WO2018073891A1 - Ferronickel production method - Google Patents

Ferronickel production method Download PDF

Info

Publication number
WO2018073891A1
WO2018073891A1 PCT/JP2016/080843 JP2016080843W WO2018073891A1 WO 2018073891 A1 WO2018073891 A1 WO 2018073891A1 JP 2016080843 W JP2016080843 W JP 2016080843W WO 2018073891 A1 WO2018073891 A1 WO 2018073891A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferronickel
furnace
smelting furnace
ore
saprolite
Prior art date
Application number
PCT/JP2016/080843
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 持田
賢三 左右田
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2016/080843 priority Critical patent/WO2018073891A1/en
Publication of WO2018073891A1 publication Critical patent/WO2018073891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Definitions

  • the present invention relates to a method for producing ferronickel.
  • Ferronickel iron nickel alloy
  • nickel pig iron NPI
  • ferronickel has been produced in large quantities by reducing an oxide mineral containing iron and nickel using an electric furnace or the like.
  • Non-Patent Document 1 describes a technique of smelting nickel ore such as nickel sulfide and nickel laterite using a top submerged lance (TSL) furnace.
  • TSL top submerged lance
  • Patent Document 1 powdered metal oxide is supplied from a burner into a high-temperature flame and melted in a reaction furnace, and further the metal oxide is reacted with a reducing agent to give metal (iron, chromium, nickel, etc.). The method of obtaining is described.
  • Non-Patent Document 2 reports the examination items when the capacity is increased in a facility for producing ferronickel by the RKEF (Rotary Kiln Electric Furnace) method using a rotary kiln and an electric furnace.
  • RKEF Rotary Kiln Electric Furnace
  • Non-Patent Document 1 attempts have been made to produce ferronickel using nickel laterite, that is, low-grade limonite (limonite) as a raw material.
  • nickel laterite that is, low-grade limonite (limonite)
  • limonite low-grade limonite
  • Patent Document 1 Even if powdered metal oxide is supplied into the flame, the powder particles are easily discharged into the exhaust gas, and the yield is reduced.
  • iron ore containing 2.0 wt% of water (H 2 O) is used as a raw material, but it has not been studied to use ore with a higher water content as a raw material.
  • foaming increases due to the boiling of water, which may adversely affect the stable operation of the reactor.
  • Non-Patent Document 2 since the amount of electric power used is large, it is necessary to attach power generation equipment (coal-fired power generation, LNG thermal power generation, diesel power generation, etc.) to the facility.
  • power generation equipment coal-fired power generation, LNG thermal power generation, diesel power generation, etc.
  • the present invention has been made in view of the above circumstances, and provides a method for producing ferronickel capable of smelting nickel oxide mineral at a lower cost even in remote areas where power supply is low. Let it be an issue.
  • saprolite and a reducing agent are charged into a smelting furnace including a lance immersed in the raw material from the upper part of the furnace body, and fuel and an auxiliary combustor are supplied from the lance.
  • a ferronickel production method characterized in that ferronickel is obtained by melting the saprolite by burning fuel in the smelting furnace.
  • the water content of saprolite supplied to the smelting furnace is in the range of 21.5 to 22.5 wt% on a moisture basis. This is a method for producing ferronickel.
  • any of the inner peripheral surfaces of the smelting furnace in contact with the molten metal and slag is any of MgO—C, MgO—Cr 2 O 3 and MgO, or A ferronickel production method according to the first or second aspect, characterized in that a refractory material is provided as a combination thereof.
  • any one of the first to third aspects is characterized in that the carbon dioxide in the exhaust gas is removed by passing the exhaust gas of the smelting furnace twice through the amine-based solution. This is a method for producing ferronickel.
  • ferronickel obtained from the smelting furnace is transferred to a refining furnace, and oxygen is blown in the refining furnace and flux (for example, a melting aid such as quartz) is added from the ferronickel.
  • flux for example, a melting aid such as quartz
  • the reduced metal component can be easily separated from the slag, and ferronickel can be produced at low cost.
  • saprolite whose nickel quality is higher than that of limonite as raw material ore, the reduced metal component can be easily separated from the slag, and ferronickel can be produced at low cost.
  • the ore in a smelting furnace is hard to be discharged
  • the deterioration of the furnace body can be suppressed and long-term stable operation can be achieved.
  • the inner peripheral surface of the smelting furnace becomes difficult to get wet with the molten slag, and at the same time, thermal shock resistance is ensured by the action of graphite (C) having a high thermal conductivity and a low thermal expansion coefficient.
  • the fourth aspect even when a large amount of carbon dioxide is generated by the combustion of fuel, it is possible to efficiently separate the carbon dioxide from the exhaust gas and suppress the discharge of carbon dioxide into the atmosphere (outside air).
  • carbon dioxide absorbed in the amine-based solution is easily released into the gas phase by heating the amine-based solution, so that the amine-based solution can be reused for the recovery of carbon dioxide in the exhaust gas.
  • carbon dioxide released into the gas phase can be recovered at a high concentration.
  • impurities such as phosphorus (P), sulfur (S), silicon (Si), and carbon (C) can be removed from the metal component as a slag or gas component.
  • Ferronickel can be obtained.
  • ferronickel production method (smelting method) of the present invention will be described based on a preferred embodiment.
  • ferronickel is manufactured by using a saprolite as a raw material in a smelting furnace including a lance.
  • saprolite containing iron oxide and nickel oxide is used among nickel oxide ores.
  • Saprolite is in the process of generating clayey ore by the weathering of rock, and on the rock is located in the lower part of soil mainly composed of mulch and low-grade limonite (limonite).
  • limonite low-grade limonite
  • silica and base are leached in the process of rock weathering, and metal elements such as iron (Fe) and nickel (Ni) are concentrated in saprolite.
  • metal elements such as iron (Fe) and nickel (Ni) are concentrated in saprolite.
  • limonite is produced.
  • Limonite has a higher Fe ratio and lower Ni quality than saprolite.
  • Ni content contained in saprolite is preferably 1.6 wt% or more on the dry basis excluding moisture. Examples of the Ni content include, but are not limited to, 1.8 wt%, 2.0 wt%, 2.5 wt%, 3.0 wt%, and the like.
  • FIG. 1 shows an example of a smelting furnace.
  • the smelting furnace 10 provided with the lance 12 immersed in the inside of the mixture 16, such as a raw material, from the upper part of the furnace body 11 is used.
  • An example of such a smelting furnace 10 is a TSL furnace.
  • ore (saprolite) and a reducing agent are charged as raw materials.
  • the mixture 16 during smelting may contain one or more raw materials such as ore, reducing agent, molten metal, and slag.
  • the reducing agent examples include substances that include one or both of a carbon source and a hydrogen source, and generate carbon dioxide or water by oxidation.
  • Specific examples of the reducing agent include carbon such as coal, coke, and charcoal, hydrocarbon such as natural gas and heavy oil, and reducing gas such as hydrogen (H 2 ).
  • reducing gas such as hydrogen (H 2 ).
  • coal it is not particularly limited and can be selected from anthracite, bituminous coal, lignite, lignite, and the like.
  • One reducing agent may be used, or two or more reducing agents may be used in combination.
  • a flux may be added to the raw material in order to lower the melting point of the mixture 16.
  • the flux used in the smelting process one or more of quartz (SiO 2 ), calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), iron scrap, etc. Is mentioned.
  • a lance 12 is provided above the furnace body 11 in order to burn the fuel in the smelting furnace 10.
  • Fuel and auxiliary fuel can be supplied through the lance 12.
  • the fuel include carbon such as coal, coke, and charcoal, hydrocarbon such as natural gas and heavy oil, biofuel, and waste plastic.
  • One type of fuel may be used, or two or more types of fuel may be used in combination.
  • the fuel is preferably supplied to the lance 12 as a fluid such as liquid, gas or powder.
  • auxiliary combustor examples include oxygen-containing gas such as oxygen (O 2 ) and oxygen-enriched air.
  • oxygen-containing gas such as oxygen (O 2 )
  • oxygen-enriched air oxygen-containing gas
  • One type of auxiliary combustion agent may be used, or two or more types of auxiliary combustion agents may be used in combination.
  • the lance 12 may have a multi-pipe structure such as a double pipe in order to supply the fuel and the auxiliary combustor separately.
  • a mixture of fuel and combustion aid is blown from the lance 12 into the mixture 16. Since the lower part of the lance 12 is submerged in the mixture 16, the mixture 16 is agitated by the injected fuel, the auxiliary combustor, and the gas generated by the combustion thereof, so that the reduction reaction can be made efficient. it can.
  • a port 13 may be provided on the top of the furnace body 11.
  • some or all of the ore, the reducing agent, the flux, and the like can be supplied from the lance 12 into the furnace body 11. It is also possible to supply a part of the fuel or auxiliary fuel from the port 13.
  • the port 13 only needs to be able to supply a material onto the mixture 16 by charging or the like, and does not need to be immersed in the mixture 16.
  • the smelting furnace 10 may have ports 13 at two or more locations.
  • the ore melts and reacts with the reducing agent to obtain ferronickel.
  • the exhaust gas generated at the time of combustion is discharged from an exhaust pipe 15 provided at the upper part of the smelting furnace 10. It is also possible to recover the thermal energy in the generated exhaust gas with an exhaust heat boiler and use this energy or water vapor for pre-drying of saprolite (see, for example, the third embodiment).
  • the oxide in the ore is reduced to a metal by the following reaction formula.
  • carbon monoxide (CO) generated by the metal reduction reaction with carbon is further oxidized to generate carbon dioxide (CO 2 ) as shown in the following reaction formula.
  • a molten metal containing molten metal and slag is generated in the furnace body 11.
  • Metal components with high specific gravity Ni, Fe, etc.
  • slag components SiO 2 , MgO, etc.
  • ferronickel can be obtained by removing the metal component from the discharge port 14.
  • the smelting furnace 10 may have discharge ports 14 at two or more locations.
  • a discharge port for discharging the slag component may be provided separately from the discharge port for discharging the metal component.
  • the temperature of the mixture 16 melted in the furnace body 11 is preferably 1400 to 1650 ° C., and more preferably 1450 to 1600 ° C., for example.
  • the mixture in the furnace body 11 is effectively agitated by the granules supplied from the lance 12.
  • the molten metal surface level changes greatly, and the temperature of the inner peripheral surface of the smelting furnace 10 such as the furnace body 11 frequently fluctuates.
  • These refractories have a high melting point, are basic, and have excellent basic resistance even when in contact with molten slag.
  • refractory bricks such as MgO-C are installed on the inner peripheral surface of the furnace body 11, it is easy to ensure the thickness of the refractory, and the damaged refractory can be inspected and replaced for each brick. Is possible. It is also possible to make the refractory a uniform coating layer in the plane.
  • the range in which the refractory is provided in the furnace preferably includes the side surface and the bottom surface in contact with the molten metal and slag. It is also possible to combine two or more refractories. For example, two or more kinds of refractories may be divided and installed at different locations in the smelting furnace 10. It is also possible to install two or more refractories in the same location in the smelting furnace 10.
  • the ferronickel obtained from the smelting furnace of the first embodiment is transferred to the refining furnace, and the impurity element is removed from the ferronickel by blowing oxygen and adding flux in the refining furnace. (Purification step).
  • FIG. 2 shows an example of the refining furnace 20.
  • molten metal 25 containing ferronickel as a main component is placed in the pan portion 21, and a flux is supplied from the hopper 23 to the pan portion 21, and a gas such as oxygen is blown into the pan portion 21 from the gas supply portion 24.
  • the pan portion 21 is disposed on the carriage 22 because it is easy to move.
  • the refining furnace 20 includes a mechanism (not shown) for tilting the pan portion 21. When the pan portion 21 is tilted on the cart 22, the bottom surface of the pan portion 21 may be tilted with respect to the mounting surface of the cart 22.
  • the flux used in the refining process one or more of quartz (SiO 2 ), calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), iron scrap, etc. Can be mentioned.
  • quartz SiO 2
  • CaO calcium oxide
  • Ca (OH) 2 calcium hydroxide
  • CaCO 3 calcium carbonate
  • iron scrap etc.
  • the flux used in the refining process may be the same as or different from the flux used in the smelting process.
  • phosphorus (P), silicon (Si), and carbon (C) contained in the metal component can be removed from the metal component as slag or gas component.
  • An example of the reaction formula at this time is shown below. Note that “(metal)” represents a component included in the metal component, and “(slag)” represents a component included in the slag component.
  • silicon (Si) and aluminum (Al) can be added for deoxidation (killing), and sulfur (S) can be reacted with a flux (solvent) to be removed as slag.
  • a flux solvent
  • the smelting method of the third embodiment includes a step of pre-drying the raw material ore (pre-drying step) before supplying the raw material ore (saprolite) to the smelting furnace of the first embodiment.
  • pre-drying step the raw material ore
  • the raw ore is dried to a predetermined moisture content, and the discharge of the raw ore to the exhaust gas system and the foaming in the smelting furnace are suppressed. It is desirable to do.
  • FIG. 3 shows an example of a steam dryer as a first example of the preliminary drying apparatus.
  • the preliminary drying apparatus 30 supplies the raw ore crushed in the pulverization unit 31 to the drying unit 32, and passes the water vapor generated in the steam generation unit 33 in the longitudinal direction of the drying unit 32, thereby drying from the discharge unit 34. It is a device that discharges the processed ore.
  • FIG. 4 shows an example of a jaw crusher as a second example of the preliminary drying apparatus.
  • the preliminary drying apparatus 40 inputs raw material ore from an upper path 41 of the pulverizing unit 42, pulverizes the raw material ore by a jaw (not shown) provided inside the pulverizing unit 42, and a lower path 43 of the pulverizing unit 42. Is a device that dries the ore from the discharge unit 44 by supplying hot air from the outlet and drying the ore.
  • Preliminary drying apparatus is not particularly limited, and in addition to the above, a rotary dryer, an impact dryer, or the like can also be used.
  • the water content of saprolite supplied to the smelting furnace through the preliminary drying step is preferably in the range of 21.5 to 22.5 wt% (wet basis).
  • the moisture content on the moisture basis is represented by the left side w of the following equation, where Ws is the weight of solids and Ww is the weight of moisture.
  • the moisture content is equal to or higher than the lower limit, an appropriate amount of water is secured in the smelting furnace, and the pulverized raw material ore is less likely to be discharged from the smelting furnace into the exhaust gas. Moreover, when a moisture content is below the said upper limit, excessive water content can be avoided and foaming of the molten metal and slag can be suppressed.
  • the water content of the raw material ore before preliminary drying is, for example, about 30 to 40 wt% (wet basis).
  • the smelting method of the fourth embodiment includes a step of removing carbon dioxide (CO 2 ) by passing the exhaust gas (combustion gas) discharged from the smelting furnace of the first embodiment twice or more through the amine-based solution.
  • FIG. 5 shows an example of the CO 2 removal device 50.
  • a CO 2 absorber 51 is provided in the middle of the exhaust gas paths 52 and 53.
  • the exhaust gas paths 52 and 53 are connected to the exhaust pipe 15 of the smelting furnace 10.
  • a first flow path 54 is installed in communication between the middle stage and the lower stage of the CO 2 absorber 51. Inside the first flow path 54, an amine-based solution flows as a CO 2 absorbent.
  • the amine-based solution at the stage of exiting from the lower stage of the CO 2 absorption unit 51 is a rich solution having a large amount of CO 2 absorption, but the amine-based solution is heated in the first diffusion unit 55 provided in the middle of the first flow path 54. And part of the CO 2 contained in the amine-based solution is released into the gas phase.
  • the semi-lean solution absorbs most of CO 2 (for example, about 70%) from the exhaust gas passing through the CO 2 absorbing portion 51.
  • the CO 2 removal device 50 is provided with a second flow path 56 in communication between the first flow path 54 that has passed through the first diffusion section 55 and the upper stage of the CO 2 absorption section 51.
  • An amine-based solution branched from the first flow path 54 flows inside the second flow path 56.
  • the amine-based solution branched from the first flow path 54 is a semi-lean solution as described above. However, the amine-based solution is heated in the second diffusion portion 57 provided in the middle of the second flow path 56, and the amine-based solution. CO 2 contained in is released into the gas phase.
  • the amine-based solution that has passed through the second diffusion unit 57 becomes a lean solution in which the amount of CO 2 absorption is greatly reduced, and is supplied to the upper stage of the CO 2 absorption unit 51.
  • the semi-lean solution many CO 2 remaining in the exhaust gas is absorbed without being absorbed.
  • 90% or more or 99% or more of CO 2 can be removed from the exhaust gas as compared with the exhaust gas before entering the lower stage of the CO 2 absorber 51.
  • Examples of the amine-based solution include an aqueous solution of an organic amine compound.
  • Examples of amines include primary amines, secondary amines, and tertiary amines. Among these, it can be selected in consideration of performance such as CO 2 absorption capacity and avoidance of equipment corrosion. Specific examples include methyldiethanolamine (MDEA) and monoethanolamine (MEA).
  • MDEA methyldiethanolamine
  • MEA monoethanolamine
  • an additive such as an activator may be added to the amine-based solution.
  • the CO 2 diffused from the first diffuser 55 and the second diffuser 57 can be recovered as dry ice by compression solidification and used as a cooling agent or the like. Since the vapor phase containing CO 2 is accompanied by high-temperature water vapor, even if the residual heat of CO 2 diffused from the second diffusion unit 57 is used as an auxiliary to the heat source when the rich solution is heated in the first diffusion unit 55, Good.
  • the raw material nickel oxide ore was saprolite from the Philippines, and its chemical composition was as shown in Table 1.
  • LOI represents ignition loss.
  • required from the weight after drying this raw material ore to a completely dry state was 30 wt% (humidity reference
  • Test Example 1 First, as a preliminary drying step, 1000 g of raw material ore was placed in a shelf-type dryer and dried at an ambient temperature of 110 ° C. for 0.5 hour. As a result, the water content was 22.2 wt% (wet basis). In addition, about this moisture content, preferable conditions were employ
  • an Inconel (registered trademark) pipe having an inner diameter of 100 mm, a height of 150 mm, made of MgO—C refractory (92 wt% MgO, 8 wt% C) and an inner diameter of 10 mm extending from the top to the inside is used.
  • a prepared crucible (melting reduction crucible) was prepared, and this melting reduction crucible was placed in a small electric furnace and kept soaked at an ambient temperature of 1450 ° C. for 1.0 hour.
  • the mixture of raw ore and bituminous coal obtained by mixing in the described mortar was charged from the top of the melting and reducing crucible held soaked in a small electric furnace and allowed to stand for 1.0 hour. Preheated. Here, the electric furnace was turned off, and the mixture was allowed to stand for another hour while continuously supplying combustion air having an oxygen concentration of 75% and powdered bituminous coal from the pipe. As a result, the mixture melted to obtain a molten metal. Was separated at the bottom and the slag component at the top. The smelting reduction crucible was broken and only the metal components after smelting were taken out from the smelting reduction crucible.
  • a crucible made of MgO—C refractory (92 wt% MgO, 8 wt% C) (refining crucible) having an inner diameter of 40 mm and a height of 60 mm was prepared and smelted in the refining crucible.
  • the weight of the metal component was 53.3 g.
  • the obtained metal component was ferronickel, and its chemical composition was as shown in Table 2.
  • Test Example 2 The moisture content (wet basis) of the raw ore after being dried by the shelf dryer described in Test Example 1 was set every 0.5 wt% in the range of 21.0 to 23.0 wt%.
  • the smelting process was implemented like the test example 1 using the raw ore of each moisture content. Under each condition, discharge of raw ore into the exhaust gas generated in the melting reduction crucible (Carry Over) and generation of foaming of the raw ore in the melting reduction crucible (Foaming) were investigated. The results are shown in Table 4.
  • Test Example 3 By changing the material of the refractory material of the melting reduction crucible described in Test Example 1, the influence of the material (chemical composition) of the refractory material on the damage amount of the refractory material was investigated. The results are shown in Table 5. The amount of damage to the refractory material was a ratio to the amount of nickel smelted.
  • the amount of damage to the refractory was measured from the weight loss of the smelting reduction crucible after the purification process. We were able to confirm that the amount of damage was small and could be used. Among them, it was found that the damage amount of the MgO—C refractory (92 wt% MgO, 8 wt% C) was the smallest.
  • Ferronickel produced according to the present invention can be used as a raw material for stainless steel and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A ferronickel production method characterized in that saprolite is melted and ferronickel is obtained by charging saprolite and a reducing agent from the upper part of a furnace body in a smelting furnace provided with a lance that is immersed inside the starting material and feeding fuel and a combustion improver from the lance while burning the fuel inside the smelting furnace.

Description

フェロニッケルの製造方法Method for producing ferronickel
 本発明は、フェロニッケルの製造方法に関する。 The present invention relates to a method for producing ferronickel.
 ニッケル銑鉄(NPI:Nickel Pig Iron)等のフェロニッケル(鉄ニッケル合金)は、ステンレス鋼の原料として多く使用されている。従来、フェロニッケルは、鉄とニッケルを含む酸化鉱物を、電気炉等を用いて還元することにより、大量に生産されている。 Ferronickel (iron nickel alloy) such as nickel pig iron (NPI) is often used as a raw material for stainless steel. Conventionally, ferronickel has been produced in large quantities by reducing an oxide mineral containing iron and nickel using an electric furnace or the like.
 非特許文献1には、ニッケル硫化物、ニッケルラテライト等のニッケル鉱石を、上部浸漬ランス(TSL:Top Submerged Lance)炉を用いて製錬する技術が記載されている。 Non-Patent Document 1 describes a technique of smelting nickel ore such as nickel sulfide and nickel laterite using a top submerged lance (TSL) furnace.
 特許文献1には、粉粒状の金属酸化物をバーナから高温火炎中に供給して反応炉内で溶融させ、更に金属酸化物を還元剤と反応させて金属(鉄、クロム、ニッケル等)を得る方法が記載されている。 In Patent Document 1, powdered metal oxide is supplied from a burner into a high-temperature flame and melted in a reaction furnace, and further the metal oxide is reacted with a reducing agent to give metal (iron, chromium, nickel, etc.). The method of obtaining is described.
 非特許文献2には、ロータリーキルン及び電気炉を用いたRKEF(Rotary Kiln Electric Furnace)法によりフェロニッケルを生産する設備において能力を増強させた際の検討事項が報告されている。 Non-Patent Document 2 reports the examination items when the capacity is increased in a facility for producing ferronickel by the RKEF (Rotary Kiln Electric Furnace) method using a rotary kiln and an electric furnace.
特開平9-310126号公報JP 9-310126 A
 非特許文献1によれば、ニッケルラテライト、すなわち低品位のリモナイト(褐鉄鉱)を原料にしてフェロニッケルの製造が試みられている。しかし、TSL炉で鉱石を還元した後に、スラグを除去する工程が必要であり、プロセスが複雑になっている。 According to Non-Patent Document 1, attempts have been made to produce ferronickel using nickel laterite, that is, low-grade limonite (limonite) as a raw material. However, after reducing the ore in the TSL furnace, a step of removing slag is necessary, and the process is complicated.
 特許文献1に記載された方法では、粉粒状の金属酸化物を火炎中に供給しても、排ガス中に粉粒が排出されやすく、収率が低下する、また、特許文献1の実施例1では、水分(HO)を2.0wt%含む鉄鉱石を原料に用いているが、より水分量が多い鉱石を原料とすることは検討されていない。水分量が多い鉱石を火炎中に供給した場合、水分の沸騰により発泡が増加し、反応炉の安定操業に悪影響を及ぼす恐れがある。 In the method described in Patent Document 1, even if powdered metal oxide is supplied into the flame, the powder particles are easily discharged into the exhaust gas, and the yield is reduced. However, iron ore containing 2.0 wt% of water (H 2 O) is used as a raw material, but it has not been studied to use ore with a higher water content as a raw material. When ores with a high water content are supplied into the flame, foaming increases due to the boiling of water, which may adversely affect the stable operation of the reactor.
 非特許文献2によれば、電力の使用量が多いため、施設に発電設備(石炭火力発電、LNG火力発電、ディーゼル発電など)を付設することが必要となる。鉱石の産地の近くに製錬所を整備する場合、鉱石の輸送コストを削減することはできるが、発電設備の建設・運転コストが発生し、製錬所の収益性が低下する。 According to Non-Patent Document 2, since the amount of electric power used is large, it is necessary to attach power generation equipment (coal-fired power generation, LNG thermal power generation, diesel power generation, etc.) to the facility. When a smelter is established near the ore production area, ore transportation costs can be reduced, but power generation equipment construction and operation costs are incurred, and the profitability of the smelter decreases.
 本発明は、上記事情に鑑みてなされたものであり、電力の供給が少ない僻地であってもニッケル酸化鉱物をより低いコストで製錬することが可能なフェロニッケルの製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides a method for producing ferronickel capable of smelting nickel oxide mineral at a lower cost even in remote areas where power supply is low. Let it be an issue.
 本発明の第1の態様は、炉体の上部から原料の内部に浸漬されるランスを備える製錬炉に、サプロライトと還元剤とを装入し、前記ランスから燃料及び助燃剤を供給しながら前記製錬炉内で燃料を燃焼させることにより前記サプロライトを溶融してフェロニッケルを得ることを特徴とするフェロニッケルの製造方法である。 According to a first aspect of the present invention, saprolite and a reducing agent are charged into a smelting furnace including a lance immersed in the raw material from the upper part of the furnace body, and fuel and an auxiliary combustor are supplied from the lance. A ferronickel production method characterized in that ferronickel is obtained by melting the saprolite by burning fuel in the smelting furnace.
 本発明の第2の態様は、前記製錬炉に供給されるサプロライトの含水率が、湿量基準で21.5~22.5wt%の範囲内であることを特徴とする第1の態様のフェロニッケルの製造方法である。 According to a second aspect of the present invention, the water content of saprolite supplied to the smelting furnace is in the range of 21.5 to 22.5 wt% on a moisture basis. This is a method for producing ferronickel.
 本発明の第3の態様は、前記製錬炉の内周面のうち、溶融した金属及びスラグと接する面に、MgO-C系、MgO-Cr系、MgO系のいずれか、もしくはその組み合わせとなる耐火物を設けることを特徴とする第1又は第2の態様のフェロニッケルの製造方法である。 According to a third aspect of the present invention, any of the inner peripheral surfaces of the smelting furnace in contact with the molten metal and slag is any of MgO—C, MgO—Cr 2 O 3 and MgO, or A ferronickel production method according to the first or second aspect, characterized in that a refractory material is provided as a combination thereof.
 本発明の第4の態様は、前記製錬炉の排ガスをアミン系溶液に2回以上通して前記排ガス中の二酸化炭素を除去することを特徴とする第1~第3の態様のいずれかのフェロニッケルの製造方法である。 According to a fourth aspect of the present invention, any one of the first to third aspects is characterized in that the carbon dioxide in the exhaust gas is removed by passing the exhaust gas of the smelting furnace twice through the amine-based solution. This is a method for producing ferronickel.
 本発明の第5の態様は、前記製錬炉から得られたフェロニッケルを精製炉に移し、前記精製炉において酸素の吹き込みとフラックス(たとえば石英などの溶融助剤)の添加により前記フェロニッケルから不純物元素を除去する工程を有することを特徴とする第1~第4の態様のいずれかのフェロニッケルの製造方法である。 According to a fifth aspect of the present invention, ferronickel obtained from the smelting furnace is transferred to a refining furnace, and oxygen is blown in the refining furnace and flux (for example, a melting aid such as quartz) is added from the ferronickel. The method for producing ferronickel according to any one of the first to fourth aspects, comprising a step of removing an impurity element.
 第1の態様によれば、リモナイトよりもニッケルの品位が高いサプロライトを原料鉱石とすることにより、還元された金属成分をスラグから分離しやすくなり、低いコストでフェロニッケルを生産することが可能になる。製錬炉内で燃料を燃焼させて鉱石を溶融することにより、鉱石の溶融に電力を要することなく、生産設備の立地条件を緩和することができる(すなわち、発電設備の新設・増強が不要となる)。ランスから炉体内に燃料及び助燃剤を供給することにより、原料が撹拌され、還元反応を効率化することができる。 According to the first aspect, by using saprolite whose nickel quality is higher than that of limonite as raw material ore, the reduced metal component can be easily separated from the slag, and ferronickel can be produced at low cost. Become. By burning the fuel in the smelting furnace and melting the ore, it is possible to ease the location conditions of the production facility without requiring electric power to melt the ore (that is, it is not necessary to newly install or enhance the power generation facility) Become). By supplying the fuel and the auxiliary combustor from the lance into the furnace, the raw material is agitated and the reduction reaction can be made more efficient.
 第2の態様によれば、製錬炉内の鉱石が排ガス中に排出されにくく、かつ、溶融した金属及びスラグの発泡を抑制することができる。 According to the 2nd aspect, the ore in a smelting furnace is hard to be discharged | emitted in waste gas, and foaming of the molten metal and slag can be suppressed.
 第3の態様によれば、製錬炉内の温度変動が大きくても炉体の劣化を抑制し、長期間の安定操業を達成することができる。製錬炉の内周面が溶融スラグに濡れにくくなると同時に、高い熱伝導率と低い熱膨張率を有する黒鉛(C)の作用により耐熱衝撃性が確保される。 According to the third aspect, even if the temperature fluctuation in the smelting furnace is large, the deterioration of the furnace body can be suppressed and long-term stable operation can be achieved. The inner peripheral surface of the smelting furnace becomes difficult to get wet with the molten slag, and at the same time, thermal shock resistance is ensured by the action of graphite (C) having a high thermal conductivity and a low thermal expansion coefficient.
 第4の態様によれば、燃料の燃焼により多量の二酸化炭素が発生しても排ガス中から二酸化炭素を効率よく分離し、大気(外気)中への二酸化炭素の排出を抑制することができる。また、アミン系溶液に吸収された二酸化炭素は、アミン系溶液を加熱することにより容易に気相中に放出されるので、アミン系溶液を排ガス中の二酸化炭素の回収に再利用することができる上、気相中に放出された二酸化炭素を高濃度で回収することができる。 According to the fourth aspect, even when a large amount of carbon dioxide is generated by the combustion of fuel, it is possible to efficiently separate the carbon dioxide from the exhaust gas and suppress the discharge of carbon dioxide into the atmosphere (outside air). In addition, carbon dioxide absorbed in the amine-based solution is easily released into the gas phase by heating the amine-based solution, so that the amine-based solution can be reused for the recovery of carbon dioxide in the exhaust gas. In addition, carbon dioxide released into the gas phase can be recovered at a high concentration.
 第5の態様によれば、リン(P)、硫黄(S)、ケイ素(Si)、炭素(C)等の不純物をスラグ又はガス成分として金属成分から除去することができるので、より高品位のフェロニッケルを得ることができる。 According to the fifth aspect, impurities such as phosphorus (P), sulfur (S), silicon (Si), and carbon (C) can be removed from the metal component as a slag or gas component. Ferronickel can be obtained.
製錬炉の一例を示す模式図である。It is a schematic diagram which shows an example of a smelting furnace. 精製炉の一例を示す模式図である。It is a schematic diagram which shows an example of a refinement | purification furnace. 予備乾燥装置の第1の例を示す模式図である。It is a schematic diagram which shows the 1st example of a preliminary drying apparatus. 予備乾燥装置の第2の例を示す模式図である。It is a schematic diagram which shows the 2nd example of a preliminary drying apparatus. 排ガスから二酸化炭素を分離するシステムの一例を示す模式図である。It is a schematic diagram which shows an example of the system which isolate | separates a carbon dioxide from waste gas.
 以下、好適な実施形態に基づいて、本発明のフェロニッケルの製造方法(製錬方法)を説明する。 Hereinafter, the ferronickel production method (smelting method) of the present invention will be described based on a preferred embodiment.
(第1実施形態)
 第1実施形態の製錬方法では、サプロライトを原料として、ランスを備える製錬炉によりフェロニッケルが製造される。
(First embodiment)
In the smelting method of the first embodiment, ferronickel is manufactured by using a saprolite as a raw material in a smelting furnace including a lance.
 フェロニッケルの原料として、ニッケル酸化鉱石の中でも、酸化鉄と酸化ニッケルを含むサプロライト(saprolite)が用いられる。サプロライトは、岩石の風化により粘土質の鉱石が生成する過程にあり、岩石上においては、腐葉土を主とする土壌と低品位のリモナイト(褐鉄鉱)の下部に位置する。熱帯地域においては、岩石の風化の過程でシリカ及び塩基が溶脱し、鉄(Fe)、ニッケル(Ni)等の金属元素がサプロライト中に濃縮される。サプロライトよりも風化が進むとリモナイト(limonite)が生成する。リモナイトは、サプロライトよりもFeの割合が高く、Niの品位は低い。 As a raw material of ferronickel, saprolite containing iron oxide and nickel oxide is used among nickel oxide ores. Saprolite is in the process of generating clayey ore by the weathering of rock, and on the rock is located in the lower part of soil mainly composed of mulch and low-grade limonite (limonite). In the tropical region, silica and base are leached in the process of rock weathering, and metal elements such as iron (Fe) and nickel (Ni) are concentrated in saprolite. When weathering proceeds more than saprolite, limonite is produced. Limonite has a higher Fe ratio and lower Ni quality than saprolite.
 ニッケル酸化鉱物の中で、サプロライトを原料とすることにより、製錬で得られた金属成分とスラグの分離が容易となる。このため、低いコストでフェロニッケルを生産することが可能になる。サプロライトに含まれるNi含有量は、水分を除外した乾量基準(Dry basis)において、1.6wt%以上が好ましい。前記Ni含有量の例としては、1.8wt%、2.0wt%、2.5wt%、3.0wt%等が挙げられるが、これらに限定されるものではない。 By using saprolite as a raw material among nickel oxide minerals, separation of metal components and slag obtained by smelting becomes easy. For this reason, it becomes possible to produce ferronickel at low cost. The Ni content contained in saprolite is preferably 1.6 wt% or more on the dry basis excluding moisture. Examples of the Ni content include, but are not limited to, 1.8 wt%, 2.0 wt%, 2.5 wt%, 3.0 wt%, and the like.
 図1に、製錬炉の一例を示す。本実施形態では、炉体11の上部から原料等の混合物16の内部に浸漬されるランス12を備える製錬炉10が用いられる。このような製錬炉10として、例えばTSL炉が挙げられる。炉体11内には、原料として鉱石(サプロライト)及び還元剤が装入される。製錬中の混合物16には、原料の鉱石、還元剤、溶融金属、スラグ等の1種又は2種以上が含まれ得る。 Figure 1 shows an example of a smelting furnace. In this embodiment, the smelting furnace 10 provided with the lance 12 immersed in the inside of the mixture 16, such as a raw material, from the upper part of the furnace body 11 is used. An example of such a smelting furnace 10 is a TSL furnace. In the furnace body 11, ore (saprolite) and a reducing agent are charged as raw materials. The mixture 16 during smelting may contain one or more raw materials such as ore, reducing agent, molten metal, and slag.
 還元剤としては、炭素源又は水素源の一方又は両方を含み、酸化により二酸化炭素又は水を生じる物質が挙げられる。還元剤の具体例としては、石炭、コークス、木炭等のカーボン、天然ガス、重油等の炭化水素、水素(H)等の還元性ガスが挙げられる。石炭には各種があるが、特に限定されず、無煙炭、瀝青炭、褐炭、亜炭等から選択することができる。1種の還元剤を用いてもよく、2種以上の還元剤を併用することも可能である。 Examples of the reducing agent include substances that include one or both of a carbon source and a hydrogen source, and generate carbon dioxide or water by oxidation. Specific examples of the reducing agent include carbon such as coal, coke, and charcoal, hydrocarbon such as natural gas and heavy oil, and reducing gas such as hydrogen (H 2 ). Although there are various types of coal, it is not particularly limited and can be selected from anthracite, bituminous coal, lignite, lignite, and the like. One reducing agent may be used, or two or more reducing agents may be used in combination.
 原料には、混合物16の融点を下げるため、フラックスを添加してもよい。製錬工程に用いられるフラックスとしては、石英(SiO)、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)、鉄スクラップ等の1種又は2種以上が挙げられる。 A flux may be added to the raw material in order to lower the melting point of the mixture 16. As the flux used in the smelting process, one or more of quartz (SiO 2 ), calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), iron scrap, etc. Is mentioned.
 製錬炉10内で燃料を燃焼させるため、炉体11の上部にはランス12が設けられている。ランス12を通じて燃料及び助燃剤を供給することができる。燃料としては、石炭、コークス、木炭等のカーボン、天然ガス、重油等の炭化水素、バイオ燃料、廃プラスチック等が挙げられる。1種の燃料を用いてもよく、2種以上の燃料を併用することも可能である。燃料は液体、気体、粉体等の流体としてランス12に供給されることが好ましい。 A lance 12 is provided above the furnace body 11 in order to burn the fuel in the smelting furnace 10. Fuel and auxiliary fuel can be supplied through the lance 12. Examples of the fuel include carbon such as coal, coke, and charcoal, hydrocarbon such as natural gas and heavy oil, biofuel, and waste plastic. One type of fuel may be used, or two or more types of fuel may be used in combination. The fuel is preferably supplied to the lance 12 as a fluid such as liquid, gas or powder.
 助燃剤としては、酸素(O)、酸素富化空気等の酸素含有ガス等が挙げられる。1種の助燃剤を用いてもよく、2種以上の助燃剤を併用してもよい。 Examples of the auxiliary combustor include oxygen-containing gas such as oxygen (O 2 ) and oxygen-enriched air. One type of auxiliary combustion agent may be used, or two or more types of auxiliary combustion agents may be used in combination.
 ランス12は燃料と助燃剤とを別々に供給するため、二重管等の多重管構造となっていてもよい。燃料と助燃剤との混合物は、ランス12から混合物16中に吹き込まれる。ランス12の下部は、混合物16中に浸漬(submerge)されているので、吹き込まれた燃料と助燃剤、およびこれらの燃焼により生じたガスによって混合物16が撹拌され、還元反応を効率化することができる。 The lance 12 may have a multi-pipe structure such as a double pipe in order to supply the fuel and the auxiliary combustor separately. A mixture of fuel and combustion aid is blown from the lance 12 into the mixture 16. Since the lower part of the lance 12 is submerged in the mixture 16, the mixture 16 is agitated by the injected fuel, the auxiliary combustor, and the gas generated by the combustion thereof, so that the reduction reaction can be made efficient. it can.
 鉱石、還元剤、フラックス等の物質を炉体11内に供給するため、炉体11の上部にはポート13が設けられてもよい。ただし、鉱石、還元剤、フラックス等の一部又は全部を、ランス12から炉体11内に供給することも可能である。また、燃料又は助燃剤の一部をポート13から供給することも可能である。
 ポート13は、混合物16上に物質を投入等により供給できればよく、混合物16中に浸漬される必要はない。製錬炉10は、2箇所以上にポート13を有してもよい。
In order to supply substances such as ore, a reducing agent, and flux into the furnace body 11, a port 13 may be provided on the top of the furnace body 11. However, some or all of the ore, the reducing agent, the flux, and the like can be supplied from the lance 12 into the furnace body 11. It is also possible to supply a part of the fuel or auxiliary fuel from the port 13.
The port 13 only needs to be able to supply a material onto the mixture 16 by charging or the like, and does not need to be immersed in the mixture 16. The smelting furnace 10 may have ports 13 at two or more locations.
 製錬炉10内で燃料を燃焼させることにより、鉱石(サプロライト)が溶融し、還元剤と反応してフェロニッケルが得られる。燃焼時に生じた排ガスは、製錬炉10の上部に設けられた排気管15から排出される。
 また、発生した排ガス中の熱エネルギーを排熱ボイラーで回収し、このエネルギーもしくは水蒸気をサプロライトの予備乾燥(例えば第3実施形態を参照)に利用することも可能である。
By burning the fuel in the smelting furnace 10, the ore (saprolite) melts and reacts with the reducing agent to obtain ferronickel. The exhaust gas generated at the time of combustion is discharged from an exhaust pipe 15 provided at the upper part of the smelting furnace 10.
It is also possible to recover the thermal energy in the generated exhaust gas with an exhaust heat boiler and use this energy or water vapor for pre-drying of saprolite (see, for example, the third embodiment).
 例えば還元剤が炭素(C)である場合、鉱石中の酸化物は、次の反応式により金属に還元される。 For example, when the reducing agent is carbon (C), the oxide in the ore is reduced to a metal by the following reaction formula.
NiO(l)+C(s)→Ni(l)+CO(g)
FeO(l)+C(s)→Fe(l)+CO(g)
NiO (l) + C (s) → Ni (l) + CO (g)
FeO (l) + C (s) → Fe (l) + CO (g)
 反応式において、「(s)」は固体状態を表し、「(l)」は液体状態を表し、「(g)」は気体状態を表す。 In the reaction formula, “ (s) ” represents a solid state, “ (l) ” represents a liquid state, and “ (g) ” represents a gas state.
 また、炭素による金属の還元反応で生成した一酸化炭素(CO)は、次の反応式に示すように、更に酸化されて二酸化炭素(CO)を生成する。 Further, carbon monoxide (CO) generated by the metal reduction reaction with carbon is further oxidized to generate carbon dioxide (CO 2 ) as shown in the following reaction formula.
CO(g)+(1/2)O2(g)→CO2(g) CO (g) + (1/2) O 2 (g) → CO 2 (g)
 炉体11内には、溶融した金属及びスラグを含む溶湯が生じる。比重が大きい金属成分(Ni,Fe等)は溶湯の下部に集まり、比重が小さいスラグ成分(SiO,MgO等)は溶湯の上部に集まる。炉体11内で金属成分とスラグ成分とが分離するので、金属成分を排出口14から取り出すことにより、フェロニッケルを得ることができる。なお、製錬炉10は、2箇所以上に排出口14を有してもよい。金属成分を排出するための排出口とは別に、スラグ成分を排出するための排出口が設けられてもよい。 A molten metal containing molten metal and slag is generated in the furnace body 11. Metal components with high specific gravity (Ni, Fe, etc.) collect at the bottom of the molten metal, and slag components (SiO 2 , MgO, etc.) with low specific gravity collect at the top of the molten metal. Since the metal component and the slag component are separated in the furnace body 11, ferronickel can be obtained by removing the metal component from the discharge port 14. The smelting furnace 10 may have discharge ports 14 at two or more locations. A discharge port for discharging the slag component may be provided separately from the discharge port for discharging the metal component.
 製錬炉10内で燃料を燃焼させて原料を溶融すると共に、還元反応を進行させる熱エネルギーを得ることにより、鉱石の溶融及び還元に電力を要することなく、生産設備の立地条件を緩和することができる。炉体11内で溶融した混合物16の温度は、例えば1400~1650℃が好ましく、1450~1600℃がより好ましい。 Reducing the location conditions of the production facility without the need for electric power to melt or reduce the ore by obtaining the heat energy that causes the reduction reaction to proceed while burning the fuel in the smelting furnace 10 Can do. The temperature of the mixture 16 melted in the furnace body 11 is preferably 1400 to 1650 ° C., and more preferably 1450 to 1600 ° C., for example.
 上述したように、製錬炉10にTSL炉を採用した場合、ランス12から供給される粒体により炉体11内の混合物が効果的に撹拌される。しかし、溶湯の湯面変動が大きく、炉体11等の製錬炉10の内周面の温度が頻繁に上下する。このため、製錬炉10の内周面に、MgO-C系、MgO-Cr系、MgO系等の1種又は2種以上の耐火物を設けることが好ましい。これらの耐火物は融点が高く、塩基性であり、溶融スラグ等に接しても耐塩基性に優れる。例えば炉体11の内周面にMgO-C系等の耐火物の煉瓦を設置する場合、耐火物の厚さを確保し易い上、損傷した耐火物を煉瓦ごとに検査して交換することが可能である。耐火物を面内で均一なコーティング層とすることも可能である。
 炉内に耐火物を設ける範囲は、溶融した金属及びスラグと接する側面及び底面を含むことが好ましい。2種以上の耐火物を組み合わせることも可能である。例えば、2種以上の耐火物を、製錬炉10内の異なる箇所に区分けして設置してもよい。製錬炉10内の同じ箇所に2種以上の耐火物を複合させて設置することも可能である。
As described above, when a TSL furnace is adopted as the smelting furnace 10, the mixture in the furnace body 11 is effectively agitated by the granules supplied from the lance 12. However, the molten metal surface level changes greatly, and the temperature of the inner peripheral surface of the smelting furnace 10 such as the furnace body 11 frequently fluctuates. For this reason, it is preferable to provide one or more refractories such as MgO—C, MgO—Cr 2 O 3 and MgO on the inner peripheral surface of the smelting furnace 10. These refractories have a high melting point, are basic, and have excellent basic resistance even when in contact with molten slag. For example, when refractory bricks such as MgO-C are installed on the inner peripheral surface of the furnace body 11, it is easy to ensure the thickness of the refractory, and the damaged refractory can be inspected and replaced for each brick. Is possible. It is also possible to make the refractory a uniform coating layer in the plane.
The range in which the refractory is provided in the furnace preferably includes the side surface and the bottom surface in contact with the molten metal and slag. It is also possible to combine two or more refractories. For example, two or more kinds of refractories may be divided and installed at different locations in the smelting furnace 10. It is also possible to install two or more refractories in the same location in the smelting furnace 10.
 中でも、MgO-C系の耐火物を用いる場合には、製錬炉10内の温度変動が大きくても炉体11の劣化が抑制され、長期間の安定操業を達成することができる。製錬炉10の内周面が溶融スラグに濡れにくくなると同時に、高い熱伝導率と低い熱膨張率を有する黒鉛(C)の作用により耐熱衝撃性が確保される。 In particular, when an MgO—C refractory is used, deterioration of the furnace body 11 is suppressed even if the temperature fluctuation in the smelting furnace 10 is large, and long-term stable operation can be achieved. The inner peripheral surface of the smelting furnace 10 is not easily wetted by the molten slag, and at the same time, thermal shock resistance is ensured by the action of graphite (C) having a high thermal conductivity and a low thermal expansion coefficient.
(第2実施形態)
 第2実施形態の製錬方法では、第1実施形態の製錬炉から得られたフェロニッケルを精製炉に移し、精製炉において酸素の吹き込みとフラックスの添加によりフェロニッケルから不純物元素を除去する工程(精製工程)を有する。
(Second Embodiment)
In the smelting method of the second embodiment, the ferronickel obtained from the smelting furnace of the first embodiment is transferred to the refining furnace, and the impurity element is removed from the ferronickel by blowing oxygen and adding flux in the refining furnace. (Purification step).
 図2に、精製炉20の一例を示す。この精製炉20は、フェロニッケルを主成分とする溶湯25を鍋部21に入れ、ホッパー23からフラックスを鍋部21に供給すると共に、ガス供給部24から酸素等のガスを鍋部21に吹き込む構成である。鍋部21は、台車22上に配置されていると、移動が容易であるので好ましい。精製後の溶湯25を鍋部21から取り出し易くするため、精製炉20が鍋部21を傾ける機構(図示せず)を備えることが好ましい。台車22上で鍋部21を傾ける場合は、台車22の載置面に対して、鍋部21の底面を傾けてもよい。 FIG. 2 shows an example of the refining furnace 20. In the refining furnace 20, molten metal 25 containing ferronickel as a main component is placed in the pan portion 21, and a flux is supplied from the hopper 23 to the pan portion 21, and a gas such as oxygen is blown into the pan portion 21 from the gas supply portion 24. It is a configuration. It is preferable that the pan portion 21 is disposed on the carriage 22 because it is easy to move. In order to make it easy to take out the molten metal 25 from the pan portion 21, it is preferable that the refining furnace 20 includes a mechanism (not shown) for tilting the pan portion 21. When the pan portion 21 is tilted on the cart 22, the bottom surface of the pan portion 21 may be tilted with respect to the mounting surface of the cart 22.
 精製工程に用いられるフラックスとしては、石英(SiO)、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)、鉄スクラップ等の1種又は2種以上が挙げられる。製錬工程でフラックスを用いた場合、精製工程に用いられるフラックスは、製錬工程に用いたフラックスと同種でも異種でもよい。 As the flux used in the refining process, one or more of quartz (SiO 2 ), calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), iron scrap, etc. Can be mentioned. When flux is used in the smelting process, the flux used in the refining process may be the same as or different from the flux used in the smelting process.
 酸素を溶湯中に吹き込むことにより、金属成分に含まれるリン(P)、ケイ素(Si)、炭素(C)をスラグ又はガス成分として金属成分から除去することができる。このときの反応式の例を次に示す。なお、「(metal)」は、金属成分に含まれる成分を表し、「(slag)」は、スラグ成分に含まれる成分を表す。 By blowing oxygen into the molten metal, phosphorus (P), silicon (Si), and carbon (C) contained in the metal component can be removed from the metal component as slag or gas component. An example of the reaction formula at this time is shown below. Note that “(metal)” represents a component included in the metal component, and “(slag)” represents a component included in the slag component.
Si(metal)+O2(g)→SiO2(slag)+Heat
2C(metal)+O2(g)→2CO(g)+Heat
4P(metal)+5O2(g)+6CaO(slag)→2Ca(PO2(slag)
Si (metal) + O 2 (g) → SiO 2 (slag) + Heat
2C (metal) + O 2 (g) → 2CO (g) + Heat
4P (metal) + 5O 2 (g) + 6CaO (slag) → 2Ca 3 (PO 4 ) 2 (slag)
 また、ケイ素(Si)、アルミニウム(Al)を添加して脱酸(キルド)し、硫黄(S)をフラックス(溶剤)と反応させて、スラグとして除去することができる。このときの反応式を次に示す。 Also, silicon (Si) and aluminum (Al) can be added for deoxidation (killing), and sulfur (S) can be reacted with a flux (solvent) to be removed as slag. The reaction formula at this time is shown below.
2O(metal)+Si(metal)→SiO2(slag)
3O(metal)+2Al(metal)→Al3(slag)
(metal)+CaO(slag)→CaS(slag)+O(metal)
2O (metal) + Si (metal) → SiO 2 (slag)
3O (metal) + 2Al (metal) → Al 2 O 3 (slag)
S (metal) + CaO (slag) → CaS (slag) + O (metal)
(第3実施形態)
 第3実施形態の製錬方法では、第1実施形態の製錬炉に原料鉱石(サプロライト)を供給する前に、原料鉱石を予備乾燥する工程(予備乾燥工程)を有する。所望の化学組成のフェロニッケルを高い収率かつ生産性で製造するには、原料鉱石を所定の含水率に乾燥し、排ガス系統への原料鉱石の排出と、製錬炉内での発泡を抑制することが望ましい。
(Third embodiment)
The smelting method of the third embodiment includes a step of pre-drying the raw material ore (pre-drying step) before supplying the raw material ore (saprolite) to the smelting furnace of the first embodiment. In order to produce ferronickel with the desired chemical composition with high yield and productivity, the raw ore is dried to a predetermined moisture content, and the discharge of the raw ore to the exhaust gas system and the foaming in the smelting furnace are suppressed. It is desirable to do.
 図3に予備乾燥装置の第1の例として、スチームドライヤーの一例を示す。この予備乾燥装置30は、粉砕部31において粉砕された原料鉱石を乾燥部32に供給し、蒸気発生部33で発生させた水蒸気を乾燥部32の長手方向に通じることにより、排出部34から乾燥された鉱石を排出する装置である。 FIG. 3 shows an example of a steam dryer as a first example of the preliminary drying apparatus. The preliminary drying apparatus 30 supplies the raw ore crushed in the pulverization unit 31 to the drying unit 32, and passes the water vapor generated in the steam generation unit 33 in the longitudinal direction of the drying unit 32, thereby drying from the discharge unit 34. It is a device that discharges the processed ore.
 図4に予備乾燥装置の第2の例として、ジョークラッシャーの一例を示す。この予備乾燥装置40は、粉砕部42の上部経路41から原料鉱石を投入し、粉砕部42の内部に設けられたジョー(図示せず)により原料鉱石を粉砕し、粉砕部42の下部経路43から温風を供給して鉱石を乾燥し、排出部44から乾燥された鉱石を排出する装置である。 FIG. 4 shows an example of a jaw crusher as a second example of the preliminary drying apparatus. The preliminary drying apparatus 40 inputs raw material ore from an upper path 41 of the pulverizing unit 42, pulverizes the raw material ore by a jaw (not shown) provided inside the pulverizing unit 42, and a lower path 43 of the pulverizing unit 42. Is a device that dries the ore from the discharge unit 44 by supplying hot air from the outlet and drying the ore.
 予備乾燥装置は、特に限定されず、上記のほか、ロータリードライヤー、インパクトドライヤー等を使用することもできる。 Preliminary drying apparatus is not particularly limited, and in addition to the above, a rotary dryer, an impact dryer, or the like can also be used.
 予備乾燥工程を経て、製錬炉に供給されるサプロライトの含水率は、21.5~22.5wt%(湿量基準)の範囲内が好ましい。湿量基準の含水率は、固形分の重量をWs、水分の重量をWwとするとき、次の式の左辺wで表される。 The water content of saprolite supplied to the smelting furnace through the preliminary drying step is preferably in the range of 21.5 to 22.5 wt% (wet basis). The moisture content on the moisture basis is represented by the left side w of the following equation, where Ws is the weight of solids and Ww is the weight of moisture.
w=(Ww/(Ws+Ww))×100(%) w = (Ww / (Ws + Ww)) × 100 (%)
 含水率が前記下限以上であることにより、製錬炉内に適度な水分量が確保され、粉砕された原料鉱石が製錬炉から排ガス中に排出されにくくなる。また、含水率が前記上限以下であることにより、過度な水分量が回避され、溶融した金属及びスラグの発泡を抑制することができる。
 なお、予備乾燥前の原料鉱石の含水率としては、例えば30~40wt%(湿量基準)程度が挙げられる。
When the moisture content is equal to or higher than the lower limit, an appropriate amount of water is secured in the smelting furnace, and the pulverized raw material ore is less likely to be discharged from the smelting furnace into the exhaust gas. Moreover, when a moisture content is below the said upper limit, excessive water content can be avoided and foaming of the molten metal and slag can be suppressed.
The water content of the raw material ore before preliminary drying is, for example, about 30 to 40 wt% (wet basis).
(第4実施形態)
 第4実施形態の製錬方法は、第1実施形態の製錬炉から排出される排ガス(燃焼ガス)をアミン系溶液に2回以上通して二酸化炭素(CO)を除去する工程を有する。
(Fourth embodiment)
The smelting method of the fourth embodiment includes a step of removing carbon dioxide (CO 2 ) by passing the exhaust gas (combustion gas) discharged from the smelting furnace of the first embodiment twice or more through the amine-based solution.
 図5に、CO除去装置50の一例を示す。排ガス経路52,53の途中に、CO吸収部51が設けられている。排ガス経路52,53は、製錬炉10の排気管15に接続されている。 FIG. 5 shows an example of the CO 2 removal device 50. A CO 2 absorber 51 is provided in the middle of the exhaust gas paths 52 and 53. The exhaust gas paths 52 and 53 are connected to the exhaust pipe 15 of the smelting furnace 10.
 CO吸収部51の中段と下段との間を連絡して、第1流路54が設置されている。第1流路54の内部には、CO吸収剤としてアミン系溶液が流れている。CO吸収部51の下段から出る段階のアミン系溶液は、CO吸収量が多いリッチ溶液であるが、第1流路54の途中に設けられた第1放散部55においてアミン系溶液が加熱され、アミン系溶液に含まれるCOの一部が気相中に放散される。 A first flow path 54 is installed in communication between the middle stage and the lower stage of the CO 2 absorber 51. Inside the first flow path 54, an amine-based solution flows as a CO 2 absorbent. The amine-based solution at the stage of exiting from the lower stage of the CO 2 absorption unit 51 is a rich solution having a large amount of CO 2 absorption, but the amine-based solution is heated in the first diffusion unit 55 provided in the middle of the first flow path 54. And part of the CO 2 contained in the amine-based solution is released into the gas phase.
 第1放散部55を経たアミン系溶液は、CO吸収量が減少したセミリーン溶液となって、CO吸収部51の中段に供給される。このセミリーン溶液により、CO吸収部51を通過する排ガスからCOの大部分(例えば70%程度)が吸収される。 Amine solution through the first stripping unit 55, become the semi-lean solution CO 2 absorption amount is reduced, is supplied to the middle stage of the CO 2 absorbing section 51. The semi-lean solution absorbs most of CO 2 (for example, about 70%) from the exhaust gas passing through the CO 2 absorbing portion 51.
 更にCO除去装置50は、第1放散部55を経た第1流路54とCO吸収部51の上段との間を連絡して、第2流路56が設置されている。第2流路56の内部には、第1流路54から分岐したアミン系溶液が流れている。第1流路54から分岐したアミン系溶液は、上述したようにセミリーン溶液であるが、第2流路56の途中に設けられた第2放散部57においてアミン系溶液が加熱され、アミン系溶液に含まれるCOが気相中に放散される。 Further, the CO 2 removal device 50 is provided with a second flow path 56 in communication between the first flow path 54 that has passed through the first diffusion section 55 and the upper stage of the CO 2 absorption section 51. An amine-based solution branched from the first flow path 54 flows inside the second flow path 56. The amine-based solution branched from the first flow path 54 is a semi-lean solution as described above. However, the amine-based solution is heated in the second diffusion portion 57 provided in the middle of the second flow path 56, and the amine-based solution. CO 2 contained in is released into the gas phase.
 第2放散部57を経たアミン系溶液は、CO吸収量が非常に減少したリーン溶液となって、CO吸収部51の上段に供給される。このリーン溶液により、CO吸収部51を通過する排ガスから、セミリーン溶液では吸収されずに排ガス中に残ったCOの多くが吸収される。これにより、CO吸収部51の下段に入る前の排ガスと比較して、90%以上あるいは99%以上のCOを排ガスから除去することができる。 The amine-based solution that has passed through the second diffusion unit 57 becomes a lean solution in which the amount of CO 2 absorption is greatly reduced, and is supplied to the upper stage of the CO 2 absorption unit 51. By this lean solution, from the exhaust gas passing through the CO 2 absorbing section 51, the semi-lean solution many CO 2 remaining in the exhaust gas is absorbed without being absorbed. Thereby, 90% or more or 99% or more of CO 2 can be removed from the exhaust gas as compared with the exhaust gas before entering the lower stage of the CO 2 absorber 51.
 上述のように2段階以上でCOを除去する工程を設けることにより、燃料の燃焼により多量の二酸化炭素が発生しても排ガス中から二酸化炭素を効率よく分離し、大気(外気)中への二酸化炭素の排出を抑制することができる。また、アミン系溶液に吸収された二酸化炭素は、アミン系溶液を加熱することにより容易に気相中に放散されるので、アミン系溶液を排ガス中の二酸化炭素の回収に再利用することができる上、気相中に放散された二酸化炭素を高濃度で回収することができる。 By providing a process for removing CO 2 in two or more stages as described above, even if a large amount of carbon dioxide is generated by the combustion of fuel, carbon dioxide is efficiently separated from the exhaust gas, and is released into the atmosphere (outside air). The emission of carbon dioxide can be suppressed. In addition, since carbon dioxide absorbed in the amine-based solution is easily released into the gas phase by heating the amine-based solution, the amine-based solution can be reused for the recovery of carbon dioxide in the exhaust gas. In addition, carbon dioxide released into the gas phase can be recovered at a high concentration.
 アミン系溶液としては、有機アミン化合物の水溶液が挙げられる。アミンとしては、一級アミン、二級アミン、三級アミン等が挙げられる。その中から、CO吸収能、設備の腐食回避等の性能を考慮して選択できる。具体例としては、メチルジエタノールアミン(MDEA)、モノエタノールアミン(MEA)などが挙げられる。COの吸収速度を高めるために、活性剤などの添加物をアミン系溶液に配合してもよい。 Examples of the amine-based solution include an aqueous solution of an organic amine compound. Examples of amines include primary amines, secondary amines, and tertiary amines. Among these, it can be selected in consideration of performance such as CO 2 absorption capacity and avoidance of equipment corrosion. Specific examples include methyldiethanolamine (MDEA) and monoethanolamine (MEA). In order to increase the absorption rate of CO 2 , an additive such as an activator may be added to the amine-based solution.
 第1放散部55及び第2放散部57から放散されたCOは、圧縮固化によりドライアイスとして回収し、冷剤等として利用することもできる。COを含む気相は高温の水蒸気を伴うため、第1放散部55においてリッチ溶液を加熱する際の熱源の補助として、第2放散部57から放散されたCOの余熱を利用してもよい。 The CO 2 diffused from the first diffuser 55 and the second diffuser 57 can be recovered as dry ice by compression solidification and used as a cooling agent or the like. Since the vapor phase containing CO 2 is accompanied by high-temperature water vapor, even if the residual heat of CO 2 diffused from the second diffusion unit 57 is used as an auxiliary to the heat source when the rich solution is heated in the first diffusion unit 55, Good.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、追加、省略、置換等が挙げられる。第1~第4の実施形態の中から2以上の実施形態の構成を組み合わせることも可能である。 As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention. Examples of modifications include addition, omission, and substitution. It is possible to combine the configurations of two or more embodiments from the first to fourth embodiments.
 以下、実施例をもって本発明を具体的に説明する。なお、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited only to these Examples.
 本発明の実施例として、小型の坩堝を用いた試験例の結果を説明する。
 原料のニッケル酸化鉱石(原料鉱石)は、フィリピン産のサプロライトであり、その化学組成は表1に示すとおりであった。ここで、LOIは、強熱減量を表す。また、この原料鉱石を絶乾状態まで乾燥した後の重量から求めた含水率は30wt%(湿量基準)であった。
As an example of the present invention, the result of a test example using a small crucible will be described.
The raw material nickel oxide ore (raw material ore) was saprolite from the Philippines, and its chemical composition was as shown in Table 1. Here, LOI represents ignition loss. Moreover, the moisture content calculated | required from the weight after drying this raw material ore to a completely dry state was 30 wt% (humidity reference | standard).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(試験例1)
 まず、予備乾燥工程として、1000gの原料鉱石を棚型乾燥器へ入れ、雰囲気温度110℃で0.5時間乾燥させた結果、含水率は22.2wt%(湿量基準)であった。なお、この含水率に関しては、後述した試験例2に基づき、好ましい条件を採用した。次に、予備乾燥後の原料鉱石に還元剤としてインドネシア産の瀝青炭を55.0g加え、ステンレス乳鉢で10分間混合した。
(Test Example 1)
First, as a preliminary drying step, 1000 g of raw material ore was placed in a shelf-type dryer and dried at an ambient temperature of 110 ° C. for 0.5 hour. As a result, the water content was 22.2 wt% (wet basis). In addition, about this moisture content, preferable conditions were employ | adopted based on Test Example 2 mentioned later. Next, 55.0 g of Indonesian bituminous coal as a reducing agent was added to the raw ore after preliminary drying, and mixed for 10 minutes in a stainless mortar.
 一方、製錬炉のモデルとして、内径100mm、高さ150mm、MgO-C系耐火物(92wt%MgO、8wt%C)製で、上部から内部に伸びる内径10mmのインコネル(登録商標)製パイプを備えた坩堝(溶融還元用坩堝)を用意し、この溶融還元用坩堝を小型電気炉内に設置して、雰囲気温度1450℃で1.0時間均熱保持した。 On the other hand, as a model of the smelting furnace, an Inconel (registered trademark) pipe having an inner diameter of 100 mm, a height of 150 mm, made of MgO—C refractory (92 wt% MgO, 8 wt% C) and an inner diameter of 10 mm extending from the top to the inside is used. A prepared crucible (melting reduction crucible) was prepared, and this melting reduction crucible was placed in a small electric furnace and kept soaked at an ambient temperature of 1450 ° C. for 1.0 hour.
 叙述の乳鉢で混合して得られた原料鉱石と瀝青炭の混合物を、小型電気炉内で均熱保持された溶融還元用坩堝の頂部から装入して1.0時間静置し、原料鉱石を予備加熱した。ここで電気炉の電源を切り、パイプから酸素濃度75%の燃焼空気と粉末状の瀝青炭を連続的に供給しながら更に1時間静置したところ、混合物が溶融して溶湯が得られ、金属成分が下部に、スラグ成分が上部にそれぞれ分離していた。溶融還元用坩堝を割って、製錬した後の金属成分のみを溶融還元用坩堝から取り出した。 The mixture of raw ore and bituminous coal obtained by mixing in the described mortar was charged from the top of the melting and reducing crucible held soaked in a small electric furnace and allowed to stand for 1.0 hour. Preheated. Here, the electric furnace was turned off, and the mixture was allowed to stand for another hour while continuously supplying combustion air having an oxygen concentration of 75% and powdered bituminous coal from the pipe. As a result, the mixture melted to obtain a molten metal. Was separated at the bottom and the slag component at the top. The smelting reduction crucible was broken and only the metal components after smelting were taken out from the smelting reduction crucible.
 精製炉のモデルとして、内径40mm、高さ60mm、MgO-C系耐火物(92wt%MgO、8wt%C)製の坩堝(精製用坩堝)を用意し、この精製用坩堝内に、製錬した後の金属成分を移したところ、金属成分の重量は53.3gであった。得られた金属成分はフェロニッケルであり、その化学組成は表2に示すとおりであった。 As a refining furnace model, a crucible made of MgO—C refractory (92 wt% MgO, 8 wt% C) (refining crucible) having an inner diameter of 40 mm and a height of 60 mm was prepared and smelted in the refining crucible. When the later metal component was transferred, the weight of the metal component was 53.3 g. The obtained metal component was ferronickel, and its chemical composition was as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 精製用坩堝にフラックスとして酸化カルシウム(CaO)を5.0g添加し、濃度95%の純酸素(O)を吹き込んだ。次に、アルミニウム(Al)を0.5g添加し、精製用坩堝内を脱酸雰囲気とした。その結果、表3に示す化学組成のフェロニッケルを48.4g得ることができた。 5.0 g of calcium oxide (CaO) was added as a flux to the purification crucible, and 95% pure oxygen (O 2 ) was blown into the crucible for purification. Next, 0.5 g of aluminum (Al) was added, and the inside of the purification crucible was set to a deoxidizing atmosphere. As a result, 48.4 g of ferronickel having the chemical composition shown in Table 3 could be obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2と表3との比較により、金属成分中のケイ素(Si)、炭素(C)、リン(P)、硫黄(S)が除去されて、フェロニッケルが所望の化学組成に精製されたことを確認することができた。 By comparing Table 2 and Table 3, silicon (Si), carbon (C), phosphorus (P), and sulfur (S) in the metal component were removed, and ferronickel was refined to the desired chemical composition. I was able to confirm.
(試験例2)
 試験例1に述べた棚型乾燥器で乾燥した後の原料鉱石の含水率(湿量基準)を、21.0~23.0wt%の範囲で0.5wt%毎に設定した。各々の含水率の原料鉱石を用いて試験例1と同様に製錬工程を実施した。各々の条件において溶融還元用坩堝で発生する排ガスへの原料鉱石の排出(Carry Over)と、溶融還元用坩堝内での原料鉱石の発泡(Foaming)の発生の程度を調査した。その結果を表4に示す。
(Test Example 2)
The moisture content (wet basis) of the raw ore after being dried by the shelf dryer described in Test Example 1 was set every 0.5 wt% in the range of 21.0 to 23.0 wt%. The smelting process was implemented like the test example 1 using the raw ore of each moisture content. Under each condition, discharge of raw ore into the exhaust gas generated in the melting reduction crucible (Carry Over) and generation of foaming of the raw ore in the melting reduction crucible (Foaming) were investigated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 「排ガスへの排出」は、原料鉱石の含水率が多いほど、「原料鉱石の発泡」は原料鉱石の含水率が少ないほど、それぞれ軽減される傾向が見られた。原料鉱石の含水率が21.5~22.5wt%の範囲で、「排ガスへの排出」と「原料鉱石の発泡」がともに最も軽減されることが判明した。 “Emissions into exhaust gas” tended to be reduced as the moisture content of the raw material ore increased, and “foaming of the raw material ore” tended to decrease as the moisture content of the raw material ore decreased. It was found that both “exhaust into exhaust gas” and “foaming of raw ore” are most reduced when the moisture content of the raw ore is in the range of 21.5 to 22.5 wt%.
(試験例3)
 試験例1に述べた溶融還元用坩堝の耐火材の材質を変更して、耐火材の損傷量に及ぼす耐火材の材質(化学組成)の影響を調査した。その結果を表5に示す。耐火材の損傷量は、ニッケルの製錬量に対する割合とした。
(Test Example 3)
By changing the material of the refractory material of the melting reduction crucible described in Test Example 1, the influence of the material (chemical composition) of the refractory material on the damage amount of the refractory material was investigated. The results are shown in Table 5. The amount of damage to the refractory material was a ratio to the amount of nickel smelted.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 MgO-Cr系耐火物、MgO系耐火物、MgO-C系耐火物について、耐火材の損傷量を、精製工程後の溶融還元用坩堝の重量減少量から測定した結果、いずれの耐火物も損傷量が少なく、採用可能であることを確認することができた。中でも、MgO-C系耐火物(92wt%MgO、8wt%C)の損傷量が最も少ないことが判明した。 For MgO—Cr 2 O 3 refractories, MgO refractories, and MgO—C refractories, the amount of damage to the refractory was measured from the weight loss of the smelting reduction crucible after the purification process. We were able to confirm that the amount of damage was small and could be used. Among them, it was found that the damage amount of the MgO—C refractory (92 wt% MgO, 8 wt% C) was the smallest.
 本発明によれば、電力の供給が少ない僻地であっても製錬所の建設・運転を行うことができる。本発明により製造されたフェロニッケルは、ステンレス鋼などの原料として利用することができる。 According to the present invention, it is possible to construct and operate a smelter even in remote areas where power supply is low. Ferronickel produced according to the present invention can be used as a raw material for stainless steel and the like.
10…製錬炉、11…炉体、12…ランス、13…ポート、14…排出口、15…排気管、16…混合物、20…精製炉、21…鍋部、22…台車、23…ホッパー、24…ガス供給部、25…溶湯、30…予備乾燥装置、31…粉砕部、32…乾燥部、33…蒸気発生部、34…排出部、40…予備乾燥装置、41…上部経路、42…粉砕部、43…下部経路、44…排出部、50…CO2除去装置、51…CO2吸収部、52,53…排ガス経路、54…第1流路、55…第1放散部、56…第2流路、57…第2放散部。 DESCRIPTION OF SYMBOLS 10 ... Smelting furnace, 11 ... Furnace body, 12 ... Lance, 13 ... Port, 14 ... Discharge port, 15 ... Exhaust pipe, 16 ... Mixture, 20 ... Refining furnace, 21 ... Pot part, 22 ... Dolly, 23 ... Hopper , 24 ... Gas supply unit, 25 ... Molten metal, 30 ... Pre-drying device, 31 ... Crushing unit, 32 ... Drying unit, 33 ... Steam generating unit, 34 ... Discharge unit, 40 ... Pre-drying device, 41 ... Upper path, 42 Pulverizing section, 43 ... lower path, 44 ... discharge section, 50 ... CO2 removal device, 51 ... CO2 absorption section, 52, 53 ... exhaust gas path, 54 ... first flow path, 55 ... first diffusion section, 56 ... first 2 flow paths, 57 ... 2nd diffusion part.

Claims (5)

  1.  炉体の上部から原料の内部に浸漬されるランスを備える製錬炉に、サプロライトと還元剤とを装入し、前記ランスから燃料及び助燃剤を供給しながら前記製錬炉内で燃料を燃焼させることにより前記サプロライトを溶融してフェロニッケルを得ることを特徴とするフェロニッケルの製造方法。 Saprolite and reducing agent are charged into a smelting furnace equipped with a lance immersed in the raw material from the upper part of the furnace body, and fuel is burned in the smelting furnace while supplying fuel and a combustor from the lance. To produce the ferronickel by melting the saprolite.
  2.  前記製錬炉に供給されるサプロライトの含水率が、湿量基準で21.5~22.5wt%の範囲内であることを特徴とする請求項1に記載のフェロニッケルの製造方法。 The method for producing ferronickel according to claim 1, wherein the water content of saprolite supplied to the smelting furnace is in the range of 21.5 to 22.5 wt% on a moisture basis.
  3.  前記製錬炉の内周面のうち、溶融した金属及びスラグと接する面に、MgO-C系、MgO-Cr系、MgO系のいずれか、もしくはその組み合わせとなる耐火物を設けることを特徴とする請求項1又は2に記載のフェロニッケルの製造方法。 Of the inner peripheral surface of the smelting furnace, a refractory material that is either MgO—C based, MgO—Cr 2 O 3 based, MgO based, or a combination thereof is provided on the surface that contacts molten metal and slag. The method for producing ferronickel according to claim 1 or 2.
  4.  前記製錬炉の排ガスをアミン系溶液に2回以上通して前記排ガス中の二酸化炭素を除去することを特徴とする請求項1~3のいずれか1項に記載のフェロニッケルの製造方法。 The method for producing ferronickel according to any one of claims 1 to 3, wherein the exhaust gas from the smelting furnace is passed through an amine-based solution twice or more to remove carbon dioxide in the exhaust gas.
  5.  前記製錬炉から得られたフェロニッケルを精製炉に移し、前記精製炉において酸素の吹き込みとフラックスの添加により前記フェロニッケルから不純物元素を除去する工程を有することを特徴とする請求項1~4のいずれか1項に記載のフェロニッケルの製造方法。 The ferronickel obtained from the smelting furnace is transferred to a refining furnace, and the impurity element is removed from the ferronickel by blowing oxygen and adding flux in the refining furnace. The manufacturing method of the ferronickel of any one of these.
PCT/JP2016/080843 2016-10-18 2016-10-18 Ferronickel production method WO2018073891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080843 WO2018073891A1 (en) 2016-10-18 2016-10-18 Ferronickel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080843 WO2018073891A1 (en) 2016-10-18 2016-10-18 Ferronickel production method

Publications (1)

Publication Number Publication Date
WO2018073891A1 true WO2018073891A1 (en) 2018-04-26

Family

ID=62018390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080843 WO2018073891A1 (en) 2016-10-18 2016-10-18 Ferronickel production method

Country Status (1)

Country Link
WO (1) WO2018073891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502402A (en) * 2021-06-08 2021-10-15 金川集团股份有限公司 Direct nickel smelting method by top-side composite smelting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827175B1 (en) * 1967-06-01 1973-08-20
JP2002060859A (en) * 2000-08-22 2002-02-28 Sumitomo Metal Mining Co Ltd Burner for concentrate
JP2011179793A (en) * 2010-03-03 2011-09-15 Mitsubishi Materials Corp Magnesia-chrome refractory, copper smelting furnace, and continuous copper metallurgy furnace
WO2013073663A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Direct-reduced iron production system
WO2016136068A1 (en) * 2015-02-24 2016-09-01 住友金属鉱山株式会社 Method for smelting saprolite ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827175B1 (en) * 1967-06-01 1973-08-20
JP2002060859A (en) * 2000-08-22 2002-02-28 Sumitomo Metal Mining Co Ltd Burner for concentrate
JP2011179793A (en) * 2010-03-03 2011-09-15 Mitsubishi Materials Corp Magnesia-chrome refractory, copper smelting furnace, and continuous copper metallurgy furnace
WO2013073663A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Direct-reduced iron production system
WO2016136068A1 (en) * 2015-02-24 2016-09-01 住友金属鉱山株式会社 Method for smelting saprolite ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502402A (en) * 2021-06-08 2021-10-15 金川集团股份有限公司 Direct nickel smelting method by top-side composite smelting

Similar Documents

Publication Publication Date Title
KR101800141B1 (en) Method for operating blast furnace
US8845779B2 (en) Process for producing molten iron
JP6012358B2 (en) Blow pipe structure
JP2009046726A (en) Steelmaking method in arc furnace
JP2009221547A (en) Method for operating blast furnace
KR101341758B1 (en) Arc furnace steelmaking process using palm shell charcoal
JP2010019525A (en) Exhaust gas treatment facility and dust recovery method by exhaust gas treatment facility
NO822797L (en) METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS
WO2018073891A1 (en) Ferronickel production method
JP5069087B2 (en) How to use blast furnace gas
CN108220519A (en) Molten iron manufacturing device and process for producing molten iron
SU1225495A3 (en) Method of producing ferromanganese
JP5481894B2 (en) Melting reduction method
JP6464491B2 (en) Method for producing phosphorus
US2473611A (en) Process for the production of zinc
JP5439978B2 (en) Melting reduction method
JP5928329B2 (en) Smelting reduction smelting method
RU2678557C2 (en) Metallurgical furnace
JP5446505B2 (en) Melting reduction method
JP2007253031A (en) Production method of subsidiary material for iron making
JP2006328519A (en) Method for producing steel
JP4639943B2 (en) Hot metal desulfurization method
JP4479541B2 (en) Method for producing high chromium molten steel
KR100257213B1 (en) Process for smelting reduction of chromium ore
JP5929491B2 (en) Effective utilization of oil palm core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16919161

Country of ref document: EP

Kind code of ref document: A1