WO2018074015A1 - Position control device and position control method for electromagnetic drive-type actuator - Google Patents

Position control device and position control method for electromagnetic drive-type actuator Download PDF

Info

Publication number
WO2018074015A1
WO2018074015A1 PCT/JP2017/025064 JP2017025064W WO2018074015A1 WO 2018074015 A1 WO2018074015 A1 WO 2018074015A1 JP 2017025064 W JP2017025064 W JP 2017025064W WO 2018074015 A1 WO2018074015 A1 WO 2018074015A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
actuator
unit
signal
position control
Prior art date
Application number
PCT/JP2017/025064
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 金武
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017561433A priority Critical patent/JP6351879B1/en
Publication of WO2018074015A1 publication Critical patent/WO2018074015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following

Definitions

  • the present invention relates to a position control device and a position control method for an electromagnetic drive actuator that controls the position of a movable part of the electromagnetic drive actuator.
  • An electromagnetically driven actuator is an actuator that operates a movable part including a coil or a magnet by using an electromagnetic force acting between a current and a magnetic field (for example, between a coil and a magnet).
  • Patent Document 1 discloses a technique for detecting the position of a movable portion of an actuator (hereinafter also simply referred to as “actuator position”) by detecting a counter electromotive force generated in a coil of the actuator. .
  • the speed of the movable part including the objective lens is detected based on the back electromotive force generated in the coil (moving coil) of the actuator, and the position of the movable part of the actuator is detected from this speed. It is described.
  • JP 2001-209950 A (paragraph 0019, FIG. 2)
  • the present invention provides a position control device and a position control method for an electromagnetic drive actuator that can suppress a decrease in position control accuracy of a movable part even when a measurement error occurs in the back electromotive force of the electromagnetic drive actuator.
  • the purpose is to provide.
  • An electromagnetically driven actuator position control apparatus is an apparatus for controlling the position of a movable part of an electromagnetically driven actuator, and the movable part in position control of the movable part of the electromagnetically driven actuator.
  • a position target signal generator that outputs a position target signal indicating the target position of the electromagnetic drive actuator, and a model transfer characteristic that simulates a transfer characteristic of the electromagnetic drive actuator, and based on the model transfer characteristic, the electromagnetic drive actuator
  • An actuator position control model unit that outputs a model position detection signal indicating the position of the movable unit, and a position control that controls the position of the movable unit of the electromagnetically driven actuator based on the position target signal and the model position detection signal Part.
  • a position control method for an electromagnetically driven actuator is a method for controlling the position of a movable part of an electromagnetically driven actuator, wherein the movable in position control of the movable part of the electromagnetically driven actuator is performed.
  • Output the position target signal indicating the target position of the unit, and an actuator position control model unit having a model transfer characteristic simulating the transfer characteristic of the electromagnetic drive type actuator, and based on the model transfer characteristic, the electromagnetic drive type Outputting a model position detection signal indicating the position of the movable part of the actuator; controlling the position of the movable part of the electromagnetically driven actuator based on the position target signal and the model position detection signal;
  • the position control device and the position control method for an electromagnetically driven actuator according to the present invention, even when a measurement error occurs in the back electromotive force of the electromagnetically driven actuator, the position control of the movable part of the electromagnetically driven actuator is performed. A decrease in accuracy can be suppressed.
  • FIG. 2 is a block diagram schematically showing a configuration of an actuator position control model unit in the first embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration of an actuator in the first embodiment.
  • FIG. 3 is a block diagram schematically showing a configuration of an actuator nominal model unit of an actuator position control model unit in the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of processing from activation to stop of the actuator, which is executed in the position control device for an electromagnetically driven actuator according to the first embodiment.
  • 6 is a flowchart illustrating an example of an operation of an execution sequence # 1 of an actuator position control model unit, which is executed in the electromagnetically driven actuator position control device according to the first embodiment.
  • FIG. 3 is a flowchart showing an example of an actuator drive sequence # 1 executed in the electromagnetically driven actuator position control apparatus according to the first embodiment. It is a block diagram which shows schematically the structure of the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 2 of this invention.
  • (A) and (b) are the frequency of the position detection signal act_p with respect to the actuator drive signal Vdr_p when the back electromotive force constant K em of the actuator is changed in the electromagnetically driven actuator position control apparatus according to the second embodiment. It is a figure which shows a characteristic.
  • (A) And (b) is a figure which shows the method of integrating the back electromotive force Vem of an actuator performed in the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 2.
  • FIG. 9 is a diagram showing a relationship between a convergence value of an actuator position detection signal act_p and an integral value of a back electromotive force Vem in the electromagnetically driven actuator position control apparatus according to the second embodiment.
  • (A) and (b), in the position control apparatus of the electromagnetic drive type actuator according to the second embodiment a diagram illustrating a step response of the actuator when changing the counter electromotive force constant K em actuator.
  • 6 is a flowchart illustrating an example of processing from starting to stopping of an actuator, which is executed in the position control device for an electromagnetically driven actuator according to the second embodiment.
  • 10 is a flowchart illustrating an example of an execution sequence # 2 of an actuator position control model unit executed in the position control device for an electromagnetically driven actuator according to the second embodiment.
  • FIG. 10 is a flowchart showing an example of actuator drive pre-processing executed in the position control device for an electromagnetically driven actuator according to the second embodiment.
  • 6 is a flowchart showing an example of an actuator drive sequence # 2 executed in the electromagnetically driven actuator position control apparatus according to the second embodiment.
  • position control device for an electrically driven actuator according to an embodiment of the present invention will be described with reference to the drawings.
  • the position control device for the electrically driven actuator according to the embodiment can also be regarded as a device to which the invention of the position control method for the electrically driven actuator is applied.
  • FIG. 1 is a block diagram schematically showing the configuration of an electromagnetically driven actuator position control apparatus 100 according to Embodiment 1 of the present invention.
  • the electromagnetically driven actuator position control apparatus 100 includes a position target signal generation unit 10, an actuator position control model unit 20, and a position control unit 80.
  • the electromagnetically driven actuator position control device 100 can include an actuator 60. That is, the position control device 100 can make the actuator 60 an internal component or an external component.
  • the actuator 60 is an electromagnetically driven actuator.
  • the position control unit 80 includes a position error detection unit 30, a control filter unit 40, or a drive unit 50. The position control unit 80 controls the position of the movable part of the actuator 60.
  • the position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, and the drive unit 50 can be configured by, for example, a semiconductor integrated circuit that is an electric circuit.
  • the position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, and the drive unit 50, or a part of them are realized using a memory and a processor.
  • the memory is a storage device that stores a program as software.
  • the processor is an information processing unit that executes a program stored in a memory. That is, these components can also be realized using a computer, for example.
  • the actuator 60 is a device that operates a movable part including a coil or a magnet using an electromagnetic force acting between an electric current and a magnetic field.
  • the space between the current and the magnetic field is, for example, between the coil and the magnet.
  • the movable part provided with the coil or the magnet is, for example, a motor rotor, a holder for holding an optical member, or the like.
  • the operation of the movable part is, for example, rotation, swing, displacement, deformation, movement, and the like.
  • the actuator 60 includes an actuator magnetic circuit and an actuator mechanism circuit unit.
  • the actuator magnetic circuit has a coil resistance and a coil inductance.
  • the actuator magnetic circuit corresponds to a voltage / current converter 602a and a current / torque converter 603a in FIG.
  • the actuator mechanism circuit part includes a movable part.
  • the actuator mechanism circuit unit corresponds to, for example, a torque speed conversion unit 604a, a speed counter electromotive force conversion unit 605a, and a speed position conversion unit 606a in FIG.
  • control unit 90 can output a control signal to each of the components 10, 20, 30, 40, 50 in order to control the overall operation of the position control device 100 for the electromagnetically driven actuator.
  • the control unit 90 can be formed by a semiconductor integrated circuit.
  • the control unit 90 can also be realized using a memory and a processor.
  • the memory is a storage device that stores a program as software.
  • the processor is an information processing unit that executes a program stored in a memory. That is, these components can also be realized using a computer, for example.
  • the position target signal generator 10 outputs a position target signal ref_p.
  • the position target signal ref_p indicates a target position in the position control of the actuator 60.
  • the position control of the actuator 60 is the position control of the movable part of the actuator 60.
  • the position target signal ref_p is, for example, a signal based on one or more values stored in advance in a storage unit (not shown) in the position target signal generation unit 10.
  • the position target signal ref_p may be a signal received from the control unit 90 or an external device (not shown).
  • the actuator position control model unit 20 includes an actuator nominal model unit 25.
  • the actuator nominal model unit 25 has a model transfer characteristic that simulates the ideal transfer characteristic of the actuator 60.
  • the actuator nominal model unit 25 is shown in FIG.
  • the actuator position control model unit 20 outputs a model position detection signal act_p_n.
  • the model position detection signal act_p_n is a signal that simulates the position detection signal act_p.
  • the position detection signal act_p is a signal indicating the position of the actuator 60. Details of the actuator position control model unit 20 will be described with reference to FIG.
  • the position error detection unit 30 receives the position target signal ref_p from the position target signal generation unit 10.
  • the position error detection unit 30 receives the model position detection signal act_p_n from the actuator position control model unit 20.
  • the position error detection unit 30 outputs a position error signal er_p obtained by calculating these differences (ref_p ⁇ act_p_n).
  • the control filter unit 40 receives the position error signal er_p from the position error detection unit 30.
  • the control filter unit 40 outputs a position control signal cont_p based on the position error signal er_p.
  • the position control signal cont_p is a position control signal for performing position control of the actuator 60.
  • the control filter unit 40 can include, for example, a PID (Proportional Integral Derivative) control filter.
  • the control filter unit 40 may generate the position control signal cont_p based on this PID.
  • the driving unit 50 receives the position control signal cont_p from the control filter unit 40.
  • the drive unit 50 outputs a drive signal Vdr_p based on the position control signal cont_p.
  • the drive signal Vdr_p is a drive voltage or a drive current amplified to a level necessary for driving the actuator 60, for example.
  • the driving of the actuator 60 is, for example, rotation, swinging, displacement, deformation or movement of the movable part of the actuator 60.
  • the actuator 60 receives the drive signal Vdr_p from the drive unit 50.
  • the actuator 60 operates the movable part according to the drive signal Vdr_p.
  • the actuator 60 outputs an actuator position detection signal act_p according to the operation of the movable part.
  • the actuator 60 generates a speed detection signal and a back electromotive force.
  • the actuator 60 acquires a speed detection signal and a counter electromotive force.
  • the speed detection signal is, for example, v11 in FIG.
  • the back electromotive force is, for example, Vem in FIG.
  • FIG. 2 is a block diagram schematically showing the configuration of the actuator position control model unit 20 in the first embodiment.
  • the actuator position control model unit 20 includes a model position target signal generation unit 21, a model position error detection unit 22, a model control filter unit 23, a model drive unit 24, and an actuator nominal model unit 25.
  • the actuator position control model unit 20 is a simulation circuit of the actuator 60 having a model transmission characteristic that simulates an ideal transmission characteristic of the actuator 60.
  • the model position target signal generator 21 outputs a model position target signal ref_p_n.
  • the model position target signal ref_p_n indicates a target position in the position control of the actuator nominal model unit 25.
  • the model position target signal ref_p_n is preferably a signal having the same value as the position target signal ref_p in the position control of the movable part of the actuator 60. The reason will be described later using mathematical expressions.
  • the model position error detection unit 22 receives the model position target signal ref_p_n from the model position target signal generation unit 21.
  • the model position error detection unit 22 receives the model position detection signal act_p_n from the actuator nominal model unit 25.
  • the model position error detection unit 22 outputs a model position error signal er_p_n obtained by calculating these differences (ref_p_n ⁇ act_p_n).
  • the model control filter unit 23 receives the model position error signal er_p_n from the model position error detection unit 22.
  • the model control filter unit 23 outputs a model position control signal cont_p_n based on the model position error signal er_p_n.
  • the model control filter unit 23 has the same configuration as the control filter unit 40 in the position control of the movable part of the actuator 60.
  • the parameter value of the control filter of the model control filter unit 23 is desirably the same as that of the control filter unit 40. The reason will be described later using mathematical expressions.
  • the model driving unit 24 receives the model position control signal cont_p_n from the model control filter unit 23.
  • the model driving unit 24 outputs a model driving signal Vdr_p_n based on the model position control signal cont_p_n. It is desirable that the model driving unit 24 has the same configuration as the driving unit 50 in the position control of the actuator 60. The reason will be described later using mathematical expressions.
  • the actuator nominal model unit 25 receives the model drive signal Vdr_p_n from the model drive unit 24.
  • the actuator nominal model unit 25 generates a model position detection signal act_p_n, a model speed detection signal, and a model back electromotive force based on the model drive signal Vdr_p_n.
  • the actuator nominal model unit 25 acquires a model position detection signal act_p_n, a model speed detection signal, and a model back electromotive force based on the model drive signal Vdr_p_n.
  • the model position detection signal act_p_n is a model position detection signal indicating the position of the actuator nominal model unit 25.
  • FIG. 3 is a block diagram schematically showing the configuration of the actuator 60 in the first embodiment.
  • FIG. 3 shows a configuration of a DC motor (Direct-Current Motor) as the actuator 60.
  • DC motor Direct-Current Motor
  • the actuator 60 includes, for example, a subtraction unit 601a, a voltage / current conversion unit 602a, a current torque conversion unit 603a, a torque speed conversion unit 604a, a speed counter electromotive force conversion unit 605a, a speed position conversion unit 606a, And a position unit converter 607a.
  • the subtraction unit 601a receives the drive signal Vdr_p from the drive unit 50. Further, the subtraction unit 601a receives the back electromotive force Vem from the speed back electromotive force conversion unit 605a. The subtractor 601a calculates a voltage difference (Vdr_p ⁇ Vem) between the drive signal Vdr_p and the back electromotive force Vem. Then, the subtraction unit 601a outputs a voltage difference signal Vdr11 corresponding to this voltage difference.
  • the voltage / current converter 602a receives the voltage difference signal Vdr11 from the subtractor 601a.
  • the voltage-current converter 602a outputs a current (first current) Idr11 based on the voltage difference signal Vdr11.
  • the transfer function of the voltage-current converter 602a is 1 / (L m s + R m ) when expressed using the coil resistance R m and the coil inductance L m of the actuator magnetic circuit of the actuator 60. Note that s is a Laplace variable.
  • the current torque converter 603a receives the current Idr11 from the voltage / current converter 602a.
  • the current torque converter 603a outputs a torque (first torque) ⁇ 11 based on the current Idr11.
  • the transfer function of the current torque conversion unit 603a is a torque constant K tm of the actuator 60.
  • the torque speed conversion unit 604a receives the torque ⁇ 11 from the current torque conversion unit 603a.
  • the torque speed conversion unit 604a outputs the operation of the speed (first speed) v11 of the movable part of the actuator 60 based on the torque ⁇ 11.
  • the transfer function of the torque speed conversion unit 604a is 1 / J m s when expressed using the inertia J m of the actuator mechanism circuit unit of the actuator 60.
  • the speed counter electromotive force converter 605a receives the speed v11 of the movable part from the torque speed converter 604a.
  • the speed counter electromotive force conversion unit 605a outputs a counter electromotive force (first counter electromotive force) Vem based on the speed v11.
  • the transfer function of the speed counter electromotive force conversion unit 605 a is the counter electromotive force constant K em of the actuator magnetic circuit of the actuator 60.
  • the speed position converter 606a receives the speed v11 of the movable part from the torque speed converter 604a.
  • the speed position converter 606a outputs a position signal (first position signal) p11 indicating the position of the movable part (first position) based on the speed v11.
  • the speed position conversion unit 606a is an integrator.
  • the transfer characteristic of the speed position conversion unit 606a is 1 / s.
  • the position unit converter 607a receives the position signal p11 from the speed position converter 606a.
  • the position unit converter 607a outputs a position detection signal act_p (position detection signal act_p of the actuator 60) based on the position signal p11.
  • the position unit conversion unit 607a is a converter that converts the unit of the position signal p11 from radians [rad (radian)] to degrees [deg (degree)]. Its transfer characteristic is 180 / ⁇ .
  • the position unit conversion unit 607a outputs a position detection signal act_p whose unit is degrees [deg].
  • FIG. 4 is a block diagram schematically showing the configuration of the actuator nominal model unit 25 in the first embodiment.
  • the actuator nominal model unit 25 includes a model subtraction unit 251a, a model voltage / current conversion unit 252a, a model current torque conversion unit 253a, a model torque speed conversion unit 254a, a model speed counter electromotive force conversion unit 255a, A model speed position conversion unit 256a and a model position unit conversion unit 257a are provided.
  • the model subtraction unit 251a receives the model drive signal Vdr_p_n from the model drive unit 24. Further, the model subtraction unit 251a receives the model back electromotive force (second back electromotive force) Vemn from the model speed back electromotive force conversion unit 255a. The model subtraction unit 251a detects and outputs a model voltage difference signal (second voltage difference signal) Vdr21 which is a difference between these signals (Vdr_p_n ⁇ Vemn).
  • the model voltage / current converter 252a receives the model voltage difference signal Vdr21 from the model subtractor 251a.
  • the model voltage / current converter 252a outputs a current (second current) Idr21 based on the model voltage difference signal Vdr21.
  • the transfer function of the model voltage / current converter 252a is 1 / (L mn s + R mn ).
  • the coil resistance R mn is the coil resistance of the actuator magnetic circuit of the actuator nominal model unit 25.
  • the coil inductance L mn is the coil inductance of the actuator magnetic circuit of the actuator nominal model unit 25.
  • the model current torque converter 253a receives the current Idr21 from the model voltage / current converter 252a.
  • the model current torque converter 253a outputs a torque (second torque) ⁇ 21 based on the current Idr21.
  • the model current torque conversion unit 253a represents the actuator nominal model unit 25 with a torque constant K tmn and has a transfer function K tmn .
  • the model torque speed conversion unit 254a receives the torque ⁇ 21 from the model current torque conversion unit 253a.
  • the model torque speed conversion unit 254a outputs the moving part speed (second speed) v21 based on the torque ⁇ 21.
  • the transfer function of the model torque speed conversion unit 254a is 1 / J mn s when expressed using the inertia J mn of the actuator mechanism circuit unit of the actuator nominal model unit 25.
  • the model speed counter electromotive force conversion unit 255a receives the speed v21 from the model torque speed conversion unit 254a.
  • the model speed counter electromotive force conversion unit 255a outputs a model counter electromotive force (second counter electromotive force) Vemn based on the speed v21.
  • the transfer characteristic of the model speed counter electromotive force conversion unit 255a is the counter electromotive force constant K emn of the actuator magnetic circuit of the actuator nominal model unit 25.
  • the model speed position converter 256a receives the speed v21 of the movable part from the model torque speed converter 254a.
  • the model speed position conversion unit 256a outputs a model position signal (second position signal) p21 indicating a position based on the speed v21.
  • the model speed position conversion unit 256a is an integrator.
  • the transfer characteristic of the model speed position conversion unit 256a is 1 / s.
  • the model position unit conversion unit 257a receives the model position signal p21 from the model speed position conversion unit 256a.
  • the model position unit conversion unit 257a outputs a model position detection signal act_p_n based on the model position signal p21.
  • the model position detection signal act_p_n is a model position detection signal of the actuator nominal model unit 25.
  • the model position unit conversion unit 257a is a converter that converts the unit of the model position signal p21 from radians [rad] to degrees [deg].
  • the transfer characteristic of the model position unit converter 257a is 180 / ⁇ .
  • the model position unit conversion unit 257a outputs a model position detection signal act_p_n whose unit is degrees [deg].
  • the transfer functions of the control filter unit 40, the drive unit 50, and the actuator 60 shown in FIG. 1 are denoted as K (s), D (s), and P (s), respectively.
  • the transfer functions of the model control filter unit 23, the model driving unit 24, and the actuator nominal model unit 25 in FIG. 2 are denoted as K n (s), D n (s), and P n (s), respectively.
  • the position detection signal act_p of the actuator 60 is expressed by the following equation (1) using the position target signal ref_p and the model position detection signal act_p_n of the actuator nominal model unit 25.
  • model position detection signal act_p_n of the actuator nominal model unit 25 is expressed by the following equation (2) using the model position target signal ref_p_n from the model position target signal generation unit 21.
  • the actuator 60 can be finally converged to the position target signal ref_p. it can.
  • a position detection signal act_p is input to the position error detection unit 30 instead of the model position detection signal act_p_n.
  • the model position detection signal act_p_n simulated in the actuator position control model unit 20 is input to the position error detection unit 30 instead of the position detection signal act_p.
  • the actuator position control model unit 20 is configured to have a transfer characteristic that simulates the transfer characteristic of the actual actuator 60. Therefore, it is possible to control the position of the movable part of the actuator 60 by open loop control without using a position sensor that detects the position of the actuator 60.
  • a model position detection signal act_p_n in the actuator position control model unit 20 is used as a signal used for position control of the movable part of the actuator 60.
  • any one of the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n may be used instead of the model position detection signal act_p_n. it can.
  • the model position error signal er_p_n is output from the model position error detection unit 22.
  • the model position control signal cont_p_n is output from the model control filter unit 23.
  • the model drive signal Vdr_p_n is output from the model drive unit 24.
  • model position error signal er_p_n output from the model position error detection unit 22 is used as a signal used for position control of the movable part of the actuator 60 will be described.
  • the model position error signal er_p_n is input to the control filter unit 40. Then, the control filter unit 40 generates a position control signal cont_p based on the model position error signal er_p_n.
  • model position control signal cont_p_n output from the model control filter unit 23 is used as a signal used for position control of the movable part of the actuator 60 will be described.
  • the model position control signal cont_p_n is input to the drive unit 50.
  • the driving unit 50 is configured to generate the driving signal Vdr_p based on the model position control signal cont_p_n.
  • the model drive signal Vdr_p_n output from the model drive unit 24 is used as a signal used for position control of the movable part of the actuator 60.
  • the model drive signal Vdr_p_n is input to the actuator 60.
  • the actuator 60 operates based on the model drive signal Vdr_p_n.
  • model position error signal er_p_n model position control signal cont_p_n
  • model drive signal Vdr_p_n model drive signal
  • the magnetic characteristics of the coil of the actuator 60 for example, coil resistance R m, the coil inductance L m, and there is a counter electromotive force constant K em.
  • the magnetic characteristic of the coil of the actuator 60 is a parameter of the actuator magnetic circuit.
  • FIG. 5A shows the frequency characteristic (gain characteristic) of the gain.
  • the horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB].
  • FIG. 5B shows the frequency characteristics (phase characteristics) of the phase.
  • the horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
  • FIGS. 6 (a) and 6 (b) the position control device 100 of the electromagnetic driven actuator according to the first embodiment, the actuator 60 when changing the coil resistance R m of the actuator 60 and the coil inductance L m
  • FIG. 6A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed
  • FIG. 6B shows a step response of the position detection signal act_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed.
  • the position detection signal act_p of the actuator 60 is changed from 0 [deg] to 30 [deg]. Yes. It can be seen that the actuator 60 has converged to the position target signal ref_p.
  • the time from when the position target signal ref_p of the actuator 60 is changed to when the actuator 60 converges to the position target signal ref_p is T2.
  • the time at which the position target signal ref_p is changed is 1 second in FIG. 6B.
  • FIG. 7 (a) and 7 (b) are diagrams showing the open loop characteristics of the actuator position control model unit 20 in the position control device 100 for an electromagnetically driven actuator according to the first embodiment.
  • FIG. 7A shows gain characteristics.
  • the horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB].
  • FIG. 7B shows phase characteristics.
  • the horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
  • the frequency f0 at which the gain is 0 [dB], the phase f0PH at the frequency f0, and the gain f1GA at the frequency f1 at which the phase is ⁇ 180 [deg] are the control performance. It becomes an index of control stability.
  • f0 3.455 [Hz]
  • f0PH ⁇ 145 [deg]
  • f1GA ⁇ 37.72 [dB]. Therefore, the control band is 3.455 [Hz].
  • the gain margin is 37.72 [dB].
  • the position control of the actuator in the prior art is performed by feedback control in which the position detection signal act_p of the actuator 60 is input to the position error detection unit 30. For this reason, it is necessary to design the parameters of the control filter unit 40 in consideration of variations in parameters representing the actuator magnetic circuit of the actuator 60. In this case, the design freedom of the parameters of the control filter unit 40 for achieving both control performance and control stability is low.
  • the position control of the movable part of the actuator 60 is performed by open loop control.
  • the parameter is a coil resistance, a coil inductance, a counter electromotive force constant, or the like.
  • the actuator position control model unit 20 in the first embodiment performs feedback control therein.
  • the actuator nominal model unit 25 uniquely determines a parameter representing the actuator magnetic circuit. For this reason, the design freedom of the parameter of the model control filter part 23 is high.
  • ⁇ 1-2 Operation Next, the operation of the position controller 100 for the electromagnetically driven actuator according to the first embodiment will be described with reference to FIGS. That is, a method for controlling the position of the electromagnetically driven actuator will be described. The operation from FIG. 8 to FIG. 10 is executed based on a control signal from the control unit 90 that controls the overall operation of the position control apparatus 100 for the electromagnetically driven actuator.
  • FIG. 8 is a flowchart showing an example of processing from starting to stopping of the actuator 60 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment.
  • step S1 when the actuator 60 is activated, an execution sequence # 1 of the actuator position control model unit 20 is executed in accordance with a control signal output from the control unit 90 (step S1). Details of the execution sequence # 1 of the actuator position control model unit 20 will be described with reference to FIG.
  • step S2 the drive sequence # 1 of the actuator 60 is executed in accordance with the control signal output from the control unit 90. Details of the drive sequence # 1 of the actuator 60 will be described with reference to FIG.
  • FIG. 9 is a flowchart showing an example of an operation of the execution sequence # 1 of the actuator position control model unit 20 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment.
  • FIG. 9 shows details of the execution sequence # 1 of the actuator position control model unit in step S1 of FIG. In the description of FIG. 9, FIG. 1, FIG. 2, and FIG. 4 are also referred to.
  • the control unit 90 initializes a variable index k to 0 (step S11).
  • the index k is an integer of 0 or more.
  • step S12 the drive sequence # 1 of the actuator position control model unit 20 is executed (step S12).
  • the actuator position control model unit 20 is shown in FIG.
  • the model position detection signal act_p_n at the index k is acquired (step S13).
  • the model position detection signal act_p_n obtained here is a candidate for the model position detection signal act_p_n output from the actuator position control model unit 20.
  • control unit 90 determines whether or not the reference time T1 has elapsed since the start of the execution sequence # 1 of the actuator position control model unit 20 in step S11 (step S14).
  • the reference time T1 is determined in advance, for example.
  • the index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60.
  • the increment of the index k will be described in step S15 described later.
  • the index k is an index for obtaining the model position detection signal act_p_n from the actuator nominal model unit 25.
  • the reference time T1 includes at least the time T2.
  • the time T2 is a time until the position indicated by the model position detection signal act_p_n converges to the position P2 when the position indicated by the model position target signal ref_p_n in the actuator position control model unit 20 is changed from the position P1 to the position P2. That is, time T1> time T2.
  • the time T2 is, for example, the time T2 shown in FIG.
  • converge means that the position indicated by the model position detection signal act_p_n is set to the position P2. That is, it can be considered that the value indicated by the model position detection signal act_p_n has stopped after the settling time has elapsed.
  • the setting of the position indicated by the model position detection signal act_p_n means, for example, that it remains within an allowable range within 5% of the position P2. This allowable range of convergence may be, for example, within 2% of the position P2, and is not limited to within 5% of the position P2.
  • step S14 determines whether the time T1 has not elapsed. If the determination in step S14 is “NO”, the process proceeds to step S15. That is, if the time T1 has not elapsed, the process proceeds to step S15.
  • step S13 the process of acquiring the model position detection signal act_p_n at the index k to which “1” has been added is performed again (step S13).
  • step S14 determines whether the determination in step S14 is “YES”. If the determination in step S14 is “YES”, a candidate for the model position detection signal act_p_n is acquired as the model position detection signal act_p_n. That is, when the time T1 has elapsed, a candidate for the model position detection signal act_p_n is acquired as the model position detection signal act_p_n.
  • the execution sequence # 1 of the actuator position control model unit 20 is completed. That is, the position indicated by the model position detection signal act_p_n has converged to the position P2. For this reason, the output of the model position detection signal act_p_n to the position error detection unit 30 is completed.
  • FIG. 10 is a flowchart showing an example of the drive sequence # 1 of the actuator 60 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment.
  • FIG. 10 shows details of the drive sequence # 1 of the actuator 60 in step S2 of FIG. In the description of FIG. 10, FIG. 1 and FIG. 3 are also referred to.
  • the control unit 90 initializes the index k to 0 (step S21).
  • the index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60.
  • the increment of the index k will be described in step S24 described later.
  • the index k is an index for controlling the position of the movable part of the actuator 60.
  • the index k is an integer of 0 or more.
  • the position target signal ref_p at the index k and the model position detection signal act_p_n at the actuator position control model unit 20 are input to the position error detection unit 30 (step S22).
  • the position error detection unit 30 calculates a difference (ref_p (k) ⁇ act_p_n (k)) between ref_p (k) that is a position target signal at the index k and act_p_n (k) that is a model position detection signal at the index k. .
  • step S23 the control unit 90 determines whether or not the index k is larger than T1 / ts (step S23).
  • the reference time T1 is the time used in step S14 of FIG.
  • step S23 the actuator position control model unit 20 determines the time until the position indicated by the model position detection signal act_p_n converges to the position P2 after the model position target signal ref_p_n is changed from the position P1 to the position P2. This is equivalent to determining whether the time has elapsed. Thereby, in the position control of the movable part of the actuator 60, it can be determined whether or not the position indicated by the position detection signal act_p has converged to the position P2.
  • step S23 determines whether the determination in step S23 is “NO” or “NO”. If the determination in step S23 is “NO”, the process proceeds to step S24. That is, if the index k is not greater than T1 / ts, the process proceeds to step S24.
  • step S22 the process in which the position target signal ref_p and the model position detection signal act_p_n at the index k to which “1” is added in step S22 is input to the position error detection unit 30 is performed again.
  • step S23 If the determination in step S23 is “YES”, the drive sequence # 1 of the actuator 60 is completed. That is, when the index k is larger than T1 / ts, the drive sequence # 1 of the actuator 60 is completed. That is, since it is determined that the position indicated by the position detection signal act_p has converged to the position P2, the driving process of the actuator 60 is completed.
  • the model position detection signal act_p_n output from the actuator nominal model unit 25 is used as the signal acquired in step S13.
  • the acquired signals are the model position error signal er_p_n output from the model position error detection unit 22, the model position control signal cont_p_n output from the model control filter unit 23, and the model drive output from the model drive unit 24. Any of the signals Vdr_p_n may be used.
  • model position error signal er_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 of FIG. 9, the model position error signal er_p_n at the index k is converted to the control filter unit 40 in step S22 of FIG. Is input.
  • model position control signal cont_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 in FIG. 9, the model position control signal cont_p_n in the index k is sent to the drive unit 50 in step S22 in FIG. Entered.
  • the model drive signal Vdr_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 in FIG. 9, the model drive signal Vdr_p_n in the index k is input to the actuator 60 in step S22 in FIG. .
  • the same effect can be obtained by selecting any of the model position detection signal act_p_n, the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n in the actuator position control model unit 20.
  • ⁇ 1-3 Effect As described above, according to the position control device 100 and the position control method of the electromagnetic drive actuator according to the first embodiment, the position control device 100 of the electromagnetic drive actuator An actuator position control model unit 20 that simulates ideal transfer characteristics and outputs a model position detection signal act_p_n indicating an ideal detection position of the actuator 60 is provided.
  • the model position detection signal act_p_n generated by the actuator position control model unit 20 is input to the position error detection unit 30 of the position control device 100 for the electromagnetically driven actuator.
  • the position control unit 80 performs position control of the movable part of the actuator 60 without using a position sensor by open loop control using the model position detection signal act_p_n. Thereby, even when a measurement error occurs in the back electromotive force of the electromagnetic drive actuator, it is possible to suppress a decrease in position control accuracy of the movable part of the electromagnetic drive actuator.
  • the coil resistance R m of the actuator 60 and the coil inductance L m even changes, the position control section 80, the position control of the movable portion of the actuator 60 can be performed accurately.
  • Embodiment 2 "2-1" configuration in the first embodiment among the magnetic characteristics of the coil of the actuator 60 has been described position control method of a movable part of the actuator 60 when the coil resistance R m and the coil inductance L m is changed .
  • the magnetic characteristic of the coil of the actuator 60 is a parameter of the actuator magnetic circuit.
  • a method for controlling the position of the actuator 60 when the back electromotive force constant K em is changed will be described.
  • FIG. 11 is a block diagram schematically showing the configuration of the position control device 200 for an electromagnetically driven actuator according to the second embodiment.
  • the position control device 200 for an electromagnetically driven actuator according to the second embodiment is substantially the same as the configuration of the position control device 100 for an electromagnetically driven actuator according to the first embodiment.
  • the position control device 200 is different from the position control device 100 in that it includes a multiplication unit (first multiplication unit) 71 and a multiplication unit (second multiplication unit) 72.
  • the position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, the drive unit 50, and the actuator 60 shown in FIG. 11 have the same configurations as those shown in FIG. . Therefore, the description is omitted. Further, the control unit 90 controls the overall operation of the position control device 200.
  • the multiplication unit 71 multiplies the position target signal ref_p by ⁇ times.
  • the multiplier 71 outputs the position target signal ⁇ ⁇ ref_p multiplied by ⁇ .
  • the multiplier 72 multiplies the model position detection signal act_p_n by ⁇ times.
  • the multiplier 72 outputs a model position detection signal ⁇ ⁇ act_p_n multiplied by ⁇ times.
  • FIG. 12A and 12B show the drive signal Vdr_p of the actuator 60 when the back electromotive force constant K em of the actuator 60 is changed in the position control device 200 for the electromagnetically driven actuator according to the second embodiment. It is a figure which shows the frequency characteristic of the position detection signal act_p with respect to.
  • FIG. 12A shows the frequency characteristic (gain characteristic) of the gain. The horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB].
  • FIG. 12B shows a frequency characteristic (phase characteristic) of the phase. The horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
  • FIGS. 13A and 13B are diagrams showing a method of integrating the back electromotive force Vem of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 13A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second.
  • FIG. 13B shows the back electromotive force Vem of the actuator 60 that is generated when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second.
  • the back electromotive force of the actuator 60 is a back electromotive force generated in the coil of the actuator 60.
  • the position of the position detection signal act_p when the position target signal ref_p in the position control of the movable part of the actuator 60 is changed is obtained by integrating the speed of the movable part of the actuator 60.
  • the back electromotive force Vem of the actuator 60 is proportional to the speed of the movable part. Therefore, the model back electromotive force Vemn of the actuator nominal model unit 25 obtained by time integration is compared with the one obtained by integrating the back electromotive force Vem of the actuator 60 by a predetermined time. Thereby, the correction amount of the position target signal ref_p for converging the position of the movable part of the actuator 60 to the position indicated by the position target signal ref_p can be obtained.
  • the integral value (first counter electromotive force integral value) of the back electromotive force Vem of the actuator 60 is expressed by the following equation (6).
  • N is represented by the following equation (7).
  • round (T3 / ts) means an integer closest to T3 / ts. That is, round (T3 / ts) is an integer obtained by rounding off the decimal point.
  • the time T3 is at least a time T4 until the position indicated by the model position detection signal act_p_n converges to the position P2 when the position indicated by the model position target signal ref_p_n in the actuator position control model unit 20 is changed from the position P1 to the position P2. Including. That is, time T3> time T4.
  • Time T3 is, for example, a predetermined reference time.
  • Time T4 is time T4 in FIG.
  • converge means that the position indicated by the model position detection signal act_p_n is set to the position P2. That is, it means that the position indicated by the model position detection signal act_p_n stays within 5% of the position P2, for example.
  • the 5% may be 2%, for example, and is not limited.
  • the equation for obtaining the integral value of Vem is not limited to Equation (6).
  • FIG. 14 shows the relationship between the convergence value [deg] of the position detection signal act_p of the actuator 60 and the integral value [V ⁇ s] of the back electromotive force Vem in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. FIG. 14 considers the error of the back electromotive force Vem.
  • the error of the counter electromotive force Vem is 1% of the maximum value of the counter electromotive force Vem in FIG.
  • 13 (a) and 13 (b) show a method for obtaining the integral value of the back electromotive force Vem of the actuator 60.
  • the integral value (second counter electromotive force integral value) of the model counter electromotive force Vemn of the actuator nominal model unit 25 can also be obtained by the same method.
  • the drive signal Vdr_p in the position control of the movable portion of the actuator 60 is equal to the model drive signal Vdr_p_n in the actuator position control model unit 20. Therefore, the signal ⁇ ⁇ Vdr_p input to the actuator 60 has the same value as the signal ⁇ ⁇ Vdr_p_n obtained by multiplying the model drive signal Vdr_p_n by ⁇ .
  • the multipliers 71 and 72 receive the position target signal ref_p from the position target signal generator 10 and the model position detection signal act_p_n from the actuator position control model unit 20, respectively. Then, the multipliers 71 and 72 output signals each obtained by multiplying the position target signal ref_p and the model position detection signal act_p_n by ⁇ . ⁇ is expressed by the following equation (8).
  • the multipliers 71 and 72 store ⁇ in advance. However, the storage unit that stores ⁇ may be provided outside the multiplication units 71 and 72.
  • FIG. 15A and 15B show the step response of the actuator 60 when the back electromotive force constant K em of the actuator 60 is changed in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 15A and 15B show the step response of the actuator 60 when the back electromotive force constant K em of the actuator 60 is changed in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 15A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed.
  • the vertical axis represents the position target signal ref_p [deg]
  • the horizontal axis represents time [sec].
  • FIG. 15B shows a step response of the position detection signal act_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed.
  • the vertical axis represents the position detection signal act_p [deg]
  • the horizontal axis represents time [sec].
  • the multiplication units 71 and 72 perform the correction of ⁇ times.
  • ⁇ 2-2 Operation Next, the operation of the position control apparatus 200 for an electromagnetically driven actuator according to the second embodiment will be described with reference to FIGS. That is, a method for controlling the position of the electromagnetically driven actuator will be described. The operation from FIG. 16 to FIG. 19 is executed based on, for example, a control signal output from the control unit 90 in FIG.
  • FIG. 16 is a flowchart showing an example of processing from starting to stopping of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • an execution sequence # 2 of the actuator position control model unit 20 is executed in accordance with a control signal output from the control unit 90 (step S3).
  • the execution sequence # 2 of the actuator position control model unit 20 will be described with reference to FIG.
  • pre-drive processing of the actuator 60 is performed in accordance with the control signal output from the control unit 90 (step S4).
  • the pre-drive process for the actuator 60 will be described with reference to FIG.
  • step S5 the drive sequence # 2 of the actuator 60 is executed according to the control signal output from the control unit 90 (step S5).
  • the drive sequence # 2 of the actuator 60 will be described with reference to FIG.
  • FIG. 17 is a flowchart showing an example of an execution sequence # 2 of the actuator position control model unit 20 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 17 shows the details of the execution sequence # 2 of the actuator position control model unit 20 in step S3 of FIG.
  • the control unit 90 initializes a variable index k to 0 (step S31).
  • the index k is an integer of 0 or more.
  • the index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60.
  • the increment of the index k will be described in step S36 described later.
  • the index k is an index for obtaining the model position detection signal act_p_n and the model back electromotive force Vemn from the actuator nominal model unit 25.
  • step S32 the execution sequence # 2 of the actuator position control model unit 20 shown in FIG. 2 is executed (step S32).
  • the model position detection signal act_p_n at the index k is acquired (step S33).
  • step S34 the model back electromotive force Vemn at the index k is acquired.
  • control unit 90 determines whether or not the time T3 has elapsed from the start of the execution sequence # 2 of the actuator position control model unit 20 in step S30 (step S35).
  • the time T3 is the time T3 described with reference to FIGS. 13 (a) and 13 (b). Therefore, description of time T3 is abbreviate
  • step S35 determines whether the time T3 has not elapsed. If the determination in step S35 is “NO”, the process proceeds to step S36. That is, if the time T3 has not elapsed, the process proceeds to step S36.
  • step S33 the process of obtaining the model position detection signal act_p_n at the index k to which “1” is added (step S33), and in the actuator position control model unit 20, “1” is added.
  • step S34 the process for obtaining the model back electromotive force Vemn at the index k is performed again.
  • step S35 determines whether the time T3 has elapsed. If the determination in step S35 is “YES”, the process proceeds to step S37. That is, when the time T3 has elapsed, the process proceeds to step S37.
  • step S37 the integral value of the model back electromotive force Vemn is calculated.
  • the integral value of the model back electromotive force Vemn is calculated using Expression (6). Then, the execution sequence # 2 (step S3) of the actuator position control model unit 20 is completed.
  • FIG. 18 is a flowchart showing an example of pre-actuator drive processing in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 18 shows details of the pre-drive process for the actuator 60 in step S4 of FIG.
  • the index k is initialized to 0 (step S41).
  • the index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60.
  • the increment of the index k will be described in step S44 described later.
  • the index k is an index when the position control of the movable part of the actuator 60 and the back electromotive force Vem are acquired.
  • the position target signal ref_p at the index k and the model position detection signal act_p_n at the actuator position control model unit 20 are input to the position error detection unit 30 (step S42). Specifically, the difference between the position target signal ref_p (k) at the index k and the model position detection signal act_p_n (k) at the index k (ref_p (k) ⁇ act_p_n (k)) is output from the position error detection unit 30.
  • step S43 the back electromotive force Vem at the index k is acquired.
  • control unit 90 determines whether or not the time T3 has elapsed from the start of the pre-drive process of the actuator 60 in step S40 (step S44).
  • Time T3 is the time T3 described with reference to FIG. Therefore, description of time T3 is abbreviate
  • step S44 determines whether the time T3 has not elapsed. If the determination in step S44 is “NO”, the process proceeds to step S45. That is, if the time T3 has not elapsed, the process proceeds to step S45.
  • the index k is incremented by 1 (step S45).
  • the position target signal ref_p and the model position detection signal act_p_n at the index k to which “1” is added in step S42 are input to the position error detection unit 30, and “1” is added in step S43.
  • the process of acquiring the back electromotive force Vem at the index k is continued.
  • step S44 determines whether the determination in step S44 is “YES”. If the determination in step S44 is “YES”, the process proceeds to step S46.
  • step S46 an integral value of Vem is calculated. The integral value of Vem is calculated using the above equation (6).
  • step S47 ⁇ is calculated using the above equation (8).
  • step S4 the pre-drive process of the actuator 60 is completed.
  • FIG. 19 is a flowchart showing an example of a drive sequence # 2 of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
  • FIG. 19 shows details of the actuator drive sequence # 2 in step S5 of FIG.
  • step S51 when the drive sequence # 2 of the actuator 60 is started, the index k is initialized to 0 (step S51).
  • the index k is incremented every sampling period ts in the position control of the movable part of the actuator 60.
  • the index k is an index for controlling the position of the movable part of the actuator 60.
  • the position target signal ⁇ ⁇ ref_p for the index k and the model position detection signal ⁇ ⁇ act_p_n for the actuator position control model unit 20 are input to the position error detection unit 30 (step S52). Specifically, the difference between ⁇ ⁇ ref_p (k) at the index k and ⁇ ⁇ act_p_n (k) at the index k ( ⁇ ⁇ ref_p (k) ⁇ ⁇ act_p_n (k)) is output from the position error detection unit 30. Is done.
  • step S53 it is determined whether or not the index k is larger than T3 / ts (step S53).
  • step S53 in the actuator position control model unit 20, has the time elapsed from the change of the model position target signal ref_p_n from the position P1 to the position P2 until the position indicated by the model position detection signal act_p_n converges to the position P2? This is equivalent to judging whether.
  • step S53 in the actuator position control model unit 20, has the time elapsed from the change of the model position target signal ref_p_n from the position P1 to the position P2 until the position indicated by the model position detection signal act_p_n converges to the position P2? This is equivalent to judging whether.
  • the position control of the movable part of the actuator 60 it can be determined whether or not the position indicated by the position detection signal act_p has converged to the position P2.
  • step S53 determines whether the index k is greater than T3 / ts. If the determination in step S53 is “NO”, the process proceeds to step S54. That is, when the index k is not greater than T3 / ts, the process proceeds to step S54.
  • the index k is incremented by 1 (step S54). That is, the position indicated by the position detection signal act_p has not converged to the position P2. For this reason, the process in which the position target signal ⁇ ⁇ ref_p and the position detection signal ⁇ ⁇ act_p_n at the index k are input to the position error detection unit 30 in step S52 is performed again.
  • step S53 determines whether the determination in step S53 is “YES”. If the determination in step S53 is “YES”, the process proceeds to step S55. That is, when the index k is larger than T3 / ts, the actuator drive sequence # 2 is completed (step S55). That is, it is determined that the position indicated by the position detection signal act_p has converged to the position P2. For this reason, the drive process (step S6) of the actuator 60 is completed.
  • the model position detection signal act_p_n in the actuator position control model unit 20 is selected as the signal acquired in step S33.
  • any one of the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n may be selected.
  • the model position error signal er_p_n When the model position error signal er_p_n is used, the model position error signal er_p_n at the index k is input to the control filter unit 40 in step S42 in FIG. Further, in step S ⁇ b> 52 of FIG. 19, the position error signal ⁇ ⁇ er_p_n at the index k is input to the control filter unit 40.
  • the model position control signal cont_p_n When the model position control signal cont_p_n is used, the model position control signal cont_p_n at the index k is input to the drive unit 50 in step S42 in FIG. Further, in step S ⁇ b> 52 of FIG. 19, the control signal ⁇ ⁇ cont_p_n at the index k is input to the drive unit 50.
  • the model drive signal Vdr_p_n When the model drive signal Vdr_p_n is used, the model drive signal Vdr_p_n at the index k is input to the actuator 60 in step S42 in FIG. Further, in step S ⁇ b> 52 of FIG. 19, the drive signal ⁇ ⁇ Vdr_p_n at the index k is input to the actuator 60.
  • ⁇ 2-3 Effect According to the position control device 200 and the position control method for the electromagnetically driven actuator according to the second embodiment, the same effect as the position controller 100 for the electrically driven actuator according to the first embodiment is obtained. be able to.
  • the electromagnetically driven actuator position control apparatus 200 includes the multiplication units 71 and 72.
  • Multipliers 71 and 72 multiply the position target signal ref_p and the model position detection signal act_p_n by ⁇ times.
  • Multipliers 71 and 72 output signals corrected to ⁇ times.
  • a model position detection signal ⁇ ⁇ act_p_n generated and corrected by the actuator position control model unit 20 is input to the position error detection unit 30.
  • the position control unit 80 performs position control of the movable part of the actuator 60 without using a position sensor by open loop control using the model position detection signal ⁇ ⁇ act_p_n. Accordingly, the position control unit 80 can converge the actuator 60 to the position target signal ref_p even if the back electromotive force constant K em of the actuator 60 changes. Therefore, the position controller 80 can accurately control the position of the movable part of the actuator 60 even if the back electromotive force constant K em of the actuator 60 changes.
  • the DC motor is exemplified as the actuator 60.
  • the present invention is not limited to this, and can be applied to an actuator other than a DC motor as long as it has a coil that generates a counter electromotive force.
  • the present invention can also be applied to an objective lens actuator in an optical pickup of an optical disc recording / reproducing apparatus.
  • the actuator includes, for example, a fixed portion and a movable portion that moves relative to the fixed portion by electromagnetic interaction with the fixed portion.
  • a magnet is provided in the fixed part
  • a coil is provided in the movable part
  • the movable part is moved by electromagnetic force generated by energizing the coil.
  • the coil of the movable part is an actuator drive coil.
  • This actuator is a focus actuator of an optical pickup that drives the objective lens held by the movable part. In this example, the same effects as those described in the above embodiment can be obtained.
  • Position control device for electromagnetic drive type actuator 10 Position target signal generation unit, 20 Actuator position control model unit, 21 Model position target signal generation unit, 22 Model position error detection unit, 23 Model control filter unit, 24 Model drive Unit, 25 actuator nominal model unit, 30 position error detection unit, 40 control filter unit, 50 drive unit, 60 actuator (electromagnetic drive type actuator), 71, 72 multiplication unit, 80 position control unit, 90 control unit, 251a model subtraction 252a model voltage current converter, 253a model current torque converter, 254a model torque speed converter, 255a model speed counter electromotive force converter, 256a model speed position converter, 257a model position unit converter, 601a subtractor, 602a voltage Current converter, 603a current torque converter, 604a torque speed converter, 605a speed counter electromotive force converter, 606a speed position converter, 607a position unit converter, ref_p position target signal, er_p position error signal, cont_p position control signal , Vdr_p drive signal, act_p position detection signal, ref_p

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Provided is a position control device 100 for an electromagnetic drive-type actuator, said device controlling the position of a movable part of an actuator 60 and comprising: a position target signal emission unit 10 which outputs a position target signal rep_p which indicates a target position of the movable part of the actuator 60 in a position control of the movable part; an actuator position control model unit 20 which has a model propagation characteristic which simulates a propagation property which the actuator 60 has, and which outputs a model position detection signal act_p_n which indicates the position of the movable part of the actuator 60 on the basis of the model propagation property; and a position control unit 80 (30, 40, 50) which controls the position of the movable part of the actuator 60 on the basis of the position target signal rep_p and the model position detection signal act_p_n.

Description

電磁駆動型アクチュエータの位置制御装置及び位置制御方法Position control device and position control method for electromagnetically driven actuator
 本発明は、電磁駆動型アクチュエータの可動部の位置を制御する電磁駆動型アクチュエータの位置制御装置及び位置制御方法に関する。 The present invention relates to a position control device and a position control method for an electromagnetic drive actuator that controls the position of a movable part of the electromagnetic drive actuator.
 電磁駆動型アクチュエータ(以下、単に「アクチュエータ」とも言う)の可動部の位置を、位置センサを用いずに検出する技術が知られている。電磁駆動型アクチュエータは、電流と磁界との間(例えば、コイルと磁石の間)に働く電磁力を用いて、コイル又は磁石を備えた可動部を動作させるアクチュエータである。例えば、特許文献1には、アクチュエータのコイルで発生する逆起電力を検出することで、アクチュエータの可動部の位置(以下、単に「アクチュエータの位置」とも言う)を検出する技術が開示されている。具体的には、当該文献には、アクチュエータのコイル(ムービングコイル)で発生する逆起電力に基づいて対物レンズを含む可動部の速度を検出し、この速度からアクチュエータの可動部の位置を検出することが記載されている。 A technique for detecting the position of a movable part of an electromagnetically driven actuator (hereinafter also simply referred to as “actuator”) without using a position sensor is known. An electromagnetically driven actuator is an actuator that operates a movable part including a coil or a magnet by using an electromagnetic force acting between a current and a magnetic field (for example, between a coil and a magnet). For example, Patent Document 1 discloses a technique for detecting the position of a movable portion of an actuator (hereinafter also simply referred to as “actuator position”) by detecting a counter electromotive force generated in a coil of the actuator. . Specifically, in this document, the speed of the movable part including the objective lens is detected based on the back electromotive force generated in the coil (moving coil) of the actuator, and the position of the movable part of the actuator is detected from this speed. It is described.
特開2001-209950号公報(段落0019、図2)JP 2001-209950 A (paragraph 0019, FIG. 2)
 しかしながら、アクチュエータの逆起電力に測定誤差が生じた場合、アクチュエータの速度が零付近では測定誤差が支配的となり、アクチュエータの可動部の位置制御を正確に行うことができない。特許文献1に記載の技術は、逆起電力に測定誤差が生じた場合について考慮されていない。 However, if a measurement error occurs in the back electromotive force of the actuator, the measurement error becomes dominant when the speed of the actuator is near zero, and the position control of the movable part of the actuator cannot be performed accurately. The technique described in Patent Document 1 does not take into account a case where a measurement error occurs in the back electromotive force.
 本発明は、電磁駆動型アクチュエータの逆起電力に測定誤差が生じた場合であっても、可動部の位置制御精度の低下を抑えることができる電磁駆動型アクチュエータの位置制御装置及び位置制御方法を提供することを目的とする。 The present invention provides a position control device and a position control method for an electromagnetic drive actuator that can suppress a decrease in position control accuracy of a movable part even when a measurement error occurs in the back electromotive force of the electromagnetic drive actuator. The purpose is to provide.
 本発明の一態様に係る電磁駆動型アクチュエータの位置制御装置は、電磁駆動型アクチュエータの可動部の位置を制御する装置であって、前記電磁駆動型アクチュエータの前記可動部の位置制御における前記可動部の目標位置を示す位置目標信号を出力する位置目標信号発生部と、前記電磁駆動型アクチュエータが持つ伝達特性を模擬したモデル伝達特性を持ち、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号を出力するアクチュエータ位置制御モデル部と、前記位置目標信号と前記モデル位置検出信号とに基づいて前記電磁駆動型アクチュエータの前記可動部の位置を制御する位置制御部と、を有する。 An electromagnetically driven actuator position control apparatus according to an aspect of the present invention is an apparatus for controlling the position of a movable part of an electromagnetically driven actuator, and the movable part in position control of the movable part of the electromagnetically driven actuator. A position target signal generator that outputs a position target signal indicating the target position of the electromagnetic drive actuator, and a model transfer characteristic that simulates a transfer characteristic of the electromagnetic drive actuator, and based on the model transfer characteristic, the electromagnetic drive actuator An actuator position control model unit that outputs a model position detection signal indicating the position of the movable unit, and a position control that controls the position of the movable unit of the electromagnetically driven actuator based on the position target signal and the model position detection signal Part.
 本発明の他の態様に係る電磁駆動型アクチュエータの位置制御方法は、電磁駆動型アクチュエータの可動部の位置を制御する方法であって、前記電磁駆動型アクチュエータの前記可動部の位置制御における前記可動部の目標位置を示す位置目標信号を出力するステップと、前記電磁駆動型アクチュエータが持つ伝達特性を模擬したモデル伝達特性を持つアクチュエータ位置制御モデル部によって、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号を出力するステップと、前記位置目標信号と前記モデル位置検出信号とに基づいて前記電磁駆動型アクチュエータの前記可動部の位置を制御するステップと、を有する。 A position control method for an electromagnetically driven actuator according to another aspect of the present invention is a method for controlling the position of a movable part of an electromagnetically driven actuator, wherein the movable in position control of the movable part of the electromagnetically driven actuator is performed. Output the position target signal indicating the target position of the unit, and an actuator position control model unit having a model transfer characteristic simulating the transfer characteristic of the electromagnetic drive type actuator, and based on the model transfer characteristic, the electromagnetic drive type Outputting a model position detection signal indicating the position of the movable part of the actuator; controlling the position of the movable part of the electromagnetically driven actuator based on the position target signal and the model position detection signal; Have
 本発明に係る電磁駆動型アクチュエータの位置制御装置及び位置制御方法によれば、電磁駆動型アクチュエータの逆起電力に測定誤差が生じた場合であっても、電磁駆動型アクチュエータの可動部の位置制御精度の低下を抑えることができる。 According to the position control device and the position control method for an electromagnetically driven actuator according to the present invention, even when a measurement error occurs in the back electromotive force of the electromagnetically driven actuator, the position control of the movable part of the electromagnetically driven actuator is performed. A decrease in accuracy can be suppressed.
本発明の実施の形態1に係る電磁駆動型アクチュエータの位置制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows schematically the structure of the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 1 of this invention. 実施の形態1におけるアクチュエータ位置制御モデル部の構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration of an actuator position control model unit in the first embodiment. 実施の形態1におけるアクチュエータの構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration of an actuator in the first embodiment. 実施の形態1におけるアクチュエータ位置制御モデル部のアクチュエータノミナルモデル部の構成を概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing a configuration of an actuator nominal model unit of an actuator position control model unit in the first embodiment. (a)及び(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置において、アクチュエータのコイル抵抗RとコイルインダクタンスLを変えた場合のアクチュエータの駆動信号Vdr_pに対する位置検出信号act_pの周波数特性を示す図である。(A) and (b), in the position control apparatus of the electromagnetic drive type actuator according to the first embodiment, the position detection signal for the drive signal Vdr_p the actuator when changing the coil resistance R m and the coil inductance L m of the actuator It is a figure which shows the frequency characteristic of act_p. (a)及び(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置において、アクチュエータのコイル抵抗RとコイルインダクタンスLを変えた場合のアクチュエータのステップ応答を示す図である。(A) and (b), in the position control apparatus of the electromagnetic drive type actuator according to the first embodiment, is a diagram illustrating a step response of the actuator when changing the coil resistance R m and the coil inductance L m of the actuator . (a)及び(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置におけるアクチュエータ位置制御モデル部の開ループ特性を示す図である。(A) And (b) is a figure which shows the open loop characteristic of the actuator position control model part in the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 1. FIG. 実施の形態1に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータの起動から停止までの処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of processing from activation to stop of the actuator, which is executed in the position control device for an electromagnetically driven actuator according to the first embodiment. 実施の形態1に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータ位置制御モデル部の実行シーケンス#1の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of an operation of an execution sequence # 1 of an actuator position control model unit, which is executed in the electromagnetically driven actuator position control device according to the first embodiment. 実施の形態1に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータの駆動シーケンス#1の一例を示すフローチャートである。3 is a flowchart showing an example of an actuator drive sequence # 1 executed in the electromagnetically driven actuator position control apparatus according to the first embodiment. 本発明の実施の形態2に係る電磁駆動型アクチュエータの位置制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows schematically the structure of the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 2 of this invention. (a)及び(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において、アクチュエータの逆起電力定数Kemを変えた場合のアクチュエータの駆動信号Vdr_pに対する位置検出信号act_pの周波数特性を示す図である。(A) and (b) are the frequency of the position detection signal act_p with respect to the actuator drive signal Vdr_p when the back electromotive force constant K em of the actuator is changed in the electromagnetically driven actuator position control apparatus according to the second embodiment. It is a figure which shows a characteristic. (a)及び(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータの逆起電力Vemを積分する方法を示す図である。(A) And (b) is a figure which shows the method of integrating the back electromotive force Vem of an actuator performed in the position control apparatus of the electromagnetic drive type actuator which concerns on Embodiment 2. FIG. 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置における、アクチュエータの位置検出信号act_pの収束値と逆起電力Vemの積分値の関係を示す図である。FIG. 9 is a diagram showing a relationship between a convergence value of an actuator position detection signal act_p and an integral value of a back electromotive force Vem in the electromagnetically driven actuator position control apparatus according to the second embodiment. (a)及び(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において、アクチュエータの逆起電力定数Kemを変えた場合のアクチュエータのステップ応答を示す図である。(A) and (b), in the position control apparatus of the electromagnetic drive type actuator according to the second embodiment, a diagram illustrating a step response of the actuator when changing the counter electromotive force constant K em actuator. 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータの起動から停止までの処理の一例を示すフローチャートである。6 is a flowchart illustrating an example of processing from starting to stopping of an actuator, which is executed in the position control device for an electromagnetically driven actuator according to the second embodiment. 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータ位置制御モデル部の実行シーケンス#2の一例を示すフローチャートである。10 is a flowchart illustrating an example of an execution sequence # 2 of an actuator position control model unit executed in the position control device for an electromagnetically driven actuator according to the second embodiment. 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータ駆動前処理の一例を示すフローチャートである。10 is a flowchart showing an example of actuator drive pre-processing executed in the position control device for an electromagnetically driven actuator according to the second embodiment. 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置において実行される、アクチュエータの駆動シーケンス#2の一例を示すフローチャートである。6 is a flowchart showing an example of an actuator drive sequence # 2 executed in the electromagnetically driven actuator position control apparatus according to the second embodiment.
 以下、図面を参照しながら本発明の実施の形態に係る電動駆動型アクチュエータの位置制御装置について説明する。なお、実施の形態に係る電動駆動型アクチュエータの位置制御装置は、電動駆動型アクチュエータの位置制御方法の発明が適用された装置として捉えることも可能である。 Hereinafter, a position control device for an electrically driven actuator according to an embodiment of the present invention will be described with reference to the drawings. Note that the position control device for the electrically driven actuator according to the embodiment can also be regarded as a device to which the invention of the position control method for the electrically driven actuator is applied.
《1》実施の形態1
《1-1》構成
 図1は、本発明の実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100の構成を概略的に示すブロック図である。
<< 1 >> Embodiment 1
<< 1-1 >> Configuration FIG. 1 is a block diagram schematically showing the configuration of an electromagnetically driven actuator position control apparatus 100 according to Embodiment 1 of the present invention.
 図1に示されるように、電磁駆動型アクチュエータの位置制御装置100は、位置目標信号発生部10、アクチュエータ位置制御モデル部20及び位置制御部80を備える。電磁駆動型アクチュエータの位置制御装置100は、アクチュエータ60を備えることができる。つまり、位置制御装置100は、アクチュエータ60を内部の構成要素とできるし、外部の構成要素ともできる。ここで、アクチュエータ60は、電磁駆動型アクチュエータである。位置制御部80は、位置誤差検出部30、制御フィルタ部40、又は駆動部50を備える。位置制御部80は、アクチュエータ60の可動部の位置を制御する。 As shown in FIG. 1, the electromagnetically driven actuator position control apparatus 100 includes a position target signal generation unit 10, an actuator position control model unit 20, and a position control unit 80. The electromagnetically driven actuator position control device 100 can include an actuator 60. That is, the position control device 100 can make the actuator 60 an internal component or an external component. Here, the actuator 60 is an electromagnetically driven actuator. The position control unit 80 includes a position error detection unit 30, a control filter unit 40, or a drive unit 50. The position control unit 80 controls the position of the movable part of the actuator 60.
 位置目標信号発生部10、アクチュエータ位置制御モデル部20、位置誤差検出部30、制御フィルタ部40、及び駆動部50は、例えば、電気回路である半導体集積回路によって構成されることができる。 The position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, and the drive unit 50 can be configured by, for example, a semiconductor integrated circuit that is an electric circuit.
 また、位置目標信号発生部10、アクチュエータ位置制御モデル部20、位置誤差検出部30、制御フィルタ部40、及び駆動部50、又はこれらの一部は、メモリと、プロセッサとを用いて実現することもできる。メモリは、ソフトウェアとしてのプログラムを格納する記憶装置である。プロセッサは、メモリに格納されたプログラムを実行する情報処理部である。つまり、これらの構成要素は、例えば、コンピュータを用いて実現することもできる。 In addition, the position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, and the drive unit 50, or a part of them are realized using a memory and a processor. You can also. The memory is a storage device that stores a program as software. The processor is an information processing unit that executes a program stored in a memory. That is, these components can also be realized using a computer, for example.
 アクチュエータ60は、電流と磁界との間に働く電磁力を用いて、コイル又は磁石を備えた可動部を動作させる装置である。電流と磁界との間は、例えば、コイルと磁石の間である。コイル又は磁石を備えた可動部は、例えば、モータの回転子、光学部材を保持するホルダ等である。可動部の動作は、例えば、回転、揺動、変位、変形、移動などである。 The actuator 60 is a device that operates a movable part including a coil or a magnet using an electromagnetic force acting between an electric current and a magnetic field. The space between the current and the magnetic field is, for example, between the coil and the magnet. The movable part provided with the coil or the magnet is, for example, a motor rotor, a holder for holding an optical member, or the like. The operation of the movable part is, for example, rotation, swing, displacement, deformation, movement, and the like.
 アクチュエータ60は、アクチュエータ磁気回路とアクチュエータ機構回路部とを備える。アクチュエータ磁気回路は、コイル抵抗及びコイルインダクタンスを持っている。アクチュエータ磁気回路は、後述の図3における電圧電流変換部602a及び電流トルク変換部603aに相当する。アクチュエータ機構回路部は、可動部を含んでいる。アクチュエータ機構回路部は、例えば、後述の図3におけるトルク速度変換部604a、速度逆起電力変換部605a及び速度位置変換部606aに相当する。 The actuator 60 includes an actuator magnetic circuit and an actuator mechanism circuit unit. The actuator magnetic circuit has a coil resistance and a coil inductance. The actuator magnetic circuit corresponds to a voltage / current converter 602a and a current / torque converter 603a in FIG. The actuator mechanism circuit part includes a movable part. The actuator mechanism circuit unit corresponds to, for example, a torque speed conversion unit 604a, a speed counter electromotive force conversion unit 605a, and a speed position conversion unit 606a in FIG.
 また、制御部90は、電磁駆動型アクチュエータの位置制御装置100の全体の動作を制御するために各構成10,20,30,40,50に制御信号を出力することができる。制御部90は、半導体集積回路によって形成されることができる。また、制御部90は、メモリとプロセッサとを用いて実現することもできる。メモリは、ソフトウェアとしてのプログラムを格納する記憶装置である。プロセッサは、メモリに格納されたプログラムを実行する情報処理部である。つまり、これらの構成要素は、例えば、コンピュータを用いて実現することもできる。 Also, the control unit 90 can output a control signal to each of the components 10, 20, 30, 40, 50 in order to control the overall operation of the position control device 100 for the electromagnetically driven actuator. The control unit 90 can be formed by a semiconductor integrated circuit. The control unit 90 can also be realized using a memory and a processor. The memory is a storage device that stores a program as software. The processor is an information processing unit that executes a program stored in a memory. That is, these components can also be realized using a computer, for example.
 位置目標信号発生部10は、位置目標信号ref_pを出力する。位置目標信号ref_pは、アクチュエータ60の位置制御における目標位置を示す。アクチュエータ60の位置制御は、アクチュエータ60の可動部の位置制御である。 The position target signal generator 10 outputs a position target signal ref_p. The position target signal ref_p indicates a target position in the position control of the actuator 60. The position control of the actuator 60 is the position control of the movable part of the actuator 60.
 位置目標信号ref_pは、例えば、位置目標信号発生部10内の記憶部(図示せず)に予め記憶されている1つ以上の値に基づく信号である。位置目標信号ref_pは、制御部90又は外部装置(図示せず)から受け取った信号であってもよい。 The position target signal ref_p is, for example, a signal based on one or more values stored in advance in a storage unit (not shown) in the position target signal generation unit 10. The position target signal ref_p may be a signal received from the control unit 90 or an external device (not shown).
 アクチュエータ位置制御モデル部20は、アクチュエータノミナルモデル部25を備える。アクチュエータノミナルモデル部25は、アクチュエータ60の理想的な伝達特性を模擬したモデル伝達特性を持つ。アクチュエータノミナルモデル部25は、後述の図2に示されている。 The actuator position control model unit 20 includes an actuator nominal model unit 25. The actuator nominal model unit 25 has a model transfer characteristic that simulates the ideal transfer characteristic of the actuator 60. The actuator nominal model unit 25 is shown in FIG.
 アクチュエータ位置制御モデル部20は、モデル位置検出信号act_p_nを出力する。モデル位置検出信号act_p_nは、位置検出信号act_pを模擬した信号である。位置検出信号act_pは、アクチュエータ60の位置を示す信号である。アクチュエータ位置制御モデル部20の詳細は、図2を用いて説明する。 The actuator position control model unit 20 outputs a model position detection signal act_p_n. The model position detection signal act_p_n is a signal that simulates the position detection signal act_p. The position detection signal act_p is a signal indicating the position of the actuator 60. Details of the actuator position control model unit 20 will be described with reference to FIG.
 位置誤差検出部30は、位置目標信号発生部10から位置目標信号ref_pを受け取る。位置誤差検出部30は、アクチュエータ位置制御モデル部20からモデル位置検出信号act_p_nを受け取る。位置誤差検出部30は、これらの差分(ref_p-act_p_n)を計算することで得られた位置誤差信号er_pを出力する。 The position error detection unit 30 receives the position target signal ref_p from the position target signal generation unit 10. The position error detection unit 30 receives the model position detection signal act_p_n from the actuator position control model unit 20. The position error detection unit 30 outputs a position error signal er_p obtained by calculating these differences (ref_p−act_p_n).
 制御フィルタ部40は、位置誤差検出部30から位置誤差信号er_pを受け取る。制御フィルタ部40は、位置誤差信号er_pに基づく位置制御信号cont_pを出力する。位置制御信号cont_pは、アクチュエータ60の位置制御を行うための位置制御信号である。 The control filter unit 40 receives the position error signal er_p from the position error detection unit 30. The control filter unit 40 outputs a position control signal cont_p based on the position error signal er_p. The position control signal cont_p is a position control signal for performing position control of the actuator 60.
 制御フィルタ部40は、例えばPID(Proportional Integral Derivative)制御フィルタを備えることができる。制御フィルタ部40は、このPIDによって位置制御信号cont_pを生成してもよい。 The control filter unit 40 can include, for example, a PID (Proportional Integral Derivative) control filter. The control filter unit 40 may generate the position control signal cont_p based on this PID.
 駆動部50は、制御フィルタ部40から位置制御信号cont_pを受け取る。駆動部50は、位置制御信号cont_pに基づく駆動信号Vdr_pを出力する。駆動信号Vdr_pは、例えばアクチュエータ60を駆動させるのに必要なレベルに増幅された駆動電圧あるいは駆動電流である。アクチュエータ60の駆動は、例えば、アクチュエータ60の可動部の回転、揺動、変位、変形又は移動である。 The driving unit 50 receives the position control signal cont_p from the control filter unit 40. The drive unit 50 outputs a drive signal Vdr_p based on the position control signal cont_p. The drive signal Vdr_p is a drive voltage or a drive current amplified to a level necessary for driving the actuator 60, for example. The driving of the actuator 60 is, for example, rotation, swinging, displacement, deformation or movement of the movable part of the actuator 60.
 アクチュエータ60は、駆動部50から駆動信号Vdr_pを受け取る。アクチュエータ60は、駆動信号Vdr_pに応じて可動部を動作させる。アクチュエータ60は、可動部の動作に応じてアクチュエータ位置検出信号act_pを出力する。アクチュエータ60は、速度検出信号及び逆起電力を生成する。アクチュエータ60は、速度検出信号及び逆起電力を取得する。速度検出信号は、例えば、後述の図3におけるv11である。逆起電力は、例えば、後述の図3におけるVemである。 The actuator 60 receives the drive signal Vdr_p from the drive unit 50. The actuator 60 operates the movable part according to the drive signal Vdr_p. The actuator 60 outputs an actuator position detection signal act_p according to the operation of the movable part. The actuator 60 generates a speed detection signal and a back electromotive force. The actuator 60 acquires a speed detection signal and a counter electromotive force. The speed detection signal is, for example, v11 in FIG. The back electromotive force is, for example, Vem in FIG.
 図2は、実施の形態1におけるアクチュエータ位置制御モデル部20の構成を概略的に示すブロック図である。 FIG. 2 is a block diagram schematically showing the configuration of the actuator position control model unit 20 in the first embodiment.
 図2に示されるように、アクチュエータ位置制御モデル部20は、モデル位置目標信号発生部21、モデル位置誤差検出部22、モデル制御フィルタ部23、モデル駆動部24、及びアクチュエータノミナルモデル部25を備える。アクチュエータ位置制御モデル部20は、アクチュエータ60の理想的な伝達特性を模擬するモデル伝達特性を持つアクチュエータ60の模擬回路である。 As shown in FIG. 2, the actuator position control model unit 20 includes a model position target signal generation unit 21, a model position error detection unit 22, a model control filter unit 23, a model drive unit 24, and an actuator nominal model unit 25. . The actuator position control model unit 20 is a simulation circuit of the actuator 60 having a model transmission characteristic that simulates an ideal transmission characteristic of the actuator 60.
 モデル位置目標信号発生部21は、モデル位置目標信号ref_p_nを出力する。モデル位置目標信号ref_p_nは、アクチュエータノミナルモデル部25の位置制御における目標位置を示す。モデル位置目標信号ref_p_nは、アクチュエータ60の可動部の位置制御における位置目標信号ref_pと同じ値の信号であることが望ましい。その理由は、後に数式を用いて説明する。 The model position target signal generator 21 outputs a model position target signal ref_p_n. The model position target signal ref_p_n indicates a target position in the position control of the actuator nominal model unit 25. The model position target signal ref_p_n is preferably a signal having the same value as the position target signal ref_p in the position control of the movable part of the actuator 60. The reason will be described later using mathematical expressions.
 モデル位置誤差検出部22は、モデル位置目標信号発生部21からモデル位置目標信号ref_p_nを受け取る。モデル位置誤差検出部22は、アクチュエータノミナルモデル部25からモデル位置検出信号act_p_nを受け取る。モデル位置誤差検出部22は、これらの差分(ref_p_n-act_p_n)を計算することで得られたモデル位置誤差信号er_p_nを出力する。 The model position error detection unit 22 receives the model position target signal ref_p_n from the model position target signal generation unit 21. The model position error detection unit 22 receives the model position detection signal act_p_n from the actuator nominal model unit 25. The model position error detection unit 22 outputs a model position error signal er_p_n obtained by calculating these differences (ref_p_n−act_p_n).
 モデル制御フィルタ部23は、モデル位置誤差検出部22からモデル位置誤差信号er_p_nを受け取る。モデル制御フィルタ部23は、モデル位置誤差信号er_p_nに基づくモデル位置制御信号cont_p_nを出力する。モデル制御フィルタ部23は、アクチュエータ60の可動部の位置制御における制御フィルタ部40と同じ構成を有する。モデル制御フィルタ部23の制御フィルタのパラメータ値は、制御フィルタ部40のものと同じであることが望ましい。その理由は、後に数式を用いて説明する。 The model control filter unit 23 receives the model position error signal er_p_n from the model position error detection unit 22. The model control filter unit 23 outputs a model position control signal cont_p_n based on the model position error signal er_p_n. The model control filter unit 23 has the same configuration as the control filter unit 40 in the position control of the movable part of the actuator 60. The parameter value of the control filter of the model control filter unit 23 is desirably the same as that of the control filter unit 40. The reason will be described later using mathematical expressions.
 モデル駆動部24は、モデル制御フィルタ部23からモデル位置制御信号cont_p_nを受け取る。モデル駆動部24は、モデル位置制御信号cont_p_nに基づくモデル駆動信号Vdr_p_nを出力する。モデル駆動部24は、アクチュエータ60の位置制御における駆動部50と同じ構成を有することが望ましい。その理由は、後に数式を用いて説明する。 The model driving unit 24 receives the model position control signal cont_p_n from the model control filter unit 23. The model driving unit 24 outputs a model driving signal Vdr_p_n based on the model position control signal cont_p_n. It is desirable that the model driving unit 24 has the same configuration as the driving unit 50 in the position control of the actuator 60. The reason will be described later using mathematical expressions.
 アクチュエータノミナルモデル部25は、モデル駆動部24からモデル駆動信号Vdr_p_nを受け取る。アクチュエータノミナルモデル部25は、モデル駆動信号Vdr_p_nに基づくモデル位置検出信号act_p_n、モデル速度検出信号、及びモデル逆起電力を生成する。アクチュエータノミナルモデル部25は、モデル駆動信号Vdr_p_nに基づくモデル位置検出信号act_p_n、モデル速度検出信号、及びモデル逆起電力を取得する。モデル位置検出信号act_p_nは、アクチュエータノミナルモデル部25の位置を示すモデル位置検出信号である。 The actuator nominal model unit 25 receives the model drive signal Vdr_p_n from the model drive unit 24. The actuator nominal model unit 25 generates a model position detection signal act_p_n, a model speed detection signal, and a model back electromotive force based on the model drive signal Vdr_p_n. The actuator nominal model unit 25 acquires a model position detection signal act_p_n, a model speed detection signal, and a model back electromotive force based on the model drive signal Vdr_p_n. The model position detection signal act_p_n is a model position detection signal indicating the position of the actuator nominal model unit 25.
 図3は、実施の形態1におけるアクチュエータ60の構成を概略的に示すブロック図である。図3は、アクチュエータ60として、DCモータ(Direct-Current Motor)の構成を示したものである。以下に、アクチュエータ60がDCモータである場合を説明する。 FIG. 3 is a block diagram schematically showing the configuration of the actuator 60 in the first embodiment. FIG. 3 shows a configuration of a DC motor (Direct-Current Motor) as the actuator 60. Hereinafter, a case where the actuator 60 is a DC motor will be described.
 図3に示されるように、アクチュエータ60は、例えば、減算部601a、電圧電流変換部602a、電流トルク変換部603a、トルク速度変換部604a、速度逆起電力変換部605a、速度位置変換部606a、及び位置単位変換部607aを備える。 As shown in FIG. 3, the actuator 60 includes, for example, a subtraction unit 601a, a voltage / current conversion unit 602a, a current torque conversion unit 603a, a torque speed conversion unit 604a, a speed counter electromotive force conversion unit 605a, a speed position conversion unit 606a, And a position unit converter 607a.
 減算部601aは、駆動部50から駆動信号Vdr_pを受け取る。また、減算部601aは、速度逆起電力変換部605aから逆起電力Vemを受け取る。減算部601aは、駆動信号Vdr_pと逆起電力Vemとの電圧差(Vdr_p-Vem)を算出する。そして、減算部601aは、この電圧差に応じた電圧差信号Vdr11を出力する。 The subtraction unit 601a receives the drive signal Vdr_p from the drive unit 50. Further, the subtraction unit 601a receives the back electromotive force Vem from the speed back electromotive force conversion unit 605a. The subtractor 601a calculates a voltage difference (Vdr_p−Vem) between the drive signal Vdr_p and the back electromotive force Vem. Then, the subtraction unit 601a outputs a voltage difference signal Vdr11 corresponding to this voltage difference.
 電圧電流変換部602aは、減算部601aから電圧差信号Vdr11を受け取る。電圧電流変換部602aは、この電圧差信号Vdr11に基づく電流(第1の電流)Idr11を出力する。電圧電流変換部602aの伝達関数は、アクチュエータ60のアクチュエータ磁気回路のコイル抵抗RとコイルインダクタンスLとを用いて表わすと、1/(Ls+R)である。なお、sは、ラプラス変数である。 The voltage / current converter 602a receives the voltage difference signal Vdr11 from the subtractor 601a. The voltage-current converter 602a outputs a current (first current) Idr11 based on the voltage difference signal Vdr11. The transfer function of the voltage-current converter 602a is 1 / (L m s + R m ) when expressed using the coil resistance R m and the coil inductance L m of the actuator magnetic circuit of the actuator 60. Note that s is a Laplace variable.
 電流トルク変換部603aは、電圧電流変換部602aから電流Idr11を受け取る。電流トルク変換部603aは、電流Idr11に基づくトルク(第1のトルク)τ11を出力する。電流トルク変換部603aの伝達関数は、アクチュエータ60のトルク定数Ktmである。 The current torque converter 603a receives the current Idr11 from the voltage / current converter 602a. The current torque converter 603a outputs a torque (first torque) τ11 based on the current Idr11. The transfer function of the current torque conversion unit 603a is a torque constant K tm of the actuator 60.
 トルク速度変換部604aは、電流トルク変換部603aからトルクτ11を受け取る。トルク速度変換部604aは、トルクτ11に基づくアクチュエータ60の可動部の速度(第1の速度)v11の動作を出力する。トルク速度変換部604aの伝達関数は、アクチュエータ60のアクチュエータ機構回路部のイナーシャJを用いて表わすと、1/Jsである。 The torque speed conversion unit 604a receives the torque τ11 from the current torque conversion unit 603a. The torque speed conversion unit 604a outputs the operation of the speed (first speed) v11 of the movable part of the actuator 60 based on the torque τ11. The transfer function of the torque speed conversion unit 604a is 1 / J m s when expressed using the inertia J m of the actuator mechanism circuit unit of the actuator 60.
 速度逆起電力変換部605aは、トルク速度変換部604aから可動部の速度v11を受け取る。速度逆起電力変換部605aは、速度v11に基づく逆起電力(第1の逆起電力)Vemを出力する。速度逆起電力変換部605aの伝達関数は、アクチュエータ60のアクチュエータ磁気回路の逆起電力定数Kemである。 The speed counter electromotive force converter 605a receives the speed v11 of the movable part from the torque speed converter 604a. The speed counter electromotive force conversion unit 605a outputs a counter electromotive force (first counter electromotive force) Vem based on the speed v11. The transfer function of the speed counter electromotive force conversion unit 605 a is the counter electromotive force constant K em of the actuator magnetic circuit of the actuator 60.
 速度位置変換部606aは、トルク速度変換部604aから可動部の速度v11を受け取る。速度位置変換部606aは、速度v11に基づく可動部の位置(第1の位置)を示す位置信号(第1の位置信号)p11を出力する。速度位置変換部606aは、積分器である。速度位置変換部606aの伝達特性は1/sである。 The speed position converter 606a receives the speed v11 of the movable part from the torque speed converter 604a. The speed position converter 606a outputs a position signal (first position signal) p11 indicating the position of the movable part (first position) based on the speed v11. The speed position conversion unit 606a is an integrator. The transfer characteristic of the speed position conversion unit 606a is 1 / s.
 位置単位変換部607aは、速度位置変換部606aから位置信号p11を受け取る。位置単位変換部607aは、位置信号p11に基づく位置検出信号act_p(アクチュエータ60の位置検出信号act_p)を出力する。位置単位変換部607aは、位置信号p11の単位をラジアン[rad(radian)]から度[deg(degree)]に変換する変換器である。その伝達特性は180/πである。位置単位変換部607aは、単位が度[deg]の位置検出信号act_pを出力する。 The position unit converter 607a receives the position signal p11 from the speed position converter 606a. The position unit converter 607a outputs a position detection signal act_p (position detection signal act_p of the actuator 60) based on the position signal p11. The position unit conversion unit 607a is a converter that converts the unit of the position signal p11 from radians [rad (radian)] to degrees [deg (degree)]. Its transfer characteristic is 180 / π. The position unit conversion unit 607a outputs a position detection signal act_p whose unit is degrees [deg].
 図4は、実施の形態1におけるアクチュエータノミナルモデル部25の構成を概略的に示すブロック図である。 FIG. 4 is a block diagram schematically showing the configuration of the actuator nominal model unit 25 in the first embodiment.
 図4に示されるように、アクチュエータノミナルモデル部25は、モデル減算部251a、モデル電圧電流変換部252a、モデル電流トルク変換部253a、モデルトルク速度変換部254a、モデル速度逆起電力変換部255a、モデル速度位置変換部256a、及びモデル位置単位変換部257aを備える。 As shown in FIG. 4, the actuator nominal model unit 25 includes a model subtraction unit 251a, a model voltage / current conversion unit 252a, a model current torque conversion unit 253a, a model torque speed conversion unit 254a, a model speed counter electromotive force conversion unit 255a, A model speed position conversion unit 256a and a model position unit conversion unit 257a are provided.
 モデル減算部251aは、モデル駆動部24からモデル駆動信号Vdr_p_nを受け取る。また、モデル減算部251aは、モデル速度逆起電力変換部255aからモデル逆起電力(第2の逆起電力)Vemnを受け取る。モデル減算部251aは、これらの信号の差(Vdr_p_n-Vemn)であるモデル電圧差信号(第2の電圧差信号)Vdr21を検出して出力する。 The model subtraction unit 251a receives the model drive signal Vdr_p_n from the model drive unit 24. Further, the model subtraction unit 251a receives the model back electromotive force (second back electromotive force) Vemn from the model speed back electromotive force conversion unit 255a. The model subtraction unit 251a detects and outputs a model voltage difference signal (second voltage difference signal) Vdr21 which is a difference between these signals (Vdr_p_n−Vemn).
 モデル電圧電流変換部252aは、モデル減算部251aからモデル電圧差信号Vdr21を受け取る。モデル電圧電流変換部252aは、モデル電圧差信号Vdr21に基づく電流(第2の電流)Idr21を出力する。モデル電圧電流変換部252aの伝達関数は、1/(Lmns+Rmn)である。コイル抵抗Rmnは、アクチュエータノミナルモデル部25のアクチュエータ磁気回路のコイル抵抗である。コイルインダクタンスLmnは、アクチュエータノミナルモデル部25のアクチュエータ磁気回路のコイルインダクタンスである。 The model voltage / current converter 252a receives the model voltage difference signal Vdr21 from the model subtractor 251a. The model voltage / current converter 252a outputs a current (second current) Idr21 based on the model voltage difference signal Vdr21. The transfer function of the model voltage / current converter 252a is 1 / (L mn s + R mn ). The coil resistance R mn is the coil resistance of the actuator magnetic circuit of the actuator nominal model unit 25. The coil inductance L mn is the coil inductance of the actuator magnetic circuit of the actuator nominal model unit 25.
 モデル電流トルク変換部253aは、モデル電圧電流変換部252aから電流Idr21を受け取る。モデル電流トルク変換部253aは、電流Idr21に基づくトルク(第2のトルク)τ21を出力する。モデル電流トルク変換部253aは、アクチュエータノミナルモデル部25をトルク定数Ktmnで表わしたものであり、伝達関数Ktmnを有する。 The model current torque converter 253a receives the current Idr21 from the model voltage / current converter 252a. The model current torque converter 253a outputs a torque (second torque) τ21 based on the current Idr21. The model current torque conversion unit 253a represents the actuator nominal model unit 25 with a torque constant K tmn and has a transfer function K tmn .
 モデルトルク速度変換部254aは、モデル電流トルク変換部253aからトルクτ21を受け取る。モデルトルク速度変換部254aは、トルクτ21に基づく可動部の速度(第2の速度)v21を出力する。モデルトルク速度変換部254aの伝達関数は、アクチュエータノミナルモデル部25のアクチュエータ機構回路部のイナーシャJmnを用いて表わすと、1/Jmnsである。 The model torque speed conversion unit 254a receives the torque τ21 from the model current torque conversion unit 253a. The model torque speed conversion unit 254a outputs the moving part speed (second speed) v21 based on the torque τ21. The transfer function of the model torque speed conversion unit 254a is 1 / J mn s when expressed using the inertia J mn of the actuator mechanism circuit unit of the actuator nominal model unit 25.
 モデル速度逆起電力変換部255aは、モデルトルク速度変換部254aから速度v21を受け取る。
モデル速度逆起電力変換部255aは、速度v21に基づくモデル逆起電力(第2の逆起電力)Vemnを出力する。モデル速度逆起電力変換部255aの伝達特性は、アクチュエータノミナルモデル部25のアクチュエータ磁気回路の逆起電力定数Kemnである。
The model speed counter electromotive force conversion unit 255a receives the speed v21 from the model torque speed conversion unit 254a.
The model speed counter electromotive force conversion unit 255a outputs a model counter electromotive force (second counter electromotive force) Vemn based on the speed v21. The transfer characteristic of the model speed counter electromotive force conversion unit 255a is the counter electromotive force constant K emn of the actuator magnetic circuit of the actuator nominal model unit 25.
 モデル速度位置変換部256aは、モデルトルク速度変換部254aから可動部の速度v21を受け取る。モデル速度位置変換部256aは、速度v21に基づく位置を示すモデル位置信号(第2の位置信号)p21を出力する。モデル速度位置変換部256aは、積分器である。モデル速度位置変換部256aの伝達特性は1/sである。 The model speed position converter 256a receives the speed v21 of the movable part from the model torque speed converter 254a. The model speed position conversion unit 256a outputs a model position signal (second position signal) p21 indicating a position based on the speed v21. The model speed position conversion unit 256a is an integrator. The transfer characteristic of the model speed position conversion unit 256a is 1 / s.
 モデル位置単位変換部257aは、モデル速度位置変換部256aからモデル位置信号p21を受け取る。モデル位置単位変換部257aは、モデル位置信号p21に基づくモデル位置検出信号act_p_nを出力する。モデル位置検出信号act_p_nは、アクチュエータノミナルモデル部25のモデル位置検出信号である。モデル位置単位変換部257aは、モデル位置信号p21の単位をラジアン[rad]から度[deg]に変換する変換器である。モデル位置単位変換部257aの伝達特性は180/πである。モデル位置単位変換部257aは、単位が度[deg]のモデル位置検出信号act_p_nを出力する。 The model position unit conversion unit 257a receives the model position signal p21 from the model speed position conversion unit 256a. The model position unit conversion unit 257a outputs a model position detection signal act_p_n based on the model position signal p21. The model position detection signal act_p_n is a model position detection signal of the actuator nominal model unit 25. The model position unit conversion unit 257a is a converter that converts the unit of the model position signal p21 from radians [rad] to degrees [deg]. The transfer characteristic of the model position unit converter 257a is 180 / π. The model position unit conversion unit 257a outputs a model position detection signal act_p_n whose unit is degrees [deg].
 以下、図1に示される位置目標信号ref_pと、アクチュエータ60の位置検出信号act_pとの関係を、伝達関数を含む数式を用いて説明する。図1に示される制御フィルタ部40、駆動部50、及びアクチュエータ60の伝達関数をそれぞれ、K(s)、D(s)、及びP(s)と表記する。また、図2のモデル制御フィルタ部23、モデル駆動部24、及びアクチュエータノミナルモデル部25の伝達関数をそれぞれ、K(s)、D(s)、及びP(s)と表記する。 Hereinafter, the relationship between the position target signal ref_p shown in FIG. 1 and the position detection signal act_p of the actuator 60 will be described using mathematical expressions including a transfer function. The transfer functions of the control filter unit 40, the drive unit 50, and the actuator 60 shown in FIG. 1 are denoted as K (s), D (s), and P (s), respectively. In addition, the transfer functions of the model control filter unit 23, the model driving unit 24, and the actuator nominal model unit 25 in FIG. 2 are denoted as K n (s), D n (s), and P n (s), respectively.
 図1から明らかなように、アクチュエータ60の位置検出信号act_pは、位置目標信号ref_p及びアクチュエータノミナルモデル部25のモデル位置検出信号act_p_nを用いて次式(1)で表わされる。 As is clear from FIG. 1, the position detection signal act_p of the actuator 60 is expressed by the following equation (1) using the position target signal ref_p and the model position detection signal act_p_n of the actuator nominal model unit 25.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、図2から明らかなように、アクチュエータノミナルモデル部25のモデル位置検出信号act_p_nは、モデル位置目標信号発生部21からのモデル位置目標信号ref_p_nを用いて次式(2)で表わされる。 On the other hand, as is clear from FIG. 2, the model position detection signal act_p_n of the actuator nominal model unit 25 is expressed by the following equation (2) using the model position target signal ref_p_n from the model position target signal generation unit 21.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)を式(1)に代入すると、次式(3)が得られる。 Substituting equation (2) into equation (1) yields the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 アクチュエータ位置制御モデル部20におけるモデル位置目標信号ref_p_nと、アクチュエータ60の可動部の位置制御における位置目標信号ref_pとが同じ値を持つ場合(ref_p_n=ref_p)には、式(3)は次式(4)で表わされる。 When the model position target signal ref_p_n in the actuator position control model unit 20 and the position target signal ref_p in the position control of the movable part of the actuator 60 have the same value (ref_p_n = ref_p), the expression (3) 4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、K(s)=K(s)、D(s)=D(s)の場合には、式(4)は次式(5)で表わされる。 In the equation (4), when K (s) = K n (s) and D (s) = D n (s), the equation (4) is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)より、P(s)=P(s)の場合には、アクチュエータ60の位置検出信号act_pと、アクチュエータノミナルモデル部25のモデル位置検出信号act_p_nとは等しくなる。すなわち、P(s)=P(s)の場合には、アクチュエータ60を、アクチュエータ位置制御モデル部20の設計通りに位置制御することが可能となる。 From equation (5), when P (s) = P n (s), the position detection signal act_p of the actuator 60 and the model position detection signal act_p_n of the actuator nominal model unit 25 are equal. That is, when P (s) = P n (s), the position of the actuator 60 can be controlled as designed by the actuator position control model unit 20.
 実際の位置制御装置100では、アクチュエータノミナルモデル部25の伝達関数P(s)を、全周波数領域で実際のアクチュエータ60の伝達関数P(s)に一致させることは難しい。しかし、アクチュエータノミナルモデル部25の伝達関数P(s)を、直流成分を含む低周波数領域で実際のアクチュエータ60の伝達関数P(s)に一致させることは可能である。 In the actual position control device 100, it is difficult to match the transfer function P n (s) of the actuator nominal model unit 25 with the actual transfer function P (s) of the actuator 60 in the entire frequency region. However, it is possible to make the transfer function P n (s) of the actuator nominal model unit 25 coincide with the transfer function P (s) of the actual actuator 60 in a low frequency region including a DC component.
 したがって、直流成分を含む低周波数領域でP(s)=P(s)となるようにアクチュエータノミナルモデル部25を製作すれば、最終的にはアクチュエータ60を位置目標信号ref_pに収束させることができる。言い換えれば、アクチュエータ60の位置検出信号act_pと、アクチュエータノミナルモデル部25のモデル位置検出信号act_p_nとが式(5)の関係を満たすためには、ref_p_n=ref_p、かつ、K(s)=K(s)、かつ、D(s)=D(s)であることが理想的である。 Therefore, if the actuator nominal model unit 25 is manufactured so that P (s) = P n (s) in a low frequency region including a direct current component, the actuator 60 can be finally converged to the position target signal ref_p. it can. In other words, in order for the position detection signal act_p of the actuator 60 and the model position detection signal act_p_n of the actuator nominal model unit 25 to satisfy the relationship of Expression (5), ref_p_n = ref_p and K (s) = K n Ideally, (s) and D (s) = D n (s).
 図1に示される位置制御装置100において、フィードバック制御による位置制御を行う場合を仮定すると、モデル位置検出信号act_p_nの代わりに位置検出信号act_pが位置誤差検出部30に入力される。 Assuming that position control by feedback control is performed in the position control apparatus 100 shown in FIG. 1, a position detection signal act_p is input to the position error detection unit 30 instead of the model position detection signal act_p_n.
 これに対して、実施の形態1に係るアクチュエータの位置制御装置100では、位置検出信号act_pの代わりにアクチュエータ位置制御モデル部20において模擬されたモデル位置検出信号act_p_nが位置誤差検出部30に入力される。位置制御装置100においては、アクチュエータ位置制御モデル部20は、実際のアクチュエータ60の伝達特性を模擬した伝達特性を持つように構成されている。このため、アクチュエータ60の位置検出を行う位置センサを用いることなく、オープンループ制御によってアクチュエータ60の可動部の位置制御が可能となる。 In contrast, in the actuator position control apparatus 100 according to the first embodiment, the model position detection signal act_p_n simulated in the actuator position control model unit 20 is input to the position error detection unit 30 instead of the position detection signal act_p. The In the position control device 100, the actuator position control model unit 20 is configured to have a transfer characteristic that simulates the transfer characteristic of the actual actuator 60. Therefore, it is possible to control the position of the movable part of the actuator 60 by open loop control without using a position sensor that detects the position of the actuator 60.
 なお、図1では、アクチュエータ60の可動部の位置制御に用いられる信号として、アクチュエータ位置制御モデル部20におけるモデル位置検出信号act_p_nが用いられている。 In FIG. 1, a model position detection signal act_p_n in the actuator position control model unit 20 is used as a signal used for position control of the movable part of the actuator 60.
 しかし、アクチュエータ60の可動部の位置制御に用いられる信号としては、モデル位置検出信号act_p_nに代えて、モデル位置誤差信号er_p_n、モデル位置制御信号cont_p_n、及びモデル駆動信号Vdr_p_nのいずれかを用いることもできる。モデル位置誤差信号er_p_nは、モデル位置誤差検出部22から出力される。モデル位置制御信号cont_p_nは、モデル制御フィルタ部23から出力される。モデル駆動信号Vdr_p_nは、モデル駆動部24から出力される。 However, as a signal used for position control of the movable portion of the actuator 60, any one of the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n may be used instead of the model position detection signal act_p_n. it can. The model position error signal er_p_n is output from the model position error detection unit 22. The model position control signal cont_p_n is output from the model control filter unit 23. The model drive signal Vdr_p_n is output from the model drive unit 24.
 アクチュエータ60の可動部の位置制御に用いられる信号として、モデル位置誤差検出部22から出力されるモデル位置誤差信号er_p_nを用いる場合について説明する。電磁駆動型アクチュエータの位置制御装置100は、制御フィルタ部40にモデル位置誤差信号er_p_nが入力される。そして、制御フィルタ部40はモデル位置誤差信号er_p_nに基づいて位置制御信号cont_pを生成する。 The case where the model position error signal er_p_n output from the model position error detection unit 22 is used as a signal used for position control of the movable part of the actuator 60 will be described. In the electromagnetically driven actuator position control apparatus 100, the model position error signal er_p_n is input to the control filter unit 40. Then, the control filter unit 40 generates a position control signal cont_p based on the model position error signal er_p_n.
 アクチュエータ60の可動部の位置制御に用いられる信号として、モデル制御フィルタ部23から出力されるモデル位置制御信号cont_p_nを用いる場合について説明する。電磁駆動型アクチュエータの位置制御装置100は、駆動部50にモデル位置制御信号cont_p_nが入力される。そして、駆動部50はモデル位置制御信号cont_p_nに基づいて駆動信号Vdr_pを生成する構成となる。 The case where the model position control signal cont_p_n output from the model control filter unit 23 is used as a signal used for position control of the movable part of the actuator 60 will be described. In the position control device 100 for the electromagnetic drive type actuator, the model position control signal cont_p_n is input to the drive unit 50. The driving unit 50 is configured to generate the driving signal Vdr_p based on the model position control signal cont_p_n.
 アクチュエータ60の可動部の位置制御に用いられる信号として、モデル駆動部24から出力されるモデル駆動信号Vdr_p_nを用いる場合について説明する。電磁駆動型アクチュエータの位置制御装置100は、アクチュエータ60にモデル駆動信号Vdr_p_nが入力される。そして、アクチュエータ60はモデル駆動信号Vdr_p_nに基づいて動作する。 The case where the model drive signal Vdr_p_n output from the model drive unit 24 is used as a signal used for position control of the movable part of the actuator 60 will be described. In the position control device 100 for the electromagnetic drive type actuator, the model drive signal Vdr_p_n is input to the actuator 60. The actuator 60 operates based on the model drive signal Vdr_p_n.
 アクチュエータ60の可動部の位置制御に用いられる信号として、位置検出信号act_p_n、モデル位置誤差信号er_p_n、モデル位置制御信号cont_p_nまたはモデル駆動信号Vdr_p_nのいずれを選択しても、アクチュエータ60の可動部の位置制御が可能となる。 Regardless of the position detection signal act_p_n, model position error signal er_p_n, model position control signal cont_p_n, or model drive signal Vdr_p_n selected as the signal used for position control of the movable part of the actuator 60, the position of the movable part of the actuator 60 is selected. Control becomes possible.
 次に、図5(a)及び図5(b)を用いて、アクチュエータ60のコイルの磁気特性(アクチュエータ磁気回路のパラメータ)を変化させた場合のシミュレーション結果について説明する。アクチュエータ60のコイルの磁気特性としては、例えば、コイル抵抗R、コイルインダクタンスL、及び逆起電力定数Kemがある。アクチュエータ60のコイルの磁気特性は、アクチュエータ磁気回路のパラメータである。これらの値は、アクチュエータ60が設置された環境の温度によって変化する。このため、実施の形態1では、コイル抵抗R及びコイルインダクタンスLを変化させた場合についてシミュレーションを行った結果を説明する。 Next, simulation results when the magnetic characteristics of the coil of the actuator 60 (parameters of the actuator magnetic circuit) are changed will be described with reference to FIGS. 5 (a) and 5 (b). The magnetic characteristics of the coil of the actuator 60, for example, coil resistance R m, the coil inductance L m, and there is a counter electromotive force constant K em. The magnetic characteristic of the coil of the actuator 60 is a parameter of the actuator magnetic circuit. These values vary depending on the temperature of the environment where the actuator 60 is installed. Therefore, in the first embodiment, illustrating the results of simulation for the case of changing the coil resistance R m and the coil inductance L m.
 図5(a)及び図5(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ60のコイル抵抗RとコイルインダクタンスLとを変えた場合のアクチュエータ60の駆動信号Vdr_pに対する位置検出信号act_pの周波数特性を示す図である。図5(a)にはゲインの周波数特性(ゲイン特性)が示されている。横軸は周波数[Hz]で縦軸はゲイン[dB]である。図5(b)には位相の周波数特性(位相特性)が示されている。横軸は周波数[Hz]で縦軸は位相[deg]である。 FIGS. 5 (a) and 5 (b), the position control device 100 of the electromagnetic driven actuator according to the first embodiment, the actuator 60 when changing the coil resistance R m of the actuator 60 and the coil inductance L m It is a figure which shows the frequency characteristic of the position detection signal act_p with respect to the drive signal Vdr_p. FIG. 5A shows the frequency characteristic (gain characteristic) of the gain. The horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB]. FIG. 5B shows the frequency characteristics (phase characteristics) of the phase. The horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
 図5(a)及び図5(b)において、点線で表わされている特性曲線GA1,PH1はR=Rmn/2且つL=Lmn/2の場合の周波数特性を示している。実線で表わされている特性曲線GA2,PH2はR=Rmn且つL=Lmnの場合の周波数特性を示している。1点鎖線で表わされている特性曲線GA3,PH3はR=Rmn×2且つL=Lmn×2の場合の周波数特性を示している。 In FIG. 5A and FIG. 5B, characteristic curves GA1 and PH1 represented by dotted lines indicate frequency characteristics when R m = R mn / 2 and L m = L mn / 2. . Characteristic curves GA2 and PH2 represented by solid lines show the frequency characteristics when R m = R mn and L m = L mn . Characteristic curves GA3 and PH3 represented by a one-dot chain line show the frequency characteristics when R m = R mn × 2 and L m = L mn × 2.
 図5(a)及び図5(b)の高周波数領域HIGHaにおける特性曲線から分かるように、コイル抵抗RとインダクタンスLとを変えた場合には、高周波数領域HIGHaでのゲイン特性に差異が現れ、位相特性にも差異が現れる。 Figure 5 (a) and as can be seen from the characteristic curve in the high frequency range HIGHa of FIG. 5 (b), the case of changing the coil resistance R m and an inductance L m is the difference in gain characteristics in a high frequency range HIGHa Appears, and a difference also appears in the phase characteristics.
 しかし、図5(a)及び図5(b)の低周波数領域LOWaにおける特性曲線から分かるように、コイル抵抗RとインダクタンスLとを変えた場合であっても、低周波数領域LOWaでのゲイン特性に差異は現れず、位相特性に現れる差異は非常に小さい。つまり、位相特性に現れる差異は大きくは変わらない。 However, as can be seen from the characteristic curves in the low frequency region LOWa in FIGS. 5A and 5B, even when the coil resistance R m and the inductance L m are changed, the characteristics in the low frequency region LOWa are changed. No difference appears in the gain characteristics, and the difference that appears in the phase characteristics is very small. That is, the difference appearing in the phase characteristic does not change greatly.
 図6(a)及び図6(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ60のコイル抵抗RとコイルインダクタンスLとを変えた場合のアクチュエータ60のステップ応答を示す図である。図6(a)には、アクチュエータ60の位置目標信号ref_pを1秒経過後に0[deg]から30[deg]に変えた時の位置目標信号ref_pの変化が示されている。図6(b)には、アクチュエータ60の位置目標信号ref_pを1秒経過後に0[deg]から30[deg]に変えた時の位置検出信号act_pのステップ応答が示されている。 FIGS. 6 (a) and 6 (b), the position control device 100 of the electromagnetic driven actuator according to the first embodiment, the actuator 60 when changing the coil resistance R m of the actuator 60 and the coil inductance L m It is a figure which shows no step response. FIG. 6A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed. FIG. 6B shows a step response of the position detection signal act_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed.
 図6(a)及び図6(b)において、点線で表わされている特性曲線RE1,A1はR=Rmn/2且つL=Lmn/2の場合のステップ応答を示している。実線で表わされている特性曲線RE2,A2はR=Rmn且つL=Lmnの場合のステップ応答を示している。1点鎖線で表わされている特性曲線RE3,A3はR=Rmn×2且つL=Lmn×2の場合のステップ応答を示している。 In FIG. 6A and FIG. 6B, characteristic curves RE1 and A1 represented by dotted lines show step responses when R m = R mn / 2 and L m = L mn / 2. . Characteristic curves RE2 and A2 represented by solid lines show the step responses when R m = R mn and L m = L mn . Characteristic curves RE3 and A3 represented by one-dot chain lines show step responses in the case of R m = R mn × 2 and L m = L mn × 2.
 図6(a)及び図6(b)から、コイル抵抗RとインダクタンスLを変えた場合であっても、アクチュエータ60の位置検出信号act_pは0[deg]から30[deg]に変わっている。アクチュエータ60は位置目標信号ref_pに収束していることが分かる。ここで、アクチュエータ60の位置目標信号ref_pを変えてからアクチュエータ60が位置目標信号ref_pに収束するまでの時間をT2とする。位置目標信号ref_pを変えた時刻は、図6(b)においては、1秒の時点である。 From FIG. 6A and FIG. 6B, even when the coil resistance R m and the inductance L m are changed, the position detection signal act_p of the actuator 60 is changed from 0 [deg] to 30 [deg]. Yes. It can be seen that the actuator 60 has converged to the position target signal ref_p. Here, the time from when the position target signal ref_p of the actuator 60 is changed to when the actuator 60 converges to the position target signal ref_p is T2. The time at which the position target signal ref_p is changed is 1 second in FIG. 6B.
 図7(a)及び図7(b)は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ位置制御モデル部20の開ループ特性を示す図である。図7(a)にはゲイン特性が示されている。横軸は周波数[Hz]で縦軸はゲイン[dB]である。図7(b)には位相特性が示されている。横軸は周波数[Hz]で縦軸は位相[deg]である。 7 (a) and 7 (b) are diagrams showing the open loop characteristics of the actuator position control model unit 20 in the position control device 100 for an electromagnetically driven actuator according to the first embodiment. FIG. 7A shows gain characteristics. The horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB]. FIG. 7B shows phase characteristics. The horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
 図7(a)及び図7(b)において、ゲインが0[dB]となる周波数f0、周波数f0における位相f0PH、及び位相が-180[deg]となる周波数f1におけるゲインf1GAが、制御性能と制御安定性の指標となる。図7(a)及び図7(b)の場合には、f0=3.455[Hz]、f0PH=-145[deg]及びf1GA=-37.72[dB]である。よって、制御帯域は3.455[Hz]となる。位相余裕は35[deg](=180-145)となる。ゲイン余裕は37.72[dB]となる。 7A and 7B, the frequency f0 at which the gain is 0 [dB], the phase f0PH at the frequency f0, and the gain f1GA at the frequency f1 at which the phase is −180 [deg] are the control performance. It becomes an index of control stability. In the case of FIGS. 7A and 7B, f0 = 3.455 [Hz], f0PH = −145 [deg], and f1GA = −37.72 [dB]. Therefore, the control band is 3.455 [Hz]. The phase margin is 35 [deg] (= 180-145). The gain margin is 37.72 [dB].
 従来技術におけるアクチュエータの位置制御は、アクチュエータ60の位置検出信号act_pが位置誤差検出部30に入力されるフィードバック制御で行われる。このため、アクチュエータ60のアクチュエータ磁気回路を表わすパラメータのばらつきを考慮して制御フィルタ部40のパラメータを設計する必要がある。この場合には、制御性能と制御安定性とを両立させるための制御フィルタ部40のパラメータの設計自由度は低い。 The position control of the actuator in the prior art is performed by feedback control in which the position detection signal act_p of the actuator 60 is input to the position error detection unit 30. For this reason, it is necessary to design the parameters of the control filter unit 40 in consideration of variations in parameters representing the actuator magnetic circuit of the actuator 60. In this case, the design freedom of the parameters of the control filter unit 40 for achieving both control performance and control stability is low.
 これに対し、実施の形態1における電磁駆動型アクチュエータの位置制御装置100では、図1に示されるように、アクチュエータ60の可動部の位置制御をオープンループ制御で行う。このため、アクチュエータ磁気回路を表わすパラメータのばらつきを考慮する必要がない。ここで、パラメータは、コイル抵抗、コイルインダクタンス又は逆起電力定数などである。 On the other hand, in the position control device 100 for the electromagnetically driven actuator in the first embodiment, as shown in FIG. 1, the position control of the movable part of the actuator 60 is performed by open loop control. For this reason, it is not necessary to consider the variation of the parameters representing the actuator magnetic circuit. Here, the parameter is a coil resistance, a coil inductance, a counter electromotive force constant, or the like.
 実施の形態1におけるアクチュエータ位置制御モデル部20は、その内部でフィードバック制御を行う。しかし、アクチュエータノミナルモデル部25では、アクチュエータ磁気回路を表わすパラメータを一意に決定する。このため、モデル制御フィルタ部23のパラメータの設計自由度は高い。 The actuator position control model unit 20 in the first embodiment performs feedback control therein. However, the actuator nominal model unit 25 uniquely determines a parameter representing the actuator magnetic circuit. For this reason, the design freedom of the parameter of the model control filter part 23 is high.
《1-2》動作
 次に、図8から図10までを参照して、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100の動作を説明する。つまり、電磁駆動型アクチュエータの位置制御方法を説明する。図8から図10までの動作は、電磁駆動型アクチュエータの位置制御装置100の全体の動作を制御する制御部90からの制御信号に基づいて実行される。
<< 1-2 >> Operation Next, the operation of the position controller 100 for the electromagnetically driven actuator according to the first embodiment will be described with reference to FIGS. That is, a method for controlling the position of the electromagnetically driven actuator will be described. The operation from FIG. 8 to FIG. 10 is executed based on a control signal from the control unit 90 that controls the overall operation of the position control apparatus 100 for the electromagnetically driven actuator.
 図8は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ60の起動から停止までの処理の一例を示すフローチャートである。 FIG. 8 is a flowchart showing an example of processing from starting to stopping of the actuator 60 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment.
 図8に示されるように、アクチュエータ60が起動すると、制御部90から出力される制御信号に応じてアクチュエータ位置制御モデル部20の実行シーケンス#1が実行される(ステップS1)。アクチュエータ位置制御モデル部20の実行シーケンス#1の詳細については、図9を用いて説明する。 As shown in FIG. 8, when the actuator 60 is activated, an execution sequence # 1 of the actuator position control model unit 20 is executed in accordance with a control signal output from the control unit 90 (step S1). Details of the execution sequence # 1 of the actuator position control model unit 20 will be described with reference to FIG.
 次に、制御部90から出力される制御信号に応じてアクチュエータ60の駆動シーケンス#1が実行される(ステップS2)。アクチュエータ60の駆動シーケンス#1の詳細については、図10を用いて説明する。 Next, the drive sequence # 1 of the actuator 60 is executed in accordance with the control signal output from the control unit 90 (step S2). Details of the drive sequence # 1 of the actuator 60 will be described with reference to FIG.
 図9は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ位置制御モデル部20の実行シーケンス#1の動作の一例を示すフローチャートである。図9は、図8のステップS1におけるアクチュエータ位置制御モデル部の実行シーケンス#1の詳細を示している。図9の説明に際しては、図1、図2、及び図4をも参照する。 FIG. 9 is a flowchart showing an example of an operation of the execution sequence # 1 of the actuator position control model unit 20 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment. FIG. 9 shows details of the execution sequence # 1 of the actuator position control model unit in step S1 of FIG. In the description of FIG. 9, FIG. 1, FIG. 2, and FIG. 4 are also referred to.
 図9に示されるように、アクチュエータ位置制御モデル部20の実行シーケンス#1が開始されると、制御部90は、変数である指標kを0に初期化する(ステップS11)。指標kは、0以上の整数である。 As shown in FIG. 9, when the execution sequence # 1 of the actuator position control model unit 20 is started, the control unit 90 initializes a variable index k to 0 (step S11). The index k is an integer of 0 or more.
 次に、アクチュエータ位置制御モデル部20の駆動シーケンス#1が実行される(ステップS12)。アクチュエータ位置制御モデル部20は、図2に示されている。 Next, the drive sequence # 1 of the actuator position control model unit 20 is executed (step S12). The actuator position control model unit 20 is shown in FIG.
 次に、アクチュエータ位置制御モデル部20において、指標kにおけるモデル位置検出信号act_p_nが取得される(ステップS13)。ここで得られるモデル位置検出信号act_p_nは、アクチュエータ位置制御モデル部20から出力されるモデル位置検出信号act_p_nの候補となる。 Next, in the actuator position control model unit 20, the model position detection signal act_p_n at the index k is acquired (step S13). The model position detection signal act_p_n obtained here is a candidate for the model position detection signal act_p_n output from the actuator position control model unit 20.
 次に、制御部90は、ステップS11のアクチュエータ位置制御モデル部20の実行シーケンス#1の開始から基準時間T1が経過したかどうかを判断する(ステップS14)。基準時間T1は、例えば、予め決められている。 Next, the control unit 90 determines whether or not the reference time T1 has elapsed since the start of the execution sequence # 1 of the actuator position control model unit 20 in step S11 (step S14). The reference time T1 is determined in advance, for example.
 指標kは、アクチュエータ60の可動部の位置制御におけるサンプリング周期ts毎に1インクリメントされる。指標kのインクリメントに関しては、後述のステップS15において説明する。指標kは、アクチュエータノミナルモデル部25からのモデル位置検出信号act_p_nを取得する際の指標となる。 The index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60. The increment of the index k will be described in step S15 described later. The index k is an index for obtaining the model position detection signal act_p_n from the actuator nominal model unit 25.
 基準時間T1は、時間T2を少なくとも含んでいる。時間T2は、アクチュエータ位置制御モデル部20におけるモデル位置目標信号ref_p_nが示す位置を位置P1から位置P2に変更した時に、モデル位置検出信号act_p_nの示す位置が位置P2に収束するまでの時間である。すなわち、時間T1>時間T2となる。ここで、時間T2は、例えば、図6に示されている時間T2である。 The reference time T1 includes at least the time T2. The time T2 is a time until the position indicated by the model position detection signal act_p_n converges to the position P2 when the position indicated by the model position target signal ref_p_n in the actuator position control model unit 20 is changed from the position P1 to the position P2. That is, time T1> time T2. Here, the time T2 is, for example, the time T2 shown in FIG.
 ここで、「収束する」とは、モデル位置検出信号act_p_nの示す位置が位置P2に整定することを意味する。つまり、整定時間が経過して、モデル位置検出信号act_p_nが示す値が静止したとみなすことができる。モデル位置検出信号act_p_nの示す位置の整定は、例えば、位置P2の5%以内の許容範囲内にとどまることを意味する。この収束する許容範囲は、例えば位置P2の2%以内でもよく、位置P2の5%以内に限定されない。 Here, “converge” means that the position indicated by the model position detection signal act_p_n is set to the position P2. That is, it can be considered that the value indicated by the model position detection signal act_p_n has stopped after the settling time has elapsed. The setting of the position indicated by the model position detection signal act_p_n means, for example, that it remains within an allowable range within 5% of the position P2. This allowable range of convergence may be, for example, within 2% of the position P2, and is not limited to within 5% of the position P2.
 ステップS14の判断が「NO」の場合には、処理はステップS15に進む。つまり、時間T1が経過していない場合には、処理はステップS15に進む。 If the determination in step S14 is “NO”, the process proceeds to step S15. That is, if the time T1 has not elapsed, the process proceeds to step S15.
 ステップS15では、指標kが1インクリメントされて、処理はステップS13に進む。つまり、ステップS15では、指標kに「1」が加算される(k=k+1)。 In step S15, the index k is incremented by 1, and the process proceeds to step S13. That is, in step S15, “1” is added to the index k (k = k + 1).
 すなわち、モデル位置検出信号act_p_nが示す位置が位置P2に収束していない。このため、アクチュエータ位置制御モデル部20において、「1」が加算された指標kにおけるモデル位置検出信号act_p_nが取得される処理が再度行われる(ステップS13)。 That is, the position indicated by the model position detection signal act_p_n has not converged to the position P2. Therefore, in the actuator position control model unit 20, the process of acquiring the model position detection signal act_p_n at the index k to which “1” has been added is performed again (step S13).
 ステップS14の判断が「YES」の場合には、モデル位置検出信号act_p_nの候補が、モデル位置検出信号act_p_nとして取得される。つまり、時間T1が経過した場合には、モデル位置検出信号act_p_nの候補が、モデル位置検出信号act_p_nとして取得される。 If the determination in step S14 is “YES”, a candidate for the model position detection signal act_p_n is acquired as the model position detection signal act_p_n. That is, when the time T1 has elapsed, a candidate for the model position detection signal act_p_n is acquired as the model position detection signal act_p_n.
 そして、アクチュエータ位置制御モデル部20の実行シーケンス#1が完了する。すなわち、モデル位置検出信号act_p_nが示す位置が位置P2に収束した。このため、モデル位置検出信号act_p_nの位置誤差検出部30への出力が完了する。 Then, the execution sequence # 1 of the actuator position control model unit 20 is completed. That is, the position indicated by the model position detection signal act_p_n has converged to the position P2. For this reason, the output of the model position detection signal act_p_n to the position error detection unit 30 is completed.
 図10は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100において、アクチュエータ60の駆動シーケンス#1の一例を示すフローチャートである。図10は、図8のステップS2におけるアクチュエータ60の駆動シーケンス#1の詳細を示している。図10の説明に際しては、図1及び図3をも参照する。 FIG. 10 is a flowchart showing an example of the drive sequence # 1 of the actuator 60 in the electromagnetically driven actuator position control apparatus 100 according to the first embodiment. FIG. 10 shows details of the drive sequence # 1 of the actuator 60 in step S2 of FIG. In the description of FIG. 10, FIG. 1 and FIG. 3 are also referred to.
 図10に示されるように、アクチュエータ60の駆動シーケンス#1が開始されると、制御部90は、指標kを0に初期化する(ステップS21)。指標kは、アクチュエータ60の可動部の位置制御におけるサンプリング周期ts毎に1インクリメントされる。指標kのインクリメントに関しては、後述のステップS24において説明する。指標kは、アクチュエータ60の可動部の位置制御の際の指標となる。指標kは、0以上の整数である。 As shown in FIG. 10, when the drive sequence # 1 of the actuator 60 is started, the control unit 90 initializes the index k to 0 (step S21). The index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60. The increment of the index k will be described in step S24 described later. The index k is an index for controlling the position of the movable part of the actuator 60. The index k is an integer of 0 or more.
 次に、指標kにおける位置目標信号ref_pとアクチュエータ位置制御モデル部20におけるモデル位置検出信号act_p_nとが位置誤差検出部30に入力される(ステップS22)。位置誤差検出部30は、指標kにおける位置目標信号であるref_p(k)と指標kにおけるモデル位置検出信号であるact_p_n(k)との差(ref_p(k)-act_p_n(k))を算出する。 Next, the position target signal ref_p at the index k and the model position detection signal act_p_n at the actuator position control model unit 20 are input to the position error detection unit 30 (step S22). The position error detection unit 30 calculates a difference (ref_p (k) −act_p_n (k)) between ref_p (k) that is a position target signal at the index k and act_p_n (k) that is a model position detection signal at the index k. .
 次に、制御部90は、指標kがT1/tsより大きいかどうかを判断する(ステップS23)。基準時間T1は、図9のステップS14において使用される時間である。ステップS23での判断は、アクチュエータ位置制御モデル部20において、モデル位置目標信号ref_p_nを位置P1から位置P2に変更してから、モデル位置検出信号act_p_nが示す位置が位置P2に収束するまでの時間が経過したかどうかを判断することに相当する。これによって、アクチュエータ60の可動部の位置制御において、位置検出信号act_pが示す位置が位置P2に収束したかどうかを判断することができる。 Next, the control unit 90 determines whether or not the index k is larger than T1 / ts (step S23). The reference time T1 is the time used in step S14 of FIG. In step S23, the actuator position control model unit 20 determines the time until the position indicated by the model position detection signal act_p_n converges to the position P2 after the model position target signal ref_p_n is changed from the position P1 to the position P2. This is equivalent to determining whether the time has elapsed. Thereby, in the position control of the movable part of the actuator 60, it can be determined whether or not the position indicated by the position detection signal act_p has converged to the position P2.
 ステップS23の判断が「NO」の場合には、処理はステップS24に進む。つまり、指標kがT1/tsよりも大きくない場合には、処理はステップS24に進む。 If the determination in step S23 is “NO”, the process proceeds to step S24. That is, if the index k is not greater than T1 / ts, the process proceeds to step S24.
 ステップS24では、指標kが1インクリメントされ、処理はステップS22に進む。つまり、ステップS24では、指標kに「1」が加算される(k=k+1)。 In step S24, the index k is incremented by 1, and the process proceeds to step S22. That is, in step S24, “1” is added to the index k (k = k + 1).
 すなわち、位置検出信号act_pが示す位置が位置P2に収束していない。このため、ステップS22で「1」が加算された指標kにおける位置目標信号ref_pとモデル位置検出信号act_p_nが位置誤差検出部30に入力される処理が再度行われる。 That is, the position indicated by the position detection signal act_p has not converged to the position P2. Therefore, the process in which the position target signal ref_p and the model position detection signal act_p_n at the index k to which “1” is added in step S22 is input to the position error detection unit 30 is performed again.
 ステップS23の判断が「YES」の場合には、アクチュエータ60の駆動シーケンス#1が完了する。つまり、指標kがT1/tsよりも大きい場合には、アクチュエータ60の駆動シーケンス#1が完了する。すなわち、位置検出信号act_pが示す位置が位置P2に収束したと判断されたため、アクチュエータ60の駆動処理が完了する。 If the determination in step S23 is “YES”, the drive sequence # 1 of the actuator 60 is completed. That is, when the index k is larger than T1 / ts, the drive sequence # 1 of the actuator 60 is completed. That is, since it is determined that the position indicated by the position detection signal act_p has converged to the position P2, the driving process of the actuator 60 is completed.
 なお、図9では、ステップS13において取得される信号として、アクチュエータノミナルモデル部25から出力されたモデル位置検出信号act_p_nが用いられている。しかし、取得される信号は、モデル位置誤差検出部22から出力されるモデル位置誤差信号er_p_n、モデル制御フィルタ部23から出力されるモデル位置制御信号cont_p_n、及びモデル駆動部24から出力されるモデル駆動信号Vdr_p_nのいずれを用いてもよい。 In FIG. 9, the model position detection signal act_p_n output from the actuator nominal model unit 25 is used as the signal acquired in step S13. However, the acquired signals are the model position error signal er_p_n output from the model position error detection unit 22, the model position control signal cont_p_n output from the model control filter unit 23, and the model drive output from the model drive unit 24. Any of the signals Vdr_p_n may be used.
 図9のステップS13において取得される信号として、アクチュエータ位置制御モデル部20におけるモデル位置誤差信号er_p_nを用いる場合には、図10のステップS22において、指標kにおけるモデル位置誤差信号er_p_nが制御フィルタ部40に入力される。 When the model position error signal er_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 of FIG. 9, the model position error signal er_p_n at the index k is converted to the control filter unit 40 in step S22 of FIG. Is input.
 図9のステップS13において取得される信号として、アクチュエータ位置制御モデル部20におけるモデル位置制御信号cont_p_nを用いる場合には、図10のステップS22において、指標kにおけるモデル位置制御信号cont_p_nが駆動部50に入力される。 When the model position control signal cont_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 in FIG. 9, the model position control signal cont_p_n in the index k is sent to the drive unit 50 in step S22 in FIG. Entered.
 図9のステップS13において取得される信号として、アクチュエータ位置制御モデル部20におけるモデル駆動信号Vdr_p_nを用いる場合には、図10のステップS22において、指標kにおけるモデル駆動信号Vdr_p_nがアクチュエータ60に入力される。 When the model drive signal Vdr_p_n in the actuator position control model unit 20 is used as the signal acquired in step S13 in FIG. 9, the model drive signal Vdr_p_n in the index k is input to the actuator 60 in step S22 in FIG. .
 アクチュエータ位置制御モデル部20におけるモデル位置検出信号act_p_n、モデル位置誤差信号er_p_n、モデル位置制御信号cont_p_n及びモデル駆動信号Vdr_p_nのいずれを選択しても、同様の効果が得られる。 The same effect can be obtained by selecting any of the model position detection signal act_p_n, the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n in the actuator position control model unit 20.
《1-3》効果
 以上に説明したように、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100及び位置制御方法によれば、電磁駆動型アクチュエータの位置制御装置100は、アクチュエータ60の理想的な伝達特性を模擬し、アクチュエータ60の理想的な検出位置を示すモデル位置検出信号act_p_nを出力するアクチュエータ位置制御モデル部20を備える。
<< 1-3 >> Effect As described above, according to the position control device 100 and the position control method of the electromagnetic drive actuator according to the first embodiment, the position control device 100 of the electromagnetic drive actuator An actuator position control model unit 20 that simulates ideal transfer characteristics and outputs a model position detection signal act_p_n indicating an ideal detection position of the actuator 60 is provided.
 また、電磁駆動型アクチュエータの位置制御装置100の位置誤差検出部30には、アクチュエータ位置制御モデル部20によって生成されたモデル位置検出信号act_p_nが入力される。位置制御部80は、モデル位置検出信号act_p_nを用いたオープンループ制御によって、位置センサを用いることなく、アクチュエータ60の可動部の位置制御を実行する。これにより、電磁駆動型アクチュエータの逆起電力に測定誤差が生じた場合であっても、電磁駆動型アクチュエータの可動部の位置制御精度の低下を抑えることができる。また、アクチュエータ60のコイル抵抗RとコイルインダクタンスLとが変化したとしても、位置制御部80は、アクチュエータ60の可動部の位置制御を正確に行うことができる。 Further, the model position detection signal act_p_n generated by the actuator position control model unit 20 is input to the position error detection unit 30 of the position control device 100 for the electromagnetically driven actuator. The position control unit 80 performs position control of the movable part of the actuator 60 without using a position sensor by open loop control using the model position detection signal act_p_n. Thereby, even when a measurement error occurs in the back electromotive force of the electromagnetic drive actuator, it is possible to suppress a decrease in position control accuracy of the movable part of the electromagnetic drive actuator. The coil resistance R m of the actuator 60 and the coil inductance L m even changes, the position control section 80, the position control of the movable portion of the actuator 60 can be performed accurately.
《2》実施の形態2
《2-1》構成
 実施の形態1においては、アクチュエータ60のコイルの磁気特性のうち、コイル抵抗RとコイルインダクタンスLとが変化した場合のアクチュエータ60の可動部の位置制御方法について説明した。アクチュエータ60のコイルの磁気特性は、アクチュエータ磁気回路のパラメータである。実施の形態2では、逆起電力定数Kemが変化した場合のアクチュエータ60の位置制御方法について説明する。
<< 2 >> Embodiment 2
"2-1" configuration in the first embodiment, among the magnetic characteristics of the coil of the actuator 60 has been described position control method of a movable part of the actuator 60 when the coil resistance R m and the coil inductance L m is changed . The magnetic characteristic of the coil of the actuator 60 is a parameter of the actuator magnetic circuit. In the second embodiment, a method for controlling the position of the actuator 60 when the back electromotive force constant K em is changed will be described.
 図11は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200の構成を概略的に示すブロック図である。 FIG. 11 is a block diagram schematically showing the configuration of the position control device 200 for an electromagnetically driven actuator according to the second embodiment.
 図11に示されるように、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200は、実施の形態1に係る電磁駆動型アクチュエータの位置制御装置100の構成と概略同じである。しかし、位置制御装置200は、乗算部(第1の乗算部)71と乗算部(第2の乗算部)72とを含む点で位置制御装置100と異なる。 As shown in FIG. 11, the position control device 200 for an electromagnetically driven actuator according to the second embodiment is substantially the same as the configuration of the position control device 100 for an electromagnetically driven actuator according to the first embodiment. However, the position control device 200 is different from the position control device 100 in that it includes a multiplication unit (first multiplication unit) 71 and a multiplication unit (second multiplication unit) 72.
 図11に示される位置目標信号発生部10、アクチュエータ位置制御モデル部20、位置誤差検出部30、制御フィルタ部40、駆動部50、及びアクチュエータ60は、図1に示されるものと同じ構成である。このため、説明を省略する。また、制御部90は、位置制御装置200の全体の動作を制御する。 The position target signal generation unit 10, the actuator position control model unit 20, the position error detection unit 30, the control filter unit 40, the drive unit 50, and the actuator 60 shown in FIG. 11 have the same configurations as those shown in FIG. . Therefore, the description is omitted. Further, the control unit 90 controls the overall operation of the position control device 200.
 乗算部71は、位置目標信号ref_pに対してγ倍の乗算を行う。乗算部71は、γ倍に乗算された位置目標信号γ・ref_pを出力する。乗算部72は、モデル位置検出信号act_p_nに対してγ倍の乗算を行う。乗算部72は、γ倍に乗算されたモデル位置検出信号γ・act_p_nを出力する。以下、実施の形態2で乗算部71,72を設けた理由について説明する。 The multiplication unit 71 multiplies the position target signal ref_p by γ times. The multiplier 71 outputs the position target signal γ · ref_p multiplied by γ. The multiplier 72 multiplies the model position detection signal act_p_n by γ times. The multiplier 72 outputs a model position detection signal γ · act_p_n multiplied by γ times. Hereinafter, the reason why the multiplication units 71 and 72 are provided in the second embodiment will be described.
 図12(a)及び図12(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の逆起電力定数Kemを変えた場合のアクチュエータ60の駆動信号Vdr_pに対する位置検出信号act_pの周波数特性を示す図である。図12(a)にはゲインの周波数特性(ゲイン特性)が示されている。横軸は周波数[Hz]で縦軸はゲイン[dB]である。図12(b)には位相の周波数特性(位相特性)が示されている。横軸は周波数[Hz]で縦軸は位相[deg]である。 12A and 12B show the drive signal Vdr_p of the actuator 60 when the back electromotive force constant K em of the actuator 60 is changed in the position control device 200 for the electromagnetically driven actuator according to the second embodiment. It is a figure which shows the frequency characteristic of the position detection signal act_p with respect to. FIG. 12A shows the frequency characteristic (gain characteristic) of the gain. The horizontal axis represents frequency [Hz] and the vertical axis represents gain [dB]. FIG. 12B shows a frequency characteristic (phase characteristic) of the phase. The horizontal axis is frequency [Hz] and the vertical axis is phase [deg].
 図12(a)及び図12(b)において、点線で表わされている特性曲線GA1,PH1はKem=Kemn/2の場合の周波数特性を示す。実線で表わされている特性曲線GA2,PH2はKem=Kemnの場合の周波数特性を示す。1点鎖線で表わされている特性曲線GA3,PH3はKem=Kemn×2の場合の周波数特性を示す。 In FIG. 12A and FIG. 12B, characteristic curves GA1 and PH1 represented by dotted lines indicate frequency characteristics when K em = K emn / 2. Characteristic curves GA2 and PH2 represented by solid lines indicate frequency characteristics when K em = K emn . Characteristic curves GA3 and PH3 represented by a one-dot chain line indicate frequency characteristics when K em = K emn × 2.
 図12(a)に示されるように、逆起電力定数Kemを変えた場合には、低周波数領域LOWaと高周波数領域HIGHaとの両方でゲイン特性が変わっている。すなわち、Kem=Kemn/2の場合及びKem=Kemn×2の場合には、上記式(5)において、低周波数領域LOWaでP(s)≠P(s)となる。このため、アクチュエータ60を位置目標信号ref_pに収束させることができない。したがって、アクチュエータ60を位置目標信号ref_pに収束させるために、位置目標信号ref_pを補正する。 As shown in FIG. 12A, when the counter electromotive force constant K em is changed, the gain characteristics are changed in both the low frequency region LOWa and the high frequency region HIGHa. That is, in the case of K em = K emn / 2 and K em = K emn × 2, in the above formula (5), P (s) ≠ P n (s) in the low frequency region LOWa. For this reason, the actuator 60 cannot be converged to the position target signal ref_p. Therefore, the position target signal ref_p is corrected in order to converge the actuator 60 to the position target signal ref_p.
 図13(a)及び図13(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の逆起電力Vemを積分する方法を示す図である。図13(a)には、アクチュエータ60の位置目標信号ref_pを1秒後に0[deg]から30[deg]に変えた時の位置目標信号ref_pの変化が示されている。図13(b)には、アクチュエータ60の位置目標信号ref_pを1秒後に0[deg]から30[deg]に変えた時に発生するアクチュエータ60の逆起電力Vemが示されている。アクチュエータ60の逆起電力は、アクチュエータ60のコイルで発生する逆起電力である。 FIGS. 13A and 13B are diagrams showing a method of integrating the back electromotive force Vem of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG. 13A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second. FIG. 13B shows the back electromotive force Vem of the actuator 60 that is generated when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second. The back electromotive force of the actuator 60 is a back electromotive force generated in the coil of the actuator 60.
 アクチュエータ60の可動部の位置制御における位置目標信号ref_pを変更した時の位置検出信号act_pの位置は、アクチュエータ60の可動部の速度を積分することで得られる。一方、アクチュエータ60の逆起電力Vemは可動部の速度に比例する。このため、アクチュエータノミナルモデル部25のモデル逆起電力Vemnを予め定められた時間積分したものと、アクチュエータ60の逆起電力Vemを予め定められた時間積分したものとを比較する。これによって、アクチュエータ60の可動部の位置を位置目標信号ref_pが示す位置に収束させるための、位置目標信号ref_pの補正量を求めることができる。 The position of the position detection signal act_p when the position target signal ref_p in the position control of the movable part of the actuator 60 is changed is obtained by integrating the speed of the movable part of the actuator 60. On the other hand, the back electromotive force Vem of the actuator 60 is proportional to the speed of the movable part. Therefore, the model back electromotive force Vemn of the actuator nominal model unit 25 obtained by time integration is compared with the one obtained by integrating the back electromotive force Vem of the actuator 60 by a predetermined time. Thereby, the correction amount of the position target signal ref_p for converging the position of the movable part of the actuator 60 to the position indicated by the position target signal ref_p can be obtained.
 アクチュエータ60の逆起電力Vemの積分値(第1の逆起電力積分値)は、次式(6)で表わされる。 The integral value (first counter electromotive force integral value) of the back electromotive force Vem of the actuator 60 is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、Nは次式(7)で表わされる。 In equation (6), N is represented by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)において、round(T3/ts)は、T3/tsに最も近い整数を意味する。すなわち、round(T3/ts)は、小数点以下を四捨五入することで得られた整数である。 In equation (7), round (T3 / ts) means an integer closest to T3 / ts. That is, round (T3 / ts) is an integer obtained by rounding off the decimal point.
 時間T3は、アクチュエータ位置制御モデル部20におけるモデル位置目標信号ref_p_nが示す位置を位置P1から位置P2に変更した時に、モデル位置検出信号act_p_nが示す位置が位置P2に収束するまでの時間T4を少なくとも含む。すなわち、時間T3>時間T4となる。時間T3は、例えば、予め定められた基準時間である。時間T4は、後述する図15における時間T4である。 The time T3 is at least a time T4 until the position indicated by the model position detection signal act_p_n converges to the position P2 when the position indicated by the model position target signal ref_p_n in the actuator position control model unit 20 is changed from the position P1 to the position P2. Including. That is, time T3> time T4. Time T3 is, for example, a predetermined reference time. Time T4 is time T4 in FIG.
 ここで、「収束する」とは、モデル位置検出信号act_p_nの示す位置が位置P2に整定することを意味する。つまり、モデル位置検出信号act_p_nの示す位置が、例えば、位置P2の5%以内にとどまることを意味する。この5%は、例えば2%でもよく、限定されない。なお、Vemの積分値を求める式は、式(6)に限定されない。 Here, “converge” means that the position indicated by the model position detection signal act_p_n is set to the position P2. That is, it means that the position indicated by the model position detection signal act_p_n stays within 5% of the position P2, for example. The 5% may be 2%, for example, and is not limited. Note that the equation for obtaining the integral value of Vem is not limited to Equation (6).
 図14は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の位置検出信号act_pの収束値[deg]と逆起電力Vemの積分値[V・s]との関係を示す図である。図14は、逆起電力Vemの誤差を考慮したものである。逆起電力Vemの誤差は、図13(b)における逆起電力Vemの最大値の1%とした。 FIG. 14 shows the relationship between the convergence value [deg] of the position detection signal act_p of the actuator 60 and the integral value [V · s] of the back electromotive force Vem in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG. FIG. 14 considers the error of the back electromotive force Vem. The error of the counter electromotive force Vem is 1% of the maximum value of the counter electromotive force Vem in FIG.
 図14に示されるように、アクチュエータ60の逆起電力Vemに変化が発生した場合でも、位置検出信号act_pの収束値と逆起電力Vemの積分値は比例することが分かる。これは、逆起電力Vemの変化による影響が逆起電力Vemの積分値に比べて無視できるほど小さいためである。 As shown in FIG. 14, even when a change occurs in the back electromotive force Vem of the actuator 60, the convergence value of the position detection signal act_p and the integral value of the back electromotive force Vem are proportional. This is because the influence of the change in the back electromotive force Vem is so small that it can be ignored compared to the integrated value of the back electromotive force Vem.
 図13(a)及び図13(b)では、アクチュエータ60の逆起電力Vemの積分値を求める方法を示した。しかし、アクチュエータノミナルモデル部25のモデル逆起電力Vemnの積分値(第2の逆起電力積分値)も同様の方法で求めることができる。 13 (a) and 13 (b) show a method for obtaining the integral value of the back electromotive force Vem of the actuator 60. FIG. However, the integral value (second counter electromotive force integral value) of the model counter electromotive force Vemn of the actuator nominal model unit 25 can also be obtained by the same method.
 この時、アクチュエータ位置制御モデル部20のモデル位置目標信号ref_p_nと、アクチュエータ60の可動部の位置制御における位置目標信号ref_pとは同じ値の信号であることが理想的である。式(8)においてγを求め、位置目標信号ref_pとモデル位置検出信号act_p_nとをそれぞれγ倍して補正する。これによって、アクチュエータ60には駆動信号Vdr_pがγ倍された信号γ・Vdr_pが入力される。 At this time, it is ideal that the model position target signal ref_p_n of the actuator position control model unit 20 and the position target signal ref_p in the position control of the movable part of the actuator 60 have the same value. In Expression (8), γ is obtained, and the position target signal ref_p and the model position detection signal act_p_n are each corrected by multiplying by γ. As a result, a signal γ · Vdr_p obtained by multiplying the drive signal Vdr_p by γ is input to the actuator 60.
 なお、アクチュエータ60の可動部の位置制御における駆動信号Vdr_pと、アクチュエータ位置制御モデル部20におけるモデル駆動信号Vdr_p_nとは等しい。そのため、アクチュエータ60に入力される信号γ・Vdr_pは、モデル駆動信号Vdr_p_nがγ倍された信号γ・Vdr_p_nと同じ値を持つ。 Note that the drive signal Vdr_p in the position control of the movable portion of the actuator 60 is equal to the model drive signal Vdr_p_n in the actuator position control model unit 20. Therefore, the signal γ · Vdr_p input to the actuator 60 has the same value as the signal γ · Vdr_p_n obtained by multiplying the model drive signal Vdr_p_n by γ.
 乗算部71,72は、位置目標信号発生部10からの位置目標信号ref_pと、アクチュエータ位置制御モデル部20からのモデル位置検出信号act_p_nとをそれぞれ受け取る。そして、乗算部71,72は、位置目標信号ref_pとモデル位置検出信号act_p_nとをそれぞれγ倍した信号を出力する。γは、次式(8)で表わされる。
乗算部71,72は、例えば、γを予め記憶している。ただし、γを記憶する記憶部は、乗算部71,72の外部に設けられてもよい。
The multipliers 71 and 72 receive the position target signal ref_p from the position target signal generator 10 and the model position detection signal act_p_n from the actuator position control model unit 20, respectively. Then, the multipliers 71 and 72 output signals each obtained by multiplying the position target signal ref_p and the model position detection signal act_p_n by γ. γ is expressed by the following equation (8).
For example, the multipliers 71 and 72 store γ in advance. However, the storage unit that stores γ may be provided outside the multiplication units 71 and 72.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図15(a)及び図15(b)は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の逆起電力定数Kemを変えた場合のアクチュエータ60のステップ応答を示す図である。 15A and 15B show the step response of the actuator 60 when the back electromotive force constant K em of the actuator 60 is changed in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG.
 図15(a)には、アクチュエータ60の位置目標信号ref_pを1秒経過後に0[deg]から30[deg]に変えた時の位置目標信号ref_pの変化が示されている。縦軸は、位置目標信号ref_p[deg]であり、横軸は時間[sec]である。 FIG. 15A shows a change in the position target signal ref_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed. The vertical axis represents the position target signal ref_p [deg], and the horizontal axis represents time [sec].
 図15(b)には、アクチュエータ60の位置目標信号ref_pを1秒経過後に0[deg]から30[deg]に変えた時の位置検出信号act_pのステップ応答が示されている。縦軸は、位置検出信号act_p[deg]であり、横軸は時間[sec]である。 FIG. 15B shows a step response of the position detection signal act_p when the position target signal ref_p of the actuator 60 is changed from 0 [deg] to 30 [deg] after 1 second has elapsed. The vertical axis represents the position detection signal act_p [deg], and the horizontal axis represents time [sec].
 なお、図15(b)に示された実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200では、乗算部71,72によるγ倍の補正が行われている。 In the electromagnetically driven actuator position control apparatus 200 according to the second embodiment shown in FIG. 15B, the multiplication units 71 and 72 perform the correction of γ times.
 図15(a)及び図15(b)において、点線で表わされている特性曲線RE1,A1はKem=Kemn/2の場合のステップ応答を示している。実線で表わされている特性曲線RE2,A2はKem=Kemnの場合のステップ応答を示している。1点鎖線で表わされている特性曲線RE3,A3はKem=Kemn×2の場合のステップ応答を示している。 In FIG. 15 (a) and FIG. 15 (b), characteristic curves RE1 and A1 represented by dotted lines indicate step responses when K em = K emn / 2. Characteristic curves RE2 and A2 represented by solid lines indicate step responses when K em = K emn . Characteristic curves RE3 and A3 represented by a one-dot chain line show a step response when K em = K emn × 2.
 図15(a)に示されるように、点線で表わされている特性曲線で示されたKem=Kemn/2の場合には、1秒経過後には位置が0[deg]から15[deg]に変化している。1点鎖線で表わされたKem=Kemn×2の場合には、1秒経過後には位置が0[deg]から60[deg]に変化している。 As shown in FIG. 15A , in the case of K em = K emn / 2 shown by a characteristic curve represented by a dotted line, the position is changed from 0 [deg] to 15 [ deg]. In the case of K em = K emn × 2 represented by a one-dot chain line, the position changes from 0 [deg] to 60 [deg] after 1 second.
 図15(b)に示されるように、位置検出信号act_pは、時間T4経過後には位置目標信号ref_pの30[deg]に収束していることが分かる。したがって、逆起電力定数Kemを変えても、位置目標信号ref_p及びモデル位置検出信号act_p_nの各々をγ倍して補正することで、アクチュエータ60を位置目標信号ref_pの30[deg]に収束させることができる。 As shown in FIG. 15B, it can be seen that the position detection signal act_p converges to 30 [deg] of the position target signal ref_p after the time T4 has elapsed. Therefore, even if the back electromotive force constant K em is changed, each of the position target signal ref_p and the model position detection signal act_p_n is corrected by γ times so that the actuator 60 is converged to 30 [deg] of the position target signal ref_p. be able to.
《2-2》動作
 次に、図16から図19までを参照して、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200の動作を説明する。つまり、電磁駆動型アクチュエータの位置制御方法を説明する。図16から図19までの動作は、例えば、図11の制御部90から出力される制御信号に基づいて実行される。
<< 2-2 >> Operation Next, the operation of the position control apparatus 200 for an electromagnetically driven actuator according to the second embodiment will be described with reference to FIGS. That is, a method for controlling the position of the electromagnetically driven actuator will be described. The operation from FIG. 16 to FIG. 19 is executed based on, for example, a control signal output from the control unit 90 in FIG.
 図16は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の起動から停止までの処理の一例を示すフローチャートである。 FIG. 16 is a flowchart showing an example of processing from starting to stopping of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment.
 図16に示されるように、アクチュエータ60が起動すると、制御部90から出力される制御信号に応じて、アクチュエータ位置制御モデル部20の実行シーケンス#2が実行される(ステップS3)。アクチュエータ位置制御モデル部20の実行シーケンス#2については、図17を用いて説明する。 As shown in FIG. 16, when the actuator 60 is activated, an execution sequence # 2 of the actuator position control model unit 20 is executed in accordance with a control signal output from the control unit 90 (step S3). The execution sequence # 2 of the actuator position control model unit 20 will be described with reference to FIG.
 次に、制御部90から出力される制御信号に応じて、アクチュエータ60の駆動前処理が行われる(ステップS4)。アクチュエータ60の駆動前処理については、図18を用いて説明する。 Next, pre-drive processing of the actuator 60 is performed in accordance with the control signal output from the control unit 90 (step S4). The pre-drive process for the actuator 60 will be described with reference to FIG.
 次に、制御部90から出力される制御信号に応じてアクチュエータ60の駆動シーケンス#2が実行される(ステップS5)。アクチュエータ60の駆動シーケンス#2については、図19を用いて説明する。 Next, the drive sequence # 2 of the actuator 60 is executed according to the control signal output from the control unit 90 (step S5). The drive sequence # 2 of the actuator 60 will be described with reference to FIG.
 図17は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ位置制御モデル部20の実行シーケンス#2の一例を示すフローチャートである。図17は、図16のステップS3におけるアクチュエータ位置制御モデル部20の実行シーケンス#2の詳細を示している。 FIG. 17 is a flowchart showing an example of an execution sequence # 2 of the actuator position control model unit 20 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG. 17 shows the details of the execution sequence # 2 of the actuator position control model unit 20 in step S3 of FIG.
 図17に示されるように、アクチュエータ位置制御モデル部20の実行シーケンス#2が開始されると、制御部90は、変数である指標kを0に初期化する(ステップS31)。指標kは0以上の整数である。 As shown in FIG. 17, when the execution sequence # 2 of the actuator position control model unit 20 is started, the control unit 90 initializes a variable index k to 0 (step S31). The index k is an integer of 0 or more.
 指標kは、アクチュエータ60の可動部の位置制御におけるサンプリング周期ts毎に1インクリメントされる。指標kのインクリメントに関しては、後述のステップS36において説明する。指標kは、アクチュエータノミナルモデル部25からのモデル位置検出信号act_p_n及びモデル逆起電力Vemnを取得する際の指標となる。 The index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60. The increment of the index k will be described in step S36 described later. The index k is an index for obtaining the model position detection signal act_p_n and the model back electromotive force Vemn from the actuator nominal model unit 25.
 次に、図2に示されるアクチュエータ位置制御モデル部20の実行シーケンス#2が実行される(ステップS32)。 Next, the execution sequence # 2 of the actuator position control model unit 20 shown in FIG. 2 is executed (step S32).
 次に、アクチュエータ位置制御モデル部20において、指標kにおけるモデル位置検出信号act_p_nが取得される(ステップS33)。 Next, in the actuator position control model unit 20, the model position detection signal act_p_n at the index k is acquired (step S33).
 次に、アクチュエータ位置制御モデル部20において、指標kにおけるモデル逆起電力Vemnが取得される(ステップS34)。 Next, in the actuator position control model unit 20, the model back electromotive force Vemn at the index k is acquired (step S34).
 次に、制御部90は、ステップS30のアクチュエータ位置制御モデル部20の実行シーケンス#2の開始から時間T3が経過したかどうかを判断する(ステップS35)。時間T3は、図13(a)及び図13(b)を用いて説明した時間T3である。よって、ここでは時間T3の説明を省略する。 Next, the control unit 90 determines whether or not the time T3 has elapsed from the start of the execution sequence # 2 of the actuator position control model unit 20 in step S30 (step S35). The time T3 is the time T3 described with reference to FIGS. 13 (a) and 13 (b). Therefore, description of time T3 is abbreviate | omitted here.
 ステップS35の判断が「NO」の場合には、処理はステップS36に進む。つまり、時間T3が経過していない場合には、処理はステップS36に進む。 If the determination in step S35 is “NO”, the process proceeds to step S36. That is, if the time T3 has not elapsed, the process proceeds to step S36.
 指標kが1インクリメントされる(ステップS36)。つまり、ステップS36では、指標kに「1」が加算される(k=k+1)。 The index k is incremented by 1 (step S36). That is, in step S36, “1” is added to the index k (k = k + 1).
 すなわち、モデル位置検出信号act_p_nが示す位置が位置P2に収束していない。このため、アクチュエータ位置制御モデル部20において、「1」が加算された指標kにおけるモデル位置検出信号act_p_nが取得される処理(ステップS33)、及びアクチュエータ位置制御モデル部20において、「1」が加算された指標kにおけるモデル逆起電力Vemnが取得される処理(ステップS34)が再度行われる。 That is, the position indicated by the model position detection signal act_p_n has not converged to the position P2. For this reason, in the actuator position control model unit 20, the process of obtaining the model position detection signal act_p_n at the index k to which “1” is added (step S33), and in the actuator position control model unit 20, “1” is added. The process (step S34) for obtaining the model back electromotive force Vemn at the index k is performed again.
 ステップS35の判断が「YES」の場合には、処理はステップS37に進む。つまり、時間T3が経過した場合には、処理はステップS37に進む。 If the determination in step S35 is “YES”, the process proceeds to step S37. That is, when the time T3 has elapsed, the process proceeds to step S37.
 アクチュエータ位置制御モデル部20において、モデル逆起電力Vemnの積分値が算出される(ステップS37)。モデル逆起電力Vemnの積分値は、式(6)を用いて算出される。そして、アクチュエータ位置制御モデル部20の実行シーケンス#2(ステップS3)が完了する。 In the actuator position control model unit 20, the integral value of the model back electromotive force Vemn is calculated (step S37). The integral value of the model back electromotive force Vemn is calculated using Expression (6). Then, the execution sequence # 2 (step S3) of the actuator position control model unit 20 is completed.
 図18は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ駆動前処理の一例を示すフローチャートである。図18は、図16のステップS4におけるアクチュエータ60の駆動前処理の詳細を示している。 FIG. 18 is a flowchart showing an example of pre-actuator drive processing in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG. 18 shows details of the pre-drive process for the actuator 60 in step S4 of FIG.
 図18に示されるように、制御部90によりアクチュエータ60の駆動前処理が開始されると、指標kが0に初期化される(ステップS41)。 As shown in FIG. 18, when the pre-drive process of the actuator 60 is started by the control unit 90, the index k is initialized to 0 (step S41).
 指標kは、アクチュエータ60の可動部の位置制御におけるサンプリング周期ts毎に1インクリメントさる。指標kのインクリメントは、後述のステップS44において説明する。指標kは、アクチュエータ60の可動部の位置制御、及び逆起電力Vemを取得する際の指標となる。 The index k is incremented by 1 every sampling period ts in the position control of the movable part of the actuator 60. The increment of the index k will be described in step S44 described later. The index k is an index when the position control of the movable part of the actuator 60 and the back electromotive force Vem are acquired.
 次に、指標kにおける位置目標信号ref_pとアクチュエータ位置制御モデル部20におけるモデル位置検出信号act_p_nとが位置誤差検出部30に入力される(ステップS42)。具体的には、指標kにおける位置目標信号ref_p(k)と指標kにおけるモデル位置検出信号act_p_n(k)との差(ref_p(k)-act_p_n(k))が位置誤差検出部30から出力される。 Next, the position target signal ref_p at the index k and the model position detection signal act_p_n at the actuator position control model unit 20 are input to the position error detection unit 30 (step S42). Specifically, the difference between the position target signal ref_p (k) at the index k and the model position detection signal act_p_n (k) at the index k (ref_p (k) −act_p_n (k)) is output from the position error detection unit 30. The
 次に、アクチュエータ60において、指標kにおける逆起電力Vemが取得される(ステップS43)。 Next, in the actuator 60, the back electromotive force Vem at the index k is acquired (step S43).
 次に、制御部90は、ステップS40のアクチュエータ60の駆動前処理の開始から時間T3が経過したかどうかを判断する(ステップS44)。時間T3は、図13を用いて説明した時間T3のことである。よって、ここでは時間T3の説明を省略する。 Next, the control unit 90 determines whether or not the time T3 has elapsed from the start of the pre-drive process of the actuator 60 in step S40 (step S44). Time T3 is the time T3 described with reference to FIG. Therefore, description of time T3 is abbreviate | omitted here.
 ステップS44の判断が「NO」の場合には、処理はステップS45に進む。つまり、時間T3が経過していない場合には、処理はステップS45に進む。 If the determination in step S44 is “NO”, the process proceeds to step S45. That is, if the time T3 has not elapsed, the process proceeds to step S45.
 指標kが1インクリメントされる(ステップS45)。この場合には、ステップS42で「1」が加算された指標kにおける位置目標信号ref_pとモデル位置検出信号act_p_nとが位置誤差検出部30に入力される処理、及びステップS43で「1」が加算された指標kにおける逆起電力Vemが取得される処理が継続される。 The index k is incremented by 1 (step S45). In this case, the position target signal ref_p and the model position detection signal act_p_n at the index k to which “1” is added in step S42 are input to the position error detection unit 30, and “1” is added in step S43. The process of acquiring the back electromotive force Vem at the index k is continued.
 ステップS44の判断が「YES」の場合には、処理はステップS46に進む。ステップS46では、Vemの積分値が算出される。Vemの積分値は、上記式(6)を用いて算出される。 If the determination in step S44 is “YES”, the process proceeds to step S46. In step S46, an integral value of Vem is calculated. The integral value of Vem is calculated using the above equation (6).
 次に、γが算出される(ステップS47)。γは、上記式(8)を用いて算出される。そして、アクチュエータ60の駆動前処理(ステップS4)が完了する。 Next, γ is calculated (step S47). γ is calculated using the above equation (8). Then, the pre-drive process (step S4) of the actuator 60 is completed.
 図19は、実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200において、アクチュエータ60の駆動シーケンス#2の一例を示すフローチャートである。図19は、図16のステップS5におけるアクチュエータの駆動シーケンス#2の詳細を示している。 FIG. 19 is a flowchart showing an example of a drive sequence # 2 of the actuator 60 in the electromagnetically driven actuator position control apparatus 200 according to the second embodiment. FIG. 19 shows details of the actuator drive sequence # 2 in step S5 of FIG.
 図19に示されるように、アクチュエータ60の駆動シーケンス#2が開始されると、指標kが0に初期化される(ステップS51)。 As shown in FIG. 19, when the drive sequence # 2 of the actuator 60 is started, the index k is initialized to 0 (step S51).
 指標kは、アクチュエータ60の可動部の位置制御におけるサンプリング周期ts毎にインクリメントされる。指標kは、アクチュエータ60の可動部の位置制御の際の指標となる。 The index k is incremented every sampling period ts in the position control of the movable part of the actuator 60. The index k is an index for controlling the position of the movable part of the actuator 60.
 次に、指標kにおける位置目標信号γ・ref_pとアクチュエータ位置制御モデル部20におけるモデル位置検出信号γ・act_p_nとが位置誤差検出部30に入力される(ステップS52)。具体的には、指標kにおけるγ・ref_p(k)と指標kにおけるγ・act_p_n(k)との差(γ・ref_p(k)-γ・act_p_n(k))が位置誤差検出部30から出力される。 Next, the position target signal γ · ref_p for the index k and the model position detection signal γ · act_p_n for the actuator position control model unit 20 are input to the position error detection unit 30 (step S52). Specifically, the difference between γ · ref_p (k) at the index k and γ · act_p_n (k) at the index k (γ · ref_p (k) −γ · act_p_n (k)) is output from the position error detection unit 30. Is done.
 次に、指標kがT3/tsよりも大きいかどうかが判断される(ステップS53)。ステップS53は、アクチュエータ位置制御モデル部20において、モデル位置目標信号ref_p_nを位置P1から位置P2に変更してから、モデル位置検出信号act_p_nが示す位置が位置P2に収束するまでの時間が経過したかどうかを判断することに相当する。これにより、アクチュエータ60の可動部の位置制御において、位置検出信号act_pが示す位置が位置P2に収束したかどうかを判断できる。 Next, it is determined whether or not the index k is larger than T3 / ts (step S53). In step S53, in the actuator position control model unit 20, has the time elapsed from the change of the model position target signal ref_p_n from the position P1 to the position P2 until the position indicated by the model position detection signal act_p_n converges to the position P2? This is equivalent to judging whether. Thereby, in the position control of the movable part of the actuator 60, it can be determined whether or not the position indicated by the position detection signal act_p has converged to the position P2.
 ステップS53の判断が「NO」の場合には、処理はステップS54に進む。つまり、指標kがT3/tsよりも大きくない場合には、処理はステップS54に進む。 If the determination in step S53 is “NO”, the process proceeds to step S54. That is, when the index k is not greater than T3 / ts, the process proceeds to step S54.
 指標kが1インクリメントされる(ステップS54)。すなわち、位置検出信号act_pが示す位置が位置P2に収束していない。このため、ステップS52で指標kにおける位置目標信号γ・ref_pと位置検出信号γ・act_p_nとが位置誤差検出部30に入力される処理が再度行われる。 The index k is incremented by 1 (step S54). That is, the position indicated by the position detection signal act_p has not converged to the position P2. For this reason, the process in which the position target signal γ · ref_p and the position detection signal γ · act_p_n at the index k are input to the position error detection unit 30 in step S52 is performed again.
 ステップS53の判断が「YES」の場合には、ステップS55に進む。つまり、指標kがT3/tsよりも大きい場合には、アクチュエータの駆動シーケンス#2が完了する(ステップS55)。すなわち、位置検出信号act_pが示す位置が位置P2に収束したと判断された。このため、アクチュエータ60の駆動処理(ステップS6)が完了する。 If the determination in step S53 is “YES”, the process proceeds to step S55. That is, when the index k is larger than T3 / ts, the actuator drive sequence # 2 is completed (step S55). That is, it is determined that the position indicated by the position detection signal act_p has converged to the position P2. For this reason, the drive process (step S6) of the actuator 60 is completed.
 なお、図17では、ステップS33において取得される信号として、アクチュエータ位置制御モデル部20におけるモデル位置検出信号act_p_nが選択されている。しかし、モデル位置誤差信号er_p_n、モデル位置制御信号cont_p_n及びモデル駆動信号Vdr_p_nのいずれを選択してもよい。 In FIG. 17, the model position detection signal act_p_n in the actuator position control model unit 20 is selected as the signal acquired in step S33. However, any one of the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n may be selected.
 モデル位置誤差信号er_p_nを用いる場合には、図18のステップS42において、指標kにおけるモデル位置誤差信号er_p_nが制御フィルタ部40に入力される。また、図19のステップS52において、指標kにおける位置誤差信号γ・er_p_nが制御フィルタ部40に入力される。 When the model position error signal er_p_n is used, the model position error signal er_p_n at the index k is input to the control filter unit 40 in step S42 in FIG. Further, in step S <b> 52 of FIG. 19, the position error signal γ · er_p_n at the index k is input to the control filter unit 40.
 モデル位置制御信号cont_p_nを用いる場合には、図18のステップS42において、指標kにおけるモデル位置制御信号cont_p_nが駆動部50に入力される。また、図19のステップS52において、指標kにおける制御信号γ・cont_p_nが駆動部50に入力される。 When the model position control signal cont_p_n is used, the model position control signal cont_p_n at the index k is input to the drive unit 50 in step S42 in FIG. Further, in step S <b> 52 of FIG. 19, the control signal γ · cont_p_n at the index k is input to the drive unit 50.
 モデル駆動信号Vdr_p_nを用いる場合には、図18のステップS42において、指標kにおけるモデル駆動信号Vdr_p_nがアクチュエータ60に入力される。また、図19のステップS52において、指標kにおける駆動信号γ・Vdr_p_nがアクチュエータ60に入力される。 When the model drive signal Vdr_p_n is used, the model drive signal Vdr_p_n at the index k is input to the actuator 60 in step S42 in FIG. Further, in step S <b> 52 of FIG. 19, the drive signal γ · Vdr_p_n at the index k is input to the actuator 60.
 位置検出信号act_p_n、モデル位置誤差信号er_p_n、モデル位置制御信号cont_p_n及びモデル駆動信号Vdr_p_nのいずれが選択されても、同様の効果が得られる。 The same effect can be obtained regardless of which of the position detection signal act_p_n, the model position error signal er_p_n, the model position control signal cont_p_n, and the model drive signal Vdr_p_n is selected.
《2-3》効果
 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200及び位置制御方法によれば、実施の形態1に係る電動駆動型アクチュエータの位置制御装置100と同様の効果を得ることができる。
<< 2-3 >> Effect According to the position control device 200 and the position control method for the electromagnetically driven actuator according to the second embodiment, the same effect as the position controller 100 for the electrically driven actuator according to the first embodiment is obtained. be able to.
 実施の形態2に係る電磁駆動型アクチュエータの位置制御装置200によれば、電磁駆動型アクチュエータの位置制御装置200は乗算部71,72を備える。乗算部71,72は、位置目標信号ref_p及びモデル位置検出信号act_p_nに対してγ倍の乗算を行う。乗算部71,72は、γ倍に補正された信号を出力する。位置誤差検出部30には、アクチュエータ位置制御モデル部20によって生成され補正されたモデル位置検出信号γ・act_p_nが入力される。 According to the electromagnetically driven actuator position control apparatus 200 according to the second embodiment, the electromagnetically driven actuator position control apparatus 200 includes the multiplication units 71 and 72. Multipliers 71 and 72 multiply the position target signal ref_p and the model position detection signal act_p_n by γ times. Multipliers 71 and 72 output signals corrected to γ times. A model position detection signal γ · act_p_n generated and corrected by the actuator position control model unit 20 is input to the position error detection unit 30.
 位置制御部80は、モデル位置検出信号γ・act_p_nを用いたオープンループ制御によって、位置センサを用いることなく、アクチュエータ60の可動部の位置制御を実行する。これによって、位置制御部80は、アクチュエータ60の逆起電力定数Kemが変化しても、アクチュエータ60を位置目標信号ref_pに収束させることができる。したがって、位置制御部80は、アクチュエータ60の逆起電力定数Kemが変化しても、アクチュエータ60の可動部の位置制御を正確に行うことができる。 The position control unit 80 performs position control of the movable part of the actuator 60 without using a position sensor by open loop control using the model position detection signal γ · act_p_n. Accordingly, the position control unit 80 can converge the actuator 60 to the position target signal ref_p even if the back electromotive force constant K em of the actuator 60 changes. Therefore, the position controller 80 can accurately control the position of the movable part of the actuator 60 even if the back electromotive force constant K em of the actuator 60 changes.
《3》変形例
 本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の態様で実施することができる。
<< 3 >> Modifications The present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention.
 上記の実施の形態では、アクチュエータ60としてDCモータを例示した。しかし、本発明は、これに限定されず、逆起電力を発生するコイルを有するものであればDCモータ以外のアクチュエータにも適用可能である。 In the above embodiment, the DC motor is exemplified as the actuator 60. However, the present invention is not limited to this, and can be applied to an actuator other than a DC motor as long as it has a coil that generates a counter electromotive force.
 例えば、本発明は、光ディスク記録再生装置の光ピックアップにおける対物レンズアクチュエータについても適用可能である。この場合には、アクチュエータは、例えば、固定部と、当該固定部との電磁相互作用により固定部に対して移動する可動部とを備える。例えば、固定部に磁石が設けられ、可動部にコイルが設けられ、当該コイルに通電することで生じる電磁力によって可動部が移動する。可動部のコイルは、アクチュエータ駆動コイルである。このアクチュエータは、可動部に保持された対物レンズを駆動する光ピックアップのフォーカスアクチュエータである。この例においては、上記の実施の形態で記載した効果と同様の効果が得られる。 For example, the present invention can also be applied to an objective lens actuator in an optical pickup of an optical disc recording / reproducing apparatus. In this case, the actuator includes, for example, a fixed portion and a movable portion that moves relative to the fixed portion by electromagnetic interaction with the fixed portion. For example, a magnet is provided in the fixed part, a coil is provided in the movable part, and the movable part is moved by electromagnetic force generated by energizing the coil. The coil of the movable part is an actuator drive coil. This actuator is a focus actuator of an optical pickup that drives the objective lens held by the movable part. In this example, the same effects as those described in the above embodiment can be obtained.
 100,200 電磁駆動型アクチュエータの位置制御装置、 10 位置目標信号発生部、 20 アクチュエータ位置制御モデル部、 21 モデル位置目標信号発生部、 22 モデル位置誤差検出部、 23 モデル制御フィルタ部、 24 モデル駆動部、 25 アクチュエータノミナルモデル部、 30 位置誤差検出部、 40 制御フィルタ部、 50 駆動部、 60 アクチュエータ(電磁駆動型アクチュエータ)、 71,72 乗算部、 80 位置制御部、 90 制御部、 251a モデル減算部、 252a モデル電圧電流変換部、 253a モデル電流トルク変換部、 254a モデルトルク速度変換部、 255a モデル速度逆起電力変換部、 256a モデル速度位置変換部、 257a モデル位置単位変換部、 601a 減算部、 602a 電圧電流変換部、 603a 電流トルク変換部、 604a トルク速度変換部、 605a 速度逆起電力変換部、 606a 速度位置変換部、 607a 位置単位変換部、 ref_p 位置目標信号、 er_p 位置誤差信号、 cont_p 位置制御信号、 Vdr_p 駆動信号、 act_p 位置検出信号、 ref_p_n モデル位置目標信号、 er_p_n モデル位置誤差信号、 cont_p_n モデル位置制御信号、 Vdr_p_n モデル駆動信号、 act_p_n モデル位置検出信号、 Vdr11 電圧差信号、 Idr11 電流(第1の電流)、 τ11 トルク(第1のトルク)、 v11 速度(第1の速度)、 Vem 逆起電力(第1の逆起電力)、 p11 位置(第1の位置)、 Vdr21 モデル電圧差信号、 Idr21 電流(第2の電流)、 τ21 トルク(第2のトルク)、 v21 速度(第2の速度)、 Vemn モデル逆起電力(第2の逆起電力)、 p21 位置(第2の位置)、 R コイル抵抗、 L コイルインダクタンス、 Ktm トルク定数、 J イナーシャ、 Kem 逆起電力定数、 Rmn コイル抵抗、 Lmn コイルインダクタンス、 Ktmn トルク定数、 Jmn イナーシャ、 Kemn 逆起電力定数、 LOWa 低周波数領域、 HIGHa 高周波数領域、 f0 ゲインが0[dB]となる周波数、 f1 位相が-180[deg]となる周波数、 f0PH 周波数f0における位相、 f1GA 周波数f1におけるゲイン、 ts サンプリング周期。 100, 200 Position control device for electromagnetic drive type actuator, 10 Position target signal generation unit, 20 Actuator position control model unit, 21 Model position target signal generation unit, 22 Model position error detection unit, 23 Model control filter unit, 24 Model drive Unit, 25 actuator nominal model unit, 30 position error detection unit, 40 control filter unit, 50 drive unit, 60 actuator (electromagnetic drive type actuator), 71, 72 multiplication unit, 80 position control unit, 90 control unit, 251a model subtraction 252a model voltage current converter, 253a model current torque converter, 254a model torque speed converter, 255a model speed counter electromotive force converter, 256a model speed position converter, 257a model position unit converter, 601a subtractor, 602a voltage Current converter, 603a current torque converter, 604a torque speed converter, 605a speed counter electromotive force converter, 606a speed position converter, 607a position unit converter, ref_p position target signal, er_p position error signal, cont_p position control signal , Vdr_p drive signal, act_p position detection signal, ref_p_n model position target signal, er_p_n model position error signal, cont_p_n model position control signal, Vdr_p_n model drive signal, act_p_n model position detection signal, Vdr11 voltage difference signal, Idr11 Current), τ11 torque (first torque), v11 speed (first speed), Vem counter electromotive force (first counter electromotive force), p11 position (first position), Vdr21 model voltage difference signal, Idr21 Current (second Current), τ21 torque (second torque), v21 speed (second speed), Vemn model back electromotive force (second back electromotive force), p21 position (second position), R m coil resistance, L m coil inductance, K tm torque constant, J m inertia, K em counter electromotive force constant, R mn coil resistance, L mn coil inductance, K tmn torque constant, J mn inertia, K emn counter electromotive force constant, LOWa Low frequency Region, HIGHa high frequency region, frequency at which f0 gain is 0 [dB], frequency at which f1 phase is −180 [deg], phase at f0PH frequency f0, gain at f1GA frequency f1, ts sampling period.

Claims (12)

  1.  電磁駆動型アクチュエータの可動部の位置を制御する位置制御装置であって、
     前記電磁駆動型アクチュエータの前記可動部の位置制御における前記可動部の目標位置を示す位置目標信号を出力する位置目標信号発生部と、
     前記電磁駆動型アクチュエータが持つ伝達特性を模擬したモデル伝達特性を持ち、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号を出力するアクチュエータ位置制御モデル部と、
     前記位置目標信号と前記モデル位置検出信号とに基づいて前記電磁駆動型アクチュエータの前記可動部の位置を制御する位置制御部と、
     を有する電磁駆動型アクチュエータの位置制御装置。
    A position control device for controlling the position of a movable part of an electromagnetically driven actuator,
    A position target signal generator for outputting a position target signal indicating a target position of the movable part in the position control of the movable part of the electromagnetically driven actuator;
    Actuator position control model unit having a model transfer characteristic simulating the transfer characteristic of the electromagnetic drive actuator and outputting a model position detection signal indicating the position of the movable part of the electromagnetic drive actuator based on the model transfer characteristic When,
    A position controller that controls the position of the movable part of the electromagnetically driven actuator based on the position target signal and the model position detection signal;
    A position control device for an electromagnetically driven actuator.
  2.  前記位置制御部は、前記位置目標信号と前記モデル位置検出信号との差である位置誤差信号に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を制御する請求項1に記載の電磁駆動型アクチュエータの位置制御装置。 2. The electromagnetic drive type according to claim 1, wherein the position control unit controls the position of the movable part of the electromagnetic drive actuator based on a position error signal that is a difference between the position target signal and the model position detection signal. Actuator position control device.
  3.  前記アクチュエータ位置制御モデル部は、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号候補を出力する処理を予め決められた基準時間に達するまで繰り返し行い、前記基準時間における前記モデル位置検出信号候補を、前記モデル位置検出信号とする
     請求項1又は2に記載の電磁駆動型アクチュエータの位置制御装置。
    The actuator position control model unit repeatedly performs a process of outputting a model position detection signal candidate indicating the position of the movable part of the electromagnetically driven actuator based on the model transfer characteristic until a predetermined reference time is reached, The position control apparatus for an electromagnetically driven actuator according to claim 1, wherein the model position detection signal candidate at the reference time is the model position detection signal.
  4.  前記位置制御部は、
     前記位置目標信号と前記モデル位置検出信号との差である位置誤差信号を出力する位置誤差検出部と、
     前記位置誤差信号から前記電磁駆動型アクチュエータの前記可動部の位置を制御するための位置制御信号を出力する制御フィルタ部と、
     前記位置制御信号から前記電磁駆動型アクチュエータを駆動させるための駆動信号を出力する駆動部と
     を有する請求項1から3のいずれか1項に記載の電磁駆動型アクチュエータの位置制御装置。
    The position controller is
    A position error detector that outputs a position error signal that is a difference between the position target signal and the model position detection signal;
    A control filter unit that outputs a position control signal for controlling the position of the movable part of the electromagnetically driven actuator from the position error signal;
    The position control apparatus of the electromagnetic drive type actuator of any one of Claim 1 to 3 which has a drive part which outputs the drive signal for driving the said electromagnetic drive type actuator from the said position control signal.
  5.  前記電磁駆動型アクチュエータは、
     前記駆動信号と第1の逆起電力との差を示す電圧差信号を出力する減算部と、
     前記電圧差信号に基づく第1の電流を出力するモデル電圧電流変換部と、
     前記第1の電流に基づく第1のトルクを出力する電流トルク変換部と、
     前記第1のトルクに基づく第1の速度を出力するトルク速度変換部と、
     前記第1の速度に基づく前記第1の逆起電力を出力する速度逆起電力変換部と、
     前記第1の速度に基づく第1の位置を出力する速度位置変換部と、
     前記第1の位置に基づく前記位置目標信号を出力する位置単位変換部と
     を有する請求項4に記載の電磁駆動型アクチュエータの位置制御装置。
    The electromagnetically driven actuator is
    A subtractor that outputs a voltage difference signal indicating a difference between the drive signal and the first counter electromotive force;
    A model voltage-to-current converter that outputs a first current based on the voltage difference signal;
    A current torque converter for outputting a first torque based on the first current;
    A torque speed converter for outputting a first speed based on the first torque;
    A speed counter electromotive force converter that outputs the first counter electromotive force based on the first speed;
    A speed position converter that outputs a first position based on the first speed;
    The position control device for an electromagnetically driven actuator according to claim 4, further comprising: a position unit conversion unit that outputs the position target signal based on the first position.
  6.  前記アクチュエータ位置制御モデル部は、
     前記電磁駆動型アクチュエータの前記可動部の位置を示す位置検出信号を模擬した前記モデル位置検出信号を出力するアクチュエータノミナルモデル部と、
     前記アクチュエータノミナルモデル部の位置制御における目標位置を示すモデル位置目標信号を出力するモデル位置目標信号発生部と、
     前記モデル位置目標信号と前記モデル位置検出信号との差であるモデル位置誤差信号を出力するモデル位置誤差検出部と、
     前記モデル位置誤差信号から前記アクチュエータノミナルモデル部を制御するためのモデル位置制御信号を出力するモデル制御フィルタ部と、
     前記モデル位置制御信号から前記アクチュエータノミナルモデル部を駆動するためのモデル駆動信号を出力するモデル駆動部と
     を有する請求項5に記載の電磁駆動型アクチュエータの位置制御装置。
    The actuator position control model unit is
    An actuator nominal model unit that outputs the model position detection signal simulating a position detection signal indicating the position of the movable part of the electromagnetically driven actuator;
    A model position target signal generating unit that outputs a model position target signal indicating a target position in the position control of the actuator nominal model unit; and
    A model position error detector that outputs a model position error signal that is a difference between the model position target signal and the model position detection signal;
    A model control filter unit that outputs a model position control signal for controlling the actuator nominal model unit from the model position error signal;
    The position control apparatus for an electromagnetically driven actuator according to claim 5, further comprising: a model drive unit that outputs a model drive signal for driving the actuator nominal model unit from the model position control signal.
  7.  前記位置目標信号と前記モデル位置目標信号とは同じ値の信号であり、
     前記制御フィルタ部と前記モデル制御フィルタ部とは同じ構成を有し、
     前記駆動部と前記モデル駆動部とは同じ構成を有する
     請求項6に記載の電磁駆動型アクチュエータの位置制御装置。
    The position target signal and the model position target signal are signals having the same value,
    The control filter unit and the model control filter unit have the same configuration,
    The position control device for an electromagnetically driven actuator according to claim 6, wherein the drive unit and the model drive unit have the same configuration.
  8.  前記アクチュエータノミナルモデル部は、
     前記駆動信号と第2の逆起電力との差を示すモデル電圧差信号を出力するモデル減算部と、
     前記モデル電圧差信号に基づく第2の電流を出力するモデル電圧電流変換部と、
     前記第2の電流に基づく第2のトルクを出力するモデル電流トルク変換部と、
     前記第2のトルクに基づく第2の速度を出力するモデルトルク速度変換部と、
     前記第2の速度に基づく前記第2の逆起電力を出力するモデル速度逆起電力変換部と、
     前記第2の速度に基づく第2の位置を出力するモデル速度位置変換部と、
     前記第2の位置に基づく前記モデル位置検出信号を出力するモデル位置単位変換部と
     を有する請求項6又は7に記載の電磁駆動型アクチュエータの位置制御装置。
    The actuator nominal model part is:
    A model subtraction unit that outputs a model voltage difference signal indicating a difference between the drive signal and a second counter electromotive force;
    A model voltage / current converter for outputting a second current based on the model voltage difference signal;
    A model current torque converter for outputting a second torque based on the second current;
    A model torque speed converter for outputting a second speed based on the second torque;
    A model speed counter electromotive force conversion unit that outputs the second counter electromotive force based on the second speed;
    A model speed position converter that outputs a second position based on the second speed;
    The position control apparatus for an electromagnetically driven actuator according to claim 6, further comprising: a model position unit conversion unit that outputs the model position detection signal based on the second position.
  9.  前記電磁駆動型アクチュエータの位置制御における前記位置目標信号を変更した時の、前記電磁駆動型アクチュエータにおける前記第1の逆起電力を前記予め定められた時間積分することによって得られた第1の逆起電力積分値に対する、前記アクチュエータ位置制御モデル部における前記モデル位置目標信号を変更した時の、前記アクチュエータノミナルモデル部における前記第2の逆起電力を予め定められた時間積分することによって得られた第2の逆起電力積分値の比を予め取得し、前記位置目標信号に前記比を乗算する第1の乗算部と、
     前記比を予め取得し、前記モデル位置検出信号に前記比を乗算する第2の乗算部と、
     を更に有する
     請求項8に記載の電磁駆動型アクチュエータの位置制御装置。
    A first inverse obtained by integrating the first counter electromotive force in the electromagnetic drive actuator when the position target signal in the position control of the electromagnetic drive actuator is changed is integrated for the predetermined time. Obtained by integrating the second back electromotive force in the actuator nominal model unit for a predetermined time when the model position target signal in the actuator position control model unit is changed with respect to the electromotive force integral value. A first multiplier that obtains a ratio of a second counter electromotive force integral value in advance and multiplies the position target signal by the ratio;
    A second multiplier for acquiring the ratio in advance and multiplying the model position detection signal by the ratio;
    The position control device for an electromagnetically driven actuator according to claim 8.
  10.  前記予め定められた時間は、前記モデル位置検出信号が、前記モデル位置目標信号に収束するまでの時間を少なくとも含む
     請求項9に記載の電磁駆動型アクチュエータの位置制御装置。
    The position control device for an electromagnetically driven actuator according to claim 9, wherein the predetermined time includes at least a time until the model position detection signal converges to the model position target signal.
  11.  電磁駆動型アクチュエータの可動部の位置を制御する位置制御方法であって、
     前記電磁駆動型アクチュエータの前記可動部の位置制御における前記可動部の目標位置を示す位置目標信号を出力するステップと、
     前記電磁駆動型アクチュエータが持つ伝達特性を模擬したモデル伝達特性を持つアクチュエータ位置制御モデル部によって、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号を出力するステップと、
     前記位置目標信号と前記モデル位置検出信号とに基づいて前記電磁駆動型アクチュエータの前記可動部の位置を制御するステップと、
     を有する電磁駆動型アクチュエータの位置制御方法。
    A position control method for controlling the position of a movable part of an electromagnetically driven actuator,
    Outputting a position target signal indicating a target position of the movable part in position control of the movable part of the electromagnetically driven actuator;
    A model position detection signal indicating the position of the movable part of the electromagnetic drive actuator is output based on the model transfer characteristic by an actuator position control model unit having a model transfer characteristic simulating the transfer characteristic of the electromagnetic drive actuator. And steps to
    Controlling the position of the movable portion of the electromagnetically driven actuator based on the position target signal and the model position detection signal;
    The position control method of the electromagnetic drive type actuator which has this.
  12.  前記モデル位置検出信号を取得するステップをさらに有し、
     前記モデル位置検出信号を取得するステップにおいて、前記アクチュエータ位置制御モデル部は、前記モデル伝達特性に基づいて前記電磁駆動型アクチュエータの前記可動部の位置を示すモデル位置検出信号候補を出力する処理を予め決められた基準時間に達するまで繰り返し、前記基準時間における前記モデル位置検出信号候補を、前記モデル位置検出信号とする
     請求項11に記載の電磁駆動型アクチュエータの位置制御方法。
    Further comprising obtaining the model position detection signal;
    In the step of acquiring the model position detection signal, the actuator position control model unit performs in advance a process of outputting a model position detection signal candidate indicating the position of the movable part of the electromagnetically driven actuator based on the model transfer characteristic. The position control method for an electromagnetically driven actuator according to claim 11, wherein the model position detection signal candidate at the reference time is used as the model position detection signal repeatedly until a predetermined reference time is reached.
PCT/JP2017/025064 2016-10-18 2017-07-10 Position control device and position control method for electromagnetic drive-type actuator WO2018074015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017561433A JP6351879B1 (en) 2016-10-18 2017-07-10 Position control device and position control method for electromagnetically driven actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204240 2016-10-18
JP2016-204240 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074015A1 true WO2018074015A1 (en) 2018-04-26

Family

ID=62018347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025064 WO2018074015A1 (en) 2016-10-18 2017-07-10 Position control device and position control method for electromagnetic drive-type actuator

Country Status (2)

Country Link
JP (1) JP6351879B1 (en)
WO (1) WO2018074015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964938A (en) * 2021-02-08 2021-06-15 中国气象科学研究院 Lightning single-station positioning method, device and system based on artificial intelligence
US20220003334A1 (en) * 2020-07-06 2022-01-06 Nabtesco Corporation Spool position estimation apparatus, aircraft hydraulic actuator apparatus, spool position estimation method, and spool position estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223447A (en) * 1993-01-28 1994-08-12 Mitsubishi Electric Corp Magnetic recording and reproducing device
JPH087311A (en) * 1995-06-07 1996-01-12 Fujitsu Ltd Optical disc apparatus
JPH09147374A (en) * 1995-11-20 1997-06-06 Mitsubishi Electric Corp Optical disk control system
JP2015153232A (en) * 2014-02-17 2015-08-24 三菱重工業株式会社 control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223447A (en) * 1993-01-28 1994-08-12 Mitsubishi Electric Corp Magnetic recording and reproducing device
JPH087311A (en) * 1995-06-07 1996-01-12 Fujitsu Ltd Optical disc apparatus
JPH09147374A (en) * 1995-11-20 1997-06-06 Mitsubishi Electric Corp Optical disk control system
JP2015153232A (en) * 2014-02-17 2015-08-24 三菱重工業株式会社 control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220003334A1 (en) * 2020-07-06 2022-01-06 Nabtesco Corporation Spool position estimation apparatus, aircraft hydraulic actuator apparatus, spool position estimation method, and spool position estimation program
CN112964938A (en) * 2021-02-08 2021-06-15 中国气象科学研究院 Lightning single-station positioning method, device and system based on artificial intelligence

Also Published As

Publication number Publication date
JPWO2018074015A1 (en) 2018-10-18
JP6351879B1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP4879173B2 (en) Electric motor control device
US7164250B2 (en) Open-loop voltage driving of a DC motor
US9160260B1 (en) Adaptive actuator control system
JP4837558B2 (en) Motor control device
Derammelaere et al. Sensorless load angle control for two-phase hybrid stepper motors
JP2005135186A (en) Reference model follow-up type control system and its method
JP6351879B1 (en) Position control device and position control method for electromagnetically driven actuator
JP2010183832A (en) Control technique for motor driven system
JP2018033205A (en) Motor control device, motor control method, and program for motor control
JP4524123B2 (en) Control parameter calculation method for motor control device
JPH11285283A (en) Disturbance compensation control device
JP6557185B2 (en) Servo control device, servo control method, and servo control program
Seok et al. VCM controller design with enhanced disturbance decoupling for precise automated manufacturing processes
JP2000235403A (en) Servo controller and servo controlling method
EP3780381B1 (en) Voice coil actuator driver signal generator
JPWO2014199460A1 (en) Command generator
JP2019133537A (en) Actuator controller and actuator control method
KR101547291B1 (en) Driving apparatus for actuator, imaging apparatus and contrilling method thereof
JP2008289218A (en) Motor controller and control method thereof
JP2013235625A (en) Speed control device and method and speed detection device and method for electromagnetic driven type actuator
JP2001325006A (en) Positioning device for reducing noise at positioning time
JP6535495B2 (en) Motion device control circuit, adjustment method therefor, and motion device control apparatus
US20240248437A1 (en) Learning control device, learning control method, and program product
CN115685762B (en) Interferometer moving mirror module control method, interferometer moving mirror module control device and storage medium
TW201426082A (en) Lens focusing system and control method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017561433

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861663

Country of ref document: EP

Kind code of ref document: A1