WO2018074169A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2018074169A1
WO2018074169A1 PCT/JP2017/035128 JP2017035128W WO2018074169A1 WO 2018074169 A1 WO2018074169 A1 WO 2018074169A1 JP 2017035128 W JP2017035128 W JP 2017035128W WO 2018074169 A1 WO2018074169 A1 WO 2018074169A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
output
converters
voltage
power
Prior art date
Application number
PCT/JP2017/035128
Other languages
French (fr)
Japanese (ja)
Inventor
西田 映雄
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018074169A1 publication Critical patent/WO2018074169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply system in which a plurality of converters are connected in parallel.
  • Patent Document 1 discloses a control method in which output currents of a plurality of rectifier units connected in parallel are made uniform.
  • Patent Document 2 describes some components of a slave converter in a power supply device including a master converter and a slave converter when the output current of the master converter is less than a threshold value.
  • a technique is disclosed in which the slave converter is operated when the output current of the master converter exceeds a threshold value after being stopped. This suppresses an increase in converter loss during light load.
  • control circuit of the slave converter receives a signal indicating the magnitude of the output current of the master converter, and switches the slave converter to either the sleep state or the operating state based on the signal. Further, the control circuit of the slave converter controls on / off of each component in the slave converter according to whether the slave converter is in the sleep state or the operating state.
  • the present invention has been made in order to solve the above-described problem.
  • a simple control suppresses a decrease in loss at light load and the conversion between converters.
  • An object of the present invention is to provide a power supply system that can reduce temperature rise and stress bias on parts.
  • a power supply system is a power supply system including N converters (N is an integer of 2 or more), and N converters connected in parallel.
  • Each of the N converters includes a power converter that converts an input voltage into an output voltage, a first controller that controls the power converter so that the output voltage of the power converter becomes a target value, And a setting unit for setting a target value in the first control unit.
  • the power supply system further controls the setting unit of each of the N converters to set the target value in the m converters (1 ⁇ m ⁇ N) of the N converters to the first voltage, and the rest
  • a second control unit is provided for causing the target value in the Nm range to be a second voltage lower than the first voltage.
  • the second control unit controls each setting unit of the N converters so that the period during which the setting unit sets the first voltage as the target value is equalized in the N converters.
  • the first control unit controls the power conversion unit so that the output voltage becomes a target value, and the output current of the power conversion unit reaches the threshold value.
  • the power conversion unit is controlled so that the output voltage becomes lower than the target value.
  • the first control unit controls the power conversion unit so that the output voltage becomes a target value when the output current of the power conversion unit is 0, and the output is performed as the output current of the power conversion unit increases.
  • the power converter is controlled so that the voltage drops from the target value.
  • each of the N converters further includes a detection unit that detects an output current of the power conversion unit, a first threshold value, and a second threshold value that is lower than the first threshold value. And a hysteresis comparator for outputting either the signal or the second signal.
  • the hysteresis comparator outputs the first signal when the detection value detected by the detection unit exceeds the first threshold when the second signal is output, and outputs the first signal.
  • the second signal is output.
  • the second control unit controls the setting unit of each of the N converters so that the output signal of any one of the hysteresis comparators of the N converters changes from the second signal to the first signal.
  • the power conversion unit is a switching regulator including a switching element.
  • the first control unit sets the number of times of switching per unit time of the switching element, compared to the case where the target value is set to the first voltage. Reduce.
  • FIG. 1 It is a block diagram which shows the structure of the power supply system which concerns on Embodiment 1 of this invention. An example of the timing chart of the input / output control signal and the target voltage in each converter included in the power supply system is shown. It is a figure which shows an example of the circuit structure of a power converter. It is a graph for demonstrating the relationship between an output voltage and output current in case a power converter performs constant current drooping operation. It is a graph for demonstrating the relationship between an output voltage and an output current in case a power converter performs constant power drooping operation. 6 is a graph for explaining a relationship between an output voltage and an output current in the power supply system according to the second embodiment. FIG.
  • FIG. 6 is a circuit block diagram illustrating a configuration of a converter included in a power supply system according to a third embodiment.
  • 10 is a timing chart illustrating an example of a relationship among an output current, a mode signal, a control signal, and a target voltage in each converter according to Embodiment 3.
  • FIG. 1 is a block diagram showing a configuration of a power supply system 1 according to Embodiment 1 of the present invention.
  • the power supply system 1 includes input terminals P1 and P2 to which input power is applied, converters 10A to 10C, and output terminals P3 and P4 connected to a load.
  • Converters 10A-10C are connected in parallel between input terminals P1, P2 and output terminals P3, P4.
  • Converters 10A to 10C have the same configuration, and each is also referred to as converter 10.
  • Converters 10A to 10C convert input power applied between input terminals P1 and P2, and output the converted power between output terminals P3 and P4.
  • Converters 10A to 10C have the same configuration.
  • Converters 10A to 10C include input terminals P11, P12, and P13, output terminals P14, P15, and P16, power converter 11, target voltage setting unit 12, controller 13, control signal output unit 14, and diode D1. Including.
  • the input terminals P11 and P12 are connected to the input terminals P1 and P2, respectively.
  • the output terminals P14 and P15 are connected to the output terminals P3 and P4, respectively.
  • the power converter 11 converts the power received by the input terminals P11 and P12 and outputs the converted power.
  • the power conversion unit 11 is a switching regulator including a switching element such as a power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the diode D1 has an anode connected to one of the output side terminal pairs of the power conversion unit 11 and a cathode connected to the output terminal P14.
  • the diode D1 prevents reverse current flow when the anode side potential is less than the potential of the output terminal P14, and the power output from the power converter 11 when the anode side potential is equal to or higher than the potential of the output terminal P14. Is supplied to the output terminal P14.
  • the diode D1 functions as a so-called OR connection diode.
  • the controller 13 controls on and off of the switching element of the power conversion unit 11 so that the output voltage output from the power conversion unit 11 approaches the target voltage. That is, the controller 13 functions as a control unit (first control unit) that controls the power conversion unit 11 so that the output voltage of the power conversion unit 11 becomes the target voltage.
  • the target voltage setting unit 12 sets a target voltage in the controller 13 based on a control signal received by the input terminal P13.
  • the target voltage setting unit 12 uses either Vout1 (for example, 12.05V) that is the first voltage or Vout2 (for example, 11.95V) that is the second voltage lower than Vout1 as the target voltage. Set.
  • the target voltage setting unit 12 changes the target voltage from Vout2 to Vout1 when the control signal changes from the low level to the high level, and changes the predetermined value after the control signal changes from the high level to the low level.
  • the first holding time for example, about 10 seconds
  • the control signal output unit 14 generates a signal obtained by delaying the control signal input to the input terminal P13 by a predetermined delay time (for example, about 10 seconds), and outputs the generated signal from the output terminal P16 as a control signal. . That is, the control signal output unit 14 changes the control signal output from the output terminal P16 from the low level to the high level after a predetermined delay time has elapsed since the control signal input to the input terminal P13 changes from the low level to the high level. After a predetermined delay time has elapsed since the control signal input to the input terminal P13 changes from the high level to the low level, the control signal output from the output terminal P16 is switched from the high level to the low level.
  • a predetermined delay time for example, about 10 seconds
  • output terminal P16 of converter 10A is connected to input terminal P13 of converter 10B
  • output terminal P16 of converter 10B is connected to input terminal P13 of converter 10C
  • output terminal P16 of converter 10C is connected to the converter. It is connected to the input terminal P13 of 10A.
  • converters 10A to 10C are connected in a ring shape, and converter 10 delays the control signal received from previous-stage converter 10 to subsequent-stage converter 10 by a predetermined delay time and outputs the delayed signal.
  • Only the control signal output unit 14 of the converter 10C is set to output a high-level control signal (hereinafter referred to as a pulse signal) having a predetermined pulse width to the output terminal P16 at the time of startup.
  • the pulse signals are input with a predetermined delay time shifted in the order of converter 10A, converter 10B, converter 10C, converter 10A,.
  • FIG. 2 shows an example of a timing chart of the input / output control signals and the target voltage set by the target voltage setting unit 12 in each converter 10.
  • the first stage which is the uppermost stage, shows the control signal In (A) received by the input terminal P13 of the converter 10A (that is, the control signal Out (C) output from the output terminal P16 of the converter 10C).
  • the second stage shows the control signal In (B) received by the input terminal P13 of the converter 10B (that is, the control signal Out (A) output from the output terminal P16 of the converter 10A), and the third stage shows the converter 10C.
  • the control signal In (C) received by the input terminal P13 that is, the control signal Out (B) output from the output terminal P16 of the converter 10B
  • the fourth stage shows the target voltage in the converter 10A
  • the fifth stage shows the target voltage in the converter 10B
  • the sixth stage shows the target voltage in the converter 10C.
  • the target voltage setting unit 12 holds the target voltage at Vout1 after the control signal changes from the high level to the low level, and the control signal output unit 14 is connected from the input terminal P13.
  • the pulse width W is a short time compared to the first holding time Tk and the delay time Td.
  • the target voltage setting unit 12 of the converter 10A switches the target voltage from Vout2 to Vout1, and receives the pulse signal before receiving the pulse signal. After maintaining the target voltage at Vout1 for one holding time Tk (for example, about 10 seconds), the target voltage is switched from Vout1 to Vout2.
  • the control signal output unit 14 of the converter 10A delays the pulse signal input to the input terminal P13 by the delay time Td and outputs it from the output terminal P16.
  • Td Tk + W
  • the target voltage setting unit 12 of the converter 10B has the input terminal P13 at the timing when the target voltage setting unit 12 of the converter 10A switches the target voltage from Vout1 to Vout2.
  • the target voltage is switched from Vout2 to Vout1.
  • the target voltage setting unit 12 of the converter 10B switches the target voltage from Vout1 to Vout2 after maintaining the target voltage at Vout1 for the first holding time Tk after receiving the pulse signal.
  • the control signal output unit 14 of the converter 10B delays the pulse signal input to the input terminal P13 by the delay time Td and outputs it from the output terminal P16.
  • the target voltage setting unit 12 of the converter 10C receives the pulse signal from the input terminal P13 at the timing when the target voltage setting unit 12 of the converter 10B switches the target voltage from Vout1 to Vout2, and switches the target voltage from Vout2 to Vout1.
  • the target voltage setting unit 12 of the converter 10C switches the target voltage from Vout1 to Vout2 after maintaining the target voltage Vout1 for the first holding time Tk after receiving the pulse signal.
  • the target voltage setting units 12 of the remaining two converters 10 remain in the period during which the target voltage setting unit 12 of one converter 10 among the three converters 10A to 10C sets the target voltage to Vout1.
  • the target voltage is set to Vout2.
  • the controller 13 controls the power converter 11 so that the output voltage of the power converter 11 approaches the target voltage. Therefore, during the period when the target voltage of converter 10A is set to Vout1, the target voltage (Vout2) of converters 10B and 10C is lower than the voltage between output terminals P14 and P15. As a result, the output currents of converters 10B and 10C are 0, and power is not supplied from output terminals P14 and P15. Similarly, during the period in which the target voltage of converter 10B or converter 10C is set to Vout1, converter 10 in which the target voltage is set to Vout2 does not supply power from output terminals P14 and P15.
  • Each control signal output unit 14 included in each converter 10A to 10C controls a target voltage setting unit 12 of each of converters 10A to 10C, thereby achieving a target voltage in one of the three converters 10A to 10C.
  • the converter 10 that supplies power is one unit among the converters 10A to 10C, and the converter 10 that supplies power is compared to the case where power is supplied by three units of the converters 10A to 10C.
  • the output power increases. As a result, it is possible to suppress a reduction in loss due to the influence of fixed loss even at light loads without requiring complicated calculation processing.
  • the period during which power is supplied (that is, the period during which the target voltage is set to Vout1) is uniform for each converter 10A to 10C, the amount of heat generated in converters 10A to 10C and the bias of stress on components are suppressed. Can do.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of the power conversion unit 11.
  • the power conversion unit 11 includes, for example, switching elements Q1, Q2, rectifying elements SR1, SR2, capacitors C11, C12, C13, coils L1, L2, a transformer T1, and a smoothing
  • This is an LLC resonance type DC-DC converter having a capacitor C14.
  • Switching elements Q1, Q2, capacitors C11, C12, and coil L1 convert a DC voltage input between input terminals P11, P12 into an AC voltage, and the converted AC voltage is applied to the primary winding of transformer T1. Entered.
  • the AC voltage generated in the secondary winding of the transformer T1 is rectified and smoothed by the rectifying elements SR1 and SR2, the capacitor C13, the coil L2, and the smoothing capacitor C14. As a result, a DC voltage is output to the output terminals P14 and P15.
  • MOSFETs are used as rectifying elements SR1 and SR2 by functioning as diodes.
  • the power conversion unit 11 that converts the DC voltage input to the input terminals P ⁇ b> 11 and P ⁇ b> 12 into a different DC voltage is illustrated, but the circuit configuration of the power conversion unit 11 is limited to FIG. 3. It is not a thing.
  • the power conversion unit 11 may include a circuit configuration that steps down or boosts a DC voltage obtained by rectifying the AC voltage input to the input terminals P11 and P12.
  • the power supply system 1 has a configuration (redundant configuration) in which power can be supplied to the load even from only a part of the plurality of converters 10A to 10C. Therefore, when the power consumed in the load connected to the output terminals P3 and P4 is relatively light (small) (hereinafter referred to as light load), the power is obtained only from the converter 10 whose target voltage is set to Vout1. The rating of each converter 10 is set so that can be supplied.
  • the power supply system 1 can change the power consumed by the load by sequentially switching the converter 10 whose target voltage is set to Vout1 (that is, the converter 10 that supplies power to the load). Can be supplied.
  • the controllers 13 of the converters 10A to 10C perform a protective operation. Specifically, when the output current of the power conversion unit 11 reaches the threshold value Ith0, the controller 13 fixes the output current to the threshold value Ith0 and performs a constant current drooping operation for reducing the output voltage as a protective operation.
  • FIG. 4 shows the relationship (solid line) between the output voltage and the output current in the power converter 11 of the converter 10 in which the target voltage is set to Vout1 when the constant current drooping operation is performed as a protection operation, and the target voltage is set to Vout2. It is a graph which shows the relationship (one-dot chain line) of the output voltage and output current in the power converter 11 of the converter 10 to be set.
  • the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
  • FIG. 4A shows the operating point A1 of the converter 10A, the operating point B1 of the converter 10B, and the operating point C1 of the converter 10C when the power consumed by the load is within the rated range of the converter 10.
  • power converter 11 of converter 10A outputs Vout1 that is the target voltage, and outputs current Ia consumed by the load (current value corresponding to operating point A1).
  • Vout1 the target voltage
  • Ia consumed by the load current value corresponding to operating point A1
  • the converters 10B and 10C are applied between the output terminals P14 and P15 rather than the target voltage. The voltage increases.
  • FIG. 4B shows the operating point A2 of the converter 10A, the operating point B2 of the converter 10B, and the operating point of the converter 10C when the power consumed by the load exceeds the rated range of one converter 10.
  • An example with C2 is shown.
  • controller 13 switches the operation of power converter 11 from the constant voltage operation to the constant current drooping operation.
  • Vout2 operation point A2
  • the voltage between the output terminals P14 and P15 becomes the same as the target voltage in the converters 10B and 10C, so the output current of the power converter 11 increases. Power is supplied from the power converter 11 to the load.
  • the converters 10B and 10C can immediately supply power.
  • the controller 13 of the converters 10A to 10C controls the power conversion unit 11 so as to perform a constant current drooping operation as a protective operation.
  • the controller 13 may control the power conversion unit 11 so that the constant power drooping operation is performed as a protection operation instead of the constant current drooping operation.
  • the constant power drooping operation is an operation for lowering the output voltage in accordance with the increase in the output current so that the product of the output current and the output voltage is constant.
  • FIG. 5 shows the relationship (solid line) between the output voltage and the output current in the power conversion unit 11 of the converter 10 in which the target voltage is set to Vout1 when the constant power drooping operation is performed as a protection operation, and the target voltage is set to Vout2.
  • the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
  • FIG. 5A shows the operating point A1 of the converter 10A, the operating point B1 of the converter 10B, and the operating point C1 of the converter 10C when the power consumed by the load is within the rated range of the converter 10.
  • the power conversion unit 11 of the converter 10A outputs the target voltage Vout1, and outputs the current Ia required for the load (current value corresponding to the operating point A1).
  • the voltage applied between output terminals P14 and P15 is higher than the target voltage. Therefore, in converters 10B and 10C, the output current of power converter 11 is 0 (the current value corresponding to operating points B1 and C1 is 0).
  • converters 10B and 10C do not supply power to the load.
  • FIG. 5B shows the operating point A3 of the converter 10A, the operating point B3 of the converter 10B, and the operating point C3 of the converter 10C when the power consumed by the load exceeds the rating of one converter 10.
  • Ith0 threshold value
  • controller 13 switches the operation of power converter 11 from the constant voltage operation to the constant power drooping operation.
  • Vout1 operation point A3
  • the voltage between the output terminals P14 and P15 becomes the same as the target voltage in the converters 10B and 10C, so the output current of the power converter 11 increases. Power is supplied from the power converter 11 to the load.
  • the output current at the operating point A3 is Ic
  • the sum of the output currents from the converters 10A to 10C matches the load current, and this state is maintained.
  • power is also supplied from the converter 10 whose target voltage is set to Vout2, and power can be stably supplied to the load.
  • Embodiment 2 A power supply system according to Embodiment 2 of the present invention will be described below.
  • the controller 13 controls the power conversion unit 11 so that the output voltage becomes the target voltage when the protection operation is not executed (that is, when the output current does not reach the threshold value Ith0).
  • the controller 13 controls the power conversion unit 11 so that the voltage-current characteristic (droop characteristic) becomes smaller as the output current becomes larger. To do.
  • the controller 13 controls the power conversion unit 11 so that the output voltage becomes the target voltage when the output current of the power conversion unit 11 is 0, and the output voltage becomes the target as the output current of the power conversion unit 11 increases.
  • the power conversion unit 11 is controlled so as to decrease from the voltage. Specifically, the controller 13 detects the output current of the power converter 11 and generates a droop correction value ⁇ V proportional to the output current.
  • the controller 13 controls the power converter 11 to output a voltage obtained by subtracting the droop correction value ⁇ V from the target voltage set by the target voltage setting unit 12.
  • FIG. 6 shows the relationship (solid line) between the output voltage and the output current in the power converter 11 of the converter 10 in which the target voltage is set to Vout1, and the output in the power converter 11 of the converter 10 in which the target voltage is set to Vout2. It is a graph which shows the relationship (one-dot chain line) of a voltage and an output current.
  • the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
  • the output voltage is Vout1 when the output current is 0, but the output voltage decreases as the output current increases.
  • the output voltage is Vout2 when the output current is 0, but the output voltage decreases as the output current increases.
  • FIG. 6A shows the operating point A4 of the converter 10A, the operating point B4 of the converter 10B when the power consumed by the load is relatively small within the rated range of the converter 10 (at the time of light load),
  • An example with the operating point C4 of the converter 10C is shown.
  • the converter 10A is a voltage corresponding to the current Ie consumed by the load (current value corresponding to the operating point A1), and is the target voltage Vout1 of the converters 10B and 10C. Output higher voltage. Therefore, in converters 10B and 10C, the output current of power conversion unit 11 is 0 (current values corresponding to operating points B4 and C4 are 0). Thus, at the time of light load, converters 10B and 10C do not supply power to the load.
  • FIG. 6B shows the operating point A5 of the converter 10A, the operating point B5 of the converter 10B when the power consumed by the load is relatively large within the rated range of the converter 10 (during heavy load), An example with the operating point C5 of the converter 10C is shown.
  • the output voltage of the converter 10A is lower than Vout2, which is the target voltage of the converters 10B and 10C, due to the droop characteristic (operation point A5).
  • Vout2 is the target voltage of the converters 10B and 10C
  • power converter 11 increases the output current and supplies power to the load.
  • the output voltage decreases as the output current increases due to the droop characteristic.
  • converters 10B and 10C can supply power to the load before the protection operation is performed in converter 10A in which the target voltage is set to Vout1. .
  • the efficiency of the power conversion unit 11 decreases due to the influence of a loss (conduction loss) proportional to the square of the output current. Therefore, in the second embodiment, the efficiency of converter 10 when the power consumed by the load is increased can be improved as compared with the first embodiment.
  • the power supply system according to the third embodiment is a modification of the first or second embodiment described above, in which a part of target voltages of a plurality of converters is Vout1, and the remaining target voltage is Vout2.
  • Vout1 a part of target voltages of a plurality of converters
  • Vout2 the remaining target voltage
  • the control method described in hereinafter referred to as light load mode
  • FIG. 7 is a circuit block diagram showing the configuration of each converter 20A to 20C included in the power supply system according to the third embodiment.
  • the power supply system according to Embodiment 3 includes converters 20A to 20C shown in FIG. 7 instead of converters 10A to 10C shown in FIG.
  • converters 20A to 20C have a target voltage setting unit 22 and a control signal output instead of target voltage setting unit 12 and control signal output unit 14 as compared with converters 10A to 10C shown in FIG. And the output current detection circuit 15 and the hysteresis comparator 16 are further provided.
  • the output current detection circuit 15 is a circuit that detects a current between one of the output side terminal pairs of the power conversion unit 11 and the output terminal P15.
  • the output current detection circuit 15 includes a resistor connected between one of the output side terminal pairs of the power converter 11 and the output terminal P15, and a differential amplifier that amplifies the voltage drop of the resistor.
  • the output current detection circuit 15 outputs a voltage Vdet that is proportional to the output current of the power converter 11. That is, the voltage Vdet is a detection value indicating the output current of the power conversion unit 11.
  • the hysteresis comparator 16 compares the voltage Vdet output from the output current detection circuit 15 with a threshold value, and according to the magnitude relationship, the output signal (hereinafter referred to as a mode signal) is either high level or low level. Switch to.
  • the hysteresis comparator 16 has two threshold values, a threshold value Vth1 and a threshold value Vth2 ( ⁇ threshold value Vth1). When the mode signal is at a low level, the mode signal is switched to a high level when the voltage Vdet exceeds the threshold value Vth1. When the signal is at the high level, the mode signal is switched to the low level when the voltage Vdet becomes less than the threshold value Vth2.
  • the hysteresis comparator 16 is a non-inverting hysteresis comparator that includes a comparator 17, a resistor R1, and a resistor R2, and a fixed voltage is applied to the inverting terminal of the comparator 17.
  • the resistor R2 is connected between the non-inverting terminal of the comparator 17 and the output current detection circuit 15, and the voltage Vdet is applied to the non-inverting terminal of the comparator 17 via the resistor R2.
  • a fixed voltage Vref is applied to the inverting terminal of the comparator 17.
  • a resistor R1 is connected between the output terminal and the non-inverting terminal of the comparator 17 to provide positive feedback. The difference between the threshold value Vth1 and the threshold value Vth2 of the hysteresis comparator 16 is determined based on the resistance values of the resistors R1 and R2 and the fixed voltage Vref.
  • the target voltage setting unit 22 receives a control signal from the input terminal P13 and also receives a mode signal from the hysteresis comparator 16, and sets a target voltage based on the received control signal and mode signal.
  • the target voltage setting unit 22 changes the target voltage from Vout2 to Vout1 when the control signal changes from a low level to a high level.
  • the target voltage is changed from Vout1 to Vout2 when a predetermined first holding time (for example, about 10 seconds) elapses after changing from the high level to the low level.
  • the target voltage setting unit 22 changes the target voltage to Vout1, and then changes to a predetermined first holding time (for example, The target voltage is changed from Vout1 to Vout2 after about 10 seconds).
  • the target voltage setting unit 22 sets the target voltage to Vout1 when the mode signal output from the hysteresis comparator 16 is at a high level.
  • the target voltage setting unit 22 changes the target voltage from Vout1 to Vout2 when the mode signal output from the hysteresis comparator 16 changes from high level to low level when the control signal is at high level. Thereafter, the target voltage setting unit 22 performs an operation when the mode signal output from the hysteresis comparator 16 is at a low level.
  • the control signal output unit 24 When the mode signal output from the hysteresis comparator 16 is at a low level, the control signal output unit 24 generates a signal obtained by delaying the control signal received from the input terminal P13 by a predetermined delay time (for example, about 10 seconds). Then, the generated signal is output from the output terminal P16 as a control signal.
  • a predetermined delay time for example, about 10 seconds
  • the control signal output unit 24 outputs a high-level control signal from the output terminal P16 when the mode signal output from the hysteresis comparator 16 is at a high level.
  • the control signal output unit 24 also changes the control signal output from the output terminal P16 from the high level to the low level.
  • control signal output unit 14 of the converter 10C is set to output a high-level control signal (hereinafter referred to as a pulse signal) having a predetermined pulse width to the output terminal P16 at the time of startup. Yes.
  • a pulse signal a high-level control signal having a predetermined pulse width
  • each control signal output unit 24 of converters 10A to 10C is set to output a pulse signal to output terminal P16 at the pulse signal start timing.
  • the pulse signal start timing is defined as a predetermined delay time from timing X (for example, for example, when timing X is the timing at which the control signal first changes from high level to low level after the mode signal has changed from high level to low level) This is the timing when about 10 seconds have elapsed.
  • FIG. 8 is a timing chart showing an example of the relationship among the output current, the mode signal, the control signal, and the target voltage of each of the converters 20A to 20C according to the third embodiment.
  • the first stage which is the uppermost stage, shows the total output current of the converters 20A to 20C.
  • the total current corresponds to the current consumed by the load.
  • the second to fourth stages indicate output currents of the converters 20A to 20C.
  • the fifth to seventh stages show mode signals output from the hysteresis comparator 16 in each of the converters 20A to 20C.
  • the eighth stage shows the control signal In (A) received by the input terminal P13 of the converter 20A (that is, the control signal Out (C) output from the output terminal P16 of the converter 20C), and the ninth stage shows the converter 20B.
  • the control signal In (B) received by the input terminal P13 (that is, the control signal Out (A) output from the output terminal P16 of the converter 20A) is shown, and the 10th stage shows the control signal In received by the input terminal P13 of the converter 20C.
  • C (that is, the control signal Out (B) output from the output terminal P16 of the converter 20B) is shown.
  • the eleventh to thirteenth stages indicate target voltages in the respective converters 20A to 20C.
  • the power supply system sets the target voltage of one of the converters 20A to 20C to Vout1, the target voltage of the remaining converter 20 to Vout2, and the target voltage to Vout1.
  • the set converter 20 operates in a light load mode in which the converter 20 is sequentially switched every predetermined time. In the example shown in FIG. 7, the target voltage is set to Vout1 in the order of converter 20A, converter 20B, and converter 20C.
  • the output current of the converter 20C reaches Ith1 at time t1 when the target voltage of the converter 20C is set to Vout1.
  • Ith1 is a current value corresponding to the threshold value Vth1 of the hysteresis comparator 16.
  • Ith2 is a current value corresponding to the threshold value Vth2 of the hysteresis comparator 16.
  • the mode signal output from the hysteresis comparator 16 of the converter 20C is switched from the low level to the high level.
  • target voltage setting unit 22 maintains the target voltage at Vout1
  • control signal output unit 24 switches the control signal output to converter 20A from the low level to the high level.
  • the control signal output unit 24 of the converter 20C also maintains the output control signal Out (C) at the high level while the mode signal from the hysteresis comparator 16 is maintained at the high level.
  • the control signal output unit 24 of the converter 20A switches the control signal Out (A) output to the converter 20B from the low level to the high level.
  • converter 20B When the control signal Out (A) from the converter 20A changes from the low level to the high level, the target voltage setting unit 22 of the converter 20B that receives the control signal Out (A) switches the target voltage to Vout1. Thus, converter 20B also supplies power to the load. As a result, the power supply system is in a normal mode in which the current supplied to the load is shared by converters 20A to 20C.
  • the control signal output unit 24 of the converter 20B switches the control signal Out (B) output to the converter 20C from the low level to the high level.
  • the target voltage setting unit 22 sets the target voltage regardless of the change in the control signal Out (B) from the converter 20B. Continue to set to Vout1.
  • the normal mode in which the target voltage is set to Vout1 is switched in all the converters 20A to 20C. Thereafter, the current consumed by the load decreases, and in the converter 20C, the mode signal output from the hysteresis comparator 16 is at a high level until the output current becomes less than Ith2 (current value corresponding to the threshold value Vth2). Normal mode is maintained until the signal changes from low to low.
  • the output current of the converter 20C becomes less than Ith2, and the mode signal output from the hysteresis comparator 16 changes from high level to low level.
  • target voltage setting unit 22 of converter 20C lowers the target voltage to Vout2.
  • the target voltage is lower than the voltage between output terminals P14 and P15, and the output current of power conversion unit 11 becomes zero.
  • the power supply from converter 20C to the load becomes zero, and the output current from converters 20A and 20B increases.
  • control signal output unit 24 of the converter 20C receives the fact that the mode signal output from the hysteresis comparator 16 has changed to low level, and outputs the control signal Out (C) output to the converter 20A to low level. Switch to.
  • target voltage setting unit 22 of converter 20A changes the target voltage from Vout1 to Vout2.
  • the delay time and the first holding time are set to be the same. Therefore, at time t5, the control signal output unit 24 of the converter 20A switches the control signal Out (A) output to the converter 20B from the high level to the low level.
  • target voltage setting unit 22 of converter 20B changes the target voltage from Vout1 to Vout2.
  • the control signal output unit 24 of the converter 20B changes the control signal Out (B) output to the converter 20C from the high level to the low level. Switch.
  • the target voltage setting unit 22 of the converter 20C sets the target voltage to Vout2 at the timing (time t6) when the control signal Out (B) changes from the high level to the low level. Therefore, target voltage setting unit 22 of converter 20C changes the target voltage to Vout1 at time t6, and then changes the target voltage from Vout1 to Vout2 at time t7 when a predetermined first holding time has elapsed.
  • time t7 is a timing when a predetermined delay time has elapsed from timing X (time t6). Therefore, control signal output unit 24 of converter 20C determines that time t7 is the pulse signal start timing, and outputs the pulse signal to output terminal P16.
  • the power supply system is switched to the light load mode in which the target voltage of only one of the converters 20A to 20C is set to Vout1.
  • the power supply system enters a light load mode in which one target voltage of the converters 20A to 20C is set to Vout1, and the target voltage of the remaining converter 20 is set to Vout2. Can be switched.
  • the converters 20 whose target voltage is set to Vout1 are sequentially switched every predetermined delay time, the amount of heat generated by each converter 20 can be made uniform, and the stress on the components of each converter 20 can be made uniform. can do.
  • the controller 13 when the target voltage is set to Vout2, the controller 13 is a unit in the switching elements Q1 and Q2 of the power conversion unit 11 than when the target voltage is set to Vout1. Reduce the number of switching operations per hour. Thereby, the switching loss in the converter that does not contribute to the power supply to the load can be reduced.
  • the controller 13 may perform intermittent oscillation by thinning out a predetermined number of pulses.
  • PFM Pulse Frequency Modulation
  • the controller 13 oscillates while switching the switching elements Q1 and Q2 and stops the oscillation that keeps the switching elements Q1 and Q2 off. You may perform burst control which repeats a period alternately.
  • the controller 13 may perform hysteresis control based on the output voltage of the power conversion unit 11. Specifically, the controller 13 sets the voltage slightly higher than Vout1 as the upper limit value, sets the voltage slightly lower than Vout1 as the lower limit value, and when the output voltage of the power converter 11 exceeds the upper limit value, the switching element Q1 , Q2 are kept off, and switching of the switching element Q1 is started when the output voltage of the power converter 11 becomes less than the lower limit value.
  • the power supply system includes three converters, one of which is set to Vout1, and the other two are set to Vout2.
  • the number of converters is not limited to this.
  • the number of target voltages set to Vout1 is not limited to one.
  • the power supply system may include five converters, of which three target voltages may be set to Vout1, and the remaining two may be set to Vout2. That is, the target voltage for m converters (1 ⁇ m ⁇ N) of N converters may be Vout1, and the target voltage for the remaining N ⁇ m converters may be Vout2.
  • each converter has the control signal output units 14 and 24 that output the control signal to the target voltage setting units 12 and 22 of the converter including the input terminal P13 connected to the output terminal P16 of the converter.
  • the power supply system may include a control signal output unit that outputs a control signal to each of the converters 10 and 20 outside the converters 10 and 20 instead of the control signal output units 14 and 24.
  • the control signal output unit may output a low level control signal to the converters 10B and 10C, for example, while outputting a high level control signal to the converter 10A.
  • 1 power system 10 (10A to 10C), 20 (20A to 20C) converter, 11 power conversion unit, 12, 22 target voltage setting unit, 13 controller, 14, 24 control signal output unit, 15 output current detection circuit, 16 Hysteresis comparator, 17 operational amplifier, Q1, Q2 switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In the present invention, by means of control signals output from each converter (10A – 10C) a target voltage, which is a target value for the output voltage of one of the three converters, is set to Vout1, and a target voltage for the other two converters is set to Vout2 (<Vout1). The period for which the target voltage is set to Vout1 is equal for each converter. Thus, a reduction in loss during a light load can be suppressed and variation among the converters with respect to temperature increases and stress on components can be reduced by means of a simple control.

Description

電源システムPower system
 本発明は、複数のコンバータを並列に接続した電源システムに関する。 The present invention relates to a power supply system in which a plurality of converters are connected in parallel.
 従来、同じ構成を有する複数のコンバータが並列に接続された、冗長構成を有する電源システムが知られている。このような電源システムでは、複数のコンバータ間において温度上昇や部品へのストレスに偏りがないようにするために、各々のコンバータの出力電力をおおむね同じ値とすることが一般的に行なわれている。たとえば、特開2015-53808号公報(特許文献1)には、複数台並列に接続された整流器ユニットのそれぞれの出力電流が均一になるような制御方法が開示されている。 Conventionally, a power supply system having a redundant configuration in which a plurality of converters having the same configuration are connected in parallel is known. In such a power supply system, the output power of each converter is generally set to approximately the same value so that there is no bias in temperature rise and stress on components among a plurality of converters. . For example, Japanese Patent Laying-Open No. 2015-53808 (Patent Document 1) discloses a control method in which output currents of a plurality of rectifier units connected in parallel are made uniform.
 コンバータは、一般に、軽負荷になると、コンバータに含まれる制御回路(IC(Integrated Circuit))等の固定損の影響が大きくなり、効率が低下する。そのため、軽負荷時に全てのコンバータから均一に電力を供給すると、各コンバータからの出力電流が小さくなりすぎ、各コンバータにおける損失が大きくなる。 In general, when a light load is applied to a converter, the effect of fixed loss such as a control circuit (IC (Integrated Circuit)) included in the converter increases and efficiency decreases. Therefore, if power is supplied uniformly from all the converters at the time of light load, the output current from each converter becomes too small and the loss in each converter becomes large.
 そこで、特開2015-53807号公報(特許文献2)には、マスターコンバータとスレーブコンバータとを含む電源装置において、マスターコンバータの出力電流が閾値未満の場合に、スレーブコンバータの一部の構成要素を休止させ、マスターコンバータの出力電流が閾値を超えた場合にスレーブコンバータを動作させる技術が開示されている。これにより、軽負荷時のコンバータの損失の増大を抑制する。 Therefore, Japanese Patent Laying-Open No. 2015-53807 (Patent Document 2) describes some components of a slave converter in a power supply device including a master converter and a slave converter when the output current of the master converter is less than a threshold value. A technique is disclosed in which the slave converter is operated when the output current of the master converter exceeds a threshold value after being stopped. This suppresses an increase in converter loss during light load.
 具体的には、スレーブコンバータの制御回路は、マスターコンバータの出力電流の大きさを示す信号を受け、当該信号に基づいて、スレーブコンバータを休止状態および動作状態のいずれかに切り替える。また、スレーブコンバータの制御回路は、休止状態および動作状態のいずれにあるかに応じて、スレーブコンバータ内の各構成要素のオンおよびオフを制御する。 Specifically, the control circuit of the slave converter receives a signal indicating the magnitude of the output current of the master converter, and switches the slave converter to either the sleep state or the operating state based on the signal. Further, the control circuit of the slave converter controls on / off of each component in the slave converter according to whether the slave converter is in the sleep state or the operating state.
特開2015-53808号公報Japanese Patent Laid-Open No. 2015-53808 特開2015-53807号公報Japanese Patent Laying-Open No. 2015-53807
 しかしながら、特許文献2に開示された電源装置では、スレーブコンバータが休止状態である場合と動作状態である場合とで、スレーブコンバータ内で動作する構成要素が異なる。そのため、スレーブコンバータの制御回路は、休止状態および動作状態のいずれにあるかに応じて、動作している構成要素に応じた演算処理を行なう。その結果、制御回路の演算機能が複雑になるという問題が生じる。 However, in the power supply device disclosed in Patent Document 2, the components that operate in the slave converter differ depending on whether the slave converter is in a dormant state or in an operating state. Therefore, the control circuit of the slave converter performs arithmetic processing according to the operating component depending on whether it is in the sleep state or the operation state. As a result, there arises a problem that the calculation function of the control circuit becomes complicated.
 また、特許文献2に開示された電源装置では、マスターコンバータは動作しているのに対し、スレーブコンバータが休止している期間が発生する。その結果、コンバータ間において温度上昇や部品へのストレスに偏りが生じるという問題も生じる。 Further, in the power supply device disclosed in Patent Document 2, while the master converter is operating, a period in which the slave converter is idle occurs. As a result, there also arises a problem that the temperature rise and the stress on the components are uneven between the converters.
 本発明は、上記課題を解決するためになされたものであって、複数のコンバータが並列に接続された電源システムにおいて、簡易な制御によって、軽負荷時の損失の低下を抑制するとともに、コンバータ間において温度上昇や部品へのストレスの偏りを低減できる電源システムを提供することを目的とする。 The present invention has been made in order to solve the above-described problem. In a power supply system in which a plurality of converters are connected in parallel, a simple control suppresses a decrease in loss at light load and the conversion between converters. An object of the present invention is to provide a power supply system that can reduce temperature rise and stress bias on parts.
 本発明のある局面に従う電源システムは、N台(Nは2以上の整数)のコンバータを備え、N台のコンバータが並列に接続された電源システムである。N台のコンバータの各々は、入力電圧を出力電圧に変換する電力変換部と、記電力変換部の出力電圧が目標値となるように電力変換部を制御するための第1の制御部と、第1の制御部に目標値を設定するための設定部とを含む。電源システムは、さらに、N台のコンバータの各々の設定部を制御することにより、N台のコンバータのうちのm台(1≦m<N)における目標値を第1の電圧にさせ、残りのN-m台における目標値を第1の電圧より低い第2の電圧にさせるための第2の制御部を備える。第2の制御部は、N台のコンバータの各々の設定部を制御することにより、設定部が第1の電圧を目標値として設定する期間をN台のコンバータにおいて均等にさせる。 A power supply system according to an aspect of the present invention is a power supply system including N converters (N is an integer of 2 or more), and N converters connected in parallel. Each of the N converters includes a power converter that converts an input voltage into an output voltage, a first controller that controls the power converter so that the output voltage of the power converter becomes a target value, And a setting unit for setting a target value in the first control unit. The power supply system further controls the setting unit of each of the N converters to set the target value in the m converters (1 ≦ m <N) of the N converters to the first voltage, and the rest A second control unit is provided for causing the target value in the Nm range to be a second voltage lower than the first voltage. The second control unit controls each setting unit of the N converters so that the period during which the setting unit sets the first voltage as the target value is equalized in the N converters.
 好ましくは、第1の制御部は、電力変換部の出力電流が閾値未満の場合には、出力電圧が目標値となるように電力変換部を制御し、電力変換部の出力電流が閾値に達した場合には、出力電圧を目標値よりも低くなるように電力変換部を制御する。 Preferably, when the output current of the power conversion unit is less than the threshold value, the first control unit controls the power conversion unit so that the output voltage becomes a target value, and the output current of the power conversion unit reaches the threshold value. In this case, the power conversion unit is controlled so that the output voltage becomes lower than the target value.
 好ましくは、第1の制御部は、電力変換部の出力電流が0のときに、出力電圧が目標値となるように電力変換部を制御し、電力変換部の出力電流の増加に伴って出力電圧が目標値から低下するように電力変換部を制御する。 Preferably, the first control unit controls the power conversion unit so that the output voltage becomes a target value when the output current of the power conversion unit is 0, and the output is performed as the output current of the power conversion unit increases. The power converter is controlled so that the voltage drops from the target value.
 好ましくは、N台のコンバータの各々は、さらに、電力変換部の出力電流を検出する検出部と、第1の閾値と第1の閾値よりも低い第2の閾値とを有し、第1の信号または第2の信号のいずれかを出力するためのヒステリシスコンパレータとを含む。ヒステリシスコンパレータは、第2の信号を出力している場合に検出部によって検出された検出値が第1の閾値を超えると第1の信号を出力し、第1の信号を出力している場合に検出値が第2の閾値未満になると第2の信号を出力する。第2の制御部は、N台のコンバータの各々の設定部を制御することにより、N台のコンバータのヒステリシスコンパレータのいずれかの出力信号が第2の信号から第1の信号に変化した場合には、N台のコンバータにおける目標値を第1の電圧にさせ、る第2のモードとなるようにN台のコンバータの各々の設定部を制御し、N台のコンバータのヒステリシスコンパレータのいずれかの出力信号が第1の信号から第2の信号に変化した場合には、N台のコンバータのうちのm台における目標値を第1の電圧にさせ、残りのN-m台における目標値を第2の電圧にさせる。 Preferably, each of the N converters further includes a detection unit that detects an output current of the power conversion unit, a first threshold value, and a second threshold value that is lower than the first threshold value. And a hysteresis comparator for outputting either the signal or the second signal. The hysteresis comparator outputs the first signal when the detection value detected by the detection unit exceeds the first threshold when the second signal is output, and outputs the first signal. When the detected value becomes less than the second threshold value, the second signal is output. The second control unit controls the setting unit of each of the N converters so that the output signal of any one of the hysteresis comparators of the N converters changes from the second signal to the first signal. Controls the setting unit of each of the N converters so that the target value in the N converters is set to the first voltage and enters the second mode, and one of the hysteresis comparators of the N converters When the output signal changes from the first signal to the second signal, the target value in the m converters of the N converters is set to the first voltage, and the target value in the remaining N−m converters is changed to the first value. 2 voltage.
 好ましくは、電力変換部は、スイッチング素子を含むスイッチングレギュレータである。第1の制御部は、目標値が前記第2の電圧に設定されている場合には、目標値が第1の電圧に設定されている場合よりも、スイッチング素子の単位時間あたりのスイッチング回数を少なくする。 Preferably, the power conversion unit is a switching regulator including a switching element. When the target value is set to the second voltage, the first control unit sets the number of times of switching per unit time of the switching element, compared to the case where the target value is set to the first voltage. Reduce.
 本発明によれば、簡易な制御によって、軽負荷時の損失の低下を抑制するとともに、コンバータ間における温度上昇や部品へのストレスの偏りを低減できる。 According to the present invention, by simple control, it is possible to suppress a decrease in loss at light load, and to reduce temperature rise between converters and stress bias on components.
本発明の実施の形態1に係る電源システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power supply system which concerns on Embodiment 1 of this invention. 電源システムが備える各コンバータにおける、入出力される制御信号と目標電圧とのタイミングチャートの一例を示す。An example of the timing chart of the input / output control signal and the target voltage in each converter included in the power supply system is shown. 電力変換部の回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of a power converter. 電力変換部が定電流垂下動作を行なう場合における出力電圧と出力電流との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between an output voltage and output current in case a power converter performs constant current drooping operation. 電力変換部が定電力垂下動作を行なう場合における出力電圧と出力電流との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between an output voltage and an output current in case a power converter performs constant power drooping operation. 実施形態2に係る電源システムにおける出力電圧と出力電流との関係を説明するためのグラフである。6 is a graph for explaining a relationship between an output voltage and an output current in the power supply system according to the second embodiment. 実施の形態3に係る電源システムが備えるコンバータの構成を示す回路ブロック図である。FIG. 6 is a circuit block diagram illustrating a configuration of a converter included in a power supply system according to a third embodiment. 実施の形態3に係る各コンバータにおける、出力電流とモード信号と制御信号と目標電圧との関係の一例を示すタイミングチャートである。10 is a timing chart illustrating an example of a relationship among an output current, a mode signal, a control signal, and a target voltage in each converter according to Embodiment 3.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態1>
 図1は、本発明の実施の形態1に係る電源システム1の構成を示すブロック図である。図1に示されるように、電源システム1は、入力電力が印加される入力端子P1,P2と、コンバータ10A~10Cと、負荷に接続される出力端子P3,P4とを備える。コンバータ10A~10Cは、入力端子P1,P2と出力端子P3,P4との間に並列に接続される。コンバータ10A~10Cは同じ構成を有し、各々をコンバータ10ともいう。
<Embodiment 1>
FIG. 1 is a block diagram showing a configuration of a power supply system 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the power supply system 1 includes input terminals P1 and P2 to which input power is applied, converters 10A to 10C, and output terminals P3 and P4 connected to a load. Converters 10A-10C are connected in parallel between input terminals P1, P2 and output terminals P3, P4. Converters 10A to 10C have the same configuration, and each is also referred to as converter 10.
 コンバータ10A~10Cは、入力端子P1,P2間に印加される入力電力を変換し、変換後の電力を出力端子P3,P4間に出力する。コンバータ10A~10Cは、同一の構成を有する。コンバータ10A~10Cは、入力端子P11,P12,P13と、出力端子P14,P15,P16と、電力変換部11と、目標電圧設定部12と、コントローラ13と、制御信号出力部14と、ダイオードD1とを含む。 Converters 10A to 10C convert input power applied between input terminals P1 and P2, and output the converted power between output terminals P3 and P4. Converters 10A to 10C have the same configuration. Converters 10A to 10C include input terminals P11, P12, and P13, output terminals P14, P15, and P16, power converter 11, target voltage setting unit 12, controller 13, control signal output unit 14, and diode D1. Including.
 入力端子P11,P12はそれぞれ入力端子P1,P2に接続される。出力端子P14、P15はそれぞれ出力端子P3,P4に接続される。 The input terminals P11 and P12 are connected to the input terminals P1 and P2, respectively. The output terminals P14 and P15 are connected to the output terminals P3 and P4, respectively.
 電力変換部11は、入力端子P11,P12が受けた電力を変換し、変換後の電力を出力する。電力変換部11は、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのスイッチング素子を備えたスイッチングレギュレータである。 The power converter 11 converts the power received by the input terminals P11 and P12 and outputs the converted power. The power conversion unit 11 is a switching regulator including a switching element such as a power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
 ダイオードD1は電力変換部11の出力側端子対の1つにアノードが接続され、出力端子P14にカソードが接続される。ダイオードD1は、アノード側の電位が出力端子P14の電位未満の場合に電流の逆流を防止するとともに、アノード側の電位が出力端子P14の電位以上である場合に電力変換部11から出力される電力を出力端子P14へ供給する。ダイオードD1は、いわゆるOR接続ダイオードとして機能する。 The diode D1 has an anode connected to one of the output side terminal pairs of the power conversion unit 11 and a cathode connected to the output terminal P14. The diode D1 prevents reverse current flow when the anode side potential is less than the potential of the output terminal P14, and the power output from the power converter 11 when the anode side potential is equal to or higher than the potential of the output terminal P14. Is supplied to the output terminal P14. The diode D1 functions as a so-called OR connection diode.
 コントローラ13は、電力変換部11が出力する出力電圧が目標電圧に近づくように、電力変換部11が有するスイッチング素子のオンおよびオフを制御する。すなわち、コントローラ13は、電力変換部11の出力電圧を目標電圧となるように電力変換部11を制御する制御部(第1の制御部)として機能する。 The controller 13 controls on and off of the switching element of the power conversion unit 11 so that the output voltage output from the power conversion unit 11 approaches the target voltage. That is, the controller 13 functions as a control unit (first control unit) that controls the power conversion unit 11 so that the output voltage of the power conversion unit 11 becomes the target voltage.
 出力端子P14,P15間の電圧が目標電圧よりも高い場合、出力への電流供給はされないため、電力変換部11の出力電流は0である。図1に示されるように、コンバータ10A~10Cの出力端子P14同士が接続されるとともに、コンバータ10A~10Cの出力端子P15同士が接続されるため、出力端子P14,P15には、各コンバータ10A~10Cから出力される電圧の最大値が印加される。そのため、他のコンバータ10から出力される電圧よりも目標電圧が低い場合、電力変換部11の出力電流は0である。 When the voltage between the output terminals P14 and P15 is higher than the target voltage, no current is supplied to the output, so the output current of the power converter 11 is zero. As shown in FIG. 1, since the output terminals P14 of the converters 10A to 10C are connected to each other and the output terminals P15 of the converters 10A to 10C are connected to each other, the output terminals P14 and P15 are connected to the respective converters 10A to 10A. The maximum voltage output from 10C is applied. Therefore, when the target voltage is lower than the voltage output from the other converter 10, the output current of the power converter 11 is zero.
 目標電圧設定部12は、入力端子P13が受ける制御信号に基づいて、コントローラ13に目標電圧を設定する。目標電圧設定部12は、目標電圧として、第1の電圧であるVout1(たとえば、12.05V)と、Vout1よりも低い第2の電圧であるVout2(たとえば、11.95V)とのいずれかを設定する。 The target voltage setting unit 12 sets a target voltage in the controller 13 based on a control signal received by the input terminal P13. The target voltage setting unit 12 uses either Vout1 (for example, 12.05V) that is the first voltage or Vout2 (for example, 11.95V) that is the second voltage lower than Vout1 as the target voltage. Set.
 具体的には、目標電圧設定部12は、制御信号がローレベルからハイレベルに変化したときに、目標電圧をVout2からVout1に変更し、制御信号がハイレベルからローレベルに変化してから所定の第1保持時間(たとえば、約10秒間)経過したときに、目標電圧をVout1からVout2に変更する。 Specifically, the target voltage setting unit 12 changes the target voltage from Vout2 to Vout1 when the control signal changes from the low level to the high level, and changes the predetermined value after the control signal changes from the high level to the low level. When the first holding time (for example, about 10 seconds) elapses, the target voltage is changed from Vout1 to Vout2.
 制御信号出力部14は、入力端子P13に入力された制御信号を所定の遅延時間(たとえば、約10秒間)だけ遅延させた信号を生成し、生成した信号を制御信号として出力端子P16から出力する。すなわち、制御信号出力部14は、入力端子P13に入力される制御信号がローレベルからハイレベルに変わってから所定の遅延時間が経過した後に、出力端子P16から出力する制御信号をローレベルからハイレベルに切り替え、入力端子P13に入力される制御信号がハイレベルからローレベルに変わってから所定の遅延時間が経過した後に、出力端子P16から出力する制御信号をハイレベルからローレベルに切り替える。 The control signal output unit 14 generates a signal obtained by delaying the control signal input to the input terminal P13 by a predetermined delay time (for example, about 10 seconds), and outputs the generated signal from the output terminal P16 as a control signal. . That is, the control signal output unit 14 changes the control signal output from the output terminal P16 from the low level to the high level after a predetermined delay time has elapsed since the control signal input to the input terminal P13 changes from the low level to the high level. After a predetermined delay time has elapsed since the control signal input to the input terminal P13 changes from the high level to the low level, the control signal output from the output terminal P16 is switched from the high level to the low level.
 図1に示されるように、コンバータ10Aの出力端子P16がコンバータ10Bの入力端子P13に接続され、コンバータ10Bの出力端子P16がコンバータ10Cの入力端子P13に接続され、コンバータ10Cの出力端子P16がコンバータ10Aの入力端子P13に接続される。すなわち、コンバータ10A~10Cが環状に接続され、コンバータ10は、前段のコンバータ10から受けた制御信号を次段のコンバータ10に所定の遅延時間だけ遅延させて出力する。また、コンバータ10Cの制御信号出力部14のみ、起動時に所定のパルス幅を有するハイレベルの制御信号(以下、パルス信号という)を出力端子P16に出力するように設定されている。これにより、パルス信号が、コンバータ10A、コンバータ10B、コンバータ10C、コンバータ10A、・・・の順に所定の遅延時間だけずれて入力される。 As shown in FIG. 1, output terminal P16 of converter 10A is connected to input terminal P13 of converter 10B, output terminal P16 of converter 10B is connected to input terminal P13 of converter 10C, and output terminal P16 of converter 10C is connected to the converter. It is connected to the input terminal P13 of 10A. In other words, converters 10A to 10C are connected in a ring shape, and converter 10 delays the control signal received from previous-stage converter 10 to subsequent-stage converter 10 by a predetermined delay time and outputs the delayed signal. Only the control signal output unit 14 of the converter 10C is set to output a high-level control signal (hereinafter referred to as a pulse signal) having a predetermined pulse width to the output terminal P16 at the time of startup. Thus, the pulse signals are input with a predetermined delay time shifted in the order of converter 10A, converter 10B, converter 10C, converter 10A,.
 図2は、各コンバータ10における、入出力される制御信号と、目標電圧設定部12によって設定される目標電圧とのタイミングチャートの一例を示す。図2において、最上段である1段目は、コンバータ10Aの入力端子P13が受ける制御信号In(A)(つまり、コンバータ10Cの出力端子P16から出力される制御信号Out(C))を示し、2段目は、コンバータ10Bの入力端子P13が受ける制御信号In(B)(つまり、コンバータ10Aの出力端子P16から出力される制御信号Out(A))を示し、3段目は、コンバータ10Cの入力端子P13が受ける制御信号In(C)(つまり、コンバータ10Bの出力端子P16から出力される制御信号Out(B))を示す。4段目は、コンバータ10Aにおける目標電圧を示し、5段目は、コンバータ10Bにおける目標電圧を示し、6段目は、コンバータ10Cにおける目標電圧を示す。 FIG. 2 shows an example of a timing chart of the input / output control signals and the target voltage set by the target voltage setting unit 12 in each converter 10. In FIG. 2, the first stage, which is the uppermost stage, shows the control signal In (A) received by the input terminal P13 of the converter 10A (that is, the control signal Out (C) output from the output terminal P16 of the converter 10C). The second stage shows the control signal In (B) received by the input terminal P13 of the converter 10B (that is, the control signal Out (A) output from the output terminal P16 of the converter 10A), and the third stage shows the converter 10C. The control signal In (C) received by the input terminal P13 (that is, the control signal Out (B) output from the output terminal P16 of the converter 10B) is shown. The fourth stage shows the target voltage in the converter 10A, the fifth stage shows the target voltage in the converter 10B, and the sixth stage shows the target voltage in the converter 10C.
 図2に示す例では、制御信号がハイレベルからローレベルに変化してから目標電圧設定部12が目標電圧をVout1に保持する第1保持時間Tkと、制御信号出力部14が入力端子P13からパルス信号を受けてから出力端子P16からパルス信号を出力するまでの遅延時間Tdと、制御信号のパルス幅Wとが、
Tk=Td-W
を満たすように設定されている。
In the example shown in FIG. 2, the target voltage setting unit 12 holds the target voltage at Vout1 after the control signal changes from the high level to the low level, and the control signal output unit 14 is connected from the input terminal P13. The delay time Td from when the pulse signal is received until the pulse signal is output from the output terminal P16, and the pulse width W of the control signal are:
Tk = Td-W
It is set to satisfy.
 なお、パルス幅Wは、第1保持時間Tkおよび遅延時間Tdに比べるとわずかな時間である。 Note that the pulse width W is a short time compared to the first holding time Tk and the delay time Td.
 図2に示されるように、コンバータ10Aの入力端子P13にパルス信号が入力されると、コンバータ10Aの目標電圧設定部12は、目標電圧をVout2からVout1へ切り替え、当該パルス信号を受けてから第1保持時間Tk(たとえば、約10秒間)だけ目標電圧をVout1を維持した後、目標電圧をVout1からVout2へ切り替える。 As shown in FIG. 2, when a pulse signal is input to the input terminal P13 of the converter 10A, the target voltage setting unit 12 of the converter 10A switches the target voltage from Vout2 to Vout1, and receives the pulse signal before receiving the pulse signal. After maintaining the target voltage at Vout1 for one holding time Tk (for example, about 10 seconds), the target voltage is switched from Vout1 to Vout2.
 コンバータ10Aの制御信号出力部14は、入力端子P13に入力されたパルス信号を遅延時間Tdだけ遅延させて出力端子P16から出力する。図2に示す例では、Td=Tk+Wに設定されているため、コンバータ10Bの目標電圧設定部12は、コンバータ10Aの目標電圧設定部12が目標電圧をVout1からVout2に切り替えるタイミングで、入力端子P13からパルス信号を受け、目標電圧をVout2からVout1に切り替える。コンバータ10Bの目標電圧設定部12は、パルス信号を受けてから第1保持時間Tkだけ目標電圧をVout1を維持した後、目標電圧をVout1からVout2へ切り替える。 The control signal output unit 14 of the converter 10A delays the pulse signal input to the input terminal P13 by the delay time Td and outputs it from the output terminal P16. In the example shown in FIG. 2, since Td = Tk + W is set, the target voltage setting unit 12 of the converter 10B has the input terminal P13 at the timing when the target voltage setting unit 12 of the converter 10A switches the target voltage from Vout1 to Vout2. The target voltage is switched from Vout2 to Vout1. The target voltage setting unit 12 of the converter 10B switches the target voltage from Vout1 to Vout2 after maintaining the target voltage at Vout1 for the first holding time Tk after receiving the pulse signal.
 同様に、コンバータ10Bの制御信号出力部14は、入力端子P13に入力されたパルス信号を遅延時間Tdだけ遅延させて出力端子P16から出力する。コンバータ10Cの目標電圧設定部12は、コンバータ10Bの目標電圧設定部12が目標電圧をVout1からVout2に切り替えるタイミングで、入力端子P13からパルス信号を受け、目標電圧をVout2からVout1に切り替える。コンバータ10Cの目標電圧設定部12は、パルス信号を受けてから第1保持時間Tkだけ目標電圧をVout1を維持した後、目標電圧をVout1からVout2へ切り替える。 Similarly, the control signal output unit 14 of the converter 10B delays the pulse signal input to the input terminal P13 by the delay time Td and outputs it from the output terminal P16. The target voltage setting unit 12 of the converter 10C receives the pulse signal from the input terminal P13 at the timing when the target voltage setting unit 12 of the converter 10B switches the target voltage from Vout1 to Vout2, and switches the target voltage from Vout2 to Vout1. The target voltage setting unit 12 of the converter 10C switches the target voltage from Vout1 to Vout2 after maintaining the target voltage Vout1 for the first holding time Tk after receiving the pulse signal.
 このようにして、3台のコンバータ10A~10Cのうち1台のコンバータ10の目標電圧設定部12が目標電圧をVout1に設定している期間、残り2台のコンバータ10の目標電圧設定部12が目標電圧をVout2に設定する。コントローラ13は、電力変換部11の出力電圧が目標電圧に近づくように電力変換部11を制御する。そのため、コンバータ10Aの目標電圧がVout1に設定されている期間、コンバータ10B,10Cの目標電圧(Vout2)は、出力端子P14,P15間の電圧よりも低くなる。その結果、コンバータ10B,10Cの出力電流は0となり、出力端子P14,P15から電力が供給されない。コンバータ10Bまたはコンバータ10Cの目標電圧がVout1に設定されている期間も同様に、目標電圧がVout2に設定されるコンバータ10は、出力端子P14,P15から電力を供給しない。 In this way, the target voltage setting units 12 of the remaining two converters 10 remain in the period during which the target voltage setting unit 12 of one converter 10 among the three converters 10A to 10C sets the target voltage to Vout1. The target voltage is set to Vout2. The controller 13 controls the power converter 11 so that the output voltage of the power converter 11 approaches the target voltage. Therefore, during the period when the target voltage of converter 10A is set to Vout1, the target voltage (Vout2) of converters 10B and 10C is lower than the voltage between output terminals P14 and P15. As a result, the output currents of converters 10B and 10C are 0, and power is not supplied from output terminals P14 and P15. Similarly, during the period in which the target voltage of converter 10B or converter 10C is set to Vout1, converter 10 in which the target voltage is set to Vout2 does not supply power from output terminals P14 and P15.
 各コンバータ10A~10Cに含まれるそれぞれの制御信号出力部14は、コンバータ10A~10Cの各々の目標電圧設定部12を制御することにより、3台のコンバータ10A~10Cのうちの1台における目標電圧をVout1にさせ、残りの2台における目標電圧をVout1より低いVout2にさせる制御部(第2の制御部)として機能する。これにより、コンバータ10A~10Cのうち電力を供給しているコンバータ10は1台となり、コンバータ10A~10Cの3台で電力を供給している場合に比べて、電力を供給しているコンバータ10の出力電力は大きくなる。その結果、複雑な演算処理を必要とすることなく、軽負荷時においても、固定損の影響による損失の低下を抑制することができる。 Each control signal output unit 14 included in each converter 10A to 10C controls a target voltage setting unit 12 of each of converters 10A to 10C, thereby achieving a target voltage in one of the three converters 10A to 10C. Function as a control unit (second control unit) that sets Vout1 to Vout2 that is lower than Vout1. As a result, the converter 10 that supplies power is one unit among the converters 10A to 10C, and the converter 10 that supplies power is compared to the case where power is supplied by three units of the converters 10A to 10C. The output power increases. As a result, it is possible to suppress a reduction in loss due to the influence of fixed loss even at light loads without requiring complicated calculation processing.
 また、電力を供給する期間(つまり、目標電圧がVout1に設定される期間)が各コンバータ10A~10Cで均等であるため、コンバータ10A~10Cにおける発熱量や部品へのストレスの偏りを抑制することができる。 In addition, since the period during which power is supplied (that is, the period during which the target voltage is set to Vout1) is uniform for each converter 10A to 10C, the amount of heat generated in converters 10A to 10C and the bias of stress on components are suppressed. Can do.
 図3は、電力変換部11の回路構成の一例を示す図である。図3に示されるように、電力変換部11は、たとえば、スイッチング素子Q1,Q2と、整流素子SR1,SR2と、コンデンサC11,C12,C13と、コイルL1,L2と、変圧器T1と、平滑コンデンサC14とを有するLLC共振型のDC-DCコンバータである。 FIG. 3 is a diagram illustrating an example of a circuit configuration of the power conversion unit 11. As shown in FIG. 3, the power conversion unit 11 includes, for example, switching elements Q1, Q2, rectifying elements SR1, SR2, capacitors C11, C12, C13, coils L1, L2, a transformer T1, and a smoothing This is an LLC resonance type DC-DC converter having a capacitor C14.
 スイッチング素子Q1,Q2と、コンデンサC11,C12と、コイルL1とは、入力端子P11,P12間に入力された直流電圧を交流電圧に変換し、変換した交流電圧が変圧器T1の一次巻線に入力される。 Switching elements Q1, Q2, capacitors C11, C12, and coil L1 convert a DC voltage input between input terminals P11, P12 into an AC voltage, and the converted AC voltage is applied to the primary winding of transformer T1. Entered.
 変圧器T1の二次巻線に発生する交流電圧は、整流素子SR1,SR2と、コンデンサC13と、コイルL2と、平滑コンデンサC14とによって整流平滑化される。これにより、直流電圧が出力端子P14,P15に出力される。図3では、MOSFETをダイオードとして機能させることにより、整流素子SR1,SR2として用いている。 The AC voltage generated in the secondary winding of the transformer T1 is rectified and smoothed by the rectifying elements SR1 and SR2, the capacitor C13, the coil L2, and the smoothing capacitor C14. As a result, a DC voltage is output to the output terminals P14 and P15. In FIG. 3, MOSFETs are used as rectifying elements SR1 and SR2 by functioning as diodes.
 なお、図3に示す例では、入力端子P11,P12に入力された直流電圧を異なる直流電圧に変換する電力変換部11を示したが、電力変換部11の回路構成は図3に限定されるものではない。たとえば、電力変換部11は、入力端子P11,P12に入力された交流電圧を整流することで得られた直流電圧を降圧または昇圧する回路構成を含んでもよい。 In the example illustrated in FIG. 3, the power conversion unit 11 that converts the DC voltage input to the input terminals P <b> 11 and P <b> 12 into a different DC voltage is illustrated, but the circuit configuration of the power conversion unit 11 is limited to FIG. 3. It is not a thing. For example, the power conversion unit 11 may include a circuit configuration that steps down or boosts a DC voltage obtained by rectifying the AC voltage input to the input terminals P11 and P12.
 次に、出力端子P3,P4に接続される負荷において消費される電力が増大した場合の動作について説明する。 Next, the operation when the power consumed in the load connected to the output terminals P3 and P4 increases will be described.
 図2に示したように、電源システム1は、複数のコンバータ10A~10Cのうちの一部のみからでも負荷に電力を供給できるような構成(冗長構成)をとっている。そのため、出力端子P3,P4に接続される負荷において消費される電力が比較的軽い(小さい)場合(以下、軽負荷時という)には、目標電圧がVout1に設定されるコンバータ10のみから当該電力を供給できるように、各コンバータ10の定格が設定されている。軽負荷時には、図2に示すように、目標電圧がVout1に設定されるコンバータ10(つまり、負荷に電力を供給するコンバータ10)を順次切り替えることにより、電源システム1は、負荷で消費される電力を供給することができる。 As shown in FIG. 2, the power supply system 1 has a configuration (redundant configuration) in which power can be supplied to the load even from only a part of the plurality of converters 10A to 10C. Therefore, when the power consumed in the load connected to the output terminals P3 and P4 is relatively light (small) (hereinafter referred to as light load), the power is obtained only from the converter 10 whose target voltage is set to Vout1. The rating of each converter 10 is set so that can be supplied. When the load is light, as shown in FIG. 2, the power supply system 1 can change the power consumed by the load by sequentially switching the converter 10 whose target voltage is set to Vout1 (that is, the converter 10 that supplies power to the load). Can be supplied.
 負荷で消費される電力が定格範囲外まで増大した場合(以下、過負荷時という)、各コンバータ10A~10Cのコントローラ13は、保護動作を行なう。具体的には、コントローラ13は、電力変換部11の出力電流が閾値Ith0に達すると、出力電流を当該閾値Ith0に固定し、出力電圧を低下させる定電流垂下動作を保護動作として行なう。 When the power consumed by the load increases beyond the rated range (hereinafter referred to as overload), the controllers 13 of the converters 10A to 10C perform a protective operation. Specifically, when the output current of the power conversion unit 11 reaches the threshold value Ith0, the controller 13 fixes the output current to the threshold value Ith0 and performs a constant current drooping operation for reducing the output voltage as a protective operation.
 図4は、定電流垂下動作を保護動作として行なう場合の、目標電圧がVout1に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(実線)と、目標電圧がVout2に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(一点鎖線)とを示すグラフである。なお、以下では、コンバータ10Aの目標電圧がVout1に設定され、コンバータ10B,10Cの目標電圧がVout2に設定された場合を例にとり説明する。ただし、コンバータ10B,10Cの目標電圧がVout1に設定された場合も同様である。 FIG. 4 shows the relationship (solid line) between the output voltage and the output current in the power converter 11 of the converter 10 in which the target voltage is set to Vout1 when the constant current drooping operation is performed as a protection operation, and the target voltage is set to Vout2. It is a graph which shows the relationship (one-dot chain line) of the output voltage and output current in the power converter 11 of the converter 10 to be set. In the following description, the case where the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
 図4の(a)には、負荷で消費される電力がコンバータ10の定格範囲内の場合における、コンバータ10Aの動作点A1と、コンバータ10Bの動作点B1と,コンバータ10Cの動作点C1との一例が示されている。この場合、コンバータ10Aの電力変換部11は、目標電圧であるVout1を出力し、負荷で消費される電流Ia(動作点A1に対応する電流値)を出力する。一方、コンバータ10B,10Cの出力端子P14,P15間にはコンバータ10Aからの出力電圧(Vout1)が印加されるため、コンバータ10B,10Cでは、目標電圧よりも出力端子P14,P15間に印加される電圧が高くなる。そのため、コンバータ10B、10Cの出力電流が0となる(動作点B1,C1に対応する電流値が0である)。このように、負荷で消費される電力がコンバータ10の定格範囲内の場合には、コンバータ10B,10Cは、負荷に電力を供給しない。 FIG. 4A shows the operating point A1 of the converter 10A, the operating point B1 of the converter 10B, and the operating point C1 of the converter 10C when the power consumed by the load is within the rated range of the converter 10. An example is shown. In this case, power converter 11 of converter 10A outputs Vout1 that is the target voltage, and outputs current Ia consumed by the load (current value corresponding to operating point A1). On the other hand, since the output voltage (Vout1) from the converter 10A is applied between the output terminals P14 and P15 of the converters 10B and 10C, the converters 10B and 10C are applied between the output terminals P14 and P15 rather than the target voltage. The voltage increases. Therefore, the output currents of converters 10B and 10C are 0 (current values corresponding to operating points B1 and C1 are 0). Thus, when the power consumed by the load is within the rated range of converter 10, converters 10B and 10C do not supply power to the load.
 図4の(b)には、負荷で消費される電力が1つのコンバータ10の定格範囲を超えた場合における、コンバータ10Aの動作点A2と、コンバータ10Bの動作点B2と,コンバータ10Cの動作点C2との一例が示されている。コンバータ10Aの出力電流が閾値Ith0に達すると、コンバータ10Aにおいて、コントローラ13は、電力変換部11の動作を定電圧動作から定電流垂下動作に切り替える。コンバータ10Aの出力電圧がVout2まで低下すると(動作点A2)、コンバータ10B、10Cにおいて、出力端子P14,P15間の電圧が目標電圧と同じになるため、電力変換部11の出力電流が増加し、電力変換部11から負荷に電力が供給される。コンバータ10B、10Cの各々における電力変換部11の出力電流がIb={負荷で消費される電流(負荷電流)-Ith0}/2になると(動作点B2,C2)、コンバータ10A~10Cからの出力電流の合計が負荷電流に一致し、この状態が維持される。 FIG. 4B shows the operating point A2 of the converter 10A, the operating point B2 of the converter 10B, and the operating point of the converter 10C when the power consumed by the load exceeds the rated range of one converter 10. An example with C2 is shown. When the output current of converter 10A reaches threshold value Ith0, in converter 10A, controller 13 switches the operation of power converter 11 from the constant voltage operation to the constant current drooping operation. When the output voltage of the converter 10A decreases to Vout2 (operation point A2), the voltage between the output terminals P14 and P15 becomes the same as the target voltage in the converters 10B and 10C, so the output current of the power converter 11 increases. Power is supplied from the power converter 11 to the load. When the output current of power conversion unit 11 in each of converters 10B and 10C is Ib = {current consumed by load (load current) −Ith0} / 2 (operation points B2 and C2), outputs from converters 10A to 10C The sum of the currents matches the load current and this state is maintained.
 このように、重負荷時には、目標電圧がVout2に設定されたコンバータ10B、10Cからも電力が供給され、安定して負荷に電力を供給することができる。すなわち、目標電圧がVout2に設定されたコンバータ10B、10Cは、目標電圧がVout1に設定されたコンバータ10Aの出力電流が閾値Ith0に達していないときには電力を供給せず実質的に動作していないが、コンバータ10Aだけでは負荷で消費される電力を供給できなくなると電力を供給することができる。 Thus, at the time of heavy load, power is also supplied from the converters 10B and 10C whose target voltage is set to Vout2, and power can be stably supplied to the load. That is, converters 10B and 10C in which the target voltage is set to Vout2 do not supply power when the output current of converter 10A in which the target voltage is set to Vout1 does not reach threshold value Ith0, but are not substantially operating. If the converter 10A alone cannot supply the power consumed by the load, the power can be supplied.
 コンバータ10Aの出力電流が閾値Ith0に達すると、コンバータ10B,10Cは、即座に電力を供給することができる。 When the output current of the converter 10A reaches the threshold value Ith0, the converters 10B and 10C can immediately supply power.
 図4に示す例では、コンバータ10A~10Cのコントローラ13は、保護動作として定電流垂下動作を行なうように電力変換部11を制御するものとした。しかしながら、コントローラ13は、電力変換部11の出力電流が閾値Ith0に達した場合、定電流垂下動作の代わりに定電力垂下動作を保護動作として行なうように電力変換部11を制御してもよい。定電力垂下動作とは、出力電流と出力電圧との積が一定となるように、出力電流の増加に応じて出力電圧を低下させる動作である。 In the example shown in FIG. 4, the controller 13 of the converters 10A to 10C controls the power conversion unit 11 so as to perform a constant current drooping operation as a protective operation. However, when the output current of the power conversion unit 11 reaches the threshold value Ith0, the controller 13 may control the power conversion unit 11 so that the constant power drooping operation is performed as a protection operation instead of the constant current drooping operation. The constant power drooping operation is an operation for lowering the output voltage in accordance with the increase in the output current so that the product of the output current and the output voltage is constant.
 図5は、定電力垂下動作を保護動作として行なう場合の、目標電圧がVout1に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(実線)と、目標電圧がVout2に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(一点鎖線)とを示すグラフである。なお、以下では、コンバータ10Aの目標電圧がVout1に設定され、コンバータ10B,10Cの目標電圧がVout2に設定された場合を例にとり説明する。ただし、コンバータ10B,10Cの目標電圧がVout1に設定された場合も同様である。 FIG. 5 shows the relationship (solid line) between the output voltage and the output current in the power conversion unit 11 of the converter 10 in which the target voltage is set to Vout1 when the constant power drooping operation is performed as a protection operation, and the target voltage is set to Vout2. It is a graph which shows the relationship (one-dot chain line) of the output voltage and output current in the power converter 11 of the converter 10 to be set. In the following description, the case where the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
 図5の(a)には、負荷で消費される電力がコンバータ10の定格範囲内の場合における、コンバータ10Aの動作点A1と、コンバータ10Bの動作点B1と,コンバータ10Cの動作点C1との一例が示されている。この場合、図4の(a)と同様に、コンバータ10Aの電力変換部11は、目標電圧であるVout1を出力し、負荷に要求される電流Ia(動作点A1に対応する電流値)を出力する。また、コンバータ10B,10Cでは、目標電圧よりも出力端子P14,P15間に印加される電圧が高くなる。そのため、コンバータ10B、10Cにおいて、電力変換部11の出力電流は0となる(動作点B1,C1に対応する電流値が0である)。このように、負荷で消費される電力がコンバータ10の定格範囲内の場合には、コンバータ10B,10Cは、負荷に電力を供給しない。 FIG. 5A shows the operating point A1 of the converter 10A, the operating point B1 of the converter 10B, and the operating point C1 of the converter 10C when the power consumed by the load is within the rated range of the converter 10. An example is shown. In this case, as in FIG. 4A, the power conversion unit 11 of the converter 10A outputs the target voltage Vout1, and outputs the current Ia required for the load (current value corresponding to the operating point A1). To do. In converters 10B and 10C, the voltage applied between output terminals P14 and P15 is higher than the target voltage. Therefore, in converters 10B and 10C, the output current of power converter 11 is 0 (the current value corresponding to operating points B1 and C1 is 0). Thus, when the power consumed by the load is within the rated range of converter 10, converters 10B and 10C do not supply power to the load.
 図5の(b)には、負荷で消費される電力が1つのコンバータ10の定格を超えた場合における、コンバータ10Aの動作点A3と、コンバータ10Bの動作点B3と,コンバータ10Cの動作点C3との一例が示されている。コンバータ10Aの出力電流が閾値Ith0に達すると、コンバータ10Aにおいて、コントローラ13は、電力変換部11の動作を定電圧動作から定電力垂下動作に切り替える。コンバータ10Aの出力電圧がVout1まで低下すると(動作点A3)、コンバータ10B、10Cにおいて、出力端子P14,P15間の電圧が目標電圧と同じになるため、電力変換部11の出力電流が増加し、電力変換部11から負荷に電力が供給される。ここで、動作点A3の出力電流をIcとするとき、コンバータ10B、10Cの各々における電力変換部11の出力電流がId={負荷に要求される電流(負荷電流)-Ic}/2になると(動作点B3、C3)、コンバータ10A~10Cからの出力電流の合計が負荷電流に一致し、この状態が維持される。このように、重負荷時には、目標電圧がVout2に設定されたコンバータ10からも電力が供給され、安定して負荷に電力を供給することができる。 FIG. 5B shows the operating point A3 of the converter 10A, the operating point B3 of the converter 10B, and the operating point C3 of the converter 10C when the power consumed by the load exceeds the rating of one converter 10. An example is shown. When the output current of converter 10A reaches threshold value Ith0, in converter 10A, controller 13 switches the operation of power converter 11 from the constant voltage operation to the constant power drooping operation. When the output voltage of the converter 10A decreases to Vout1 (operation point A3), the voltage between the output terminals P14 and P15 becomes the same as the target voltage in the converters 10B and 10C, so the output current of the power converter 11 increases. Power is supplied from the power converter 11 to the load. Here, when the output current at the operating point A3 is Ic, the output current of the power conversion unit 11 in each of the converters 10B and 10C is Id = {current required for the load (load current) −Ic} / 2. (Operation points B3, C3), the sum of the output currents from the converters 10A to 10C matches the load current, and this state is maintained. Thus, at the time of heavy load, power is also supplied from the converter 10 whose target voltage is set to Vout2, and power can be stably supplied to the load.
 <実施の形態2>
 本発明の実施の形態2に係る電源システムについて以下に説明する。上記の実施の形態1では、コントローラ13は、保護動作を実行しない場合(つまり、出力電流が閾値Ith0に達していない場合)、出力電圧が目標電圧となるように電力変換部11を制御する。これに対し、実施の形態2では、コントローラ13は、保護動作を実行しない場合、出力電流が大きくなるにしたがって出力電圧が小さくなる電圧電流特性(ドループ特性)となるように電力変換部11を制御する。
<Embodiment 2>
A power supply system according to Embodiment 2 of the present invention will be described below. In the first embodiment, the controller 13 controls the power conversion unit 11 so that the output voltage becomes the target voltage when the protection operation is not executed (that is, when the output current does not reach the threshold value Ith0). On the other hand, in the second embodiment, when the protection operation is not performed, the controller 13 controls the power conversion unit 11 so that the voltage-current characteristic (droop characteristic) becomes smaller as the output current becomes larger. To do.
 コントローラ13は、電力変換部11の出力電流が0のときに、出力電圧が目標電圧となるように電力変換部11を制御し、電力変換部11の出力電流の増加に伴って出力電圧が目標電圧から低下するように電力変換部11を制御する。具体的には、コントローラ13は、電力変換部11の出力電流を検出し、出力電流に比例したドループ用補正値ΔVを生成する。コントローラ13は、目標電圧設定部12によって設定された目標電圧からドループ用補正値ΔVを減算した電圧を出力するように電力変換部11を制御する。 The controller 13 controls the power conversion unit 11 so that the output voltage becomes the target voltage when the output current of the power conversion unit 11 is 0, and the output voltage becomes the target as the output current of the power conversion unit 11 increases. The power conversion unit 11 is controlled so as to decrease from the voltage. Specifically, the controller 13 detects the output current of the power converter 11 and generates a droop correction value ΔV proportional to the output current. The controller 13 controls the power converter 11 to output a voltage obtained by subtracting the droop correction value ΔV from the target voltage set by the target voltage setting unit 12.
 図6は、目標電圧がVout1に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(実線)と、目標電圧がVout2に設定されるコンバータ10の電力変換部11における出力電圧と出力電流との関係(一点鎖線)とを示すグラフである。なお、以下では、コンバータ10Aの目標電圧がVout1に設定され、コンバータ10B,10Cの目標電圧がVout2に設定された場合を例にとり説明する。ただし、コンバータ10B,10Cの目標電圧がVout1に設定された場合も同様である。 FIG. 6 shows the relationship (solid line) between the output voltage and the output current in the power converter 11 of the converter 10 in which the target voltage is set to Vout1, and the output in the power converter 11 of the converter 10 in which the target voltage is set to Vout2. It is a graph which shows the relationship (one-dot chain line) of a voltage and an output current. In the following description, the case where the target voltage of converter 10A is set to Vout1 and the target voltages of converters 10B and 10C are set to Vout2 will be described as an example. However, the same applies when the target voltage of converters 10B and 10C is set to Vout1.
 図6に示されるように、コンバータ10Aでは、出力電流が0のときには出力電圧がVout1であるが、出力電流が大きくなるにつれて出力電圧が小さくなっている。同様に、コンバータ10B,10Cでは、出力電流が0のときには出力電圧がVout2であるが、出力電流が大きくなるにつれて出力電圧が小さくなっている。 As shown in FIG. 6, in the converter 10A, the output voltage is Vout1 when the output current is 0, but the output voltage decreases as the output current increases. Similarly, in converters 10B and 10C, the output voltage is Vout2 when the output current is 0, but the output voltage decreases as the output current increases.
 図6の(a)には、負荷で消費される電力がコンバータ10の定格範囲内の比較的小さい場合(軽負荷時)における、コンバータ10Aの動作点A4と、コンバータ10Bの動作点B4と,コンバータ10Cの動作点C4との一例が示されている。図6の(a)に示す例では、コンバータ10Aは、負荷で消費される電流Ie(動作点A1に対応する電流値)に応じた電圧であって、コンバータ10B,10Cの目標電圧であるVout1よりも高い電圧を出力する。そのため、コンバータ10B、10Cにおいて、電力変換部11の出力電流は0となる(動作点B4、C4に対応する電流値が0である)。このように、軽負荷時には、コンバータ10B,10Cは、負荷に電力を供給しない。 FIG. 6A shows the operating point A4 of the converter 10A, the operating point B4 of the converter 10B when the power consumed by the load is relatively small within the rated range of the converter 10 (at the time of light load), An example with the operating point C4 of the converter 10C is shown. In the example shown in FIG. 6A, the converter 10A is a voltage corresponding to the current Ie consumed by the load (current value corresponding to the operating point A1), and is the target voltage Vout1 of the converters 10B and 10C. Output higher voltage. Therefore, in converters 10B and 10C, the output current of power conversion unit 11 is 0 (current values corresponding to operating points B4 and C4 are 0). Thus, at the time of light load, converters 10B and 10C do not supply power to the load.
 図6の(b)には、負荷で消費される電力がコンバータ10の定格範囲内の比較的大きい場合(重負荷時)における、コンバータ10Aの動作点A5と、コンバータ10Bの動作点B5と,コンバータ10Cの動作点C5との一例が示されている。 FIG. 6B shows the operating point A5 of the converter 10A, the operating point B5 of the converter 10B when the power consumed by the load is relatively large within the rated range of the converter 10 (during heavy load), An example with the operating point C5 of the converter 10C is shown.
 図6の(b)に示す例では、コンバータ10Aの出力電圧が、ドループ特性により、コンバータ10B,10Cの目標電圧であるVout2よりも低くなっている(動作点A5)。コンバータ10B、10Cにおいて、出力端子P14,P15間の電圧が目標電圧より小さくなるため、電力変換部11は、出力電流を増やし、負荷に電力を供給する。このとき、コンバータ10B、10Cにおいても、ドループ特性により、出力電流の増加に伴って出力電圧が低下する。コンバータ10B、10Cの出力電圧がコンバータ10Aの出力電圧と一致するとともに、コンバータ10A~10Cの出力電流の合計が負荷で消費される電流に一致すると、各コンバータ10A~10Cの動作が安定する。すなわち、動作点A5の出力電流をIfとするとき、コンバータ10B、10Cの各々における電力変換部11の出力電流がIg={負荷に要求される電流(負荷電流)-If}/2になると(動作点B5、C5)、コンバータ10A~10Cからの出力電流の合計が負荷電流に一致し、この状態が維持される。 In the example shown in FIG. 6B, the output voltage of the converter 10A is lower than Vout2, which is the target voltage of the converters 10B and 10C, due to the droop characteristic (operation point A5). In converters 10B and 10C, since the voltage between output terminals P14 and P15 is smaller than the target voltage, power converter 11 increases the output current and supplies power to the load. At this time, also in converters 10B and 10C, the output voltage decreases as the output current increases due to the droop characteristic. When the output voltages of converters 10B and 10C coincide with the output voltage of converter 10A and the sum of the output currents of converters 10A to 10C coincides with the current consumed by the load, the operations of converters 10A to 10C are stabilized. That is, if the output current at the operating point A5 is If, the output current of the power converter 11 in each of the converters 10B and 10C is Ig = {current required for the load (load current) −If} / 2 ( The sum of output currents from the operating points B5, C5) and the converters 10A to 10C coincides with the load current, and this state is maintained.
 このように、実施の形態2によれば、目標電圧がVout1に設定されたコンバータ10Aにおいて保護動作が実行されるよりも前の段階で、コンバータ10B、10Cが負荷に電力を供給することができる。出力電流が閾値Ith0に達する場合、出力電流の二乗に比例する損失(導通損)の影響により、電力変換部11の効率が低下する。そのため、実施の形態2では、実施の形態1と比較して、負荷で消費される電力が増大したときのコンバータ10の効率を向上させることができる。 Thus, according to the second embodiment, converters 10B and 10C can supply power to the load before the protection operation is performed in converter 10A in which the target voltage is set to Vout1. . When the output current reaches the threshold value Ith0, the efficiency of the power conversion unit 11 decreases due to the influence of a loss (conduction loss) proportional to the square of the output current. Therefore, in the second embodiment, the efficiency of converter 10 when the power consumed by the load is increased can be improved as compared with the first embodiment.
 <実施の形態3>
 実施の形態3に係る電源システムは、上記の実施の形態1または2の変形例であり、複数のコンバータの一部の目標電圧をVout1とし、残りの目標電圧をVout2とする、実施の形態1において説明した制御方式(以下、軽負荷モードという)とは別に、各コンバータの設定電圧を同一の値とする通常モードを有し、各コンバータのいずれかの出力電流に応じて、軽負荷モードおよび通常モードを切り替える。
<Embodiment 3>
The power supply system according to the third embodiment is a modification of the first or second embodiment described above, in which a part of target voltages of a plurality of converters is Vout1, and the remaining target voltage is Vout2. Apart from the control method described in (hereinafter referred to as light load mode), there is a normal mode in which the set voltage of each converter is the same value, and depending on the output current of any of the converters, Switch normal mode.
 図7は、実施の形態3に係る電源システムが備える各コンバータ20A~20Cの構成を示す回路ブロック図である。実施の形態3に係る電源システムは、図1に示すコンバータ10A~10Cの代わりに、図7に示すコンバータ20A~20Cを備える。 FIG. 7 is a circuit block diagram showing the configuration of each converter 20A to 20C included in the power supply system according to the third embodiment. The power supply system according to Embodiment 3 includes converters 20A to 20C shown in FIG. 7 instead of converters 10A to 10C shown in FIG.
 図7に示されるように、コンバータ20A~20Cは、図1に示すコンバータ10A~10Cと比較して、目標電圧設定部12および制御信号出力部14の代わりに目標電圧設定部22および制御信号出力部24を備え、さらに、出力電流検出回路15と、ヒステリシスコンパレータ16とを備える点で相違する。 As shown in FIG. 7, converters 20A to 20C have a target voltage setting unit 22 and a control signal output instead of target voltage setting unit 12 and control signal output unit 14 as compared with converters 10A to 10C shown in FIG. And the output current detection circuit 15 and the hysteresis comparator 16 are further provided.
 出力電流検出回路15は、電力変換部11の出力側端子対の1つと出力端子P15との間の電流を検出する回路である。出力電流検出回路15は、電力変換部11の出力側端子対の1つと出力端子P15との間に接続された抵抗と、当該抵抗の電圧降下を増幅する差動増幅器とを含む。出力電流検出回路15は、電力変換部11の出力電流に比例した電圧Vdetを出力する。すなわち、電圧Vdetは、電力変換部11の出力電流を示す検出値である。 The output current detection circuit 15 is a circuit that detects a current between one of the output side terminal pairs of the power conversion unit 11 and the output terminal P15. The output current detection circuit 15 includes a resistor connected between one of the output side terminal pairs of the power converter 11 and the output terminal P15, and a differential amplifier that amplifies the voltage drop of the resistor. The output current detection circuit 15 outputs a voltage Vdet that is proportional to the output current of the power converter 11. That is, the voltage Vdet is a detection value indicating the output current of the power conversion unit 11.
 ヒステリシスコンパレータ16は、出力電流検出回路15から出力される電圧Vdetと閾値とを比較し、その大小関係に応じて、出力する信号(以下、モード信号という)をハイレベルがローレベルかのいずれかに切り替える。ヒステリシスコンパレータ16は、閾値Vth1および閾値Vth2(<閾値Vth1)の2つの閾値を有し、モード信号がローレベルである場合に、電圧Vdetが閾値Vth1を超えるとモード信号をハイレベルに切り替え、モード信号がハイレベルである場合に、電圧Vdetが閾値Vth2未満になるとモード信号をローレベルに切り替える。 The hysteresis comparator 16 compares the voltage Vdet output from the output current detection circuit 15 with a threshold value, and according to the magnitude relationship, the output signal (hereinafter referred to as a mode signal) is either high level or low level. Switch to. The hysteresis comparator 16 has two threshold values, a threshold value Vth1 and a threshold value Vth2 (<threshold value Vth1). When the mode signal is at a low level, the mode signal is switched to a high level when the voltage Vdet exceeds the threshold value Vth1. When the signal is at the high level, the mode signal is switched to the low level when the voltage Vdet becomes less than the threshold value Vth2.
 ヒステリシスコンパレータ16は、コンパレータ17と、抵抗R1と、抵抗R2とを有し、コンパレータ17の反転端子に固定電圧が印加される非反転型ヒステリシスコンパレータである。 The hysteresis comparator 16 is a non-inverting hysteresis comparator that includes a comparator 17, a resistor R1, and a resistor R2, and a fixed voltage is applied to the inverting terminal of the comparator 17.
 コンパレータ17の非反転端子と出力電流検出回路15との間に抵抗R2が接続され、コンパレータ17の非反転端子に抵抗R2を介して、電圧Vdetが印加される。コンパレータ17の反転端子には固定電圧Vrefが印加される。コンパレータ17の出力端子と非反転端子との間に抵抗R1が接続され、正帰還が施される。ヒステリシスコンパレータ16の閾値Vth1と閾値Vth2との差は、抵抗R1および抵抗R2の抵抗値ならびに固定電圧Vrefに基づいて決定される。 The resistor R2 is connected between the non-inverting terminal of the comparator 17 and the output current detection circuit 15, and the voltage Vdet is applied to the non-inverting terminal of the comparator 17 via the resistor R2. A fixed voltage Vref is applied to the inverting terminal of the comparator 17. A resistor R1 is connected between the output terminal and the non-inverting terminal of the comparator 17 to provide positive feedback. The difference between the threshold value Vth1 and the threshold value Vth2 of the hysteresis comparator 16 is determined based on the resistance values of the resistors R1 and R2 and the fixed voltage Vref.
 目標電圧設定部22は、入力端子P13から制御信号を受けるとともに、ヒステリシスコンパレータ16からモード信号を受け、受けた制御信号およびモード信号に基づいて目標電圧を設定する。 The target voltage setting unit 22 receives a control signal from the input terminal P13 and also receives a mode signal from the hysteresis comparator 16, and sets a target voltage based on the received control signal and mode signal.
 目標電圧設定部22は、ヒステリシスコンパレータ16から出力されるモード信号がローレベルである場合、制御信号がローレベルからハイレベルに変化したときに、目標電圧をVout2からVout1に変更し、制御信号がハイレベルからローレベルに変化してから所定の第1保持時間(たとえば、約10秒間)経過したときに、目標電圧をVout1からVout2に変更する。 When the mode signal output from the hysteresis comparator 16 is at a low level, the target voltage setting unit 22 changes the target voltage from Vout2 to Vout1 when the control signal changes from a low level to a high level. The target voltage is changed from Vout1 to Vout2 when a predetermined first holding time (for example, about 10 seconds) elapses after changing from the high level to the low level.
 ただし、目標電圧設定部22は、制御信号がハイレベルからローレベルに変化したときに目標電圧をVout2に設定している場合、目標電圧をVout1に変更し、その後所定の第1保持時間(たとえば、約10秒間)経過してから目標電圧をVout1からVout2に変更する。 However, if the target voltage is set to Vout2 when the control signal changes from the high level to the low level, the target voltage setting unit 22 changes the target voltage to Vout1, and then changes to a predetermined first holding time (for example, The target voltage is changed from Vout1 to Vout2 after about 10 seconds).
 目標電圧設定部22は、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルである場合、目標電圧をVout1に設定する。 The target voltage setting unit 22 sets the target voltage to Vout1 when the mode signal output from the hysteresis comparator 16 is at a high level.
 目標電圧設定部22は、制御信号がハイレベルの状態においてヒステリシスコンパレータ16から出力されるモード信号がハイレベルからローレベルに変化すると、目標電圧をVout1からVout2に変更する。その後、目標電圧設定部22は、ヒステリシスコンパレータ16から出力されるモード信号がローレベルである場合の動作を行なう。 The target voltage setting unit 22 changes the target voltage from Vout1 to Vout2 when the mode signal output from the hysteresis comparator 16 changes from high level to low level when the control signal is at high level. Thereafter, the target voltage setting unit 22 performs an operation when the mode signal output from the hysteresis comparator 16 is at a low level.
 制御信号出力部24は、ヒステリシスコンパレータ16から出力されるモード信号がローレベルである場合、入力端子P13から受けた制御信号を所定の遅延時間(たとえば、約10秒間)だけ遅延させた信号を生成し、生成した信号を制御信号として出力端子P16から出力する。 When the mode signal output from the hysteresis comparator 16 is at a low level, the control signal output unit 24 generates a signal obtained by delaying the control signal received from the input terminal P13 by a predetermined delay time (for example, about 10 seconds). Then, the generated signal is output from the output terminal P16 as a control signal.
 制御信号出力部24は、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルである場合、ハイレベルの制御信号を出力端子P16から出力する。制御信号出力部24は、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルからローレベルに変化した場合、出力端子P16から出力する制御信号もハイレベルからローレベルに変化させる。 The control signal output unit 24 outputs a high-level control signal from the output terminal P16 when the mode signal output from the hysteresis comparator 16 is at a high level. When the mode signal output from the hysteresis comparator 16 changes from the high level to the low level, the control signal output unit 24 also changes the control signal output from the output terminal P16 from the high level to the low level.
 実施の形態1と同様に、コンバータ10Cの制御信号出力部14のみ、起動時に所定のパルス幅を有するハイレベルの制御信号(以下、パルス信号という)を出力端子P16に出力するように設定されている。 As in the first embodiment, only the control signal output unit 14 of the converter 10C is set to output a high-level control signal (hereinafter referred to as a pulse signal) having a predetermined pulse width to the output terminal P16 at the time of startup. Yes.
 また、コンバータ10A~10Cの各制御信号出力部24は、パルス信号開始タイミングにおいて、パルス信号を出力端子P16に出力するように設定されている。パルス信号開始タイミングとは、モード信号がハイレベルからローレベルに変化した後に制御信号がハイレベルからローレベルに最初に変化したタイミングをタイミングXとするとき、タイミングXから所定の遅延時間(たとえば、約10秒間)が経過したタイミングである。 Further, each control signal output unit 24 of converters 10A to 10C is set to output a pulse signal to output terminal P16 at the pulse signal start timing. The pulse signal start timing is defined as a predetermined delay time from timing X (for example, for example, when timing X is the timing at which the control signal first changes from high level to low level after the mode signal has changed from high level to low level) This is the timing when about 10 seconds have elapsed.
 図8は、実施の形態3に係る各コンバータ20A~20Cの、出力電流とモード信号と制御信号と目標電圧との関係の一例を示すタイミングチャートである。 FIG. 8 is a timing chart showing an example of the relationship among the output current, the mode signal, the control signal, and the target voltage of each of the converters 20A to 20C according to the third embodiment.
 図8において、最上段である1段目は、コンバータ20A~20Cの出力電流の合計電流を示す。合計電流は、負荷で消費される電流に相当する。2~4段目は、各コンバータ20A~20Cの出力電流を示す。5~7段目は、各コンバータ20A~20Cにおけるヒステリシスコンパレータ16から出力されるモード信号を示す。8段目は、コンバータ20Aの入力端子P13が受ける制御信号In(A)(つまり、コンバータ20Cの出力端子P16から出力される制御信号Out(C))を示し、9段目は、コンバータ20Bの入力端子P13が受ける制御信号In(B)(つまり、コンバータ20Aの出力端子P16から出力される制御信号Out(A))を示し、10段目は、コンバータ20Cの入力端子P13が受ける制御信号In(C)(つまり、コンバータ20Bの出力端子P16から出力される制御信号Out(B))を示す。11~13段目は、各コンバータ20A~20Cにおける目標電圧を示す。 In FIG. 8, the first stage, which is the uppermost stage, shows the total output current of the converters 20A to 20C. The total current corresponds to the current consumed by the load. The second to fourth stages indicate output currents of the converters 20A to 20C. The fifth to seventh stages show mode signals output from the hysteresis comparator 16 in each of the converters 20A to 20C. The eighth stage shows the control signal In (A) received by the input terminal P13 of the converter 20A (that is, the control signal Out (C) output from the output terminal P16 of the converter 20C), and the ninth stage shows the converter 20B. The control signal In (B) received by the input terminal P13 (that is, the control signal Out (A) output from the output terminal P16 of the converter 20A) is shown, and the 10th stage shows the control signal In received by the input terminal P13 of the converter 20C. (C) (that is, the control signal Out (B) output from the output terminal P16 of the converter 20B) is shown. The eleventh to thirteenth stages indicate target voltages in the respective converters 20A to 20C.
 図8において、時刻t0~t1の期間では、全てのコンバータ20A~20Cのヒステリシスコンパレータ16から出力されるモード信号がローレベルである。そのため、この期間では、実施の形態1と同様に、電源システムは、コンバータ20A~20Cのうちの1台の目標電圧をVout1とし、残りのコンバータ20の目標電圧をVout2とし、目標電圧がVout1に設定されるコンバータ20が所定時間ごとに順次切り替えられる軽負荷モードで動作する。図7に示す例では、コンバータ20A、コンバータ20B、コンバータ20Cの順に、目標電圧がVout1に設定される。 In FIG. 8, during the period from time t0 to t1, the mode signal output from the hysteresis comparator 16 of all the converters 20A to 20C is at a low level. Therefore, during this period, as in the first embodiment, the power supply system sets the target voltage of one of the converters 20A to 20C to Vout1, the target voltage of the remaining converter 20 to Vout2, and the target voltage to Vout1. The set converter 20 operates in a light load mode in which the converter 20 is sequentially switched every predetermined time. In the example shown in FIG. 7, the target voltage is set to Vout1 in the order of converter 20A, converter 20B, and converter 20C.
 次に、コンバータ20Cの目標電圧がVout1に設定されている時刻t1において、コンバータ20Cの出力電流がIth1に達したとする。ここで、Ith1は、ヒステリシスコンパレータ16が有する閾値Vth1に対応する電流値である。また、Ith2は、ヒステリシスコンパレータ16が有する閾値Vth2に対応する電流値である。このとき、コンバータ20Cのヒステリシスコンパレータ16から出力されるモード信号がローレベルからハイレベルに切り替わる。これにより、コンバータ20Cにおいて、目標電圧設定部22は、目標電圧をVout1に維持し、制御信号出力部24は、コンバータ20Aに出力する制御信号をローレベルからハイレベルに切り替える。その後、コンバータ20Cの制御信号出力部24は、ヒステリシスコンパレータ16からのモード信号がハイレベルに維持される間、出力する制御信号Out(C)もハイレベルに維持する。 Next, it is assumed that the output current of the converter 20C reaches Ith1 at time t1 when the target voltage of the converter 20C is set to Vout1. Here, Ith1 is a current value corresponding to the threshold value Vth1 of the hysteresis comparator 16. Ith2 is a current value corresponding to the threshold value Vth2 of the hysteresis comparator 16. At this time, the mode signal output from the hysteresis comparator 16 of the converter 20C is switched from the low level to the high level. Thereby, in converter 20C, target voltage setting unit 22 maintains the target voltage at Vout1, and control signal output unit 24 switches the control signal output to converter 20A from the low level to the high level. Thereafter, the control signal output unit 24 of the converter 20C also maintains the output control signal Out (C) at the high level while the mode signal from the hysteresis comparator 16 is maintained at the high level.
 コンバータ20Cから出力される制御信号Out(C)がローレベルからハイレベルに変化すると、当該制御信号Out(C)を受けるコンバータ20Aの目標電圧設定部22は、目標電圧をVout1に切り替える。これにより、コンバータ20Aも電力を負荷に供給しはじめる。その結果、コンバータ20Cの出力電流が減少する。ただし、コンバータ20Cでは、ヒステリシスコンパレータ16が出力するモード信号がハイレベルに切り替わっているため、ヒステリシスコンパレータ16の閾値は閾値Vth2に変更されている。そのため、閾値Vth1と閾値Vth2との差分よりもコンバータ20Cの出力電流の減少量が小さい場合、コンバータ20Cのヒステリシスコンパレータ16は、ハイレベルのモード信号を出力し続ける。 When the control signal Out (C) output from the converter 20C changes from the low level to the high level, the target voltage setting unit 22 of the converter 20A that receives the control signal Out (C) switches the target voltage to Vout1. As a result, converter 20A also begins to supply power to the load. As a result, the output current of converter 20C decreases. However, in the converter 20C, since the mode signal output from the hysteresis comparator 16 is switched to the high level, the threshold value of the hysteresis comparator 16 is changed to the threshold value Vth2. Therefore, when the amount of decrease in the output current of converter 20C is smaller than the difference between threshold value Vth1 and threshold value Vth2, hysteresis comparator 16 of converter 20C continues to output a high-level mode signal.
 次に、時刻t1から所定の遅延時間だけ経過した時刻t2において、コンバータ20Aの制御信号出力部24は、コンバータ20Bに出力する制御信号Out(A)をローレベルからハイレベルに切り替える。 Next, at time t2 when a predetermined delay time has elapsed from time t1, the control signal output unit 24 of the converter 20A switches the control signal Out (A) output to the converter 20B from the low level to the high level.
 コンバータ20Aからの制御信号Out(A)がローレベルからハイレベルに変化すると、当該制御信号Out(A)を受けるコンバータ20Bの目標電圧設定部22は、目標電圧をVout1に切り替える。これにより、コンバータ20Bも負荷に電力を供給する。その結果、電源システムは、負荷に供給される電流を、コンバータ20A~20Cで分担する通常モードとなる。 When the control signal Out (A) from the converter 20A changes from the low level to the high level, the target voltage setting unit 22 of the converter 20B that receives the control signal Out (A) switches the target voltage to Vout1. Thus, converter 20B also supplies power to the load. As a result, the power supply system is in a normal mode in which the current supplied to the load is shared by converters 20A to 20C.
 このとき、コンバータ20Cでは、出力電流が減少するが、ヒステリシスコンパレータ16が出力するモード信号がともにハイレベルに切り替わっており、ヒステリシスコンパレータ16の閾値が閾値Vth2に変更されている。そのため、コンバータ20Cの出力電流がIth2(閾値Vth2に対応する電流値)未満にならない限り、コンバータ20Cのヒステリシスコンパレータ16は、ハイレベルのモード信号を出力し続ける。一方、コンバータ20A、20Bでは、出力電流がIth1に達していないため、ヒステリシスコンパレータ16は、ローレベルのモード信号を出力し続けている。 At this time, in the converter 20C, the output current decreases, but both the mode signals output from the hysteresis comparator 16 are switched to the high level, and the threshold value of the hysteresis comparator 16 is changed to the threshold value Vth2. Therefore, as long as the output current of converter 20C does not become less than Ith2 (current value corresponding to threshold value Vth2), hysteresis comparator 16 of converter 20C continues to output a high-level mode signal. On the other hand, in converters 20A and 20B, since the output current does not reach Ith1, hysteresis comparator 16 continues to output a low-level mode signal.
 次に、時刻t2から所定の遅延時間だけ経過した時刻t3において、コンバータ20Bの制御信号出力部24は、コンバータ20Cに出力する制御信号Out(B)をローレベルからハイレベルに切り替える。 Next, at time t3 when a predetermined delay time has elapsed from time t2, the control signal output unit 24 of the converter 20B switches the control signal Out (B) output to the converter 20C from the low level to the high level.
 このとき、コンバータ20Cでは、ヒステリシスコンパレータ16からのモード信号がすでにハイレベルになっているため、目標電圧設定部22は、コンバータ20Bからの制御信号Out(B)の変化にかかわらず、目標電圧をVout1に設定し続ける。 At this time, in the converter 20C, the mode signal from the hysteresis comparator 16 is already at the high level, so the target voltage setting unit 22 sets the target voltage regardless of the change in the control signal Out (B) from the converter 20B. Continue to set to Vout1.
 このようにして、全てのコンバータ20A~20Cにおいて目標電圧がVout1に設定される通常モードに切り替わる。その後、負荷で消費される電流が減少し、コンバータ20Cにおいて、出力電流がIth2(閾値Vth2に対応する電流値)未満となるまでの間(つまり、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルからローレベルに変化するまでの間)、通常モードが維持される。 In this way, the normal mode in which the target voltage is set to Vout1 is switched in all the converters 20A to 20C. Thereafter, the current consumed by the load decreases, and in the converter 20C, the mode signal output from the hysteresis comparator 16 is at a high level until the output current becomes less than Ith2 (current value corresponding to the threshold value Vth2). Normal mode is maintained until the signal changes from low to low.
 図8に示す例では、時刻t4において、コンバータ20Cの出力電流がIth2未満となり、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルからローレベルに変化する。これにより、コンバータ20Cの目標電圧設定部22は、目標電圧をVout2に下げる。その結果、コンバータ20Cでは、目標電圧が出力端子P14、P15間の電圧よりも低くなり、電力変換部11の出力電流が0となる。これにより、コンバータ20Cから負荷への電力供給がゼロになり、コンバータ20A、20Bからの出力電流が増加する。 In the example shown in FIG. 8, at time t4, the output current of the converter 20C becomes less than Ith2, and the mode signal output from the hysteresis comparator 16 changes from high level to low level. Thereby, target voltage setting unit 22 of converter 20C lowers the target voltage to Vout2. As a result, in converter 20C, the target voltage is lower than the voltage between output terminals P14 and P15, and the output current of power conversion unit 11 becomes zero. As a result, the power supply from converter 20C to the load becomes zero, and the output current from converters 20A and 20B increases.
 また、時刻t4において、コンバータ20Cの制御信号出力部24は、ヒステリシスコンパレータ16から出力されるモード信号がローレベルに変化したことを受けて、コンバータ20Aに出力する制御信号Out(C)をローレベルに切り替える。 Further, at time t4, the control signal output unit 24 of the converter 20C receives the fact that the mode signal output from the hysteresis comparator 16 has changed to low level, and outputs the control signal Out (C) output to the converter 20A to low level. Switch to.
 次に、制御信号Out(C)がローレベルに切り替わった時刻t4から所定の第1保持時間が経過した時刻t5において、コンバータ20Aの目標電圧設定部22は、目標電圧をVout1からVout2に変更する。 Next, at time t5 when a predetermined first holding time has elapsed from time t4 when control signal Out (C) was switched to the low level, target voltage setting unit 22 of converter 20A changes the target voltage from Vout1 to Vout2. .
 図8に示す例では、遅延時間と第1保持時間が同一に設定されている。そのため、時刻t5において、コンバータ20Aの制御信号出力部24は、コンバータ20Bに出力する制御信号Out(A)をハイレベルからローレベルに切り替える。 In the example shown in FIG. 8, the delay time and the first holding time are set to be the same. Therefore, at time t5, the control signal output unit 24 of the converter 20A switches the control signal Out (A) output to the converter 20B from the high level to the low level.
 次に、制御信号Out(A)がローレベルに切り替わった時刻t5から所定の第1保持時間が経過した時刻t6において、コンバータ20Bの目標電圧設定部22は、目標電圧をVout1からVout2に変更する。また、遅延時間と第1保持時間が同一に設定されているため、時刻t6において、コンバータ20Bの制御信号出力部24は、コンバータ20Cに出力する制御信号Out(B)をハイレベルからローレベルに切り替える。 Next, at time t6 when a predetermined first holding time has elapsed from time t5 when control signal Out (A) is switched to the low level, target voltage setting unit 22 of converter 20B changes the target voltage from Vout1 to Vout2. . Further, since the delay time and the first holding time are set to be the same, at time t6, the control signal output unit 24 of the converter 20B changes the control signal Out (B) output to the converter 20C from the high level to the low level. Switch.
 コンバータ20Cの目標電圧設定部22は、制御信号Out(B)がハイレベルからローレベルに変化したタイミング(時刻t6)において目標電圧をVout2に設定している。そのため、コンバータ20Cの目標電圧設定部22は、時刻t6において目標電圧をVout1に変更し、その後所定の第1保持時間が経過した時刻t7において目標電圧をVout1からVout2に変更する。 The target voltage setting unit 22 of the converter 20C sets the target voltage to Vout2 at the timing (time t6) when the control signal Out (B) changes from the high level to the low level. Therefore, target voltage setting unit 22 of converter 20C changes the target voltage to Vout1 at time t6, and then changes the target voltage from Vout1 to Vout2 at time t7 when a predetermined first holding time has elapsed.
 ここで、時刻t6は、コンバータ20Cにおいて、モード信号がハイレベルからローレベルに変化した後に制御信号In(C)(=制御信号OUT(B))がハイレベルからローレベルに最初に変化したタイミングXである。遅延時間と第1保持時間が同一に設定されているため、時刻t7は、タイミングX(時刻t6)から所定の遅延時間だけ経過したタイミングとなる。そのため、コンバータ20Cの制御信号出力部24は、時刻t7がパルス信号開始タイミングであると判断し、パルス信号を出力端子P16に出力する。 Here, at time t6, the timing at which the control signal In (C) (= control signal OUT (B)) first changes from the high level to the low level after the mode signal changes from the high level to the low level in the converter 20C. X. Since the delay time and the first holding time are set to be the same, time t7 is a timing when a predetermined delay time has elapsed from timing X (time t6). Therefore, control signal output unit 24 of converter 20C determines that time t7 is the pulse signal start timing, and outputs the pulse signal to output terminal P16.
 図8に示されるように、時刻t5から、電源システムは、コンバータ20A~20Cのうちのいずれか1つのみの目標電圧がVout1に設定される軽負荷モードに切り替えられる。 As shown in FIG. 8, from time t5, the power supply system is switched to the light load mode in which the target voltage of only one of the converters 20A to 20C is set to Vout1.
 以上のように、実施の形態3によれば、コンバータ20A~20Cのいずれかにおいて、出力電流がIth1を超えた場合(つまり、出力電流検出回路15から出力される電圧Vdetが閾値Vth1を超えた場合)、全てのコンバータ20A~20Cの目標電圧がVout1に統一される。 As described above, according to the third embodiment, in any of converters 20A to 20C, when output current exceeds Ith1 (that is, voltage Vdet output from output current detection circuit 15 exceeds threshold value Vth1). ), The target voltages of all the converters 20A to 20C are unified to Vout1.
 これにより、負荷に供給すべき電力が増大した重負荷時には、コンバータ20A~20Cの全てで負荷で消費される電力を分担することができ、1つのコンバータ20だけが負荷で消費される電力を供給する場合に比べて、コンバータ20の出力電流を下げることができる。その結果、出力電流の増大に伴う導通損による効率の低下を抑制することができる。 As a result, during heavy loads where the power to be supplied to the load has increased, all of the converters 20A to 20C can share the power consumed by the load, and only one converter 20 can supply the power consumed by the load. Compared to the case, the output current of the converter 20 can be reduced. As a result, it is possible to suppress a decrease in efficiency due to conduction loss accompanying an increase in output current.
 また、ヒステリシスコンパレータ16から出力されるモード信号がハイレベルであるコンバータ20(図8に示す例ではコンバータ20C)の出力電流がIth2未満になった場合(つまり、出力電流検出回路15から出力される電圧Vdetが閾値Vth2未満になった場合)、電源システムは、コンバータ20A~20Cのうちの1つの目標電圧がVout1に設定され、残りのコンバータ20の目標電圧がVout2に設定される軽負荷モードに切り替えられる。 Further, when the output current of the converter 20 (converter 20C in the example shown in FIG. 8) whose mode signal output from the hysteresis comparator 16 is high level is less than Ith2 (that is, output from the output current detection circuit 15). When the voltage Vdet is less than the threshold value Vth2, the power supply system enters a light load mode in which one target voltage of the converters 20A to 20C is set to Vout1, and the target voltage of the remaining converter 20 is set to Vout2. Can be switched.
 これにより、軽負荷時に全てのコンバータ20により負荷で消費される電力を分担する場合に比べて、負荷に電力を供給するコンバータ20の出力電流を上げることができる。その結果、出力電流の減少に伴う固定損による効率の低下を抑制することができる。 This makes it possible to increase the output current of the converter 20 that supplies power to the load, as compared to the case where the power consumed by the load is shared by all the converters 20 at a light load. As a result, it is possible to suppress a decrease in efficiency due to a fixed loss accompanying a decrease in output current.
 さらに、目標電圧がVout1に設定されるコンバータ20が所定の遅延時間ごとに順次切り替えられるため、各コンバータ20の発生熱量を均等にすることができるとともに、各コンバータ20の部品へのストレスも均一化することができる。 Furthermore, since the converters 20 whose target voltage is set to Vout1 are sequentially switched every predetermined delay time, the amount of heat generated by each converter 20 can be made uniform, and the stress on the components of each converter 20 can be made uniform. can do.
 <実施の形態4>
 実施の形態1~3では、目標電圧がVout2に設定されるコンバータでは、電力変換部11が出力する電圧よりも出力端子P14,P15間の電圧の方が高くなる。このとき、ダイオードD1のために、電力変換部11は、出力端子P14,P15に電流を流すことができない。そのため、コントローラ13は、出力電流が0となるように電力変換部11を制御する。つまり、電力変換部11は電力を供給しない。ただし、この場合であっても、電力変換部11のスイッチング素子Q1,Q2(図3参照)は、スイッチング周波数に従ってスイッチングされ、スイッチング損失が発生している。
<Embodiment 4>
In the first to third embodiments, in the converter in which the target voltage is set to Vout2, the voltage between the output terminals P14 and P15 is higher than the voltage output from the power conversion unit 11. At this time, due to the diode D1, the power converter 11 cannot flow current to the output terminals P14 and P15. Therefore, the controller 13 controls the power conversion unit 11 so that the output current becomes zero. That is, the power conversion unit 11 does not supply power. However, even in this case, the switching elements Q1 and Q2 (see FIG. 3) of the power conversion unit 11 are switched according to the switching frequency, and a switching loss occurs.
 実施の形態4に係る電源システムでは、コントローラ13は、目標電圧がVout2に設定された場合には、目標電圧がVout1に設定される場合よりも、電力変換部11のスイッチング素子Q1,Q2における単位時間当たりのスイッチング回数を少なくする。これにより、負荷への電力供給に寄与していないコンバータにおけるスイッチング損失を低減することができる。 In the power supply system according to the fourth embodiment, when the target voltage is set to Vout2, the controller 13 is a unit in the switching elements Q1 and Q2 of the power conversion unit 11 than when the target voltage is set to Vout1. Reduce the number of switching operations per hour. Thereby, the switching loss in the converter that does not contribute to the power supply to the load can be reduced.
 スイッチング素子Q1,Q2における単位時間当たりのスイッチング回数を少なくする方法としては、公知の技術を用いることができる。 As a method for reducing the number of times of switching per unit time in the switching elements Q1 and Q2, a known technique can be used.
 たとえば、コントローラ13は、電力変換部11に対してPFM(Pulse Frequency Modulation)制御を行なっている場合、所定数のパルスを間引く間欠発振を行なえばよい。 For example, when the controller 13 performs PFM (Pulse Frequency Modulation) control on the power conversion unit 11, the controller 13 may perform intermittent oscillation by thinning out a predetermined number of pulses.
 また、コントローラ13は、電力変換部11に対してPWM(Pulse Width Modulation)制御を行なっている場合、スイッチング素子Q1,Q2をスイッチングする発振期間とスイッチング素子Q1,Q2をオフのままにする発振停止期間とを交互に繰り返すバースト制御を行なってもよい。 Further, when PWM (Pulse Width Modulation) control is performed on the power conversion unit 11, the controller 13 oscillates while switching the switching elements Q1 and Q2 and stops the oscillation that keeps the switching elements Q1 and Q2 off. You may perform burst control which repeats a period alternately.
 また、コントローラ13は、電力変換部11の出力電圧に基づくヒステリシス制御を行なってもよい。具体的には、コントローラ13は、Vout1よりわずかに高い電圧を上限値とし、Vout1よりわずかに低い電圧を下限値とし、電力変換部11の出力電圧が上限値を超えた場合に、スイッチング素子Q1,Q2をオフのままとし、電力変換部11の出力電圧が下限値未満となった場合に、スイッチング素子Q1のスイッチングを開始する。 Further, the controller 13 may perform hysteresis control based on the output voltage of the power conversion unit 11. Specifically, the controller 13 sets the voltage slightly higher than Vout1 as the upper limit value, sets the voltage slightly lower than Vout1 as the lower limit value, and when the output voltage of the power converter 11 exceeds the upper limit value, the switching element Q1 , Q2 are kept off, and switching of the switching element Q1 is started when the output voltage of the power converter 11 becomes less than the lower limit value.
 <変形例>
 上記の説明では、電源システムが3つのコンバータを備え、そのうちの1台の目標電圧をVout1に設定し、残りの2台をVout2に設定した。しかしながら、コンバータの台数はこれに限定されない。また、目標電圧がVout1に設定される台数も1台に限定されない。たとえば、電源システムが5台のコンバータを備え、そのうちの3台の目標電圧をVout1に設定し、残りの2台をVout2に設定してもよい。すなわち、N台のコンバータのうちのm台(1≦m<N)における目標電圧をVout1とし、残りのN-m台における目標電圧をVout2とすればよい。
<Modification>
In the above description, the power supply system includes three converters, one of which is set to Vout1, and the other two are set to Vout2. However, the number of converters is not limited to this. Further, the number of target voltages set to Vout1 is not limited to one. For example, the power supply system may include five converters, of which three target voltages may be set to Vout1, and the remaining two may be set to Vout2. That is, the target voltage for m converters (1 ≦ m <N) of N converters may be Vout1, and the target voltage for the remaining N−m converters may be Vout2.
 上記の説明では、各コンバータが、当該コンバータの出力端子P16に接続された入力端子P13を含むコンバータの目標電圧設定部12,22に対して、制御信号を出力する制御信号出力部14,24を含むものとした。しかしながら、電源システムは、制御信号出力部14,24の代わりに、各コンバータ10,20に対して制御信号を出力する制御信号出力部をコンバータ10,20の外部に備えていてもよい。この場合、制御信号出力部は、たとえば、コンバータ10Aに対してハイレベルの制御信号を出力する間、コンバータ10B,10Cにローレベルの制御信号を出力すればよい。 In the above description, each converter has the control signal output units 14 and 24 that output the control signal to the target voltage setting units 12 and 22 of the converter including the input terminal P13 connected to the output terminal P16 of the converter. Included. However, the power supply system may include a control signal output unit that outputs a control signal to each of the converters 10 and 20 outside the converters 10 and 20 instead of the control signal output units 14 and 24. In this case, the control signal output unit may output a low level control signal to the converters 10B and 10C, for example, while outputting a high level control signal to the converter 10A.
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time is an example, and is not limited to the above contents. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 電源システム、10(10A~10C),20(20A~20C) コンバータ、11 電力変換部、12,22 目標電圧設定部、13 コントローラ、14,24 制御信号出力部、15 出力電流検出回路、16 ヒステリシスコンパレータ、17 オペアンプ、Q1,Q2 スイッチング素子。 1 power system, 10 (10A to 10C), 20 (20A to 20C) converter, 11 power conversion unit, 12, 22 target voltage setting unit, 13 controller, 14, 24 control signal output unit, 15 output current detection circuit, 16 Hysteresis comparator, 17 operational amplifier, Q1, Q2 switching element.

Claims (5)

  1.  N台(Nは2以上の整数)のコンバータを備え、前記N台のコンバータが並列に接続された電源システムであって、
     前記N台のコンバータの各々は、
      入力電圧を出力電圧に変換する電力変換部と、
      前記電力変換部の出力電圧が目標値となるように前記電力変換部を制御するための第1の制御部と、
      前記第1の制御部に前記目標値を設定するための設定部とを含み、
     前記電源システムは、さらに、
     前記N台のコンバータの各々の前記設定部を制御することにより、前記N台のコンバータのうちのm台(1≦m<N)における前記目標値を第1の電圧にさせ、残りのN-m台における前記目標値を前記第1の電圧より低い第2の電圧にさせるための第2の制御部を備え、
     前記第2の制御部は、前記N台のコンバータの各々の前記設定部を制御することにより、前記設定部が前記第1の電圧を前記目標値として設定する期間を前記N台のコンバータにおいて均等にさせる、電源システム。
    A power supply system including N converters (N is an integer of 2 or more), wherein the N converters are connected in parallel,
    Each of the N converters is
    A power converter that converts input voltage to output voltage;
    A first control unit for controlling the power conversion unit such that the output voltage of the power conversion unit becomes a target value;
    A setting unit for setting the target value in the first control unit,
    The power supply system further includes:
    By controlling the setting unit of each of the N converters, the target value in m (1 ≦ m <N) of the N converters is set to the first voltage, and the remaining N− a second control unit for causing the target value in m units to be a second voltage lower than the first voltage;
    The second control unit controls the setting unit of each of the N converters so that a period during which the setting unit sets the first voltage as the target value is equalized in the N converters. Let the power system.
  2.  前記第1の制御部は、前記電力変換部の出力電流が閾値未満の場合には、出力電圧が前記目標値となるように前記電力変換部を制御し、前記電力変換部の出力電流が前記閾値に達した場合には、出力電圧が前記目標値よりも低くなるように前記電力変換部を制御する、請求項1に記載の電源システム。 When the output current of the power conversion unit is less than a threshold, the first control unit controls the power conversion unit so that the output voltage becomes the target value, and the output current of the power conversion unit is The power supply system according to claim 1, wherein when the threshold value is reached, the power conversion unit is controlled so that an output voltage is lower than the target value.
  3.  前記第1の制御部は、前記電力変換部の出力電流が0のときに、出力電圧が前記目標値となるように前記電力変換部を制御し、前記電力変換部の出力電流の増加に伴って出力電圧が前記目標値から低下するように前記電力変換部を制御する、請求項1に記載の電源システム。 The first control unit controls the power conversion unit so that an output voltage becomes the target value when an output current of the power conversion unit is 0, and an increase in the output current of the power conversion unit The power supply system according to claim 1, wherein the power conversion unit is controlled so that an output voltage decreases from the target value.
  4.  前記N台のコンバータの各々は、さらに、
      前記電力変換部の出力電流を検出する検出部と、
      第1の閾値と前記第1の閾値よりも低い第2の閾値とを有し、第1の信号または第2の信号を出力するためのヒステリシスコンパレータとを含み、
     前記ヒステリシスコンパレータは、前記第2の信号を出力している場合に前記検出部によって検出された検出値が前記第1の閾値を超えると前記第1の信号を出力し、前記第1の信号を出力している場合に前記検出値が前記第2の閾値未満になると前記第2の信号を出力し、
     前記第2の制御部は、前記N台のコンバータの各々の前記設定部を制御することにより、前記N台のコンバータの前記ヒステリシスコンパレータのいずれかの出力信号が前記第2の信号から前記第1の信号に変化した場合には、前記N台のコンバータにおける前記目標値を前記第1の電圧にさせ、前記N台のコンバータの前記ヒステリシスコンパレータのいずれかの出力信号が前記第1の信号から前記第2の信号に変化した場合には、前記N台のコンバータのうちのm台における前記目標値を第1の電圧にさせ、残りのN-m台における前記目標値を前記第2の電圧にさせる、請求項1から3のいずれか1項に記載の電源システム。
    Each of the N converters further includes:
    A detection unit for detecting an output current of the power conversion unit;
    A hysteresis comparator having a first threshold and a second threshold lower than the first threshold, and outputting a first signal or a second signal;
    The hysteresis comparator outputs the first signal when the detection value detected by the detection unit exceeds the first threshold when outputting the second signal, and outputs the first signal. When the detection value falls below the second threshold when outputting, the second signal is output,
    The second control unit controls the setting unit of each of the N converters so that an output signal of the hysteresis comparator of each of the N converters is changed from the second signal to the first signal. The target value in the N converters is set to the first voltage, and the output signal of any one of the hysteresis comparators in the N converters is changed from the first signal to the first signal. In the case of changing to the second signal, the target value in the m converters of the N converters is set to the first voltage, and the target value in the remaining N−m converters is set to the second voltage. The power supply system according to any one of claims 1 to 3.
  5.  前記電力変換部は、スイッチング素子を含むスイッチングレギュレータであり、
     前記第1の制御部は、前記目標値が前記第2の電圧に設定されている場合には、前記目標値が前記第1の電圧に設定されている場合よりも、前記スイッチング素子の単位時間あたりのスイッチング回数を少なくする、請求項1から4のいずれか1項に記載の電源システム。
    The power conversion unit is a switching regulator including a switching element,
    When the target value is set to the second voltage, the first control unit is configured so that the unit time of the switching element is greater than the case where the target value is set to the first voltage. The power supply system according to any one of claims 1 to 4, wherein the number of times of per-switching is reduced.
PCT/JP2017/035128 2016-10-20 2017-09-28 Power supply system WO2018074169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205951 2016-10-20
JP2016-205951 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074169A1 true WO2018074169A1 (en) 2018-04-26

Family

ID=62019115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035128 WO2018074169A1 (en) 2016-10-20 2017-09-28 Power supply system

Country Status (1)

Country Link
WO (1) WO2018074169A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322826A (en) * 1989-06-16 1991-01-31 Yokogawa Electric Corp Output voltage drop preventing circuit for duplex power supply
JP2007135373A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Converter system and its output control method
JP2010148291A (en) * 2008-12-19 2010-07-01 Toyota Motor Corp Dc-dc converter
JP2011211890A (en) * 2010-03-26 2011-10-20 Intersil Americas Inc Multiple phase switching regulator with phase current sharing
JP2015053808A (en) * 2013-09-06 2015-03-19 オリジン電気株式会社 Dc power feeding system, and method of controlling the same
JP2015053807A (en) * 2013-09-06 2015-03-19 株式会社リコー Dc/dc converter and power supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322826A (en) * 1989-06-16 1991-01-31 Yokogawa Electric Corp Output voltage drop preventing circuit for duplex power supply
JP2007135373A (en) * 2005-11-14 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Converter system and its output control method
JP2010148291A (en) * 2008-12-19 2010-07-01 Toyota Motor Corp Dc-dc converter
JP2011211890A (en) * 2010-03-26 2011-10-20 Intersil Americas Inc Multiple phase switching regulator with phase current sharing
JP2015053808A (en) * 2013-09-06 2015-03-19 オリジン電気株式会社 Dc power feeding system, and method of controlling the same
JP2015053807A (en) * 2013-09-06 2015-03-19 株式会社リコー Dc/dc converter and power supply device

Similar Documents

Publication Publication Date Title
US7872458B2 (en) DC-to-DC converter
US8787040B2 (en) Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same
JP6528561B2 (en) High efficiency power factor correction circuit and switching power supply
KR101365502B1 (en) Power supply apparatus
US20170054379A1 (en) Current resonant type dc voltage converter, control integrated circuit, and current resonant type dc voltage conversion method
TW201946351A (en) Semiconductor device for power control, switching power device and design method thereof
US7570498B2 (en) Switching power supply apparatus for correcting overcurrent detection point based on gradient of switching current
JP2002281742A (en) Current mode dc-dc converter
US8300437B2 (en) Multi-output DC-to-DC conversion apparatus with voltage-stabilizing function
US9344000B2 (en) Power module varying bias power and distributed power supply apparatus
US9318961B2 (en) Switching power-supply device
US20100289474A1 (en) Controllers for controlling power converters
JP2014131455A (en) Switching power supply device
JP2011166941A (en) Switching power supply device
US20180019654A1 (en) Voltage conversion device and voltage conversion method
US8854021B2 (en) DC-DC converter and DC-DC conversion method
KR20130032844A (en) Adaptive biasing for integrated circuits
US8619441B2 (en) Switching regulator
JP5213621B2 (en) Switching regulator control circuit, control method, switching regulator using them, and charging device
JP6570623B2 (en) Constant on-time (COT) control in isolated converters
JP6602373B2 (en) Constant on-time (COT) control in isolated converters
JP4464263B2 (en) Switching power supply
CN111262467A (en) Power inverter for reducing total harmonic distortion through duty ratio control
JP2012210028A (en) Switching power supply device
WO2018074169A1 (en) Power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP