 micrometers.
  • the line widths w21, w22, and w23 of the second-first conductive wire 2022a, the second-second conductive wire 2022b, or the second-three conductive wire 2022c of the second winding part 2022 may be 200 micrometers or more. It can be 250 micrometers.
  • the distance d1 between the first-first conductor 2021a and the first-second conductor 2021b of the first winding unit 2021 may include the second-first conductor 2022a and the second-first conductor 2022a of the second winding unit 2022.
  • the distance d21 between the 2-2 conductive lines 2022b or the distance d22 between the 2-2 conductive lines 2022b and the second-3 conductive lines 2022c may be the same.
  • the spacing d21 between the 2-2 conductive wires 2022b or the spacing d22 between the 2-2 conductive wires 2022b and the second-3 conductive wires 2022c may be 180 micrometers.
  • the non-divided area 2023 includes a first conductor region 2023a and a second winding portion 2022 connected to the first-first conductor 2021a and the first-second conductor 2021b of the first winding unit 2021.
  • the third conductor region 2023c and the first conductor region 2023a and the third conductor region which are connected to the 2-1 lead wire 2022a, the 2-2 lead wire 2022b, and the 2-3 lead wire 2022c of the It may include a second conductor region 2023b disposed between the 2023c.
  • the first conductor region 2023a, the second conductor region 2023b, and the third conductor region 2023c may be integrally formed.
  • the width of the first conductor region 2023a may be the same as the line width W1 of the coil of the first winding part 2021.
  • the width of the third conductor region 2023c may be the same as the line width W2 of the coil of the second winding part 2022.
  • the width of the second conductor region 2023b may vary along the length of the coil. That is, the width of the second conductor region 2023b may increase in the direction from the first conductor region 2023a toward the third conductor region 2023c.
  • the non-split area 2023 may include the first winding part 2021 and the second winding part to connect the first winding part 2021 having the first split structure and the second winding part 2022 having the second split structure. 2022 may be disposed between.
  • the width of the non-divided area 2023 is at least equal to or larger than the line width W1 of the coil of the first winding part 2021, the width of the non-divided area 2023 exceeds 2 ⁇ , as shown in Equation (2).
  • the resistance component Ys due to the skin effect and the resistance component Yp due to the proximity effect may be increased.
  • the length L of the non-divided area 2023 is also large, as shown in Equation 4, the DC resistance R dc can be large. Therefore, when the width of the non-divided area 2023 exceeds 2 ⁇ and the length L of the non-divided area 2023 is increased, the AC resistance Rac is increased to reduce the quality coefficient.
  • the DC resistance Rdc may be reduced by reducing the length L of the non-divided area 2023.
  • the length L of the non-divided area 2023 may be 370 micrometers or less.
  • the non-divided area 2023 may be disposed between the first divided area 2030 and the second divided area 2031.
  • the first terminal 2005a is disposed on one side of the first division region 2030, for example, inside the winding part 2003
  • the second terminal 2005b is one side of the second division area 2031, for example, the winding part ( 2003).
  • the width of the non-divided area 2023, the first terminal 2005a, or the second terminal 2005b is the line width W1 of the coil of the first winding part 2021 or the line width of the coil of the second winding part 2022 ( Since it is larger than W2), it may exceed 2 ⁇ .
  • Two virtual straight lines 2037 may be defined.
  • the first virtual straight line 2035 may pass through the center of the second terminal 2005b.
  • the second virtual straight line 2037 may pass through the center of the non-divided area 2023, specifically, the center of the second conductor area 2023b.
  • the first virtual straight line 2035 and the second virtual straight line 2037 may be virtually defined lines, not entities.
  • the resistance component Yp due to the proximity effect may increase.
  • the first terminal 2005a and / or the second terminal 2005b and the non-divided area 2023 are positioned on the second virtual straight line 2037, they are positioned on the second virtual straight line 2037. Since the current does not flow in close proximity to the mutually opposite surfaces of the first terminal 2005a and / or the second terminal 2005b and the non-divided area 2023, the resistance component Yp due to the proximity effect may increase. .
  • the first terminal 2005a is not positioned on the first virtual straight line 2035 or the first terminal 2005a and / or the second terminal 2005b are disposed in the second embodiment. It may not be located on the imaginary straight line 2037. That is, the first terminal 2005a may not overlap the first virtual straight line 2035.
  • the first terminal 2005a and / or the second terminal 2005b may not overlap the second virtual straight line 2037.
  • the first terminal 2005a may not overlap the first virtual straight line 2035.
  • the first terminal 2005a may not overlap the second virtual straight line 2037.
  • the first terminal 2005a may not overlap the first virtual straight line 2035 and the second virtual straight line 2037.
  • the second terminal 2005b may not overlap the second virtual straight line 2037.
  • the first terminal 2005a and the second terminal 2005b may not overlap the second virtual straight line 2037.
  • the first terminal 2005a may be disposed on the left side of the first virtual straight line 2035, and the non-divided area 2023 may be disposed on the right side of the first virtual straight line 2035.
  • the first terminal 2005a and the second terminal 2005b may be disposed on the left side of the second virtual straight line 2037, and the first terminal 2005a may be disposed on the left side of the straight line.
  • the first terminal 2005a or the non-divided area 2023 may be located in an area excluding the first virtual straight line 2035, that is, an area not overlapping with each other.
  • the first terminal 2005a or the second terminal 2005b may be located in an area excluding the second virtual straight line 2037, that is, a non-overlapping area.
  • the second terminal 2005b or the non-divided area 2023 It may be located in an area excluding a third virtual straight line, that is, a non-overlapping area.
  • the second terminal straight line 2037 passing through the non-dividing area 2023 or the second terminal 2005b do not overlap with the second virtual straight line 2037, thereby providing the first terminal 2005a.
  • the resistance factor Yp due to the proximity effect generated between the non-divided area 2023 and the second terminal 2005b may be removed to reduce the AC current, thereby improving the quality coefficient.
  • first virtual straight line 2035 and the second virtual straight line 2037 have been described as passing through a specific point of the second terminal 2005b or a specific point of the non-divided area 2023.
  • a first sector region 2025 formed at both ends of the center 2010 of the winding unit 2003 and the first terminal 2005a and the center 2010 and the second of the winding unit 2003 are formed.
  • a second sector region 2026 formed at both ends of the terminal 2005b and a third sector region 2027 formed at both ends of the center 2010 of the winding unit 2003 and the non-divided region 2023 may be defined.
  • the first fan-shaped region 2025 may refer to a collection area of a virtual line passing through the center 2010 of the winding unit 2003 and the first terminal 2005a.
  • the second fan-shaped region 2026 may refer to a collection area of a virtual line passing through the center 2010 of the winding portion 2003 and the second terminal 2005b.
  • the third fan-shaped region 2027 may refer to a region of virtual lines passing through the center 2010 of the winding unit 2003 and the non-divided region 2023.
  • the first end is connected to the first-first conductor 2021a and the first-second conductor 2021b of the first winding part 2021 of the first division area 2030, and The second stage may be located opposite the first stage.
  • the first end includes the second-first conductive wire 2022a, the second-second conductive wire 2022b, and the second-second of the second winding portion 2022 of the second divided region 2031.
  • the second end may be connected to the third conductive line 2022c and may be positioned opposite to the first end.
  • the first stage is one side of the first conductor region 2023a of the non-divided region 2023 and the first-first conductive line 2021a and the first-first of the first divided region 2030.
  • the second conductive wire 2021b Connected to the second conductive wire 2021b, the second end of which is the one side of the third conductor region 2023c of the non-divided area 2023, and the second-first conductive wire 2022a and the second second of the second divided area 2031.
  • the second conductive wire 2022b and the second conductive wire 2022c may be connected to each other.
  • the first sector region 2025 includes an imaginary straight line passing through the center 2010 of the winding unit 2003 and the first end of the first terminal 2005a and the center 2010 and the first terminal of the winding unit 2003. It may be an area formed by another imaginary straight line passing through the second end of 2005a.
  • the second sector region 2026 is a virtual straight line passing through the center 2010 of the winding portion 2003 and the first end of the second terminal 2005b and the center 2010 and the second terminal of the winding portion 2003. It may be an area formed by another imaginary straight line passing through the second end of 2005b.
  • the third sector region 2027 is a virtual straight line passing through the center 2010 of the winding part 2003 and the first end of the non-dividing area 2023, and the center 2010 and the non-dividing area of the winding part 2003. It may be an area formed by another imaginary straight line passing through the second end of 2023.
  • the first sector region 2025 including the first terminal 2005a may not overlap the second sector region 2026 including the second terminal 2005b. Since the first sector 2025 and the second sector 2026 do not overlap, the first terminal 2005a and the second terminal 2005b also do not overlap, and thus the first terminal 2005a and the second terminal are not overlapped. It is possible to improve the quality factor (Q) by reducing the AC resistance (R ac ) by eliminating or minimizing the resistance component (Yp) due to the proximity effect generated between (2005b).
  • the first sector region 2025 including the first terminal 2005a may not overlap the third sector region 2027 including the non-division region 2023. Since the first sector 2025 and the third sector 2027 do not overlap, the first terminal 2005a and the non-divided area 2023 also do not overlap, so that the first terminal 2005a and the non-divided area do not overlap.
  • the quality factor Q may be improved by reducing or reducing the AC resistance R ac by removing or minimizing the resistance component Yp due to the proximity effect generated between 2023.
  • the second sector region 2026 including the second terminal 2005b may not overlap the third sector region 2027 including the non-division region 2023. Since the second sector region 2026 and the third sector region 2027 do not overlap, the second terminal 2005b and the non-divided region 2023 also do not overlap, and thus the second terminal 2005b and the non-divided region are not overlapped.
  • the quality factor Q may be improved by reducing or reducing the AC resistance R ac by removing or minimizing the resistance component Yp due to the proximity effect generated between 2023.
  • the electronic device is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, an MP3 player.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • Navigation an MP3 player.
  • Device ", and the term" terminal “or” device may be used interchangeably.
  • the wireless power receiver according to another embodiment may be mounted in a vehicle, an unmanned aerial vehicle, an air drone, or the like.
  • 25 is an exploded perspective view of an electronic device according to an embodiment.
  • the electronic device 1000 includes a cover 1150, a wireless charging coil module 1105 disposed on one side of the cover, and a battery 1170 disposed on one side of the wireless charging coil module 1105. ) May be included.
  • the electronic apparatus 1000 may further include at least one or more circuits composed of at least one or more electronic components for performing a predetermined operation. At least one circuit may be mounted on a substrate. In this case, at least one circuit is mounted on the opposite side of the substrate facing the battery 1170, so that the at least one circuit is not affected by heat generation of the battery 1170. As the cover 1150 and another cover are fastened, the wireless charging coil module 1105, the battery 1170 and / or at least one or more circuits provided therein may be protected.
  • the wireless charging coil module 1105 may wirelessly receive power from the wireless power transmitter and charge the battery 1170.
  • at least one circuit may be driven by the power of the battery 1170 to perform various functions of the electronic device 1000.
  • the wireless charging coil module 1105 includes a substrate 1110, a first coil 1120, a second coil 1130, a shielding material 1140, and a heat dissipation material 1160.
  • Electronic device 1000 according to the embodiment may be omitted some of the components described above or may be further added to the component having a different function.
  • the first coil 1120 and the second coil 1130 may be disposed on the substrate 1110, and the shielding material 1140 may be disposed below the substrate 1110.
  • the heat dissipation member 1160 may be disposed under the shielding member 1140.
  • the battery 1160 may be disposed under the heat dissipation member 1160.
  • the heat dissipation member 1160 may be omitted.
  • the substrate 1110 may support the first coil 1120 and the second coil 1130.
  • the substrate 1110 may have a single layer structure or may have a multilayer structure.
  • the substrate 1110 may include a printed circuit board (PCB), a flexible PCB (FPCB), and a film.
  • PCB printed circuit board
  • FPCB flexible PCB
  • film a film
  • the substrate 1110 may include at least one slit 1117 and at least one bridge 1115.
  • Slits may be referred to as openings, gaps, holes or holes.
  • At least one slit 1117 may be divided into an inner region and an outer region of the substrate 1110.
  • the first coil 1120 may be disposed in an inner region of the substrate 1110
  • the second coil 1130 may be disposed in an outer region of the substrate 1110.
  • At least one slit 1117 may be formed in the substrate 1110 along the circumference of the first coil 1120.
  • the bridge 1115 is part of the substrate 1110, and the bridge 1115 may be positioned between the slits 1117.
  • Slit 1117 may have various shapes, such as oval or polygon.
  • the first coil 1120 may be, for example, the wireless charging coil patterns 2004 and 2003 described in the above-described embodiments (FIGS. 7 to 24).
  • the second coil 1130 may be NFC or MST. As another example, the second coil 1130 is NFC and in addition another coil may be disposed on the substrate 1110. The second coil 1130 is disposed outside the first coil 1120. The second coil 1130 may surround the first coil 1120.
  • the shield 1140 may insulate the first coil 1120 and the second coil 1130.
  • the shielding material 1140 may isolate the first coil 1120 and the second coil 1130 from other components of the wireless power receiver.
  • the shielding material 1140 may include a first shielding material 1141 and a second shielding material 1145.
  • the first shielding member 1141 is provided to shield the electromagnetic field of the second coil 1130 and may have an area larger than that of the second coil 1130.
  • the second shielding material 1145 is provided to shield the electromagnetic field of the first coil 1120 and may have an area larger than the area of the first coil 1120.
  • the second shielding material 1145 may be disposed between the substrate 1110 and the first shielding material 1141.
  • the first shielding member 1141 may support the second shielding member 1145, the substrate 1110, the first coil 1120, and the second coil 1130.
  • the second shielding material 1145 may support the first coil 1120 on the substrate 1110.
  • the second shield 1145 is stacked on the first shield 1114.
  • the first shielding member 1141 and the second shielding member 1145 may have different physical properties.
  • the first shielding member 1141 and the second shielding member 1145 may have different permeability ( ⁇ ). Permeability of the first shielding material 1141 may be maintained in the resonant frequency band of the second coil 1130. As a result, the loss ratio of the first shielding member 1141 may be suppressed in the resonant frequency band of the second coil 1130.
  • the permeability of the second shield 1145 may be maintained in the resonant frequency band of the first coil 1120. As a result, the loss rate of the second shielding material 1145 in the resonant frequency band of the first coil 1120 may be suppressed.
  • the shielding material 1140 may include a ferrite material. That is, the shielding material 1140 may include metal powders and a resin material.
  • the metal powders may include soft magnetic metal powders, aluminum (Al), metal silicon and iron oxide (FeO; Fe 3 O 4; Fe 2 O 3).
  • the resin material may include a thermoplastic resin such as a polyolefin elastomer.
  • the metal powders of the first shielding material 1141 and the metal powders of the second shielding material 1145 may be made of different kinds. Meanwhile, the metal powders of the first shielding material 1141 and the metal powders of the second shielding material 1145 may be of the same kind.
  • the weight ratio of the metal powders in the first shielding material 1141 and the weight ratio of the metal powders in the second shielding material 1145 may be different.
  • the mixing ratio of the metal powders in the first shielding material 1141 and the mixing ratio of the metal powders in the second shielding material 1145 may be different.
  • the first shielding member 1141 and the second shielding member 1145 may have the same thickness and may have different thicknesses from each other.
  • first shielding material 1141 and the second shielding material 1145 may be integrally formed of the same material according to an embodiment.
  • the first shielding member 1141 may have a hole, and the second shielding member 1145 may be disposed in the hole of the first shielding member 1141 according to the exemplary embodiment.
  • the heat dissipation member 1160 may be disposed under the shielding member 1140.
  • the heat dissipation member 1160 may be made of a metal material.
  • the heat dissipating member 1160 may be made of copper (Cu), but is not limited thereto.
  • At least one region of the heat dissipation member 1160 may be fastened to the cover 1150 for the heat dissipation passage, but is not limited thereto.
  • Embodiments may be used in the field of wireless power transmission and reception.

Abstract

A wireless charging coil comprises: a first terminal; a winding part connected to the first terminal and including a first divided region; and a second terminal connected to the winding part. The first terminal does not overlap an imaginary straight line passing through the center of the winding part and the second terminal.

Description

무선충전코일Wireless charging coil
실시예는 무선충전코일에 관한 것이다.An embodiment relates to a wireless charging coil.
휴대폰, 노트북과 같은 휴대용 단말은 전력을 저장하는 배터리와 배터리의 충전 및 방전을 위한 회로를 포함한다. 이러한 단말의 배터리가 충전되려면, 외부의 충전기로부터 전력을 공급받아야 한다. Portable terminals such as mobile phones and laptops include a battery that stores power and circuits for charging and discharging the battery. In order for the battery of the terminal to be charged, power must be supplied from an external charger.
일반적으로 배터리에 전력을 충전시키기 위한 충전장치와 배터리 간의 전기적 연결방식의 일 예로, 상용전원을 공급받아 배터리에 대응하는 전압 및 전류로 변환하여 해당 배터리의 단자를 통해 배터리로 전기에너지를 공급하는 단자공급방식을 들 수 있다. 이러한 단자공급방식은 물리적인 케이블(cable) 또는 전선의 사용이 동반된다. 따라서 단자공급방식의 장비들을 많이 취급하는 경우, 많은 케이블들이 상당한 작업 공간을 차지하고 정리가 곤란하며 외관상으로도 좋지 않다. 또한 단자공급방식은 단자들간의 서로 다른 전위차로 인한 순간방전현상, 이물질에 의한 소손 및 화재 발생, 자연방전, 배터리의 수명 및 성능 저하 등의 문제점을 야기할 수 있다.In general, as an example of an electrical connection method between a charging device and a battery for charging power to a battery, the terminal is supplied with commercial power and converted into a voltage and a current corresponding to the battery to supply electrical energy to the battery through the terminal of the battery. Supply method. This terminal supply method is accompanied by the use of a physical cable (cable) or wire. Therefore, when handling a lot of terminal supply equipment, many cables occupy considerable working space, are difficult to organize, and are not good in appearance. In addition, the terminal supply method may cause problems such as instantaneous discharge phenomenon due to different potential difference between the terminals, burnout and fire caused by foreign substances, natural discharge, deterioration of battery life and performance.
최근 이와 같은 문제점을 해결하기 위하여, 무선으로 전력을 전송하는 방식을 이용한 충전시스템(이하 “무선충전시스템”이라 칭함.)과 제어방법들이 제시되고 있다. 또한, 무선충전시스템이 과거에는 일부 휴대용 단말에 기본 장착되지 않고 소비자가 별도 무선충전 수신기 액세서리를 별도로 구매해야 했기에 무선충전시스템에 대한 수요가 낮았으나 무선충전 사용자가 급격히 늘어날 것으로 예상되며 향후 단말 제조사에서도 무선충전 기능을 기본 탑재할 것으로 예상된다. Recently, in order to solve this problem, a charging system (hereinafter referred to as a "wireless charging system") and a control method using a method of transmitting power wirelessly have been proposed. In addition, the wireless charging system was not basically installed in some portable terminals in the past, and the consumer had to separately purchase a wireless charging receiver accessory, so the demand for the wireless charging system was low, but wireless charging users are expected to increase rapidly. It is expected to be equipped with wireless charging function.
무선충전용 배터리가 대용량화되면서 품질계수(quality factor)가 중요해지고 있다. 통상적으로 무선충전 효율을 높이기 위해서는 품질계수 또한 높아야 한다. As the battery for wireless charging becomes larger, the quality factor becomes important. In general, in order to increase the wireless charging efficiency, the quality factor should also be high.
품질계수(Q)는 수학식 1과 나타내어진 바와 같이, 인덕턴스(L)에 비례하고 저항(R)에 반비례한다.The quality factor Q is proportional to the inductance L and inversely proportional to the resistance R, as shown in equation (1).
Figure PCTKR2019006173-appb-M000001
Figure PCTKR2019006173-appb-M000001
인덕턴스를 높이기 위해서는 안테나의 길이, 즉 코일의 총 길이가 길어야 한다. To increase inductance, the length of the antenna, i.e. the total length of the coil, must be long.
하지만, 예컨대, 스마트폰과 같은 전자기기에는 수많은 부품들이 실장되어야 하므로, 수신안테나의 사이즈에 한계가 있다. 따라서, 이와 같이 설정된 사이즈에서 인덕턴스를 높이는 데에는 한계가 있다.However, since a large number of components have to be mounted in an electronic device such as, for example, a smartphone, there is a limitation in the size of the reception antenna. Therefore, there is a limit to increasing the inductance at the size set in this way.
또한, 인덕턴스를 높이기 위해 안테나의 길이를 늘리거나 코일의 턴수(감는 횟수)가 증가되는 경우 저항도 함께 커지므로, 품질계수를 높이기 어렵다.In addition, if the length of the antenna is increased or the number of turns (the number of windings) of the coil is increased to increase the inductance, the resistance is also increased, so that it is difficult to increase the quality factor.
한편, 무선충전 수신 안테나는 실제 작동할 때에는 교류전류가 흐르기 때문에 직류저항이 아닌 교류저항이 관련된다. 이때의 교류저항은 수학식 2와 같이 나타낼 수 있다.On the other hand, since the wireless charging receiving antenna actually operates when AC current flows, the AC resistance is not related to the DC resistance. The AC resistance at this time can be expressed as Equation 2.
Figure PCTKR2019006173-appb-M000002
Figure PCTKR2019006173-appb-M000002
Rac는 교류저항을 나타내고, Rdc는 직류저항을 나타내고, Ys는 표피효과(skin effect)로 인한 저항성분을 나타내며, Yp는 근접효과(proximity effect)로 인한 저항성분을 나타낸다.R ac represents the AC resistance, R dc represents the DC resistance, Ys represents the resistance component due to the skin effect, and Yp represents the resistance component due to the proximity effect.
표피효과라 함은 교류전류가 흐르고 있는 코일의 단면에서 교류전류가 고르게 흐르지 않고 중심부일수록 교류전류가 적게 흐르거나 아예 흐르지 않고 주변부에 많이 흐르는 현상을 말한다. 이러한 표피효과는 주파수가 높아질수록 더욱 더 심해진다. 도 1a에 도시한 바와 같이, 코일(1)에 교류전류가 흐르는 경우, 전류밀도(J)가 코일(1)의 중심부에는 없고 코일(1)의 주변부에 분포되게 되므로 교류전류가 코일(1)의 중심부로는 흐르지 않고 코일(1)의 주변부로만 흐르게 된다.The skin effect refers to a phenomenon in which the AC current does not flow evenly in the cross section of the coil in which the AC current flows, and the AC current flows in the periphery area with little or no AC current flowing at all. This epidermal effect becomes more severe at higher frequencies. As shown in FIG. 1A, when an alternating current flows through the coil 1, the current density J is distributed at the periphery of the coil 1 and not at the center of the coil 1, so that the alternating current is applied to the coil 1. Does not flow to the center of the flow, but only flows to the periphery of the coil (1).
근접효과라 함은 서로 인접한 코일에 교류전류가 흐를 때 코일에 흐르는 전류밀도가 한쪽으로 쏠리는 현상을 말한다. 이러한 근접효과는 주파수가 높아질수록 그리고 인접하는 코일 사이의 간격이 좁을수록 더욱 더 심해진다. 도 1b에 도시한 바와 같이, 서로 인접한 코일(3, 5)에 교류전류가 흐르는 경우, 각 코일(3, 5)의 전류밀도(J)가 서로 멀어지는 영역에 분포되고 서로 인접한 영역에는 분포되지 않게 된다. 이와 같이, 서로 인접한 코일(3, 5)에 교류전류에 흐르는 경우, 각 코일(3, 5)는 표피효과뿐만 아니라 근접효과의 영향도 받게 된다.Proximity effect refers to a phenomenon in which the current density flowing in a coil is concentrated to one side when an AC current flows in adjacent coils. This proximity effect is exacerbated as the frequency increases and the spacing between adjacent coils narrows. As shown in FIG. 1B, when an alternating current flows through the coils 3 and 5 adjacent to each other, the current density J of each coil 3 and 5 is distributed in an area far from each other and is not distributed in an area adjacent to each other. do. As described above, when an alternating current flows in the coils 3 and 5 adjacent to each other, the coils 3 and 5 are affected by not only the skin effect but also the proximity effect.
제한된 공간 안에서 인덕턴스를 높이기 위해 코일 사이의 간격을 줄이는 경우, 표피효과로 인한 저항성분(Ys)과 근접효과로 인한 저항성분(Yp)으로 인하여 교류저항이 증가된다. When the spacing between coils is reduced to increase the inductance in the limited space, the AC resistance is increased due to the resistance component (Ys) due to the skin effect and the resistance component (Yp) due to the proximity effect.
특히, 안테나의 전자기장의 차폐를 위해 차폐재가 부가되는 경우, 이러한 교류저항은 더욱 더 증가된다. In particular, when a shielding material is added for shielding the electromagnetic field of the antenna, this AC resistance is further increased.
종래에는 무선충전코일의 교류저항을 줄이는데 있어서, 표피효과나 근접효과의 영향을 간과한 채 코일 설계를 하므로, 이러한 교류저항의 증가원인을 파악하지 못하였다.Conventionally, in reducing the AC resistance of the wireless charging coil, the coil design was neglected while overlooking the effect of the skin effect and the proximity effect, and thus the cause of the increase of the AC resistance was not understood.
따라서, 인덕턴스를 높이기 위해 코일 사이의 간격을 감소시키지 못하고 있었고, 코일 사이의 간격을 감소시키더라도 교류저항이 증가되어 품질계수는 오히려 낮아지는 문제가 있다. Therefore, the gap between the coils has not been reduced to increase the inductance, and even though the gap between the coils is reduced, the AC resistance is increased and the quality factor is rather low.
이상과 같이 품질계수이나 교류저항이 인덕턴스뿐만 아니라 교류저항에 직접적으로 관련되는 표피효과 및 근접효과와 같은 다양한 파라미터에 영향을 받기 때문에, 종래에는 교류저항을 줄여 품질계수를 높이기 위한 최적의 무선충전코일의 설계가 어려웠다. 특히, 종래에는 제한된 영역 내에서 코일의 길이나 면적을 고려하여 품질계수를 향상시키는데 한계가 있었다.As described above, since the quality factor and the AC resistance are affected not only by the inductance but also various parameters such as the skin effect and the proximity effect which are directly related to the AC resistance, conventionally, the optimal wireless charging coil for improving the quality coefficient by reducing the AC resistance The design was difficult. In particular, there is a limit in improving the quality factor in consideration of the length or area of the coil in the conventional limited area.
실시예는 새로운 구조의 무선충전코일을 제공한다.The embodiment provides a wireless charging coil having a new structure.
실시예는 교류저항의 증가를 억제할 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil capable of suppressing an increase in AC resistance.
실시예는 제한된 영역에서 품질계수를 높일 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil that can increase the quality factor in a limited area.
실시예는 코일의 점유 면적을 최소화할 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil capable of minimizing the occupied area of the coil.
실시예는 위상차의 발생을 억제할 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil capable of suppressing the generation of the phase difference.
실시예는 품질계수를 향상시킬 수 있는 최적 설계가 가능한 무선충전코일을 제공한다.The embodiment provides a wireless charging coil capable of an optimal design that can improve the quality factor.
실시예는 표피효과를 줄여 교류저항을 줄일 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil that can reduce the skin resistance to reduce the AC resistance.
실시예는 근접효과를 줄여 교류저항을 줄일 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil capable of reducing the AC resistance by reducing the proximity effect.
실시예는 교류저항을 줄일 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil that can reduce the AC resistance.
실시예는 충전효율을 향상시킬 수 있는 무선충전코일을 제공한다.The embodiment provides a wireless charging coil that can improve the charging efficiency.
상기 또는 다른 목적을 달성하기 위해 실시예의 일 측면에 따르면, 무선충전코일은, 제1 단자; 상기 제1 단자와 연결되고, 제1 분할영역을 포함하는 권선부; 및 상기 권선부와 연결되는 제2 단자를 포함한다. 상기 제1 단자는 상기 권선부의 중심과 상기 제2 단자를 통과하는 가상의 직선과 중첩되지 않는다.According to an aspect of the embodiment to achieve the above or another object, the wireless charging coil, the first terminal; A winding part connected to the first terminal and including a first division region; And a second terminal connected to the winding part. The first terminal does not overlap an imaginary straight line passing through the center of the winding portion and the second terminal.
상기 권선부는 제2 분할영역과, 상기 제1 분할영역과 상기 제2 분할영역 사이에 비분할영역을 포함할 수 있다.The winding part may include a second divided region and a non-divided region between the first divided region and the second divided region.
상기 제1 단자 또는 상기 제2 단자 중 적어도 하나는 상기 권선부의 중심과 상기 비분할영역을 통과하는 가상의 직선과 중첩되지 않을 수 있다.At least one of the first terminal and the second terminal may not overlap an imaginary straight line passing through the center of the winding part and the non-divided area.
상기 제1 분할영역은 2개의 도선으로 분할될 수 있다.The first divided area may be divided into two conductive lines.
상기 제2 분할영역은 3개의 도선으로 분할될 수 있다.The second divided area may be divided into three conductive lines.
상기 제1 분할영역의 상기 2개의 도선은 상기 제1 단자와 공통으로 연결되고, 상기 제1 분할영역의 상기 2개의 도선은 상기 비분할영역에 공통으로 연결되고, 상기 제2 분할영역의 상기 3개의 도선은 상기 비분할영역에 공통으로 연결되며, 상기 제2 분할영역의 상기 3개의 도선은 상기 제2 단자에 공통으로 연결될 수 있다.The two conductive wires of the first divided area are commonly connected to the first terminal, the two conductive wires of the first divided area are commonly connected to the non-divided area, and the three of the second divided area are connected. Two conductive lines may be commonly connected to the non-divided area, and the three conductive lines of the second divided area may be commonly connected to the second terminal.
상기 제2 분할영역의 상기 3개의 도선 중 하나의 도선의 선 폭은 다른 도선의 선 폭과 상이할 수 있다.The line width of one of the three conductive lines in the second divided region may be different from the line width of the other conductive line.
상기 제1 분할영역의 도선의 선 폭은 상기 제2 분할영역의 도선의 선 폭보다 클 수 있다.The line width of the conductive line of the first divided region may be greater than the line width of the conductive line of the second divided region.
상기 제1 분할영역의 도선의 선 간격은 상기 제2 분할영역의 도선의 선 간격과 동일할 수 있다.The line spacing of the conductive lines of the first divided region may be the same as the line spacing of the conductive lines of the second divided region.
상기 비분할영역은 상기 제1 분할영역과 연결되는 제1 도체영역과, 상기 제2분할영역과 연결되는 제3 도체영역과, 제1 도체영역과 제3 도체영역 사이에 배치되는 제2 도체영역을 포함할 수 있다.The non-divided region includes a first conductor region connected to the first divided region, a third conductor region connected to the second divided region, and a second conductor region disposed between the first conductor region and the third conductor region. It may include.
실시예에 따른 무선충전코일의 효과에 대해 설명하면 다음과 같다.The effect of the wireless charging coil according to the embodiment is as follows.
실시예들 중 적어도 하나에 의하면, 코일패턴이 슬릿에 의해 분리 또는 분기된 적어도 2개 이상의 도선을 포함하도록 하고, 분리 또는 분기된 도선의 폭을 특정함으로써, 직류저항은 작아지고, 교류 동작시의 직류저항과 교류저항의 차이를 줄이고, 인덕턴스를 증가시켜 품질계수가 현저히 향상될 수 있다.According to at least one of the embodiments, the coil pattern includes at least two or more conductors separated or branched by the slit, and the width of the separated or branched conductor is specified, whereby the DC resistance becomes small, By reducing the difference between the DC resistance and the AC resistance and increasing the inductance, the quality factor can be significantly improved.
실시예들 중 적어도 하나에 의하면, 코일패턴이 슬릿에 의해 분리 또는 분기된 적어도 2개 이상의 도선을 포함하도록 하고, 분리 또는 분기된 도선의 폭을 특정함으로써, 코일패턴에 포함된 권선라인 사이 간격이 줄어들어 품질계수를 향상시키고 코일패턴이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 아울러, 권선라인 사이 간격이 줄어들더라도 교류 동작시 직류저항과 교류저항의 차이를 줄이는 효과가 있다.According to at least one of the embodiments, the coil pattern comprises at least two or more conductors separated or branched by slits, and by specifying the width of the separated or branched conductors, the spacing between the winding lines included in the coil pattern is reduced. It can be reduced, improving the quality factor and minimizing the occupied area occupied by the coil pattern, making the product compact. In addition, even if the distance between the winding line is reduced, there is an effect of reducing the difference between the DC resistance and the AC resistance during AC operation.
실시예들 중 적어도 하나에 의하면, 코일패턴이 슬릿에 의해 분리 또는 분기된 적어도 2개 이상의 도선을 포함하도록 하고, 분리 또는 분기된 도선의 폭을 특정함으로써, 권선라인 사이 간격이 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다는 장점이 있다.According to at least one of the embodiments, the coil pattern includes at least two or more conductors separated or branched by the slit, and by specifying the width of the separated or branched conductors, the spacing between the winding lines is reduced to inductance with respect to the same area. This increases the coefficient of quality compared to the same area in the end.
실시예들 중 적어도 하나에 의하면, 코일패턴이 슬릿에 의해 제1 도선과 제2 도선로 분리되는 경우, 적어도 하나 이상의 연결라인에 의해 제1 도선과 제2 도선이 연결됨으로써, 교류전력의 위상차의 발생을 억제할 수 있다는 장점이 있다.According to at least one of the embodiments, when the coil pattern is separated into a first lead and a second lead by a slit, the first lead and the second lead are connected by at least one or more connection lines, thereby reducing the phase difference of AC power. There is an advantage that the occurrence can be suppressed.
실시예들 중 적어도 하나에 의하면, 코일을 2개로 분할하여 표피효과로 인한 저항성분 및/또는 근접효과로 인한 저항성분를 줄일 수 있다. 저항성분 및/또는 근접효과로 인한 저항성분가 줄어듦에 따라 교류저항도 줄고, 이에 따라 품질계수가 증대되어 충전효율이 향상될 수 있다. According to at least one of the embodiments, the coil may be divided into two to reduce the resistance component due to the skin effect and / or the resistance component due to the proximity effect. As the resistance component due to the resistance component and / or the proximity effect is reduced, the AC resistance is also reduced, and thus the quality factor is increased to increase the charging efficiency.
실시예들 중 적어도 하나에 의하면, 권선부의 중심에서 권선부의 외측을 향하는 방향을 따라 권선되는 코일의 선폭이 커지도록 하여, 코일의 길이가 증가되는 것과 비례하여 코일의 단면적도 커지도록 하여 직류저항의 증가를 억제하여 교류저항이 커지지 않아 품질계수가 커질 수 있다는 장점이 있다.According to at least one of the embodiments, the line width of the coil that is wound along the direction from the center of the winding portion toward the outside of the winding portion increases, so that the cross-sectional area of the coil increases in proportion to the increase in the length of the coil so that There is an advantage that the quality factor can be increased because the AC resistance is not increased by suppressing the increase.
실시예들 중 적어도 하나에 의하면, 권선부의 비분할영역의 전후에 배치되는 제1 분할영역과 제2 분할영역에서 제1 분할영역의 제1 스플릿 구조의 도선 개수보다 제2 분할영역의 제2 스플릿 구조의 도선 개수가 더 많도록 하여 제1 분할영역과 제2 분할영역 모두에서 코일 내의 도선의 선폭이 2δ이하가 되어 표피효과로 인한 저항성분 및/또는 근접효과로 인한 저항성분을 줄여 교류저항의 감소로 인해 품질계수 향상될 수 있다는 장점이 있다.According to at least one of the embodiments, the second split of the second divided region than the number of conductors of the first split structure of the first divided region and the second divided region which are arranged before and after the non-divided region of the winding part. The larger the number of conductors in the structure, the line width of the conductors in the coil is less than or equal to 2δ in both the first and second divisions, thereby reducing the resistance component due to the skin effect and / or the resistance component due to the proximity effect. There is an advantage that the quality factor can be improved due to the reduction.
실시예들 중 적어도 하나에 의하면, 권선부의 양단에 연결되는 제1 단자와 제2 단자 그리고 권선부 상에 비분할영역이 배치되는 경우, 제1 단자가 권선부의 중심과 제2 단자를 통과하는 제1 가상의 직선이나 권선부의 중심과 비분할영역을 통과하는 제2 가상의 직선과 중첩되지 않거나 제2 단자가 제2 가상의 직선과 중첩되지 않음으로써, 제1 단자, 비분할영역, 제2 단자 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하여 교류전류를 줄여 품질계수를 높일 수 있다는 장점이 있다.According to at least one of the embodiments, when the first terminal and the second terminal connected to both ends of the winding portion and the non-dividing region is disposed on the winding portion, the first terminal passes through the center and the second terminal of the winding portion; The first terminal, the non-divided area, and the second terminal by not overlapping with the second virtual straight line passing through the first virtual straight line or the center of the winding part and the non-dividing area or the second terminal do not overlap with the second virtual straight line. There is an advantage that the quality factor can be improved by reducing the AC current by removing the resistance component (Yp) due to the proximity effect generated in between.
실시예의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 실시예의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다. Further scope of the applicability of the embodiments will become apparent from the detailed description below. However, various changes and modifications within the spirit and scope of the embodiments can be clearly understood by those skilled in the art, and therefore, specific embodiments, such as the detailed description and the preferred embodiments, are to be understood as given by way of example only.
도 1a는 단일 코일에서의 표피효과를 설명하는 도면이다.1A is a diagram illustrating skin effect in a single coil.
도 1b는 서로 인접하는 코일에서의 근접효과를 설명하는 도면이다.FIG. 1B is a diagram illustrating a proximity effect in coils adjacent to each other. FIG.
도 2은 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다. 2 is a block diagram illustrating a wireless charging system according to an embodiment.
도 3는 실시예에 따른 무선전력송신기의 구조를 설명하기 위한 블록도이다.3 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
도 4은 도 3에 따른 무선전력송신기와 연동되는 무선전력수신기의 구조를 설명하기 위한 블록도이다.4 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 3.
도 5는 실시예에 따른 무선전력송신기의 분해사시도이다.5 is an exploded perspective view of a wireless power transmitter according to an embodiment.
도 6는 실시예에 따른 무선전력수신기를 도시한다.6 shows a wireless power receiver according to an embodiment.
도 7a는 제1 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.7A is a plan view illustrating the wireless charging coil module according to the first embodiment.
도 7b는 제1 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.7B is a cross-sectional view illustrating the wireless charging coil module according to the first embodiment.
도 8a는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항과 인덕턴스를 도시한다.8A illustrates resistance and inductance according to a width of a coil in a structure in which a shield is attached to a coil pattern.
도 8b는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항 비율과 품질계수를 도시한다. 8B illustrates a resistance ratio and a quality factor according to a width of a coil in a structure in which a shield is attached to a coil pattern.
도 9a는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항과 인덕턴스를 도시한다.9A illustrates resistance and inductance according to a width of a coil in a structure in which a shield is attached to a coil pattern.
도 9b는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항 비율과 품질계수를 도시한다. 9B illustrates a resistance ratio and a quality factor according to a width of a coil in a structure in which a shield is attached to a coil pattern.
도 10a는 제3 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.10A is a plan view illustrating a wireless charging coil module according to a third embodiment.
도 10b는 제3 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.10B is a sectional view showing a wireless charging coil module according to a third embodiment.
도 11a는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항과 인덕턴스를 도시한다.FIG. 11A illustrates resistance and inductance according to the width of the coil in a structure in which a shield is attached to the coil pattern.
도 11b는 코일패턴에 차폐재가 부착된 구조에서 코일의 폭에 따른 저항 비율과 품질계수를 도시한다. FIG. 11B illustrates the resistance ratio and the quality factor according to the width of the coil in the structure in which the shielding material is attached to the coil pattern.
도 12a는 제4 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.12A is a plan view illustrating a wireless charging coil module according to a fourth embodiment.
도 12b는 제4 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.12B is a sectional view showing a wireless charging coil module according to a fourth embodiment.
도 13는 제5 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.FIG. 13 is a plan view illustrating a wireless charging coil module according to a fifth embodiment.
도 14 내지 도 19는 실시 예에 따른 무선충전코일의 제조 방법을 설명하기 위한 도면이다.14 to 19 are views for explaining a method of manufacturing a wireless charging coil according to the embodiment.
도 20은 제6 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.20 is a plan view illustrating a wireless charging coil module according to a sixth embodiment.
도 21은 도 20의 A 영역을 도시한 확대도이다.FIG. 21 is an enlarged view illustrating region A of FIG. 20.
도 22는 도 20의 B 영역을 도시한 확대도이다.FIG. 22 is an enlarged view illustrating region B of FIG. 20.
도 23은 도 20에 도시된 무선충전코일모듈에서 X-Y라인을 따라 절단한 단면도이다.23 is a cross-sectional view taken along the line X-Y in the wireless charging coil module shown in FIG.
도 24은 제1 단자, 제2 단자 및 비분할영역의 위치 관계를 도시한다.24 shows the positional relationship of the first terminal, the second terminal, and the non-divided area.
도 25는 실시예에 따른 전자기기의 분해 사시도이다.25 is an exploded perspective view of an electronic device according to an embodiment.
이하, 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.Hereinafter, an apparatus and various methods to which the embodiments are applied will be described in more detail with reference to the accompanying drawings. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other.
이상에서, 실시예를 구성하는 모든 구성 요소(또는 레이어(layer))들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 실시예의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 실시예의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.In the above description, all the elements (or layers) constituting the embodiments are described as being combined or operating in combination, but are not necessarily limited to the embodiments. In other words, all of the components may be selectively operated in combination with one or more within the scope of the embodiments. In addition, although all of the components may be implemented in one independent hardware, each or all of the components may be selectively combined to perform some or all functions combined in one or a plurality of hardware. It may be implemented as a computer program having a. Codes and code segments constituting the computer program may be easily inferred by those skilled in the art of the embodiments. Such a computer program may be stored in a computer readable storage medium and read and executed by a computer, thereby implementing the embodiments. The storage medium of the computer program may include a magnetic recording medium, an optical recording medium, a carrier wave medium, and the like.
실시예의 설명에 있어서, 각 구성 요소의 "상(위) 또는 하(아래)", "전(앞) 또는 후(뒤) "에 형성되는 것으로 기재되는 경우에 있어, "상(위) 또는 하(아래)" 및 "전(앞) 또는 후(뒤) "는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. In the description of the embodiments, in the case of being described as being formed at "up (up) or down (down)", "before (front) or back (back)" of each component, "up (up) or down (Below) " and " before (front) or back (back) " include both formed by direct contact of two components or one or more other components disposed between two components.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 실시예에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be included, unless otherwise stated, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meanings as commonly understood by one of ordinary skill in the art to which the embodiments belong, unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be construed in an ideal or overly formal sense unless explicitly defined in the examples.
또한, 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
실시예를 설명함에 있어서 관련된 공지기술에 대하여 이 분야의 기술자에게 자명한 사항으로서 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In the following description of the embodiments, it will be apparent to those skilled in the art with respect to the related well-known technology that the detailed description thereof will be omitted.
실시예의 설명에 있어서, 무선 전력 충전 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선전력송신기, 무선 전력 송신 장치, 무선전력송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 전력 전송 장치, 무선 전력 전송기, 무선충전장치 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선전력수신기, 무선 전력 수신 장치, 무선전력수신기, 수신 단말기, 수신측, 수신 장치, 수신기 단말 등이 혼용되어 사용될 수 있다.In the description of the embodiment, the apparatus for transmitting wireless power on the wireless power charging system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a wireless power transmitter for convenience of description. A wireless power transmitter, a wireless charging device, etc. will be used interchangeably. In addition, as a representation of a device for receiving wireless power from the wireless power transmitter, for convenience of description, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Terminals and the like may be used interchangeably.
실시예에 따른 무선전력수신기는 적어도 하나의 무선 전력 전송 방식이 구비될 수 있으며, 2개 이상의 무선전력송신기로부터 동시에 무선 전력을 수신할 수도 있다. 여기서, 무선 전력 전송 방식은 전자기 유도 방식, 전자기 공진 방식, RF 무선 전력 전송 방식 중 적어도 하나를 포함할 수 있다. 일반적으로, 무선 전력 시스템을 구성하는 무선전력송신기와 무선전력수신기는 인밴드 통신 또는 BLE(Bluetooth Low Energy) 통신을 통해 제어 신호 또는 정보를 교환할 수 있다. 여기서, 인밴드 통신, BLE 통신은 펄스 폭 변조(Pulse Width Modulation) 방식, 주파수 변조 방식, 위상 변조 방식, 진폭 변조 방식, 진폭 및 위상 변조 방식 등으로 수행될 수 있다. 일 예로, 무선전력수신기는 수신코일을 통해 유도된 전류를 소정 패턴으로 ON/OFF 스위칭하여 궤환 신호(feedback signal)를 생성함으로써 무선전력송신기에 각종 제어 신호 및 정보를 전송할 수 있다. 무선전력수신기에 의해 전송되는 정보는 수신 전력 세기 정보를 포함하는 다양한 상태 정보를 포함할 수 있다. 무선전력송신기는 수신 전력 세기 정보에 기반하여 충전 효율 또는 전력 전송 효율을 산출할 수 있다.The wireless power receiver according to the embodiment may be provided with at least one wireless power transmission scheme, and may simultaneously receive wireless power from two or more wireless power transmitters. Here, the wireless power transmission method may include at least one of an electromagnetic induction method, an electromagnetic resonance method, and an RF wireless power transmission method. In general, the wireless power transmitter and the wireless power receiver constituting the wireless power system may exchange control signals or information through in-band communication or BLE (Bluetooth Low Energy) communication. Here, in-band communication and BLE communication may be performed by a pulse width modulation method, a frequency modulation method, a phase modulation method, an amplitude modulation method, an amplitude and phase modulation method, or the like. For example, the wireless power receiver may transmit various control signals and information to the wireless power transmitter by generating a feedback signal by switching ON / OFF the current induced through the receiving coil in a predetermined pattern. The information transmitted by the wireless power receiver may include various state information including received power strength information. The wireless power transmitter may calculate the charging efficiency or the power transmission efficiency based on the received power strength information.
<무선 충전 시스템><Wireless charging system>
도 2은 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.2 is a block diagram illustrating a wireless charging system according to an embodiment.
도 2을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(30)로 구성될 수 있다.Referring to FIG. 2, the wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 30 that receives the received power. Can be configured.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다. 다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.For example, the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission. In another example, the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다. 여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.For example, the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other. Here, the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지않으며, 다른 실시예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.In-band communication and out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, in-band communication and out-of-band communication may provide one-way communication or half-duplex communication.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로 정보를 전송하는 것일 수도 있다.For example, the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto. The wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다. In the half-duplex communication method, bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
실시예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다. 일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다. The wireless power receiver 20 according to the embodiment may obtain various state information of the electronic device 30. For example, the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like. The information may be obtained from the electronic device 30 and may be utilized for wireless power control.
<무선전력송신기><Wireless Power Transmitter>
도 3는 실시예에 따른 무선전력송신기의 구조를 설명하기 위한 블록도이다.3 is a block diagram illustrating a structure of a wireless power transmitter according to an embodiment.
도 3를 참조하면 무선전력송신기(200)는 크게, 전력 변환부(210), 전력 전송부(220), 통신부(230), 제어부(240), 센싱부(250)를 포함하여 구성될 수 있다. 상기한 무선전력송신기(200)의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다.Referring to FIG. 3, the wireless power transmitter 200 may largely include a power converter 210, a power transmitter 220, a communicator 230, a controller 240, and a sensor 250. . It should be noted that the configuration of the wireless power transmitter 200 is not necessarily an essential configuration, and may include more or fewer components.
도 3에 도시된 바와 같이, 전력 변환부(210)는 전원부(260)로부터 전원이 공급되면, 이를 소정 세기의 전력으로 변환하는 기능을 수행할 수 있다.As shown in FIG. 3, when power is supplied from the power supply unit 260, the power converter 210 may perform a function of converting the power into power of a predetermined intensity.
이를 위해, 전력 변환부(210)는 전원부(260)로부터 공급된 전력을 무선 송신용 전력으로 변환할 수 있다. To this end, the power converter 210 may convert the power supplied from the power supply unit 260 into power for wireless transmission.
전력 전송부(220)는 다중화기(221)(또는 멀티플렉서), 송신 코일(222)을 포함하여 구성될 수 있다. 또한, 전력 전송부(220)는 전력 전송을 위한 특정 동작주파수를 생성하기 위한 반송파 생성기(미도시)를 더 포함할 수도 있다.The power transmitter 220 may include a multiplexer 221 (or a multiplexer) and a transmission coil 222. In addition, the power transmitter 220 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
도 3에 도시된 바와 같이, 전력 전송부(220)는 전력변환부(210)의 출력 전력이 송신 코일에 전달되는 것을 제어하기 위한 다중화기(221)와 복수의 송신 코일(222)-즉, 제1 내지 제n 송신 코일-을 포함하여 구성될 수 있다.As shown in FIG. 3, the power transmitter 220 may include a multiplexer 221 and a plurality of transmitter coils 222 to control transmission of output power of the power converter 210 to a transmitter coil. And first through n-th transmission coils.
실시예에 따른 제어부(240)는 복수의 무선전력수신기가 연결된 경우, 송신 코일 별 시분할 다중화를 통해 전력을 전송할 수도 있다. 예를 들어, 무선전력송신기(200)에 3개의 무선전력수신기-즉, 제1 내지 3 무선전력수신기-가 각각 3개의 서로 다른 송신 코일-즉, 제1 내지 3 송신 코일-을 통해 식별된 경우, 제어부(240)는 다중화기(221)를 제어하여, 특정 타임 슬롯에 특정 송신 코일을 통해 전력이 송출될 수 있도록 제어할 수 있다. 송신 코일 별 할당된 타임 슬롯의 길이에 따라 해당 무선전력수신기로 전송되는 전력의 양이 제어될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 송신 코일 별 할당된 타임 슬롯 동안의 증폭기(212) 증폭률을 제어하여 무선전력수신기 별 송출 전력을 제어할 수도 있다.When a plurality of wireless power receivers are connected, the control unit 240 according to the embodiment may transmit power through time division multiplexing for each transmission coil. For example, in the wireless power transmitter 200, three wireless power receivers, that is, the first to third wireless power receivers, are identified through three different transmitting coils, that is, the first to third transmitting coils, respectively. The controller 240 may control the multiplexer 221 to control power to be transmitted through a specific transmission coil in a specific time slot. The amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the allocated time slot for each transmitting coil, but this is only one embodiment. Another example is an amplifier during an allocated time slot for each transmitting coil. The output power of each wireless power receiver may be controlled by controlling the amplification rate.
제어부(240)는 제1차 감지 신호 송출 절차 동안 제1 내지 제n 송신 코일(222)을 통해 감지 신호가 순차적으로 송출될 수 있도록 다중화기(221)를 제어할 수 있다. The control unit 240 may control the multiplexer 221 to sequentially transmit the detection signals through the first to nth transmission coils 222 during the first detection signal transmission procedure.
또한, 제어부(240)는 제1차 감지 신호 송출 절차 동안 복조부(232)로부터 어느 송신 코일을 통해 신호 세기 지시자(Signal Strength Indicator)가 수신되었는지를 식별하기 위한 소정 송신 코일 식별자 및 해당 송신 코일을 통해 수신된 신호 세기 지시자를 수신할 수 있다. 연이어, 제2차 감지 신호 송출 절차에서 제어부(240)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일(들)을 통해서만 감지 신호가 송출될 수 있도록 다중화기(221)를 제어할 수도 있다. 다른 일 예로, 제어부(240)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일이 복수개인 경우, 가장 큰 값을 갖는 신호 세기 지시자가 수신된 송신 코일을 제2차 감지 신호 송출 절차에서 감지 신호를 가장 먼저 송출할 송신 코일로 결정하고, 결정 결과에 따라 다중화기(221)를 제어할 수도 있다. In addition, the control unit 240 supplies a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 232 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 240 controls the multiplexer 221 to transmit the detection signal only through the transmission coil (s) in which the signal strength indicator was received during the first detection signal transmission procedure. You may. As another example, when there are a plurality of transmitting coils receiving the signal strength indicator during the first sensing signal transmitting procedure, the controller 240 sends the second sensing signal to the transmitting coil in which the signal strength indicator having the largest value is received. In the procedure, the sensing signal may be determined as the transmitting coil to be transmitted first, and the multiplexer 221 may be controlled according to the determination result.
변조부(231)는 제어부(240)에 의해 생성된 제어 신호를 변조하여 다중화기(221)에 전달할 수 있다. 여기서, 제어 신호를 변조하기 위한 변조 방식은 FSK(Frequency Shift Keying) 변조 방식, 맨체스터 코딩(Manchester Coding) 변조 방식, PSK(Phase Shift Keying) 변조 방식, 펄스 폭 변조(Pulse Width Modulation) 방식, 차등 2단계(Differential bi-phase) 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.The modulator 231 may modulate the control signal generated by the controller 240 and transmit the modulated control signal to the multiplexer 221. Here, the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
복조부(232)는 송신 코일을 통해 수신되는 신호가 감지되면, 감지된 신호를 복조하여 제어부(240)에 전송할 수 있다. 여기서, 복조된 신호에는 신호 세기 지시자, 무선 전력 전송 중 전력 제어를 위한 오류 정정(EC: Error Correction) 지시자, 충전 완료(EOC: End Of Charge) 지시자, 과전압/과전류/과열 지시자 등이 포함될 수 있으나, 이에 한정되지는 않으며, 무선전력수신기의 상태를 식별하기 위한 각종 상태 정보가 포함될 수 있다.When the signal received through the transmitter coil is detected, the demodulator 232 may demodulate the detected signal and transmit the demodulated signal to the controller 240. Here, the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like. However, the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
또한, 복조부(232)는 복조된 신호가 어느 송신 코일로부터 수신된 신호인지를 식별할 수 있으며, 식별된 송신 코일에 상응하는 소정 송신 코일 식별자를 제어부(240)에 제공할 수도 있다. In addition, the demodulator 232 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 240 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
일 예로, 무선전력송신기(200)는 무선 전력 전송에 사용되는 동일한 주파수를 이용하여 무선전력수신기와 통신을 수행하는 인밴드(In-Band) 통신을 통해 신호 세기 지시자를 획득할 수 있다.For example, the wireless power transmitter 200 may obtain a signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
또한, 무선전력송신기(200)는 송신 코일(222)을 이용하여 무선 전력을 송출할 수 있을 뿐만 아니라 송신 코일(222)을 통해 무선전력수신기와 각종 정보를 교환할 수도 있다. 다른 일 예로, 무선전력송신기(200)는 송신 코일(222)-즉, 제1 내지 제n 송신 코일)에 각각 대응되는 별도의 코일을 추가로 구비하고, 구비된 별도의 코일을 이용하여 무선전력수신기와 인밴드 통신을 수행할 수도 있음을 주의해야 한다.In addition, the wireless power transmitter 200 may transmit wireless power using the transmission coil 222, and may also exchange various information with the wireless power receiver through the transmission coil 222. As another example, the wireless power transmitter 200 further includes a separate coil corresponding to each of the transmission coils 222 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
이상이 도 3의 설명에서는 무선전력송신기(200)와 무선전력수신기가 인밴드 통신을 수행하는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 무선 전력 신호 전송에 사용되는 주파수 대역과 상이한 주파수 대역을 통해 근거리 양방향 통신을 수행할 수 있다. 일 예로, 근거리 양방향 통신은 저전력 블루투스 통신, RFID 통신, UWB 통신, 지그비 통신 중 어느 하나일 수 있다.In the description of FIG. 3, the wireless power transmitter 200 and the wireless power receiver perform in-band communication by way of example. However, this is only one embodiment, and is a frequency band used for wireless power signal transmission. Short-range bidirectional communication may be performed through a frequency band different from that of FIG. For example, the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
<무선전력수신기><Wireless Power Receiver>
도 4은 도 3에 따른 무선전력송신기와 연동되는 무선전력수신기의 구조를 설명하기 위한 블록도이다.4 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 3.
도 4을 참조하면, 무선전력수신기(300)는 수신코일(310), 정류기(320), 직류/직류 변환기(DC/DC Converter, 330), 부하(340), 통신부(360), 주제어부(370)를 포함하여 구성될 수 있다. 여기서, 통신부(360)는 복조부(361) 및 변조부(362) 중 적어도 하나를 포함하여 구성될 수 있다. Referring to FIG. 4, the wireless power receiver 300 includes a receiving coil 310, a rectifier 320, a DC / DC converter 330, a load 340, a communication unit 360, and a main control unit ( 370 may be configured. Here, the communicator 360 may include at least one of a demodulator 361 and a modulator 362.
상기한 도 4의 예에 도시된 무선전력수신기(300)는 인밴드 통신을 통해 무선전력송신기와 정보를 교환할 수 있는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 다른 일 실시예에 따른 통신부(360)는 무선 전력 신호 전송에 사용되는 주파수 대역과는 상이한 주파수 대역을 통해 근거리 양방향 통신을 제공할 수도 있다. Although the wireless power receiver 300 illustrated in the example of FIG. 4 is illustrated as being capable of exchanging information with the wireless power transmitter through in-band communication, this is only one embodiment, and in another embodiment. The communication unit 360 may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
수신코일(310)을 통해 수신되는 AC 전력은 정류부(320)에 전달할 수 있다. 정류기(320)는 AC 전력을 DC 전력으로 변환하여 직류/직류 변환기(330)에 전송할 수 있다. 직류/직류 변환기(330)는 정류기 출력 DC 전력의 세기를 부하(340)에 의해 요구되는 특정 세기로 변환한 후 부하(340)에 전달할 수 있다. 또한 수신코일(310)은 복수의 수신코일(미도시)-즉, 제1 내지 제n 수신코일-을 포함하여 구성될 수 있다. 일 실시예에 따른 각각의 수신코일(미도시)에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있고, 다른 일 실시예는 LC 공진 특성을 수신코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 수신코일 별 공진주파수를 상이하게 설정할 수도 있다.The AC power received through the receiving coil 310 may be transmitted to the rectifier 320. The rectifier 320 may convert AC power into DC power and transmit the DC power to the DC / DC converter 330. The DC / DC converter 330 may convert the strength of the rectifier output DC power into a specific intensity required by the load 340 and then transmit the converted power to the load 340. In addition, the receiving coil 310 may be configured to include a plurality of receiving coils (not shown), that is, the first to n-th receiving coil. Frequency of AC power delivered to each receiving coil (not shown) according to an embodiment may be different from each other, and another embodiment is a predetermined frequency controller with a function to adjust the LC resonance characteristics differently for each receiving coil It is also possible to set different resonant frequency for each receiving coil by using a.
센싱부(350)는 정류기(320) 출력 DC 전력의 세기를 측정하고, 이를 주제어부(370)에 제공할 수 있다. 또는, 센싱부(350)는 무선 전력 수신에 따라 수신코일(310)에 인가되는 전류의 세기를 측정하고, 측정 결과를 주제어부(370)에 전송할 수도 있다. The sensing unit 350 may measure the intensity of the rectifier 320 output DC power and provide the same to the main controller 370. Alternatively, the sensing unit 350 may measure the strength of the current applied to the receiving coil 310 according to the wireless power reception, and transmit the measurement result to the main control unit 370.
일 예로, 센싱부(350)는 무선전력수신기(300)의 내부 온도를 측정하고, 측정된 온도 값을 주제어부(370)에 제공할 수도 있다. For example, the sensing unit 350 may measure the internal temperature of the wireless power receiver 300 and provide the measured temperature value to the main controller 370.
일 예로, 주제어부(370)는 측정된 정류기 출력 DC 전력의 세기가 소정 기준치와 비교하여 과전압 발생 여부를 판단할 수 있다. 판단 결과, 과전압이 발생된 경우, 과전압이 발생되었음을 알리는 소정 패킷을 생성하여 변조부(362)에 전송할 수 있다. 여기서, 변조부(362)에 의해 변조된 신호는 수신코일(310) 또는 별도의 코일(미도시)을 통해 무선전력송신기에 전송될 수 있다. 또한, 주제어부(370)는 정류기 출력 DC 전력의 세기가 소정 기준치 이상인 경우, 감지 신호가 수신된 것으로 판단할 수 있으며, 감지 신호 수신 시, 해당 감지 신호에 대응되는 신호 세기 지시자가 변조부(362)를 통해 무선전력송신기에 전송될 수 있도록 제어할 수 있다. 다른 일 예로, 복조부(361)는 수신코일(310)과 정류기(320) 사이의 AC 전력 신호 또는 정류기(320) 출력 DC 전력 신호를 복조하여 감지 신호의 수신 여부를 식별한 후 식별 결과를 주제어부(370)에 제공할 수 있다. 주제어부(370)는 감지 신호에 대응되는 신호 세기 지시자가 변조부(362)를 통해 전송될 수 있도록 제어할 수 있다.As an example, the main controller 370 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 362. Here, the signal modulated by the modulator 362 may be transmitted to the wireless power transmitter through the receiving coil 310 or a separate coil (not shown). In addition, the main controller 370 may determine that the sensing signal is received when the intensity of the rectifier output DC power is greater than or equal to a predetermined reference value. When the sensing signal is received, a signal strength indicator corresponding to the sensing signal may be modulated by the modulator 362. Can be transmitted to the wireless power transmitter. As another example, the demodulator 361 demodulates an AC power signal or a rectifier 320 output DC power signal between the receiving coil 310 and the rectifier 320 to identify whether a detection signal is received, and then, the main subject of the identification result. The unit 370 may be provided. The main controller 370 may control a signal strength indicator corresponding to the sensing signal to be transmitted through the modulator 362.
도 5는 실시예에 따른 무선전력송신기의 분해사시도이다.5 is an exploded perspective view of a wireless power transmitter according to an embodiment.
실시예에 따른 무선전력송신기는 도 2에 도시된 무선전력송신기(10)이나 도 3에 도시된 무선전력송신기(200) 일 수 있다.The wireless power transmitter according to the embodiment may be the wireless power transmitter 10 shown in FIG. 2 or the wireless power transmitter 200 shown in FIG. 3.
도 5를 참조하면, 실시예에 따른 무선전력송신기는 제1 브라켓(400), 제1 기판(500), 제2 브라켓(600), 차폐재(605), 송신코일(610) 및 제2 기판(700)을 포함하여 구성될 수 있다. 상술한 무선전력송신기의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다.Referring to FIG. 5, the wireless power transmitter according to the embodiment may include a first bracket 400, a first substrate 500, a second bracket 600, a shielding material 605, a transmission coil 610, and a second substrate ( 700). It should be noted that the above-described configuration of the wireless power transmitter is not necessarily an essential configuration, and may include more or fewer components.
제1 및 제2 기판(500, 700)은 인쇄회로기판(PCB) 또는 플렉서블 인쇄회로기판(FPCB)일 수 있지만, 이에 대해서는 한정하지 않는다. The first and second substrates 500 and 700 may be printed circuit boards (PCBs) or flexible printed circuit boards (FPCBs), but are not limited thereto.
제1 브라켓(400)은 제2 브라켓(600)과 체결될 수 있다. 즉, 나사와 같은 볼트류를 이용하여 제1 브라켓(400)과 제2 브라켓(600)이 체결될 수 있다.The first bracket 400 may be fastened to the second bracket 600. That is, the first bracket 400 and the second bracket 600 may be fastened using bolts such as screws.
제1 기판(500)은 제1 브라켓(400) 상에 위치될 수 있다. 제1 기판(500)은 제1 브라켓(400) 및/또는 제2 브라켓(600)에 체결될 수 있다. 예컨대, 나사가 제1 브라켓(400)과 제1 기판(500)을 관통하여 제2 브라켓(600)에 체결될 수 있다. The first substrate 500 may be located on the first bracket 400. The first substrate 500 may be fastened to the first bracket 400 and / or the second bracket 600. For example, a screw may be fastened to the second bracket 600 by passing through the first bracket 400 and the first substrate 500.
제1 기판(500)의 하면에는 송신코일(610)을 구동하거나 제어하기 위한 각 종 회로부가 실장될 수 있다. 예컨대, 회로부로는 도 3에 도시된 다중화기(221), 무선충전통신부(230), 타이머(255), 센싱부(250), 제어부(240)가 있고, 도 4에 도시된 무선충전통신부(360), 주제어부(370), 센싱부(350)가 있지만, 이에 대해서는 한정하지 않는다. Various circuit parts for driving or controlling the transmission coil 610 may be mounted on the bottom surface of the first substrate 500. For example, the circuit unit includes a multiplexer 221 shown in FIG. 3, a wireless charging communication unit 230, a timer 255, a sensing unit 250, a control unit 240, and a wireless charging communication unit shown in FIG. 4 ( 360, the main control unit 370, and the sensing unit 350 are not limited thereto.
제1 기판(500)은 리지드(rigid)한 사각 형상을 가질 수 있지만, 이에 대해서는 한정하지 않는다. 따라서, 제1 기판(500)은 상면에 배치되는 차폐재(605), 송신코일(610) 등을 지지할 수 있다. 또한, 제1 기판(500)의 면적은 송신코일(610)의 면적, 차폐재(605)의 면적 보다 클 수 있다. 제1 기판(500)의 일측에는 단자부(660)를 포함할 수 있다. 단자부를 이용하여 제1 기판(500)의 회로부는 송신코일(610) 및 제2 기판(700)의 회로부에 전기적으로 접속될 수 있다. 단자부는 복수의 핀이나 패드로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. The first substrate 500 may have a rigid rectangular shape, but is not limited thereto. Therefore, the first substrate 500 may support the shielding material 605, the transmission coil 610, and the like disposed on the upper surface. In addition, an area of the first substrate 500 may be larger than an area of the transmission coil 610 and an area of the shielding material 605. One side of the first substrate 500 may include a terminal unit 660. The circuit part of the first substrate 500 may be electrically connected to the circuit parts of the transmission coil 610 and the second substrate 700 by using the terminal part. The terminal portion may be formed of a plurality of pins or pads, but is not limited thereto.
차폐재(605)가 제1 기판(500)의 상면 상에 배치될 수 있다. The shield 605 may be disposed on the top surface of the first substrate 500.
구체적으로, 차폐재(605)가 제1 기판(500)의 상면에 제2 기판(700)의 개구부(601) 내에 배치될 수 있다. 다른 예로, 차폐재(605)가 제2 기판(700)의 아래 그리고 제1 기판(500)의 상부에 배치될 수 있다. 이러한 경우, 차폐재(605)의 면적은 제2 기판(700)의 개구부(601)의 면적보다 클 수 있다. 따라서, 차폐재(605)의 에지 영역은 제2 기판(700)의 프레임(603)과 중첩될 수 있다. 또 다른 예로, 차폐재(605)가 제2 기판(700)의 상부에 배치될 수 있다. 이러한 경우, 차폐재(605)의 면적은 제2 기판(700)의 개구부(601)의 면적보다 클 수 있다. 따라서, 차폐재(605)의 에지 영역은 제2 기판(700)의 프레임(603)과 중첩될 수 있다.In detail, the shielding material 605 may be disposed in the opening 601 of the second substrate 700 on the upper surface of the first substrate 500. As another example, the shielding material 605 may be disposed under the second substrate 700 and over the first substrate 500. In this case, the area of the shielding material 605 may be larger than the area of the opening 601 of the second substrate 700. Thus, the edge region of the shield 605 may overlap the frame 603 of the second substrate 700. As another example, the shielding material 605 may be disposed on the second substrate 700. In this case, the area of the shielding material 605 may be larger than the area of the opening 601 of the second substrate 700. Thus, the edge region of the shield 605 may overlap the frame 603 of the second substrate 700.
송신코일(610)의 자기장을 충분히 차폐하기 위해 차폐재(605)의 면적은 송신코일(610)의 면적보다 클 수 있다. In order to sufficiently shield the magnetic field of the transmission coil 610, the area of the shielding material 605 may be larger than that of the transmission coil 610.
차폐재(605) 상에 송신코일(610)이 배치될 수 있다. 송신코일(610)은 하나 이상의 송신코일(620 내지 640)을 포함할 수 있다. 하나 이상의 송신코일(620 내지 640)은 무선전력송신기의 하나 이상의 송신코일이거나 무선전력수신기의 하나 이상의 수신코일일 수 있다. 또한, 송신코일(610)이 복수일 경우, 각각의 송신코일(620 내지 640)은 동일한 턴 수로 감겨있을 수 있다. 하지만, 이에 제한되는 것은 아니고 서로 다른 턴 수로 감겨 있을 수 있다. 또한, 복수의 송신코일(620 내지 640)은 동일한 인덕턴스를 구비할 수 있다. 하지만, 이에 제한되는 것은 아니고 서로 다른 인덕턴스를 구비할 수 있다. 또한, 복수의 송신코일(620 내지 640)은 하나 이상의 층으로 배치될 수 있다. 보다 구체적으로, 복수의 송신코일(620 내지 640)은 제1 내지 제3 송신코일(620 내지 640)을 포함할 수 있다. 제2 송신코일(630)과 제3 송신코일(640)은 동일한 층 즉, 제1 층에 서로 나란하게 배치될 수 있다. 이러한 경우, 제1 송신코일(620)은 제1 층과 상이한 제2 층에 배치될 수 있다. 예컨대, 제1 송신코일(620)의 일부 영역은 제2 송신코일(630)의 일부 영역과 중첩되고 다른 영역은 제3 송신코일(640)의 일부 영역과 중첩되도록 배치될 수 있지만, 이에 대해서는 한정하지 않는다. The transmission coil 610 may be disposed on the shield 605. The transmission coil 610 may include one or more transmission coils 620 to 640. The one or more transmission coils 620 to 640 may be one or more transmission coils of the wireless power transmitter or one or more reception coils of the wireless power receiver. In addition, when there are a plurality of transmission coils 610, each of the transmission coils 620 to 640 may be wound by the same number of turns. However, the present invention is not limited thereto and may be wound around different turns. In addition, the plurality of transmission coils 620 to 640 may have the same inductance. However, the present invention is not limited thereto and may have different inductances. In addition, the plurality of transmission coils 620 to 640 may be arranged in one or more layers. More specifically, the plurality of transmission coils 620 to 640 may include first to third transmission coils 620 to 640. The second transmission coil 630 and the third transmission coil 640 may be arranged parallel to each other on the same layer, that is, the first layer. In this case, the first transmission coil 620 may be disposed on a second layer different from the first layer. For example, some areas of the first transmission coil 620 may be disposed to overlap some areas of the second transmission coil 630 and other areas overlap with some areas of the third transmission coil 640. I never do that.
이와 같이, 복수의 송신코일(620 내지 640)을 서로 다른 층에 배치하여 무선전력을 효율적으로 전달할 수 있도록 충전영역을 확장시킬 수 있다. 특히, 제1 송신코일(620)은 기판(400)과 동일한 층에 배치될 수 있다. As such, the plurality of transmission coils 620 to 640 may be disposed on different layers to expand the charging region to efficiently transmit wireless power. In particular, the first transmission coil 620 may be disposed on the same layer as the substrate 400.
송신코일(610)은 외면에 절연 물질로 코팅되거나 절연층으로 피복될 수 있다. The transmission coil 610 may be coated with an insulating material or coated with an insulating layer on the outer surface.
차폐재(605)의 면적은 제1 내지 제3 송신코일(620 내지 640)의 배치 점유 면적보다 클 수 있다. 배치 점유 면적이라 함은 제1 내지 제3 송신코일(620 내지 640)이 차지하고 있는 총 면적일 수 있다. 따라서, 제1 내지 제3 송신코일(620 내지 640)에 의해 발생된 전자기장이 차폐재(605)에 의해 차폐되어 제1 기판(500)에 실장된 회로부나 외부에 영향을 주지 않을 수 있다. The area of the shielding material 605 may be larger than the area occupied by the first to third transmission coils 620 to 640. The batch occupancy area may be a total area occupied by the first to third transmission coils 620 to 640. Therefore, the electromagnetic fields generated by the first to third transmission coils 620 to 640 may be shielded by the shielding material 605 so as not to affect the circuit part or the outside mounted on the first substrate 500.
차폐재(605)는 송신코일(610)의 하면에 배치될 수 있다. 차폐재(605)의 상면은 송신코일(610)의 하면, 구체적으로 제2 및 제3 송신코일(630, 640)의 하면에 접할 수 있지만, 이에 대해서는 한정하지 않는다. The shield 605 may be disposed on the bottom surface of the transmission coil 610. The upper surface of the shielding material 605 may be in contact with the lower surface of the transmission coil 610, specifically, the lower surfaces of the second and third transmission coils 630 and 640, but is not limited thereto.
예컨대, 차폐재(605)의 상면과 제2 및 제3 송신코일(630, 640)의 하면 사이에는 접착제 또는 접착부재(미도시)가 배치되어 차폐재(605)에 제2 및 제3 송신코일(630, 640)이 고정될 수 있다. 차폐재(605)는 상부에 배치된 송신코일(610)에서 발생된 무선전력을 충전 방향으로 가이드 할 수 있고, 제1 기판(500)의 아래에 실장되는 각종 회로부를 전자기장으로부터 보호할 수 있다. For example, an adhesive or an adhesive member (not shown) is disposed between the upper surface of the shield 605 and the lower surfaces of the second and third transmission coils 630 and 640 so that the second and third transmission coils 630 may be disposed on the shield 605. , 640 may be fixed. The shielding material 605 may guide the wireless power generated from the transmission coil 610 disposed above, in the charging direction, and may protect various circuit parts mounted below the first substrate 500 from electromagnetic fields.
송신코일(610) 또는 제2 브라켓(600) 상에는 제2 기판(700)이 배치될 수 있다. 제2 기판(700)은 나사와 같은 볼트류를 이용하여 제2 브라켓(600)에 체결될 수 있다. The second substrate 700 may be disposed on the transmission coil 610 or the second bracket 600. The second substrate 700 may be fastened to the second bracket 600 by using bolts such as screws.
예컨대, 송신코일(610)이 제1 층에 배치되는 제2 및 제3 송신코일(630, 640)과 제1 층 위의 제2 층에 제1 송신코일(620)이 배치되는 경우, 제1 층과 제2 층의 전체 두께가 제2 브라켓(600)의 두께보다 클 수 있다. 이를 위해, 제2 브라켓(600)의 양단의 일부 영역은 상부로 돌출된 제1 및 제2 돌출부(602, 604)를 가질 수 있다. 따라서, 제2 기판(700)은 제2 브라켓(600)의 양단에 돌출된 제1 및 제2 돌출부에 체결됨으로써, 적어도 제1 송신코일(620)의 상면이 제2 기판(700)의 하면과 접촉되지 않게 되어, 제2 기판(700)의 하면과의 접촉으로 인한 제1 송신코일(620)의 파손을 방지할 수 있다. For example, when the transmission coil 610 is disposed on the first layer and the second and third transmission coils 630 and 640 and the first transmission coil 620 is disposed on the second layer above the first layer, The overall thickness of the layer and the second layer may be greater than the thickness of the second bracket 600. To this end, some regions of both ends of the second bracket 600 may have first and second protrusions 602 and 604 protruding upward. Accordingly, the second substrate 700 is fastened to the first and second protrusions protruding from both ends of the second bracket 600, so that at least an upper surface of the first transmission coil 620 is lower than the lower surface of the second substrate 700. Since the first transmission coil 620 is not damaged due to contact with the lower surface of the second substrate 700, the first transmission coil 620 may be prevented from being contacted.
제2 기판(700)의 상면에는 예컨대, 도 3 또는 도 4에 도시된 근거리통신부(270, 380)과 같은 회로부가 실장될 수 있다. 또한, 제2 기판(700)의 상면에는 무선통신코일(280, 390)이 패턴으로 배치될 수 있다. 무선통신코일(280, 390)은 적어도 1회 이상의 턴수를 가질 수 있다. 도시되지 않았지만, 무선통신코일(280, 390)의 양단은 비아홀을 통해 근거리통신부(270, 380)와 같은 회로부와 전기적으로 접속될 수 있다. 또한, 제2 기판(700)의 회로부는 예컨대, 케이블이나 버스라인을 이용하여 제1 기판(500)에 실장된 제어부(도 3의 240)나 주제어부(도 4의 370)에 전기적으로 접속될 수 있다. For example, a circuit unit such as the near field communication units 270 and 380 illustrated in FIG. 3 or 4 may be mounted on the upper surface of the second substrate 700. In addition, wireless communication coils 280 and 390 may be disposed in a pattern on the upper surface of the second substrate 700. The wireless communication coils 280 and 390 may have at least one turn. Although not shown, both ends of the wireless communication coils 280 and 390 may be electrically connected to circuit units such as the short range communication units 270 and 380 through via holes. In addition, the circuit portion of the second substrate 700 may be electrically connected to the controller (240 of FIG. 3) or the main controller (370 of FIG. 4) mounted on the first substrate 500 using, for example, a cable or a bus line. Can be.
도 6는 실시예에 따른 무선전력수신기를 도시한다. 6 shows a wireless power receiver according to an embodiment.
실시예에 따른 무선전력수신기(800)는 도 2에 도시된 무선전력수신기(20)이거나 도 4에 도시된 무선전력수신기(300)일 수 있다. 도 6에 도시된 무선전력수신기는 멀티 모드 안테나 모듈로 지칭될 수 있다. The wireless power receiver 800 according to the embodiment may be the wireless power receiver 20 illustrated in FIG. 2 or the wireless power receiver 300 illustrated in FIG. 4. The wireless power receiver shown in FIG. 6 may be referred to as a multi-mode antenna module.
도 6를 참조하면, 실시예에 따른 무선전력수신기(800)은 인쇄 회로 기판(860), 제1 안테나(810), 제2 안테나(820), 제1 연결 단자(840) 및 제2 연결 단자(850)를 포함하여 구성될 수 있다. 제1 안테나(810)는 실시예의 무선충전코일일 수 있다. 제1 안테나(810)의 동작주파수는 대략 110 KHz 내지 대략 205 KHz일 수 있다.Referring to FIG. 6, the wireless power receiver 800 according to the embodiment includes a printed circuit board 860, a first antenna 810, a second antenna 820, a first connection terminal 840, and a second connection terminal. 850 may be configured. The first antenna 810 may be a wireless charging coil of the embodiment. The operating frequency of the first antenna 810 may be about 110 KHz to about 205 KHz.
상세하게, 실시예에 따른 무선전력수신기(800)은 인쇄 회로 기판(860), 무선 충전을 위해 인쇄 회로 기판(860)의 중앙 영역에 패턴 인쇄되어 배치되는 제1 안테나(810), 제1 근거리 무선 통신을 위해 제1 안테나(810)의 외곽에 패턴 인쇄되어 배치되는 제2 안테나(820), 제2 근거리 무선 통신을 위해 제2 안테나(820)와 중첩되지 않도록 제2 안테나(820)의 외곽에 패턴 인쇄되어 배치되는 제3 안테나(830), 제1 안테나(810)에 상응하는 제1 연결 패턴의 양단을 연결하기 위한 제1 연결 단자(840) 및 제2 안테나(820) 및 제3 안테나(830)에 각각 상응하는 제2 내지 제3 연결 패턴의 양단을 연결하기 위한 제2 연결 단자(850)를 포함하여 구성될 수 있다.In detail, the wireless power receiver 800 according to the embodiment includes a printed circuit board 860, a first antenna 810 disposed in a patterned area in a central area of the printed circuit board 860, and a first local area for wireless charging. The second antenna 820 is pattern-printed and disposed on the outer side of the first antenna 810 for wireless communication, and the outer side of the second antenna 820 so as not to overlap the second antenna 820 for the second short range wireless communication. The third antenna 830 and the first connection terminal 840 and the second antenna 820 and the third antenna for connecting both ends of the first connection pattern corresponding to the first antenna 810 are pattern-printed on The second connection terminal 850 may be configured to connect both ends of the second to third connection patterns respectively corresponding to 830.
여기서, 제1 연결 단자(840)와 제2 연결 단자(850)가 인쇄 회로 기판(850)에 물리적으로 분리 배치될 수 있다. 일 예로, 제1 연결 패턴이 제2 안테나(820) 및 제3 안테나(830)에 중첩되지 않도록 제1 연결 단자(840)와 제2 연결 단자(850)가 인쇄 회로 기판(860)상에서 물리적으로 분리 배치될 수 있다.Here, the first connection terminal 840 and the second connection terminal 850 may be physically disposed on the printed circuit board 850. For example, the first connection terminal 840 and the second connection terminal 850 may be physically formed on the printed circuit board 860 so that the first connection pattern does not overlap the second antenna 820 and the third antenna 830. Can be arranged separately.
각 안테나의 연결 패턴은 해당 안테나의 양단에서 연장되는 리드선으로 형성되거나 해당 안테나의 특정 위치에서 분기되어 형성될 수 있다. 여기서, 각 안테나의 연결 패턴 및 연결 단자가 배치되는 위치는 연결 패턴의 길이가 최소화되도록 배치될 수 있다.The connection pattern of each antenna may be formed by lead wires extending from both ends of the antenna, or branched at a specific position of the antenna. Here, the position where the connection pattern and the connection terminal of each antenna are arranged may be arranged to minimize the length of the connection pattern.
일 예로, 제1 근거리 무선 통신은 마그네틱 보안 전송(MST: Magnetic Secure Transmission)이고, 제2 근거리 무선 통신은 NFC(Near Field Communication)일 수 있다. 여기서, MST에서의 동작주파수는 예컨대, 3.24MHz이고, NFC에서의 동작주파수는 예컨대, 13.56MHz일 수 있다. For example, the first short range wireless communication may be Magnetic Secure Transmission (MST), and the second short range wireless communication may be Near Field Communication (NFC). Here, the operating frequency in the MST is, for example, 3.24MHz, the operating frequency in the NFC may be, for example, 13.56MHz.
다른 일 예로, 제1 근거리 무선 통신은 NFC이고, 제2 근거리 무선 통신은 MST일 수도 있다.As another example, the first short range wireless communication may be NFC, and the second short range wireless communication may be MST.
또 다른 일 예로, 제1 근거리 무선 통신 및 제2 근거리 무선 통신은 각각 NFC, RFID 통신, 블루투스 통신, UWB(Ultra Wideband) 통신, MST 통신, 애플페이 통신, 구글페이 통신 중 어느 하나에 대응될 수도 있다.As another example, the first short range wireless communication and the second short range wireless communication may correspond to any one of NFC, RFID communication, Bluetooth communication, Ultra Wideband (UWB) communication, MST communication, Apple Pay communication, and Google Pay communication, respectively. have.
제2 안테나(320)와 제3 안테나(330) 사이의 이격 거리가 최소 1 mm 이상이 유지되도록 인쇄 회로 기판(360)에 해당 안테나의 패턴이 배치될 수 있다. 제2 안테나(320)와 제3 안테나(330)의 사이의 이격 거리에 대한 편차가 소정 제1 기준치 이하가 유지되도록 제2 안테나(320) 및 제3 안테나(330)가 인쇄 회로 기판(360)에 배치될 수 있다.The pattern of the antenna may be disposed on the printed circuit board 360 such that the separation distance between the second antenna 320 and the third antenna 330 is maintained at least 1 mm. The second antenna 320 and the third antenna 330 are the printed circuit board 360 so that the deviation of the separation distance between the second antenna 320 and the third antenna 330 is maintained below a predetermined first reference value. Can be placed in.
또한, 제1 안테나(310)와 제2 안테나(320) 사이의 이격 거리는 최소 0.5 mm 이상이 유지되도록 인쇄 회로 기판(360)에 해당 안테나의 패턴이 배치될 수 있다. 제1 안테나(310)와 제2 안테나(320)의 사이의 이격 거리에 대한 편차가 소정 제2 기준치 이하가 유지되도록 제1 안테나(310) 및 제2 안테나(320)가 인쇄 회로 기판(360)에 배치될 수 있다.In addition, a pattern of the corresponding antenna may be disposed on the printed circuit board 360 so that the separation distance between the first antenna 310 and the second antenna 320 is maintained at least 0.5 mm. The first antenna 310 and the second antenna 320 are printed circuit board 360 so that the deviation of the separation distance between the first antenna 310 and the second antenna 320 is maintained below a predetermined second reference value. Can be placed in.
일 예로, 제1 안테나(310)는 인쇄 회로 기판(360)의 양면에 각각 패턴 인쇄될 수 있으며, 인쇄 회로 기판(360)에 배치된 관통 구멍(미도시)을 통해 양면에 인쇄된 패턴이 상호 도통될 수 있다. 이를 통해, 제1 안테나의 저항 성분이 감소될 수 있으며, 그에 따라 해당 안테나의 수신 감도가 향상될 수 있다. For example, the first antenna 310 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through the through holes (not shown) disposed on the printed circuit board 360 may mutually be printed. Can be conductive. Through this, the resistance component of the first antenna can be reduced, and thus the reception sensitivity of the antenna can be improved.
다른 일 예로, 제2 안테나(320)는 인쇄 회로 기판(360)의 양면에 각각 패턴 인쇄될 수 있으며, 인쇄 회로 기판(360)에 배치된 관통 구멍(미도시)을 통해 양면에 인쇄된 패턴이 상호 도통될 수 있다. 이를 통해, 제2 안테나의 저항 성분이 감소될 수 있으며, 그에 따라 해당 안테나의 수신 감도가 향상될 수 있다.As another example, the second antenna 320 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through through holes (not shown) disposed in the printed circuit board 360 may be formed. May be conductive to each other. Through this, the resistance component of the second antenna can be reduced, and thus the reception sensitivity of the corresponding antenna can be improved.
또 다른 일 예로, 제3 안테나(330)는 인쇄 회로 기판(360)의 양면에 각각 패턴 인쇄될 수 있으며, 인쇄 회로 기판(360)에 배치된 관통 구멍(미도시)을 통해 양면에 인쇄된 패턴이 상호 도통될 수 있다. 이를 통해, 제3 안테나의 저항 성분이 감소될 수 있으며, 그에 따라 해당 안테나의 수신 감도가 향상될 수 있다.As another example, the third antenna 330 may be pattern printed on both sides of the printed circuit board 360, and the patterns printed on both sides through through holes (not shown) disposed in the printed circuit board 360. This can be mutually conductive. Through this, the resistance component of the third antenna can be reduced, and thus the reception sensitivity of the corresponding antenna can be improved.
또 다른 일 예로, 제1 안테나(310), 제2 안테나(320), 제3 안테나(330) 중 적어도 하나의 안테나가 인쇄 회로 기판(360)의 양면에 각각 패턴 인쇄될 수 있으며, 인쇄 회로 기판(360)에 배치된 관통 구멍(미도시)을 통해 양면에 인쇄된 해당 안테나 패턴이 상호 도통될 수 있다. 이를 통해, 해당 안테나의 저항 성분이 감소될 수 있으며, 그에 따라 해당 안테나의 수신 감도가 향상될 수 있다.As another example, at least one of the first antenna 310, the second antenna 320, and the third antenna 330 may be pattern printed on both surfaces of the printed circuit board 360, respectively. Corresponding antenna patterns printed on both sides may be connected to each other through a through hole (not shown) disposed at 360. Through this, the resistance component of the antenna can be reduced, and thus the reception sensitivity of the antenna can be improved.
도 6에 도시된 바와 같이, 제1 안테나(310)는 소정 내직경을 가지는 원형 패턴으로 인쇄 회로 기판(360)에 인쇄될 수 있으며, 제1 연결 단자는 내직경 외부에 배치될 수 있으나, 이는 하나의 실시예에 불과하다.As shown in FIG. 6, the first antenna 310 may be printed on the printed circuit board 360 in a circular pattern having a predetermined inner diameter, and the first connection terminal may be disposed outside the inner diameter. It is only one embodiment.
이상에서 설명된 무선전력송신기의 송신코일(도 5의 610) 및/또는 무선전력수신기의 수신코일(도 6의 810)은 이하에서 설명되는 무선충전코일로 지칭될 수 있다. The transmission coil 610 of FIG. 5 and / or the reception coil 810 of FIG. 6 of the wireless power transmitter described above may be referred to as a wireless charging coil described below.
이하에서는 일정 수준의 직류저항(Rdc)을 유지하여 교류저항(Rac)을 커지지 않도록 하기 위한 무선충전코일모듈을 설명한다.Hereinafter, a wireless charging coil module for maintaining a predetermined level of DC resistance (R dc ) so as not to increase the AC resistance (R ac ) will be described.
표피효과와 근접효과의 영향을 최소화 하기 위해서는 코일의 반경이 표피깊이(skin depth)과 같거나 작아야 한다. 표피깊이(δ)는 수학식 3으로 나타낼 수 있다. To minimize the effects of skin and proximity effects, the radius of the coil should be less than or equal to the skin depth. The skin depth δ can be represented by Equation 3.
Figure PCTKR2019006173-appb-M000003
Figure PCTKR2019006173-appb-M000003
δ는 표피깊이를 나타내고, μ는 투자율을 나타내며, σ는 도전율을 나타내며, f는 동작주파수를 나타낼 수 있다.δ represents the skin depth, μ represents the permeability, σ represents the conductivity, and f may represent the operating frequency.
따라서, 코일의 직경이 2δ 이하인 경우, 도1a 및 도 1b에 도시된 코일 내부의 전체 영역이 균일한 자속밀도를 가지므로, 수학식 2에 나타내어진 표피효과로 인한 저항성분(Ys)과 근접효과로 인한 저항성분(Yp)을 실질적으로 0으로 할 수 있다. Therefore, when the diameter of the coil is 2δ or less, since the entire region inside the coil shown in FIGS. 1A and 1B has a uniform magnetic flux density, the resistance component (Ys) and the proximity effect due to the skin effect shown in Equation 2 are obtained. The resistive component Yp due to can be made substantially zero.
하지만, 코일의 직경이 2δ 이하인 경우, 코일의 단면적이 작아지므로, 기본적으로 직류저항이 커지는 문제가 있다. 직류저항(Rdc)은 수학식 4와 같이 나타낼 수 있다.However, when the diameter of the coil is 2δ or less, since the cross-sectional area of the coil is small, there is a problem that the DC resistance is large. DC resistance (R dc ) can be represented as shown in Equation 4.
Figure PCTKR2019006173-appb-M000004
Figure PCTKR2019006173-appb-M000004
ρ는 저항률을 나타내고, l은 코일의 길이를 나타내며, S는 코일의 단면적을 나타낸다. ρ represents the resistivity, l represents the length of the coil, and S represents the cross-sectional area of the coil.
수학식 4로부터 코일의 단면적(S)이 작아질수록 직류저항(Rdc)이 커진다. 수학식 4로부터 코일의 길이(l)이 길어질수록 직류저항(Rdc)이 커진다.As the cross-sectional area S of the coil decreases from Equation 4, the DC resistance R dc increases. As the length (l) of the coil increases from Equation 4, the DC resistance R dc increases.
수학식 4로부터, 코일의 직경이 2δ 이하로 하여 표피효과로 인한 저항성분(Ys)과 근접효과로 인한 저항성분(Yp)을 실질적으로 0으로 하더라도 직류저항(Rdc) 자체가 일정 수준 이상으로 커지므로, 교류저항(Rac)은 직류저항(Rdc) 이상으로 커진다. From Equation 4, even if the coil diameter is less than or equal to 2δ, even if the resistance component Ys due to the skin effect and the resistance component Yp due to the proximity effect are substantially zero, the DC resistance R dc itself exceeds a certain level. Since it becomes large, the AC resistance R ac becomes larger than the DC resistance Rdc.
따라서, 일정 수준의 직류저항(Rdc)을 유지하면서도 교류저항(Rac)이 커지지 않도록 하기 위한 코일 설계가 절실히 요구된다.Therefore, there is an urgent need for a coil design to maintain a constant level of DC resistance R dc so as not to increase AC resistance R ac .
이하의 제1 내지 제5 실시예에 따른 무선충전코일모듈은 직류저항(Rdc)이 일정 수준으로 유지하면서도 교류저항(Rac)의 증가를 억제시킬 수 있다.The wireless charging coil module according to the first to fifth embodiments below can suppress the increase of the AC resistance (R ac ) while maintaining the DC resistance (R dc ) at a constant level.
<제1 실시예><First Embodiment>
도 7a는 제1 실시예에 따른 무선충전코일모듈을 도시한 평면도이고, 도 7b는 제1 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.7A is a plan view illustrating the wireless charging coil module according to the first embodiment, and FIG. 7B is a cross-sectional view illustrating the wireless charging coil module according to the first embodiment.
도 7a 및 도 7b를 참조하면, 제1 실시예에 따른 무선충전코일모듈(900)은 필름(901)을 제공할 수 있다. 필름(901)은 무선충전코일(903, 906)을 형성하기 위한 기판으로 작용할 수 있다. 또한, 무선충전코일(903, 906)을 보호하고 지지할 수 있다. 필름(901)은 두께가 얇고 유연한(flexible) 재질로 형성될 수 있다. 구체적으로, 필름(901)은 PI(polyimide)나 PET(Polyethylene terephthalate)일 수 있다. 7A and 7B, the wireless charging coil module 900 according to the first embodiment may provide a film 901. The film 901 may serve as a substrate for forming the wireless charging coils 903 and 906. In addition, the wireless charging coils 903 and 906 can be protected and supported. The film 901 may be formed of a thin material and a flexible material. In detail, the film 901 may be polyimide (PI) or polyethylene terephthalate (PET).
제1 실시예에 따른 무선충전코일모듈(900)은 차폐재(907)를 제공할 수 있다. 차폐재(907)는 무선충전코일(903, 906)의 전자기장을 차폐시킬 수 있다. 차폐재(907)는 금속 재질을 포함할 수 있다. 차폐재(907)는 예컨대, 페라이트(ferrite) 재질로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 차폐재(907)는 무선충전코일(903, 906)을 지지할 수 있다. 차폐재(907)의 면적은 무선충전코일(903, 906)의 면적보다 클 수 있다. The wireless charging coil module 900 according to the first embodiment may provide a shielding material 907. The shielding material 907 may shield the electromagnetic fields of the wireless charging coils 903 and 906. The shielding material 907 may include a metal material. The shielding material 907 may be made of, for example, a ferrite material, but is not limited thereto. The shield 907 may support the wireless charging coils 903 and 906. The area of the shielding material 907 may be larger than that of the wireless charging coils 903 and 906.
차폐재(907)는 필름(901)의 아래에 배치될 수 있다. 차폐재(907)는 접착재(미도시)를 이용하여 필름(901)에 부착될 수 있다. 접착재가 매우 얇기 때문에 차폐재(907)는 필름(901)의 하면에 접촉되는 것으로 간주될 수 있다. 접착재는 방열 성능과 절연 특성이 우수한 재질로 이루어질 수 있다. The shield 907 may be disposed under the film 901. The shield 907 may be attached to the film 901 using an adhesive (not shown). Since the adhesive is very thin, the shield 907 may be considered to be in contact with the bottom surface of the film 901. The adhesive may be made of a material having excellent heat dissipation performance and insulation properties.
제1 실시예에 따른 무선충전코일모듈(900)은 방열재(909)를 제공할 수 있다. 방열재(909)는 차폐재(907)의 아래에 배치될 수 있다. 방열재(909)는 접착재(미도시)를 이용하여 차폐재(907)에 부착될 수 있다. 방열재(909)는 차폐재(907)의 하면과 접촉될 수 있다. 방열재(909)는 금속 재질로 이루어질 수 있다. 예컨대, 방열재(909)는 구리(Cu) 을 포함하여 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. The wireless charging coil module 900 according to the first embodiment may provide a heat dissipation material 909. The heat dissipation material 909 may be disposed under the shielding material 907. The heat dissipation material 909 may be attached to the shielding material 907 using an adhesive (not shown). The heat dissipation material 909 may be in contact with the bottom surface of the shielding material 907. The heat dissipation material 909 may be made of a metal material. For example, the heat dissipation material 909 may be made of copper (Cu), but is not limited thereto.
도시되지 않았지만, 방열재(909)는 차폐재(907) 내부에 배치될 수도 있다. 이러한 경우, 방열재(909)는 플레이트 형상을 가지거나 방열 특성이 우수한 미립자(particles)나 비드(beads)일 수 있다.Although not shown, the heat dissipation material 909 may be disposed inside the shielding material 907. In this case, the heat dissipating material 909 may be particles or beads having a plate shape or excellent heat dissipation characteristics.
방열재(909)는 무선충전코일(903, 906)과 차폐재(907)를 지지할 수 있다. 방열재(909)는 무선충전코일(903, 906)에서 발생된 열을 외부로 방출시킬 수 있다. 방열재(909)의 두께가 두꺼울수록 방열 성능이 우수하지만, 두께에 비례하여 무선충전코일모듈(900)의 부피가 커지므로, 방열재(909)의 두께에 대한 최적화가 요구된다. 예컨대, 방열재(909)의 두께는 차폐재(907)의 두께에 비해 2배 내지 5배 두꺼울 수 있다. The heat dissipation material 909 may support the wireless charging coils 903 and 906 and the shielding material 907. The heat dissipation material 909 may discharge heat generated from the wireless charging coils 903 and 906 to the outside. The greater the thickness of the heat dissipating material 909, the better the heat dissipation performance. However, since the volume of the wireless charging coil module 900 increases in proportion to the thickness, optimization of the thickness of the heat dissipating material 909 is required. For example, the thickness of the heat dissipation material 909 may be 2 to 5 times thicker than the thickness of the shielding material 907.
방열재(909)는 무선충전코일모듈(900)의 발열 상태에 따라 선택적으로 채택될 수 있다. 예컨대, 무선충전코일모듈(900)의 발열이 거의 발생되지 않는 경우, 방열재(909)는 생략될 수 있다. The heat dissipation material 909 may be selectively adopted according to the heat generation state of the wireless charging coil module 900. For example, when heat generation of the wireless charging coil module 900 hardly occurs, the heat dissipation material 909 may be omitted.
제1 실시예에 따른 무선충전코일모듈(900)은 무선충전코일(903, 906)을 제공할 수 있다. 무선충전코일(903, 906)은 무선전력송신기로부터의 무선전력을 수신하기 위한 부재로서, 예컨대 도 6에 도시된 제1 안테나(810)일 수 있다.The wireless charging coil module 900 according to the first embodiment may provide the wireless charging coils 903 and 906. The wireless charging coils 903 and 906 are members for receiving wireless power from the wireless power transmitter, and may be, for example, the first antenna 810 shown in FIG. 6.
제1 실시예에서, 무선충전코일(903, 906)은 코일부(903)를 포함할 수 있다. 코일부(903)는 필름(901)의 상면에 배치될 수 있다. 도시되지 않았지만, 코일부(903)가 직접 차폐재(907)의 상면에 배치될 수도 있다.In the first embodiment, the wireless charging coils 903 and 906 may include a coil portion 903. The coil unit 903 may be disposed on an upper surface of the film 901. Although not shown, the coil 903 may be disposed directly on the upper surface of the shield 907.
코일부(903)는 나선형으로 권선된 코일패턴(904)를 포함할 수 있다. 코일패턴(904)은 복수의 권선라인(904_1 내지 904_13)을 포함할 수 있다. 도 7a 및 도 7b에는 설명의 편의를 위해 코일패턴(904)으로 13턴(turns)을 갖는 제1 내지 제13 권선라인(904_1 내지 904_13)이 도시되었다. 제1 실시예에 따른 코일부(903)는 13개 미만의 권선라인 또는 13개를 초과하는 권선라인을 포함할 수도 있다. The coil unit 903 may include a coil pattern 904 wound in a spiral shape. The coil pattern 904 may include a plurality of winding lines 904_1 to 904_13. 7A and 7B illustrate first to thirteenth winding lines 904_1 to 904_13 having 13 turns with the coil pattern 904 for convenience of description. The coil unit 903 according to the first embodiment may include less than 13 winding lines or more than 13 winding lines.
제1 실시예에 따른 코일부(903)에서, 인접하는 2개의 권선라인 사이의 간격(D1)은 1δ 이하일 수 있다. 인접하는 2개의 권선라인 사이의 간격(D1)은 200㎛ 이하일 수 있다. 인접하는 2개의 권선라인 사이의 간격(D1)은 150㎛ 이하일 수 있다.In the coil unit 903 according to the first embodiment, the distance D1 between two adjacent winding lines may be 1δ or less. An interval D1 between two adjacent winding lines may be 200 μm or less. An interval D1 between two adjacent winding lines may be 150 μm or less.
다만, 2개의 권선라인 사이의 간격을 줄이는 경우, 표피효과 및/또는 근접효과의 영향이 커질 수 있다. 종래에는 이러한 표피효과 및/또는 근접효과를 고려하여 2개의 권선라인 사이의 간격을 줄이는데 제한이 따랐다. 예를 들어, 공정 능력으로는 2 개의 권선라인 사이의 간격을 공정한계치인 150㎛까지 줄일 수 있음에도 불구하고, 표피효과 및/또는 근접효과로 인한 교류저항 증가로 인하여 350㎛ 이상으로 2개의 권선라인 사이를 설계하고 있다.However, if the distance between the two winding lines is reduced, the effect of the skin effect and / or proximity effect may be increased. In the past, limitations have been made in reducing the spacing between two winding lines in consideration of such skin and / or proximity effects. For example, although the process capability can reduce the distance between the two winding lines to 150 μm, the process limit, two winding lines above 350 μm due to the increase in the AC resistance due to the skin effect and / or the proximity effect. We are designing.
실시예에 따르면, 권선라인(904_1 내지 904_13)은 서로 간에 이격되어 배치될 수 있다. 권선라인(904_1 내지 904_13) 간의 간격(D1)은 공정 상 허용되는 최소 간격을 가질 수 있다. 예컨대, 권선라인(904_1 내지 904_13) 간의 간격(D1)은 압연강판의 식각 방식에 의한 공정 상의 한계로 대략 150㎛일 수 있다. 공정오차로 인하여 실시 예에 따른 권선라인(904_1 내지 904_13) 간의 간격(D1)은 150±50㎛일 수 있다. 공정오차로 인하여 실시 예에 따른 권선라인(904_1 내지 904_13) 간의 간격(D1)은 150±5㎛일 수 있다. 공정 능력이 향상될 경우에 실시 예에 따른 권선라인(904_1 내지 904_13) 간의 간격(D1)은 150㎛ 이하로도 가능하다.According to an embodiment, the winding lines 904_1 to 904_13 may be spaced apart from each other. The gap D1 between the winding lines 904_1 to 904_13 may have a minimum gap allowed in the process. For example, the distance D1 between the winding lines 904_1 to 904_13 may be approximately 150 μm due to a process limit due to the etching method of the rolled steel sheet. Due to the process error, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 ± 50 μm. Due to the process error, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 ± 5 μm. When the process capability is improved, the distance D1 between the winding lines 904_1 to 904_13 according to the embodiment may be 150 μm or less.
제1 실시예에 따르면, 권선라인(904_1 내지 904_13) 각각은 슬릿(911)에 의해 제1 도선(904a)와 제2 도선(904b)로 분리될 수 있다. 이러한 경우, 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 1δ이하일 수 있다. 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 150㎛이하일 수 있다. 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 120㎛이하일 수 있다.According to the first embodiment, each of the winding lines 904_1 to 904_13 may be separated into the first conductive line 904a and the second conductive line 904b by the slit 911. In this case, the thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 1 δ or less. The thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 150 μm or less. The thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 120 μm or less.
제1 실시예에 따른 코일패턴(904)은 압연강판의 식각 방식에 의한 공정 방법으로 형성될 수 있다. 이러한 공정 방법은 나중에 설명하기로 한다(도 14 내지 도 19 참조). 이러한 공정 방법을 의해 종래의 FPCB 타입의 코일패턴에 비해 훨씬 더 높이를 크게 형성하는 것이 가능하므로, 단면적이 크고 저항이 작은 코일을 만들 수 있다. 종래의 FPCB 타입의 코일패턴은 제작할 수 있는 코일 높이가 제한되어 저항이 크다. 종래의 FPCB 타입의 코일패턴은 일정 수준 이상의 저항을 확보하기 위하여 두 층의 코일을 양면으로 형성한다. 양면으로 코일을 형성한 경우, 공정이 복잡해지고 재료비가 상승하는 단점이 있다. The coil pattern 904 according to the first embodiment may be formed by a process method by an etching method of a rolled steel sheet. This process method will be described later (see FIGS. 14 to 19). This process method makes it possible to form a much higher height than the conventional coil pattern of the FPCB type, it is possible to make a coil having a large cross-sectional area and a low resistance. The coil pattern of the conventional FPCB type has a high resistance due to the limited height of the coil. In the conventional FPCB type coil pattern, two layers of coils are formed on both sides in order to secure a predetermined level or more of resistance. If the coil is formed on both sides, there is a disadvantage that the process is complicated and the material cost increases.
제1 실시예에 따른 코일패턴(904)은 두께와 폭을 갖는 예컨대, 사각형으로 형성될 수 있지만, 이에 대해서는 한정하지 않는다. 압연 강판 방식으로 제작된 코일은 다른 종류의 코일에 비하여 비교적 일정한 사각형 모양의 단면을 가질 수 있다.The coil pattern 904 according to the first embodiment may be formed in, for example, a quadrangle having a thickness and a width, but is not limited thereto. Coils made of a rolled steel sheet method may have a relatively constant cross section compared to other types of coils.
제1 실시예에 따른 코일패턴(904)의 내경, 즉 중공부(906)의 직경은 예컨대 20mm 이상일 수 있다. 코일패턴(904)의 외경은 50mm이하일 수 있다. 코일패턴(904)의 외경은 48mm 내지 50mm 이하일 수 있다. The inner diameter of the coil pattern 904 according to the first embodiment, that is, the diameter of the hollow part 906 may be, for example, 20 mm or more. The outer diameter of the coil pattern 904 may be 50 mm or less. An outer diameter of the coil pattern 904 may be 48 mm to 50 mm or less.
종래의 코일은 코일의 인덕턴스를 확보하기 위하여 코일의 길이가 길었다. 하지만, 외경은 코일패턴이 배치되는 스마트폰의 사이즈에 한정될 수 밖에 없다. 이에 따라 외경은 최대 50m로 한정되다. 중공부(906)의 직경이 20mm 이내로 형성할 수 밖에 없었다. Conventional coils have long coil lengths to ensure inductance of the coils. However, the outer diameter can only be limited to the size of the smartphone in which the coil pattern is disposed. Accordingly, the outer diameter is limited to a maximum of 50m. The diameter of the hollow part 906 was inevitably formed within 20 mm.
이와 같은 코일패턴(904)에서, 직류저항(Rdc)을 낮춤과 동시에, 교류 동작시에 직류저항(Rdc)와 교류저항(Rac)의 차이를 최소화할 수 있다. In the coil pattern 904 as described above, the DC resistance Rdc may be lowered and the difference between the DC resistance Rdc and the AC resistance Rac may be minimized during the AC operation.
수학식 2에 나타내어진 바와 같이, 직류저항(Rdc)이 일정하더라도 표피효과와 근접효과에 영향을 많이 받을수록 교류저항은 증가될 수 있다. As shown in Equation 2, although the DC resistance Rdc is constant, the AC resistance may increase as the skin resistance and proximity effect are more affected.
제1 실시예에 따른 코일패턴(904)에 의해, 직류저항(Rdc)은 낮아지고, 표피효과와 근접효과의 영향이 없거나 최소화될 수 있다. 이는 교류저항과 직류저항의 비율(Rac/Rdc)로 나타내어질 수 있다. 표피효과와 근접효가 최소화될수록, 교류저항(Rac)이 직류저항(Rdc)에 근접하게 되어, 교류저항과 직류저항의 비율(Rac/Rdc)이 거의 1에 수렴될 수 있다. By the coil pattern 904 according to the first embodiment, the DC resistance Rdc is lowered, and the influence of the skin effect and the proximity effect can be reduced or minimized. This can be expressed as the ratio of AC resistance to DC resistance (Rac / Rdc). As the skin effect and proximity effect are minimized, the AC resistance (Rac) is closer to the DC resistance (Rdc), so that the ratio (AC / Rdc) of the AC resistance and the DC resistance can converge to almost one.
제1 실시예에 따른 코일패턴(904)은 교류저항과 직류저항의 비율(Rac/Rdc)이 10%이내일 수 있다. 교류저항과 직류저항의 비율(Rac/Rdc)이 10%이내라 함은 직류저항(Rdc)이 교류저항(Rac)에 대해 10%이내에서 작음을 의미할 수 있다. 순수 코일 상태에서 코일패턴(904)의 교류저항과 직류저항의 비율(Rac/Rdc)이 10% 이상인 경우, 차폐재를 장착한 후 코일모듈 상태에서 교류저항과 직류저항의 비율(Rac/Rdc)은 50~70%까지 차이가 발생하게 된다. 이는 차폐재로 인하여 코일패턴(904) 내에 표피효과 또는/및 근접효과가 더욱 증폭되기 때문이다. 따라서, 차폐재를 장착하기 전 순수 코일 상태에서 코일패턴(904)의 교류저항과 직류저항의 비율(Rac/Rdc)을 작게 할 수 있어야, 차폐재를 장착한 후 코일모듈 상태에서 교류저항과 직류저항의 비율(Rac/Rdc)을 작게 할 수 있다.In the coil pattern 904 according to the first embodiment, a ratio (Rac / Rdc) of an AC resistance and a DC resistance may be 10% or less. The ratio of AC resistance to DC resistance (Rac / Rdc) of less than 10% may mean that the DC resistance (Rdc) is less than 10% of the AC resistance (Rac). When the ratio of AC resistance and DC resistance (Rac / Rdc) of the coil pattern 904 is 10% or more in the pure coil state, the ratio of AC resistance and DC resistance (Rac / Rdc) in the coil module state after installing the shielding material is A difference of 50% to 70% occurs. This is because the shielding material further amplifies the skin effect and / or the proximity effect in the coil pattern 904. Therefore, before mounting the shielding material, the ratio (AC / Rdc) of the AC resistance and the DC resistance of the coil pattern 904 should be reduced in the pure coil state. The ratio Rac / Rdc can be made small.
실시예에 따른 코일패턴(904)은 교류저항과 직류저항의 비율(Rac/Rdc)이 5%이내일 수 있다. The coil pattern 904 according to the embodiment may have a ratio (Rac / Rdc) of an AC resistance and a DC resistance within 5%.
실시예에 따른 코일패턴(904)은 교류저항과 직류저항의 비율(Rac/Rdc)이 3%이내일 수 있다. The coil pattern 904 according to the embodiment may have a ratio (Rac / Rdc) of an AC resistance and a DC resistance within 3%.
앞서 설명한 바와 같이, 무선충전코일(903, 906)의 코일패턴(904) 일측에 차폐재(907)가 배치되는 경우, 차폐재(907)의 영향을 받아 교류저항과 직류저항의 비율(Rac/Rdc)이 코일패턴(904)만 배치되는 경우와 달라질 수 있다. 코일패턴(904)만 배치되는 구조는 배어 코일(bare coil) 구조로 지칭되고, 코일패턴(904)와 차폐재(907)의 결합으로 이루어진 구조는 코일패턴에 차폐재가 부착된 구조로 지칭될 수 있다. As described above, when the shielding material 907 is disposed on one side of the coil patterns 904 of the wireless charging coils 903 and 906, the ratio of the AC resistance and the DC resistance under the influence of the shielding material 907 (Rac / Rdc) This may be different from the case where only the coil pattern 904 is disposed. The structure in which only the coil pattern 904 is disposed may be referred to as a bare coil structure, and the structure formed by combining the coil pattern 904 and the shielding material 907 may be referred to as a structure in which a shielding material is attached to the coil pattern. .
예컨대, 코일패턴에 차폐재가 부착된 구조에서는 교류저항과 직류저항의 비율(Rac/Rdc)이 50%이내일 수 있다. 예컨대, 코일패턴에 차폐재가 부착된 구조에서는 교류저항과 직류저항의 비율(Rac/Rdc)이 30%이내일 수 있다. 예컨대, 코일패턴에 차폐재가 부착된 구조에서는 교류저항과 직류저항의 비율(Rac/Rdc)이 20%이내일 수 있다.For example, in the structure in which the shielding material is attached to the coil pattern, a ratio (Rac / Rdc) of AC resistance and DC resistance may be 50% or less. For example, in the structure in which the shielding material is attached to the coil pattern, the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be 30% or less. For example, in the structure in which the shielding material is attached to the coil pattern, a ratio (Rac / Rdc) of AC resistance and DC resistance may be 20% or less.
실시예에 따른 코일패턴(904)은 베어 코일 구조에서 인덕턴스는 6.3μH이상일 수 있다. In the coil pattern 904 according to the embodiment, the inductance of the bare coil structure may be greater than or equal to 6.3 μH.
실시예에 따른 코일패턴(904)은 베어 코일 구조에서 인덕턴스는 6.5μH 이상일 수 있다. In the coil pattern 904 according to the embodiment, the inductance of the bare coil structure may be 6.5 μH or more.
실시예에 따른 코일패턴(904)은 코일패턴에 차폐재가 부착된 구조에서 인덕턴스는 10.5μH 이상일 수 있다. In the coil pattern 904 according to the embodiment, the inductance may be 10.5 μH or more in a structure in which a shielding material is attached to the coil pattern.
실시예에 따른 코일패턴(904)은 코일패턴에 차폐재가 부착된 구조에서 인덕턴스는 11μH 이상일 수 있다.In the coil pattern 904 according to the embodiment, inductance may be 11 μH or more in a structure in which a shielding material is attached to the coil pattern.
실시예에 따른 코일패턴(904)은 베어 코일 구조에서 품질계수(Q)는 16이상일 수 있다. In the coil pattern 904 according to the embodiment, the quality factor Q may be 16 or more in a bare coil structure.
실시예에 따른 코일패턴(904)은 베어 코일 구조에서 품질계수(Q)는 16.5 이상일 수 있다. In the coil pattern 904 according to the embodiment, the quality factor Q may be 16.5 or more in a bare coil structure.
베어 코일 구조에서 종래의 품질계수(Q)는 4 내지 5인데 반해, 제1 실시예에 따른 베일 코일 구조에서는 품질계수(Q)가 종래에 비해 3배 이상 증가될 수 있다. In the bare coil structure, the conventional quality factor Q is 4 to 5, whereas in the bale coil structure according to the first embodiment, the quality factor Q may be increased by three times or more.
실시예에 따른 코일패턴(904)은 코일패턴에 차폐재가 부착된 구조에서 품질계수(Q)는 21 이상일 수 있다. The coil pattern 904 according to the embodiment may have a quality factor Q of 21 or more in a structure in which a shielding material is attached to the coil pattern.
실시예에 따른 코일패턴(904)은 코일패턴에 차폐재가 부착된 구조에서 품질계수(Q)는 22이상일 수 있다. The coil pattern 904 according to the embodiment may have a quality factor Q of 22 or more in a structure in which a shielding material is attached to the coil pattern.
코일패턴에 차폐재가 부착된 구조에서 품질계수(Q)는 7 내지 8인데 반해, 제1 실시예에 따른 코일패턴에 차폐재가 부착된 구조에서 품질계수(Q)는 종래에 비해 3배 이상 증가될 수 있다. In the structure in which the shielding material is attached to the coil pattern, the quality factor Q is 7 to 8, whereas in the structure in which the shielding material is attached to the coil pattern according to the first embodiment, the quality factor Q is increased by three times or more. Can be.
제1 실시예에서, 무선충전코일(903, 906)은 중공부(906)를 포함할 수 있다. 중공부(906)는 코일패턴(904)의 내측에 형성될 수 있다. 중공부(906)는 코일패턴(904)이 배치되지 않는 빈(empty) 영역일 수 있다. 중공부(906)는 대략 원 형상이나 사각 형상을 가질 수 있지만, 이에 대해서는 한정하지 않는다. In the first embodiment, the wireless charging coils 903 and 906 may include a hollow portion 906. The hollow part 906 may be formed inside the coil pattern 904. The hollow part 906 may be an empty area in which the coil pattern 904 is not disposed. The hollow part 906 may have a substantially circular shape or a rectangular shape, but is not limited thereto.
코일부(903)의 복수의 권선라인(904_1 내지 904_13)은 중공부(906)의 둘레를 따라 나선형으로 권선될 수 있다. 코일패턴(904)의 일측, 즉 중공부(906)에서 코일패턴(904)의 내측에 인접한 영역에 제1 단자(905a)가 배치되고, 코일패턴(904)의 타측, 코일패턴(904)의 외측에 인접한 영역에 제2 단자(905b)가 배치될 수 있다. 예컨대, 코일패턴(904)의 일측은 최 내측 권선라인(예를 들어, 제1 권선라인(904_1))의 일부 영역이고, 코일패턴(904)의 타측은 최 외측 권선라인(예를 들어, 제13 권선라인(904_13))의 일부 영역일 수 있다. 따라서, 코일패턴(904)은 제1 단자(905a)에 연결되어 나선형 방향으로 다수개 권선된 후, 제2 단자(905b)에 연결될 수 있다. 권선 방향은 시계 방향 또는 반시계 방향일 수 있다. 코일패턴(904)과 제1 및 제2 단자(905a, 905b)는 일체형으로 형성될 수 있다. 또는 제1 및 제2 단자(905a, 905b)가 코일패턴(904)과 별개로 형성된 후, 코일패턴(904)에 본딩 공정에 의해 전기적으로 연결될 수 있다. 제1 및 제2 단자(905a, 905b) 각각의 폭(W)은 권선라인(904_1 내지 904_13) 사이의 간격(D1)과 동일하거나 클 수 있다. 제1 및 제2 단자(905a, 905b)는 전원을 공급하는 회로부에 전기적으로 연결될 수 있다. 예컨대, 제1 및 제2 단자(905a, 905b)에 교류전압이 인가되는 경우, 중공부(906)를 기준으로 주기적으로 시계방향 또는 반시계 방향으로 코일패턴(904)에 전류가 흐를 수 있다. The plurality of winding lines 904_1 to 904_13 of the coil unit 903 may be spirally wound along the circumference of the hollow part 906. The first terminal 905a is disposed on one side of the coil pattern 904, that is, the hollow portion 906, adjacent to the inner side of the coil pattern 904, and the other side of the coil pattern 904 and the coil pattern 904. The second terminal 905b may be disposed in an area adjacent to the outside. For example, one side of the coil pattern 904 is a partial region of the innermost winding line (eg, the first winding line 904_1), and the other side of the coil pattern 904 is the outermost winding line (eg, the first winding line). 13 may be a partial region of the winding line 904_13. Therefore, the coil pattern 904 may be connected to the first terminal 905a and wound in a helical direction, and then connected to the second terminal 905b. The winding direction can be clockwise or counterclockwise. The coil pattern 904 and the first and second terminals 905a and 905b may be integrally formed. Alternatively, the first and second terminals 905a and 905b may be formed separately from the coil pattern 904 and then electrically connected to the coil pattern 904 by a bonding process. The width W of each of the first and second terminals 905a and 905b may be equal to or greater than the distance D1 between the winding lines 904_1 to 904_13. The first and second terminals 905a and 905b may be electrically connected to a circuit unit for supplying power. For example, when an AC voltage is applied to the first and second terminals 905a and 905b, a current may flow in the coil pattern 904 in a clockwise or counterclockwise direction periodically based on the hollow part 906.
도시되지 않았지만, 무선충전코일(903, 906)은 중공부(906)에 인접한 제1 단자(905a)에 연결되어 코일패턴(904)을 가로질러 코일패턴(904)의 외측으로 연장되는 연결부재를 포함할 수 있다. 코일패턴(904)의 외측으로 연장된 연결부재는 제2 단자(905b)에 인접하여 배치되는 연결단자에 연결될 수 있다. 연결부재와 코일패턴(904) 사이의 전기적으로 쇼트를 방지하기 위해 연결부재와 코일패턴(904) 사이에 절연층이 배치될 수 있다. 연결부재는 코일패턴(904)과 동일한 금속 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다. Although not shown, the wireless charging coils 903 and 906 are connected to the first terminal 905a adjacent to the hollow portion 906 to extend the connection member extending across the coil pattern 904 to the outside of the coil pattern 904. It may include. The connection member extending out of the coil pattern 904 may be connected to a connection terminal disposed adjacent to the second terminal 905b. An insulating layer may be disposed between the connecting member and the coil pattern 904 to prevent an electrical short between the connecting member and the coil pattern 904. The connection member may be formed of the same metal material as the coil pattern 904, but is not limited thereto.
한편, 제1 실시예에서, 코일부(903)는 제1 도선(904a), 제2 도선(904b) 및 슬릿(911)을 포함할 수 있다. 슬릿(911)은 제1 도선(904a) 및 제2 도선(904b)이 존재하지 않는 영역으로서, 개구, 홀, 구멍 또는 리세스(recess)로 지칭될 수 있다. 제1 도선(904a)과 제2 도선(904b)은 슬릿(911)에 의해 분리 또는 분기될 수 있다. Meanwhile, in the first embodiment, the coil unit 903 may include a first conductive line 904a, a second conductive line 904b, and a slit 911. The slit 911 is an area where the first conductive line 904a and the second conductive line 904b do not exist and may be referred to as an opening, a hole, a hole, or a recess. The first conductive line 904a and the second conductive line 904b may be separated or branched by the slit 911.
실시 예에 따른 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 1δ이하일 수 있다. According to an embodiment, the thickness T of each of the first conductive line 904a and the second conductive line 904b may be 1δ or less.
실시 예에 따른 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 150㎛이하일 수 있다. The thickness T of each of the first conductive wire 904a and the second conductive wire 904b may be 150 μm or less.
실시 예에 따른 제1 도선(904a) 및 제2 도선(904b) 각각의 두께(T)는 120㎛이하일 수 있다.The thickness T of each of the first conductive line 904a and the second conductive line 904b may be 120 μm or less.
실시 예에 따른 슬릿(911)의 폭(D2)은 1δ이하일 수 있다. According to the embodiment, the width D2 of the slit 911 may be 1δ or less.
실시 예에 따른 슬릿(911)의 폭(D2)은 200㎛이하일 수 있다. The width D2 of the slit 911 according to the embodiment may be 200 μm or less.
실시 예에 따른 슬릿(911)의 폭(D2)은 150㎛이하일 수 있다. The width D2 of the slit 911 according to the embodiment may be 150 μm or less.
슬릿의 폭(D2)은 권선라인(904_1 내지 904_13) 사이의 간격일 수 있다. The width D2 of the slit may be a gap between the winding lines 904_1 to 904_13.
제1 도선(904a), 제2 도선(904b) 및 슬릿(911)은 코일패턴(904), 즉 다수의 권선라인(904_1 내지 904_13)의 전체 영역에 구비될 수 있다. 슬릿(911)은 제1 단자(905a)에 연결된 코일패턴(904)의 일측 영역, 즉 제1 권선라인(904_1)의 일 영역으로부터 권선라인(904_1 내지 904_13)의 길이 방향을 따라 형성되고 또한 제2 단자(905b)에 연결된 코일패턴(904)의 타측 영역, 즉 제13 권선라인(904_13)의 일 영역까지 형성될 수 있다. 따라서, 이와 같이 형성된 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b) 또한 제1 권선라인(904_1)의 일 영역으로부터 제13 권선라인(904_13)의 일 영역까지 형성될 수 있다. The first conductive line 904a, the second conductive line 904b, and the slit 911 may be provided in the coil pattern 904, that is, the entire area of the plurality of winding lines 904_1 to 904_13. The slit 911 is formed along a length direction of the winding lines 904_1 to 904_13 from one region of the coil pattern 904 connected to the first terminal 905a, that is, one region of the first winding line 904_1. The other side of the coil pattern 904 connected to the second terminal 905b, that is, up to one region of the thirteenth winding line 904_13 may be formed. Accordingly, the first conductive line 904a and the second conductive line 904b separated or branched by the slit 911 formed as described above may also be a region of the thirteenth winding line 904_13 from one region of the first winding line 904_1. It can be formed up to.
제1 도선(904a)은 제1 권선라인(904_1) 내지 제13 권선라인(904_13) 각각에서 동일한 폭(W)을 가질 수 있지만, 이에 대해서는 한정하지 않는다. 제2 도선(904b)은 제1 권선라인(904_1) 내지 제13 권선라인(904_13) 각각에서 동일한 폭(W)을 가질 수 있지만, 이에 대해서는 한정하지 않는다. The first conductive line 904a may have the same width W in each of the first winding line 904_1 to the thirteenth winding line 904_13, but the embodiment is not limited thereto. The second conductive line 904b may have the same width W in each of the first winding line 904_1 to the thirteenth winding line 904_13, but the embodiment is not limited thereto.
제1 실시예에서, 코일부(903)는 제1 연결부(913a)와 제2 연결부(913b)를 포함할 수 있다. 예컨대, 제1 연결부(913a)는 제1 권선라인(904_1)의 일 영역에 위치되고, 제2 연결부(913b)는 제13 권선라인(904_13)의 일 영역에 위치될 수 있다. 제1 연결부(913a)는 제1 권선라인(904_1)의 일 영역에서 제1 도선(904a)과 제2 도선(904b)을 연결시켜주고, 제2 연결부(913b)는 제13 권선라인(904_13)의 일 영역에서 제1 도선(904a)과 제2 도선(904b)을 연결시켜줄 수 있다. In the first embodiment, the coil unit 903 may include a first connector 913a and a second connector 913b. For example, the first connector 913a may be located in one region of the first winding line 904_1, and the second connector 913b may be located in one region of the thirteenth winding line 904_13. The first connecting portion 913a connects the first conductive line 904a and the second conductive line 904b in one region of the first winding line 904_1, and the second connecting portion 913b connects the thirteenth winding line 904_13. The first conductive line 904a and the second conductive line 904b may be connected in one region of the region.
제1 권선라인(904_1)은 제1 연결부(913a)와 일체로 형성되고, 제13 권선라인(904_13)은 제2 연결부(913b)와 일체로 형성될 수 있다. The first winding line 904_1 may be integrally formed with the first connection part 913a, and the thirteenth winding line 904_13 may be integrally formed with the second connection part 913b.
따라서, 제1 단자(905a)로 전압이 인가되는 경우, 제1 단자(905a)에 연결된 제1 연결부(913a)를 경유하여 제1 도선(904a)과 제2 도선(904b)로 동시에 전류가 흐를 수 있다. 마찬자기로, 제2 단자(905b)로 전압이 인가되는 경우, 제2 단자(905b)에 연결된 제2 연결부(913b)를 경유하여 제1 도선(904a)과 제2 도선(904b)로 동시에 전류가 흐를 수 있다. Therefore, when a voltage is applied to the first terminal 905a, a current flows simultaneously through the first conductor 904a and the second conductor 904b via the first connection portion 913a connected to the first terminal 905a. Can be. Likewise, when a voltage is applied to the second terminal 905b, a current is simultaneously applied to the first conductive wire 904a and the second conductive wire 904b via the second connection portion 913b connected to the second terminal 905b. Can flow.
다른 예로서, 제1 연결부(913a)는 코일패턴(904)이 아닌 제1 단자(905a)에 포함되고, 제2 연결부(913b)는 코일패턴(904)이 아닌 제2 단자(905b)에 포함될 수 있다. 제1 연결부(913a)와 제2 연결부(913b)와 제1 및 제2 단자(905a, 905b)는 일체로 형성될 수 있다.As another example, the first connector 913a is included in the first terminal 905a instead of the coil pattern 904, and the second connector 913b is included in the second terminal 905b instead of the coil pattern 904. Can be. The first connector 913a, the second connector 913b, and the first and second terminals 905a and 905b may be integrally formed.
실시예에 따르면, 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 2δ±50㎛(2δ-50㎛ 내지 2δ+50㎛)일 수 있다. In exemplary embodiments, each of the first and second conductive wires 904a and 904b may have a width of 2δ ± 50 μm (2δ-50 μm to 2δ + 50 μm).
실시예에 따르면, 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 2δ±5㎛(2δ-5㎛ 내지 2δ+5㎛)일 수 있다. In exemplary embodiments, each of the first and second conductive wires 904a and 904b may have a width of 2δ ± 5 μm (2δ−5 μm to 2δ + 5 μm).
표피깊이(δ 또는 델타 또는 delta)는 수학식 3에 나타내어진 바와 같이, 무선충전코일(903, 906)에서 사용되는 동작주파수에 따라 달라질 수 있다. 이러한 경우, 투자율(μ)과 도전율(σ)이 일정 상수를 갖는다는 가정 하에, 표 1과 같이 나타내어질 수 있다. The skin depth δ or delta or delta may vary depending on the operating frequency used in the wireless charging coils 903 and 906, as shown in Equation 3. In this case, the magnetic permeability μ and the electrical conductivity σ can be represented as shown in Table 1 under the assumption that they have a constant.
동작주파수Operating frequency 표피깊이(δ)Skin depth (δ)
100kHz100 kHz 209㎛209 ㎛
128kHz128 kHz 185㎛185
200kHz200 kHz 148㎛148㎛
6.78MHz6.78 MHz 25㎛25 μm
예컨대, 128kHz의 동작주파수가 사용되는 경우, 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 370㎛, 즉 2δ 이하일 수 있다. 베어 코일 구조와 코일패턴에 차폐재가 부착된 구조 각각의 실험에 사용된 코일패턴(904) 규격은 표 2로 나타낼 수 있다. 차폐재(907)는 4개 층으로 구성되고 1400의 차폐율을 가질 수 있다. For example, when an operating frequency of 128 kHz is used, the width of each of the first conductive wire 904a and the second conductive wire 904b may be 370 μm, that is, 2δ or less. The coil pattern 904 standard used in each of the bare coil structure and the structure in which the shielding material is attached to the coil pattern may be shown in Table 2. The shield 907 may consist of four layers and have a shielding rate of 1400.
비교예Comparative example 제1 실시예First embodiment
Line width(㎛)Line width (㎛) 800800 900900
Line space(㎛)Line space (㎛) 350350 150150
Line pitch(㎛)Line pitch (㎛) 11501150 10501050
Coil 외경(mm)Coil Outer Diameter (mm) 48.248.2 48.248.2
Coil 내경(mm)Coil Inner Diameter (mm) 1919 21.221.2
턴수Turns 1313 1313
제1 실시예의 폭인 900㎛는 제1 도선(904a)의 폭, 제2 도선(904b)의 폭 및 슬릿(911)의 폭을 모두 더한 값, 즉 권선라인(904_1 내지 904_13)의 폭일 수 있다. 이러한 경우, 128kHz의 동작주파수가 사용되는 경우, 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 370㎛ 이하일 수 있다. 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 공정 오차를 고려하면, 320~420㎛ 범위를 가질 수 있다. 안정화된 공정의 경우, 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 365~375㎛일 수 있다.리프프레임 공정에 의해 코일패턴(904)을 형성하는 경우, 과에칭에 의한 공정 오차가 고려되어야 한다. 이에 따라, 제1 도선(904a) 및 제2 도선(904b) 각각은 예컨대 375㎛이고, 슬릿(911)의 폭은 150㎛일 수 있다. 따라서, 제1 도선(904a)의 폭, 제2 도선(904b)의 폭 및 슬릿(911)의 폭, 즉 제1 도선(904a) 및 제2 도선(904b) 사이의 간격을 모두 더한 값인 900㎛가 산출될 수 있다. The width of 900 μm, which is the width of the first embodiment, may be the sum of the width of the first conductive line 904a, the width of the second conductive line 904b, and the width of the slit 911, that is, the width of the winding lines 904_1 to 904_13. In this case, when an operating frequency of 128 kHz is used, the width of each of the first conductive wire 904a and the second conductive wire 904b may be 370 μm or less. The width of each of the first conductive line 904a and the second conductive line 904b may have a range of 320 to 420 μm in consideration of a process error. In the stabilized process, each of the first and second conductive wires 904a and 904b may have a width of 365 to 375 μm. In the case of forming the coil pattern 904 by a leaf frame process, overetching Process errors should be considered. Accordingly, each of the first conductive wire 904a and the second conductive wire 904b may be 375 μm, and the width of the slit 911 may be 150 μm. Therefore, 900 µm which is the sum of the width of the first conductive wire 904a, the width of the second conductive wire 904b, and the width of the slit 911, that is, the interval between the first conductive wire 904a and the second conductive wire 904b. Can be calculated.
실시 예에 따른 코일패턴(904)의 베어 코일 구조에서의 측정값은 표 3으로 나타낼 수 있다.The measured values in the bare coil structure of the coil pattern 904 according to the embodiment may be shown in Table 3.
L(μH)L (μH) 6.686.68
Rac(Ω)Rac (Ω) 0.320.32
Rdc(Ω)Rdc (Ω) 0.320.32
QQ 16.5316.53
Rac/RdcRac / Rdc 1One
표 3에 나타내어진 바와 같이, 베어 코일 구조에서 코일패턴(904)에서 측정된 인덕턴스(L)는 6.68이고, 교류저항(Rac)과 직류저항(Rdc)은 동일한 저항값, 즉 0.32Ω이고, 품질계수(Q)는 16.53이며, 교류저항과 직류저항의 비율(Rac/Rdc)은 1일 수 있다. 따라서, 제1 실시예에서의 품질계수(Q)는 16이상일 수 있다. 이러한 베어 코일 구조에서의 측정값을 의해, 인덕턴스(L)가 종래에 비해 커질 수 있다. 특히 품질계수(Q)는 종래에 비해 현저히 증가됨을 알 수 있다. 아울러, 교류저항과 직류저항의 비율(Rac/Rdc)이 최대비율(1)과 동일하게 측정되었다. 이로부터 표 2와 같은 코일패턴(904) 규격으로 설계되는 경우, 표피효과와 근접효과의 영향이 전혀 없음을 확인할 수 있다. As shown in Table 3, the inductance L measured at the coil pattern 904 in the bare coil structure is 6.68, and the AC resistance Rac and the DC resistance Rdc have the same resistance value, that is, 0.32Ω, and the quality Coefficient (Q) is 16.53, and the ratio of AC resistance and DC resistance (Rac / Rdc) may be one. Therefore, the quality factor Q in the first embodiment may be 16 or more. By the measured value in this bare coil structure, the inductance L can be larger than in the related art. In particular, it can be seen that the quality factor Q is significantly increased compared with the conventional art. In addition, the ratio of AC resistance and DC resistance (Rac / Rdc) was measured to be equal to the maximum ratio (1). From this, when the coil pattern 904 is designed as shown in Table 2, it can be confirmed that there is no effect of the skin effect and the proximity effect.
도 8a는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항과 인덕턴스를 도시하고, 도 8b는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항 비율과 품질계수를 도시한다. FIG. 8A shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern, and FIG. 8B shows the resistance ratio and the quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do.
도 8a 및 도 8b에 도시된 데이터는 코일패턴(904)뿐만 아니라 차폐재(907)도 구비된 상황에서 실험에 의해 얻어진 측정값을 도시한다.The data shown in FIGS. 8A and 8B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
도 8a에 도시한 바와 같이, 비교예의 인덕턴스는 9.69μH인데 반해, 제1 실시예의 인덕턴스는 11.6μH로 비교예에 비해 19.7% 이상 커졌다. 비교예의 직류저항은 0.491Ω인데 반해, 제1 실시예의 직류저항은 0.336Ω으로 더 작다. 마찬가지로, 비교예의 교류저항은 0.65Ω인데 반해, 제1 실시예의 교류저항은 0.418Ω로 더 작다. 또한, 직류저항(Rdc)과 교류저항(Rac)의 비율이 비교예의 경우 32% 차이가 나지만, 제1 실시예의 직류저항(Rdc)과 교류저항(Rac)의 비율은 24% 로 30% 이하로 감소됨을 확인할 수 있다.As shown in Fig. 8A, the inductance of the comparative example was 9.69 mu H, whereas the inductance of the first example was 11.6 mu H, which was 19.7% or more larger than the comparative example. The DC resistance of the comparative example is 0.491Ω, whereas the DC resistance of the first embodiment is smaller, 0.336Ω. Similarly, the AC resistance of the comparative example is 0.65Ω, while the AC resistance of the first embodiment is smaller, 0.418Ω. In addition, although the ratio of DC resistance Rdc and AC resistance Rac differs by 32% in the comparative example, the ratio of DC resistance Rdc and AC resistance Rac of the first embodiment is 24% to 30% or less. It can be seen that the decrease.
이로부터, 제1 실시예에 따른 무선충전코일모듈(900)에서 비교예에 비해 인덕턴스는 더 크며 직류저항과 교류저항은 더 작으며, 직류저항과 교류저항의 차이도 작아짐을 알 수 있다. From this, it can be seen that in the wireless charging coil module 900 according to the first embodiment, the inductance is larger, the DC resistance and the AC resistance are smaller, and the difference between the DC resistance and the AC resistance is smaller than that of the comparative example.
도 8b에 도시한 바와 같이, 비교예의 품질계수는 11.99인데 반해, 제1 실시예의 품질계수는 22.32로 비교예에 비해 86.2% 향상되었다. 이에 따라, 최대 품질계수가 확보될 수 있어, 전력전송효율이 현저히 향상될 수 있다. As shown in FIG. 8B, the quality factor of the comparative example is 11.99, whereas the quality factor of the first example is 22.32, which is 86.2% higher than that of the comparative example. Accordingly, the maximum quality factor can be secured, and the power transmission efficiency can be significantly improved.
한편, 표 3과 도 8b에 도시한 바와 같이, 베어 코일 구조에서의 인덕턴스(L)은 6.68μH인데 반해, 코일패턴에 차폐재가 부착된 구조에서의 인덕턴스(L)은 11.6으로 베어 코일 구조에서보다 더욱 더 증가되었다. 또한, 베어 코일 구조에서의 품질계수(Q)는 16.53인데 반해, 코일패턴에 차폐재가 부착된 구조에서의 품질계수(Q)는 22.32로 베어 코일 구조에서보다 더욱 더 증가되었다. On the other hand, as shown in Table 3 and Figure 8b, the inductance (L) in the bare coil structure is 6.68μH, while the inductance (L) in the structure with the shielding material attached to the coil pattern is 11.6, than in the bare coil structure Increased even more. In addition, the quality factor Q in the bare coil structure is 16.53, whereas the quality factor Q in the structure in which the shielding material is attached to the coil pattern is 22.32, which is further increased than in the bare coil structure.
제1 실시예에 따른 무선충전코일모듈(900)에 따르면, 코일패턴(904) 각각이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제1 도선(904a)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 직류저항(또는 교류저항)은 작아지고 인덕턴스는 커져 수학식 1에 나타내어진 바와 같이 품질계수가 현저히 향상될 수 있다. According to the wireless charging coil module 900 according to the first embodiment, each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911. By making the width of each of the first conductive wire 904a and the second conductive wire 904b less than or equal to 2δ, the DC resistance (or AC resistance) is reduced and the inductance is increased, so that the quality coefficient is remarkably improved. Can be.
제1 실시예에 따른 무선충전코일모듈(900)에 따르면, 코일패턴(904) 각각이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제1 도선(904a)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 권선라인(904_1 내지 904_13) 사이 간격이 비교예에 비해 줄어들어 품질계수를 향상시키고 코일패턴(904)이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 이와 같이, 권선라인(904_1 내지 904_13) 사이 간격 이 줄어들더라도 교류저항은 커지지 않아 교류저항의 억제 효과가 있다. According to the wireless charging coil module 900 according to the first embodiment, each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911. When the width of each of the first conductive wire 904a and the second conductive wire 904b is less than or equal to 2δ, the gap between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality coefficient and to improve the coil pattern 904. The occupied area can be minimized, making the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
제1 실시예에 따른 무선충전코일모듈(900)에 따르면, 코일패턴(904) 각각이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제1 도선(904a)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다. According to the wireless charging coil module 900 according to the first embodiment, each of the coil pattern 904 includes a first conductor 904a and a second conductor 904b separated or branched by a slit 911. Since the width of each of the first conductive wire 904a and the second conductive wire 904b is less than or equal to 2δ, the distance between the winding lines 904_1 to 904_13 is reduced compared to the comparative example, thereby increasing the inductance with respect to the same area, resulting in a comparison with the same area. Can improve the quality factor.
<제2 실시예>Second Embodiment
제2 실시예는 코일패턴(904)의 권선라인(904_1 내지 904_13) 각각이 제1 도선(904a), 제2 도선(904b) 및 제1 도선(904a)와 제2 도선(904b) 사이에 슬릿(911)을 포함하는 것은 제1 실시예와 동일하지만, 코일패턴(904)의 권선라인(904_1 내지 904_13) 각각의 폭이 다른 점에서 제1 실시예와 상이하다.In the second embodiment, each of the winding lines 904_1 to 904_13 of the coil pattern 904 has a slit between the first lead 904a, the second lead 904b, and the first lead 904a and the second lead 904b. Inclusion of 911 is the same as the first embodiment, but differs from the first embodiment in that the widths of the winding lines 904_1 to 904_13 of the coil pattern 904 are different.
예컨대, 코일패턴(904)의 권선라인(904_1 내지 904_13)에서 일부 권선라인의 제1 도선(904a)와 제2 도선(904b) 각각의 폭(W)는 2δ이상이고, 그 외 권선라인의 제1 도선(904a)와 제2 도선(904b) 각각의 폭(W)는 2δ이하일 수 있다. For example, in the winding lines 904_1 to 904_13 of the coil pattern 904, the width W of each of the first conductive line 904a and the second conductive line 904b of some of the winding lines is greater than or equal to 2δ and the other of the other winding lines. The width W of each of the first conductive line 904a and the second conductive line 904b may be 2δ or less.
일 예로서, 폭이 2δ이상인 권선라인은 코일패턴(904)의 외측에 근접하여 배치될 수 있다. 예컨대, 제1 권선라인(904_1)을 제외한 나머지 권선라인, 즉 제2 내지 제13 권선라인(904_2 내지 904_13) 각각의 제1 도선(904a)와 제2 도선(904b) 각각의 폭(W)는 2δ이상일 수 있다.As an example, the winding line having a width of 2δ or more may be disposed near the outer side of the coil pattern 904. For example, the width W of each of the first conductive line 904a and the second conductive line 904b of each of the remaining winding lines except for the first winding line 904_1, that is, the second to thirteenth winding lines 904_2 to 904_13 may be It may be 2δ or more.
다른 예로서, 폭이 2δ이상인 권선라인은 제1 권선라인(904_1)과 제13 권선라인(904_13) 사이에 배치될 수 있지만, 이에 대해서는 한정하지 않는다. As another example, a winding line having a width of 2δ or more may be disposed between the first winding line 904_1 and the thirteenth winding line 904_13, but is not limited thereto.
보다 구체적으로, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중에서 2개 내지 5개의 권선라인 각각의 폭(W)은 2δ이상이고, 그 외 나머지 권선라인 각각의 폭(W)은 2δ이하일 수 있다. 예컨대, 제2 권선라인(904_2) 내지 제4 권선라인(904_4) 각각의 폭(W)은 2δ이상이고, 제1 권선라인(904_1) 및 제5 내지 제13 권선라인(904_13) 각각의 폭(W)은 2δ이하일 수 있다. More specifically, the width W of each of the two to five winding lines among the winding lines 904_1 to 904_13 of the coil pattern 904 is greater than or equal to 2δ, and the width W of each of the remaining winding lines is less than or equal to 2δ. Can be. For example, the width W of each of the second winding line 904_2 to the fourth winding line 904_4 is greater than or equal to 2δ, and the width W of each of the first winding line 904_1 and the fifth to thirteenth winding lines 904_13 ( W) may be 2δ or less.
제2 실시예에 따른 코일패턴(904)의 규격의 일예가 표 4로 나타내어질 수 있다. An example of the standard of the coil pattern 904 according to the second embodiment may be shown in Table 4.
제1 권선라인(904_1)First winding line 904_1 900㎛900 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제2 권선라인(904_2)Second winding line 904_2 1,000㎛1,000 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제3 권선라인(904_3)Third winding line 904_3 1,000㎛1,000 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제4 권선라인(904_4)Fourth winding line 904_4 1,000㎛1,000 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제5 권선라인(904_5)Fifth winding line 904_5 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제6 권선라인(904_6)Sixth winding line 904_6 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제7 권선라인(904_7)Seventh winding line 904_7 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제8 권선라인(904_8)Eighth winding line 904_8 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제9 권선라인(904_9)9th winding line 904_9 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제10 권선라인(904_10)Tenth winding line 904_10 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제11 권선라인(904_11)Eleventh winding line 904_11 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제12 권선라인(904_12)Twelfth Winding Line 904_12 950㎛950 ㎛
권선라인 사이 간격 Spacing between winding lines 150㎛150 μm
제13 권선라인(904_13)Thirteenth winding line 904_13 950㎛950 ㎛
슬릿의 간격을 150㎛이고 각 권선라인(904_1 내지 904_13)의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 서로 동일할 수 있다. 이러한 경우, 제1 권선라인(904_1)의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 375㎛일 수 있다. 제2 내지 제4 권선라인(904_2 내지 904_4) 각각의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 425㎛일 수 있다. 제5 내지 제13 권선라인(904_5 내지 904_13) 각각의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 400㎛일 수 있다. 앞서, 압연강판의 식각 방식에 의한 공정 상에 의한 공정 오차를 고려하는 경우, 2δ는 400㎛로 설정된다고 한 바 있다. 이로부터 제2 내지 제4 권선라인(904_2 내지 904_4) 각각의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 2δ이상인데 반해, 제1 및 제5 내지 제13 권선라인(904_1, 904_5 내지 904_13) 각각의 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 2δ이하일 수 있다. The interval between the slits is 150 μm and the width of each of the first conductive line 904a and the second conductive line 904b of each of the winding lines 904_1 to 904_13 may be the same. In this case, each of the first and second conductive wires 904a and 904b of the first winding line 904_1 may have a width of 375 μm. A width of each of the first conductive line 904a and the second conductive line 904b of each of the second to fourth winding lines 904_2 to 904_4 may be 425 μm. Each of the first and second conductive lines 904a and 904b of the fifth to thirteenth winding lines 904_5 to 904_13 may have a width of 400 μm. Previously, when considering the process error due to the process by the etching method of the rolled steel sheet, 2δ has been set to 400㎛. From this, the width of each of the first and second conductive wires 904a and 904b of the second to fourth winding lines 904_2 to 904_4 is greater than or equal to 2δ, whereas the first and fifth to thirteenth winding lines 904_1 Each of the first and second conductive wires 904a and 904b 904_5 to 904_13 may have a width of 2δ or less.
실험에 사용된 코일패턴(904) 규격은 표 5로 나타낼 수 있다. 차폐재(907)는 4개 층으로 구성되고 1400의 차폐율을 가질 수 있다. The coil pattern 904 standard used in the experiment may be shown in Table 5. The shield 907 may consist of four layers and have a shielding rate of 1400.
비교예Comparative example 제2 실시예Second embodiment
Line width(㎛)Line width (㎛) 800800 900~1000900-1000
Line space(㎛)Line space (㎛) 350350 150150
Line pitch(㎛)Line pitch (㎛) 11501150 11001100
Coil 외경(mm)Coil Outer Diameter (mm) 48.248.2 48.248.2
Coil 내경(mm)Coil Inner Diameter (mm) 1919 19.719.7
턴수Turns 1313 1313
표 5에 나타내어진 제2 실시예의 코일패턴(904) 규격에서 각 권선라인(904_1 내지 904_13) 각각의 폭과 각 권선라인(904_1 내지 904_13) 사이의 간격에 대한 구체적인 규격은 이미 표 4에서 나타내어진 바 있다. 실시 예에 따른 코일패턴(904)의 베어 코일 구조에서의 측정값은 표 6으로 나타낼 수 있다.In the coil pattern 904 specification of the second embodiment shown in Table 5, the specific specification of the width of each winding line 904_1 to 904_13 and the spacing between each winding line 904_1 to 904_13 is already shown in Table 4. There is a bar. The measured values in the bare coil structure of the coil pattern 904 according to the embodiment may be shown in Table 6.
L(μH)L (μH) 6.326.32
Rac(Ω)Rac (Ω) 0.30.3
Rdc(Ω)Rdc (Ω) 0.2950.295
QQ 16.9416.94
Rac/RdcRac / Rdc 1.021.02
표 6에 나타내어진 바와 같이, 베어 코일 구조에서 코일패턴(904)에서 측정된 인덕턴스(L)는 6.32이고, 교류저항(Rac)은 0.3Ω이고, 직류저항(Rdc)은 0.295Ω이고, 품질계수(Q)는 16.94이며, 교류저항과 직류저항의 비율(Rac/Rdc)은 1.02일 수 있다. 이러한 베어 코일 구조에서의 측정값을 의해, 인덕턴스(L)가 종래에 비해 커질 수 있다. 특히 품질계수(Q)는 종래에 비해 현저히 증가됨을 알 수 있다. 아울러, 교류저항과 직류저항의 비율(Rac/Rdc)이 2% 정도로 측정되었고, 이로부터 표 4 및 표 5와 같은 코일패턴(904) 규격으로 설계되는 경우, 표피효과와 근접효과의 영향이 현저하게 줄어들었음을 확인할 수 있다. 도 9a는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항과 인덕턴스를 도시하고, 도 9b는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항 비율과 품질계수를 도시한다. 도 9a 및 도 9b에 도시된 데이터는 코일패턴(904)뿐만 아니라 차폐재(907)도 구비된 상황에서 실험에 의해 얻어진 측정값을 도시한다.As shown in Table 6, in the bare coil structure, the inductance L measured at the coil pattern 904 is 6.32, the AC resistance Rac is 0.3Ω, the DC resistance Rdc is 0.295Ω, and the quality factor (Q) is 16.94, and the ratio of AC resistance to DC resistance (Rac / Rdc) may be 1.02. By the measured value in this bare coil structure, the inductance L can be larger than in the related art. In particular, it can be seen that the quality factor Q is significantly increased compared with the conventional art. In addition, the ratio of AC resistance and DC resistance (Rac / Rdc) was measured at about 2%, and when the coil pattern 904 is designed as shown in Tables 4 and 5, the effects of the skin effect and the proximity effect were remarkable. It can be seen that the decrease. Figure 9a shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern, Figure 9b shows the resistance ratio and quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do. The data shown in FIGS. 9A and 9B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
도 9a에 도시한 바와 같이, 비교예의 인덕턴스는 9.69μH인데 반해, 제2 실시예의 인덕턴스는 10.9μH로 비교예에 비해 12.48% 이상 커졌다. 비교예의 직류저항은 0.491Ω인데 반해, 제2 실시예의 직류저항은 0.308Ω으로 더 작다. 마찬가지로, 비교예의 교류저항은 0.65Ω인데 반해, 제2 실시예의 교류저항은 0.414Ω로 더 작다. As shown in Fig. 9A, the inductance of the comparative example was 9.69 µH, while the inductance of the second example was 10.9 µH, which was 12.48% or more larger than that of the comparative example. The DC resistance of the comparative example is 0.491Ω, whereas the DC resistance of the second embodiment is smaller, 0.308Ω. Similarly, the AC resistance of the comparative example is 0.65Ω, while the AC resistance of the second embodiment is smaller, 0.414Ω.
이로부터, 제2 실시예에 따른 무선충전코일모듈에서 비교예에 비해 인덕턴스는 더 크며 직류저항과 교류저항은 더 작음을 알 수 있다. From this, it can be seen that in the wireless charging coil module according to the second embodiment, the inductance is larger and the DC resistance and the AC resistance are smaller than those of the comparative example.
도 9b에 도시한 바와 같이, 비교예의 품질계수는 11.99인데 반해, 제2 실시예의 품질계수는 21.27로 비교예에 비해 77.4% 향상되었다. 이에 따라, 최대 품질계수가 확보될 수 있어, 전력전송효율이 현저히 향상될 수 있다. As shown in FIG. 9B, the quality factor of the comparative example is 11.99, whereas the quality factor of the second example is 21.27, which is 77.4% higher than that of the comparative example. Accordingly, the maximum quality factor can be secured, and the power transmission efficiency can be significantly improved.
제2 실시예에 따른 무선충전코일모듈에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제2 도선(904b)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 직류저항(또는 교류저항)은 작아지고 인덕턴스는 커져 수학식 1에 나타내어진 바와 같이 품질계수가 현저히 향상될 수 있다. According to the wireless charging coil module according to the second embodiment, the first conductive line 904a and the second in which some of the winding lines 904_1 to 904_13 of the coil pattern 904 are separated or branched by the slit 911. By including the conducting wire 904b and the width of each of the second conducting wire 904b and the second conducting wire 904b being less than or equal to 2δ, the DC resistance (or AC resistance) becomes small and the inductance becomes large, which is represented by Equation 1. As can be seen, the quality factor can be significantly improved.
제2 실시예에 따른 무선충전코일모듈에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제2 도선(904b)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 품질계수를 향상시키고 코일패턴(904)이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 이와 같이, 권선라인(904_1 내지 904_13) 사이 간격 이 줄어들더라도 교류저항은 커지지 않아 교류저항의 억제 효과가 있다. According to the wireless charging coil module according to the second embodiment, the first conductive line 904a and the second in which some of the winding lines 904_1 to 904_13 of the coil pattern 904 are separated or branched by the slit 911. By including the conductive wire 904b and the width of each of the second conductive wire 904b and the second conductive wire 904b to be less than or equal to 2δ, the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality factor. It is possible to improve and to minimize the occupied area occupied by the coil pattern 904, which makes the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
제2 실시예에 따른 무선충전코일모듈에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 분리 또는 분기된 제1 도선(904a) 및 제2 도선(904b)이 포함되도록 하고, 제2 도선(904b)과 제2 도선(904b) 각각의 폭이 2δ 이하가 되도록 함으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다. According to the wireless charging coil module according to the second embodiment, the first conductive line 904a and the second in which some of the winding lines 904_1 to 904_13 of the coil pattern 904 are separated or branched by the slit 911. By making the conductive wire 904b included and the width of each of the second conductive wire 904b and the second conductive wire 904b being less than or equal to 2δ, the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to provide the same area. Inductance is increased, which in turn can improve the quality factor for the same area.
<제3 실시예>Third Embodiment
제3 실시예는 단지 코일패턴(904)로 구성되되, 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 표피깊이의 특정 배수 범위인 것을 제외하고 제1 및 제2 실시예와 동일하다. 제3 실시예에서 제1 및 제2 실시예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다. 이하에서 누락된 설명은 제1 및 제2 실시예의 설명으로부터 용이하게 이해될 수 있다. The third embodiment consists solely of the coil pattern 904, except that the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 is a specific multiple of the skin depth. Same as the example. In the third embodiment, the same components as those of the first and second embodiments are denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first and second embodiments.
도 10a는 제3 실시예에 따른 무선충전코일모듈을 도시한 평면도이고, 도 10b는 제3 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.10A is a plan view illustrating the wireless charging coil module according to the third embodiment, and FIG. 10B is a cross-sectional view illustrating the wireless charging coil module according to the third embodiment.
도 10a 및 도 10b를 참조하면, 제3 실시예에 따른 무선충전코일모듈(920)은 필름(901), 무선충전코일(903, 906), 차폐재(907) 및 방열재(909)를 포함할 수 있다.10A and 10B, the wireless charging coil module 920 according to the third embodiment may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909. Can be.
필름(901) 상에 무선충전코일(903, 906)이 배치되고, 필름(901) 아래에 순차적으로 차폐재(907) 및 방열재(909)가 배치될 수 있다. The wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
무선충전코일(903, 906)은 중심에 위치된 중공부(906)와 중공부(906)를 둘러싼 코일패턴(904)를 포함하는 코일부(903)를 포함할 수 있다. The wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
제3 실시예에서, 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭은 4δ 내지 5δ일 수 있다. 각 권선라인(904_1 내지 904_13) 간의 간격은 150㎛ 이하일 수 있다. In the third embodiment, the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 may be 4δ to 5δ. An interval between each winding line 904_1 to 904_13 may be 150 μm or less.
제3 실시예에 따른 코일패턴(904)에 의해, 교류저항과 직류저항의 비율(Rac/Rdc)이 15%이내일 수 있다. By the coil pattern 904 according to the third embodiment, the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 15%.
제3 실시예에 따른 코일패턴(904)에 의해, 교류저항과 직류저항의 비율(Rac/Rdc)이 10%이내일 수 있다. By the coil pattern 904 according to the third embodiment, the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 10%.
제3 실시예에 따른 코일패턴(904)에 의해, 교류저항과 직류저항의 비율(Rac/Rdc)이 5%이내일 수 있다. By the coil pattern 904 according to the third embodiment, the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be within 5%.
한편, 무선충전코일(903, 906)의 코일패턴(904) 일측에 차폐재(907)가 배치되는 경우, 차폐재(907)의 영향을 받아 교류저항과 직류저항의 비율(Rac/Rdc)이 코일패턴(904)만 배치되는 경우와 달라질 수 있다. 코일패턴(904)만 배치되는 구조는 배어 코일(bare coil) 구조로 지칭되고, 코일패턴(904)와 차폐재(907)의 결합으로 이루어진 구조는 코일패턴에 차폐재가 부착된 구조로 지칭될 수 있다. On the other hand, when the shielding material 907 is disposed on one side of the coil patterns 904 of the wireless charging coils 903 and 906, the ratio of AC resistance and DC resistance (Rac / Rdc) is affected by the shielding material 907. Only 904 may be different than if disposed. The structure in which only the coil pattern 904 is disposed may be referred to as a bare coil structure, and the structure formed by combining the coil pattern 904 and the shielding material 907 may be referred to as a structure in which a shielding material is attached to the coil pattern. .
예컨대, 코일패턴에 차폐재가 부착된 구조에서는 교류저항과 직류저항의 비율(Rac/Rdc)이 70%이내일 수 있다. 예컨대, 코일패턴에 차폐재가 부착된 구조에서는 교류저항과 직류저항의 비율(Rac/Rdc)이 50%이내일 수 있다. For example, in the structure in which the shielding material is attached to the coil pattern, the ratio (Rac / Rdc) of the AC resistance and the DC resistance may be 70% or less. For example, in the structure in which the shielding material is attached to the coil pattern, a ratio (Rac / Rdc) of AC resistance and DC resistance may be 50% or less.
코일패턴에 차폐재가 부착된 구조에서 인덕턴스(L)는 10.5μH 이상일 수 있다. 코일패턴에 차폐재가 부착된 구조에서 인덕턴스(L)는 11μH 이상일 수 있다.In the structure in which the shielding material is attached to the coil pattern, the inductance L may be 10.5 μH or more. In the structure in which the shielding material is attached to the coil pattern, the inductance L may be 11 μH or more.
베어 코일 구조에서 품질계수(Q)는 16이상일 수 있다. 베어 코일 구조에서 품질계수(Q)는 18이상일 수 있다. In the bare coil structure, the quality factor Q may be 16 or more. In the bare coil structure, the quality factor Q may be 18 or more.
이와 달리, 코일패턴에 차폐재가 부착된 구조에서 품질계수(Q)는 20 이상일 수 있다. 품질계수(Q)가 베어 코일 구조보다 코일패턴에 차폐재가 부착된 구조에서 더 크게 증가될 수 있다. Unlike this, in the structure in which the shielding material is attached to the coil pattern, the quality factor Q may be 20 or more. The quality factor Q may be increased more in the structure in which the shielding material is attached to the coil pattern than in the bare coil structure.
실험에 사용된 코일패턴(904) 규격은 표 7로 나타낼 수 있다. 차폐재(907)는 4개 층으로 구성되고 1400의 차폐율을 가질 수 있다. The coil pattern 904 standard used in the experiment may be shown in Table 7. The shield 907 may consist of four layers and have a shielding rate of 1400.
비교예Comparative example 실험예1Experimental Example 1 실험예2Experimental Example 2 실험예3Experimental Example 3 실험예4 Experimental Example 4 실험예5Experimental Example 5 실험예6Experimental Example 6
Line width(㎛)Line width (㎛) 800800 185185 370370 555555 740740 800800 925925
Line space(㎛)Line space (㎛) 350350 965965 780780 595595 410410 350350 225225
Line pitch(㎛)Line pitch (㎛) 11501150 11501150 11501150 11501150 11501150 11501150 11501150
Coil 외경(mm)Coil Outer Diameter (mm) 48.248.2 48.248.2 48.248.2 48.248.2 48.248.2 48.248.2 48.248.2
Coil 내경(mm)Coil Inner Diameter (mm) 1919 1919 1919 1919 1919 1919 18.2218.22
턴수Turns 1313 1313 1313 1313 1313 1313 1313
실험예 1은 각 권선라인(904_1 내지 904_13)의 폭이 1δ이고, 실험예 2는 각 권선라인(904_1 내지 904_13)의 폭이 2 δ이고, 실험예3은 각 권선라인(904_1 내지 904_13)의 폭이 3 δ이다. 실험예4는 각 권선라인(904_1 내지 904_13)의 폭이 4δ이고, 실험예5는 각 권선라인(904_1 내지 904_13)의 폭이 4.3δ이며, 실험예6은 각 권선라인(904_1 내지 904_13)의 폭이 5δ일 수 있다. 실시 예에 따른 코일패턴(904)의 베어 코일 구조에서의 측정값은 표 8로 나타낼 수 있다.Experimental Example 1 has a width of each of the winding lines 904_1 to 904_13 is 1δ, Experimental Example 2 has a width of 2 δ of each of the winding lines 904_1 to 904_13, and Experimental Example 3 shows a width of each of the winding lines 904_1 to 904_13. The width is 3 δ. Experimental Example 4 has a width of 4δ of each winding line 904_1 to 904_13, Experimental Example 5 has a width of 4.3δ of each winding line 904_1 to 904_13, and Experimental Example 6 shows a width of each of the winding lines 904_1 to 904_13. The width may be 5δ. The measured values in the bare coil structure of the coil pattern 904 according to the embodiment may be shown in Table 8.
실험예1Experimental Example 1 실험예2Experimental Example 2 실험예3Experimental Example 3 실험예4 Experimental Example 4 실험예5Experimental Example 5 실험예6Experimental Example 6
L(μH)L (μH) 6.456.45 6.326.32 6.236.23 6.176.17 6.196.19 6.116.11
Rac(Ω)Rac (Ω) 1.1781.178 0.5560.556 0.3830.383 0.3040.304 0.2810.281 0.2610.261
Rdc(Ω)Rdc (Ω) 1.1881.188 0.5620.562 0.3810.381 0.2890.289 0.2590.259 0.2270.227
QQ 4.404.40 9.149.14 13.0813.08 16.3216.32 17.7217.72 18.8318.83
Rac/RdcRac / Rdc 0.990.99 0.990.99 1.011.01 1.051.05 1.081.08 1.151.15
표 8에 나타내어진 바와 같이, 베어 코일 구조에서의 실험예 4 내지 실험예 6에서 품질계수가 16을 넘었다. 이로부터, 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 4δ 내지 5δ에서 품질계수가 크게 증가되었다. 도 11a는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항과 인덕턴스를 도시하고, 도 11b는 코일패턴에 차폐재가 부착된 구조에서 권선라인의 폭에 따른 저항 비율과 품질계수를 도시한다. 도 11a 및 도 11b에 도시된 데이터는 코일패턴(904)뿐만 아니라 차폐재(907)도 구비된 상황에서 실험에 의해 얻어진 측정값을 도시한다.As shown in Table 8, the quality factor was more than 16 in Experimental Examples 4 to 6 in the bare coil structure. From this, the quality factor of the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 was increased from 4δ to 5δ. 11A shows the resistance and inductance according to the width of the winding line in the structure with the shield attached to the coil pattern, and FIG. 11B shows the resistance ratio and the quality factor according to the width of the winding line in the structure with the shield attached to the coil pattern. do. The data shown in FIGS. 11A and 11B show measured values obtained by experiments in a situation where a shielding material 907 as well as a coil pattern 904 is provided.
도 11a에 도시한 바와 같이, 실험예1 내지 실험예6 모두 인턱턴스가 비교예의 인덕턴스보다 커짐을 알 수 있다. 실험예 3 내지 실험예6 모두 직류저항이 비교예의 직류저항보다 작으며, 교류저항 또한 비교예의 교류저항보다 작음을 알 수 있다.As shown in FIG. 11A, it can be seen that the inductance of Experimental Examples 1 to 6 is larger than that of the comparative example. In Experimental Examples 3 to 6, it can be seen that the DC resistance is smaller than the DC resistance of the comparative example, and the AC resistance is also smaller than the AC resistance of the comparative example.
도 11b에 도시한 바와 같이, 실험예1을 제외하고는 나머지 실험예, 즉 실험예 2 내지 실험예 6 모두 품질계수가 비교예의 품질계수다 커졌다. 실험예4 내지 실험예 6에서의 품질계수가 현저히 향상되었고, 그 중에서도 실시예 5(권선라인의 폭이 4.3δ)에서 가장 높은 품질계수가 획득되었다. 예컨대, 실험예4의 품질계수는 비교예에 비해 68.9% 향상되었다. 예컨대, 실험예5의 품질계수는 비교예에 비해 76% 향상되었다. 예컨대, 실험예6의 품질계수는 비교예에 비해 70% 향상되었다. 이로부터, 제3 실시예에서, 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 4δ 내지 5δ인 경우, 최대 품질계수가 확보될 수 있어, 전력전송효율이 현저히 향상될 수 있다. As shown in FIG. 11B, except for Experimental Example 1, all of the other Experimental Examples, that is, Experimental Examples 2 to 6, the quality coefficient of the comparative example was larger than that of the comparative example. The quality coefficients in Experimental Examples 4 to 6 were remarkably improved, and among them, the highest quality coefficient was obtained in Example 5 (the width of the winding line was 4.3δ). For example, the quality coefficient of Experimental Example 4 was improved by 68.9% compared to the Comparative Example. For example, the quality factor of Experimental Example 5 was improved by 76% compared to the comparative example. For example, the quality factor of Experimental Example 6 is improved by 70% compared to the comparative example. From this, in the third embodiment, when the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 is 4δ to 5δ, the maximum quality factor can be secured, so that the power transmission efficiency can be remarkably improved. Can be.
제3 실시예에 따른 무선충전코일모듈(920)에 따르면, 코일패턴(904) 각각의 폭을 4δ 내지 5δ으로 함으로써, 직류저항(또는 교류저항)은 작아지고 인덕턴스는 커져 수학식 1에 나타내어진 바와 같이 품질계수가 현저히 향상될 수 있다. According to the wireless charging coil module 920 according to the third embodiment, by setting the width of each coil pattern 904 to 4δ to 5δ, the DC resistance (or AC resistance) is reduced and the inductance is increased to be represented by Equation (1). As can be seen, the quality factor can be significantly improved.
제3 실시예에 따른 무선충전코일모듈(920)에 따르면, 코일패턴(904) 각각의 폭을 4δ 내지 5δ으로 함으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 품질계수를 향상시키고 코일패턴(904)이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 이와 같이, 권선라인(904_1 내지 904_13) 사이 간격 이 줄어들더라도 교류저항은 커지지 않아 교류저항의 억제 효과가 있다. According to the wireless charging coil module 920 according to the third embodiment, the width of each coil pattern 904 to 4δ to 5δ, the interval between the winding lines 904_1 to 904_13 is reduced compared to the comparative example to improve the quality coefficient In this case, the area occupied by the coil pattern 904 can be minimized, thereby making the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
제3 실시예에 따른 무선충전코일모듈(920)에 따르면, 코일패턴(904) 각각의 폭을 4δ 내지 5δ으로 함으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다. According to the wireless charging coil module 920 according to the third embodiment, by the width of each coil pattern 904 to 4δ to 5δ, the spacing between the winding lines 904_1 to 904_13 is reduced compared to the comparative example, the inductance compared to the same area Can be increased to improve the quality factor for the same area.
<제4 실시예>Fourth Example
제4 실시예는 코일부(903)의 중심으로부터 외측으로 갈수록 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 커지는 것을 제외하고 제2 실시예에 동일하다. 제4 실시예에서 제1 내지 제3 실시예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다. 이하에서 누락된 설명은 제1 내지 제3 실시예의 설명으로부터 용이하게 이해될 수 있다. The fourth embodiment is the same as the second embodiment except that the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903. In the fourth embodiment, the same components as those of the first to third embodiments are denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first to third embodiments.
도 12a는 제4 실시예에 따른 무선충전코일모듈을 도시한 평면도이고, 도 12b는 제4 실시예에 따른 무선충전코일모듈을 도시한 단면도이다.12A is a plan view illustrating a wireless charging coil module according to a fourth embodiment, and FIG. 12B is a cross-sectional view illustrating a wireless charging coil module according to a fourth embodiment.
도 12a 및 도 12b를 참조하면, 제4 실시예에 따른 무선충전코일모듈(930)은 필름(901), 무선충전코일(903, 906), 차폐재(907) 및 방열재(909)를 포함할 수 있다.12A and 12B, the wireless charging coil module 930 according to the fourth embodiment may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909. Can be.
필름(901) 상에 무선충전코일(903, 906)이 배치되고, 필름(901) 아래에 순차적으로 차폐재(907) 및 방열재(909)가 배치될 수 있다. The wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
무선충전코일(903, 906)은 중심에 위치된 중공부(906)와 중공부(906)를 둘러싼 코일패턴(904)를 포함하는 코일부(903)를 포함할 수 있다. The wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
제4 실시예에서, 코일패턴(904)에 포함된 제1 내지 제13 권선라인(904_1 내지 904_13) 중에서 일부 권선라인에 슬릿(911)에 의해 분리된 제1 도선(904a) 및 제2 도선(904b)이 포함될 수 있다. In the fourth exemplary embodiment, among the first to thirteenth winding lines 904_1 to 904_13 included in the coil pattern 904, the first conductive wire 904a and the second conductive wire separated by the slit 911 in some winding lines ( 904b) may be included.
코일부(903)는 제1 연결부(915a)와 제2 연결부(915b)를 포함할 수 있다. 제1 연결부(915a)는 특정 권선라인, 예컨대 제6 권선라인(904_6)의 끝단과 만나는 제7 권선라인(904_7)의 일 영역에서 제1 도선(904a)과 제2 도선(904b)을 연결시켜 줄 수 있다. 제2 연결부(915b)는 제2 단자(905b)에 인접하는 제13 권선라인(904_13)의 일 영역에서 제1 도선(904a)과 제2 도선(904b)을 연결시켜줄 수 있다. The coil unit 903 may include a first connection part 915a and a second connection part 915b. The first connection part 915a connects the first conductive line 904a and the second conductive line 904b in one region of the seventh winding line 904_7 that meets the end of a specific winding line, for example, the sixth winding line 904_6. Can give The second connector 915b may connect the first conductive line 904a and the second conductive line 904b in one region of the thirteenth winding line 904_13 adjacent to the second terminal 905b.
이와 같은 코일패턴 구조에서, 예컨대 제1 도선(904a) 및 제2 도선(904b)이 포함되지 않는 제1 내지 제6 권선라인(904_1 내지 904_6) 각각의 폭은 4δ 내지 5δ이고, 제 7 내지 제13 권선라인(904_7 내지 904_13) 각각에 포함된 제1 도선(904a) 및 제2 도선(904b) 각각의 폭은 2δ 이하일 수 있다. 제 7 내지 제13 권선라인(904_7 내지 904_13) 각각에 포함된 제1 도선(904a) 및 제2 도선(904b) 사이의 간격, 즉 슬릿(911)의 폭은 제1 내지 제6 권선라인(904_1 내지 904_6) 사이에서 인접하는 코일패턴(904) 간의 간격과 동일하거나 이보다 좁을 수 있다. 예컨대, 1 내지 제6 권선라인(904_1 내지 904_6) 사이에서 인접하는 코일패턴(904) 간의 간격이 150㎛인 경우, 제 7 내지 제13 권선라인(904_7 내지 904_13) 각각에 포함된 제1 도선(904a) 및 제2 도선(904b) 사이의 간격은 150㎛ 이하일 수 있다. In such a coil pattern structure, for example, the width of each of the first to sixth winding lines 904_1 to 904_6 not including the first conductive line 904a and the second conductive line 904b is 4δ to 5δ, and the seventh to seventh layers. A width of each of the first conductive line 904a and the second conductive line 904b included in each of the 13 winding lines 904_7 to 904_13 may be 2δ or less. The interval between the first conductive line 904a and the second conductive line 904b included in each of the seventh to thirteenth winding lines 904_7 to 904_13, that is, the width of the slit 911, is the first to sixth winding line 904_1. The distance between the adjacent coil patterns 904 and 904_6 may be equal to or smaller than the distance between the adjacent coil patterns 904. For example, when the distance between the coil patterns 904 adjacent to each other between the first to sixth winding lines 904_1 to 904_6 is 150 μm, the first conductive line included in each of the seventh to thirteenth winding lines 904_7 to 904_13 ( An interval between 904a and the second conductive wire 904b may be 150 μm or less.
아울러, 제1 권선라인으로부터 제6 권선라인(904_1 내지 904_6)로 갈수록 그 폭이 커질 수 있다. 제7 권선라인 내지 제13 권선라인(904_7 내지 904_13)로 갈수록 제7 내지 제13 권선라인(904_7 내지 904_13) 각각에 포함된 제1 도선(904a) 및 제2 도선(904b) 각각의 폭이 커질 수 있다. 예컨대, 제8 권선라인(904_8)의 제1 도선(904a)의 폭은 제7 권선라인(904_7)의 제1 도선(904a)의 폭보다 클 수 있다. 예컨대, 제10 권선라인(904_10)의 제1 도선(904a)의 폭은 제9 권선라인(904_9)의 제1 도선(904a)의 폭보다 클 수 있다. 마찬가지로, 제8 권선라인(904_8)의 제2 도선(904b)의 폭은 제7 권선라인(904_7)의 제2 도선(904b)의 폭보다 클 수 있다. 예컨대, 제10 권선라인(904_10)의 제2 도선(904b)의 폭은 제9 권선라인(904_9)의 제2 도선(904b)의 폭보다 클 수 있다. In addition, the width thereof may increase from the first winding line to the sixth winding lines 904_1 to 904_6. As the seventh to thirteenth winding lines 904_7 to 904_13 extend, the width of each of the first and second conductive lines 904a and 904b included in each of the seventh to thirteenth winding lines 904_7 to 904_13 increases. Can be. For example, the width of the first conductive line 904a of the eighth winding line 904_8 may be greater than the width of the first conductive line 904a of the seventh winding line 904_7. For example, the width of the first conductive line 904a of the tenth winding line 904_10 may be greater than the width of the first conductive line 904a of the ninth winding line 904_9. Similarly, the width of the second lead 904b of the eighth winding line 904_8 may be greater than the width of the second lead 904b of the seventh winding line 904_7. For example, the width of the second conductive line 904b of the tenth winding line 904_10 may be greater than the width of the second conductive line 904b of the ninth winding line 904_9.
제7 내지 제13 권선라인(904_7 내지 904_13) 각각의 제1 도선(904a)의 폭과 제2 도선(904b)의 폭은 동일할 수 있지만, 이에 대해서는 한정하지 않는다. The width of the first conductive line 904a and the width of the second conductive line 904b of each of the seventh to thirteenth winding lines 904_7 to 904_13 may be the same, but is not limited thereto.
제4 실시예에 따른 무선충전코일모듈(930)에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리하고, 코일부(903)의 중심으로부터 외측으로 갈수록 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 커짐으로써, 직류저항(또는 교류저항)은 작아지고 인덕턴스는 커져 수학식 1에 나타내어진 바와 같이 품질계수가 현저히 향상될 수 있다. According to the wireless charging coil module 930 according to the fourth embodiment, some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911. 904b and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil portion 903, so that the DC resistance (or AC resistance) becomes small. As the inductance increases, the coefficient of quality can be remarkably improved as shown in Equation (1).
제4 실시예에 따른 무선충전코일모듈(930)에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리하고, 코일부(903)의 중심으로부터 외측으로 갈수록 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 커짐으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 품질계수를 향상시키고 코일패턴(904)이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 이와 같이, 권선라인(904_1 내지 904_13) 사이 간격 이 줄어들더라도 교류저항은 커지지 않아 교류저항의 억제 효과가 있다. According to the wireless charging coil module 930 according to the fourth embodiment, some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911. 904b, and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903, so that the gap between the winding lines 904_1 to 904_13 is increased. It can be reduced compared to the comparative example to improve the quality factor and to minimize the occupied area occupied by the coil pattern 904, which makes the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
제4 실시예에 따른 무선충전코일모듈(930)에 따르면, 코일패턴(904)의 권선라인(904_1 내지 904_13) 중 일부 권선라인이 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리하고, 코일부(903)의 중심으로부터 외측으로 갈수록 코일패턴(904)에 포함된 권선라인(904_1 내지 904_13) 각각의 폭이 커짐으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다. According to the wireless charging coil module 930 according to the fourth embodiment, some of the winding lines 904_1 to 904_13 of the coil pattern 904 are connected to the first conductive wire 904a and the second conductive wire by the slit 911. 904b, and the width of each of the winding lines 904_1 to 904_13 included in the coil pattern 904 increases toward the outside from the center of the coil unit 903, so that the gap between the winding lines 904_1 to 904_13 is increased. As compared with the comparative example, it is reduced, and thus the inductance to the same area is increased, thereby improving the quality factor compared to the same area.
<제5 실시예>Fifth Embodiment
제5 실시예는 분리된 제1 및 제2 도선(904a, 904b) 사이를 전기적으로 연결시키는 적어도 하나 이상의 연결라인(917)이 구비되는 것을 제외하고 제1 실시예와 동일하다. 제5 실시예에서 제1 내지 제4 실시예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하고 상세한 설명은 생략한다. 이하에서 누락된 설명은 제1 내지 제4 실시예의 설명으로부터 용이하게 이해될 수 있다. The fifth embodiment is the same as the first embodiment except that at least one connection line 917 is provided which electrically connects the separated first and second leads 904a and 904b. In the fifth embodiment, the same components as those in the first to fourth embodiments will be denoted by the same reference numerals and detailed description thereof will be omitted. The description omitted below can be easily understood from the description of the first to fourth embodiments.
도 13는 제5 실시예에 따른 무선충전코일모듈을 도시한 평면도이다.FIG. 13 is a plan view illustrating a wireless charging coil module according to a fifth embodiment.
도 13를 참조하면, 제5 실시예에 따른 무선충전코일모듈(940)은 필름(901), 무선충전코일(903, 906), 차폐재(907) 및 방열재(909)를 포함할 수 있다.Referring to FIG. 13, the wireless charging coil module 940 according to the fifth embodiment may include a film 901, wireless charging coils 903 and 906, a shielding material 907, and a heat dissipating material 909.
필름(901) 상에 무선충전코일(903, 906)이 배치되고, 필름(901) 아래에 순차적으로 차폐재(907) 및 방열재(909)가 배치될 수 있다. The wireless charging coils 903 and 906 may be disposed on the film 901, and the shielding material 907 and the heat dissipating material 909 may be sequentially disposed below the film 901.
무선충전코일(903, 906)은 중심에 위치된 중공부(906)와 중공부(906)를 둘러싼 코일패턴(904)를 포함하는 코일부(903)를 포함할 수 있다. The wireless charging coils 903 and 906 may include a coil part 903 including a hollow part 906 positioned at the center and a coil pattern 904 surrounding the hollow part 906.
코일패턴(904) 각각은 제1 도선(904a), 제2 도선(904b) 및 슬릿(911)을 포함할 수 있다. 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리될 수 있다.Each of the coil patterns 904 may include a first conductive line 904a, a second conductive line 904b, and a slit 911. The first wire 904a and the second wire 904b may be separated by the slit 911.
코일부(903)는 그 일측과 타측에서 제1 도선(904a)과 제2 도선(904b)을 전기적으로 연결시키는 제1 및 제2 연결부(913a, 913b)를 포함할 수 있다. 제1 연결부(913a)는 제1 단자(905a)에 인접하여 위치되고, 제2 연결부(913b)는 제2 단자(905b)에 인접하여 위치될 수 있다. The coil unit 903 may include first and second connection parts 913a and 913b electrically connecting the first and second conductive wires 904a and 904b on one side and the other side thereof. The first connector 913a may be located adjacent to the first terminal 905a, and the second connector 913b may be located adjacent to the second terminal 905b.
다른 예로서, 제1 연결부(913a)는 제1 단자(905a)에 포함되고, 제2 연결부(913b)는 제2 단자(905b)에 포함될 수도 있다.As another example, the first connector 913a may be included in the first terminal 905a, and the second connector 913b may be included in the second terminal 905b.
코일부(903)는 제1 도선(904a)과 제2 도선(904b)을 전기적으로 연결시키는 적어도 하나 이상의 연결라인(917)을 포함할 수 있다. 연결라인은 제1 도선(904a) 및 제2 도선(904b)과 일체로 형성될 수 있다. 연결라인은 슬릿(911)을 가로질러 배치될 수 있다. 연결라인은 일정 간격으로 배치될 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 연결라인은 도 13에 도시한 바와 같이, 2시 방향을 따라 각 코일패턴(904)의 제1 도선(904a)과 제2 도선(904b)을 연결시키는 제1 연결라인, 5시 방향을 따라 각 코일패턴(904)의 제1 도선(904a)과 제2 도선(904b)을 연결시키는 제2 연결라인, 7시 방향을 따라 각 코일패턴(904)의 제1 도선(904a)과 제2 도선(904b)을 연결시키는 제3 연결라인 및 10시 방향을 따라 각 코일패턴(904)의 제1 도선(904a)과 제2 도선(904b)을 연결시키는 제4 연결라인을 포함할 수 있다. The coil unit 903 may include at least one connection line 917 for electrically connecting the first conductive line 904a and the second conductive line 904b. The connection line may be integrally formed with the first conductive line 904a and the second conductive line 904b. The connection line may be disposed across the slit 911. Connection lines may be arranged at regular intervals, but is not limited thereto. For example, as shown in FIG. 13, the first connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904 along the 2 o'clock direction and the 5 o'clock direction as shown in FIG. Accordingly, a second connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904, and the first conductive line 904a and the second conductive line of each coil pattern 904 along the 7 o'clock direction. A third connection line connecting the conductive line 904b and a fourth connection line connecting the first conductive line 904a and the second conductive line 904b of each coil pattern 904 along the 10 o'clock direction may be included.
연결라인은 브릿지(bridge)로 지칭될 수도 있다. The connection line may be referred to as a bridge.
적어도 하나 이상의 연결라인에 의해 각 코일패턴(904)의 슬릿은 적어도 하나 이상의 슬릿으로 구분될 수도 있다. 예컨대, 제10 권선라인(904_10)이 3개의 연결라인이 구비되는 경우, 3개의 연결라인에 의해 4개의 슬릿이 형성될 수 있다. The slits of each coil pattern 904 may be divided into at least one or more slits by at least one or more connection lines. For example, when the tenth winding line 904_10 includes three connection lines, four slits may be formed by the three connection lines.
각 코일패턴(904)이 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)이 분리도는 경우, 제1 도선(904a)과 제2 도선(904b) 각각의 회전 반경이 다르므로, 교류전력의 위상차가 발생된다. 특히, 고주파 영역에서 이러한 위상차는 더욱 더 커지게 된다. When the first conductive wire 904a and the second conductive wire 904b are separated from each other by the slit 911 of each coil pattern 904, the radius of rotation of each of the first conductive wire 904a and the second conductive wire 904b is different. Therefore, the phase difference of AC power is generated. In particular, this phase difference becomes even larger in the high frequency region.
제5 실시예에 따르면, 각 코일패턴(904)이 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리되는 경우, 적어도 하나 이상의 연결라인에 의해 제1 도선(904a)과 제2 도선(904b)이 연결됨으로써, 교류전력의 위상차의 발생을 억제할 수 있다.According to the fifth embodiment, when each coil pattern 904 is separated into the first conductive wire 904a and the second conductive wire 904b by the slit 911, the first conductive wire 904a is formed by at least one connection line. ) And the second conductive line 904b can be suppressed from generating a phase difference of AC power.
제5 실시예에 따른 무선충전코일모듈(940)에 따르면, 코일패턴(904)이 각각 슬릿(911)에 의해 제1 도선(904a)과 제2 도선(904b)로 분리되고 하나 이상의 연결라인에 의해 제1 도선(904a)과 제2 도선(904b)을 연결됨으로써, 직류저항(또는 교류저항)은 작아지고 인덕턴스는 커져 수학식 1에 나타내어진 바와 같이 품질계수가 현저히 향상될 수 있다. According to the wireless charging coil module 940 according to the fifth embodiment, the coil pattern 904 is separated into the first conductive wire 904a and the second conductive wire 904b by the slit 911 and connected to one or more connection lines. By connecting the first conductive wire 904a and the second conductive wire 904b, the DC resistance (or AC resistance) is reduced and the inductance is increased, so that the quality coefficient can be remarkably improved.
제5 실시예에 따른 무선충전코일모듈(940)에 따르면, 하나 이상의 연결라인에 의해 제1 도선(904a)과 제2 도선(904b)을 연결됨으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 품질계수를 향상시키고 코일패턴(904)이 차지하는 점유면적을 최소화할 수 있어 제품의 콤팩트화가 가능하다. 이와 같이, 권선라인(904_1 내지 904_13) 사이 간격 이 줄어들더라도 교류저항은 커지지 않아 교류저항의 억제 효과가 있다. According to the wireless charging coil module 940 according to the fifth embodiment, the distance between the winding lines 904_1 to 904_13 is compared by connecting the first conductive wire 904a and the second conductive wire 904b by one or more connection lines. Compared with the example, the quality factor is improved and the occupied area occupied by the coil pattern 904 can be minimized, thereby making the product compact. As such, even if the distance between the winding lines 904_1 to 904_13 decreases, the AC resistance does not increase, thereby suppressing the AC resistance.
제5 실시예에 따른 무선충전코일모듈(940)에 따르면, 하나 이상의 연결라인에 의해 제1 도선(904a)과 제2 도선(904b)을 연결됨으로써, 권선라인(904_1 내지 904_13) 사이 간격 이 비교예에 비해 줄어들어 동일 면적 대비 인덕턴스가 증가되어 결국 동일 면적 대비 품질계수를 향상시킬 수 있다. According to the wireless charging coil module 940 according to the fifth embodiment, the distance between the winding lines 904_1 to 904_13 is compared by connecting the first conductive wire 904a and the second conductive wire 904b by one or more connection lines. It can be reduced compared to the example, and the inductance to the same area is increased, thereby improving the quality factor for the same area.
<무선충전코일의 제조 방법><Method of manufacturing wireless charging coil>
도 14 내지 도 19는 실시 예에 따른 무선충전코일의 제조 방법을 설명하기 위한 도면이다.14 to 19 are views for explaining a method of manufacturing a wireless charging coil according to the embodiment.
도 14에 도시한 바와 같이, 도전체(1201), 접착층(1700) 및 필름(1800)이 준비될 수 있다. As shown in FIG. 14, the conductor 1201, the adhesive layer 1700, and the film 1800 may be prepared.
일 실시 예에서 도전체(1201)는 구리나 구리를 포함하는 합금으로 형성될 수 있다. 구리는 압연박, 전해박 형태가 사용될 수 있다. 도전체(1201)는 요구되는 제품의 사양에 따라 다양한 두께를 가질 수 있다. 일 실시 예에서 도전체(1201)의 두께는 150㎛ 이하일 수 있으나, 이는 예시에 불과하다. 최적 실시예에 따르면 도전체(1201)의 두께는 120㎛ 일 수 있다.In one embodiment, the conductor 1201 may be formed of copper or an alloy including copper. Copper may be used in the form of a rolled foil, an electrolytic foil. The conductor 1201 may have various thicknesses depending on the specifications of the required product. In an embodiment, the thickness of the conductor 1201 may be 150 μm or less, but this is only an example. According to an exemplary embodiment, the thickness of the conductor 1201 may be 120 μm.
접착층(1700)은 도전체(1201)와 필름(1800)의 접착력을 강화시키기 위한 것으로, 열경화성 수지가 사용될 수 있으나, 이에 한정될 필요는 없다. 접착층(1700)의 두께는 17㎛일 수 있으나, 이는 예시에 불과하다.The adhesive layer 1700 is used to reinforce the adhesive force between the conductor 1201 and the film 1800, and a thermosetting resin may be used, but is not limited thereto. The thickness of the adhesive layer 1700 may be 17 μm, but this is only an example.
필름(1800)은 도전체(1201)가 일정한 도전 패턴을 형성하는 공정에서 도전체(1201)를 보호하는 역할을 수행한다. 구체적으로, 필름(1800)은 후술할 식각 공정에서 도전체(1201)를 지지하여 일정한 도전 패턴을 형성하도록 도전체(1201)를 보호할 수 있다.The film 1800 serves to protect the conductor 1201 in a process in which the conductor 1201 forms a constant conductive pattern. Specifically, the film 1800 may protect the conductor 1201 to support the conductor 1201 to form a predetermined conductive pattern in an etching process to be described later.
일 실시 예에서 필름(1800)은 PI(polyimide) 필름이나 PET(Polyethylene terephthalate) 필름이 사용될 수 있으나, 이에 한정될 필요는 없다.In an embodiment, the film 1800 may be a polyimide (PI) film or a polyethylene terephthalate (PET) film, but is not limited thereto.
도 15에 도시한 바와 같이, 도전체(1201)와 필름(1800)은 접착층(1700)을 통해 부착될 수 있다. 상기 부착은 라미네이팅(laminating) 공정이 이용될 수 있다. 라미네이팅(laminating) 공정은 소정의 열과 압력을 가하여 서로 다른 재료의 물질을 접착시키는 공정이다.As shown in FIG. 15, the conductor 1201 and the film 1800 may be attached through the adhesive layer 1700. The attachment may be a laminating process. The laminating process is a process of bonding materials of different materials by applying predetermined heat and pressure.
도 16에 도시한 바와 같이, 도전체(1201)의 상면에 감광막(1900)이 부착될 수 있다. 감광막(1900)은 도전체(1201)를 식각하여 일정한 도전 패턴을 형성하기 위한 것으로, UV 노광 타입 또는 LDI 노광 타입의 필름이 사용될 수 있다. 또 다른 실시 예에서 도전체(1201)의 상면에는 감광막(1900) 대신 감광성 도포액이 도포될 수도 있다.As illustrated in FIG. 16, a photosensitive film 1900 may be attached to an upper surface of the conductor 1201. The photosensitive film 1900 is used to form a constant conductive pattern by etching the conductor 1201, and a film of UV exposure type or LDI exposure type may be used. In another embodiment, a photosensitive coating liquid may be applied to the upper surface of the conductor 1201 instead of the photosensitive film 1900.
도 17에 도시한 바와 같이, 감광막(1900)이 노광되고 현상되어 마스크 패턴(1910)이 형성될 수 있다.As illustrated in FIG. 17, the photosensitive film 1900 may be exposed and developed to form a mask pattern 1910.
마스크 패턴(1910)은 상기 노광 및 현상 공정을 통해 일정한 도전 패턴이 형성될 위치의 상면에 형성될 수 있다.The mask pattern 1910 may be formed on an upper surface of a position where a predetermined conductive pattern is to be formed through the exposure and development processes.
노광은 도전 패턴이 형성될 부분과 형성되지 않을 부분을 구분하여 감광막(1900)에 빛을 조사하는 것을 의미한다. 즉, 노광은 도전 패턴이 형성되지 않을 부분에 빛을 조사하는 공정이다. 현상은 노광에 의해 빛이 조사된 부분을 제거하는 공정을 의미한다.Exposure means irradiating light to the photosensitive film 1900 by dividing a portion where a conductive pattern is to be formed from a portion where a conductive pattern is not to be formed. That is, exposure is a process of irradiating light to the part in which a conductive pattern is not formed. The development means a process of removing a portion irradiated with light by exposure.
상기 노광 및 현상 공정에 의해 코일부(제1 내지 제5 실시예의903 참조)가 형성될 부분에 마스크 패턴(1910)이 형성될 수 있다. 마스크 패턴(1910)에 의해 노출되는 도전체(1201) 부분이 식각될 수 있다.The mask pattern 1910 may be formed at a portion where the coil part (see 903 of the first to fifth embodiments) is to be formed by the exposure and development processes. A portion of the conductor 1201 exposed by the mask pattern 1910 may be etched.
도 18에 도시한 바와 같이, 식각(Etching) 공정을 통해 마스크 패턴(1910)이 형성되지 않은 부분에 대응되는 도전체(1201)이 식각될 수 있다. 식각은 마스크 패턴(1910)이 형성되지 않는 부분에 위치한 도전체(1201)와 화학 반응하는 물질을 이용하여 마스크 패턴(1910)이 형성되지 않는 부분에 위치한 도전체(1201)를 부식시켜 없애는 공정을 의미한다. 일 실시 예에서 도전체(1201)는 습식 또는 건식 식각에 의해 패터닝 될 수 있다.As illustrated in FIG. 18, the conductor 1201 corresponding to a portion where the mask pattern 1910 is not formed may be etched through an etching process. Etching is a process of etching and removing the conductor 1201 in a portion where the mask pattern 1910 is not formed by using a material that chemically reacts with the conductor 1201 in the portion where the mask pattern 1910 is not formed. it means. In one embodiment, the conductor 1201 may be patterned by wet or dry etching.
도 19에 도시한 바와 같이, 마스크 패턴(1910)이 제거됨으로써, 코일패턴(제1 내지 제5 실시예의 904 참조)를 포함하는 코일부(903)와 제1 및 제2 단자(905a, 905b)이 형성될 수 있다.As shown in FIG. 19, the mask pattern 1910 is removed, whereby the coil portion 903 including the coil patterns (see 904 of the first to fifth embodiments) and the first and second terminals 905a and 905b. This can be formed.
이하에서는 품질계수를 향상시킬 수 있는 최적 설계가 가능한 무선충전코일모듈을 설명한다.Hereinafter will be described a wireless charging coil module capable of optimal design that can improve the quality factor.
<제6 실시예>Sixth Example
도 20은 제6 실시예에 따른 무선충전코일모듈을 도시한 평면도이고, 도 21은 도 20의 A 영역을 도시한 확대도이며, 도 22는 도 20의 B 영역을 도시한 확대도이다. 또한, 도 23은 도 20에 도시된 무선충전코일모듈에서 X-Y라인을 따라 절단한 단면도이다.20 is a plan view illustrating a wireless charging coil module according to a sixth embodiment, FIG. 21 is an enlarged view of region A of FIG. 20, and FIG. 22 is an enlarged view of region B of FIG. 20. In addition, Figure 23 is a cross-sectional view taken along the X-Y line in the wireless charging coil module shown in FIG.
도 20 내지 도 23을 참고하면, 제6 실시예에 따른 무선충전코일모듈(2000)은 필름(2001)을 포함할 수 있다. 필름(2001)은 무선충전코일(2002)을 형성하기 위한 기판으로 작용할 수 있다. 또한, 필름(2001)은 무선충전코일(2002)을 보호하고 지지할 수 있다. 필름(2001)은 두께가 얇고 유연한(flexible) 재질로 형성될 수 있다. 구체적으로, 필름(2001)은 PI(polyimide)나 PET(Polyethylene terephthalate)일 수 있다. 필름(2001)은 무선충전코일(2002) 위쪽 또는 아래쪽에 형성될 수 있다. 필름(2001)은 무선충전코일(2002) 위쪽과 아래에 모두 형성될 수 있다.20 to 23, the wireless charging coil module 2000 according to the sixth embodiment may include a film 2001. The film 2001 may serve as a substrate for forming the wireless charging coil 2002. In addition, the film 2001 may protect and support the wireless charging coil 2002. The film 2001 may be formed of a thin material and a flexible material. In detail, the film 2001 may be polyimide (PI) or polyethylene terephthalate (PET). The film 2001 may be formed above or below the wireless charging coil 2002. The film 2001 may be formed both above and below the wireless charging coil 2002.
제6 실시예에 따른 무선충전코일모듈(2000)은 차폐재(2007)를 포함할 수 있다. 차폐재(2007)는 무선충전코일(2002)의 전자기장을 차폐시킬 수 있다. 차폐재(2007)는 예컨대, 페라이트(ferrite) 재질 또는 리본(Ribbon) 재질을 포함하여 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 차폐재(2007)는 무선충전코일(2002)을 지지할 수 있다. 차폐재(2007)의 면적은 무선충전코일(2002)의 면적과 같거나 클 수 있다. The wireless charging coil module 2000 according to the sixth embodiment may include a shielding material 2007. The shielding material 2007 may shield the electromagnetic field of the wireless charging coil 2002. The shielding material 2007 may include, for example, a ferrite material or a ribbon material, but is not limited thereto. The shielding material 2007 may support the wireless charging coil 2002. The area of the shielding material 2007 may be equal to or larger than that of the wireless charging coil 2002.
차폐재(2007)는 필름(2001)의 아래에 배치될 수 있다. 차폐재(2007)는 접착재(미도시)를 이용하여 필름(2001)에 부착될 수 있다. 접착재가 매우 얇기 때문에 차폐재(2007)는 필름(2001)의 하면에 접촉되는 것으로 간주될 수 있다. 접착재는 방열 성능과 절연 특성이 우수한 재질로 이루어질 수 있다. The shielding material 2007 may be disposed under the film 2001. The shielding material 2007 may be attached to the film 2001 using an adhesive (not shown). Since the adhesive is very thin, the shield 2007 may be considered to be in contact with the bottom surface of the film 2001. The adhesive may be made of a material having excellent heat dissipation performance and insulation properties.
제6 실시예에 따른 무선충전코일모듈(2000)은 방열재(2009)를 포함할 수 있다. 방열재(2009)는 차폐재(2007)의 아래에 배치될 수 있다. 방열재(2009)는 접착재(미도시)를 이용하여 차폐재(2007)에 부착될 수 있다. 방열재(2009)는 차폐재(2007)의 하면과 접촉될 수 있다. 방열재(2009)는 금속 재질로 이루어질 수 있다. 예컨대, 방열재(2009)는 구리(Cu) 을 포함하여 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. The wireless charging coil module 2000 according to the sixth embodiment may include a heat dissipation 2009. The heat dissipation member 2009 may be disposed under the shielding material 2007. The heat dissipation member 2009 may be attached to the shielding material 2007 using an adhesive (not shown). The heat dissipation member 2009 may be in contact with the bottom surface of the shielding member 2007. The heat radiator 2009 may be made of a metal material. For example, the heat dissipation member 2009 may include copper (Cu), but is not limited thereto.
도시되지 않았지만, 하나 이상의 방열재(2009)는 차폐재(2007) 내부에 배치될 수도 있다. 이러한 경우, 방열재(2009)는 플레이트 형상을 가지거나 방열 특성이 우수한 미립자(particles)나 비드(beads)일 수 있다.Although not shown, one or more heat dissipators 2009 may be disposed inside the shield 2007. In this case, the heat dissipation member 2009 may be particles or beads having a plate shape or excellent heat dissipation characteristics.
도시되지 않았지만, 하나 이상의 차폐재(2007)는 방열재(2009) 내부에 배치될 수 있다. Although not shown, one or more shields 2007 may be disposed inside the heat shield 2009.
방열재(2009)는 무선충전코일(2002)과 차폐재(2007)를 지지할 수 있다. 방열재(2009)는 무선충전코일(2002)에서 발생된 열을 외부로 방출시킬 수 있다. 방열재(2009)의 두께가 두꺼울수록 방열 성능이 우수하지만, 두께에 비례하여 무선충전코일모듈(2000)의 부피가 커지므로, 방열재(2009)의 두께에 대한 최적화가 요구된다. 예컨대, 방열재(2009)의 두께는 차폐재(2007)의 두께에 비해 2배 내지 5배 두꺼울 수 있다. The heat dissipation member 2009 may support the wireless charging coil 2002 and the shielding material 2007. The heat dissipation member 2009 may release heat generated from the wireless charging coil 2002 to the outside. The greater the thickness of the heat dissipation member 2009, the better the heat dissipation performance. However, since the volume of the wireless charging coil module 2000 increases in proportion to the thickness, optimization of the thickness of the heat dissipation member 2009 is required. For example, the thickness of the heat dissipation member 2009 may be 2 to 5 times thicker than the thickness of the shielding material 2007.
방열재(2009)는 무선충전코일모듈(2000)의 발열 상태에 따라 선택적으로 채택될 수 있다. 예컨대, 무선충전코일모듈(2000)의 발열이 발생되지 않는 경우, 방열재(2009)는 생략될 수 있다. The heat dissipation member 2009 may be selectively adopted according to the heat generation state of the wireless charging coil module 2000. For example, when heat generation of the wireless charging coil module 2000 does not occur, the heat dissipation member 2009 may be omitted.
제6 실시예에 따른 무선충전코일모듈(2000)은 무선충전코일(2002)을 포함할 수 있다. 무선충전코일(2002)은 무선전력송신기로부터의 무선전력을 수신하기 위한 부재로서, 예컨대 도 6에 도시된 제1 안테나(810)일 수 있지만, 이에 대해서는 한정하지 않는다.The wireless charging coil module 2000 according to the sixth embodiment may include a wireless charging coil 2002. The wireless charging coil 2002 is a member for receiving wireless power from the wireless power transmitter, and may be, for example, the first antenna 810 illustrated in FIG. 6, but is not limited thereto.
제6 실시예에서, 무선충전코일(2002)은 권선부(2003)를 포함할 수 있다. 제6 실시예에서, 무선충전코일(2002)은 권선부(2003)에 의해 둘러싸인 중공부(2006)를 포함할 수 있다. 권선부(2003)는 필름(2001)의 상면에 배치될 수 있다. 도시되지 않았지만, 권선부(2003)가 직접 차폐재(2007)의 상면에 배치될 수도 있다.In a sixth embodiment, the wireless charging coil 2002 may include a winding portion (2003). In the sixth embodiment, the wireless charging coil 2002 may include a hollow portion 2006 surrounded by the winding portion 2003. The winding part 2003 may be disposed on an upper surface of the film 2001. Although not shown, the winding part 2003 may be directly disposed on the upper surface of the shielding material 2007.
권선부(2003)의 일측, 즉 중공부(2006)에서 권선부(2003)의 내측에 인접한 영역에 제1 단자(2005a)가 배치될 수 있다. 권선부(2003)의 타측, 즉 권선부(2003)의 외측에 인접한 영역에 제2 단자(2005b)가 배치될 수 있다. The first terminal 2005a may be disposed on one side of the winding portion 2003, that is, the hollow portion 2006 adjacent to the inside of the winding portion 2003. The second terminal 2005b may be disposed on the other side of the winding part 2003, that is, an area adjacent to the outside of the winding part 2003.
도시되지 않았지만, 무선충전코일(2002)은 중공부(2006)에 인접한 제1 단자(2005a)에 연결되어 코일패턴(2004)을 가로질러 코일패턴(2004)의 외측으로 연장되는 연결부재를 포함할 수 있다. 코일패턴(2004)의 외측으로 연장된 연결부재는 제2 단자(2005b)에 인접하여 배치되는 연결단자에 연결될 수 있다. 연결부재와 코일패턴(2004) 사이의 전기적으로 쇼트를 방지하기 위해 연결부재와 코일패턴(2004) 사이에 절연층이 배치될 수 있다. 연결부재는 코일패턴(2004)과 동일한 금속 재질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다. Although not shown, the wireless charging coil 2002 may include a connection member connected to the first terminal 2005a adjacent to the hollow portion 2006 and extending outward of the coil pattern 2004 across the coil pattern 2004. Can be. The connection member extending outward of the coil pattern 2004 may be connected to a connection terminal disposed adjacent to the second terminal 2005b. An insulating layer may be disposed between the connecting member and the coil pattern 2004 to prevent an electrical short between the connecting member and the coil pattern 2004. The connection member may be formed of the same metal material as the coil pattern 2004, but is not limited thereto.
예컨대, 권선부(2003)의 일측은 제1 단자(2005a)에 연결되고, 권선부(2003)의 타측은 제2 단자(2005b)에 연결될 수 있다. 권선부(2003)는 복수 회 권선될 수 있다. 권선부(2003)의 권선 방향은 시계 방향 또는 반시계 방향일 수 있다. 권선부(2003), 제1 단자(2005a) 및 제2 단자(2005b)는 일체형으로 형성될 수 있다. 권선부(2003), 제1 단자(2005a) 및 제2 단자(2005b)은 금속 재질로 이루어질 수 있다. 또는 제1 및 제2 단자(2005a, 2005b)가 권선부(2003)와 별개로 형성된 후, 권선부(2003)에 본딩 공정에 의해 전기적으로 연결될 수 있다. 제1 및 제2 단자(2005a, 2005b)는 전원을 공급하는 회로부에 전기적으로 연결될 수 있다. 예컨대, 제1 및 제2 단자(2005a, 2005b)에 교류전압이 인가되는 경우, 중공부(2006)를 기준으로 주기적으로 시계방향 또는 반시계 방향으로 코일패턴(2004)에 전류가 흐를 수 있다. For example, one side of the winding unit 2003 may be connected to the first terminal 2005a, and the other side of the winding unit 2003 may be connected to the second terminal 2005b. The winding part 2003 may be wound a plurality of times. The winding direction of the winding part 2003 may be clockwise or counterclockwise. The winding part 2003, the first terminal 2005a, and the second terminal 2005b may be integrally formed. The winding part 2003, the first terminal 2005a, and the second terminal 2005b may be made of a metal material. Alternatively, after the first and second terminals 2005a and 2005b are formed separately from the winding part 2003, the first and second terminals 2005a and 2005b may be electrically connected to the winding part 2003 by a bonding process. The first and second terminals 2005a and 2005b may be electrically connected to a circuit unit for supplying power. For example, when an AC voltage is applied to the first and second terminals 2005a and 2005b, a current may flow in the coil pattern 2004 in a clockwise or counterclockwise direction periodically based on the hollow portion 2006.
제6 실시예에서, 권선부(2003)의 코일은 스플릿(split) 구조를 가질 수 있다. 즉, 권선부(2003)의 코일은 개구(2021c, opening)에 의해 제1-1 도선(2021a)과 제1-2 도선(2021b)으로 분할(또는 분리)될 수 있다. 개구(2021c)는 슬릿(slit), 틈(crevice), 홀(hole), 구멍 등으로 지칭될 수 있다. 제1-1 도선(2021a)는 제1 스플릿으로 지칭되고, 제1-2 도선(2021b) 은 제2 스플릿으로 지칭될 수 있다. In the sixth embodiment, the coil of the winding part 2003 may have a split structure. That is, the coil of the winding part 2003 may be divided (or separated) into the first-first conductive wire 2021a and the first-second conductive wire 2021b by the opening 2021c (opening). The opening 2021c may be referred to as a slit, crevice, hole, hole, or the like. The first-first conductive wire 2021a may be referred to as a first split, and the first-second conductive wire 2021b may be referred to as a second split.
스플릿 구조를 갖지 않는 경우 권선부(2003)의 코일의 코일 선폭이나 직경은 2δ를 초과할 수 있다. 여기서, δ는 수학식 3으로 나타낸 표피깊이일 수 있다. When not having a split structure, the coil line width or diameter of the coil of the winding part 2003 may exceed 2δ. Here, δ may be the skin depth represented by Equation 3.
예컨대, 실시예에 따른 무선충전코일(2002)이 128kHz의 동작주파수(f)에서 구동되는 경우, 표피깊이(δ)는 185 마이크로 미터일 수 있다.For example, when the wireless charging coil 2002 according to the embodiment is driven at an operating frequency f of 128 kHz, the skin depth δ may be 185 micrometers.
권선부(2003)의 코일의 코일 선폭이나 직경이 2δ를 초과하는 경우 표피효과로 인한 저항성분(Ys) 및/또는 근접효과로 인한 저항성분(Yp)이 증가되는 문제가 있다. 즉, 권선부(2003)의 코일의 코일 선폭이나 직경이 2δ를 초과하는 경우 도 1a에 도시한 바와 같이, 권선부(2003)의 코일의 중심영역으로 전류가 흐르지 않게 되고 이는 곧 저항성분(Ys)의 증가로 이어진다. 아울러, 권선부(2003)의 코일이 2δ를 초과하는 경우 도 1b에 도시한 바와 같이, 서로 인접하는 코일에서 서로 마주보는 면에 근접하여 전류가 흐르지 않게 되고 이는 곧 저항성분(Yp)의 증가로 이어질 수 있다. If the coil line width or diameter of the coil of the winding unit 2003 exceeds 2δ, the resistance component Ys due to the skin effect and / or the resistance component Yp due to the proximity effect are increased. That is, when the coil line width or diameter of the coil of the winding part 2003 exceeds 2δ, as shown in FIG. 1A, no current flows to the center region of the coil of the winding part 2003, which is a resistance component (Ys). ) Leads to an increase. In addition, when the coil of the winding part 2003 exceeds 2δ, as shown in FIG. 1B, current does not flow in close proximity to the surfaces facing each other in the coils adjacent to each other, which is caused by an increase in the resistance component Yp. Can lead to.
따라서, 제6 실시예에서는 권선부(2003)의 코일을 스플릿 구조로 하여 그 코일의 도선(2021a, 2021b) 선폭이나 직경을2δ 이하가 되도록 하여, 표피효과로 인한 저항성분(Ys) 및/또는 근접효과로 인한 저항성분(Yp)를 줄일 수 있다. 저항성분(Ys) 및/또는 근접효과로 인한 저항성분(Yp)가 줄어듦에 따라 교류저항(Rac)도 줄고, 이에 따라 품질계수(Q)가 증대되어 충전효율이 향상될 수 있다. Therefore, in the sixth embodiment, the coil of the winding portion 2003 has a split structure so that the wire widths or diameters of the conductive wires 2021a and 2021b of the coil are set to 2 δ or less, so that the resistance component Ys and / or due to the skin effect are obtained. The resistance component (Yp) due to the proximity effect can be reduced. As the resistance component (Ys) and / or the resistance component (Yp) due to the proximity effect is reduced, the AC resistance (Rac) is also reduced, thereby increasing the quality factor (Q), thereby improving charging efficiency.
한편, 권선부(2003)의 코일이 하나의 개구(2021c)에 의해 2개의 도선(2021a, 2021b)으로 분할되어 각 도선(2021a, 2021b)의 선폭이나 직경이 2δ이하가 되더라도 권선부(2003)의 내측으로부터 권선부(2003)의 외측을 향하는 방향을 따라 권선부(2003)의 코일 길이, 구체적으로 2개의 도선(2021a, 2021b)이 증가될 수 있다. 권선부(2003)의 코일 길이(l)가 증가하는 경우, 수학식 4에 나타낸 바와 같이, 직류저항(Rdc)가 증가된다.On the other hand, even though the coil of the winding portion 2003 is divided into two conductive wires 2021a and 2021b by one opening 2021c, even if the wire width or diameter of each of the conductive wires 2021a and 2021b becomes 2δ or less, the winding portion 2003 A coil length of the winding part 2003, specifically, two conductive wires 2021a and 2021b may increase along a direction from the inside of the winding part 2003 to the outside of the winding part 2003. When the coil length l of the winding part 2003 increases, as shown in Equation 4, the DC resistance R dc increases.
수학식 4로부터, 직류저항(Rdc)의 증가를 억제하기 위해서는 권선부(2003)의 내측으로부터 권선부(2003)의 외측을 향하는 방향을 따라 권선부(2003)의 2개의 도선(2021a, 2021b)의 단면적(S)이 증가되어야 한다. From Equation 4, in order to suppress the increase in the DC resistance R dc , the two conductive wires 2021a and 2021b of the winding part 2003 are directed from the inside of the winding part 2003 to the outside of the winding part 2003. The cross-sectional area (S) of) must be increased.
따라서, 제6 실시예에서, 권선부(2003)의 내측으로부터 권선부(2003)의 외측을 향하는 방향을 따라 권선부(2003)의 코일의 선폭이나 직경은 커질 수 있다. 즉, 권선부(2003)의 내측으로부터 권선부(2003)의 외측을 향하는 방향을 따라 권선부(2003)의 2개의 도선(2021a, 2021b)의 선폭이나 직경은 커질 수 있다. Therefore, in the sixth embodiment, the line width or diameter of the coil of the winding part 2003 may increase in a direction from the inside of the winding part 2003 to the outside of the winding part 2003. That is, the line widths or diameters of the two conductive wires 2021a and 2021b of the winding part 2003 may increase along a direction from the inside of the winding part 2003 to the outside of the winding part 2003.
권선부(2003)의 내측으로부터 권선부(2003)의 외측을 향하는 방향을 따라 가면서 권선부(2003)의 2개의 도선(2021a, 2021b)의 선폭이나 직경이 커지는 경우, 권선부(2003)의 내측으로부터 권선부(2003)의 외측 사이의 특정 지점부터 권선부(2003)의 2개의 도선(2021a, 2021b)의 선폭이나 직경이 2δ를 초과하여 다시 표피효과로 인한 저항성분(Ys) 및/또는 근접효과로 인한 저항성분(Yp)이 증가되는 문제가 발생된다. 특정 지점은 특정 지점은 권선부(2003)의 도선(2021a, 2021b)의 선폭이나 직경이 2δ를 초과하는 지점일 수 있다.When the line widths or diameters of the two conductive wires 2021a and 2021b of the winding portion 2003 increase along the direction from the inside of the winding portion 2003 to the outside of the winding portion 2003, the inside of the winding portion 2003 is increased. From the specific point between the outer side of the winding portion 2003, the line width or diameter of the two conductive wires 2021a, 2021b of the winding portion 2003 exceeds 2δ, and thus the resistance component Ys and / or the proximity due to the skin effect again. There arises a problem that the resistance component (Yp) is increased due to the effect. The specific point may be a point where the line width or diameter of the conductive wires 2021a and 2021b of the winding part 2003 exceeds 2δ.
도 20 내지 도 23에 도시한 바와 같이, 실시예는 이러한 문제점을 해결하기 위하여 해당 특정 지점부터 권선부(2003)의 외측 사이의 권선부(2003)의 코일은 또 다른 스플릿 구조를 가질 수 있다. 즉, 권선부(2003)의 내측과 특정 지점 사이에 위치된 권선부(2003)의 코일은 제1 스플릿 구조를 가지고, 특정 지점과 권선부(2003)의 외측 사이에 위치된 권선부(2003)의 코일은 제2 스플릿 구조를 가질 수 있다. 제1 스플릿 구조에서는 권선부(2003)의 코일이 하나의 개구(2021c)에 의해 제1-1 도선(2021a)과 제1-2 도선(2021b)으로 분할될 수 있다. 제2 스플릿 구조에서는 2개의 개구(2022d, 2022e)에 의해 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)으로 분할될 수 있다. 20 to 23, in order to solve this problem, the coil of the winding part 2003 between the outside of the winding part 2003 may have another split structure to solve this problem. That is, the coil of the winding part 2003 located between the inside of the winding part 2003 and the specific point has a first split structure, and the winding part 2003 located between the specific point and the outside of the winding part 2003 is provided. The coil of may have a second split structure. In the first split structure, the coil of the winding part 2003 may be divided into the first-first conductive wire 2021a and the first-second conductive wire 2021b by one opening 2021c. In the second split structure, the second split structure may be divided into the second-first conductive line 2022a, the second-two conductive line 2022b, and the second-three conductive line 2022c by the two openings 2022d and 2022e.
특정 지점은 제1 스플릿 구조와 제2 스플릿 구조를 이어주거나 연결시켜주기 위한 영역으로서, 비분할영역(2023)일 수 있다. 비분할영역(2023)은 매개영역, 중간영역, 연결영역, 이음영역 등으로 지칭될 수 있다. The specific point is an area for connecting or connecting the first split structure and the second split structure, and may be a non-divided area 2023. The non-divided area 2023 may be referred to as an intermediate area, an intermediate area, a connection area, a joint area, or the like.
실시예에 따르면, 권선부(2003)의 내측과 특정 지점 사이의 권선부(2003)의 코일은 제1 스플릿 구조를 가지고, 특정 지점과 권선부(2003)의 외측 사이의 권선부(2003)의 코일은 제2 스플릿 구조를 가짐으로써, 특정 지점과 권선부(2003)의 외측 사이의 권선부(2003)의 코일의 도선의 선폭이나 직경 또한 2δ이하가 되어 표피효과로 인한 저항성분(Ys) 및/또는 근접효과로 인한 저항성분(Yp)을 줄여 교류저항(Rac)의 감소로 인해 품질계수(Q)가 향상될 수 있다.According to an embodiment, the coil of the winding portion 2003 between the inside of the winding portion 2003 and the specific point has a first split structure, and the coil of the winding portion 2003 between the specific point and the outside of the winding portion 2003 has a first split structure. Since the coil has a second split structure, the line width or diameter of the conducting wire of the coil of the winding part 2003 between the specific point and the outside of the winding part 2003 is also less than or equal to 2δ so that the resistance component Ys and The quality factor Q may be improved due to the reduction of the AC resistance Rac by reducing the resistance component Yp due to the proximity effect.
권선부(2003)는 나선형으로 권선된 제1 권선부(2021)와 제2 권선부(2022)를 포함할 수 있다. 제2 권선부(2022)는 제1 권선부(2021)를 둘러쌀 수 있다. 제1 권선부(2021)의 권선 방향과 제2 권선부(2022)의 권선 방향은 동일할 수 있다. 예컨대, 제1 권선부(2021)의 권선 방향과 제2 권선부(2022)의 권선 방향은 반시계 방향일 수 있다. The winding part 2003 may include a first winding part 2021 and a second winding part 2022 that are spirally wound. The second winding part 2022 may surround the first winding part 2021. The winding direction of the first winding unit 2021 and the winding direction of the second winding unit 2022 may be the same. For example, the winding direction of the first winding unit 2021 and the winding direction of the second winding unit 2022 may be counterclockwise.
예컨대, 제1 권선부(2021)는 m회 권선될 수 있다. 제1 권선부(2021)의 일측은 제1 단자(2005a)에 연결될 수 있다. 예컨대, 제2 권선부(2022)는 n회 권선될 수 있다. 제2 권선부(2022)의 일측은 제1 권선부의 타측에 연결되고, 제2 권선부(2022)의 타측은 제2 단자(2005b)에 연결될 수 있다. 예컨대, m이 n보다 클 수 있다. 즉 제1 권선부(2021)가 제2 권선부(2022)보다 더 많이 권선될 수 있다. 예컨대, 권선부(2003)는 13턴(turns) 이하를 가질 수 있다. 예컨대, 제1 권선부(2021)는 6턴을 가지고, 제2 권선부(2022)는 6턴을 가질 수 있다. 예컨대, 제1 권선부(2021)는 제20턴을 가지고, 제2 권선부(2022)는 4턴을 가질 수 있다. For example, the first winding part 2021 may be wound m times. One side of the first winding part 2021 may be connected to the first terminal 2005a. For example, the second winding part 2022 may be wound n times. One side of the second winding unit 2022 may be connected to the other side of the first winding unit, and the other side of the second winding unit 2022 may be connected to the second terminal 2005b. For example, m may be greater than n. That is, the first winding part 2021 may be wound more than the second winding part 2022. For example, the windings 2003 may have 13 turns or less. For example, the first winding portion 2021 may have six turns, and the second winding portion 2022 may have six turns. For example, the first winding unit 2021 may have a 20th turn, and the second winding unit 2022 may have 4 turns.
제1 권선부(2021)는 제1 단자(2005a)와 비분할영역(2023) 사이의 제1 분할영역(2030)에 위치되어 제1 스플릿 구조를 가질 수 있다. 제2 권선부(2022)는 비분할영역(2023)과 제2 단자(2005b) 사이의 제2 분할영역(2031)에 위치되어 제2 스플릿 구조를 가질 수 있다. 제1 권선부(2021), 비분할영역(2023) 및 제2 권선부(2022)는 일체로 형성될 수 있다. 제1 단자(2005a), 제1 권선부(2021), 비분할영역(2023), 제2 권선부(2022) 및 제2 단자(2005b)는 일체로 형성될 수 있다. The first winding part 2021 may be positioned in the first divided area 2030 between the first terminal 2005a and the non-divided area 2023 to have a first split structure. The second winding part 2022 may be positioned in the second divided area 2031 between the non-divided area 2023 and the second terminal 2005b to have a second split structure. The first winding part 2021, the non-dividing area 2023, and the second winding part 2022 may be integrally formed. The first terminal 2005a, the first winding part 2021, the non-dividing area 2023, the second winding part 2022, and the second terminal 2005b may be integrally formed.
제1 권선부(2021)는 하나의 개구(2021c)에 의해 분할된 제1-1 도선(2021a)와 제1-2 도선(2021b)를 포함할 수 있다. 제1-1 도선(2021a)와 제1-2 도선(2021b)는 제1 단자(2005a)에 공통으로 연결될 수 있다. 제1-1 도선(2021a)와 제1-2 도선(2021b)는 비분할영역(2023)에 공통으로 연결될 수 있다. The first winding part 2021 may include the first-first conductive wire 2021a and the first-second conductive wire 2021b divided by one opening 2021c. The first-first conductive wire 2021a and the first-second conductive wire 2021b may be commonly connected to the first terminal 2005a. The first-first conductive wire 2021a and the first-second conductive wire 2021b may be commonly connected to the non-divided area 2023.
제2 권선부(2022)는 2개의 개구(2022d, 2022e)에 의해 분할된 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)를 포함할 수 있다. 제1 개구(2022d)에 의해 제2-1 도선(2022a) 및 제2-2 도선(2022b)로 분할되고, 제2 개구(2022e)에 의해 제2-2 도선(2022b) 및 제2-3 도선(2022c)로 분할될 수 있다. 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)은 비분할영역(2023)에 공통으로 연결될 수 있다. 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)은 제2 단자(2005b)에 공통으로 연결될 수 있다.The second winding part 2022 may include a 2-1 lead wire 2022a, a 2-2 lead wire 2022b, and a 2-3 lead wire 2022c divided by two openings 2022d and 2022e. have. The first opening 2022d divides the second-conducting wire 2022a and the second-two conducting wire 2022b, and the second opening 2022e opens the second-two conducting wire 2022b and the second-3. It may be divided into the conductive wire 2022c. The 2-1 conductive wire 2022a, the 2-2 conductive wire 2022b, and the 2-3 conductive wire 2022c may be commonly connected to the non-divided area 2023. The 2-1th conductive wire 2022a, the 2-2nd conductive wire 2022b, and the 2-3rd conductive wire 2022c may be commonly connected to the second terminal 2005b.
도 23에 도시한 바와 같이, 제1 분할영역(2030)은 제1 단자(2005a)와 비분할영역(2023) 사이에서 권선되는 제1 권선부(2021)의 제1 스플릿 구조에 의해 형성된 영역일 수 있다. 제2 분할영역(2031)은 비분할영역(2023)과 제2 단자(2005b) 사이에서 권선되는 제2 권선부(2022)의 제2 스플릿 구조에 의해 형성된 영역일 수 있다. 즉, 제1 분할영역(2030)에서 제1 권선부(2021)의 코일은 하나의 개구(2021c)에 의해 분할된 제1-1 도선(2021a)과 제1-2 도선(2021b)이 m회 권선될 수 있다. 제1-1 도선(2021a)과 제1-2 도선(2021b)의 일측은 제1 단자(2005a)에 공통 연결되고 타측은 비분할영역(2023)에 공통 연결될 수 있다. 제2 분할영역(2031)에서 제2 권선부(2022)의 코일은 제1 개구(2022d)와 제2 개구(2022e)에 의해 분할된 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)이 n회 권선될 수 있다. 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)은 비분할영역(2023)에 공통 연결되고 타측은 제2 단자(2005b)에 공통 연결될 수 있다. As shown in FIG. 23, the first divided area 2030 is an area formed by the first split structure of the first winding part 2021 wound between the first terminal 2005a and the non-divided area 2023. Can be. The second divided area 2031 may be an area formed by the second split structure of the second winding part 2022 wound between the non-divided area 2023 and the second terminal 2005b. That is, in the first division area 2030, the coil of the first winding part 2021 has m times of the 1-1 lead wire 2021a and the 1-2 lead wire 2021b divided by one opening 2021c. Can be wound. One side of the first-first conductive wire 2021a and the first-second conductive wire 2021b may be commonly connected to the first terminal 2005a, and the other side may be commonly connected to the non-divided region 2023. In the second division area 2031, the coil of the second winding part 2022 may include the second-first conductive wire 2022a and the second-second conductive wire 2022a divided by the first opening 2022d and the second opening 2022e. 2022b) and the second and third conductive wires 2022c may be wound n times. The 2-1 conductive wire 2022a, the 2-2 conductive wire 2022b, and the 2-3 conductive wire 2022c may be commonly connected to the non-divided area 2023 and the other side may be commonly connected to the second terminal 2005b. .
제1 권선부(2021)의 코일의 선폭(W1)은 제1-1 도선(2021a)의 선폭(w11), 제1-2 도선(2021b)의 선폭(w12) 및 제1-1 도선(2021a)과 제1-2 도선(2021b) 사이의 간격(d1)의 합일 수 있다. 제1-1 도선(2021a)과 제1-2 도선(2021b)의 간격(d1)은 개구(2021c)의 폭일 수 있다. 제1-1 도선(2021a)의 선폭(w11)과 제1-2 도선(2021b)의 선폭(w12)은 동일할 수 있다. 제1-1 도선(2021a)의 선폭(w11)과 제1-2 도선(2021b)의 선폭(w12)은 제1-1 도선(2021a)과 제1-2 도선(2021b) 사이의 간격(d1)보다 클 수 있다. The line width W1 of the coil of the first winding part 2021 includes the line width w11 of the first-first conductor 2021a, the line width w12 of the first-two conductor 2021b, and the first-first conductor 2021a. ) And the distance d1 between the first and second conductive lines 2021b. An interval d1 between the first-first conductive line 2021a and the first-second conductive line 2021b may be the width of the opening 2021c. The line width w11 of the first-first conductive wire 2021a and the line width w12 of the first-second conductive wire 2021b may be the same. The line width w11 of the first-first conducting wire 2021a and the line width w12 of the first-first conducting wire 2021b are the distance d1 between the first-first conducting wire 2021a and the first-second conducting wire 2021b. May be greater than).
제2 권선부(2022)의 코일의 선폭(W2)은 제2-1 도선(2022a)의 선폭(w21), 제2-2 도선(2022b)의 선폭(w22), 제2-3 도선(2022c)의 선폭(w23), 제2-1 도선(2022a)과 제2-2 도선(2022b) 사이의 간격(d21)와 제2-2 도선(2022b)과 제2-3 도선(2022c) 사이의 간격(d22)의 합일 수 있다. 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c) 중 하나의 도선의 선폭은 다른 도선의 선폭과 상이할 수 있다. 예컨대, 제2-2 도선(2022b)의 선폭(w22)은 제2-1 도선(2022a)의 선폭(w21) 또는 제2-2 도선(2022b)의 선폭(w23)보다 작을 수 있다. The line width W2 of the coil of the second winding part 2022 includes the line width w21 of the 2-1 lead wire 2022a, the line width w22 of the 2-2 lead wire 2022b, and the second-3 lead wire 2022c. ), The line width w23, the interval d21 between the 2-1st conductor 2022a and the 2-2nd conductor 2022b, and between the 2-2nd conductor 2022b and the 2nd-3rd conductor 2022c It can be the sum of the intervals d22. The line width of one of the 2-1 lead wires 2022a, the 2-2 lead wires 2022b, and the 2-3 lead wires 2022c may be different from that of the other wire. For example, the line width w22 of the second-conductor wire 2022b may be smaller than the line width w21 of the second-conductor wire 2022a or the line width w23 of the second-conductor wire 2022b.
제2 권선부(2022)의 코일의 선폭(W2)은 제1 권선부(2021)의 코일의 선폭(W1)보다 클 수 있다. 제1 권선부(2021)의 제1-1 도선(2021a) 또는 제1-2 도선(2021b)의 선폭(w11, w12)은 제2 권선부(2022)의 제2-1 도선(2022a), 제2-2 도선(2022b) 또는 제2-3 도선(2022c)의 선폭(w21, w22, w23)보다 클 수 있다. 예컨대, 제1 권선부(2021)의 제1-1 도선(2021a) 또는 제1-2 도선(2021b)의 선폭(w11, w12)은 250 마이크로 미터 내지 380 마이크로 미터일 수 있다. 예컨대, 제2 권선부(2022)의 제2-1 도선(2022a), 제2-2 도선(2022b) 또는 제2-3 도선(2022c)의 선폭(w21, w22, w23)은 200 마이크로 미터 내지 250 마이크로 미터일 수 있다. 제1 권선부(2021)의 제1-1 도선(2021a)과 제1-2 도선(2021b) 사이의 간격(d1)은 제2 권선부(2022)의 제2-1 도선(2022a)과 제2-2 도선(2022b) 사이의 간격(d21) 또는 제2-2 도선(2022b)과 제2-3 도선(2022c) 사이의 간격(d22)과 동일할 수 있다. 제1 권선부(2021)의 제1-1 도선(2021a)과 제1-2 도선(2021b) 사이의 간격(d1) 및 제2 권선부(2022)의 제2-1 도선(2022a)과 제2-2 도선(2022b) 사이의 간격(d21) 또는 제2-2 도선(2022b)과 제2-3 도선(2022c) 사이의 간격(d22) 각각은 180 마이크로 미터일 수 있다. The line width W2 of the coil of the second winding unit 2022 may be larger than the line width W1 of the coil of the first winding unit 2021. Line widths w11 and w12 of the first-first conductive wire 2021a or the first-second conductive wire 2021b of the first winding part 2021 may correspond to the second-first conductive wire 2022a of the second winding part 2022, It may be larger than the line widths w21, w22, and w23 of the second-conductor wire 2022b or the second-conductor wire 2022c. For example, the line widths w11 and w12 of the first-first conductive wire 2021a or the first-second conductive wire 2021b of the first winding part 2021 may be 250 micrometers to 380 micrometers. For example, the line widths w21, w22, and w23 of the second-first conductive wire 2022a, the second-second conductive wire 2022b, or the second-three conductive wire 2022c of the second winding part 2022 may be 200 micrometers or more. It can be 250 micrometers. The distance d1 between the first-first conductor 2021a and the first-second conductor 2021b of the first winding unit 2021 may include the second-first conductor 2022a and the second-first conductor 2022a of the second winding unit 2022. The distance d21 between the 2-2 conductive lines 2022b or the distance d22 between the 2-2 conductive lines 2022b and the second-3 conductive lines 2022c may be the same. The distance d1 between the first-first conductor 2021a and the first-second conductor 2021b of the first winding unit 2021 and the second-first conductor 2022a of the second winding unit 2022 and the second wire The spacing d21 between the 2-2 conductive wires 2022b or the spacing d22 between the 2-2 conductive wires 2022b and the second-3 conductive wires 2022c may be 180 micrometers.
비분할영역(2023)은 제1 권선부(2021)의 제1-1 도선(2021a)과 제1-2 도선(2021b)과 연결되는 제1 도체영역(2023a), 제2 권선부(2022)의 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)과 연결되는 제3 도체영역(2023c) 및 제1 도체영역(2023a)와 제3 도체영역(2023c) 사이에 배치되는 제2 도체영역(2023b)를 포함할 수 있다. 제1 도체영역(2023a), 제2 도체영역(2023b) 및 제3 도체영역(2023c)은 일체로 형성될 수 있다.The non-divided area 2023 includes a first conductor region 2023a and a second winding portion 2022 connected to the first-first conductor 2021a and the first-second conductor 2021b of the first winding unit 2021. The third conductor region 2023c and the first conductor region 2023a and the third conductor region which are connected to the 2-1 lead wire 2022a, the 2-2 lead wire 2022b, and the 2-3 lead wire 2022c of the It may include a second conductor region 2023b disposed between the 2023c. The first conductor region 2023a, the second conductor region 2023b, and the third conductor region 2023c may be integrally formed.
제1 도체영역(2023a)의 폭은 제1 권선부(2021)의 코일의 선폭(W1)과 동일할 수 있다. 제3 도체영역(2023c)의 폭은 제2 권선부(2022)의 코일의 선폭(W2)과 동일할 수 있다. 제2 도체영역(2023b)의 폭은 코일의 길이 방향을 따라 가변될 수 있다. 즉, 제2 도체영역(2023b)의 폭은 제1 도체영역(2023a)에서 제3 도체영역(2023c)을 향하는 방향을 따라 커질 수 있다. The width of the first conductor region 2023a may be the same as the line width W1 of the coil of the first winding part 2021. The width of the third conductor region 2023c may be the same as the line width W2 of the coil of the second winding part 2022. The width of the second conductor region 2023b may vary along the length of the coil. That is, the width of the second conductor region 2023b may increase in the direction from the first conductor region 2023a toward the third conductor region 2023c.
비분할영역(2023)은 제1 스플릿 구조를 갖는 제1 권선부(2021)와 제2 스플릿 구조를 갖는 제2 권선부(2022)를 이어주기 위해 제1 권선부(2021)와 제2 권선부(2022) 사이에 배치될 수 있다. The non-split area 2023 may include the first winding part 2021 and the second winding part to connect the first winding part 2021 having the first split structure and the second winding part 2022 having the second split structure. 2022 may be disposed between.
비분할영역(2023)의 폭이 적어도 제1 권선부(2021)의 코일의 선폭(W1)과 같거나 크므로, 비분할영역(2023)의 폭은 2δ를 초과하게 되어 수학식 2에 나타낸 바와 같이 표피효과로 인한 저항성분(Ys)와 근접효과로 인한 저항성분(Yp)이 증가될 수 있다. 또한, 비분할영역(2023)의 길이(L)도 커지는 경우, 수학식 4에 나타낸 바와 같이, 직류저항(Rdc)이 커질 수 있다. 따라서, 비분할영역(2023)의 폭이 2δ를 초과하고 비분할영역(2023)의 길이(L)가 커지는 경우 교류저항(Rac)가 증가되어 품질계수가 감소될 수 있다. Since the width of the non-divided area 2023 is at least equal to or larger than the line width W1 of the coil of the first winding part 2021, the width of the non-divided area 2023 exceeds 2δ, as shown in Equation (2). Likewise, the resistance component Ys due to the skin effect and the resistance component Yp due to the proximity effect may be increased. In addition, when the length L of the non-divided area 2023 is also large, as shown in Equation 4, the DC resistance R dc can be large. Therefore, when the width of the non-divided area 2023 exceeds 2δ and the length L of the non-divided area 2023 is increased, the AC resistance Rac is increased to reduce the quality coefficient.
제6 실시예에서, 비분할영역(2023)의 길이(L)를 줄여 직류저항(Rdc)를 줄일 수 있다. 예컨대, 비분할영역(2023)의 길이(L)는 370 마이크로 미터 이하일 수 있다. In the sixth embodiment, the DC resistance Rdc may be reduced by reducing the length L of the non-divided area 2023. For example, the length L of the non-divided area 2023 may be 370 micrometers or less.
비분할영역(2023)은 제1 분할영역(2030)과 제2 분할영역(2031) 사이에 배치될 수 있다. 제1 단자(2005a)는 제1 분할영역(2030)의 일측, 예컨대 권선부(2003)의 내측에 배치되고, 제2 단자(2005b)는 제2 분할영역(2031)의 일측, 예컨대 권선부(2003)의 외측에 배치될 수 있다. The non-divided area 2023 may be disposed between the first divided area 2030 and the second divided area 2031. The first terminal 2005a is disposed on one side of the first division region 2030, for example, inside the winding part 2003, and the second terminal 2005b is one side of the second division area 2031, for example, the winding part ( 2003).
비분할영역(2023), 제1 단자(2005a) 또는 제2 단자(2005b)의 폭은 제1 권선부(2021)의 코일의 선폭(W1)이나 제2 권선부(2022)의 코일의 선폭(W2)보다 크므로, 2δ를 초과할 수 있다. 권선부(2003)의 중심(2010)과 제2 단자(2005b)를 통과하는 제1 가상의 직선(2035)과 권선부(2003)의 중심(2010)과 비분할영역(2023)을 통과하는 제2 가상의 직선(2037)이 정의될 수 있다. 제1 가상의 직선(2035)은 제2 단자(2005b)의 중심을 통과할 수 있다. 제2 가상의 직선(2037)은 비분할영역(2023)의 중심, 구체적으로 제2 도체영역(2023b)의 중심을 통과할 수 있다. 제1 가상의 직선(2035)과 제2 가상의 직선(2037)은 실체가 아닌 가상으로 정의된 라인일 수 있다. The width of the non-divided area 2023, the first terminal 2005a, or the second terminal 2005b is the line width W1 of the coil of the first winding part 2021 or the line width of the coil of the second winding part 2022 ( Since it is larger than W2), it may exceed 2δ. A first virtual straight line 2035 passing through the center 2010 of the winding part 2003 and the second terminal 2005b and a second passing through the center 2010 and the non-dividing area 2023 of the winding part 2003. Two virtual straight lines 2037 may be defined. The first virtual straight line 2035 may pass through the center of the second terminal 2005b. The second virtual straight line 2037 may pass through the center of the non-divided area 2023, specifically, the center of the second conductor area 2023b. The first virtual straight line 2035 and the second virtual straight line 2037 may be virtually defined lines, not entities.
제1 단자(2005a)나 제2 단자(2005b)가 제2 가상의 직선(2037) 상에 위치되는 경우, 제1 가상의 직선(2035) 상에 위치된 제1 단자(2005a)와 제2 단자(2005b)의 서로 마주보는 면에 근접하여 전류가 흐르지 않게 되어 근접효과로 인한 저항성분(Yp)가 증가될 수 있다. 아울러, 제1 단자(2005a) 및/또는 제2 단자(2005b)와 비분할영역(2023)이 제2 가상의 직선(2037) 상에 위치되는 경우, 제2 가상의 직선(2037) 상에 위치된 제1 단자(2005a) 및/또는 제2 단자(2005b)와 비분할영역(2023)의 서로 마주보는 면에 근접하여 전류가 흐르지 않게 되어 근접효과로 인한 저항성분(Yp)가 증가될 수 있다.When the first terminal 2005a or the second terminal 2005b is located on the second virtual straight line 2037, the first terminal 2005a and the second terminal located on the first virtual straight line 2035. Since the current does not flow near the mutually opposite surfaces of 2005b, the resistance component Yp due to the proximity effect may increase. In addition, when the first terminal 2005a and / or the second terminal 2005b and the non-divided area 2023 are positioned on the second virtual straight line 2037, they are positioned on the second virtual straight line 2037. Since the current does not flow in close proximity to the mutually opposite surfaces of the first terminal 2005a and / or the second terminal 2005b and the non-divided area 2023, the resistance component Yp due to the proximity effect may increase. .
제6 실시예에서는 이러한 문제점을 해결하기 위하여 제1 단자(2005a)가 제1 가상의 직선(2035) 상에 위치되지 않게 하거나 제1 단자(2005a) 및/또는 제2 단자(2005b)가 제2 가상의 직선(2037) 상에 위치되지 않게 할 수 있다. 즉, 제1 단자(2005a)가 제1 가상의 직선(2035)과 중첩되지 않을 수 있다. 제1 단자(2005a) 및/또는 제2 단자(2005b)가 제2 가상의 직선(2037)과 중첩되지 않을 수 있다. 예를 들어, 제1 단자(2005a)는 제1 가상의 직선(2035)과 중첩되지 않을 수 있다. 예를 들어, 제1 단자(2005a)는 제2 가상의 직선(2037)과 중첩되지 않을 수 있다. 예를 들어, 제1 단자(2005a)는 제1 가상의 직선(2035)과 제2 가상의 직선(2037)과 중첩되지 않을 수 있다. 예를 들어, 제2 단자(2005b)는 제2 가상의 직선(2037)과 중첩되지 않을 수 있다. 예를 들어, 제1 단자(2005a)와 제2 단자(2005b)는 제2 가상의 직선(2037)과 중첩되지 않을 수 있다. In the sixth embodiment, in order to solve this problem, the first terminal 2005a is not positioned on the first virtual straight line 2035 or the first terminal 2005a and / or the second terminal 2005b are disposed in the second embodiment. It may not be located on the imaginary straight line 2037. That is, the first terminal 2005a may not overlap the first virtual straight line 2035. The first terminal 2005a and / or the second terminal 2005b may not overlap the second virtual straight line 2037. For example, the first terminal 2005a may not overlap the first virtual straight line 2035. For example, the first terminal 2005a may not overlap the second virtual straight line 2037. For example, the first terminal 2005a may not overlap the first virtual straight line 2035 and the second virtual straight line 2037. For example, the second terminal 2005b may not overlap the second virtual straight line 2037. For example, the first terminal 2005a and the second terminal 2005b may not overlap the second virtual straight line 2037.
예컨대, 제1 단자(2005a)는 제1 가상의 직선(2035)의 왼측에 배치되고, 비분할영역(2023)은 제1 가상의 직선(2035)의 오른측에 배치될 수 있다. 예컨대, 제1 단자(2005a)와 제2 단자(2005b)는 제2 가상의 직선(2037)의 왼측에 배치되고, 제1 단자(2005a)는 제1 가상이 직선의 왼측에 배치될 수 있다. For example, the first terminal 2005a may be disposed on the left side of the first virtual straight line 2035, and the non-divided area 2023 may be disposed on the right side of the first virtual straight line 2035. For example, the first terminal 2005a and the second terminal 2005b may be disposed on the left side of the second virtual straight line 2037, and the first terminal 2005a may be disposed on the left side of the straight line.
제1 단자(2005a)나 비분할영역(2023)은 제1 가상의 직선(2035) 상을 제외한 영역, 즉 중첩되지 않는 영역에 위치될 수 있다. 제1 단자(2005a)나 제2 단자(2005b)는 제2 가상의 직선(2037) 상을 제외한 영역, 즉 중첩되지 않는 영역에 위치될 수 있다. 아울러, 권선부(2003)의 중심(2010)과 제1 단자(2005a)를 통과하는 제3 가상의 직선(미도시)이 정의되는 경우, 제2 단자(2005b)나 비분할영역(2023)은 제3 가상의 직선 상을 제외한 영역, 즉 중첩되지 않는 영역에 위치될 수 있다. The first terminal 2005a or the non-divided area 2023 may be located in an area excluding the first virtual straight line 2035, that is, an area not overlapping with each other. The first terminal 2005a or the second terminal 2005b may be located in an area excluding the second virtual straight line 2037, that is, a non-overlapping area. In addition, when a third virtual straight line (not shown) passing through the center 2010 of the winding part 2003 and the first terminal 2005a is defined, the second terminal 2005b or the non-divided area 2023 It may be located in an area excluding a third virtual straight line, that is, a non-overlapping area.
실시예에 따르면, 제1 단자(2005a)가 권선부(2003)의 중심(2010)과 제2 단자(2005b)를 통과하는 제1 가상의 직선(2035)이나 권선부(2003)의 중심(2010)과 비분할영역(2023)을 통과하는 제2 가상의 직선(2037)과 중첩되지 않거나 제2 단자(2005b)가 제2 가상의 직선(2037)과 중첩되지 않음으로써, 제1 단자(2005a), 비분할영역(2023), 제2 단자(2005b) 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하여 교류전류를 줄여 품질계수를 높일 수 있다.According to an embodiment, the first virtual straight line 2035 or the center 2010 of the winding portion 2003 through which the first terminal 2005a passes through the center 2010 of the winding portion 2003 and the second terminal 2005b. ) And the second terminal straight line 2037 passing through the non-dividing area 2023 or the second terminal 2005b do not overlap with the second virtual straight line 2037, thereby providing the first terminal 2005a. In addition, the resistance factor Yp due to the proximity effect generated between the non-divided area 2023 and the second terminal 2005b may be removed to reduce the AC current, thereby improving the quality coefficient.
이상에서는 제1 가상의 직선(2035)과 제2 가상의 직선(2037)은 제2 단자(2005b)의 특정 지점이나 비분할영역(2023)의 특정 지점을 통과하는 것으로 설명되었다. 이와 달리, 제2 단자(2005b)나 비분할영역(2023)의 사이즈를 이용하여 제1 단자(2005a)와 제2 단자(2005b) 또는 비분할영역(2023) 간의 중첩 관계에 대한 발명도 가능하고, 이하에서 이에 대해 설명한다.In the above description, the first virtual straight line 2035 and the second virtual straight line 2037 have been described as passing through a specific point of the second terminal 2005b or a specific point of the non-divided area 2023. Alternatively, it is possible to invent an overlapping relationship between the first terminal 2005a and the second terminal 2005b or the non-divided area 2023 by using the size of the second terminal 2005b or the non-divided area 2023. This will be described below.
도 24은 제1 단자, 제2 단자 및 비분할영역의 위치 관계를 도시한다.24 shows the positional relationship of the first terminal, the second terminal, and the non-divided area.
도 24에 도시한 바와 같이, 권선부(2003)의 중심(2010)과 제1 단자(2005a)의 양단이 이루는 제1 부채꼴영역(2025), 권선부(2003)의 중심(2010)과 제2 단자(2005b)의 양단이 이루는 제2 부채꼴영역(2026) 및 권선부(2003)의 중심(2010)과 비분할영역(2023)의 양단이 이루는 제3 부채꼴영역(2027)이 정의될 수 있다. As illustrated in FIG. 24, a first sector region 2025 formed at both ends of the center 2010 of the winding unit 2003 and the first terminal 2005a and the center 2010 and the second of the winding unit 2003 are formed. A second sector region 2026 formed at both ends of the terminal 2005b and a third sector region 2027 formed at both ends of the center 2010 of the winding unit 2003 and the non-divided region 2023 may be defined.
제1 부채꼴영역(2025)은 권선부(2003)의 중심(2010)과 제1 단자(2005a)를 통과하는 가상의 선의 집합 영역을 의미할 수 있다.The first fan-shaped region 2025 may refer to a collection area of a virtual line passing through the center 2010 of the winding unit 2003 and the first terminal 2005a.
제2 부채꼴영역(2026)은 권선부(2003)의 중심(2010)과 제2 단자(2005b)를 통과하는 가상의 선의 집합 영역을 의미할 수 있다.The second fan-shaped region 2026 may refer to a collection area of a virtual line passing through the center 2010 of the winding portion 2003 and the second terminal 2005b.
제3 부채꼴영역(2027)은 권선부(2003)의 중심(2010)과 비분할영역(2023)을 통과하는 가상의 선의 집합 영역을 의미할 수 있다.The third fan-shaped region 2027 may refer to a region of virtual lines passing through the center 2010 of the winding unit 2003 and the non-divided region 2023.
제1 단자(2005a)의 양단에서 제1 단은 제1 분할영역(2030)의 제1 권선부(2021)의 제1-1 도선(2021a)과 제1-2 도선(2021b)과 연결되고 제2 단은 제1 단의 반대편에 위치될 수 있다. 제2 단자(2005b)의 양단에서 제1 단은 제2 분할영역(2031)의 제2 권선부(2022)의 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)과 연결되고 제2 단은 제1 단의 반대편에 위치될 수 있다. 비분할영역(2023)의 양단에서 제1 단은 비분할영역(2023)의 제1 도체영역(2023a)의 일측으로서 제1 분할영역(2030)의 제1-1 도선(2021a)과 제1-2 도선(2021b)과 연결되고, 제2 단은 비분할영역(2023)의 제3 도체영역(2023c)의 일측으로서 제2 분할영역(2031)의 제2-1 도선(2022a), 제2-2 도선(2022b) 및 제2-3 도선(2022c)과 연결될 수 있다. At both ends of the first terminal 2005a, the first end is connected to the first-first conductor 2021a and the first-second conductor 2021b of the first winding part 2021 of the first division area 2030, and The second stage may be located opposite the first stage. At both ends of the second terminal 2005b, the first end includes the second-first conductive wire 2022a, the second-second conductive wire 2022b, and the second-second of the second winding portion 2022 of the second divided region 2031. The second end may be connected to the third conductive line 2022c and may be positioned opposite to the first end. At both ends of the non-divided region 2023, the first stage is one side of the first conductor region 2023a of the non-divided region 2023 and the first-first conductive line 2021a and the first-first of the first divided region 2030. Connected to the second conductive wire 2021b, the second end of which is the one side of the third conductor region 2023c of the non-divided area 2023, and the second-first conductive wire 2022a and the second second of the second divided area 2031. The second conductive wire 2022b and the second conductive wire 2022c may be connected to each other.
제1 부채꼴영역(2025)은 권선부(2003)의 중심(2010)과 제1 단자(2005a)의 제1 단을 통과하는 가상의 직선과 권선부(2003)의 중심(2010)과 제1 단자(2005a)의 제2 단을 통과하는 또 다른 가상의 직선에 의해 형성된 영역일 수 있다. 제2 부채꼴영역(2026)은 권선부(2003)의 중심(2010)과 제2 단자(2005b)의 제1 단을 통과하는 가상의 직선과 권선부(2003)의 중심(2010)과 제2 단자(2005b)의 제2 단을 통과하는 또 다른 가상의 직선에 의해 형성된 영역일 수 있다. 제3 부채꼴영역(2027)은 권선부(2003)의 중심(2010)과 비분할영역(2023)의 제1 단을 통과하는 가상의 직선과 권선부(2003)의 중심(2010)과 비분할영역(2023)의 제2 단을 통과하는 또 다른 가상의 직선에 의해 형성된 영역일 수 있다. The first sector region 2025 includes an imaginary straight line passing through the center 2010 of the winding unit 2003 and the first end of the first terminal 2005a and the center 2010 and the first terminal of the winding unit 2003. It may be an area formed by another imaginary straight line passing through the second end of 2005a. The second sector region 2026 is a virtual straight line passing through the center 2010 of the winding portion 2003 and the first end of the second terminal 2005b and the center 2010 and the second terminal of the winding portion 2003. It may be an area formed by another imaginary straight line passing through the second end of 2005b. The third sector region 2027 is a virtual straight line passing through the center 2010 of the winding part 2003 and the first end of the non-dividing area 2023, and the center 2010 and the non-dividing area of the winding part 2003. It may be an area formed by another imaginary straight line passing through the second end of 2023.
제1 단자(2005a)가 포함된 제1 부채꼴영역(2025)은 제2 단자(2005b)가 포함된 제2 부채꼴영역(2026)과 중첩되지 않을 수 있다. 제1 부채꼴영역(2025)과 제2 부채꼴영역(2026)이 중첩되지 않음으로써, 제1 단자(2005a)와 제2 단자(2005b) 또한 중첩되지 않게 되어, 제1 단자(2005a)와 제2 단자(2005b) 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하거나 최소화하여 교류저항(Rac)을 줄여 품질계수(Q)를 향상시킬 수 있다. The first sector region 2025 including the first terminal 2005a may not overlap the second sector region 2026 including the second terminal 2005b. Since the first sector 2025 and the second sector 2026 do not overlap, the first terminal 2005a and the second terminal 2005b also do not overlap, and thus the first terminal 2005a and the second terminal are not overlapped. It is possible to improve the quality factor (Q) by reducing the AC resistance (R ac ) by eliminating or minimizing the resistance component (Yp) due to the proximity effect generated between (2005b).
제1 단자(2005a)가 포함된 제1 부채꼴영역(2025)은 비분할영역(2023)이 포함된 제3 부채꼴영역(2027)과 중첩되지 않을 수 있다. 제1 부채꼴영역(2025)과 제3 부채꼴영역(2027)이 중첩되지 않음으로써, 제1 단자(2005a)와 비분할영역(2023) 또한 중첩되지 않게 되어, 제1 단자(2005a)와 비분할영역(2023) 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하거나 최소화하여 교류저항(Rac)을 줄여 품질계수(Q)를 향상시킬 수 있다.The first sector region 2025 including the first terminal 2005a may not overlap the third sector region 2027 including the non-division region 2023. Since the first sector 2025 and the third sector 2027 do not overlap, the first terminal 2005a and the non-divided area 2023 also do not overlap, so that the first terminal 2005a and the non-divided area do not overlap. The quality factor Q may be improved by reducing or reducing the AC resistance R ac by removing or minimizing the resistance component Yp due to the proximity effect generated between 2023.
제2 단자(2005b)가 포함된 제2 부채꼴영역(2026)은 비분할영역(2023)이 포함된 제3 부채꼴영역(2027)과 중첩되지 않을 수 있다. 제2 부채꼴영역(2026)과 제3 부채꼴영역(2027)이 중첩되지 않음으로써, 제2 단자(2005b)와 비분할영역(2023) 또한 중첩되지 않게 되어, 제2 단자(2005b)와 비분할영역(2023) 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하거나 최소화하여 교류저항(Rac)을 줄여 품질계수(Q)를 향상시킬 수 있다.The second sector region 2026 including the second terminal 2005b may not overlap the third sector region 2027 including the non-division region 2023. Since the second sector region 2026 and the third sector region 2027 do not overlap, the second terminal 2005b and the non-divided region 2023 also do not overlap, and thus the second terminal 2005b and the non-divided region are not overlapped. The quality factor Q may be improved by reducing or reducing the AC resistance R ac by removing or minimizing the resistance component Yp due to the proximity effect generated between 2023.
제1 단자(2005a)가 포함된 제1 부채꼴영역(2025), 제2 단자(2005b)가 포함된 제2 부채꼴영역(2026) 및 비분할영역(2023)이 포함된 제3 부채꼴영역(2027)은 중첩되지 않을 수 있다. 제1 부채꼴영역(2025), 제2 부채꼴영역(2026) 및 제3 부채꼴영역(2027)이 중첩도지 않음으로서, 제1 단자(2005a), 제2 단자(2005b) 및 비분할영역(2023) 또한 중첩되지 않을 수 있다. 이에 따라, 제1 단자(2005a), 제2 단자(2005b) 및 비분할영역(2023) 사이에 발생되는 근접효과로 인한 저항성분(Yp)을 제거하거나 최소화하여 교류저항(Rac)을 줄여 품질계수(Q)를 향상시킬 수 있다.The first sector region 2025 including the first terminal 2005a, the second sector region 2026 including the second terminal 2005b, and the third sector region 2027 including the non-partitioned region 2023. May not overlap. Since the first sector 2025, the second sector 2026, and the third sector 2027 do not overlap, the first terminal 2005a, the second terminal 2005b, and the non-partitioned region 2023 are also used. May not overlap. Accordingly, by removing or minimizing the resistance component (Yp) due to the proximity effect generated between the first terminal (2005a), the second terminal (2005b) and the non-segmented region 2023 to reduce the AC resistance (R ac ) to reduce the quality The coefficient Q can be improved.
한편, 실시예 따른 전자기기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 실시예에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 모바일 디바이스 기기(이하, "디바이스"라 칭함.)라면 족하고, 단말 또는 디바이스라는 용어는 혼용하여 사용될 수 있다. 다른 일 실시예에 따른 무선전력수신기는 차량, 무인 항공기, 에어 드론 등에도 탑재될 수 있다. Meanwhile, the electronic device according to the embodiment is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, an MP3 player. , Electric toothbrushes, electronic tags, lighting devices, remote controls, small electronic devices such as bobbers, etc., but are not limited thereto, and may be equipped with a wireless power receiver according to the embodiment of the present invention. Device ", and the term" terminal "or" device "may be used interchangeably. The wireless power receiver according to another embodiment may be mounted in a vehicle, an unmanned aerial vehicle, an air drone, or the like.
도 25는 실시예에 따른 전자기기의 분해 사시도이다. 25 is an exploded perspective view of an electronic device according to an embodiment.
이하의 도 25에 대한 설명에서 누락된 기술적 사항은 무선전력수신기(도 6의 800)로부터 변형이 가능하므로, 도 6으로부터 용이하게 이해될 수 있다. Technical details omitted in the description of FIG. 25 below may be modified from the wireless power receiver (800 of FIG. 6), and thus may be easily understood from FIG. 6.
도 25를 참조하면, 실시예에 따른 전자기기(1000)는 커버(1150), 커버의 일측에 배치되는 무선충전코일모듈(1105) 및 무선충전코일모듈(1105)의 일측에 배치되는 배터리(1170)을 포함할 수 있다. Referring to FIG. 25, the electronic device 1000 according to the embodiment includes a cover 1150, a wireless charging coil module 1105 disposed on one side of the cover, and a battery 1170 disposed on one side of the wireless charging coil module 1105. ) May be included.
도시되지 않았지만, 커버(1150)와 대응되는 또 다른 커버가 구비되어, 이들이 서로 체결될 수 있다. 도시되지 않았지만, 실시예에 따른 전자기기(1000)는 소정의 동작을 수행하기 위한 적어도 하나 이상의 전자 부품으로 구성된 적어도 하나 이상의 회로를 더 포함할 수 있다. 적어도 하나 이상의 회로는 기판에 실장될 수 있다. 이러한 경우, 적어도 하나 이상의 회로는 배터리(1170)에 대면되는 기판의 반대면 상에 실장되어, 배터리(1170)의 발열에 영향을 받지 않게 된다. 커버(1150)와 또 다른 커버가 체결됨으로써, 이들 내부에 구비되는 무선충전코일모듈(1105), 배터리(1170) 및/또는 적어도 하나 이상의 회로가 보호될 수 있다. Although not shown, another cover corresponding to the cover 1150 may be provided, and they may be fastened to each other. Although not shown, the electronic apparatus 1000 according to the embodiment may further include at least one or more circuits composed of at least one or more electronic components for performing a predetermined operation. At least one circuit may be mounted on a substrate. In this case, at least one circuit is mounted on the opposite side of the substrate facing the battery 1170, so that the at least one circuit is not affected by heat generation of the battery 1170. As the cover 1150 and another cover are fastened, the wireless charging coil module 1105, the battery 1170 and / or at least one or more circuits provided therein may be protected.
무선충전코일모듈(1105)에 의해 예컨대, 무선전력송신기로부터 전력을 무선으로 입력받아 배터리(1170)에 충전될 수 있다. 아울러, 배터리(1170)의 전원에 의해 적어도 하나 이상의 회로가 구동되어 해당 전자기기(1000)의 다양한 기능이 수행될 수 있다. For example, the wireless charging coil module 1105 may wirelessly receive power from the wireless power transmitter and charge the battery 1170. In addition, at least one circuit may be driven by the power of the battery 1170 to perform various functions of the electronic device 1000.
무선충전코일모듈(1105)은 기판(1110), 제1 코일(1120), 제2 코일(1130), 차폐재(1140) 및 방열재(1160)를 포함한다. 실시예에 따른 전자기기(1000)는 이상에 설명된 구성 요소 중 일부가 생략되거나 다른 기능을 갖는 구성 요소가 더 추가될 수도 있다.The wireless charging coil module 1105 includes a substrate 1110, a first coil 1120, a second coil 1130, a shielding material 1140, and a heat dissipation material 1160. Electronic device 1000 according to the embodiment may be omitted some of the components described above or may be further added to the component having a different function.
예컨대, 제1 코일(1120)과 제2 코일(1130)은 기판(1110) 상에 배치되고, 차폐재(1140)은 기판(1110)의 아래에 배치될 수 있다. 방열재(1160)은 차폐재(1140)의 아래에 배치될 수 있다. 아울러, 배터리(1160)가 방열재(1160)의 아래에 배치될 수 있다. For example, the first coil 1120 and the second coil 1130 may be disposed on the substrate 1110, and the shielding material 1140 may be disposed below the substrate 1110. The heat dissipation member 1160 may be disposed under the shielding member 1140. In addition, the battery 1160 may be disposed under the heat dissipation member 1160.
예컨대, 무선충전코일모듈(1105)의 방열이 용이한 경우, 방열재(1160)가 생략될 수도 있다. For example, when the heat dissipation of the wireless charging coil module 1105 is easy, the heat dissipation member 1160 may be omitted.
구체적으로, 기판(1110)는 제1 코일(1120)과 제2 코일(1130)을 지지할 수 있다. 기판(1110)는 단층 구조로 이루어질 수 있으며, 다층 구조로 이루어질 수도 있다. 여기서, 기판(1110)는 PCB(Printed Circuit Board), FPCB(Flexible PCB) 및 필름(film)을 포함할 수 있다. In detail, the substrate 1110 may support the first coil 1120 and the second coil 1130. The substrate 1110 may have a single layer structure or may have a multilayer structure. Here, the substrate 1110 may include a printed circuit board (PCB), a flexible PCB (FPCB), and a film.
이러한 기판(1110)는 적어도 하나 이상의 슬릿(slit, 1117)과 적어도 하나의 브릿지(bridge, 1115)를 포함할 수 있다. 슬릿은 개구, 틈, 홀(hole) 또는 구멍으로 지칭될 수 있다.The substrate 1110 may include at least one slit 1117 and at least one bridge 1115. Slits may be referred to as openings, gaps, holes or holes.
적어도 하나 이상의 슬릿(1117)에 의해 기판(1110)의 내부 영역과 외부 영역으로 구분될 수 있다. 이러한 경우, 제1 코일(1120)은 기판(1110)의 내부 영역에 배치되고, 제2 코일(1130)은 기판(1110)의 외부 영역에 배치될 수 있다. 적어도 하나 이상의 슬릿(1117)은 제1 코일(1120)의 둘레를 따라 기판(1110)에 형성될 수 있다. At least one slit 1117 may be divided into an inner region and an outer region of the substrate 1110. In this case, the first coil 1120 may be disposed in an inner region of the substrate 1110, and the second coil 1130 may be disposed in an outer region of the substrate 1110. At least one slit 1117 may be formed in the substrate 1110 along the circumference of the first coil 1120.
브릿지(1115)는 기판(1110)의 일부로서, 슬릿(1117) 사이에 브릿지(1115)가 위치될 수 있다. 슬릿(1117)은 다양한 형상 예컨대 타원형 또는 다각형을 가질 수 있다. The bridge 1115 is part of the substrate 1110, and the bridge 1115 may be positioned between the slits 1117. Slit 1117 may have various shapes, such as oval or polygon.
제1 코일(1120)은 예컨대, 상술한 실시예(도 7 내지 도 24)에서 설명된 무선충전코일패턴(2004, 2003)일 수 있다. 제2 코일(1130)은 NFC나 MST일 수 있다. 다른 예로서, 제2 코일(1130)은 NFC이고 추가로 또 다른 코일이 기판(1110) 상에 배치될 수도 있다. 제2 코일(1130)은 제1 코일(1120)의 외측에 배치된다. 제2 코일(1130)은 제1 코일(1120)을 둘러쌀 수 있다. The first coil 1120 may be, for example, the wireless charging coil patterns 2004 and 2003 described in the above-described embodiments (FIGS. 7 to 24). The second coil 1130 may be NFC or MST. As another example, the second coil 1130 is NFC and in addition another coil may be disposed on the substrate 1110. The second coil 1130 is disposed outside the first coil 1120. The second coil 1130 may surround the first coil 1120.
차폐재(1140)는 제1 코일(1120)과 제2 코일(1130)을 격리시킬 수 있다. 차폐재(1140)는 제1 코일(1120)과 제2 코일(1130)을 무선 전력 수신 장치의 다른 구성들로부터 격리시킬 수 있다. The shield 1140 may insulate the first coil 1120 and the second coil 1130. The shielding material 1140 may isolate the first coil 1120 and the second coil 1130 from other components of the wireless power receiver.
차폐재(1140)는 제1 차폐재(1141)와 제2 차폐재(1145)를 포함할 수 있다. The shielding material 1140 may include a first shielding material 1141 and a second shielding material 1145.
제1 차폐재(1141)은 제2 코일(1130)의 전자기장을 차폐시키기 위해 제공되는 것으로서, 적어도 제2 코일(1130)의 면적보다 큰 면적을 가질 수 있다. 제2 차폐재(1145)는 제1 코일(1120)의 전자기장을 차폐시키기 위해 제공되는 것으로서, 적어도 제1 코일(1120)의 면적보다 큰 면적을 가질 수 있다. 제2 차폐재(1145)는 기판(1110)과 제1 차폐재(1141) 사이에 배치될 수 있다. 제1 차폐재(1141)는 제2 차폐재(1145), 기판(1110), 제1 코일(1120) 및 제2 코일(1130)을 지지할 수 있다. 제2 차폐재(1145)는 기판(1110)에서 제1 코일(1120)을 지지할 수 있다. The first shielding member 1141 is provided to shield the electromagnetic field of the second coil 1130 and may have an area larger than that of the second coil 1130. The second shielding material 1145 is provided to shield the electromagnetic field of the first coil 1120 and may have an area larger than the area of the first coil 1120. The second shielding material 1145 may be disposed between the substrate 1110 and the first shielding material 1141. The first shielding member 1141 may support the second shielding member 1145, the substrate 1110, the first coil 1120, and the second coil 1130. The second shielding material 1145 may support the first coil 1120 on the substrate 1110.
이러한 제2 차폐재(1145)는 제1 차폐재(1141) 상에 적층된다. The second shield 1145 is stacked on the first shield 1114.
제1 차폐재(1141)와 제2 차폐재(1145)는 서로 다른 물질적 특성을 가질 수 있다. 여기서, 제1 차폐재(1141)와 제2 차폐재(1145)는 서로 다른 투자율(permeability; μ)을 가질 수 있다. 제1 차폐재(1141)의 투자율이 제2 코일(1130)의 공진 주파수 대역에서 유지될 수 있다. 이를 통해, 제2 코일(1130)의 공진 주파수 대역에서, 제1 차폐재(1141)의 손실율이 억제될 수 있다. 또한 제2 차폐재(1145)의 투자율이 제1 코일(1120)의 공진 주파수 대역에서, 유지될 수 있다. 이를 통해, 제1 코일(1120)의 공진 주파수 대역에서 제2 차폐재(1145)의 손실율이 억제될 수 있다. The first shielding member 1141 and the second shielding member 1145 may have different physical properties. Here, the first shielding member 1141 and the second shielding member 1145 may have different permeability (μ). Permeability of the first shielding material 1141 may be maintained in the resonant frequency band of the second coil 1130. As a result, the loss ratio of the first shielding member 1141 may be suppressed in the resonant frequency band of the second coil 1130. In addition, the permeability of the second shield 1145 may be maintained in the resonant frequency band of the first coil 1120. As a result, the loss rate of the second shielding material 1145 in the resonant frequency band of the first coil 1120 may be suppressed.
차폐재(1140)는 페라이트(ferrite) 재질을 포함하여 이루어질 수 있다. 즉 차폐재(1140)는 금속 분말들과 수지 물질을 포함할 수 있다. 여기서, 금속 분말들은 연자성계 금속 분말들, 알루미늄(Al), 메탈 실리콘(metal silicon) 및 산화철(FeO; Fe3O4; Fe2O3) 등을 포함할 수 있다. 또한 수지 물질은 열가소성 수지, 예컨대 폴리올레핀 엘라스토머(Polyolefin Elastomer)를 포함할 수 있다 제1 차폐재(1141)의 금속 분말들과 제2 차폐재(1145)의 금속 분말들은 서로 다른 종류로 이루어질 수 있다. 한편, 제1 차폐재(1141)의 금속 분말들과 제2 차폐재(1145)의 금속 분말들은 동일한 종류로 이루어질 수 있다. 다만, 제1 차폐재(1141)에서 금속 분말들의 중량비와 제2 차폐재(1145)에서 금속 분말들의 중량비가 다를 수 있다. 또는 제1 차폐재(1141)에서 금속 분말들의 혼합비와 제2 차폐재(1145)에서 금속 분말들의 혼합비가 다를 수 있다. 게다가, 제1 차폐재(1141)와 제2 차폐재(1145)는 동일한 두께를 가질 수 있으며, 서로 상이한 두께를 가질 수도 있다. The shielding material 1140 may include a ferrite material. That is, the shielding material 1140 may include metal powders and a resin material. Here, the metal powders may include soft magnetic metal powders, aluminum (Al), metal silicon and iron oxide (FeO; Fe 3 O 4; Fe 2 O 3). In addition, the resin material may include a thermoplastic resin such as a polyolefin elastomer. The metal powders of the first shielding material 1141 and the metal powders of the second shielding material 1145 may be made of different kinds. Meanwhile, the metal powders of the first shielding material 1141 and the metal powders of the second shielding material 1145 may be of the same kind. However, the weight ratio of the metal powders in the first shielding material 1141 and the weight ratio of the metal powders in the second shielding material 1145 may be different. Alternatively, the mixing ratio of the metal powders in the first shielding material 1141 and the mixing ratio of the metal powders in the second shielding material 1145 may be different. In addition, the first shielding member 1141 and the second shielding member 1145 may have the same thickness and may have different thicknesses from each other.
도시 하지 않았지면, 실시예에 따라 제1 차폐재(1141)와 제2 차폐재(1145)가 동일 물질로 일체로 형성될 수 있다. If not shown, the first shielding material 1141 and the second shielding material 1145 may be integrally formed of the same material according to an embodiment.
도시 하지 않았지만, 실시예에 따라 제1 차폐재(1141)가 구멍을 가지고, 제1 차폐재(1141)의 구멍 내에 제2 차폐재(1145)가 배치될 수 있다. Although not shown, the first shielding member 1141 may have a hole, and the second shielding member 1145 may be disposed in the hole of the first shielding member 1141 according to the exemplary embodiment.
방열재(1160)이 차폐재(1140)의 아래에 배치될 수 있다. 방열재(1160)는 금속 재질로 이루어질 수 있다. 예컨대, 방열재(1160)는 구리(Cu)로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. The heat dissipation member 1160 may be disposed under the shielding member 1140. The heat dissipation member 1160 may be made of a metal material. For example, the heat dissipating member 1160 may be made of copper (Cu), but is not limited thereto.
방열재(1160)의 적어도 하나 이상의 영역은 방열 통로를 위해 커버(1150)에 체결될 수 있지만, 이에 대해서는 한정하지 않는다. At least one region of the heat dissipation member 1160 may be fastened to the cover 1150 for the heat dissipation passage, but is not limited thereto.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.The above detailed description should not be construed as limiting in all respects but should be considered as illustrative. The scope of the embodiments should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the embodiments are included in the scope of the embodiments.
실시예는 무선 전력 송수신 분야에 이용될 수 있다.Embodiments may be used in the field of wireless power transmission and reception.

Claims (10)

  1. 제1 단자;A first terminal;
    상기 제1 단자와 연결되고, 제1 분할영역을 포함하는 권선부; 및A winding part connected to the first terminal and including a first division region; And
    상기 권선부와 연결되는 제2 단자를 포함하고,A second terminal connected with the winding part,
    상기 제1 단자는 상기 권선부의 중심과 상기 제2 단자를 통과하는 가상의 직선과 중첩되지 않는 무선충전코일.The first terminal is a wireless charging coil that does not overlap a virtual straight line passing through the center of the winding portion and the second terminal.
  2. 제1항에 있어서,The method of claim 1,
    상기 권선부는 제2 분할영역과, 상기 제1 분할영역과 상기 제2 분할영역 사이에 비분할영역을 포함하는 무선충전코일.The winding part includes a second divided region, and a non-divided region between the first divided region and the second divided region, the wireless charging coil.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 단자 또는 상기 제2 단자 중 적어도 하나는 상기 권선부의 중심과 상기 비분할영역을 통과하는 가상의 직선과 중첩되지 않는 무선충전코일.At least one of the first terminal or the second terminal does not overlap a virtual straight line passing through the center of the winding portion and the non-dividing area.
  4. 제2항에 있어서,The method of claim 2,
    상기 제1 분할영역은 2개의 도선으로 분할되는 무선충전코일.The first divided area is a wireless charging coil divided into two conductive wires.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2 분할영역은 3개의 도선으로 분할되는 무선충전코일.The second divided area is a wireless charging coil divided into three conductive wires.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 분할영역의 상기 2개의 도선은 상기 제1 단자와 공통으로 연결되고,The two conductive lines of the first divided region are commonly connected to the first terminal,
    상기 제1 분할영역의 상기 2개의 도선은 상기 비분할영역에 공통으로 연결되고,The two conductive lines of the first divided region are commonly connected to the non-divided region,
    상기 제2 분할영역의 상기 3개의 도선은 상기 비분할영역에 공통으로 연결되며,The three conductive lines of the second divided region are commonly connected to the non-divided region,
    상기 제2 분할영역의 상기 3개의 도선은 상기 제2 단자에 공통으로 연결되는 무선충전코일.The three conductive wires of the second divided region are commonly connected to the second terminal.
  7. 제5항에 있어서,The method of claim 5,
    상기 제2 분할영역의 상기 3개의 도선 중 하나의 도선의 선 폭은 다른 도선의 선 폭과 상이한 무선충전코일.And a line width of one of the three conductors of the second divided region is different from that of another conductor.
  8. 제5항에 있어서,The method of claim 5,
    상기 제1 분할영역의 도선의 선 폭은 상기 제2 분할영역의 도선의 선 폭보다 큰 무선충전코일.The line width of the lead of the first divided region is greater than the line width of the lead of the second divided region.
  9. 제5항에 있어서,The method of claim 5,
    상기 제1 분할영역의 도선의 선 간격은 상기 제2 분할영역의 도선의 선 간격과 동일한 무선충전코일.The line spacing of the conductive lines of the first divided region is the same as the line spacing of the conductive lines of the second divided region.
  10. 제2항에 있어서,The method of claim 2,
    상기 비분할영역은 상기 제1 분할영역과 연결되는 제1 도체영역과, 상기 제2분할영역과 연결되는 제3 도체영역과, 제1 도체영역과 제3 도체영역 사이에 배치되는 제2 도체영역을 포함하는 무선충전코일.The non-divided region includes a first conductor region connected to the first divided region, a third conductor region connected to the second divided region, and a second conductor region disposed between the first conductor region and the third conductor region. Wireless charging coil comprising a.
PCT/KR2019/006173 2018-05-30 2019-05-23 Wireless charging coil WO2019231168A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180062168A KR20190136447A (en) 2018-05-30 2018-05-30 Wireless charging coil and wireless charging coil module
KR10-2018-0062168 2018-05-30
KR1020190023102A KR20200104589A (en) 2019-02-27 2019-02-27 Wireless charging coil
KR10-2019-0023102 2019-02-27

Publications (1)

Publication Number Publication Date
WO2019231168A1 true WO2019231168A1 (en) 2019-12-05

Family

ID=68698637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006173 WO2019231168A1 (en) 2018-05-30 2019-05-23 Wireless charging coil

Country Status (1)

Country Link
WO (1) WO2019231168A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809430A4 (en) * 2019-02-28 2021-10-06 Huawei Technologies Co., Ltd. Coil module, wireless charging transmitting device, wireless charging receiving device, wireless charging system, and mobile terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282324A (en) * 2002-03-22 2003-10-03 Tdk Corp Microdevice and its manufacturing method
KR20140076222A (en) * 2012-12-12 2014-06-20 엘에스전선 주식회사 Antenna for wireless charging and Dual mode antenna having the same
KR20170093670A (en) * 2016-02-05 2017-08-16 삼성전기주식회사 Coil module and apparatus for recieving power wirelessly using the same
KR20170112879A (en) * 2016-03-25 2017-10-12 삼성전기주식회사 A coil device and an apparatus comprising the same
KR20180042578A (en) * 2016-10-18 2018-04-26 엘지이노텍 주식회사 Apparatus for transmitting wireless power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282324A (en) * 2002-03-22 2003-10-03 Tdk Corp Microdevice and its manufacturing method
KR20140076222A (en) * 2012-12-12 2014-06-20 엘에스전선 주식회사 Antenna for wireless charging and Dual mode antenna having the same
KR20170093670A (en) * 2016-02-05 2017-08-16 삼성전기주식회사 Coil module and apparatus for recieving power wirelessly using the same
KR20170112879A (en) * 2016-03-25 2017-10-12 삼성전기주식회사 A coil device and an apparatus comprising the same
KR20180042578A (en) * 2016-10-18 2018-04-26 엘지이노텍 주식회사 Apparatus for transmitting wireless power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809430A4 (en) * 2019-02-28 2021-10-06 Huawei Technologies Co., Ltd. Coil module, wireless charging transmitting device, wireless charging receiving device, wireless charging system, and mobile terminal

Similar Documents

Publication Publication Date Title
WO2013141658A1 (en) Antenna assembly and method for manufacturing same
WO2015060570A1 (en) Wireless power transfer method, apparatus and system
WO2012157927A2 (en) Transmitter and receiver in a wireless power transmitting system, and method for the transmitter and receiver to wirelessly transmit/receivetransceive power
WO2017164525A1 (en) Wireless charging system and device therefor
WO2018004117A1 (en) Wireless power control method and device for wireless charging
WO2014200247A1 (en) Wireless power transfer method, wireless power transmitter and wireless charging system
WO2018093041A1 (en) Multi-mode antenna and wireless power reception device using same
WO2019050157A1 (en) Wireless charging device comprising wireless charging coil and nfc antenna
WO2018080049A1 (en) Wireless charging coil of wireless power transmitter and receiver, and method for producing same
WO2014007415A1 (en) Method and apparatus for periodically changing frequency in wireless power transfer
WO2014137109A1 (en) Electronic device, electric vehicle, and wireless electric power transmission device
WO2016006892A1 (en) Wireless power transfer method, apparatus and system
WO2016024700A1 (en) Wireless power transfer system and wireless charging system
WO2016080594A1 (en) Wireless power transmission device, wireless power reception device, and wireless charging system
WO2015080539A1 (en) Wireless power transfer method, apparatus and system
WO2013172630A1 (en) Wireless power transfer device and wireless charging system having same
WO2015002422A1 (en) Wireless power transmitting apparatus
WO2013012111A1 (en) Two-way communication using wireless power signal
EP3172813A1 (en) Wireless power transfer method, apparatus and system
EP3158622A1 (en) Wireless power transfer method, apparatus and system
WO2015119458A1 (en) Wireless power transfer and receive method, apparatus and system
WO2015186991A1 (en) Wireless power transfer method, apparatus and system
WO2015194889A1 (en) Wireless power transfer method, apparatus and system
WO2022097915A1 (en) Wireless power transmission apparatus, wireless power reception apparatus, and wireless charging system
WO2020171397A1 (en) Flexible flat cable and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810580

Country of ref document: EP

Kind code of ref document: A1