WO2018074081A1 - Information processing device, information processing method, and information processing system - Google Patents

Information processing device, information processing method, and information processing system Download PDF

Info

Publication number
WO2018074081A1
WO2018074081A1 PCT/JP2017/031721 JP2017031721W WO2018074081A1 WO 2018074081 A1 WO2018074081 A1 WO 2018074081A1 JP 2017031721 W JP2017031721 W JP 2017031721W WO 2018074081 A1 WO2018074081 A1 WO 2018074081A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
information processing
difference
support member
gain
Prior art date
Application number
PCT/JP2017/031721
Other languages
French (fr)
Japanese (ja)
Inventor
竜太 堀江
一生 本郷
長阪 憲一郎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2018074081A1 publication Critical patent/WO2018074081A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and an information processing system.
  • a surgical system in which a medical instrument such as forceps is supported by an arm portion of a support arm device, and an operation is performed while an operator operates the arm portion and the medical instrument.
  • a medical instrument such as forceps
  • the force and moment generated when the tip of the medical instrument comes into contact with the patient's body tissue or the like.
  • contact force which is also referred to as contact force
  • Patent Literature 1 discloses an example of a technique for measuring tactile information at each measurement point by arranging a tactile sensor for each of a plurality of measurement points.
  • a technique for detecting a force applied to a predetermined target for example, a medical instrument
  • a predetermined target for example, a medical instrument
  • the detection result of the force sensor provided on the arm portion acts on the arm portion itself.
  • the influence of the force for example, gravity, inertial force, etc.
  • the present disclosure proposes an information processing apparatus, an information processing method, and an information processing system capable of detecting a force acting on a predetermined target with higher sensitivity.
  • the gain corresponding to the difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member is set as the difference.
  • an arithmetic unit that calculates the force of 3 is provided.
  • the computer responds to a difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member. Relative to at least a portion of a series of structures including the support member, based on applying a gain to the difference, the difference, and the gain applied to the difference. And calculating a third force acting on the information processing method.
  • a support arm device having an arm portion having a support member that supports a force sensor, and a link structure configured by connecting a plurality of rigid bodies, and a first sensor detected by the force sensor.
  • An application unit that applies a gain according to a difference between the first force and a second force acting on the support member to the difference, the difference, and an application to the difference
  • An information processing system includes a calculation unit that calculates a third force that acts relatively on at least a portion of the arm unit based on the gain.
  • an information processing apparatus capable of detecting a force acting on a predetermined target with higher sensitivity are provided.
  • FIG. 10 is an explanatory diagram for describing an example of a configuration of a control device according to Modification Example 1.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of a control device according to Modification Example 2.
  • FIG. It is a functional block diagram showing an example of hardware constitutions of an information processor which constitutes an information processing system concerning one embodiment of this indication.
  • FIG. 1 is a diagram illustrating an example of a schematic system configuration of an information processing system according to the present embodiment.
  • FIG. 1 shows an example in which the information processing system 1 according to the present embodiment is configured as a so-called bilateral system.
  • a bilateral system is a system configured to control a device (master device) operated by a user and a device (slave device) that performs work so that the posture and the state of force are substantially matched. is there.
  • the bilateral system performs posture control of the slave device based on a user operation on the master device, and feeds back the force detected by the slave device to the master device side.
  • the information processing system 1 includes a support arm device 400a that operates as a master device, a support arm device 400b that operates as a slave device, and a control device 100 that controls operations of the support arm devices 400a and 400b.
  • the control device 100 is provided, for example, inside the support arm device 400a.
  • the information processing system 1 may include an imaging unit 480 and a monitor 490.
  • support arm devices 400a and 400b are not particularly distinguished, they are also simply referred to as “support arm device 400”.
  • the support arm device 400a and the support arm device 400b are configured to be able to transmit and receive information to and from each other via a predetermined network N1.
  • the type of the network N1 that connects the support arm device 400a and the support arm device 400b is not particularly limited.
  • the network N1 may be configured by the Internet, a dedicated line, a LAN (Local Area Network), a WAN (Wide Area Network), or the like.
  • the network N1 may be configured by a wireless network or a wired network.
  • the network N1 may include a plurality of networks, and at least a part of the network N1 may be configured as a wired network.
  • an image of Ub located at a remote place imaged by the imaging unit 480 is presented to the practitioner Ua via the monitor 490.
  • the posture (that is, the position and orientation) of the arm portion 420a of the support arm device 400a and the posture of the arm portion 420b of the support arm device 400b are controlled so as to substantially coincide with each other.
  • the posture of each portion of the arm portion 420a becomes indirect, etc. It is detected by a detection unit such as an encoder or a potentiometer provided in.
  • the control device 100 calculates the posture of the arm unit 420a based on the detection result by the detection unit. And the control apparatus 100 controls operation
  • the control device 100 controls the posture of the arm unit 420b so that it substantially matches the posture of the arm unit 420 by driving an actuator provided in each of the arm units 420b indirectly or the like.
  • a force sensor (not shown) is provided on at least a part of the arm portion 420b of the support arm device 400b, and a contact force applied to the forceps 430b held by the arm portion 420b by the force sensor. Detected.
  • a force sensor in the present disclosure for example, a uniaxial or multiaxial (more specifically, 1 to 6 axis) force / moment sensor can be applied. Therefore, even when simply described as “force sensor”, it may include a uniaxial or multiaxial force / moment sensor.
  • the detection result by the force sensor is fed back from the support arm device 400b to the control device 100 provided on the support arm device 400a side via the network N1.
  • the control device 100 drives the actuator Ua that holds the forceps 430a, for example, by driving an actuator provided in each part of the arm portion 420a.
  • the force sensation (that is, the contact force detected by the force sensor) is fed back.
  • the practitioner Ua confirms the state of the treatment target 540 via the monitor 490, and remotely operates the forceps 430b held by the arm portion 420b, thereby performing the operation on the treatment target Ub. It is possible to perform treatment. At this time, the practitioner Ua uses the force sense fed back from the support arm device 400a to sense the treatment target Ub by remote operation of the forceps 430b with the same feeling as when performing the treatment directly on the treatment target Ub. It becomes possible to perform a treatment on.
  • the posture and force state may be scaled between the master device and the slave device.
  • the detection result of the change in the posture of the arm unit 420a may be scaled to 1/10, and the posture of the arm unit 420b may be controlled based on the detection result after scaling.
  • the forceps 430a is attached to the practitioner Ua based on the detection result after scaling. The sense of force may be fed back through.
  • the procedure of the practitioner Ua is scaled to 1/10 and the forceps 430b is operated, and the fine force applied to the forceps 430b is scaled 10 times and fed back to the practitioner Ua. . Therefore, for example, the practitioner Ua can perform a treatment on a finer part with higher accuracy.
  • control device 100 may be provided as an external device different from the support arm device 400a.
  • control device 100 may be provided on the support arm device 400b side, or may be incorporated in the support arm device 400b.
  • control device 100 may be configured as an information processing device such as a server, for example, and may be connected to each of the support arm devices 400a and 400b via the network N1.
  • control device 100 may be individually provided for each of the support arm devices 400a and 400b.
  • the control devices 100 provided in the support arm devices 400a and 400b may operate in conjunction with each other.
  • the control device 100 that controls the operation of the support arm devices 400a and 400b corresponds to an example of an “information processing device”.
  • FIG. 2 is a diagram illustrating a configuration example of the support arm device according to the present embodiment.
  • the support arm device 400 includes a base portion 410, an arm portion 420, and the control device 100.
  • the support arm device 400 is a medical support arm device that supports medical instruments such as forceps during surgery.
  • the base portion 410 is a base of the support arm device 400, and the arm portion 420 is extended from the base portion 410.
  • the base portion 410 is provided with casters, and the support arm device 400 is configured to be in contact with the floor surface via the casters and movable on the floor surface by the casters.
  • the configuration of the support arm device 400 according to the present embodiment is not limited to such an example.
  • the base unit 410 is not provided, and the arm unit 420 is directly attached to the ceiling or wall surface of the operating room. May be configured.
  • the support arm device 400 is configured with the arm unit 420 suspended from the ceiling.
  • the control device 100 may be a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the control device 100 may be a control board or a microcomputer on which these processors and storage elements such as a memory are mounted.
  • Various operations in the support arm device 400 are executed by the processor constituting the control device 100 executing various signal processing according to a predetermined program.
  • the arm unit 420 and the forceps 430 are driven by the control from the control device 100.
  • the arm portion 420 includes a plurality of joint portions 421a, 421b, 421c, 421d, 421e, and 421f, a plurality of links 422a, 422b, 422c, and 422d that are rotatably connected to each other by the joint portions 421a to 421e. And a forceps 430 provided at the tip of 420 so as to be rotatable via a joint portion 421f.
  • the links 422a to 422d are rod-shaped members, one end of the link 422a is connected to the base portion 410 via the joint portion 421a, the other end of the link 422a is connected to one end of the link 422b via the joint portion 421b, The other end of the link 422b is connected to one end of the link 422c via the joint portions 421c and 421d. Furthermore, the other end of the link 422c is connected to one end of a substantially L-shaped link 422d via a joint portion 421e, and the other end of the link 422d and the forceps 430 are connected via a joint portion 421f.
  • the ends of the plurality of links 422a to 422d are connected to each other by the joint portions 421a to 421f with the base portion 410 as a fulcrum, thereby forming an arm shape extending from the base portion 410.
  • the joint portions 421a to 421f are provided with actuators, and the joint portions 421a to 421f are configured to be rotatable about a predetermined rotation axis by the actuators.
  • the actuator can be constituted by a motor, an encoder, a torque sensor, and the like. Driving of the motors of the actuators of the joint portions 421a to 421f is controlled by the control device 100, so that the driving of the arm portion 420, for example, extending or contracting (folding) the arm portion 420 is controlled. .
  • various known control methods may be used as the control method of the arm unit 420, and a detailed description thereof will be omitted here.
  • the surgeon instructs the support arm device 400 about the operation of the arm unit 420 via an input device (not shown) provided at a position away from the support arm device 400. May be given.
  • An example of the input device is the support arm device 400a on the master device side shown in FIG.
  • a signal indicating an instruction input via the input device is transmitted to the control device 100.
  • the control apparatus 100 determines the motors of the actuators of the actuators of the joints 421a to 421f according to the instructions.
  • a control amount is calculated. By driving the motor of each actuator in accordance with the calculated control amount, the arm unit 420 operates in accordance with the operator's instruction.
  • the communication between the input device and the control device 100 may be performed by various known methods, wired or wireless.
  • the support arm device 400 has six joint portions 421a to 421f, and six degrees of freedom for driving the arm portion 420 is realized.
  • the forceps 430 can be freely moved within the movable range of the arm portion 420. Accordingly, the forceps 430 can be inserted into the patient from various angles, and the degree of freedom when operating the forceps 430 is improved.
  • the configuration of the arm part 420 is not limited to the example shown in the figure, and the number and arrangement of the joint parts 421a to 421f and the links 422a to 422d, the direction of the drive shaft of the joint parts 421a to 421f, etc. It may be set as appropriate to have a degree of freedom. However, in consideration of the degree of freedom of the position and posture of the forceps 430, the arm unit 420 can be preferably configured to have a degree of freedom of 6 degrees or more.
  • the forceps 430 includes a drive unit 431 provided at the proximal end and a long tubular portion 433 extending from the drive unit 431.
  • An end effector is provided at the distal end of the tubular portion 433, and a region having a predetermined length including the distal end is inserted into the body cavity of the patient during surgery.
  • the end effector includes a pair of openable and closable blades. The blades can grasp and cut a living tissue of a patient or grasp a medical device such as a needle at the time of suturing the living tissue.
  • the position and posture of the arm unit 420 and the forceps 430 are controlled by the control device 100 so that the forceps 430 can take a desired position and posture with respect to the living tissue of the patient.
  • the driving unit 431 includes, for example, a motor and a driver IC (Integrated Circuit) for driving the motor, and drives the tubular unit 433.
  • a motor and a driver IC Integrated Circuit
  • the opening / closing operation of the end effector of the tubular portion 433 is performed by the drive portion 431.
  • the driving portion 431 may perform a bending operation at the bending portion.
  • the drive part 431 belongs to a non-clean area
  • the tubular part 433 belongs to a clean area
  • the forceps 430 can be configured such that the drive portion 431 and the tubular portion 433 are detachable so that only the tubular portion 433 can be easily cleaned and sterilized.
  • the forceps 430 is a so-called robot forceps that can be remotely operated by an operator.
  • the operator inputs an instruction regarding the operation of the forceps 430 to the control device 100 of the support arm device 400, for example, via the input device for remotely operating the arm unit 420 described above. To do.
  • the control amount of the motor of the drive unit 431 for operating the tubular portion 433 is calculated by the control device 100, and the motor is driven in accordance with the calculated control amount, so that the operator The forceps 430 operates according to the instruction.
  • tubular portion 433 is not shown and is simply illustrated as a rod-shaped member.
  • a force sensor 450 for detecting a force acting on the end effector is provided at the proximal end portion of the end effector of the tubular portion 433.
  • the member in which the force sensor 450 was provided namely, member which supports the force sensor 450
  • the support arm device 400 has a function of feeding back the force acting on the end effector to the operator based on the detection value of the force sensor 450.
  • an input device for operating the arm unit 420 and the forceps 430 may be provided with a function of presenting a force acting on the end effector to the operator.
  • the input device may be provided with a mechanism for driving a lever or the like constituting the input device so as to give resistance to an operation by the surgeon according to a force acting on the end effector.
  • the force acting on the end effector can be a reaction force received from the living tissue when the end effector comes into contact with the patient's living tissue, the force acting on the end effector is fed back to the operator.
  • the surgeon can obtain a feeling as if he / she is directly holding the forceps with his / her hand, and the operability is improved.
  • an excessive force can be prevented from being applied to the living tissue, a safer operation can be realized.
  • the force may be fed back to the surgeon by vibrating a lever or the like held by the surgeon in the input device.
  • the force may be fed back to the surgeon by vibrating a lever or the like held by the surgeon in the input device.
  • a force of a predetermined value or more is detected, for example, via a display device visually recognized by the surgeon during operation, this may be visually warned to the surgeon. .
  • a sound output device such as a speaker is mounted on the input device, the warning may be made audibly.
  • the force acting on the end effector detected by the force sensor 450 may be used for controlling the arm unit 420.
  • the driving of the arm unit 420 is controlled so that the arm unit 420 does not move further in that direction. Also good. Thereby, it is possible to more reliably prevent an excessive force from being applied to the living tissue.
  • a technique for detecting a force applied to a predetermined target such as a medical instrument with higher sensitivity may be required.
  • the force sensor provided in the arm portion is used to detect the force.
  • a force such as gravity or inertia force acting on the arm portion may be detected.
  • FIG. 3 is an explanatory diagram for explaining an example of the detection result by the force sensor supported by the arm portion.
  • the force acting on the forceps supported by the arm portion is detected.
  • an inertial force does not act on the arm portion, for example, when the arm portion is stationary.
  • reference symbol DC indicates a DC component of a force acting on the forceps such as an external force acting on the forceps supported by the arm portion.
  • Reference sign AC corresponds to a force acting on the forceps when the forceps contacts the treatment target (so-called tactile force detected), and indicates an AC component of the force acting on the forceps.
  • Reference sign DC ′ indicates a force component detected by the force sensor in accordance with the force acting on the arm portion.
  • DC ′ indicates a component based on the weight of the arm portion.
  • the inertial force acting on the arm portion is also detected as DC ′.
  • the detection result by the force sensor includes the DC ′ component acting on the arm portion in addition to the DC component and AC component acting on the forceps.
  • the DC ′ component tends to be extremely large as compared with the AC component and the DC component under a situation where a fine force acting on the forceps is detected. That is, as shown in FIG. 3, when an analog signal based on a detection result by a force sensor is A / D converted into a digital signal, a gain is applied to the detection result in accordance with the dynamic range of the A / D converter. In such a case, the influence of the DC ′ component becomes more dominant. Therefore, under the situation shown in FIG. 3, it is difficult to apply a higher gain to the detection result of the force sensor, and as a result, a fine DC component and an AC component are higher than the DC ′ component. It becomes difficult to detect with high sensitivity and high resolution.
  • a technique for adjusting the sensitivity of the force sensor by canceling the unbalanced component of the circuit.
  • a technique for adjusting the sensitivity of the force sensor by canceling the unbalanced component of the circuit.
  • a technique for adjusting the sensitivity of the force sensor by canceling the unbalanced component of the circuit.
  • a technique for adjusting the sensitivity of the force sensor by canceling the unbalanced component of the circuit.
  • a technique for example for example, in the case of a strain gauge type strain amplifier, a technique based on a mechanical auto balance method, a memory operation method (core memory method), a CTS (Capacitance Self Tracing) method, etc. is mentioned. It is done.
  • a force for example, a force acting on the arm unit with a change in the posture of the arm unit
  • Gravity inertial force, etc.
  • the DC ′ component described above of the force detected by the force sensor changes dynamically, and the technique exemplified above can cancel the influence of the DC ′ component that changes dynamically as described above.
  • an influence of a force that is, gravity, inertial force, etc.
  • another member for example, an arm portion
  • An example of a technique that enables detection of the force applied to the object with higher sensitivity even under such circumstances is proposed.
  • FIG. 4 is an explanatory diagram for explaining an operation principle of the information processing system according to the present embodiment.
  • the control device 100 calculates a force (that is, a DC ′ component) that acts on the arm unit 420 of the support arm device 400.
  • control device 100 determines the arm based on detection results from various sensors (for example, an encoder, a potentiometer, etc.) provided in each unit (for example, indirect) of the arm unit 420 of the support arm device 400.
  • a change in the position and orientation (ie, posture) of each unit of the unit 420 is calculated.
  • More specific examples of the various sensors include an absolute encoder, an incremental encoder, a potentiometer, and the like.
  • control device 100 calculates a force due to the dynamics of the arm unit 420 itself, which is applied to the force sensor 450, based on the calculation result of the posture change in each unit of the arm unit 420.
  • the dynamics of a so-called arm such as the arm unit 420 is expressed by a relational expression shown as (Equation 1) below.
  • the left side represents each joint torque.
  • the first term on the right side represents the inertial force acting on each joint with translational motion.
  • the second term on the right side represents the centrifugal force and Coriolis force acting on each joint with the rotational motion.
  • the third term on the right side represents the gravity acting on each joint.
  • represents the angle of each joint.
  • the dynamic terms of each part of the arm unit 420 (for example, each link corresponding to each joint) can be calculated based on, for example, the method (dynamic calculation) disclosed in Japanese Patent Application Laid-Open No. 2007-108955. It is.
  • the calculation result of the dynamic term of each part of the arm unit 420 is converted into a value seen from the position where the force sensor 450 is provided, thereby resulting in the dynamics of the arm unit 420 added to the force sensor 450. It is possible to calculate the force to be applied (that is, the force acting on the arm portion 420).
  • the control device 100 subtracts the calculation result of the force (that is, the DC ′ component) resulting from the dynamics of the arm unit 420 from the detection result of the force sensor 450, so that a predetermined target such as the forceps 430 is obtained. Then, a relatively applied force (that is, DC + AC component) is calculated. Then, the control device 100 amplifies the analog signal based on the subtraction result (that is, the DC + AC component), and performs A / D conversion to a digital signal.
  • a relatively applied force that is, DC + AC component
  • the control device 100 removes the influence of the force acting on the arm unit 420 from the detection result of the force sensor 450 and calculates a weak force relatively applied to a predetermined target such as the forceps 430. It becomes possible to do. Therefore, when the analog signal based on the calculation result of the force applied to the target is A / D converted into a digital signal, the control device 100 applies a higher gain to the analog signal before the A / D conversion. It becomes possible. That is, according to the information processing system 1 according to the present embodiment, an analog signal based on a calculation result of a force applied to a predetermined target can be A / D converted into a digital signal with higher resolution, and thus It becomes possible to detect the force applied to the object with higher sensitivity.
  • FIG. 5 is a block diagram illustrating an example of a functional configuration of the control device 100 according to the present embodiment.
  • the control device 100 includes amplifiers 101, 105, and 111, a subtraction unit 103, an A / D conversion unit 107, a D / A conversion unit 109, and a calculation unit 130. And a broken line gain characteristic circuit 150.
  • the calculation unit 130 includes a force moment calculation unit 131 and a dynamics calculation unit 133.
  • the arm part 420 and the force sensor 450 correspond to the arm part 420 and the force sensor 450 in the support arm device 400 described with reference to FIG.
  • the arm unit 420 and the force sensor 450 shown in FIG. 5 correspond to the arm unit 420 and the force sensor 450 in the support arm device 400b corresponding to the slave device.
  • the detection unit 460 schematically illustrates an encoder, a potentiometer, and the like for detecting the posture of each part of the arm unit 420.
  • the analog signal based on the force detection result by the force sensor 450 is amplified by the amplifier 101 (strain amplifier) and input to the subtracting unit 103.
  • the force detected by the force sensor 450 is also referred to as “first force”.
  • the analog signal corresponds to the analog signal based on the DC ′ + DC + AC component described with reference to FIG.
  • the dynamics calculation unit 133 acquires the detection result from the detection unit 460 provided in each part of the arm unit 420, and based on the detection result, the posture (that is, the position and orientation) of each part of the arm unit 420 is obtained. Calculate the change. Next, the dynamics calculation unit 133 calculates the force due to the dynamics of the arm unit 420 acting on the force sensor 450 based on the calculation result of the change in posture in each unit of the arm unit 420. Then, the dynamics operation unit 133 outputs a digital signal based on the calculation result of the force due to the dynamics of the arm unit 420 to the D / A conversion unit 109. In the following description, a force that acts on the force sensor 450 and is caused by the dynamics of the arm unit 420 is also referred to as a “second force”.
  • a digital signal based on the calculation result of the force resulting from the dynamics of the arm unit 420 is D / A converted into an analog signal by the D / A conversion unit 109, amplified by the amplifier 111, and then input to the subtraction unit 103.
  • the analog signal corresponds to the DC ′ component described with reference to FIG.
  • the analog signal based on the detection result of the first force by the force sensor 450 and the analog signal based on the calculation result of the second force by the dynamics calculation unit 133 are input to the subtraction unit 103.
  • the subtracting unit 103 subtracts the analog signal based on the second force calculation result from the analog signal based on the first force detection result, and obtains the analog signal obtained as the subtraction result (hereinafter also referred to as “difference signal”). ) Is output to the amplifier 105 (gain amplifier) located in the subsequent stage.
  • the difference signal output from the subtraction unit 103 removes the influence of the force (DC ′ component) resulting from the dynamics of the arm unit 420 from the force detection result (DC ′ + DC + AC component) by the force sensor 450.
  • Component (DC + AC component) that is, a force acting relatively on a predetermined target such as the forceps 430 is shown. Note that the force acting relatively on the predetermined target is also referred to as a “third force”.
  • the differential signal output from the subtraction unit 103 (that is, an analog signal corresponding to the third force calculation result) is amplified by the amplifier 105 and then passed to the A / D conversion unit 107 via the broken line gain characteristic circuit 150. Entered.
  • the broken line gain characteristic circuit 150 controls the level of the signal by applying a gain to the signal.
  • the broken line gain characteristic circuit 150 is provided in the preceding stage of the A / D conversion unit 107, so that the broken line gain characteristic circuit 150 serves as a so-called limiter. That is, even if an excessive force is applied to a predetermined target and an analog signal with a level exceeding the dynamic range of the A / D converter 107 is input, the level of the analog signal is changed by the broken line gain characteristic circuit 150. It is possible to limit in accordance with the dynamic range of the A / D converter 107. Therefore, for example, it is possible to prevent the occurrence of saturation due to an excessive signal input. An example of the configuration of the broken line gain characteristic circuit 150 will be described later in detail.
  • the broken line gain characteristic circuit 150 corresponds to an example of an “applying unit” that applies a gain to a differential signal.
  • the broken line gain characteristic circuit 150 notifies information (hereinafter also referred to as “gain information”) related to the gain applied to the input analog signal (that is, the differential signal) to the force moment calculation unit 131 described later. To do.
  • the A / D conversion unit 107 A / D converts the input analog signal into a digital signal, and outputs the converted digital signal to the force moment calculation unit 131 located at the subsequent stage.
  • the force / moment calculation unit 131 receives an output of the digital signal from the A / D conversion unit 107, and analyzes the digital signal based on the gain information notified from the broken line gain characteristic circuit 150, thereby obtaining a predetermined forceps 430 or the like. Calculate the force and moment applied relatively to the object. Specifically, the force / moment calculator 131 calculates the magnitude (absolute value) of the force and moment actually applied to the force sensor 450 based on the level of the digital signal and the notified gain information. It is possible. Further, when the position where the predetermined object such as the forceps 430 is held and the position where the force sensor 450 is supported are separated from each other, the force moment calculation unit 131 is based on the above-described dynamic calculation. What is necessary is just to calculate the force and moment (that is, contact force) applied to the predetermined object.
  • control device 100 described above is merely an example, and the functional configuration of the control device 100 is not necessarily limited to the example illustrated in FIG. 5 as long as the above-described series of processing can be realized. . As a specific example, some of the components illustrated in FIG. 5 may be provided outside the control device 100.
  • the control device 100 determines a predetermined target such as the forceps 430 based on the force detection result by the force sensor 450.
  • a predetermined target such as the forceps 430 based on the force detection result by the force sensor 450.
  • FIG. 6 is a diagram illustrating an example of a circuit configuration of a broken line gain characteristic circuit. Since the broken line gain characteristic circuit shown in FIG. 6 is generally known, it will be described by focusing on the point portion, and detailed description of the other portion will be omitted.
  • FIG. 7 is a diagram illustrating an example of a polygonal line gain characteristic.
  • the broken line gain characteristic circuit controls the gain applied by the operational amplifier U1 for each section of the input voltage defined by the broken point by setting one or more break points in the voltage range input to the operational amplifier U1. It is a mechanism for this.
  • reference signs p11 and p12 correspond to an example of a break point.
  • the horizontal axis represents the input voltage Vin to the operational amplifier U1
  • the vertical axis represents the output voltage Vout of the operational amplifier U1.
  • the gain of the operational amplifier U1 is controlled with the input voltage Vin using the voltages V11 and V12 corresponding to the break points p11 and p12 as threshold values.
  • the voltage V11 corresponding to the break point p11 shown in FIG. 7 is determined based on the voltage condition for applying the forward bias to the diode D1 in the circuit shown in FIG. That is, the voltage V11 is defined based on the potential of the node n11. Further, the voltage V12 corresponding to the break point p12 shown in FIG. 7 is determined based on the voltage condition for applying the forward bias to the diode D2 in the circuit shown in FIG. That is, the voltage V12 is defined based on the potential of the node n12. Therefore, the break points p11 and p12 can be set based on, for example, the power supply voltage V4 and the resistors R14 to R17.
  • the input voltage Vin inverted and amplified by the operational amplifier U1 is inverted again by the operational amplifier U2 located at the subsequent stage and output. That is, in the example shown in FIG. 6, the output of the operational amplifier U2 corresponds to the output of the broken line gain characteristic circuit.
  • the gain of the operational amplifier U2 is determined based on, for example, the resistors R21 and R22.
  • the configuration of the broken line gain characteristic circuit shown in FIG. 6 is merely an example, and is not necessarily limited to the example shown in FIG.
  • a configuration corresponding to the diodes D1 and D2 and the resistors R14 to R17 is added so that additional nodes can be added, thereby further setting the break points. It is also possible to do. With such a configuration, for example, the gain applied to the input signal can be controlled stepwise.
  • FIG. 8 is a flowchart illustrating an example of a flow of a series of processes of the control device 100 according to the present embodiment.
  • the control device 100 acquires a detection result from a detection unit 460 (for example, an encoder or a potentiometer) provided in each part of the arm unit 420 of the support arm device 400, and based on the detection result. Then, a change in posture in each part of the arm part 420 is calculated. Next, the control device 100 calculates the force due to the dynamics of the arm unit 420 acting on the force sensor 450 based on the calculation result of the posture change in each unit of the arm unit 420 (S101).
  • a detection unit 460 for example, an encoder or a potentiometer
  • control device 100 converts the digital signal based on the calculation result of the force due to the dynamics of the arm unit 420 into an analog signal.
  • control device 100 calculates a difference signal by subtracting an analog signal based on a force calculation result caused by the dynamics of the arm unit 420 from an analog signal based on a force detection result by the force sensor 450 ( S103).
  • control device 100 applies a gain corresponding to the level of the difference signal to the calculated difference signal (S105), and A / D converts the analog difference signal to which the gain is applied into a digital signal ( S107). Note that the gain applied to the differential signal at this time is controlled according to the level of the differential signal and the characteristics of the broken line gain characteristic circuit 150, for example.
  • control device 100 analyzes the digital difference signal based on the gain applied to the difference signal, so that a force applied relatively to a predetermined target such as the forceps 430 held by the arm unit 420 is obtained. And the moment are calculated (S109).
  • the control device 100 determines the forceps 430 and the like based on the force detection result by the force sensor 450. Description has been given focusing on the process of calculating the force acting on a predetermined target.
  • Modified example 1 Modified example of the broken line gain characteristic circuit>
  • FIG. 9 is an explanatory diagram for explaining an example of the configuration of the control device according to the first modification, and shows another example of the configuration corresponding to the polygonal line gain characteristic circuit 150.
  • a configuration corresponding to the broken line gain characteristic circuit 150 shown in FIG. 9 is also referred to as a “folded line gain characteristic control unit 160”.
  • the setting of the break point is determined according to the power supply voltage and the elements (for example, resistors) constituting the circuit. Therefore, the position of the break point is fixedly set, and it is difficult to change the threshold value that triggers gain switching and the gain itself applied to the input signal.
  • the broken line gain characteristic control unit 160 is configured to be able to change the threshold value that is a trigger for switching the gain and the gain itself applied to the input signal.
  • the broken line gain characteristic control unit 160 includes a variable amplifier 161 and a gain control unit 163.
  • the gain control unit 163 is configured to control the gain of the variable amplifier 161.
  • the signal input to the broken line gain characteristic control unit 160 is amplified by the variable amplifier 161 and output.
  • the gain control unit 163 controls the gain applied to the signal input by the variable amplifier 161 according to the output signal amplified by the variable amplifier 161.
  • the gain control unit 163 includes a threshold detection unit 165 and a polygonal line characteristic control unit 167.
  • the threshold value detection unit 165 compares the level of the output signal from the variable amplifier 161 with a preset threshold value, and when the level exceeds the threshold value, the value of the gain of the variable amplifier 161 with respect to the polygonal line characteristic control unit 167. Direct control.
  • the threshold used by the threshold detection unit 165 for the comparison is configured to be updateable based on an instruction from a predetermined control unit, for example. With such a configuration, the broken line gain characteristic control unit 160 according to the first modification can change the setting of the break point based on software control.
  • the broken line characteristic control unit 167 Upon receiving an instruction from the threshold detection unit 165, the broken line characteristic control unit 167 controls the gain of the variable amplifier 161 based on a preset control table (hereinafter also referred to as “folded line characteristic table”).
  • the broken line characteristic table is configured to be updatable based on an instruction from a predetermined control unit, for example.
  • the polygonal line gain characteristic control unit 160 according to the first modification causes the gain applied to the input signal when the level of the output signal from the variable amplifier 161 (and hence the level of the input signal) exceeds the threshold value Can be changed based on software control.
  • a plurality of threshold values used by the threshold detection unit 165 for the comparison may be set.
  • the gain setting of the variable amplifier 161 may be associated with the threshold value characteristic table for each threshold value.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of a control device according to the second modification.
  • control device 200 the control device according to Modification 2 may be referred to as “control device 200” in order to distinguish it from the control device according to the above-described embodiment (see FIG. 5).
  • control device 200 according to the modification 2 is different from the control device 100 according to the above-described embodiment in that an AGC 170 is provided instead of the broken line gain characteristic circuit 150. Therefore, in the following description, the functional configuration of the control device 200 according to the modified example 2 will be described by focusing on portions different from the control device 100 according to the above-described embodiment, and the same portions as the control device 100 will be described in detail. The detailed explanation is omitted.
  • the AGC 170 amplifies and outputs the input signal by adaptively applying a gain so that the level of the input signal is in a predetermined range. That is, the AGC 170 limits the level of the output signal by decreasing the gain when the level of the input signal increases, and increases the level of the output signal by increasing the gain when the level of the input signal decreases.
  • the level of the differential signal can be controlled in real time so that the level of the difference signal is within a predetermined range regardless of the magnitude of the force and moment applied relatively to the predetermined target such as the forceps 430. It becomes possible. That is, according to the control device 200 according to the modified example 2, the force and the moment can be detected in a more preferable manner according to the magnitude of the force and the moment applied relatively to the predetermined target. Thus, it becomes possible to adaptively control the sensitivity and resolution.
  • the AGC 170 notifies the force moment calculation unit 131 of gain information related to the gain applied to the input differential signal. With such a configuration, even if the gain applied to the differential signal by the AGC 170 changes, the force / moment calculation unit 131 actually applies force / moment applied to the force sensor 450 based on the notified gain information. Can be calculated (absolute value).
  • FIG. 11 is a functional block diagram illustrating an example of a hardware configuration of an information processing apparatus that configures an information processing system according to an embodiment of the present disclosure.
  • the information processing apparatus 900 constituting the information processing system according to the present embodiment mainly includes a CPU 901, a ROM 903, and a RAM 905.
  • the information processing apparatus 900 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, and a connection port 923. And a communication device 925.
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the information processing apparatus 900 according to various programs recorded in the ROM 903, the RAM 905, the storage apparatus 919, or the removable recording medium 927.
  • the ROM 903 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus. Note that the arithmetic unit 130 described above with reference to FIG. 3 can be realized by the CPU 901, for example.
  • the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925 are connected to the external bus 911 via an interface 913.
  • the input device 915 is an operation means operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, a lever, and a pedal. Further, the input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA corresponding to the operation of the information processing device 900. 929 may be used. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. A user of the information processing apparatus 900 can input various data and instruct a processing operation to the information processing apparatus 900 by operating the input device 915.
  • the output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as lamps, audio output devices such as speakers and headphones, printer devices, and the like.
  • the output device 917 outputs results obtained by various processes performed by the information processing apparatus 900. Specifically, the display device displays results obtained by various processes performed by the information processing device 900 as text or images.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
  • the monitor 490 described above with reference to FIG. 1 can be realized by the output device 917, for example.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 900.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores programs executed by the CPU 901 and various data.
  • the drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the information processing apparatus 900.
  • the drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905.
  • the drive 921 can also write a record to a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory that is mounted.
  • the removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like.
  • the removable recording medium 927 may be a compact flash (registered trademark) (CF: CompactFlash), a flash memory, an SD memory card (Secure Digital memory card), or the like. Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
  • CF CompactFlash
  • SD memory card Secure Digital memory card
  • the connection port 923 is a port for directly connecting to the information processing apparatus 900.
  • Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like.
  • As another example of the connection port 923 there are an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, and the like.
  • the communication device 925 is a communication interface configured with, for example, a communication device for connecting to a communication network (network) 931.
  • the communication device 925 is, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like.
  • the communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices.
  • the communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
  • each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
  • various configurations corresponding to the information processing apparatus 900 configuring the information processing system according to the present embodiment are naturally provided.
  • a computer program for realizing each function of the information processing apparatus 900 constituting the information processing system according to the present embodiment as described above can be produced and mounted on a personal computer or the like.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • the number of computers that execute the computer program is not particularly limited.
  • the computer program may be executed by a plurality of computers (for example, a plurality of servers) in cooperation with each other.
  • a single computer or a combination of a plurality of computers is also referred to as a “computer system”.
  • the control device 100 is caused by the detection result by the force sensor 450 supported by at least a part of the arm unit 420 and the dynamics of the arm unit 420. A difference signal indicating a difference between the force and the force to be calculated is calculated. In addition, the control device 100 applies a gain corresponding to the calculated difference signal to the difference signal. Such control can be realized, for example, by applying the above-described broken line gain characteristic circuit 150. Then, the control device 100 acts on a predetermined target (for example, a medical instrument such as the forceps 430) held by the arm unit 420 based on the difference signal to which the gain is applied and the gain. Calculate the force to do.
  • a predetermined target for example, a medical instrument such as the forceps 430
  • the control device 100 removes the influence of the force acting on the arm unit 420 (that is, the force due to the dynamics of the arm unit 420) from the detection result of the force sensor 450, and the predetermined force such as the forceps 430 is determined. It is possible to calculate a weak force applied relatively to the target. Therefore, when the analog signal based on the calculation result of the force applied to the target is A / D converted into a digital signal, the control device 100 applies a higher gain to the analog signal before the A / D conversion. It becomes possible.
  • an analog signal based on a calculation result of a force applied to a predetermined target can be A / D converted into a digital signal with higher resolution, and thus It becomes possible to detect the force applied to the object with higher sensitivity.
  • the force applied to the medical instrument can be detected with high sensitivity.
  • an operator user
  • it is possible to detect the force applied to the medical instrument with high sensitivity it is possible to more precisely control the operation of the arm part of the support arm device and the medical instrument held by the arm part. It becomes possible.
  • the system configuration of the information processing system 1 according to the present embodiment an example in which the information processing system 1 is configured as a bilateral system has been described with reference to FIG.
  • the system configuration of the information processing system 1 according to the present embodiment is not necessarily illustrated in FIG. It is not limited to the bilateral system as shown.
  • the information processing system 1 according to the present embodiment detects a force applied to a medical instrument held by an arm unit operated by a user, and controls the operation of the arm unit based on the detection result. It may be configured to assist.
  • the application destination of the information processing system according to the present embodiment is not necessarily limited to a medical device or system.
  • the instrument held by the arm unit 420 is not necessarily limited to the forceps 430.
  • the instrument held by the arm unit 420 may be, for example, a medical observation apparatus such as a medical microscope or an endoscope, or may be another instrument or apparatus that is not limited to medical use. .
  • the force sensor 450 when the force sensor 450 is supported on at least a part of a link structure formed by connecting a plurality of rigid bodies, like the arm portion 420 of the support arm device 400 shown in FIG. An example has been described.
  • a force that acts relative to at least a part of a series of structures on which the force sensor 450 is supported using the detection result of the force sensor 450 If it is possible to calculate, the configuration of the series of structures is not particularly limited.
  • a force sensor 450 is provided for a member that holds the probe.
  • the force applied relatively to the probe may be calculated based on the difference between the detection result of the force sensor 450 and the gravity or inertial force acting on the member holding the probe.
  • An information processing apparatus comprising: (2) The second force is a force acting on the support member based on at least one of an inertial force acting on the support member and gravity acting on the support member (1 ).
  • the inertial force is at least one of a first inertial force acting on the support member as the support member translates and a second inertial force acting on the support member as the support member rotates.
  • the information processing apparatus according to (2) including any one of them.
  • Information processing device (5) The information processing apparatus according to any one of (1) to (4), wherein the support member is at least a part of a link structure configured by connecting a plurality of rigid bodies.
  • the support member holds a medical device at least in part,
  • the computing unit calculates the third force acting relatively to the medical device;
  • the information processing apparatus according to any one of (1) to (9).
  • (11) The information processing apparatus according to (10), wherein the medical device is forceps.
  • (12) The information processing apparatus according to (10), wherein the medical device is a medical observation apparatus.
  • (13) The information processing apparatus according to any one of (1) to (12), wherein the calculation unit outputs information based on the third force to an external device via a network.
  • a conversion unit that converts an analog signal to which the gain is applied to the difference into a digital signal;
  • the calculation unit calculates the third force based on the digital signal and the gain.
  • the information processing apparatus according to any one of (1) to (13).
  • a support arm device comprising an arm portion having a support member for supporting a force sensor, comprising a link structure configured by connecting a plurality of rigid bodies;
  • An application unit that applies a gain according to the difference between the first force detected by the force sensor and the second force acting on the support member to the difference;
  • An arithmetic unit that calculates a third force that acts relative to at least a part of the arm unit based on the difference and the gain applied to the difference;

Abstract

The present invention relates to an information processing device, an information processing method, and an information processing system, whereby a force acting on a predetermined object is detected with higher sensitivity. The present invention is provided with: an application unit for applying a gain corresponding to the difference (DC + AC) between a first force (DC' + DC + AC) detected by a force sensor supported by a support member and a second force (DC') acting on the support member, to the difference; and computation unit for calculating a third force acting in relative fashion on at least a portion of a series of structures including the support member, on the basis of the difference and the gain applied to the difference.

Description

情報処理装置、情報処理方法、及び情報処理システムInformation processing apparatus, information processing method, and information processing system
 本開示は、情報処理装置、情報処理方法、及び情報処理システムに関する。 The present disclosure relates to an information processing apparatus, an information processing method, and an information processing system.
 近年、支持アーム装置のアーム部によって鉗子等の医療用器具を支持し、当該アーム部及び当該医療用器具を術者が操作しながら手術を行う手術システムが開発されている。このような手術システムでは、術者の操作性を向上させるため、また、手術の安全性向上のために、医療用器具の先端が患者の体組織等に接触する際に生じる力及びモーメント(以下、接触力とも称する)を術者に高精度にフィードバック可能な技術が求められている。 Recently, a surgical system has been developed in which a medical instrument such as forceps is supported by an arm portion of a support arm device, and an operation is performed while an operator operates the arm portion and the medical instrument. In such a surgical system, in order to improve the operability of the operator and to improve the safety of the surgery, the force and moment (hereinafter referred to as the force and moment) generated when the tip of the medical instrument comes into contact with the patient's body tissue or the like. , Which is also referred to as contact force) is required to provide a technique capable of highly accurate feedback to the surgeon.
 このような状況から、医療用器具の先端に作用する力を検出するための技術が多数検討されている。例えば、関連する技術の一例として、特許文献1には、複数の計測点それぞれに対して触覚センサを配置することで、各計測点における触覚情報を計測する技術の一例が開示されている。 In this situation, many techniques for detecting the force acting on the tip of a medical instrument have been studied. For example, as an example of a related technique, Patent Literature 1 discloses an example of a technique for measuring tactile information at each measurement point by arranging a tactile sensor for each of a plurality of measurement points.
特許第4471613号公報Japanese Patent No. 4471613
 一方で、所謂マイクロサージャリーのような微細な作業が要求される場合には、所定の対象(例えば、医療用器具)に対して加わる力を、より高い感度で検出する技術が求められる場合がある。これに対して、支持アーム装置のアーム部に支持された対象に作用する力を検出するような状況下では、アーム部に設けられた力センサの検出結果に対して、当該アーム部自体に作用する力(例えば、重力や慣性力等)の影響が顕在化し、当該対象に加わる力を高感度で検出することが困難となる場合がある。 On the other hand, when a fine work such as so-called microsurgery is required, a technique for detecting a force applied to a predetermined target (for example, a medical instrument) with higher sensitivity may be required. . On the other hand, in the situation where the force acting on the object supported by the arm portion of the support arm device is detected, the detection result of the force sensor provided on the arm portion acts on the arm portion itself. The influence of the force (for example, gravity, inertial force, etc.) to be revealed becomes apparent, and it may be difficult to detect the force applied to the target with high sensitivity.
 そこで、本開示では、所定の対象に対して作用する力をより高い感度で検出することが可能な、情報処理装置、情報処理方法、及び情報処理システムを提案する。 Therefore, the present disclosure proposes an information processing apparatus, an information processing method, and an information processing system capable of detecting a force acting on a predetermined target with higher sensitivity.
 本開示によれば、支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、を備える、情報処理装置が提供される。 According to the present disclosure, the gain corresponding to the difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member is set as the difference. A first portion that operates relative to at least a part of a series of structures including the support member based on the application unit applied to the difference, the difference, and the gain applied to the difference. And an arithmetic unit that calculates the force of 3 is provided.
 また、本開示によれば、コンピュータが、支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用することと、前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出することと、を含む、情報処理方法が提供される。 Further, according to the present disclosure, the computer responds to a difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member. Relative to at least a portion of a series of structures including the support member, based on applying a gain to the difference, the difference, and the gain applied to the difference. And calculating a third force acting on the information processing method.
 また、本開示によれば、複数の剛体が連なって構成されたリンク構造を成し、力センサを支持する支持部材を有するアーム部を備えた支持アーム装置と、前記力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記アーム部の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、を備える、情報処理システムが提供される。 In addition, according to the present disclosure, a support arm device having an arm portion having a support member that supports a force sensor, and a link structure configured by connecting a plurality of rigid bodies, and a first sensor detected by the force sensor. An application unit that applies a gain according to a difference between the first force and a second force acting on the support member to the difference, the difference, and an application to the difference An information processing system is provided that includes a calculation unit that calculates a third force that acts relatively on at least a portion of the arm unit based on the gain.
 以上説明したように本開示によれば、所定の対象に対して作用する力をより高い感度で検出することが可能な、情報処理装置、情報処理方法、及び情報処理システムが提供される。 As described above, according to the present disclosure, an information processing apparatus, an information processing method, and an information processing system capable of detecting a force acting on a predetermined target with higher sensitivity are provided.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る情報処理システムの概略的なシステム構成の一例を示した図である。It is a figure showing an example of a schematic system configuration of an information processing system concerning one embodiment of this indication. 同実施形態に係る支持アーム装置の一構成例を示す図である。It is a figure showing an example of 1 composition of a support arm device concerning the embodiment. アーム部に支持された力センサによる検出結果の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the detection result by the force sensor supported by the arm part. 同実施形態に係る情報処理システムの動作原理について説明するための説明図である。It is explanatory drawing for demonstrating the operation principle of the information processing system which concerns on the embodiment. 同実施形態に係る制御装置100の機能構成の一例を示したブロック図である。It is the block diagram which showed an example of the function structure of the control apparatus 100 which concerns on the same embodiment. 折線ゲイン特性回路の回路構成の一例を示した図である。It is the figure which showed an example of the circuit structure of a broken line gain characteristic circuit. 折線ゲイン特性の一例を示した図である。It is the figure which showed an example of the broken line gain characteristic. 実施形態に係る制御装置の一連の処理の流れの一例を示したフローチャートであるIt is the flowchart which showed an example of the flow of a series of processes of the control apparatus which concerns on embodiment. 変形例1に係る制御装置の構成の一例について説明するための説明図である。10 is an explanatory diagram for describing an example of a configuration of a control device according to Modification Example 1. FIG. 変形例2に係る制御装置の機能構成の一例を示したブロック図である。10 is a block diagram illustrating an example of a functional configuration of a control device according to Modification Example 2. FIG. 本開示の一実施形態に係る情報処理システムを構成する情報処理装置のハードウェア構成の一例を示す機能ブロック図である。It is a functional block diagram showing an example of hardware constitutions of an information processor which constitutes an information processing system concerning one embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.システム構成
 2.支持アーム装置の構成
 3.力の検出に関する検討
 4.技術的特徴
  4.1.動作原理
  4.2.機能構成
  4.3.折線ゲイン特性回路の構成
  4.4.処理
 5.変形例
  5.1.変形例1:折線ゲイン特性回路の変形例
  5.2.変形例2:AGCによる動的なゲイン制御
 6.ハードウェア構成
 7.むすび
The description will be made in the following order.
1. System configuration 2. Configuration of support arm device Study on force detection Technical features 4.1. Principle of operation 4.2. Functional configuration 4.3. Configuration of broken line gain characteristic circuit 4.4. Processing 5. Modification 5.1. Modified example 1: Modified example of the broken line gain characteristic circuit 5.2. Modification 2: Dynamic gain control by AGC Hardware configuration Conclusion
 <<1.システム構成>>
 まず、図1を参照して、本開示の一実施形態に係る情報処理システムの概略的なシステム構成の一例について説明する。図1は、本実施形態に係る情報処理システムの概略的なシステム構成の一例を示した図である。
<< 1. System configuration >>
First, an example of a schematic system configuration of an information processing system according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a diagram illustrating an example of a schematic system configuration of an information processing system according to the present embodiment.
 図1は、本実施形態に係る情報処理システム1が、所謂バイラテラルシステムとして構成されている場合の一例を示している。バイラテラルシステムとは、ユーザが操作する装置(マスタ装置)と、作業を行う装置(スレーブ装置)と、の間で姿勢と力の状態を略一致させるように制御するように構成されたシステムである。具体的な一例として、バイラテラルシステムは、マスタ装置に対するユーザの操作に基づきスレーブ装置の姿勢制御を行うとともに、スレーブ装置で検出された力をマスタ装置側にフィードバックする。 FIG. 1 shows an example in which the information processing system 1 according to the present embodiment is configured as a so-called bilateral system. A bilateral system is a system configured to control a device (master device) operated by a user and a device (slave device) that performs work so that the posture and the state of force are substantially matched. is there. As a specific example, the bilateral system performs posture control of the slave device based on a user operation on the master device, and feeds back the force detected by the slave device to the master device side.
 例えば、図1に示す例では、マスタ装置及びスレーブ装置として、鉗子等の医療用器具をアーム部によって支持する支持アーム装置が適用されている。即ち、情報処理システム1は、マスタ装置として動作する支持アーム装置400aと、スレーブ装置として動作する支持アーム装置400bと、当該支持アーム装置400a及び400bの動作を制御する制御装置100とを含む。なお、図1に示す例では、制御装置100は、例えば、支持アーム装置400aの内部に設けられている。また、情報処理システム1は、撮像部480と、モニタ490とを含んでもよい。なお、以降の説明において、支持アーム装置400a及び400bを特に区別しない場合には、単に「支持アーム装置400」とも称する。 For example, in the example shown in FIG. 1, a support arm device that supports a medical instrument such as forceps by an arm unit is applied as the master device and the slave device. That is, the information processing system 1 includes a support arm device 400a that operates as a master device, a support arm device 400b that operates as a slave device, and a control device 100 that controls operations of the support arm devices 400a and 400b. In the example illustrated in FIG. 1, the control device 100 is provided, for example, inside the support arm device 400a. In addition, the information processing system 1 may include an imaging unit 480 and a monitor 490. In the following description, when the support arm devices 400a and 400b are not particularly distinguished, they are also simply referred to as “support arm device 400”.
 支持アーム装置400aと支持アーム装置400bとは、所定のネットワークN1を介して互いに情報を送受信可能に構成されている。なお、支持アーム装置400aと支持アーム装置400bとを接続するネットワークN1の種別は特に限定されない。例えば、ネットワークN1は、インターネット、専用線、LAN(Local Area Network)、または、WAN(Wide Area Network)等により構成されていてもよい。また、ネットワークN1は、無線のネットワークにより構成されていてもよく、有線のネットワークにより構成されていてもよい。また、ネットワークN1は、複数のネットワークを含んでもよく、少なくとも一部が有線のネットワークとして構成されていてもよい。 The support arm device 400a and the support arm device 400b are configured to be able to transmit and receive information to and from each other via a predetermined network N1. The type of the network N1 that connects the support arm device 400a and the support arm device 400b is not particularly limited. For example, the network N1 may be configured by the Internet, a dedicated line, a LAN (Local Area Network), a WAN (Wide Area Network), or the like. The network N1 may be configured by a wireless network or a wired network. The network N1 may include a plurality of networks, and at least a part of the network N1 may be configured as a wired network.
 このような構成に基づき、本実施形態に係る情報処理システム1では、例えば、撮像部480により撮像された遠隔地に位置するUbの映像が、モニタ490を介して施術者Uaに提示される。また、情報処理システム1では、支持アーム装置400aのアーム部420aの姿勢(即ち、位置や向き)と、支持アーム装置400bのアーム部420bの姿勢とが略一致するように制御される。 Based on such a configuration, in the information processing system 1 according to the present embodiment, for example, an image of Ub located at a remote place imaged by the imaging unit 480 is presented to the practitioner Ua via the monitor 490. Further, in the information processing system 1, the posture (that is, the position and orientation) of the arm portion 420a of the support arm device 400a and the posture of the arm portion 420b of the support arm device 400b are controlled so as to substantially coincide with each other.
 具体的には、施術者Uaが支持アーム装置400aのアーム部420aにより保持された鉗子430aを操作することでアーム部420aの姿勢が変化すると、当該アーム部420aの各部の姿勢が、各間接等に設けられたエンコーダやポテンションメータ等の検出部により検出される。制御装置100は、当該検出部による検出結果に基づき、アーム部420aの姿勢を算出する。そして、制御装置100は、アーム部420aの姿勢の算出結果に基づき、支持アーム装置400bのアーム部420bの動作を制御する。具体的には、制御装置100は、アーム部420bの各間接等に設けられたアクチュエータを駆動させることで、例えば、アーム部420bの姿勢がアーム部420の姿勢と略一致するように制御する。 Specifically, when the practitioner Ua operates the forceps 430a held by the arm portion 420a of the support arm device 400a to change the posture of the arm portion 420a, the posture of each portion of the arm portion 420a becomes indirect, etc. It is detected by a detection unit such as an encoder or a potentiometer provided in. The control device 100 calculates the posture of the arm unit 420a based on the detection result by the detection unit. And the control apparatus 100 controls operation | movement of the arm part 420b of the support arm apparatus 400b based on the calculation result of the attitude | position of the arm part 420a. Specifically, the control device 100 controls the posture of the arm unit 420b so that it substantially matches the posture of the arm unit 420 by driving an actuator provided in each of the arm units 420b indirectly or the like.
 また、支持アーム装置400bのアーム部420bの少なくとも一部には力センサ(図示を省略する)が設けられており、当該力センサにより、当該アーム部420bに保持された鉗子430bに加わる接触力が検出される。なお、本開示における力センサとしては、例えば、1軸または多軸(より具体的には、1~6軸)の力/モーメントセンサを適用し得る。そのため、単に「力センサ」と記載した場合においても、1軸または多軸の力/モーメントセンサを含み得るものとする。また、力センサによる検出結果は、支持アーム装置400bからネットワークN1を介して支持アーム装置400a側に設けられた制御装置100にフィードバックされる。制御装置100は、支持アーム装置400bからフィードバックされる情報に基づき、例えば、アーム部420aの各部に設けられたアクチュエータを駆動することで、鉗子430aを把持する施術者Uaに対して、当該鉗子430aを介して力覚(即ち、上記力センサにより検出された接触力)をフィードバックする。 Further, a force sensor (not shown) is provided on at least a part of the arm portion 420b of the support arm device 400b, and a contact force applied to the forceps 430b held by the arm portion 420b by the force sensor. Detected. As a force sensor in the present disclosure, for example, a uniaxial or multiaxial (more specifically, 1 to 6 axis) force / moment sensor can be applied. Therefore, even when simply described as “force sensor”, it may include a uniaxial or multiaxial force / moment sensor. The detection result by the force sensor is fed back from the support arm device 400b to the control device 100 provided on the support arm device 400a side via the network N1. Based on the information fed back from the support arm device 400b, the control device 100 drives the actuator Ua that holds the forceps 430a, for example, by driving an actuator provided in each part of the arm portion 420a. The force sensation (that is, the contact force detected by the force sensor) is fed back.
 以上のような構成により、例えば、施術者Uaは、モニタ490を介して施術対象540の状況を確認しながら、アーム部420bに保持された鉗子430bを遠隔操作することで、施術対象Ubに対して施術を施すことが可能となる。また、このとき施術者Uaは、支持アーム装置400aからフィードバックされる力覚により、施術対象Ubに対して直接施術を施している場合と同様の感覚で、鉗子430bの遠隔操作により当該施術対象Ubに対して施術を施すことが可能となる。 With the above configuration, for example, the practitioner Ua confirms the state of the treatment target 540 via the monitor 490, and remotely operates the forceps 430b held by the arm portion 420b, thereby performing the operation on the treatment target Ub. It is possible to perform treatment. At this time, the practitioner Ua uses the force sense fed back from the support arm device 400a to sense the treatment target Ub by remote operation of the forceps 430b with the same feeling as when performing the treatment directly on the treatment target Ub. It becomes possible to perform a treatment on.
 また、バイラテラルシステムにおいては、マスタ装置とスレーブ装置との間で、姿勢と力の状態のスケーリングが行われてもよい。具体的な一例として、アーム部420aの姿勢の変化の検出結果が、1/10にスケーリングされたうえで、スケーリング後の当該検出結果に基づき、アーム部420bの姿勢が制御されてもよい。また、アーム部420bに設けられた力センサにより検出された鉗子430bに加わる接触力が、10倍にスケーリングされたうえで、スケーリング後の当該検出結果に基づき、施術者Uaに対して鉗子430aを介して力覚がフィードバックされてもよい。このような構成により、施術者Uaの手技が1/10にスケーリングされて鉗子430bが操作されるとともに、鉗子430bに加わった微細な力が10倍にスケーリングされて当該施術者Uaにフィードバックされる。そのため、例えば、施術者Uaは、より微細な部位に対する施術をより精度良く実施することが可能となる。 Also, in the bilateral system, the posture and force state may be scaled between the master device and the slave device. As a specific example, the detection result of the change in the posture of the arm unit 420a may be scaled to 1/10, and the posture of the arm unit 420b may be controlled based on the detection result after scaling. Further, after the contact force applied to the forceps 430b detected by the force sensor provided on the arm part 420b is scaled 10 times, the forceps 430a is attached to the practitioner Ua based on the detection result after scaling. The sense of force may be fed back through. With such a configuration, the procedure of the practitioner Ua is scaled to 1/10 and the forceps 430b is operated, and the fine force applied to the forceps 430b is scaled 10 times and fed back to the practitioner Ua. . Therefore, for example, the practitioner Ua can perform a treatment on a finer part with higher accuracy.
 なお、図1を参照して説明した例はあくまで一例であり、本実施形態に係る情報処理システム1のシステム構成は、必ずしも図1に示す例には限定されない。具体的な一例として、制御装置100が支持アーム装置400a及び400bの動作を制御することが可能であれば、当該制御装置100が設けられる位置は限定されない。例えば、制御装置100は、支持アーム装置400aとは異なる外部装置として設けられていてもよい。また、他の一例として、制御装置100は、支持アーム装置400b側に設けられていてもよく、当該支持アーム装置400bに内蔵されていてもよい。また、他の一例として、制御装置100は、例えばサーバ等の情報処理装置として構成され、支持アーム装置400a及び400bのそれぞれとネットワークN1を介して接続されていてもよい。また、支持アーム装置400a及び400bのそれぞれに対して制御装置100が個別に設けられていてもよい。この場合は、例えば、支持アーム装置400a及び400bそれぞれに設けられた制御装置100が互いに連動して動作すればよい。なお、支持アーム装置400a及び400bの動作を制御する制御装置100が、「情報処理装置」の一例に相当する。 The example described with reference to FIG. 1 is merely an example, and the system configuration of the information processing system 1 according to the present embodiment is not necessarily limited to the example illustrated in FIG. As a specific example, the position where the control device 100 is provided is not limited as long as the control device 100 can control the operations of the support arm devices 400a and 400b. For example, the control device 100 may be provided as an external device different from the support arm device 400a. As another example, the control device 100 may be provided on the support arm device 400b side, or may be incorporated in the support arm device 400b. As another example, the control device 100 may be configured as an information processing device such as a server, for example, and may be connected to each of the support arm devices 400a and 400b via the network N1. Further, the control device 100 may be individually provided for each of the support arm devices 400a and 400b. In this case, for example, the control devices 100 provided in the support arm devices 400a and 400b may operate in conjunction with each other. The control device 100 that controls the operation of the support arm devices 400a and 400b corresponds to an example of an “information processing device”.
 以上、図1を参照して、本開示の一実施形態に係る情報処理システムの概略的なシステム構成の一例について説明した。 Heretofore, an example of a schematic system configuration of the information processing system according to an embodiment of the present disclosure has been described with reference to FIG.
 <<2.支持アーム装置の構成>>
 続いて、図2を参照して、本開示の一実施形態に係る支持アーム装置の構成の一例について説明する。図2は、本実施形態に係る支持アーム装置の一構成例を示す図である。
<< 2. Configuration of support arm device >>
Next, an example of the configuration of the support arm device according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration example of the support arm device according to the present embodiment.
 図2を参照すると、支持アーム装置400は、ベース部410と、アーム部420と、制御装置100と、を備える。支持アーム装置400は、手術時に鉗子等の医療用器具を支持する医療用支持アーム装置である。 Referring to FIG. 2, the support arm device 400 includes a base portion 410, an arm portion 420, and the control device 100. The support arm device 400 is a medical support arm device that supports medical instruments such as forceps during surgery.
 ベース部410は支持アーム装置400の基台であり、ベース部410からアーム部420が延伸される。ベース部410にはキャスターが設けられており、支持アーム装置400は、当該キャスターを介して床面と接地し、当該キャスターによって床面上を移動可能に構成されている。ただし、本実施形態に係る支持アーム装置400の構成はかかる例に限定されず、例えば、ベース部410が設けられず、手術室の天井又は壁面にアーム部420が直接取り付けられて支持アーム装置400が構成されてもよい。例えば、天井にアーム部420が取り付けられる場合には、支持アーム装置400は、アーム部420が天井から吊り下げられて構成されることとなる。 The base portion 410 is a base of the support arm device 400, and the arm portion 420 is extended from the base portion 410. The base portion 410 is provided with casters, and the support arm device 400 is configured to be in contact with the floor surface via the casters and movable on the floor surface by the casters. However, the configuration of the support arm device 400 according to the present embodiment is not limited to such an example. For example, the base unit 410 is not provided, and the arm unit 420 is directly attached to the ceiling or wall surface of the operating room. May be configured. For example, when the arm unit 420 is attached to the ceiling, the support arm device 400 is configured with the arm unit 420 suspended from the ceiling.
 ベース部410の内部には、支持アーム装置400の制御に係る各種の情報処理を実行する制御装置100が設けられる。制御装置100は、例えばCPU(Central Processing Unit)やDSP(Digital Signal Processor)等のプロセッサであり得る。あるいは、制御装置100は、これらのプロセッサ及びメモリ等の記憶素子が搭載された制御基板やマイコンであり得る。制御装置100を構成するプロセッサが所定のプログラムに従って各種の信号処理を実行することにより、支持アーム装置400における各種の動作が実行される。具体的には、制御装置100からの制御により、アーム部420及び鉗子430が駆動される。 Inside the base unit 410, a control device 100 that performs various types of information processing related to the control of the support arm device 400 is provided. The control device 100 may be a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). Alternatively, the control device 100 may be a control board or a microcomputer on which these processors and storage elements such as a memory are mounted. Various operations in the support arm device 400 are executed by the processor constituting the control device 100 executing various signal processing according to a predetermined program. Specifically, the arm unit 420 and the forceps 430 are driven by the control from the control device 100.
 アーム部420は、複数の関節部421a、421b、421c、421d、421e、421fと、関節部421a~421eによって互いに回動可能に連結される複数のリンク422a、422b、422c、422dと、アーム部420の先端に関節部421fを介して回動可能に設けられる鉗子430と、を有する。 The arm portion 420 includes a plurality of joint portions 421a, 421b, 421c, 421d, 421e, and 421f, a plurality of links 422a, 422b, 422c, and 422d that are rotatably connected to each other by the joint portions 421a to 421e. And a forceps 430 provided at the tip of 420 so as to be rotatable via a joint portion 421f.
 リンク422a~422dは棒状の部材であり、リンク422aの一端が関節部421aを介してベース部410と連結され、リンク422aの他端が関節部421bを介してリンク422bの一端と連結され、更に、リンク422bの他端が関節部421c、421dを介してリンク422cの一端と連結される。更に、リンク422cの他端が、関節部421eを介して略L字状のリンク422dの一端と連結され、リンク422dの他端と鉗子430とが、関節部421fを介して連結される。このように、ベース部410を支点として、複数のリンク422a~422dの端同士が、関節部421a~421fによって互いに連結されることにより、ベース部410から延伸されるアーム形状が構成される。 The links 422a to 422d are rod-shaped members, one end of the link 422a is connected to the base portion 410 via the joint portion 421a, the other end of the link 422a is connected to one end of the link 422b via the joint portion 421b, The other end of the link 422b is connected to one end of the link 422c via the joint portions 421c and 421d. Furthermore, the other end of the link 422c is connected to one end of a substantially L-shaped link 422d via a joint portion 421e, and the other end of the link 422d and the forceps 430 are connected via a joint portion 421f. Thus, the ends of the plurality of links 422a to 422d are connected to each other by the joint portions 421a to 421f with the base portion 410 as a fulcrum, thereby forming an arm shape extending from the base portion 410.
 関節部421a~421fには、アクチュエータが設けられており、関節部421a~421fは、当該アクチュエータにより所定の回転軸に対して回転可能に構成されている。当該アクチュエータは、モータ、エンコーダ及びトルクセンサ等によって構成され得る。各関節部421a~421fのアクチュエータのモータの駆動が、制御装置100によってそれぞれ制御されることにより、例えばアーム部420を伸ばしたり、縮めたり(折り畳んだり)といった、アーム部420の駆動が制御される。なお、本実施形態では、アーム部420の制御方式としては各種の公知の制御方式が用いられてよいため、ここではその詳細な説明は省略する。 The joint portions 421a to 421f are provided with actuators, and the joint portions 421a to 421f are configured to be rotatable about a predetermined rotation axis by the actuators. The actuator can be constituted by a motor, an encoder, a torque sensor, and the like. Driving of the motors of the actuators of the joint portions 421a to 421f is controlled by the control device 100, so that the driving of the arm portion 420, for example, extending or contracting (folding) the arm portion 420 is controlled. . In the present embodiment, various known control methods may be used as the control method of the arm unit 420, and a detailed description thereof will be omitted here.
 アーム部420を動作させる際には、術者は、支持アーム装置400から離れた位置に設けられる入力装置(図示せず)を介して、支持アーム装置400に対してアーム部420の動作に関する指示を与えてもよい。なお、当該入力装置の一例としては、例えば、図1に示したマスタ装置側の支持アーム装置400aが挙げられる。具体的には、入力装置を介して入力された指示を示す信号は、制御装置100に送信される。制御装置100は、各関節部421a~421fのアクチュエータのエンコーダ及びトルクセンサによって検出された各関節部421a~421fの状態に基づいて、当該指示に応じた各関節部421a~421fのアクチュエータのモータの制御量を算出する。算出された当該制御量に応じて各アクチュエータのモータが駆動されることにより、術者の指示に従ってアーム部420が動作することとなる。なお、入力装置と制御装置100との間の通信は、有線又は無線の各種の公知の方法によって行われてよい。 When operating the arm unit 420, the surgeon instructs the support arm device 400 about the operation of the arm unit 420 via an input device (not shown) provided at a position away from the support arm device 400. May be given. An example of the input device is the support arm device 400a on the master device side shown in FIG. Specifically, a signal indicating an instruction input via the input device is transmitted to the control device 100. Based on the states of the joints 421a to 421f detected by the encoders and torque sensors of the actuators of the joints 421a to 421f, the control apparatus 100 determines the motors of the actuators of the actuators of the joints 421a to 421f according to the instructions. A control amount is calculated. By driving the motor of each actuator in accordance with the calculated control amount, the arm unit 420 operates in accordance with the operator's instruction. Note that the communication between the input device and the control device 100 may be performed by various known methods, wired or wireless.
 なお、図示する例では、支持アーム装置400は、6つの関節部421a~421fを有し、アーム部420の駆動に関して6自由度が実現されている。アーム部420が6自由度を有するように構成されることにより、アーム部420の可動範囲内において鉗子430を自由に移動させることができる。これにより、鉗子430を、様々な角度から患者に対して挿入することが可能になり、鉗子430を操作する際の自由度が向上する。 In the example shown in the figure, the support arm device 400 has six joint portions 421a to 421f, and six degrees of freedom for driving the arm portion 420 is realized. By configuring the arm portion 420 to have six degrees of freedom, the forceps 430 can be freely moved within the movable range of the arm portion 420. Accordingly, the forceps 430 can be inserted into the patient from various angles, and the degree of freedom when operating the forceps 430 is improved.
 ただし、アーム部420の構成は図示する例に限定されず、関節部421a~421f及びリンク422a~422dの数や配置、関節部421a~421fの駆動軸の方向等は、アーム部420が所望の自由度を有するように適宜設定されてよい。ただし、鉗子430の位置及び姿勢の自由度を考慮して、アーム部420は、好適に、6自由度以上の自由度を有するように構成され得る。 However, the configuration of the arm part 420 is not limited to the example shown in the figure, and the number and arrangement of the joint parts 421a to 421f and the links 422a to 422d, the direction of the drive shaft of the joint parts 421a to 421f, etc. It may be set as appropriate to have a degree of freedom. However, in consideration of the degree of freedom of the position and posture of the forceps 430, the arm unit 420 can be preferably configured to have a degree of freedom of 6 degrees or more.
 鉗子430は、基端に設けられる駆動部431と、駆動部431から延伸する長尺な管状部433と、からなる。管状部433の先端にはエンドエフェクタが設けられており、手術時には、当該先端を含む所定の長さの領域が、患者の体腔内に挿入される。エンドエフェクタは開閉可能な一対のブレードからなり、当該ブレードによって、患者の生体組織の把持や切断、又は生体組織の縫合時における針等の医療デバイスの把持等を行うことができる。手術を行う際には、鉗子430が患者の生体組織に対して所望の位置及び姿勢を取り得るように、制御装置100によってアーム部420及び鉗子430の位置及び姿勢が制御される。 The forceps 430 includes a drive unit 431 provided at the proximal end and a long tubular portion 433 extending from the drive unit 431. An end effector is provided at the distal end of the tubular portion 433, and a region having a predetermined length including the distal end is inserted into the body cavity of the patient during surgery. The end effector includes a pair of openable and closable blades. The blades can grasp and cut a living tissue of a patient or grasp a medical device such as a needle at the time of suturing the living tissue. When performing the operation, the position and posture of the arm unit 420 and the forceps 430 are controlled by the control device 100 so that the forceps 430 can take a desired position and posture with respect to the living tissue of the patient.
 駆動部431は、例えばモータや当該モータを駆動するためのドライバIC(Integrated Circuit)等からなり、管状部433を駆動させる。例えば、駆動部431によって管状部433のエンドエフェクタの開閉動作が行われる。また、管状部433が関節部(屈曲部)を有する場合であれば、駆動部431によって当該屈曲部における屈曲動作が行われてもよい。 The driving unit 431 includes, for example, a motor and a driver IC (Integrated Circuit) for driving the motor, and drives the tubular unit 433. For example, the opening / closing operation of the end effector of the tubular portion 433 is performed by the drive portion 431. Further, if the tubular portion 433 has a joint portion (bending portion), the driving portion 431 may perform a bending operation at the bending portion.
 なお、駆動部431は非清潔領域に属し、管状部433は清潔領域に属する。管状部433のみを容易に洗浄、滅菌できるように、鉗子430は、駆動部431と管状部433とが脱着可能に構成され得る。 In addition, the drive part 431 belongs to a non-clean area | region, and the tubular part 433 belongs to a clean area | region. The forceps 430 can be configured such that the drive portion 431 and the tubular portion 433 are detachable so that only the tubular portion 433 can be easily cleaned and sterilized.
 鉗子430は、術者によって遠隔操作可能な、いわゆるロボット鉗子である。鉗子430を動作させる際には、術者は、例えば上述したアーム部420を遠隔操作するための入力装置を介して、支持アーム装置400の制御装置100に対して鉗子430の動作に関する指示を入力する。当該指示に基づいて、管状部433を動作させるための駆動部431のモータの制御量が制御装置100によって算出され、算出された当該制御量に応じて当該モータが駆動されることにより、術者の指示に従って鉗子430が動作することとなる。 The forceps 430 is a so-called robot forceps that can be remotely operated by an operator. When operating the forceps 430, the operator inputs an instruction regarding the operation of the forceps 430 to the control device 100 of the support arm device 400, for example, via the input device for remotely operating the arm unit 420 described above. To do. Based on the instruction, the control amount of the motor of the drive unit 431 for operating the tubular portion 433 is calculated by the control device 100, and the motor is driven in accordance with the calculated control amount, so that the operator The forceps 430 operates according to the instruction.
 なお、図2では、簡単のため、管状部433の具体的な形状の図示を省略し、簡易的に棒状の部材として図示している。 In FIG. 2, for the sake of simplicity, the specific shape of the tubular portion 433 is not shown and is simply illustrated as a rod-shaped member.
 管状部433のエンドエフェクタの基端部分には、当該エンドエフェクタに作用する力を検出するための力センサ450が設けられる。なお、アーム部420を構成する各部のうち、力センサ450が設けられた部材(即ち、力センサ450を支持する部材)が、「支持部材」の一例に相当する。また、支持アーム装置400には、当該力センサ450の検出値に基づいて、エンドエフェクタに作用した力を術者に対してフィードバックする機能が備えられている。 A force sensor 450 for detecting a force acting on the end effector is provided at the proximal end portion of the end effector of the tubular portion 433. In addition, among each part which comprises the arm part 420, the member in which the force sensor 450 was provided (namely, member which supports the force sensor 450) is equivalent to an example of a "support member." In addition, the support arm device 400 has a function of feeding back the force acting on the end effector to the operator based on the detection value of the force sensor 450.
 例えば、アーム部420及び鉗子430を操作するための入力装置に、エンドエフェクタに作用する力を術者に対して提示する機能が設けられ得る。例えば、当該入力装置には、エンドエフェクタに作用する力に応じて、術者による操作に対して抵抗を与えるように当該入力装置を構成するレバー等を駆動させる機構が設けられ得る。 For example, an input device for operating the arm unit 420 and the forceps 430 may be provided with a function of presenting a force acting on the end effector to the operator. For example, the input device may be provided with a mechanism for driving a lever or the like constituting the input device so as to give resistance to an operation by the surgeon according to a force acting on the end effector.
 エンドエフェクタに作用する力は、すなわち、エンドエフェクタが患者の生体組織と接触することにより当該生体組織から受ける反力であり得るため、エンドエフェクタに作用する力が術者に対してフィードバックされることにより、術者は、直接自身の手で鉗子を持って手術を行っているかのような感覚を得ることができ、操作性が向上する。また、過度な力が生体組織に対して与えられることを防止することができるため、より安全な手術が実現され得る。 Since the force acting on the end effector can be a reaction force received from the living tissue when the end effector comes into contact with the patient's living tissue, the force acting on the end effector is fed back to the operator. Thus, the surgeon can obtain a feeling as if he / she is directly holding the forceps with his / her hand, and the operability is improved. In addition, since an excessive force can be prevented from being applied to the living tissue, a safer operation can be realized.
 なお、力センサ450によって検出された力を術者に対してフィードバックするための具体的な構成としては、各種の公知の構成が適用されてよい。また、力を術者に対してフィードバックするための方法は上記の例に限定されず、各種の方法が用いられてよい。例えば、入力装置において術者が把持しているレバー等が振動することにより、力が術者に対してフィードバックされてもよい。また、例えば、術者が操作の際に視認する表示装置を介して、例えば所定の値以上の力が検出された場合等に、視覚的にそのことが術者に対して警告されてもよい。あるいは、入力装置にスピーカ等の音声出力装置が搭載されている場合であれば、当該警告は聴覚的に行われてもよい。 It should be noted that various known configurations may be applied as a specific configuration for feeding back the force detected by the force sensor 450 to the operator. Further, the method for feeding back the force to the operator is not limited to the above example, and various methods may be used. For example, the force may be fed back to the surgeon by vibrating a lever or the like held by the surgeon in the input device. Further, for example, when a force of a predetermined value or more is detected, for example, via a display device visually recognized by the surgeon during operation, this may be visually warned to the surgeon. . Alternatively, if a sound output device such as a speaker is mounted on the input device, the warning may be made audibly.
 また、アーム部420の制御方式が力制御である場合には、力センサ450によって検出されたエンドエフェクタに作用する力が、当該アーム部420の制御に用いられてもよい。例えば、アーム部420を移動させている間に所定の値以上の力が検出された場合には、アーム部420がそれ以上その方向に移動しないように、当該アーム部420の駆動が制御されてもよい。これにより、生体組織に対して過度な力が与えられることをより確実に防止することが可能になる。 Further, when the control method of the arm unit 420 is force control, the force acting on the end effector detected by the force sensor 450 may be used for controlling the arm unit 420. For example, when a force of a predetermined value or more is detected while the arm unit 420 is moved, the driving of the arm unit 420 is controlled so that the arm unit 420 does not move further in that direction. Also good. Thereby, it is possible to more reliably prevent an excessive force from being applied to the living tissue.
 以上、図2を参照して、本実施形態に係る支持アーム装置400の構成について説明した。 The configuration of the support arm device 400 according to the present embodiment has been described above with reference to FIG.
 <<3.力の検出に関する検討>>
 続いて、支持アーム装置のアーム部の一部に対して力センサが設けられている場合における、当該力センサによる力の検出結果への影響について検討したうえで、本実施形態に係る情報処理システム1の技術的課題について整理する。
<< 3. Study on force detection >>
Subsequently, in the case where a force sensor is provided for a part of the arm portion of the support arm device, the influence on the detection result of the force by the force sensor is examined, and then the information processing system according to the present embodiment Organize technical issues 1
 所謂マイクロサージャリーのような微細な作業が要求される場合には、医療用器具等のような所定の対象に対して加わる力を、より高い感度で検出する技術が求められる場合がある。これに対して、例えば、アーム部に支持された対象(例えば、鉗子等の医療用器具)に作用する力を検出するような状況下では、アーム部に設けられた力センサにより、当該対象に対して相対的に作用する力に加えて、当該アーム部に作用する重力や慣性力等の力が検出される場合がある。 When fine work such as so-called microsurgery is required, a technique for detecting a force applied to a predetermined target such as a medical instrument with higher sensitivity may be required. On the other hand, for example, in a situation where a force acting on a target (for example, a medical instrument such as a forceps) supported by the arm portion is detected, the force sensor provided in the arm portion is used to detect the force. On the other hand, in addition to the force acting relatively, a force such as gravity or inertia force acting on the arm portion may be detected.
 例えば、図3は、アーム部に支持された力センサによる検出結果の一例について説明するための説明図である。なお、本説明では、アーム部に支持された鉗子に作用する力を検出するものとする。また、本説明では、説明を簡略するために、例えば、アーム部が静止している場合等のように、当該アーム部に対して慣性力が作用していないものとする。 For example, FIG. 3 is an explanatory diagram for explaining an example of the detection result by the force sensor supported by the arm portion. In this description, it is assumed that the force acting on the forceps supported by the arm portion is detected. Further, in this description, in order to simplify the description, it is assumed that an inertial force does not act on the arm portion, for example, when the arm portion is stationary.
 図3において、参照符号DCは、アーム部に支持された鉗子に働く外力等のように、当該鉗子に対して作用する力のDC成分を示している。また、参照符号ACは、鉗子が施術対象に接触することで当該鉗子に対して作用する力(所謂、触覚として検知される力)に相当し、当該鉗子に作用する力のAC成分を示している。また、参照符号DC’は、アーム部に作用する力に伴い、力センサにより検出される力の成分を示している。ここで、アーム部が静止している場合には、DC’は、当該アーム部の自重に基づく成分を示していることとなる。なお、アーム部が動いている場合には、DC’として、当該アーム部に作用する慣性力も検出されることとなる。このように、力センサによる検出結果には、鉗子に作用するDC成分及びAC成分に加えて、アーム部に作用するDC’成分が含まれることとなる。 In FIG. 3, reference symbol DC indicates a DC component of a force acting on the forceps such as an external force acting on the forceps supported by the arm portion. Reference sign AC corresponds to a force acting on the forceps when the forceps contacts the treatment target (so-called tactile force detected), and indicates an AC component of the force acting on the forceps. Yes. Reference sign DC ′ indicates a force component detected by the force sensor in accordance with the force acting on the arm portion. Here, when the arm portion is stationary, DC ′ indicates a component based on the weight of the arm portion. When the arm portion is moving, the inertial force acting on the arm portion is also detected as DC ′. Thus, the detection result by the force sensor includes the DC ′ component acting on the arm portion in addition to the DC component and AC component acting on the forceps.
 一方で、鉗子に作用する微細な力を検出するような状況下では、AC成分やDC成分に比べて、DC’成分は極めて大きくなる傾向にある。即ち、図3に示すように、力センサによる検出結果に基づくアナログ信号をデジタル信号にA/D変換する際に、A/D変換部のダイナミックレンジにあわせて当該検出結果に対してゲインを適用するような場合においては、DC’成分の影響がより支配的となる。そのため、図3に示すような状況下では、力センサの検出結果に対してより高いゲインを適用することが困難となり、結果として、DC’成分に比べて微細なDC成分及びAC成分を、高感度かつ高分解能で検出することが困難となる。 On the other hand, the DC ′ component tends to be extremely large as compared with the AC component and the DC component under a situation where a fine force acting on the forceps is detected. That is, as shown in FIG. 3, when an analog signal based on a detection result by a force sensor is A / D converted into a digital signal, a gain is applied to the detection result in accordance with the dynamic range of the A / D converter. In such a case, the influence of the DC ′ component becomes more dominant. Therefore, under the situation shown in FIG. 3, it is difficult to apply a higher gain to the detection result of the force sensor, and as a result, a fine DC component and an AC component are higher than the DC ′ component. It becomes difficult to detect with high sensitivity and high resolution.
 このような課題に対するアプローチとして、回路の不平衡成分をキャンセルすることで、力センサの感度を調整する技術の適用が考えられる。このような技術の一例としては、例えば、歪ゲージ式のストレインアンプの場合には、機械式オートバランス方式、記憶演算方式(コアメモリ方式)、CTS(Capacitance Self Tracing)方式等に基づく技術が挙げられる。 As an approach to such a problem, it is possible to apply a technique for adjusting the sensitivity of the force sensor by canceling the unbalanced component of the circuit. As an example of such a technique, for example, in the case of a strain gauge type strain amplifier, a technique based on a mechanical auto balance method, a memory operation method (core memory method), a CTS (Capacitance Self Tracing) method, etc. is mentioned. It is done.
 しかしながら、本開示の一実施形態に係る支持アーム装置のように、アーム部の姿勢がリアルタイムで変化し得るような状況下では、アーム部の姿勢の変化に伴い当該アーム部に作用する力(例えば、重力や慣性力等)がリアルタイムで変化する場合が想定され得る。そのため、力センサにより検出される力のうち前述したDC’成分が動的に変化することとなり、上記に例示した技術では、このように動的に変化するDC’成分の影響をキャンセルすることが困難である。 However, in a situation where the posture of the arm unit can change in real time, as in the support arm device according to an embodiment of the present disclosure, a force (for example, a force acting on the arm unit with a change in the posture of the arm unit) , Gravity, inertial force, etc.) may change in real time. For this reason, the DC ′ component described above of the force detected by the force sensor changes dynamically, and the technique exemplified above can cancel the influence of the DC ′ component that changes dynamically as described above. Have difficulty.
 そこで、本開示では、力センサの検出結果に対して、所定の対象物とは異なる他の部材(例えば、アーム部)に対して作用する力(即ち、重力や慣性力等)の影響が顕在化するような状況下においても、当該対象物に加わる力をより高い感度で検出可能とする技術の一例について提案する。 Therefore, in the present disclosure, an influence of a force (that is, gravity, inertial force, etc.) acting on another member (for example, an arm portion) different from the predetermined target object is obvious on the detection result of the force sensor. An example of a technique that enables detection of the force applied to the object with higher sensitivity even under such circumstances is proposed.
 <<4.技術的特徴>>
 続いて、本開示の一実施形態に係る情報処理システムの技術的特徴について説明する。
<< 4. Technical features >>
Subsequently, technical features of the information processing system according to an embodiment of the present disclosure will be described.
  <4.1.動作原理>
 まず、図4を参照して、本実施形態に係る情報処理システムの動作原理について説明する。図4は、本実施形態に係る情報処理システムの動作原理について説明するための説明図である。
<4.1. Principle of operation>
First, the operation principle of the information processing system according to the present embodiment will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining an operation principle of the information processing system according to the present embodiment.
 図4に示すように、本実施形態に係る情報処理システム1では、制御装置100は、支持アーム装置400のアーム部420に作用する力(即ち、DC’成分)を算出する。 As shown in FIG. 4, in the information processing system 1 according to the present embodiment, the control device 100 calculates a force (that is, a DC ′ component) that acts on the arm unit 420 of the support arm device 400.
 具体的には、制御装置100は、支持アーム装置400のアーム部420の各部(例えば、間接等)に設けられた各種センサ(例えば、エンコーダ、ポテンションメータ等)による検出結果に基づき、当該アーム部420の各部の位置や向き(即ち、姿勢)の変化を算出する。上記各種センサのより具体的な一例としては、アブソリュート型エンコーダ、インクリメンタル型エンコーダ、ポテンションメータ等が挙げられる。 Specifically, the control device 100 determines the arm based on detection results from various sensors (for example, an encoder, a potentiometer, etc.) provided in each unit (for example, indirect) of the arm unit 420 of the support arm device 400. A change in the position and orientation (ie, posture) of each unit of the unit 420 is calculated. More specific examples of the various sensors include an absolute encoder, an incremental encoder, a potentiometer, and the like.
 また、制御装置100は、アーム部420の各部における姿勢の変化の算出結果に基づき、力センサ450に加わる、アーム部420自体の動力学に起因する力を算出する。例えば、アーム部420のような所謂アームの動力学は、以下に(式1)として示す関係式で表される。 Further, the control device 100 calculates a force due to the dynamics of the arm unit 420 itself, which is applied to the force sensor 450, based on the calculation result of the posture change in each unit of the arm unit 420. For example, the dynamics of a so-called arm such as the arm unit 420 is expressed by a relational expression shown as (Equation 1) below.
Figure JPOXMLDOC01-appb-M000001
 …(式1)
Figure JPOXMLDOC01-appb-M000001
... (Formula 1)
 上記(式1)において、左辺は各関節トルクを表している。また、右辺の第一項は、並進運動に伴い各関節に作用する慣性力を表している。また、右辺の第二項は、回転運動に伴い各関節に作用する遠心力やコリオリ力を表している。また、右辺の第三項は、各関節に作用する重力を表している。また、θは、各関節の角度を表している。なお、アーム部420の各部(例えば、各関節に該当する各リンク)の動力学項については、例えば、特開2007-108955公報に開示された手法(動力学演算)に基づき算出することが可能である。 In the above (Formula 1), the left side represents each joint torque. The first term on the right side represents the inertial force acting on each joint with translational motion. The second term on the right side represents the centrifugal force and Coriolis force acting on each joint with the rotational motion. The third term on the right side represents the gravity acting on each joint. Θ represents the angle of each joint. The dynamic terms of each part of the arm unit 420 (for example, each link corresponding to each joint) can be calculated based on, for example, the method (dynamic calculation) disclosed in Japanese Patent Application Laid-Open No. 2007-108955. It is.
 そして、アーム部420の各部の動力学項の算出結果を、力センサ450が設けられた位置から見た値に変換することで、当該力センサ450に加わる、当該アーム部420の動力学に起因する力(即ち、アーム部420に作用する力)を算出することが可能となる。 Then, the calculation result of the dynamic term of each part of the arm unit 420 is converted into a value seen from the position where the force sensor 450 is provided, thereby resulting in the dynamics of the arm unit 420 added to the force sensor 450. It is possible to calculate the force to be applied (that is, the force acting on the arm portion 420).
 次いで、制御装置100は、力センサ450の検出結果から、アーム部420の動力学に起因する力(即ち、DC’成分)の算出結果を減算することで、鉗子430等の所定の対象に対して相対的に加わる力(即ち、DC+AC成分)を算出する。そして、制御装置100は、上記減算結果(即ち、DC+AC成分)に基づくアナログ信号を増幅したうえで、デジタル信号にA/D変換する。 Next, the control device 100 subtracts the calculation result of the force (that is, the DC ′ component) resulting from the dynamics of the arm unit 420 from the detection result of the force sensor 450, so that a predetermined target such as the forceps 430 is obtained. Then, a relatively applied force (that is, DC + AC component) is calculated. Then, the control device 100 amplifies the analog signal based on the subtraction result (that is, the DC + AC component), and performs A / D conversion to a digital signal.
 このような構成により、制御装置100は、力センサ450の検出結果から、アーム部420に作用する力の影響を取り除き、鉗子430等の所定の対象に対して相対的に加わる微弱な力を算出することが可能となる。そのため、制御装置100は、当該対象に加わる力の算出結果に基づくアナログ信号をデジタル信号にA/D変換する際に、当該A/D変換前に当該アナログ信号に対してより高いゲインを適用することが可能となる。即ち、本実施形態に係る情報処理システム1に依れば、所定の対象に加わる力の算出結果に基づくアナログ信号を、より高い分解能でデジタル信号にA/D変換することが可能となり、ひいては、当該対象に加わる力をより高い感度で検出することが可能となる。 With such a configuration, the control device 100 removes the influence of the force acting on the arm unit 420 from the detection result of the force sensor 450 and calculates a weak force relatively applied to a predetermined target such as the forceps 430. It becomes possible to do. Therefore, when the analog signal based on the calculation result of the force applied to the target is A / D converted into a digital signal, the control device 100 applies a higher gain to the analog signal before the A / D conversion. It becomes possible. That is, according to the information processing system 1 according to the present embodiment, an analog signal based on a calculation result of a force applied to a predetermined target can be A / D converted into a digital signal with higher resolution, and thus It becomes possible to detect the force applied to the object with higher sensitivity.
 以上、図4を参照して、本実施形態に係る情報処理システムの動作原理について説明した。 The operation principle of the information processing system according to the present embodiment has been described above with reference to FIG.
  <4.2.機能構成>
 続いて、本実施形態に係る制御装置100の機能構成の一例について、特に、当該制御装置100が、力センサ450による力の検出結果に基づき、鉗子430等の所定の対象に対して作用する力及びモーメント(即ち、接触力)を算出する処理に着目して説明する。例えば、図5は、本実施形態に係る制御装置100の機能構成の一例を示したブロック図である。
<4.2. Functional configuration>
Subsequently, regarding an example of the functional configuration of the control device 100 according to the present embodiment, in particular, the force that the control device 100 acts on a predetermined target such as the forceps 430 based on the detection result of the force by the force sensor 450. The description will be given focusing on the process of calculating the moment (that is, the contact force). For example, FIG. 5 is a block diagram illustrating an example of a functional configuration of the control device 100 according to the present embodiment.
 図5に示すように、本実施形態に係る制御装置100は、アンプ101、105、及び111と、減算部103と、A/D変換部107と、D/A変換部109と、演算部130と、折線ゲイン特性回路150とを含む。また、演算部130は、力モーメント演算部131と、動力学演算部133とを含む。 As illustrated in FIG. 5, the control device 100 according to the present embodiment includes amplifiers 101, 105, and 111, a subtraction unit 103, an A / D conversion unit 107, a D / A conversion unit 109, and a calculation unit 130. And a broken line gain characteristic circuit 150. In addition, the calculation unit 130 includes a force moment calculation unit 131 and a dynamics calculation unit 133.
 また、図5において、アーム部420及び力センサ450は、図2を参照して説明した支持アーム装置400におけるアーム部420及び力センサ450に相当する。なお、図1に示すバイラテラルシステムを想定した場合には、図5に示すアーム部420及び力センサ450は、スレーブ装置に相当する支持アーム装置400bにおけるアーム部420及び力センサ450に相当する。また、検出部460は、アーム部420の各部の姿勢を検出するためのエンコーダやポテンションメータ等を模式的に示している。 In FIG. 5, the arm part 420 and the force sensor 450 correspond to the arm part 420 and the force sensor 450 in the support arm device 400 described with reference to FIG. When the bilateral system shown in FIG. 1 is assumed, the arm unit 420 and the force sensor 450 shown in FIG. 5 correspond to the arm unit 420 and the force sensor 450 in the support arm device 400b corresponding to the slave device. The detection unit 460 schematically illustrates an encoder, a potentiometer, and the like for detecting the posture of each part of the arm unit 420.
 図5に示すように、力センサ450による力の検出結果に基づくアナログ信号は、アンプ101(ストレインアンプ)により増幅されて、減算部103に入力される。なお、以降の説明では、力センサ450により検出される力を、「第1の力」とも称する。また、当該アナログ信号が、図4を参照して説明した、DC’+DC+AC成分に基づくアナログ信号に相当する。 As shown in FIG. 5, the analog signal based on the force detection result by the force sensor 450 is amplified by the amplifier 101 (strain amplifier) and input to the subtracting unit 103. In the following description, the force detected by the force sensor 450 is also referred to as “first force”. The analog signal corresponds to the analog signal based on the DC ′ + DC + AC component described with reference to FIG.
 また、動力学演算部133は、アーム部420の各部に設けられた検出部460から検出結果を取得し、当該検出結果に基づき、当該アーム部420の各部における姿勢(即ち、位置や向き)の変化を算出する。次いで、動力学演算部133は、アーム部420の各部における姿勢の変化の算出結果に基づき、力センサ450に対して作用する、当該アーム部420の動力学に起因する力を算出する。そして、動力学演算部133は、アーム部420の動力学に起因する力の算出結果に基づくデジタル信号をD/A変換部109に出力する。なお、以降の説明では、力センサ450に対して作用する、アーム部420の動力学に起因する力を、「第2の力」とも称する。 Further, the dynamics calculation unit 133 acquires the detection result from the detection unit 460 provided in each part of the arm unit 420, and based on the detection result, the posture (that is, the position and orientation) of each part of the arm unit 420 is obtained. Calculate the change. Next, the dynamics calculation unit 133 calculates the force due to the dynamics of the arm unit 420 acting on the force sensor 450 based on the calculation result of the change in posture in each unit of the arm unit 420. Then, the dynamics operation unit 133 outputs a digital signal based on the calculation result of the force due to the dynamics of the arm unit 420 to the D / A conversion unit 109. In the following description, a force that acts on the force sensor 450 and is caused by the dynamics of the arm unit 420 is also referred to as a “second force”.
 アーム部420の動力学に起因する力の算出結果に基づくデジタル信号は、D/A変換部109によりアナログ信号にD/A変換され、アンプ111により増幅された後に、減算部103に入力される。なお、当該アナログ信号が、図4を参照して説明したDC’成分に相当する。 A digital signal based on the calculation result of the force resulting from the dynamics of the arm unit 420 is D / A converted into an analog signal by the D / A conversion unit 109, amplified by the amplifier 111, and then input to the subtraction unit 103. . The analog signal corresponds to the DC ′ component described with reference to FIG.
 前述したように、減算部103には、力センサ450による第1の力の検出結果に基づくアナログ信号と、動力学演算部133による第2の力の算出結果に基づくアナログ信号とが入力される。減算部103は、第1の力の検出結果に基づくアナログ信号から、第2の力の算出結果に基づくアナログ信号を減算し、減算結果として得られるアナログ信号(以降では、「差分信号」とも称する)を後段に位置するアンプ105(ゲインアンプ)に出力する。ここで、減算部103から出力される差分信号は、力センサ450による力の検出結果(DC’+DC+AC成分)から、アーム部420の動力学に起因する力(DC’成分)の影響が取り除かれた成分(DC+AC成分)、即ち、鉗子430等の所定の対象に対して相対的に作用する力を示している。なお、当該所定の対象に対して相対的に作用する力を、「第3の力」とも称する。 As described above, the analog signal based on the detection result of the first force by the force sensor 450 and the analog signal based on the calculation result of the second force by the dynamics calculation unit 133 are input to the subtraction unit 103. . The subtracting unit 103 subtracts the analog signal based on the second force calculation result from the analog signal based on the first force detection result, and obtains the analog signal obtained as the subtraction result (hereinafter also referred to as “difference signal”). ) Is output to the amplifier 105 (gain amplifier) located in the subsequent stage. Here, the difference signal output from the subtraction unit 103 removes the influence of the force (DC ′ component) resulting from the dynamics of the arm unit 420 from the force detection result (DC ′ + DC + AC component) by the force sensor 450. Component (DC + AC component), that is, a force acting relatively on a predetermined target such as the forceps 430 is shown. Note that the force acting relatively on the predetermined target is also referred to as a “third force”.
 減算部103から出力された差分信号(即ち、第3の力の算出結果に相当するアナログ信号)は、アンプ105により増幅された後に、折線ゲイン特性回路150を介してA/D変換部107に入力される。 The differential signal output from the subtraction unit 103 (that is, an analog signal corresponding to the third force calculation result) is amplified by the amplifier 105 and then passed to the A / D conversion unit 107 via the broken line gain characteristic circuit 150. Entered.
 折線ゲイン特性回路150は、入力される信号のレベル(入力電圧)が閾値を超えた場合に、当該信号に対してゲインを適用することで、当該信号のレベルを制御する。このように、A/D変換部107の前段に折線ゲイン特性回路150が設けられることで、当該折線ゲイン特性回路150が所謂リミッタの役割を果たす。即ち、所定の対象に対して過大な力が加わり、A/D変換部107のダイナミックレンジを超えるレベルのアナログ信号が入力されたとしても、折線ゲイン特性回路150により、当該アナログ信号のレベルを、A/D変換部107のダイナミックレンジにあわせて制限することが可能となる。そのため、例えば、過大な信号の入力に伴うサチレーションの発生を防止することが可能となる。なお、折線ゲイン特性回路150の構成の一例については、詳細を別途後述する。なお、折線ゲイン特性回路150が、差分信号に対してゲインを適用する「適用部」の一例に相当する。 When the level (input voltage) of the input signal exceeds the threshold value, the broken line gain characteristic circuit 150 controls the level of the signal by applying a gain to the signal. As described above, the broken line gain characteristic circuit 150 is provided in the preceding stage of the A / D conversion unit 107, so that the broken line gain characteristic circuit 150 serves as a so-called limiter. That is, even if an excessive force is applied to a predetermined target and an analog signal with a level exceeding the dynamic range of the A / D converter 107 is input, the level of the analog signal is changed by the broken line gain characteristic circuit 150. It is possible to limit in accordance with the dynamic range of the A / D converter 107. Therefore, for example, it is possible to prevent the occurrence of saturation due to an excessive signal input. An example of the configuration of the broken line gain characteristic circuit 150 will be described later in detail. The broken line gain characteristic circuit 150 corresponds to an example of an “applying unit” that applies a gain to a differential signal.
 また、折線ゲイン特性回路150は、入力されたアナログ信号(即ち、差分信号)に対して適用したゲインに関する情報(以降では、「ゲイン情報」とも称する)を、後述する力モーメント演算部131に通知する。 Further, the broken line gain characteristic circuit 150 notifies information (hereinafter also referred to as “gain information”) related to the gain applied to the input analog signal (that is, the differential signal) to the force moment calculation unit 131 described later. To do.
 A/D変換部107は、入力されたアナログ信号をデジタル信号にA/D変換し、変換後の当該デジタル信号を後段に位置する力モーメント演算部131に出力する。 The A / D conversion unit 107 A / D converts the input analog signal into a digital signal, and outputs the converted digital signal to the force moment calculation unit 131 located at the subsequent stage.
 力モーメント演算部131は、A/D変換部107からデジタル信号の出力を受け、折線ゲイン特性回路150から通知されるゲイン情報に基づき、当該デジタル信号を解析することで、鉗子430等の所定の対象に対して相対的に加わる力及びモーメントを算出する。具体的には、力モーメント演算部131は、デジタル信号のレベルと、通知されたゲイン情報とに基づき、力センサ450に対して実際に加わった力及びモーメントの大きさ(絶対値)を算出することが可能である。また、力モーメント演算部131は、鉗子430等の所定の対象が保持されている位置と、力センサ450が支持されている位置とが離隔している場合には、前述した動力学演算に基づき、当該所定の対象に加わった力及びモーメント(即ち、接触力)を算出すればよい。 The force / moment calculation unit 131 receives an output of the digital signal from the A / D conversion unit 107, and analyzes the digital signal based on the gain information notified from the broken line gain characteristic circuit 150, thereby obtaining a predetermined forceps 430 or the like. Calculate the force and moment applied relatively to the object. Specifically, the force / moment calculator 131 calculates the magnitude (absolute value) of the force and moment actually applied to the force sensor 450 based on the level of the digital signal and the notified gain information. It is possible. Further, when the position where the predetermined object such as the forceps 430 is held and the position where the force sensor 450 is supported are separated from each other, the force moment calculation unit 131 is based on the above-described dynamic calculation. What is necessary is just to calculate the force and moment (that is, contact force) applied to the predetermined object.
 なお、上記に説明した制御装置100の機能構成はあくまで一例であり、上述した一連の処理を実現することが可能であれば、制御装置100の機能構成は必ずしも図5に示す例には限定されない。具体的な一例として、図5に示す各構成のうち、一部の構成が制御装置100の外部に設けられていてもよい。 Note that the functional configuration of the control device 100 described above is merely an example, and the functional configuration of the control device 100 is not necessarily limited to the example illustrated in FIG. 5 as long as the above-described series of processing can be realized. . As a specific example, some of the components illustrated in FIG. 5 may be provided outside the control device 100.
 以上、図5を参照して、本実施形態に係る制御装置100の機能構成の一例について、特に、当該制御装置100が、力センサ450による力の検出結果に基づき、鉗子430等の所定の対象に対して作用する力及びモーメントを算出する処理に着目して説明した。 As described above, with reference to FIG. 5, with respect to an example of the functional configuration of the control device 100 according to the present embodiment, in particular, the control device 100 determines a predetermined target such as the forceps 430 based on the force detection result by the force sensor 450. The description has been given focusing on the process of calculating the force and moment acting on the.
  <4.3.折線ゲイン特性回路の構成>
 続いて、図6及び図7を参照して、折線ゲイン特性回路の構成の一例について説明する。例えば、図6は、折線ゲイン特性回路の回路構成の一例を示した図である。なお、図6に示した折線ゲイン特性回路については、一般的に知られているため、ポイントとなる部分に着目して説明し、その他の部分については詳細な説明は省略する。また、図7は、折線ゲイン特性の一例を示した図である。
<4.3. Configuration of broken line gain characteristic circuit>
Next, an example of the configuration of the broken line gain characteristic circuit will be described with reference to FIGS. For example, FIG. 6 is a diagram illustrating an example of a circuit configuration of a broken line gain characteristic circuit. Since the broken line gain characteristic circuit shown in FIG. 6 is generally known, it will be described by focusing on the point portion, and detailed description of the other portion will be omitted. FIG. 7 is a diagram illustrating an example of a polygonal line gain characteristic.
 折線ゲイン特性回路は、オペアンプU1に入力される電圧範囲に1以上の折れ点を設定することで、折れ点により規定される入力電圧の区間ごとに、当該オペアンプU1により適用されるゲインを制御するための仕組みである。例えば、図7に示す例では、参照符号p11及びp12が折れ点の一例に相当する。なお、図7において、横軸はオペアンプU1への入力電圧Vinを示し、縦軸は当該オペアンプU1の出力電圧Voutを示している。即ち、図7に示す例では、入力電圧Vinが、折れ点p11及びp12に対応する電圧V11及びV12それぞれを閾値として、オペアンプU1のゲインが制御される。 The broken line gain characteristic circuit controls the gain applied by the operational amplifier U1 for each section of the input voltage defined by the broken point by setting one or more break points in the voltage range input to the operational amplifier U1. It is a mechanism for this. For example, in the example shown in FIG. 7, reference signs p11 and p12 correspond to an example of a break point. In FIG. 7, the horizontal axis represents the input voltage Vin to the operational amplifier U1, and the vertical axis represents the output voltage Vout of the operational amplifier U1. In other words, in the example shown in FIG. 7, the gain of the operational amplifier U1 is controlled with the input voltage Vin using the voltages V11 and V12 corresponding to the break points p11 and p12 as threshold values.
 図7に示す折れ点p11に対応する電圧V11は、図6に示す回路において、ダイオードD1に対して順方向バイアスをかけるための電圧の条件に基づき決定される。即ち、電圧V11は、ノードn11の電位に基づき規定される。また、図7に示す折れ点p12に対応する電圧V12は、図6に示す回路において、ダイオードD2に対して順方向バイアスをかけるための電圧の条件に基づき決定される。即ち、電圧V12は、ノードn12の電位に基づき規定される。そのため、折れ点p11及びp12は、例えば、電源電圧V4と、抵抗R14~R17と、に基づき設定することが可能である。 The voltage V11 corresponding to the break point p11 shown in FIG. 7 is determined based on the voltage condition for applying the forward bias to the diode D1 in the circuit shown in FIG. That is, the voltage V11 is defined based on the potential of the node n11. Further, the voltage V12 corresponding to the break point p12 shown in FIG. 7 is determined based on the voltage condition for applying the forward bias to the diode D2 in the circuit shown in FIG. That is, the voltage V12 is defined based on the potential of the node n12. Therefore, the break points p11 and p12 can be set based on, for example, the power supply voltage V4 and the resistors R14 to R17.
 ここで、例えば、オペアンプU1への入力電圧VinがV12≦Vin≦V11の場合には、ダイオードD1及びD2それぞれに対して逆方向のバイアスがかかり、当該ダイオードD1及びD2の部分が開放した状態と同様となる。この場合には、オペアンプU1のゲインAvは、例えば、Av=Vout/Vin=R12/R11で表される。 Here, for example, when the input voltage Vin to the operational amplifier U1 is V12 ≦ Vin ≦ V11, a reverse bias is applied to the diodes D1 and D2, respectively, and the diodes D1 and D2 are open. It becomes the same. In this case, the gain Av of the operational amplifier U1 is expressed by, for example, Av = Vout / Vin = R12 / R11.
 これに対して、入力電圧Vinが正側に振れて、当該入力電圧Vinが電圧V11を超えた場合には、ダイオードD1に対して順方向バイアスがかかるため、当該ダイオードD1の部分が導通した状態と同様となる。これにより、オペアンプU1に対して、ダイオードD1、ノードn11、及び抵抗R15を含む系が作用することとなり、当該オペアンプU1のゲインAvが、図7に示すように、折れ点p11を基点として変化する。 On the other hand, when the input voltage Vin swings to the positive side and the input voltage Vin exceeds the voltage V11, a forward bias is applied to the diode D1, so that the portion of the diode D1 is conductive. It will be the same. As a result, the system including the diode D1, the node n11, and the resistor R15 acts on the operational amplifier U1, and the gain Av of the operational amplifier U1 changes with the break point p11 as a base point as shown in FIG. .
 同様に、入力電圧Vinが負側に振れて、当該入力電圧Vinが電圧V12を未満となった場合には、ダイオードD2に対して順方向バイアスがかかるため、当該ダイオードD2の部分が導通した状態と同様となる。これにより、オペアンプU1に対して、ダイオードD2、ノードn12、及び抵抗R16を含む系が作用することとなり、当該オペアンプU1のゲインAvが、図7に示すように、折れ点p12を基点として変化する。 Similarly, when the input voltage Vin swings to the negative side and the input voltage Vin becomes less than the voltage V12, a forward bias is applied to the diode D2, so that the portion of the diode D2 is conductive. It will be the same. As a result, a system including the diode D2, the node n12, and the resistor R16 acts on the operational amplifier U1, and the gain Av of the operational amplifier U1 changes with the break point p12 as a base point as shown in FIG. .
 また、オペアンプU1により反転増幅された入力電圧Vinは、後段に位置するオペアンプU2により再度反転されて出力される。即ち、図6に示す例では、オペアンプU2の出力が、折線ゲイン特性回路の出力に相当することとなる。また、オペアンプU2のゲインは、例えば、抵抗R21及びR22に基づき決定される。 Further, the input voltage Vin inverted and amplified by the operational amplifier U1 is inverted again by the operational amplifier U2 located at the subsequent stage and output. That is, in the example shown in FIG. 6, the output of the operational amplifier U2 corresponds to the output of the broken line gain characteristic circuit. The gain of the operational amplifier U2 is determined based on, for example, the resistors R21 and R22.
 なお、図6に示した折線ゲイン特性回路の構成はあくまで一例であり、必ずしも図6に示す例には限定されない。具体的な一例として、ノードn11及びn12に加えて、さらにノードが追加されるように、ダイオードD1及びD2や、抵抗R14~R17に相当する構成を追加することで、折れ点をさらに追加で設定することも可能である。このような構成により、例えば、入力信号に対して適用するゲインを段階的に制御することも可能となる。 The configuration of the broken line gain characteristic circuit shown in FIG. 6 is merely an example, and is not necessarily limited to the example shown in FIG. As a specific example, in addition to the nodes n11 and n12, a configuration corresponding to the diodes D1 and D2 and the resistors R14 to R17 is added so that additional nodes can be added, thereby further setting the break points. It is also possible to do. With such a configuration, for example, the gain applied to the input signal can be controlled stepwise.
 以上、図6及び図7を参照して、折線ゲイン特性回路の構成の一例について説明した。 The example of the configuration of the broken line gain characteristic circuit has been described above with reference to FIGS. 6 and 7.
  <4.4.処理>
 続いて、図8を参照して、本実施形態に係る情報処理システム1の一連の処理の流れの一例について、特に、制御装置100が、力センサ450による力の検出結果に基づき、鉗子430等の所定の対象に対して作用する力を算出する処理に着目して説明する。図8は、本実施形態に係る制御装置100の一連の処理の流れの一例を示したフローチャートである。
<4.4. Processing>
Subsequently, with reference to FIG. 8, in particular, an example of a flow of a series of processes of the information processing system 1 according to the present embodiment, the control device 100 performs forceps 430 and the like based on a force detection result by the force sensor 450. A description will be given focusing on the process of calculating the force acting on the predetermined target. FIG. 8 is a flowchart illustrating an example of a flow of a series of processes of the control device 100 according to the present embodiment.
 図8に示すように、制御装置100は、支持アーム装置400のアーム部420の各部に設けられた検出部460(例えば、エンコーダやポテンションメータ)から検出結果を取得し、当該検出結果に基づき、当該アーム部420の各部における姿勢の変化を算出する。次いで、制御装置100は、アーム部420の各部における姿勢の変化の算出結果に基づき、力センサ450に作用する、当該アーム部420の動力学に起因する力を算出する(S101)。 As illustrated in FIG. 8, the control device 100 acquires a detection result from a detection unit 460 (for example, an encoder or a potentiometer) provided in each part of the arm unit 420 of the support arm device 400, and based on the detection result. Then, a change in posture in each part of the arm part 420 is calculated. Next, the control device 100 calculates the force due to the dynamics of the arm unit 420 acting on the force sensor 450 based on the calculation result of the posture change in each unit of the arm unit 420 (S101).
 次いで、制御装置100は、アーム部420の動力学に起因する力の算出結果に基づくデジタル信号をアナログ信号に変換する。また、制御装置100は、力センサ450による力の検出結果に基づくアナログ信号から、アーム部420の動力学に起因する力の算出結果に基づくアナログ信号を減算することで、差分信号を算出する(S103)。 Next, the control device 100 converts the digital signal based on the calculation result of the force due to the dynamics of the arm unit 420 into an analog signal. In addition, the control device 100 calculates a difference signal by subtracting an analog signal based on a force calculation result caused by the dynamics of the arm unit 420 from an analog signal based on a force detection result by the force sensor 450 ( S103).
 次いで、制御装置100は、算出した差分信号に対して当該差分信号のレベルに応じたゲインを適用し(S105)、当該ゲインが適用されたアナログの差分信号をデジタル信号にA/D変換する(S107)。なお、このとき差分信号に対して適用されるゲインは、例えば、差分信号のレベルと折線ゲイン特性回路150の特性とに応じて制御される。 Next, the control device 100 applies a gain corresponding to the level of the difference signal to the calculated difference signal (S105), and A / D converts the analog difference signal to which the gain is applied into a digital signal ( S107). Note that the gain applied to the differential signal at this time is controlled according to the level of the differential signal and the characteristics of the broken line gain characteristic circuit 150, for example.
 そして、制御装置100は、デジタルの差分信号を、当該差分信号に適用されたゲインに基づき解析することで、アーム部420により保持された鉗子430等の所定の対象に対して相対的に加わる力及びモーメントを算出する(S109)。 Then, the control device 100 analyzes the digital difference signal based on the gain applied to the difference signal, so that a force applied relatively to a predetermined target such as the forceps 430 held by the arm unit 420 is obtained. And the moment are calculated (S109).
 以上、図8を参照して、本実施形態に係る情報処理システム1の一連の処理の流れの一例について、特に、制御装置100が、力センサ450による力の検出結果に基づき、鉗子430等の所定の対象に対して作用する力を算出する処理に着目して説明した。 As described above, with reference to FIG. 8, with regard to an example of a series of processing flows of the information processing system 1 according to the present embodiment, in particular, the control device 100 determines the forceps 430 and the like based on the force detection result by the force sensor 450. Description has been given focusing on the process of calculating the force acting on a predetermined target.
 <<5.変形例>>
 続いて、本開示の一実施形態に係る情報処理システムの変形例について説明する。
<< 5. Modification >>
Subsequently, a modification of the information processing system according to an embodiment of the present disclosure will be described.
  <5.1.変形例1:折線ゲイン特性回路の変形例>
 まず、変形例1として、図9を参照して、上述した実施形態に係る折線ゲイン特性回路150に相当する構成の変形例について説明する。図9は、変形例1に係る制御装置の構成の一例について説明するための説明図であり、折線ゲイン特性回路150に相当する構成の他の一例を示している。なお、本説明では、図9に示す折線ゲイン特性回路150に相当する構成を、「折線ゲイン特性制御部160」とも称する。
<5.1. Modified example 1: Modified example of the broken line gain characteristic circuit>
First, as Modification 1, a modification of the configuration corresponding to the broken line gain characteristic circuit 150 according to the above-described embodiment will be described with reference to FIG. FIG. 9 is an explanatory diagram for explaining an example of the configuration of the control device according to the first modification, and shows another example of the configuration corresponding to the polygonal line gain characteristic circuit 150. In the present description, a configuration corresponding to the broken line gain characteristic circuit 150 shown in FIG. 9 is also referred to as a “folded line gain characteristic control unit 160”.
 前述したように、図6を参照して説明した折線ゲイン特性回路150は、折れ点の設定が、電源電圧や当該回路を構成する素子(例えば、抵抗)に応じて決定される。そのため、折れ点の位置が固定的に設定されることとなり、ゲインの切り替えのトリガとなる閾値や、入力信号に対して適用されるゲイン自体を変更することが困難であった。 As described above, in the broken line gain characteristic circuit 150 described with reference to FIG. 6, the setting of the break point is determined according to the power supply voltage and the elements (for example, resistors) constituting the circuit. Therefore, the position of the break point is fixedly set, and it is difficult to change the threshold value that triggers gain switching and the gain itself applied to the input signal.
 これに対して、変形例1に係る折線ゲイン特性制御部160は、ゲインの切り替えのトリガとなる閾値や、入力信号に対して適用されるゲイン自体を変更可能に構成されている。 On the other hand, the broken line gain characteristic control unit 160 according to the modified example 1 is configured to be able to change the threshold value that is a trigger for switching the gain and the gain itself applied to the input signal.
 具体的には、図9に示すように、折線ゲイン特性制御部160は、可変アンプ161と、ゲイン制御部163とを含む。ゲイン制御部163は、可変アンプ161のゲインを制御するための構成である。具体的には、折線ゲイン特性制御部160に入力された信号は、可変アンプ161により増幅されて出力される。また、このときゲイン制御部163は、可変アンプ161により増幅された出力信号に応じて、当該可変アンプ161が入力された信号に対して適用するゲインを制御する。 Specifically, as shown in FIG. 9, the broken line gain characteristic control unit 160 includes a variable amplifier 161 and a gain control unit 163. The gain control unit 163 is configured to control the gain of the variable amplifier 161. Specifically, the signal input to the broken line gain characteristic control unit 160 is amplified by the variable amplifier 161 and output. At this time, the gain control unit 163 controls the gain applied to the signal input by the variable amplifier 161 according to the output signal amplified by the variable amplifier 161.
 ここで、ゲイン制御部163の構成についてさらに詳しく説明する。図9に示すように、ゲイン制御部163は、閾値検出部165と、折線特性制御部167とを含む。 Here, the configuration of the gain control unit 163 will be described in more detail. As shown in FIG. 9, the gain control unit 163 includes a threshold detection unit 165 and a polygonal line characteristic control unit 167.
 閾値検出部165は、可変アンプ161からの出力信号のレベルを、あらかじめ設定された閾値と比較し、当該レベルが閾値を超えた場合に、折線特性制御部167に対して可変アンプ161のゲインの制御を指示する。なお、閾値検出部165が上記比較に用いる閾値は、例えば、所定の制御部からの指示に基づき更新可能に構成されている。このような構成により、変形例1に係る折線ゲイン特性制御部160は、折れ点の設定をソフトウェア制御に基づき変更することが可能となる。 The threshold value detection unit 165 compares the level of the output signal from the variable amplifier 161 with a preset threshold value, and when the level exceeds the threshold value, the value of the gain of the variable amplifier 161 with respect to the polygonal line characteristic control unit 167. Direct control. The threshold used by the threshold detection unit 165 for the comparison is configured to be updateable based on an instruction from a predetermined control unit, for example. With such a configuration, the broken line gain characteristic control unit 160 according to the first modification can change the setting of the break point based on software control.
 折線特性制御部167は、閾値検出部165から指示を受けると、あらかじめ設定された制御テーブル(以降では、「折線特性テーブル」とも称する)に基づき、可変アンプ161のゲインを制御する。なお、折線特性テーブルは、例えば、所定の制御部からの指示に基づき更新可能に構成されている。このような構成により、変形例1に係る折線ゲイン特性制御部160は、可変アンプ161からの出力信号のレベル(ひいては、入力信号のレベル)が閾値を超えた場合に、入力信号に適用するゲインの設定をソフトウェア制御に基づき変更することが可能となる。 Upon receiving an instruction from the threshold detection unit 165, the broken line characteristic control unit 167 controls the gain of the variable amplifier 161 based on a preset control table (hereinafter also referred to as “folded line characteristic table”). The broken line characteristic table is configured to be updatable based on an instruction from a predetermined control unit, for example. With such a configuration, the polygonal line gain characteristic control unit 160 according to the first modification causes the gain applied to the input signal when the level of the output signal from the variable amplifier 161 (and hence the level of the input signal) exceeds the threshold value Can be changed based on software control.
 なお、閾値検出部165が上記比較に用いる閾値は複数設定されていてもよい。この場合には、折線特性テーブルには、当該閾値ごとに可変アンプ161のゲインの設定が関連付けられていてもよい。このような構成とすることで、複数の折れ点を設定することが可能となり、例えば、入力信号に適用するゲインを段階的に制御することも可能となる。 Note that a plurality of threshold values used by the threshold detection unit 165 for the comparison may be set. In this case, the gain setting of the variable amplifier 161 may be associated with the threshold value characteristic table for each threshold value. With such a configuration, it is possible to set a plurality of break points, and for example, it is possible to control the gain applied to the input signal in stages.
 以上、変形例1として、図9を参照して、上述した実施形態に係る折線ゲイン特性回路150に相当する構成の変形例について説明した。 As described above, the first modification has been described with reference to FIG. 9 and the modification corresponding to the broken line gain characteristic circuit 150 according to the above-described embodiment.
  <5.2.変形例2:AGCによる動的なゲイン制御>
 続いて、変形例2として、折線ゲイン特性回路に替えてAGC(automatic gain control)を適用することで、減算部103からアンプ105を介して出力される差分信号に対して適用するゲインを、当該差分信号のレベルに応じて動的に制御する場合の一例について説明する。例えば、図10は、変形例2に係る制御装置の機能構成の一例を示したブロック図である。なお、以降の説明では、変形例2に係る制御装置を、前述した実施形態に係る制御装置(図5参照)と区別するために、「制御装置200」と称する場合がある。
<5.2. Modification 2: Dynamic Gain Control by AGC>
Subsequently, as Modification 2, by applying AGC (automatic gain control) instead of the broken line gain characteristic circuit, the gain applied to the differential signal output from the subtraction unit 103 via the amplifier 105 is An example in the case of dynamic control according to the level of the difference signal will be described. For example, FIG. 10 is a block diagram illustrating an example of a functional configuration of a control device according to the second modification. In the following description, the control device according to Modification 2 may be referred to as “control device 200” in order to distinguish it from the control device according to the above-described embodiment (see FIG. 5).
 図10に示すように、変形例2に係る制御装置200は、折線ゲイン特性回路150に替えてAGC170が設けられている点で、前述した実施形態に係る制御装置100と異なる。そこで、以降の説明では、変形例2に係る制御装置200の機能構成について、前述した実施形態に係る制御装置100と異なる部分に着目して説明し、当該制御装置100と同様の部分については詳細な説明は省略する。 As shown in FIG. 10, the control device 200 according to the modification 2 is different from the control device 100 according to the above-described embodiment in that an AGC 170 is provided instead of the broken line gain characteristic circuit 150. Therefore, in the following description, the functional configuration of the control device 200 according to the modified example 2 will be described by focusing on portions different from the control device 100 according to the above-described embodiment, and the same portions as the control device 100 will be described in detail. The detailed explanation is omitted.
 AGC170は、入力信号のレベルが所定の範囲のレベルとなるように、当該入力信号に対して適応的にゲインを適用することで増幅して出力する。即ち、AGC170は、入力信号のレベルが増大するとゲインを下げることで出力信号のレベルを制限し、入力信号のレベルが減少するとゲインを上げることで出力信号のレベルを増大させる。このような構成により、例えば、鉗子430等の所定の対象に対して相対的に加わる力及びモーメントの大きさに関わらず、差分信号のレベルが所定の範囲となるようにリアルタイムで制御することが可能となる。即ち、変形例2に係る制御装置200に依れば、当該所定の対象に対して相対的に加わる力及びモーメントの大きさに応じて、当該力及びモーメントをより好適な態様で検出可能となるように、感度や分解能を適応的に制御することが可能となる。 The AGC 170 amplifies and outputs the input signal by adaptively applying a gain so that the level of the input signal is in a predetermined range. That is, the AGC 170 limits the level of the output signal by decreasing the gain when the level of the input signal increases, and increases the level of the output signal by increasing the gain when the level of the input signal decreases. With such a configuration, for example, the level of the differential signal can be controlled in real time so that the level of the difference signal is within a predetermined range regardless of the magnitude of the force and moment applied relatively to the predetermined target such as the forceps 430. It becomes possible. That is, according to the control device 200 according to the modified example 2, the force and the moment can be detected in a more preferable manner according to the magnitude of the force and the moment applied relatively to the predetermined target. Thus, it becomes possible to adaptively control the sensitivity and resolution.
 また、AGC170は、入力された差分信号に対して適用したゲインに関するゲイン情報を、力モーメント演算部131に通知する。このような構成により、力モーメント演算部131は、AGC170が差分信号に対して適用するゲインが変化したとしても、通知されるゲイン情報に基づき、力センサ450に対して実際に加わった力及びモーメントの大きさ(絶対値)を算出することが可能となる。 Also, the AGC 170 notifies the force moment calculation unit 131 of gain information related to the gain applied to the input differential signal. With such a configuration, even if the gain applied to the differential signal by the AGC 170 changes, the force / moment calculation unit 131 actually applies force / moment applied to the force sensor 450 based on the notified gain information. Can be calculated (absolute value).
 以上、変形例2として、図10を参照して、折線ゲイン特性回路に替えてAGCを適用することで、減算部103からアンプ105を介して出力される差分信号に対して適用するゲインを、当該差分信号のレベルに応じて動的に制御する場合の一例について説明した。 As described above, as Modification 2, with reference to FIG. 10, the gain applied to the differential signal output from the subtraction unit 103 via the amplifier 105 by applying AGC instead of the polygonal line gain characteristic circuit, An example in the case of dynamically controlling according to the level of the difference signal has been described.
 <<6.ハードウェア構成>>
 次に、図11を参照しながら、本開示の一実施形態に係る情報処理システムを構成する情報処理装置900のハードウェア構成について、詳細に説明する。図11は、本開示の一実施形態に係る情報処理システムを構成する情報処理装置のハードウェア構成の一例を示す機能ブロック図である。
<< 6. Hardware configuration >>
Next, the hardware configuration of the information processing apparatus 900 configuring the information processing system according to an embodiment of the present disclosure will be described in detail with reference to FIG. FIG. 11 is a functional block diagram illustrating an example of a hardware configuration of an information processing apparatus that configures an information processing system according to an embodiment of the present disclosure.
 本実施形態に係る情報処理システムを構成する情報処理装置900は、主に、CPU901と、ROM903と、RAM905と、を備える。また、情報処理装置900は、更に、ホストバス907と、ブリッジ909と、外部バス911と、インタフェース913と、入力装置915と、出力装置917と、ストレージ装置919と、ドライブ921と、接続ポート923と、通信装置925とを備える。 The information processing apparatus 900 constituting the information processing system according to the present embodiment mainly includes a CPU 901, a ROM 903, and a RAM 905. The information processing apparatus 900 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, and a connection port 923. And a communication device 925.
 CPU901は、演算処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置919又はリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置900内の動作全般又はその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。なお、図3を参照して前述した演算部130は、例えば、CPU901により実現され得る。 The CPU 901 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the information processing apparatus 900 according to various programs recorded in the ROM 903, the RAM 905, the storage apparatus 919, or the removable recording medium 927. The ROM 903 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus. Note that the arithmetic unit 130 described above with reference to FIG. 3 can be realized by the CPU 901, for example.
 ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。また、外部バス911には、インタフェース913を介して、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923及び通信装置925が接続される。 The host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909. In addition, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925 are connected to the external bus 911 via an interface 913.
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、レバー及びペダル等、ユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、情報処理装置900の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。情報処理装置900のユーザは、この入力装置915を操作することにより、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりすることができる。 The input device 915 is an operation means operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, a lever, and a pedal. Further, the input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA corresponding to the operation of the information processing device 900. 929 may be used. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. A user of the information processing apparatus 900 can input various data and instruct a processing operation to the information processing apparatus 900 by operating the input device 915.
 出力装置917は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置917は、例えば、情報処理装置900が行った各種処理により得られた結果を出力する。具体的には、表示装置は、情報処理装置900が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。なお、図1を参照して前述したモニタ490は、例えば、出力装置917により実現され得る。 The output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as lamps, audio output devices such as speakers and headphones, printer devices, and the like. For example, the output device 917 outputs results obtained by various processes performed by the information processing apparatus 900. Specifically, the display device displays results obtained by various processes performed by the information processing device 900 as text or images. On the other hand, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal. The monitor 490 described above with reference to FIG. 1 can be realized by the output device 917, for example.
 ストレージ装置919は、情報処理装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ等を格納する。 The storage device 919 is a data storage device configured as an example of a storage unit of the information processing device 900. The storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. The storage device 919 stores programs executed by the CPU 901 and various data.
 ドライブ921は、記録媒体用リーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD-DVDメディア又はBlu-ray(登録商標)メディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CF:CompactFlash)、フラッシュメモリ又はSDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。 The drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the information processing apparatus 900. The drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905. The drive 921 can also write a record to a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory that is mounted. The removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like. Further, the removable recording medium 927 may be a compact flash (registered trademark) (CF: CompactFlash), a flash memory, an SD memory card (Secure Digital memory card), or the like. Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
 接続ポート923は、情報処理装置900に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、情報処理装置900は、外部接続機器929から直接各種のデータを取得したり、外部接続機器929に各種のデータを提供したりする。 The connection port 923 is a port for directly connecting to the information processing apparatus 900. Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like. As another example of the connection port 923, there are an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, and the like. By connecting the external connection device 929 to the connection port 923, the information processing apparatus 900 acquires various data directly from the external connection device 929 or provides various data to the external connection device 929.
 通信装置925は、例えば、通信網(ネットワーク)931に接続するための通信デバイス等で構成された通信インタフェースである。通信装置925は、例えば、有線若しくは無線LAN(Local Area Network)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。 The communication device 925 is a communication interface configured with, for example, a communication device for connecting to a communication network (network) 931. The communication device 925 is, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB). The communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like. The communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices. Further, the communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
 以上、本開示の実施形態に係る情報処理システムを構成する情報処理装置900の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。なお、図11では図示しないが、本実施形態に係る情報処理システムを構成する情報処理装置900に対応する各種の構成を当然備える。 Heretofore, an example of a hardware configuration capable of realizing the functions of the information processing apparatus 900 that configures the information processing system according to the embodiment of the present disclosure has been shown. Each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment. Although not illustrated in FIG. 11, various configurations corresponding to the information processing apparatus 900 configuring the information processing system according to the present embodiment are naturally provided.
 なお、上述のような本実施形態に係る情報処理システムを構成する情報処理装置900の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。また、当該コンピュータプログラムを実行させるコンピュータの数は特に限定されない。例えば、当該コンピュータプログラムを、複数のコンピュータ(例えば、複数のサーバ等)が互いに連携して実行してもよい。なお、単数のコンピュータ、または、複数のコンピュータが連携するものを、「コンピュータシステム」とも称する。 It should be noted that a computer program for realizing each function of the information processing apparatus 900 constituting the information processing system according to the present embodiment as described above can be produced and mounted on a personal computer or the like. In addition, a computer-readable recording medium storing such a computer program can be provided. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium. The number of computers that execute the computer program is not particularly limited. For example, the computer program may be executed by a plurality of computers (for example, a plurality of servers) in cooperation with each other. A single computer or a combination of a plurality of computers is also referred to as a “computer system”.
 <<7.むすび>>
 以上説明したように、本実施形態に係る情報処理システム1において、制御装置100は、アーム部420の少なくとも一部に支持された力センサ450による検出結果と、当該アーム部420の動力学に起因する力と、の間の差分を示す差分信号を算出する。また、制御装置100は、算出した差分信号に応じたゲインを、当該差分信号に対して適用する。このような制御は、例えば、前述した折線ゲイン特性回路150の適用により実現し得る。そして、制御装置100は、ゲインが適用された差分信号と、当該ゲインとに基づき、アーム部420により保持される所定の対象(例えば、鉗子430等の医療用器具)に対して相対的に作用する力を算出する。
<< 7. Conclusion >>
As described above, in the information processing system 1 according to the present embodiment, the control device 100 is caused by the detection result by the force sensor 450 supported by at least a part of the arm unit 420 and the dynamics of the arm unit 420. A difference signal indicating a difference between the force and the force to be calculated is calculated. In addition, the control device 100 applies a gain corresponding to the calculated difference signal to the difference signal. Such control can be realized, for example, by applying the above-described broken line gain characteristic circuit 150. Then, the control device 100 acts on a predetermined target (for example, a medical instrument such as the forceps 430) held by the arm unit 420 based on the difference signal to which the gain is applied and the gain. Calculate the force to do.
 このような構成により、制御装置100は、力センサ450の検出結果から、アーム部420に作用する力(即ち、アーム部420の動力学に起因する力)の影響を取り除き、鉗子430等の所定の対象に対して相対的に加わる微弱な力を算出することが可能となる。そのため、制御装置100は、当該対象に加わる力の算出結果に基づくアナログ信号をデジタル信号にA/D変換する際に、当該A/D変換前に当該アナログ信号に対してより高いゲインを適用することが可能となる。即ち、本実施形態に係る情報処理システム1に依れば、所定の対象に加わる力の算出結果に基づくアナログ信号を、より高い分解能でデジタル信号にA/D変換することが可能となり、ひいては、当該対象に加わる力をより高い感度で検出することが可能となる。 With such a configuration, the control device 100 removes the influence of the force acting on the arm unit 420 (that is, the force due to the dynamics of the arm unit 420) from the detection result of the force sensor 450, and the predetermined force such as the forceps 430 is determined. It is possible to calculate a weak force applied relatively to the target. Therefore, when the analog signal based on the calculation result of the force applied to the target is A / D converted into a digital signal, the control device 100 applies a higher gain to the analog signal before the A / D conversion. It becomes possible. That is, according to the information processing system 1 according to the present embodiment, an analog signal based on a calculation result of a force applied to a predetermined target can be A / D converted into a digital signal with higher resolution, and thus It becomes possible to detect the force applied to the object with higher sensitivity.
 特に、医療の分野においては、マイクロサージャリーのような微細な作業が要求される状況が少なくない。このような状況下においても、本実施形態に係る情報処理システム1に依れば、医療用器具に対して加わる力を高感度に検出することが可能であるため、例えば、術者(ユーザ)に対する力覚のフィードバックをより精度良く行うことが可能となる。また、医療用器具に対して加わる力を高感度に検出することが可能であるため、支持アーム装置のアーム部や、当該アーム部に保持された医療用器具の動作をより細かく制御することも可能となる。 Especially in the medical field, there are many situations where micro work like microsurgery is required. Even in such a situation, according to the information processing system 1 according to the present embodiment, the force applied to the medical instrument can be detected with high sensitivity. For example, an operator (user) It is possible to perform feedback of force sense with respect to. In addition, since it is possible to detect the force applied to the medical instrument with high sensitivity, it is possible to more precisely control the operation of the arm part of the support arm device and the medical instrument held by the arm part. It becomes possible.
 なお、上記では、本実施形態に係る情報処理システム1のシステム構成の一例として、図1を参照して、当該情報処理システム1がバイラテラルシステムとして構成されている場合の一例について説明した。一方で、アーム部420に保持された鉗子430等の所定の対象に対して加わる力を検出するようなシステムであれば、本実施形態に係る情報処理システム1のシステム構成は、必ずしも図1に示すようなバイラテラルシステムには限定されない。具体的な一例として、本実施形態に係る情報処理システム1は、ユーザが操作するアーム部に保持された医療用器具に加わる力を検出し、当該検出結果に基づき当該アーム部の動作を制御または補助するように構成されていてもよい。また、本実施形態に係る情報処理システムの適用先は、必ずしも医療用の装置やシステムには限定されないことは言うまでもない。 In the above, as an example of the system configuration of the information processing system 1 according to the present embodiment, an example in which the information processing system 1 is configured as a bilateral system has been described with reference to FIG. On the other hand, if the system detects a force applied to a predetermined target such as the forceps 430 held by the arm unit 420, the system configuration of the information processing system 1 according to the present embodiment is not necessarily illustrated in FIG. It is not limited to the bilateral system as shown. As a specific example, the information processing system 1 according to the present embodiment detects a force applied to a medical instrument held by an arm unit operated by a user, and controls the operation of the arm unit based on the detection result. It may be configured to assist. Needless to say, the application destination of the information processing system according to the present embodiment is not necessarily limited to a medical device or system.
 また、上記では、支持アーム装置400のアーム部420により鉗子430が保持され、当該鉗子430に加わる力を検出する場合の一例について説明した。しかしながら、アーム部420により保持される器具は、必ずしも鉗子430には限定されない。例えば、アーム部420により保持される器具は、例えば、医療用顕微鏡や内視鏡等のよう医療用観察装置であってもよいし、医療用に限らず他の器具や機器であってもよい。 In the above description, an example in which the forceps 430 is held by the arm unit 420 of the support arm device 400 and the force applied to the forceps 430 is detected has been described. However, the instrument held by the arm unit 420 is not necessarily limited to the forceps 430. For example, the instrument held by the arm unit 420 may be, for example, a medical observation apparatus such as a medical microscope or an endoscope, or may be another instrument or apparatus that is not limited to medical use. .
 また、上記では、図2に示した支持アーム装置400のアーム部420のように、複数の剛体が連なって構成されたリンク構造の少なくとも一部に対して力センサ450が支持されている場合の一例について説明した。一方で、上記実施形態と同様の手法に基づき、力センサ450による検出結果を利用して、当該力センサ450が支持された一連の構造物のうち少なくとも一部に対して相対的に作用する力を算出することが可能であれば、当該一連の構造物の構成は特に限定されない。具体的な一例として、半導体の検査装置等のように、プローブを所定の軸に沿って平行移動させるような構成において、プローブを保持する部材に対して力センサ450を設けることで、当該プローブに対して相対的に加わる力を算出する構成としてもよい。この場合には、力センサ450による検出結果と、プローブを保持する部材に対して作用する重力や慣性力との差分に基づき、当該プローブに対して相対的に加わる力が算出されればよい。 Further, in the above, when the force sensor 450 is supported on at least a part of a link structure formed by connecting a plurality of rigid bodies, like the arm portion 420 of the support arm device 400 shown in FIG. An example has been described. On the other hand, based on the same method as in the above embodiment, a force that acts relative to at least a part of a series of structures on which the force sensor 450 is supported using the detection result of the force sensor 450. If it is possible to calculate, the configuration of the series of structures is not particularly limited. As a specific example, in a configuration in which a probe is translated along a predetermined axis, such as a semiconductor inspection apparatus, a force sensor 450 is provided for a member that holds the probe. It is good also as a structure which calculates the force added relatively with respect to it. In this case, the force applied relatively to the probe may be calculated based on the difference between the detection result of the force sensor 450 and the gravity or inertial force acting on the member holding the probe.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、
 前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、
 を備える、情報処理装置。
(2)
 前記第2の力は、前記支持部材に対して作用する慣性力と、前記支持部材に対して作用する重力と、のうち少なくともいずれかに基づき前記支持部材に作用する力である、前記(1)に記載の情報処理装置。
(3)
 前記慣性力は、前記支持部材の並進運動に伴い当該支持部材に作用する第1の慣性力と、当該支持部材の回転運動に伴い当該支持部材に作用する第2の慣性力と、のうち少なくともいずれかを含む、前記(2)に記載の情報処理装置。
(4)
 前記演算部は、前記一連の構造物を構成する少なくとも一部の部材の姿勢の検出結果に基づき、前記第2の力を算出する、前記(1)~(3)のいずれか一項に記載の情報処理装置。
(5)
 前記支持部材は、複数の剛体が連なって構成されたリンク構造の少なくとも一部である、前記(1)~(4)のいずれか一項に記載の情報処理装置。
(6)
 前記適用部は、算出された前記差分と、所定の閾値と、の間の比較結果に基づき前記ゲインを決定する、前記(1)~(5)のいずれか一項に記載の情報処理装置。
(7)
 前記適用部は、所定の指示に基づき前記閾値を更新する、前記(6)に記載の情報処理装置。
(8)
 前記適用部は、所定の指示に基づき前記閾値に応じて、前記差分に適用する前記ゲインを決定するための設定を更新する、前記(6)または(7)に記載の情報処理装置。
(9)
 前記適用部は、前記差分のレベルに応じて前記ゲインを決定する、前記(1)~(5)のいずれか一項に記載の情報処理装置。
(10)
 前記支持部材は、少なくとも一部に医療機器を保持し、
 前記演算部は、前記医療機器に対して相対的に作用する前記第3の力を算出する、
 前記(1)~(9)のいずれか一項に記載の情報処理装置。
(11)
 前記医療機器は、鉗子である、前記(10)に記載の情報処理装置。
(12)
 前記医療機器は、医療用観察装置である、前記(10)に記載の情報処理装置。
(13)
 前記演算部は、前記第3の力に基づく情報を、ネットワークを介して外部装置に出力する、前記(1)~(12)のいずれか一項に記載の情報処理装置。
(14)
 前記差分に対して前記ゲインが適用されたアナログ信号をデジタル信号に変換する変換部を備え、
 前記演算部は、当該デジタル信号と当該ゲインとに基づき前記第3の力を算出する、
 前記(1)~(13)のいずれか一項に記載の情報処理装置。
(15)
 コンピュータが、
 支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用することと、
 前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出することと、
 を含む、情報処理方法。
(16)
 複数の剛体が連なって構成されたリンク構造を成し、力センサを支持する支持部材を有するアーム部を備えた支持アーム装置と、
 前記力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、
 前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記アーム部の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、
 を備える、情報処理システム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
Application in which a gain corresponding to a difference between a first force detected by a force sensor supported by a support member and a second force acting on the support member is applied to the difference And
An arithmetic unit that calculates a third force that operates relative to at least a part of the series of structures including the support member based on the difference and the gain applied to the difference. ,
An information processing apparatus comprising:
(2)
The second force is a force acting on the support member based on at least one of an inertial force acting on the support member and gravity acting on the support member (1 ).
(3)
The inertial force is at least one of a first inertial force acting on the support member as the support member translates and a second inertial force acting on the support member as the support member rotates. The information processing apparatus according to (2), including any one of them.
(4)
The calculation unit according to any one of (1) to (3), wherein the calculation unit calculates the second force based on a detection result of an attitude of at least a part of members constituting the series of structures. Information processing device.
(5)
The information processing apparatus according to any one of (1) to (4), wherein the support member is at least a part of a link structure configured by connecting a plurality of rigid bodies.
(6)
The information processing apparatus according to any one of (1) to (5), wherein the application unit determines the gain based on a comparison result between the calculated difference and a predetermined threshold value.
(7)
The information processing apparatus according to (6), wherein the application unit updates the threshold based on a predetermined instruction.
(8)
The information processing apparatus according to (6) or (7), wherein the application unit updates a setting for determining the gain to be applied to the difference according to the threshold value based on a predetermined instruction.
(9)
The information processing apparatus according to any one of (1) to (5), wherein the application unit determines the gain according to a level of the difference.
(10)
The support member holds a medical device at least in part,
The computing unit calculates the third force acting relatively to the medical device;
The information processing apparatus according to any one of (1) to (9).
(11)
The information processing apparatus according to (10), wherein the medical device is forceps.
(12)
The information processing apparatus according to (10), wherein the medical device is a medical observation apparatus.
(13)
The information processing apparatus according to any one of (1) to (12), wherein the calculation unit outputs information based on the third force to an external device via a network.
(14)
A conversion unit that converts an analog signal to which the gain is applied to the difference into a digital signal;
The calculation unit calculates the third force based on the digital signal and the gain.
The information processing apparatus according to any one of (1) to (13).
(15)
Computer
Applying a gain corresponding to the difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member to the difference. When,
Calculating a third force acting relative to at least a part of the series of structures including the support member based on the difference and the gain applied to the difference;
Including an information processing method.
(16)
A support arm device comprising an arm portion having a support member for supporting a force sensor, comprising a link structure configured by connecting a plurality of rigid bodies;
An application unit that applies a gain according to the difference between the first force detected by the force sensor and the second force acting on the support member to the difference;
An arithmetic unit that calculates a third force that acts relative to at least a part of the arm unit based on the difference and the gain applied to the difference;
An information processing system comprising:
 1   情報処理システム
 100 制御装置
 101、111 アンプ
 103 減算部
 107 A/D変換部
 109 D/A変換部
 130 演算部
 131 力モーメント演算部
 133 動力学演算部
 150 折線ゲイン特性回路
 160 折線ゲイン特性制御部
 161 可変アンプ
 163 ゲイン制御部
 165 閾値検出部
 167 折線特性制御部
 200 制御装置
 400 支持アーム装置
 410 ベース部
 420 アーム部
 430 鉗子
 440 支持アーム装置
 450 力センサ
 460 検出部
DESCRIPTION OF SYMBOLS 1 Information processing system 100 Control apparatus 101, 111 Amplifier 103 Subtraction part 107 A / D conversion part 109 D / A conversion part 130 Calculation part 131 Force moment calculation part 133 Dynamics calculation part 150 Polygonal line gain characteristic circuit 160 Polygonal line gain characteristic control part 161 Variable Amplifier 163 Gain Control Unit 165 Threshold Value Detection Unit 167 Polygonal Line Characteristic Control Unit 200 Control Device 400 Support Arm Device 410 Base Unit 420 Arm Unit 430 Forceps 440 Support Arm Device 450 Force Sensor 460 Detection Unit

Claims (16)

  1.  支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、
     前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、
     を備える、情報処理装置。
    Application in which a gain corresponding to a difference between a first force detected by a force sensor supported by a support member and a second force acting on the support member is applied to the difference And
    An arithmetic unit that calculates a third force that operates relative to at least a part of the series of structures including the support member based on the difference and the gain applied to the difference. ,
    An information processing apparatus comprising:
  2.  前記第2の力は、前記支持部材に対して作用する慣性力と、前記支持部材に対して作用する重力と、のうち少なくともいずれかに基づき前記支持部材に作用する力である、請求項1に記載の情報処理装置。 2. The second force is a force acting on the support member based on at least one of an inertial force acting on the support member and a gravity acting on the support member. The information processing apparatus described in 1.
  3.  前記慣性力は、前記支持部材の並進運動に伴い当該支持部材に作用する第1の慣性力と、当該支持部材の回転運動に伴い当該支持部材に作用する第2の慣性力と、のうち少なくともいずれかを含む、請求項2に記載の情報処理装置。 The inertial force is at least one of a first inertial force acting on the support member as the support member translates and a second inertial force acting on the support member as the support member rotates. The information processing apparatus according to claim 2, including any one of them.
  4.  前記演算部は、前記一連の構造物を構成する少なくとも一部の部材の姿勢の検出結果に基づき、前記第2の力を算出する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the calculation unit calculates the second force based on a detection result of an attitude of at least a part of members constituting the series of structures.
  5.  前記支持部材は、複数の剛体が連なって構成されたリンク構造の少なくとも一部である、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the support member is at least a part of a link structure configured by connecting a plurality of rigid bodies.
  6.  前記適用部は、算出された前記差分と、所定の閾値と、の間の比較結果に基づき前記ゲインを決定する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the application unit determines the gain based on a comparison result between the calculated difference and a predetermined threshold value.
  7.  前記適用部は、所定の指示に基づき前記閾値を更新する、請求項6に記載の情報処理装置。 The information processing apparatus according to claim 6, wherein the application unit updates the threshold based on a predetermined instruction.
  8.  前記適用部は、所定の指示に基づき前記閾値に応じて、前記差分に適用する前記ゲインを決定するための設定を更新する、請求項6に記載の情報処理装置。 The information processing apparatus according to claim 6, wherein the application unit updates a setting for determining the gain to be applied to the difference according to the threshold value based on a predetermined instruction.
  9.  前記適用部は、前記差分のレベルに応じて前記ゲインを決定する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the application unit determines the gain according to the level of the difference.
  10.  前記支持部材は、少なくとも一部に医療機器を保持し、
     前記演算部は、前記医療機器に対して相対的に作用する前記第3の力を算出する、
     請求項1に記載の情報処理装置。
    The support member holds a medical device at least in part,
    The computing unit calculates the third force acting relatively to the medical device;
    The information processing apparatus according to claim 1.
  11.  前記医療機器は、鉗子である、請求項10に記載の情報処理装置。 The information processing apparatus according to claim 10, wherein the medical device is a forceps.
  12.  前記医療機器は、医療用観察装置である、請求項10に記載の情報処理装置。 The information processing apparatus according to claim 10, wherein the medical device is a medical observation apparatus.
  13.  前記演算部は、前記第3の力に基づく情報を、ネットワークを介して外部装置に出力する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the calculation unit outputs information based on the third force to an external device via a network.
  14.  前記差分に対して前記ゲインが適用されたアナログ信号をデジタル信号に変換する変換部を備え、
     前記演算部は、当該デジタル信号と当該ゲインとに基づき前記第3の力を算出する、
     請求項1に記載の情報処理装置。
    A conversion unit that converts an analog signal to which the gain is applied to the difference into a digital signal;
    The calculation unit calculates the third force based on the digital signal and the gain.
    The information processing apparatus according to claim 1.
  15.  コンピュータが、
     支持部材により支持された力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用することと、
     前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記支持部材を含む一連の構造物の少なくとも一部に対して相対的に作用する第3の力を算出することと、
     を含む、情報処理方法。
    Computer
    Applying a gain corresponding to the difference between the first force detected by the force sensor supported by the support member and the second force acting on the support member to the difference. When,
    Calculating a third force acting relative to at least a part of the series of structures including the support member based on the difference and the gain applied to the difference;
    Including an information processing method.
  16.  複数の剛体が連なって構成されたリンク構造を成し、力センサを支持する支持部材を有するアーム部を備えた支持アーム装置と、
     前記力センサにより検出された第1の力と、前記支持部材に対して作用する第2の力と、の間の差分に応じたゲインを、当該差分に対して適用する適用部と、
     前記差分と、当該差分に対して適用された前記ゲインと、に基づき、前記アーム部の少なくとも一部に対して相対的に作用する第3の力を算出する演算部と、
     を備える、情報処理システム。
    A support arm device comprising an arm portion having a support member for supporting a force sensor, comprising a link structure configured by connecting a plurality of rigid bodies;
    An application unit that applies a gain according to the difference between the first force detected by the force sensor and the second force acting on the support member to the difference;
    An arithmetic unit that calculates a third force that acts relative to at least a part of the arm unit based on the difference and the gain applied to the difference;
    An information processing system comprising:
PCT/JP2017/031721 2016-10-18 2017-09-04 Information processing device, information processing method, and information processing system WO2018074081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204032 2016-10-18
JP2016204032 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074081A1 true WO2018074081A1 (en) 2018-04-26

Family

ID=62018357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031721 WO2018074081A1 (en) 2016-10-18 2017-09-04 Information processing device, information processing method, and information processing system

Country Status (1)

Country Link
WO (1) WO2018074081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214085A (en) * 2018-06-11 2019-12-19 株式会社大林組 Work machine, control device of work machine and control method of work machine
JP2020089531A (en) * 2018-12-05 2020-06-11 国立大学法人 香川大学 Endoscope training device and endoscope surgery assisting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135188U (en) * 1989-04-12 1990-11-09
JPH02145984U (en) * 1989-05-15 1990-12-11
JP2014148037A (en) * 2013-01-10 2014-08-21 Panasonic Corp Control device for master slave robot, control method, master slave robot and control program
JP2015071219A (en) * 2013-09-06 2015-04-16 パナソニックIpマネジメント株式会社 Control device and control method of master-slave robot, robot, control program of master-slave robot, and integrated electronic circuit for controlling master-slave robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135188U (en) * 1989-04-12 1990-11-09
JPH02145984U (en) * 1989-05-15 1990-12-11
JP2014148037A (en) * 2013-01-10 2014-08-21 Panasonic Corp Control device for master slave robot, control method, master slave robot and control program
JP2015071219A (en) * 2013-09-06 2015-04-16 パナソニックIpマネジメント株式会社 Control device and control method of master-slave robot, robot, control program of master-slave robot, and integrated electronic circuit for controlling master-slave robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214085A (en) * 2018-06-11 2019-12-19 株式会社大林組 Work machine, control device of work machine and control method of work machine
JP7116600B2 (en) 2018-06-11 2022-08-10 株式会社大林組 CONSTRUCTION MACHINE, CONSTRUCTION MACHINE CONTROL DEVICE, AND CONSTRUCTION MACHINE CONTROL METHOD
JP2020089531A (en) * 2018-12-05 2020-06-11 国立大学法人 香川大学 Endoscope training device and endoscope surgery assisting device
JP7243975B2 (en) 2018-12-05 2023-03-22 国立大学法人 香川大学 Traction force evaluation device for endoscopic surgery and endoscopic training device

Similar Documents

Publication Publication Date Title
CN109640860B (en) Motion execution for robotic systems
AU2019354913B2 (en) Automatic endoscope video augmentation
WO2017033379A1 (en) Robot system
JP5028219B2 (en) Manipulator device and medical device system
JP6555248B2 (en) Medical arm device, calibration method and program
US11850741B2 (en) Control device, control method, and master-slave system
WO2017169082A1 (en) Control device and control method
WO2015046081A1 (en) Medical robot arm device, medical robot arm control system, medical robot arm control method, and program
WO2015137040A1 (en) Robot arm device, robot arm control method and program
JP2020065644A (en) Surgery assistance apparatus, control method thereof and program
US20140171778A1 (en) Force measurement apparatus, force measurement method, force measurement program, force measurement integrated electronic circuit, and master-slave device
JP2016214715A (en) Vibration detection module, vibration detection method and surgery system
KR20130136430A (en) Method for presenting force sensor information using cooperative robot control and audio feedback
JP6631528B2 (en) Information processing apparatus, information processing method and program
JP2014148037A (en) Control device for master slave robot, control method, master slave robot and control program
WO2018221035A1 (en) Medical support arm system, control method for medical support arm, and control device for medical support arm
WO2018074081A1 (en) Information processing device, information processing method, and information processing system
TW202007501A (en) Robotic arm
JP2020065904A (en) Surgery assistance apparatus
Payne et al. A new hand-held force-amplifying device for micromanipulation
JP2020065910A (en) Surgery assistance apparatus
WO2015137140A1 (en) Robot arm control device, robot arm control method and program
JP2017029214A (en) Medical instrument and medical support arm device
CN111263620A (en) Master-slave system and control method thereof
WO2024042623A1 (en) Surgical robot and control unit for surgical robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP