WO2018072318A1 - 一种大尺寸结构复杂金属构件的叠层制造方法 - Google Patents

一种大尺寸结构复杂金属构件的叠层制造方法 Download PDF

Info

Publication number
WO2018072318A1
WO2018072318A1 PCT/CN2016/112235 CN2016112235W WO2018072318A1 WO 2018072318 A1 WO2018072318 A1 WO 2018072318A1 CN 2016112235 W CN2016112235 W CN 2016112235W WO 2018072318 A1 WO2018072318 A1 WO 2018072318A1
Authority
WO
WIPO (PCT)
Prior art keywords
sized
metal
complex
manufacturing
sheet
Prior art date
Application number
PCT/CN2016/112235
Other languages
English (en)
French (fr)
Inventor
何祝斌
张坤
朱海辉
苑世剑
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US16/094,626 priority Critical patent/US10589504B2/en
Publication of WO2018072318A1 publication Critical patent/WO2018072318A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • B32B38/1841Positioning, e.g. registration or centering during laying up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/12Laminated parts

Definitions

  • the present invention relates to a method of manufacturing a part, and more particularly to a method of manufacturing a large-sized complex member by lamination using a metal plate.
  • the local flow resistance is large, and it is often necessary to have larger tonnage equipment to complete the forming of large-sized components.
  • the local loading local forming method can be used to reduce the load required for forming, the direct deformation of the deep cavity inner hole structure cannot be achieved by the method due to the complicated deformation flow law of the metal.
  • the direct deformation of the deep cavity inner hole structure cannot be achieved by the method due to the complicated deformation flow law of the metal.
  • additive manufacturing techniques include stereolithography, sheet layering, and fused deposition.
  • the forming materials are mainly plastic and paper. Due to the shortcomings of low strength, low plasticity and low toughness of plastic and paper materials, the requirements for the use of actual structural parts are often not met.
  • an additive manufacturing technique for forming metal materials has been gradually developed and applied, that is, metal 3D printing technology.
  • the forming principle is: using an electron beam or a laser beam to select a region of the substrate material (according to the digital mode of the part), heating and melting to form a small molten pool, the metal powder material is sucked by the molten pool and then connected to the substrate, and deposited by layer-by-layer deposition of metal. Components.
  • a member having a complicated structure such as a titanium alloy frame of an aeroengine can be formed.
  • 3D printed base metal material is continuously heated and cooled, There is a large residual stress inside the formed part, and the mechanical properties of the obtained part can not meet the design requirements.
  • 3D printing methods are very inefficient, and it often takes months or even longer to complete the formation of a large, complex component.
  • the surface quality of the parts formed by this method is poor, and the formed parts need to be machined, but for complex structural parts with deep cavity internal holes, subsequent machining cannot be performed.
  • the above principle of forming a three-dimensional solid block solid part by ultrasonically connecting a foil material is: using a ultrasonic vibration to connect a layer of metal foil (usually 0.1 to 0.2 mm in thickness) to the underlying base material, and connecting The digital mold cuts off the excess portion of the metal foil, and then lays a layer of metal foil on the metal foil and connects it by ultrasonic vibration. Thus, the required parts are obtained a plurality of times.
  • This forming method has been used for the forming of small-sized metal parts or micro-parts. However, since the thin metal foil is used and connected one by one, the production efficiency is low and it cannot be used for the manufacture of large-sized members having a large thickness or a large height.
  • the present invention is to solve the problems of conventional machining, integral plastic forming, and existing additive manufacturing methods, which are difficult to manufacture large-sized metal members having complex irregular structures and high performance requirements, and propose a large-sized structural complex metal member.
  • Stack manufacturing method is to solve the problems of conventional machining, integral plastic forming, and existing additive manufacturing methods, which are difficult to manufacture large-sized metal members having complex irregular structures and high performance requirements, and propose a large-sized structural complex metal member.
  • a method for manufacturing a laminate of a large-sized structurally complicated metal member of the present invention is realized by the following steps
  • Step 1 Obtain a three-dimensional digital model of a large-sized structural complex metal member, select a direction on the model according to the service characteristics and the structural features of the large-sized structural complex member, and divide the model into several layers perpendicular to the selected direction.
  • the thickness of each layer is selected according to the characteristics of the complicated metal member of the large-sized structure and the thickness of the actually available metal plate, and the thickness is in the order of millimeters;
  • Step 2 selecting the actual available metal plate corresponding to the thickness of each slice divided in step one, and machining each metal plate to obtain a formed plate consistent with the model of each layer in step one;
  • Step 3 The plurality of formed sheets processed in the second step are stacked in the order of the corresponding sheets in the first step, and a connecting agent is placed between the adjacent two formed sheets, and all the forming is performed by using the positioning constraint jig.
  • the sheet is positionally constrained and a certain pressure is applied perpendicular to the direction of the sheet of the forming sheet, and all the formed sheets are joined together by a connecting agent;
  • Step 4 After all the formed sheets are joined together, the positioning and constraining jig is smashed to obtain a complicated metal member of a large-sized structure.
  • the invention constructs a three-dimensional digital model of a large-sized structural complex metal component and divides it into a slice layer, and performs layer-by-layer precision processing on the solid large-sized structural complex component according to the constructed three-dimensional digital model and layering principle, and then joins into As a whole, each layer of sheet can be efficiently and precisely machined by using existing machining equipment.
  • the complex structure of deep cavity bores is realized by the "zeroing down" scheme, which solves the complex structure and high performance. The forming problem of the required large-sized metal members.
  • the invention combines the large-sized structurally complex metal members into layers and precision processing and then joins them into a whole, each One layer is made of metal-formed sheet with the same or different thickness (mm-class or thicker), which greatly reduces the number of layers of component decomposition, so that high-efficiency forming of complex members with large thickness or height can be realized. Different thicknesses
  • the formed sheet can be adapted to the local features of the formed member, so that the machining process of the local features is simple and the efficiency of the forming is ensured.
  • the present invention performs layered precision processing of large-sized structurally complex metal members and then joins them into a whole.
  • the inner cavity edge and the peripheral edge of each layer formed plate can be quickly processed into layers by using a machining device such as a milling machine.
  • the completely uniform bevel or curved surface of the model does not create discontinuous steps at the edge of the inner cavity and the peripheral edge after the adjacent layers are superimposed, so the surface of the part is smooth, and it is not necessary to process the inner and outer surfaces after joining.
  • the present invention is to carry out layered precision processing of large-sized structurally complex metal members and then join them into a whole.
  • the metal sheet used may be a standard metal sheet having a width of 2000 to 4000 mm and a longer length direction, and the machine used.
  • the processing equipment is a milling machine with a large countertop but an uncomplicated function. The entire layer is connected once without special equipment, so the cost is low compared with the traditional integral machining, integral plastic forming and existing additive manufacturing methods.
  • the present invention performs layered precision processing of large-sized structurally complex metal members and then joins them into a whole.
  • the mechanical properties of the metal sheets used are significantly better than those of conventional as-cast or even forged billets, and also than 3D printed materials.
  • the performance is stable, uniform and reliable.
  • the structure of the workpiece is always the original structure of the sheet during the forming process, so the formed parts have excellent mechanical properties.
  • the metal components of the large-sized structure are layered and precision-processed and then joined into a whole.
  • the metal plate used is an anisotropic plate, and the direction of the formed plate can be adjusted to adjust the manufactured part.
  • the present invention performs layered precision processing of large-sized structurally complex metal members and then joins them into a whole, and can be laminated by using metal sheets of different materials, which makes it possible to manufacture metal members having functional gradient requirements.
  • FIG. 1 is a perspective view of a three-dimensional digital model of a large-sized complex metal member for illustrating a forming principle of the present invention
  • FIG. 2 is a schematic view showing a method for forming a large-sized structural complex metal member by using a sheet laminate manufacturing method according to the present invention
  • 3 is a schematic view of the corresponding sheet material processed by the disintegrated sheet layer model of the present invention
  • FIG. 4 is a schematic view showing the lamination of two different material sheets for the interval arrangement
  • FIG. 6 is a schematic view showing the different orientations of the anisotropic plates of the present invention
  • FIG. 7 is a schematic view showing the arrangement of the plates of the present invention.
  • FIG. 8 is a schematic view showing the lamination of a plate having different thicknesses according to the present invention.
  • 1 is a large-sized structurally complex metal member
  • 2 is a practically usable metal plate
  • 2-1 is a formed plate
  • 4 is a positioning constraint jig
  • 5 is a slice divided into a model.
  • a method for manufacturing a laminate of a large-sized structurally complicated metal member is realized by the following steps:
  • Step 1 Obtain a three-dimensional digital model of a large-sized structural complex metal member 1, and select a direction on the model according to the service characteristics and the structural features of the large-sized structural complex member 1, and divide the model into several perpendicular to the selected direction.
  • the layer 5, the thickness of each layer 5 is selected according to the characteristics of the large-sized structurally complicated metal member 1 and the thickness of the actually available metal sheet 2, and the thickness is in the order of millimeters;
  • Step 2 selecting the actually available metal sheets 2 corresponding to the thicknesses of the respective layers 5 divided in the first step, and machining the metal sheets 2 to obtain the same pattern as the layers 5 in the first step. Formed sheet 2 - 1;
  • Step 3 the plurality of forming sheets 2-1 processed in the second step are stacked in the order of the corresponding sheet layer 5 of the first step, and a connecting agent is placed between the two adjacent forming sheets 2-1.
  • a connecting agent is placed between the two adjacent forming sheets 2-1.
  • Step 4 After all the formed sheets 2-1 are joined together, the positioning constraint jig 4 is smashed to obtain the desired large-sized structurally complicated metal member 1.
  • each of the metal sheets 2 is processed into a sheet 2-1 conforming to the shape of the corresponding layer 5 by mechanical processing. Then, the processed plate 2-1 is connected by a certain connection method, thereby connecting several plates 2-1 Integral piece 1, "rounding up to zero" greatly simplifies the forming difficulty of complex components with large-sized structures, and solves the forming problem of large-sized metal members with complex irregular structures and high performance requirements.
  • the formed sheet material 2-1 used for each layer has a large thickness (mm-order or thicker), which greatly reduces the number of layers of the large-sized structurally complicated metal member 1, thereby realizing a complicated thickness or height. Highly efficient forming of parts.
  • the inner cavity edge and the peripheral edge of the forming plate 2-1 can be quickly processed into a bevel or a curved surface which is completely consistent with the slice model by using a machining device such as a milling machine, and does not overlap the inner cavity edge after superposing adjacent layers.
  • a discontinuous step is created with the peripheral edge, so that the surface of the member is smooth, and it is not necessary to perform secondary processing of the inner surface and the outer surface after the connection.
  • Step 2 processes the metal sheet 2 according to the model of each sheet 5.
  • the material of the metal sheet 2 actually used in the second step is two kinds, and the two pieces of the two different materials stacked in the order of the corresponding layer 5 in the step one in the third step.
  • the formed sheets 2-1 are spaced apart.
  • the plate 2 used is made of two different materials, and the plates of two different materials (No. 1 plate 2-2, No. 2 plate 2-3) are stacked alternately, and the formed member 1 has various attributes, which can satisfy A variety of performance requirements.
  • different materials (1st plate 2-2, 2nd plate 2-3) can be used to increase the spacing between the formed plates 2-1. Connection strength.
  • the materials of the actual usable metal sheets 2 corresponding to the thickness of each layer 5 in step 2 are different from each other.
  • the plate 2 used can be made of different materials, and the plates of different materials are stacked in sequence, and the formed large-sized structurally complicated member 1 has various properties, which can meet various performance requirements.
  • the metal sheet 2 actually used in the second step is an anisotropic sheet
  • a plurality of formed sheets 2-1 are stacked on the anisotropically formed sheet 2-1 along different anisotropy.
  • the direction is placed.
  • the arrow in Figure 6 indicates the anisotropy direction of the formed sheet.
  • the selected sheet metal 2 is an anisotropic sheet.
  • the formed sheet 2-1 is stacked.
  • the anisotropic direction of the sheet is placed in different directions to offset the direction of the formed sheet 2-1.
  • the effects of different performances, adjusting the overall mechanical properties of the components make the large-scale structurally complex members 1 uniform in all directions.
  • the direction in which the formed sheet material 2-1 is better can be placed in a certain direction as needed, so that the performance of the large-sized structurally complicated member 1 in a certain direction after the forming is improved.
  • the forming sheet 2-1 in the second step is a fitting surface of the structural sheet. Set this up The shear strength between the layer 2-1 of the formed sheet and the layer can be increased, thereby improving the shear strength between the surface layers of the large-sized structurally complicated member 1.
  • the assembly surface cantilever structure involves a multi-peak structure, including a sawtooth form such as a rectangle or a triangle.
  • the model of the large-sized structurally complicated member 1 in the first step is layered, and the thickness of each of the layers 5 may be different.
  • the three-dimensional digital model of the large-sized structural complex member 1 in the first step is layered, and the thickness of each layer can be selected according to the local features of the large-sized structural complex member 1, and the position should be reduced for the position having the small feature.
  • the thickness of the layer can be selected at a position where the features are not obvious.
  • the formed sheet 2-1 should be selected from different thicknesses (thickness 2-7, thick 2 2-8, thick 3 2-9). With this arrangement, the formed sheet material 2-1 having different thicknesses can be adapted to the local characteristics of the formed large-sized structurally complicated member 1, so that the local characteristic mechanical processing is simple and the formation efficiency is ensured.
  • connection manner of the adjacent two formed sheets 2-1 in the third step is a brazing joint or a diffusion joint.
  • the connection is stable and reliable, and the operation is simple and easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

一种大尺寸结构复杂金属构件(1)的叠层制造方法,它涉及一种零件制造方法,以解决传统机械加工、整体塑性成形及现有增材制造方法难以制造具有复杂异形结构及高性能要求的大尺寸金属构件的问题,制造方法的步骤为:步骤一、获取大尺寸结构复杂金属构件(1)的三维数字模型,将模型分成若干片层(5);步骤二、选取与步骤一所分割的各片层厚度对应的实际可用的金属板材(2),对各金属板材(2)进行机械加工以得到与步骤一中各片层(5)的模型相一致的成形板材(2-1);步骤三、将步骤二中加工得到的多块成形板材(2-1)按照步骤一所对应片层(5)的顺序进行叠放;步骤四、待所有成形板材(2-1)连接成整体后,得到所需的大尺寸结构复杂金属构件(1)。本发明用于大尺寸深腔内孔结构复杂构件成形。

Description

发明名称:一种大尺寸结构复杂金属构件的叠层制造方法 技术领域
[0001] 本发明涉及一种零件制造方法, 具体涉及一种采用金属板材通过叠层方式制造 大尺寸复杂构件的方法。
背景技术
[0002] 近年来, 随着科学技术的不断发展与进步, 机械装备或装置的结构和功能曰益 复杂, 要求构件大型化、 轻量化、 结构功能一体化, 这对制造技术提出了更高 要求和新的挑战。 其中, 大尺寸 (某一方向尺寸超过 1000mm) 结构复杂金属构 件如具有复杂内孔的承力构件、 具有复杂筋结构的轻体构件的制造已成为现代 制造技术发展的重点。 对于大尺寸结构复杂金属构件, 采用机械加工的方法需 要进行大量的切削, 当构件存在深腔内孔结构吋则无法采用机械加工的方法进 行制造。 采用整体塑性成形的方式成形大尺寸复杂构件吋, 因金属变形抗力大
、 局部流动阻力大, 往往需要较大吨位的设备才有可能完成大尺寸构件的成形
。 虽然可以采用局部加载局部成形的方法来降低成形需要的载荷, 但是由于金 属的变形流动规律复杂, 采用该方法无法实现深腔内孔结构的直接成形。 此外
, 大尺寸原始坯料 (常重达几十甚至上百吨) 难以制备也是限制大尺寸复杂构 件整体塑性成形的主要因素。
[0003] 为了实现结构复杂构件的高效率、 高精度制造, 出现了一些新的制造方法, 如 增材制造技术。 传统的增材制造技术有立体光固化成形法、 薄片分层堆层成形 法、 熔融沉积法等, 成形材料主要为塑料和纸质。 因塑料和纸质材料具有低强 度、 低塑性、 低韧性的缺点, 往往不能满足实际结构件的使用要求。 近年来, 一种用于成形金属材料的增材制造技术逐渐发展并得到应用, 即金属 3D打印技 术。 其成形原理为: 利用电子束或激光束对基体材料进行选区 (依据零件的数 模) 加热熔化形成小的熔池, 金属粉末材料被熔池吸入而后与基体连接, 通过 逐层堆积金属沉积得到零件。 利用该方法可以成形出具有复杂结构的构件, 如 航空发动机的钛合金隔框等。 但是由于 3D打印吋金属材料不断被加热和冷却, 使得成形后的零件内部存在较大的残余应力, 所得零件的机械性能达不到设计 要求。 同吋, 3D打印方法的生产效率很低, 往往需要数月甚至更长吋间才能完 成一个大尺寸复杂构件的成形。 此外, 该方法成形的零件表面质量较差, 需要 对成形后的零件进行机械加工, 但是对于具有深腔内孔的复杂结构制件, 无法 进行后续切削加工。
[0004] 近来, 在传统薄片分层堆层成形方法的基础上, 出现了一种新的金属构件增材 制造方法, 即超声波增材制造方法。 如公幵号为 CN103600166A的发明专利申请 所提出的辅助加热式超声快速成型方法及装置、 文献"基于超声波焊接技术的快 速成型方法研究" (期刊: 机床与液压, 2007年第 3卷 35期) 、 文献 "Effect of Process Parameters on Bond Formation During Ultrasonic Consolidation of Aluminum Alloy 3003; Journal of Manufacturing systems , 第 25卷第 3期,, (工艺参数对 3003 铝合金超声连接键合过程的影响; 制造系统, 第 25卷第 3期) 以及文献" Develop ment of Functionally Graded Materials by Ultrasonic
Consolidation; doi:10.1016/j.cirpj.2010.07.006" (超声波连接制备功能梯度材料的 研究进展; doi: 10.1016/j.cirpj.2010.07.006) 等所研究的内容均为采用超声波连接 箔材的方式实现三维固态块状实体零件成形。
[0005] 上述采用超声波连接箔材的方式成形三维固态块状实体零件的原理为: 利用超 声振动将一层金属箔材 (厚度通常为 0.1~0.2mm) 与下层基体材料进行连接, 连 接后按照数模将该层金属箔材多余的部分切除, 然后在该层金属箔材上再铺上 一层金属箔材并利用超声振动进行连接, 如此进行多次即可得到所需要的零件 。 该成形方法目前已用于小尺寸金属零件或微型零件的成形。 但是, 由于所采 用的是厚度很薄的金属箔材且一层一层连接, 生产效率很低, 无法用于厚度或 高度较大的大尺寸构件的制造。 同吋, 由于金属箔材的力学性能较差、 相邻层 之间的连接可靠性较差, 无法满足大尺寸构件的实际使用要求。 此外, 目前也 无法制备力学性能和厚度都较均匀的大幅面 (长度和宽度) 金属箔材。 为解决 传统的机械加工、 整体塑性成形及现有增材制造方法难以获得具有复杂异形结 构及高性能要求的大尺寸金属构件的问题, 需要建立大尺寸结构复杂金属构件 的新型制造方法。 技术问题
[0006] 本发明是为解决传统机械加工、 整体塑性成形及现有增材制造方法难以制造具 有复杂异形结构及高性能要求的大尺寸金属构件的问题, 提出了一种大尺寸结 构复杂金属构件的叠层制造方法。
问题的解决方案
技术解决方案
[0007] 本发明的一种大尺寸结构复杂金属构件的叠层制造方法是按照以下步骤实现的
[0008] 步骤一、 获取大尺寸结构复杂金属构件的三维数字模型, 根据服役特点及大尺 寸结构复杂构件的结构特征在模型上选定一个方向, 垂直于选定的方向将模型 分成若干片层, 各片层的厚度根据大尺寸结构复杂金属构件的特征及实际可用 的金属板材的厚度进行选取, 厚度为毫米级;
[0009] 步骤二、 选取与步骤一所分割的各片层厚度对应的实际可用的金属板材, 对各 金属板材进行机械加工以得到与步骤一中各片层的模型相一致的成形板材;
[0010] 步骤三、 将步骤二中加工得到的多块成形板材按照步骤一所对应片层的顺序进 行叠放, 在相邻两块成形板材之间放置连接剂, 利用定位约束夹具对所有成形 板材进行位置约束并在垂直于成形板材板面方向上施加一定的压力, 利用连接 剂使所有的成形板材连接在一起;
[0011] 步骤四、 待所有成形板材连接成整体后, 打幵定位约束夹具, 得到所需的大尺 寸结构复杂金属构件。
发明的有益效果
有益效果
[0012] 一、 本发明将大尺寸结构复杂金属构件构建三维数字模型并分割成片层, 按照 构建的三维数字模型及分层原理对实体大尺寸结构复杂构件进行板材分层精密 加工然后连接成整体, 每一层板材可以利用现有的机械加工设备实现高效、 精 确加工, 通过"化整为零"的方案实现了深腔内孔等复杂结构的成形, 解决了具有 复杂异形结构及高性能要求的大尺寸金属构件的成形问题。
[0013] 二、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 每 一层所采用的是具有相同或不同厚度 (毫米级或更厚) 的金属成形板材, 大大 减少了构件分解的层数, 从而可以实现厚度或高度较大的复杂构件的高效率成 形, 不同厚度的成形板材可以适应所成形构件的局部特征, 从而使得局部特征 的机械加工过程简单同吋保证成形的效率。
[0014] 三、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 每 一层成形板材的内腔边缘和外围边缘都可以利用銑床等机械加工设备快速加工 成与片层模型完全一致的斜面或曲面, 在将相邻层叠加后不会在内腔边缘和外 围边缘产生不连续的台阶, 所以零件表面光滑, 无需在连接后再进行内表面和 外表面的加工。
[0015] 四、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 所 采用的金属板材可以是宽度达 2000~4000mm、 长度方向更长的标准金属板材, 所采用的机械加工设备是台面较大但功能并不复杂的銑床, 将各层进行整体一 次连接也无需特殊的设备, 因此与传统整体机械加工、 整体塑性成形和现有增 材制造方法相比成本很低。
[0016] 五、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 所 采用的金属板材的力学性能明显优于传统的铸态甚至锻态坯料, 也比 3D打印的 材料性能稳定、 均匀、 可靠, 成形过程中始终保持制件的组织为板材的原始组 织, 因此成形后的制件具有优良的力学性能。
[0017] 六、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 所 使用的金属板材为各向异性板材吋, 可以通过成形板材摆放方向来调整所制造 零件的某个方向的机械性能或调整零件的整体机械性能。
[0018] 七、 本发明将大尺寸结构复杂金属构件进行分层精密加工然后连接成整体, 可 以采用不同材质的金属板材进行叠层制造, 这为制造具有功能梯度要求的金属 构件提供了可能。
对附图的简要说明
附图说明
[0019] 图 1为本发明用于示意成形原理的大尺寸复杂金属构件的三维数字模型的轴测 图, 图 2为本发明采用板材叠层制造方法成形大尺寸结构复杂金属构件的原理图 , 图 3为本发明由所分解的片层模型加工出对应的板材的示意图, 图 4为本发明 采用两种不同材质板材进行间隔布置进行叠层制造的示意图, 图 5为本发明各片 层厚度对应的实际可用的金属板材的材质互不相同进行叠层制造的示意图, 图 6 为本发明各向异性板材不同摆放方向的示意图, 图 7为本发明板材装配面之间采 用坎合结构实现连接的示意图, 图 8为本发明采用不同厚度成形板材进行叠层制 造的示意图。
[0020] 其中, 1为大尺寸结构复杂金属构件, 2为实际可用的金属板材, 2-1为成形板 材, 4为定位约束夹具, 5为模型分成的片层。
本发明的实施方式
[0021] 参见图 1-图 8说明, 一种大尺寸结构复杂金属构件的叠层制造方法是按照以下 步骤实现的:
[0022] 步骤一、 获取大尺寸结构复杂金属构件 1的三维数字模型, 根据服役特点及大 尺寸结构复杂构件 1的结构特征在模型上选定一个方向, 垂直于选定的方向将模 型分成若干片层 5, 各片层 5的厚度根据大尺寸结构复杂金属构件 1的特征及实际 可用的金属板材 2的厚度进行选取, 厚度为毫米级;
[0023] 步骤二、 选取与步骤一所分割的各片层 5厚度对应的实际可用的金属板材 2, 对 各金属板材 2进行机械加工以得到与步骤一中各片层 5的模型相一致的成形板材 2- 1;
[0024] 步骤三、 将步骤二中加工得到的多块成形板材 2-1按照步骤一所对应片层 5的顺 序进行叠放, 在相邻两块成形板材 2-1之间放置连接剂, 利用定位约束夹具 4对所 有成形板材 2-1进行位置约束并在垂直于成形板材 2-1板面方向上施加一定的压力 , 利用连接剂使所有的成形板材 2-1连接在一起;
[0025] 步骤四、 待所有成形板材 2-1连接成整体后, 打幵定位约束夹具 4, 得到所需的 大尺寸结构复杂金属构件 1。
[0026] 本实施方式将三维数字模型的大尺寸复杂结构金属构件 1进行分层后, 采用机 械加工的方式将各金属板材 2加工成与对应的所分片层 5形状一致的板材 2-1, 然 后再将加工好的板材 2-1通过一定的连接方式进行连接, 从而将若干板材 2-1连接 成整体件 1, "化整为零"大大简化了大尺寸结构复杂构件的成形难度, 解决了具 有复杂异形结构及高性能要求的大尺寸金属构件的成形问题。
[0027] 每一层所采用的成形板材 2-1厚度较大 (毫米级或更厚) , 大大减少了大尺寸 结构复杂金属构件 1分解的层数, 从而可以实现厚度或高度较大的复杂零件的高 效率成形。
[0028] 成形板材 2-1的内腔边缘和外围边缘都可以利用銑床等机械加工设备快速加工 成与片层模型完全一致的斜面或曲面, 在将相邻层叠加后不会在内腔边缘和外 围边缘产生不连续的台阶, 所以构件表面光滑, 无需在连接后再进行内表面和 外表面的二次加工。 步骤二依据各片层 5的模型加工金属板材 2。
[0029] 参见图 1和图 4说明, 步骤二中实际可用的金属板材 2的材质为两种, 步骤三中 按照步骤一所对应片层 5的顺序进行叠放的两种不同材质的多块成形板材 2-1间隔 布置。 如此设置, 采用的板材 2选用两种不同材质, 两种不同材质的板材 (1号 板材 2-2, 2号板材 2-3) 交互叠放, 成形后的构件 1具有多种属性, 可以满足多种 使用性能的要求。 另外, 当某种材质的板材 2-1之间不容易进行连接吋可以采用 不同材质板材 (1号板材 2-2, 2号板材 2-3) 间隔放置来提高成形板材 2-1之间的 连接强度。
[0030] 参见图 2和图 5说明, 步骤二中各片层 5厚度对应的实际可用的金属板材 2的材质 互不相同。 如此设置, 采用的板材 2可以选用不同材质, 不同材质的板材顺序叠 放, 成形后的大尺寸结构复杂构件 1具有多种属性, 可以满足多种使用性能的要 求。
[0031] 参见图 2和图 6说明, 步骤二中实际可用的金属板材 2为各向异性板材, 步骤三 中多块成形板材 2-1叠放吋各向异性成形板材 2-1沿不同异性方向摆放。 图 6中箭 头指示成形板材各向异性方向, 选用的金属板材 2为各向异性板材, 成形板材 2-1 叠放吋板材各向异性方向沿不同方向摆放可以抵消成形板材 2-1各方向性能不同 带来的影响, 调整构件的整体机械性能, 使得大尺寸结构复杂构件 1各个方向性 能均一。 此外, 可以根据需要将成形板材 2-1性能较好的方向沿着某一方向放置 , 使得成形后大尺寸结构复杂构件 1某一方向性能得到提高。
[0032] 参见图 2和图 7说明, 步骤二中成形板材 2-1为装配面坎合结构板材。 如此设置 , 可以增加成形板材 2-1层与层间的抗剪切强度, 从而提高大尺寸结构复杂构件 1 的面层之间抗剪切强度。 装配面坎合结构涉及多峰结构, 包括矩形、 三角形等 锯齿形式。
[0033] 参见图 1和图 8说明, 步骤一中的大尺寸结构复杂构件 1的模型在进行分层吋, 每一个片层 5的厚度可以不同。 步骤一中的大尺寸结构复杂构件 1的三维数字模 型在进行分层吋, 每一层的厚度可以根据大尺寸结构复杂构件 1的局部特征进行 选取, 对于具有小特征的位置处应当减小分层的厚度, 在特征不明显的位置处 可以选取厚度较大的分层。 对应的步骤二中成形板材 2-1应该选取不同厚度的板 材 (厚一板材 2-7、 厚二板材 2-8、 厚三板材 2-9) 。 如此设置, 选用不同厚度的 成形板材 2-1可以适应所成形大尺寸结构复杂构件 1的局部特征, 从而使得局部特 征的机械加工过程简单同吋保证成形的效率。
[0034] 参见图 2、 图 4、 图 5、 图 7和图 8说明, 步骤三中相邻两块成形板材 2-1采用连接 剂的连接方式为钎焊连接或扩散连接。 如此设置, 连接稳定可靠, 操作简便易 行。

Claims

权利要求书
[权利要求 1] 一种大尺寸结构复杂金属构件的叠层制造方法, 其特征在于: 该方法 是按照以下步骤实现的:
步骤一、 获取大尺寸结构复杂金属构件 (1) 的三维数字模型, 根据 服役特点及大尺寸结构复杂构件 (1) 的结构特征在模型上选定一个 方向, 垂直于选定的方向将模型分成若干片层 (5) , 各片层 (5) 的 厚度根据大尺寸结构复杂金属构件 (1) 的特征及实际可用的金属板 材 (2) 的厚度进行选取, 厚度为毫米级;
步骤二、 选取与步骤一所分割的各片层 (5) 厚度对应的实际可用的 金属板材 (2) , 对各金属板材 (2) 进行机械加工以得到与步骤一中 各片层 (5) 的模型相一致的成形板材 (2-1) ; 步骤三、 将步骤二中加工得到的多块成形板材 (2-1) 按照步骤一所 对应片层 (5) 的顺序进行叠放, 在相邻两块成形板材 (2-1) 之间放 置连接剂, 利用定位约束夹具 (4) 对所有成形板材 (2-1) 进行位置 约束并在垂直于成形板材 (2-1) 板面方向上施加一定的压力, 利用 连接剂使所有的成形板材 (2-1) 连接在一起;
步骤四、 待所有成形板材 (2-1) 连接成整体后, 打幵定位约束夹具 (4) , 得到所需的大尺寸结构复杂金属构件 (1) 。
[权利要求 2] 根据权利要求 1所述的一种大尺寸结构复杂金属构件的叠层制造方法
, 其特性在于:
步骤二中实际可用的金属板材 (2) 的材质为两种, 步骤三中按照步 骤一所对应片层 (5) 的顺序进行叠放的两种不同材质的多块成形板 材 (2-1) 间隔布置。
[权利要求 3] 根据权利要求 1所述的一种大尺寸结构复杂金属构件的叠层制造方法
, 其特征在于: 步骤二中各片层 (5) 厚度对应的实际可用的金属板 材 (2) 的材质互不相同。
[权利要求 4] 根据权利要求 1、 2或 3所述的一种大尺寸结构复杂金属构件的叠层制 造方法, 其特征在于: 步骤二中实际可用的金属板材 (2) 为各向异 性板材, 步骤三中多块成形板材 (2-1) 叠放吋各向异性成形板材 (2
-1) 沿不同异性方向摆放。
[权利要求 5] 根据权利要求 4所述的一种大尺寸结构复杂金属构件的叠层制造方法
, 其特征在于: 步骤二中成形板材 (2-1) 为装配面坎合结构板材。
[权利要求 6] 根据权利要求 1、 2、 3或 5所述的一种大尺寸结构复杂金属构件的叠层 制造方法, 其特征在于: 步骤三中相邻两块成形板材 (2-1) 采用连 接剂的连接方式为钎焊连接或扩散连接。
PCT/CN2016/112235 2016-10-19 2016-12-27 一种大尺寸结构复杂金属构件的叠层制造方法 WO2018072318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/094,626 US10589504B2 (en) 2016-10-19 2016-12-27 Lamination manufacturing method for large-size and complex-structure metal components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610911437.XA CN106670736B (zh) 2016-10-19 2016-10-19 一种大尺寸结构复杂金属构件的叠层制造方法
CN201610911437.X 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018072318A1 true WO2018072318A1 (zh) 2018-04-26

Family

ID=58840268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112235 WO2018072318A1 (zh) 2016-10-19 2016-12-27 一种大尺寸结构复杂金属构件的叠层制造方法

Country Status (3)

Country Link
US (1) US10589504B2 (zh)
CN (1) CN106670736B (zh)
WO (1) WO2018072318A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967967A (zh) * 2017-12-27 2019-07-05 航天海鹰(哈尔滨)钛业有限公司 一种具有复杂内部型腔的叶片成型方法
CN109531769A (zh) * 2018-11-10 2019-03-29 东南大学 一种减少3d打印混凝土各向异性的设计和检测方法
CN109352176B (zh) * 2018-12-18 2021-06-04 江苏镭电嘉成激光科技有限公司 一种金属零件的超高速3d打印方法
CN112091067A (zh) * 2020-08-17 2020-12-18 大连理工大学 一种用于箔带连续叠层铺放的组合式芯模
CN112477355B (zh) * 2020-11-03 2022-08-02 昌河飞机工业(集团)有限责任公司 一种薄片叠层成组整体加工成型方法
CN112792507B (zh) * 2021-01-04 2022-06-10 中国航空制造技术研究院 钛合金整体叶盘的制备方法
CN114347507A (zh) * 2021-11-23 2022-04-15 航天海鹰(镇江)特种材料有限公司 一种基于同数据源的大厚度超复杂曲面制件分模铺贴方法
CN114632946B (zh) * 2022-02-25 2024-02-09 西安航天发动机有限公司 一种大尺寸异形截面弯管类承力构件的整体制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244333A1 (en) * 2004-03-18 2010-09-30 Bryan Bedal Apparatus for Three Dimensional Printing Using Imaged Layers
CN103909268A (zh) * 2014-04-19 2014-07-09 张远明 金属粉末浆料的大尺寸固态自由成型打印机及打印方法
CN104325264A (zh) * 2014-10-27 2015-02-04 苏州广型模具有限公司 一种模具直接成型的工艺方法
CN105537519A (zh) * 2016-01-15 2016-05-04 中国农业大学 一种打结器机架的熔模铸造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160772A1 (de) * 2001-12-11 2003-06-26 Trumpf Werkzeugmaschinen Gmbh Verfahren und Vorrichtung zur Herstellung eines aus mehreren Schichten bestehenden dreidimensionalen Bauteils
CN103350321B (zh) * 2013-06-04 2015-07-29 华中科技大学 一种基于轮廓特征的金属零件增材制造方法
CN103522022A (zh) * 2013-11-05 2014-01-22 什邡市明日宇航工业股份有限公司 钛合金异形翼的制造方法及所用焊接工装
JP6235311B2 (ja) * 2013-11-15 2017-11-22 株式会社東芝 三次元造形ヘッド、及び三次元造形装置
CN103600166B (zh) 2013-12-02 2016-06-29 哈尔滨工业大学(威海) 辅助加热式超声快速成型方法及装置
CN103753132B (zh) * 2013-12-24 2016-01-27 南京航空航天大学 具有Ti/TixAly/Ti多层结构的零件制备方法
CN104827155B (zh) * 2015-05-22 2017-01-18 华中科技大学 一种适用于复杂零件的固熔复合增材成形方法
CN204852246U (zh) * 2015-08-02 2015-12-09 衢州市优德工业设计有限公司 一种多薄片零件其间有胶粘层的长齿条
CN105834423B (zh) * 2016-05-12 2021-04-13 武汉天昱智能制造有限公司 一种基于增材制造加工的在线分层检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244333A1 (en) * 2004-03-18 2010-09-30 Bryan Bedal Apparatus for Three Dimensional Printing Using Imaged Layers
CN103909268A (zh) * 2014-04-19 2014-07-09 张远明 金属粉末浆料的大尺寸固态自由成型打印机及打印方法
CN104325264A (zh) * 2014-10-27 2015-02-04 苏州广型模具有限公司 一种模具直接成型的工艺方法
CN105537519A (zh) * 2016-01-15 2016-05-04 中国农业大学 一种打结器机架的熔模铸造方法

Also Published As

Publication number Publication date
CN106670736A (zh) 2017-05-17
US10589504B2 (en) 2020-03-17
CN106670736B (zh) 2018-09-14
US20190105891A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2018072318A1 (zh) 一种大尺寸结构复杂金属构件的叠层制造方法
WO2019024469A1 (zh) 一种适用于复杂零件和模具的增材加工成形方法
Butt et al. Microstructure and mechanical properties of dissimilar pure copper foil/1050 aluminium composites made with composite metal foil manufacturing
CN110181227A (zh) 一种三维层界面制备铝/镁/铝复合板的方法
JPH09150228A (ja) 金属板積層金型の製作方法
JP2012506803A (ja) 付加製造装置および方法
Butt et al. Strength analysis of aluminium foil parts made by composite metal foil manufacturing
JPH1147859A (ja) アルミ合金パネルの製造方法
CN113183466B (zh) 包括增材制造的混合部件
JP2004203040A (ja) 突合せ溶接された金属層のラミネート
JP2022145746A5 (ja) 中間シートの製造方法、及び、複合材の製造方法
US20200064076A1 (en) Hybrid pin-fin-plate heat exchanger
JP4354463B2 (ja) 複合材を用いた構造部材の成形方法及び複合材料を用いた構造部材
JP2015229304A (ja) 成形治具及び成形方法
CN109352176B (zh) 一种金属零件的超高速3d打印方法
TWI682822B (zh) 摩擦攪拌積層製造方法
US20060142140A1 (en) Embedding fiber improvements using ultrasonic consolidation
MXPA06002191A (es) Metodo para unir estructuras metalicas porosas y una estructura formada de ese modo.
CN107790540B (zh) 用于超塑性成形具有单片附接构件的多层结构的方法
JP2022038879A (ja) 異材接合品、積層造形用ベースプレート、積層造形装置及び積層造形方法
US20200025454A1 (en) Fin-plate heat exchanger
CN102059512B (zh) 一种具有复杂内腔体的铝合金工件的制造方法
JP4213443B2 (ja) 複合材補強パネルの製造方法
JP2020131646A (ja) 接合部材及び接合部材の製造方法
JP2004249337A (ja) 厚板を用いた積層金型の構造及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919292

Country of ref document: EP

Kind code of ref document: A1