WO2018070728A1 - Anode for lithium metal secondary battery and lithium metal secondary battery comprising same - Google Patents

Anode for lithium metal secondary battery and lithium metal secondary battery comprising same Download PDF

Info

Publication number
WO2018070728A1
WO2018070728A1 PCT/KR2017/010983 KR2017010983W WO2018070728A1 WO 2018070728 A1 WO2018070728 A1 WO 2018070728A1 KR 2017010983 W KR2017010983 W KR 2017010983W WO 2018070728 A1 WO2018070728 A1 WO 2018070728A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
secondary battery
lithium metal
metal secondary
Prior art date
Application number
PCT/KR2017/010983
Other languages
French (fr)
Korean (ko)
Inventor
최희원
우상욱
채오병
김은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170125952A external-priority patent/KR102094465B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17859518.7A priority Critical patent/EP3444871B1/en
Priority to US16/303,039 priority patent/US10804539B2/en
Priority to CN201780032793.7A priority patent/CN109196690B/en
Publication of WO2018070728A1 publication Critical patent/WO2018070728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal secondary battery negative electrode and a lithium metal secondary battery comprising the same having excellent life characteristics and less irregular dendritic formation on the surface.
  • lithium secondary batteries exhibiting high energy density and operating potential and low self discharge rate have been commercialized.
  • the lithium metal secondary battery is the first commercially available lithium secondary battery and uses lithium metal as a negative electrode.
  • the lithium metal secondary battery is a lithium resin phase formed on the surface of the lithium metal negative electrode, the volume expansion of the cell, the gradual decrease in capacity and energy density, short circuit caused by the continuous growth of the dendrite, cycle life decrease and cell stability problems (explosion and Ignition) production stopped just a few years after commercialization.
  • a carbon-based negative electrode was used instead of lithium metal, which is more stable and stably stores lithium in a lattice or empty space, and commercialization and dissemination of a full-scale lithium secondary battery has been advanced due to the use of the carbon-based negative electrode.
  • lithium secondary batteries are mainly made of carbon-based or non-carbon anode materials, and most of the development of anode materials is made of carbon-based (graphite, hard carbon, soft carbon, etc.) and non-carbon-based (silicon, tin, titanium oxide, etc.) materials. Focused on the fields.
  • carbon-based materials do not exceed the theoretical capacity of 400 mAh / g
  • non-carbon based materials are more than 1000 mAh / g, but there is a problem of volume expansion and performance degradation during charging and discharging.
  • Lithium is very light and has the potential to achieve excellent energy densities above theoretical capacity of 3800 mAh / g.
  • the lithium metal negative electrode unlike the graphite-based negative electrode material, is converted into neutral lithium through electrochemical reaction with electrons passing from the external conductor.
  • the mass is easily formed into a dendritic shape.
  • the non-uniform surface thus formed provides an overall expanded volume, and during discharge, lithium is more likely to dissociate directly from the lithium metal without selectively falling off from the lithium resin phase.
  • the metal cathode surface not only causes very extreme volume changes, but also results in irregular and complex morphologies of the formed dendrite.
  • the present invention has been made in order to solve the problems of the prior art, a specific surface area and a current density distribution can be implemented uniformly to provide a negative electrode for a lithium metal secondary battery having excellent life characteristics and less irregular dendritic formation on the surface
  • a specific surface area and a current density distribution can be implemented uniformly to provide a negative electrode for a lithium metal secondary battery having excellent life characteristics and less irregular dendritic formation on the surface
  • Another object of the present invention is to provide a lithium metal secondary battery having excellent charge and discharge characteristics by including the electrode.
  • the present invention is a current collector; And a polymer layer formed on at least one surface of the current collector, wherein the polymer layers are arranged in a lattice structure with empty spaces, and the empty spaces are filled with lithium. do.
  • the present invention comprises the steps of filling the lithium polymer layer consisting of a lattice structure (step 1); And forming a lithium-filled polymer layer on at least one surface of a current collector (step 2).
  • the present invention is the negative electrode; anode; A separator disposed between the cathode and the anode; And it provides a lithium metal secondary battery comprising an electrolyte.
  • the negative electrode according to the present invention includes a polymer layer arranged in a lattice structure with an empty space, so that the specific surface area of the negative electrode can be increased, and the current density distribution can be uniformly implemented, thereby providing excellent life characteristics and irregular dendritic formation. Can be suppressed.
  • the lithium metal secondary battery according to the present invention includes the negative electrode, charging and discharging efficiency may be increased by lithium filled in the empty space of the polymer layer, and thus life characteristics may be improved.
  • the negative electrode and the lithium metal secondary battery including the same according to the present invention can be usefully applied to the battery industry.
  • FIG. 1 schematically shows the structure of a negative electrode 100 according to an embodiment of the present invention
  • FIG. 1A schematically shows one cross section of the negative electrode 100 (filled with lithium).
  • 1B schematically shows a plan view of the cathode 100 (not shown in which an empty space is filled with lithium).
  • FIG. 2 is an SEM image of the dendritic shape formed on the negative electrode of the coin-shaped half cell of Example 1 according to an embodiment of the present invention after charging and discharging, wherein (a) is measured at a magnification X2,000. (b) is measured at magnification X5,000.
  • FIG. 3 is a SEM image of the dendritic shape formed on the negative electrode after charge and discharge of the coin-type half-cell of Comparative Example 3 according to an embodiment of the present invention, (a) is measured at a magnification X2,000. (b) is measured at magnification X5,000.
  • the present invention can be uniformly implemented in the current density distribution, to provide a negative electrode for a lithium metal secondary battery that can improve the charge and discharge efficiency and life characteristics of the lithium metal secondary battery comprising the same.
  • the negative electrode for a lithium metal secondary battery is a current collector; And a polymer layer formed on at least one surface of the current collector, wherein the polymer layer is arranged in a lattice structure with an empty space, and the empty space is filled with lithium.
  • FIG. 1 schematically shows the structure of a negative electrode according to an embodiment of the present invention
  • FIG. 1A schematically shows a cross section of the negative electrode
  • FIG. 1B schematically shows a plan view of the negative electrode. .
  • the negative electrode 100 is a current collector (10); And a polymer layer 20, wherein the polymer layer 20 is arranged in a lattice structure 21, 22 with an empty space P, and the empty space P is filled with lithium (L). It may be.
  • the current collector 10 is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the current collector 10 may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. And surface-treated with carbon, nickel, titanium, silver, or the like.
  • the current collector 10 may be copper.
  • the current collector 10 may be one having a thickness of typically 3 ⁇ m to 500 ⁇ m.
  • the polymer layer 20 is positioned on at least one surface of the current collector 10 and has a lattice structure.
  • the polymer layer 20 may have a mesh structure.
  • the polymer layer 20 may be formed in a lattice structure as described above, the lattice structure may be arranged with an empty space (P).
  • the lattice structure is arranged at a predetermined interval, and thus the empty space P in the polymer layer 20 may have a predetermined size.
  • the empty space P may occupy an area of 40% to 60% of the total area of the polymer layer 20, and specifically, may occupy an area of 50%. That is, the open area of the polymer layer 20 may be 40% to 60%.
  • the polymer layer has a mesh structure and the above-described empty space may increase the specific surface area of the negative electrode including the same, thereby providing a uniform current density distribution. Charging of lithium ions transferred from the positive electrode during charging of the lithium metal secondary battery may be easy.
  • the polymer layer may serve as a protective layer to block direct contact with the electrolyte.
  • the negative electrode 100 may be a lithium (L) is filled in the empty space (P) as described above, specifically, the lithium (L) is a polymer layer
  • the empty space P may be filled to cover an area of 5% to 20% of the total area. Specifically, it may be filled to cover an area of 5% to 10%. If the lithium (L) is filled in the above range, it is possible to improve the electrochemical charge and discharge reversibility without significantly reducing the pore and specific surface area of the polymer layer.
  • the lithium (L) may be filled in the empty space (P) by the manufacturing method described below, wherein the lithium (L) is located in the empty space (P) between the lattice structure and the polymer layer It may be attached to.
  • the polymer layer 20 may have a thickness of 10 ⁇ m to 100 ⁇ m. Specifically, it may have a thickness of 20 ⁇ m to 50 ⁇ m.
  • the polymer layer may be made of nylon
  • the lattice width of the lattice structure may be 1 ⁇ m to 10 ⁇ m.
  • the lattice width of the lattice structure may be 2 ⁇ m to 5 ⁇ m. If the lattice width of the lattice structure is out of the range, the size of the empty space P formed by the lattice structure may be too large or small, and as a result, when charging and discharging a lithium metal secondary battery using the negative electrode including the same, Lithium ion migration may not be smooth.
  • the present invention provides a method for producing a negative electrode for a lithium metal secondary battery.
  • the manufacturing method according to an embodiment of the present invention comprises the steps of filling the lithium polymer layer consisting of a lattice structure (step 1); And forming a lithium-filled polymer layer on at least one surface of a current collector (step 2).
  • Step 1 is a step for manufacturing a lithium-filled polymer layer, it may be performed by applying a current after manufacturing a coin-type half-cell using a lithium source and a polymer for providing lithium.
  • Step 1 is performed by applying a current of 0.5 mA to 1 mA after producing a coin-type half-cell through a separator and an electrolyte between the lithium thin film and the polymer using a lithium thin film as a positive electrode, a polymer as a negative electrode. It may be. At this time, lithium is transferred from the lithium thin film to the polymer may be filled in the empty space between the lattice structure in the polymer.
  • the polymer may be manufactured and used to have a desired empty space by arranging nylon wires in a lattice structure, or may be used by purchasing a commercially available nylon mesh (nylon mesh).
  • Step 2 is a step for manufacturing a negative electrode for a lithium metal secondary battery including a polymer layer made of a lattice structure, it may be performed by placing and attaching the lithium-filled polymer layer on at least one surface of the current collector.
  • the present invention provides a lithium metal secondary battery including the negative electrode.
  • the lithium metal secondary battery according to an embodiment of the present invention the negative electrode; anode; A separator disposed between the cathode and the anode; And an electrolyte.
  • the positive electrode is not particularly limited, but may be a lithium thin film or a positive electrode active material layer formed on one surface of a current collector. If the positive electrode is a positive electrode active material layer formed on one surface of the current collector, the positive electrode may be prepared by applying a positive electrode active material slurry containing a positive electrode active material on one surface of the current collector and then drying it. The slurry may further include additives such as a binder and a conductive material, a filler, and a dispersant in addition to the positive electrode active material.
  • the positive electrode active material is not particularly limited, but may be, for example, a manganese spinel active material, a lithium metal oxide, or a mixture thereof, and the lithium metal oxide may be lithium-manganese oxide, lithium-nickel-manganese oxide, lithium Manganese cobalt-based oxides and lithium-nickel-manganese-cobalt-based oxides.
  • the binder is a component that assists the bonding between the positive electrode active material and the conductive material and the current collector, and may generally be added in an amount of 1 wt% to 30 wt% based on the total amount of the positive electrode active material slurry.
  • binders are not particularly limited but include, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate.
  • Polymethylmethacrylate polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene- It may be one, or a mixture of two or more selected from the group consisting of diene monomer (EPDM), sulfonated EPDM, styrene-butyrene rubber (SBR) and fluorine rubber.
  • EPDM diene monomer
  • SBR styrene-butyrene rubber
  • fluorine rubber fluorine rubber
  • the conductive material is not particularly limited, but for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives.
  • the conductive material may typically be in an amount of 0.05 wt% to 5 wt% based on the total weight of the cathode active material slurry.
  • the filler may be used as necessary to determine whether or not to be used as a component for inhibiting the expansion of the positive electrode, and if the fibrous material without causing chemical changes in the battery is not particularly limited, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
  • the dispersant is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
  • the coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on an upper surface of one side of the positive electrode current collector, and then uniformly dispersed using a doctor blade or the like. Can be.
  • the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
  • the drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 °C to 200 °C.
  • the separator may be an insulating thin film having high ion permeability and mechanical strength, and may generally have a pore diameter of 0.01 ⁇ m to 10 ⁇ m and a thickness of 5 ⁇ m to 300 ⁇ m.
  • a porous polymer film such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / methacrylate copolymer, or the like, is made of a porous polymer film alone. Or these can be laminated
  • a conventional porous nonwoven fabric for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers and the like of high melting point may be used, but is not limited thereto.
  • the electrolyte may include an organic solvent and a lithium salt commonly used in the electrolyte, and are not particularly limited.
  • lithium salt of the anion is F -, Cl -, I - , NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2 ) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 CO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2 ) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - may be at least one member selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N.
  • Typical organic solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane and vinylene. It may be one or more selected from the group consisting of carbonate, sulfolane, gamma-butyrolactone, propylene sulfide and tetrahydrofuran.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferable because of high dielectric constant and high dissociation of lithium salts in the electrolyte, and dimethyl carbonate and diethyl carbonate in such cyclic carbonates.
  • low viscosity, low dielectric constant linear carbonate such as mixed in an appropriate ratio it can be more preferably used to make an electrolyte having a high electrical conductivity.
  • the electrolyte may be pyridine, triethyl phosphate, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, if necessary, in order to improve charge and discharge characteristics and flame retardancy characteristics.
  • the solvent may further include a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride to impart nonflammability, may further include carbon dioxide gas to improve high temperature storage characteristics, and may further include fluoro-ethylene carbonate. ), PRS (propene sultone), FPC (fluoro-propylene carbonate) may further include.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride to impart nonflammability
  • PRS propene sultone
  • FPC fluoro-propylene carbonate
  • an electrode assembly is formed by disposing a separator between a positive electrode and a negative electrode, and the electrode assembly may be prepared by putting an electrolyte into a cylindrical battery case or a square battery case. Alternatively, after stacking the electrode assembly, it may be prepared by impregnating it in an electrolyte and sealing the resultant obtained in a battery case.
  • the battery case may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch (coin) type or coin (coin) using a can, etc. This can be
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
  • 1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 ⁇ m as a positive electrode and a nylon mesh as a negative electrode.
  • a coin-type half cell was prepared by injecting the dissolved electrolyte solution.
  • a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell.
  • the nylon mesh was formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ⁇ m and the grid width was 5 ⁇ m.
  • lithium was charged at a rate of 10% of the total area of the nylon mesh void space.
  • the prepared lithium-filled nylon mesh was bonded to a 20 ⁇ m thick copper thin film to prepare a negative electrode.
  • the prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • 1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 ⁇ m as a positive electrode and a nylon mesh as a negative electrode.
  • a coin-type half cell was prepared by injecting the dissolved electrolyte solution.
  • a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell.
  • the nylon mesh is formed in a lattice structure with a blank space
  • the void space was 50% of the total area of the nylon mesh
  • the thickness is 50 ⁇ m
  • the grid width was 2 ⁇ m.
  • lithium was charged at a rate of 10% of the total area of the nylon mesh void space.
  • the prepared lithium-filled nylon mesh was bonded to a 20 ⁇ m thick copper thin film to prepare a negative electrode.
  • the prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • 1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 ⁇ m as a positive electrode and a nylon mesh as a negative electrode.
  • a coin-type half cell was prepared by injecting the dissolved electrolyte solution.
  • a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell.
  • the nylon mesh is formed in a lattice structure with a blank space
  • the void space was 50% of the total area of the nylon mesh
  • the thickness is 50 ⁇ m
  • the grid width was 5 ⁇ m.
  • lithium was filled at a rate of 5% of the total area of the nylon mesh void space.
  • the prepared lithium-filled nylon mesh was bonded to a 20 ⁇ m thick copper thin film to prepare a negative electrode.
  • the prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • 1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 ⁇ m as a positive electrode and a nylon mesh as a negative electrode.
  • a coin-type half cell was prepared by injecting the dissolved electrolyte solution.
  • a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell.
  • the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ⁇ m, the grid width was 5 ⁇ m, lithium is a nylon mesh It is filled at 25% of the total space.
  • the prepared lithium-filled nylon mesh was bonded to a 20 ⁇ m thick copper thin film to prepare a negative electrode.
  • the prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • 1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 ⁇ m as a positive electrode and a nylon mesh as a negative electrode.
  • a coin-type half cell was prepared by injecting the dissolved electrolyte solution.
  • a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell.
  • the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ⁇ m, the grid width was 5 ⁇ m, lithium is a nylon mesh It was filled at a rate of 3% of the total area of empty space.
  • the prepared lithium-filled nylon mesh was bonded to a 20 ⁇ m thick copper thin film to prepare a negative electrode.
  • the prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • a copper thin film having a thickness of 20 ⁇ m was used as a cathode as a working electrode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode as a counter electrode.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • a current collector in which a nylon layer was formed on a copper thin film having a thickness of 20 ⁇ m was used as a working electrode as a cathode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode as a counter electrode.
  • the nylon layer used a nylon mesh formed in a lattice structure with a blank space of the nylon wire, the void space in the nylon mesh was 50% of the total area of the nylon layer, the thickness is 50 ⁇ m, the grid width is 5 [Mu] m.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • a current collector in which a nylon layer was formed on a copper thin film having a thickness of 20 ⁇ m was used as a working electrode as a cathode, and a lithium thin film having a thickness of 150 ⁇ m was used as a positive electrode as a counter electrode.
  • the nylon layer used a nylon mesh formed in a lattice structure with a blank space of the nylon wire, the void space in the nylon mesh was 50% of the total area of the nylon layer, the thickness is 50 ⁇ m, the grid width is 5 [Mu] m.
  • an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
  • each battery was charged at 1 mA / cm 2 or 2 mA / cm 2 from 1 hour to 2 hours and the voltage was 1 V vs. Discharge was performed until Li / Li + . That is, the charge capacity was fixed to a certain amount and the discharge capacity was given a voltage cut-off to obtain the discharge capacity value and the charge / discharge efficiency value.
  • the battery of Examples 1 to 5 is significantly less charge and discharge capacity reduction rate compared to the batteries of Comparative Examples 1 to 3 under both charging conditions and excellent life characteristics It was confirmed.
  • Examples 4 and 3 in which lithium is filled to cover an area of 5% to 20% of the total area of the polymer layer empty space, are filled in to cover 25% and 3%, respectively. It was confirmed that there was a markedly improved lifespan characteristic compared to Example 5. Through this, it was confirmed that more significant effects can be achieved by filling lithium in a specific ratio in the empty space of the polymer layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an anode for a lithium metal secondary battery, the anode having excellent lifespan characteristics and being less prone to form irregular dendrites on a surface thereof, and a lithium metal secondary battery comprising the same. The anode according to the present invention includes a polymer layer arranged in a lattice structure, with empty spaces interposed therein, to increase in specific surface area and thus to make uniform distribution of current densities therein, thereby exhibiting excellent lifespan characteristics and restraining the formation of irregular dendrites.

Description

리튬금속 이차전지용 음극 및 이를 포함하는 리튬금속 이차전지Anode for lithium metal secondary battery and lithium metal secondary battery comprising same
[관련출원과의 상호인용][Citations with Related Applications]
본 출원은 2016.10.11자 한국 특허 출원 제10-2016-0131411호 및 2017.09.28자 한국 특허 출원 제10-2017-0125952에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application Nos. 10-2016-0131411 filed on October 11, 2016 and Korean Patent Application No. 10-2017-0125952 filed on September 28, 2017, and all contents disclosed in the documents of the Korean patent application. Is included as part of this specification.
[기술분야][Technical Field]
본 발명은 수명특성이 우수하고 표면에 불규칙한 수지상 형성이 적은 리튬금속 이차전지용 음극 및 이를 포함하는 리튬금속 이차전지에 관한 것이다.The present invention relates to a lithium metal secondary battery negative electrode and a lithium metal secondary battery comprising the same having excellent life characteristics and less irregular dendritic formation on the surface.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동전위를 나타내고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 있다. As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is rapidly increasing. Among them, lithium secondary batteries exhibiting high energy density and operating potential and low self discharge rate have been commercialized.
리튬금속 이차전지는 최초로 상용화된 리튬 이차전지로서, 리튬 금속을 음극으로 사용한다. 그러나, 리튬금속 이차전지는 리튬금속 음극의 표면에 형성되는 리튬 수지상에 의해 셀의 부피팽창, 용량 및 에너지 밀도의 점진적인 감소, 수지상 지속 성장에 따른 단락발생, 사이클 수명 감소와 셀 안정성 문제(폭발 및 발화)가 있어 상용화 된지 불과 몇 년 만에 생산이 중단되었다. 이에, 리튬 금속 대신에 보다 안정하고 격자나 빈공간 내에 리튬을 이온상태로 안정하게 저장할 수 있는 탄소계 음극이 사용되었으며, 상기 탄소계 음극 사용으로 인해 본격적인 리튬 이차전지의 상용화 및 보급이 진행되었다. The lithium metal secondary battery is the first commercially available lithium secondary battery and uses lithium metal as a negative electrode. However, the lithium metal secondary battery is a lithium resin phase formed on the surface of the lithium metal negative electrode, the volume expansion of the cell, the gradual decrease in capacity and energy density, short circuit caused by the continuous growth of the dendrite, cycle life decrease and cell stability problems (explosion and Ignition) production stopped just a few years after commercialization. Thus, a carbon-based negative electrode was used instead of lithium metal, which is more stable and stably stores lithium in a lattice or empty space, and commercialization and dissemination of a full-scale lithium secondary battery has been advanced due to the use of the carbon-based negative electrode.
현재까지 리튬 이차전지는 탄소계 또는 비탄소계 음극 소재들이 주류를 이루고 있으며, 대부분의 음극재 개발들은 탄소계(흑연, 하드카본, 소프트 카본 등)와 비탄소계(실리콘, 주석, 티타늄 산화물 등) 소재들에 집중되어 있다. 그러나, 탄소계 소재들은 이론용량이 400 mAh/g을 넘지 못하고 있고, 비탄소계는 1000 mAh/g이 넘는 소재들이지만 충방전시 부피팽창 및 성능저하 문제가 있다. To date, lithium secondary batteries are mainly made of carbon-based or non-carbon anode materials, and most of the development of anode materials is made of carbon-based (graphite, hard carbon, soft carbon, etc.) and non-carbon-based (silicon, tin, titanium oxide, etc.) materials. Focused on the fields. However, carbon-based materials do not exceed the theoretical capacity of 400 mAh / g, non-carbon based materials are more than 1000 mAh / g, but there is a problem of volume expansion and performance degradation during charging and discharging.
한편, 최근에는 중대형 리튬 이차전지가 활성화 되면서 고용량 및 고에너지밀도 특성이 요구되고 있으나, 기존 탄소계 또는 비탄소계 음극 소재들은 이러한 성능을 맞추기에는 한계가 있다. On the other hand, in recent years, as the medium-large-size lithium secondary battery is activated, high capacity and high energy density characteristics are required, but existing carbon-based or non-carbon-based negative electrode materials have a limit in meeting such performance.
이에, 최근 리튬-공기 전지와 같이 리튬금속을 다시 활용하려는 연구들이 활발히 진행되고 있으며, 동시에 리튬금속 이차전지에 대한 관심이 다시 고조되고 있다. 리튬은 매우 가볍고, 이론용량이 3800 mAh/g을 상회하는 우수한 에너지 밀도를 구현할 가능성을 가지고 있다. Accordingly, recent studies are being actively conducted to utilize lithium metal like lithium-air batteries, and at the same time, interest in lithium metal secondary batteries is increasing again. Lithium is very light and has the potential to achieve excellent energy densities above theoretical capacity of 3800 mAh / g.
그러나, 리튬금속을 이차전지의 음극소재로 적용하기 위해서는 극복해야 할 문제점들이 산적해 있다. 우선, 리튬금속 음극은 흑연계 음극소재와는 달리 양극에서 빠져나오는 이온 형태의 리튬이 외부도선에서 넘어온 전자와의 전기화학적 반응을 통해 중성의 리튬으로 바뀌어 버리기 때문에, 충전시 리튬 표면에 매우 불규칙한 리튬 덩어리가 수지상의 모양으로 쉽게 형성된다. 이렇게 형성된 불균일한 표면은 전반적으로 팽창된 부피를 제공하게 되고, 방전시에는 리튬 수지상으로부터 이온이 선택적으로 떨어져 나가지 않고 리튬금속에서 직접 해리되어 나가는 경우가 더 많기 때문에, 일련의 충방전을 거치면서 리튬금속 음극 표면은 매우 극심한 부피변화가 발생할 뿐만 아니라, 형성된 수지상이 불규칙하고 복잡한 모폴로지를 나타내게 된다. 이러한 표면의 복잡한 양상은 사이클이 진행되면서 전혀 안정화되지 못하고 생성과 소멸을 지속적으로 반복하여 매우 불규칙한 사이클 수명을 나타내게 된다. 또한, 방전시 형성된 리튬 수지상이 해리되면서 통째로 전해액 영역으로 떨어져 나가기도 하고, 수직방향으로 수지상이 계속 성장하여 분리막을 뚫고 반대편에 위치하는 양극 표면에 직접 또는 간접적으로 접촉함으로써 단락을 일으키기도 한다. However, there are a number of problems to overcome in order to apply lithium metal as a negative electrode material of a secondary battery. First of all, unlike the graphite-based negative electrode material, the lithium metal negative electrode, unlike the graphite-based negative electrode material, is converted into neutral lithium through electrochemical reaction with electrons passing from the external conductor. The mass is easily formed into a dendritic shape. The non-uniform surface thus formed provides an overall expanded volume, and during discharge, lithium is more likely to dissociate directly from the lithium metal without selectively falling off from the lithium resin phase. The metal cathode surface not only causes very extreme volume changes, but also results in irregular and complex morphologies of the formed dendrite. This complex aspect of the surface is not stabilized at all as the cycle progresses, resulting in a very irregular cycle life with continuous generation and decay. In addition, the lithium dendritic phase formed during discharge dissociates to the electrolyte region as a whole, and the dendritic phase continues to grow in the vertical direction to penetrate the separator and directly or indirectly contact the anode surface positioned on the opposite side to cause a short circuit.
따라서, 리튬금속 이차전지를 상용화하기 위해서는 리튬금속 음극의 충방전 특성을 개선시키고 수명특성을 개선시킬 수 있는 방안이 필요한 실정이다.Therefore, in order to commercialize the lithium metal secondary battery, a situation in which a method of improving the charge and discharge characteristics of the lithium metal negative electrode and improving the life characteristics is required.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 비표면적이 넓고 전류밀도 분포가 균일하게 구현될 수 있어 수명특성이 우수하고 표면에 불규칙한 수지상 형성이 적은 리튬금속 이차전지용 음극을 제공하는 것을 목적으로 한다. The present invention has been made in order to solve the problems of the prior art, a specific surface area and a current density distribution can be implemented uniformly to provide a negative electrode for a lithium metal secondary battery having excellent life characteristics and less irregular dendritic formation on the surface For the purpose of
본 발명의 다른 목적은 상기 전극을 포함함으로써 우수한 충방전용량 특성을갖는 리튬금속 이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium metal secondary battery having excellent charge and discharge characteristics by including the electrode.
상기의 과제를 해결하기 위하여, 본 발명은 집전체; 및 상기 집전체의 적어도 일면 상에 형성된 폴리머층을 포함하고, 상기 폴리머층은 빈 공간을 두고 격자구조로 배열되어 있는 것이고, 상기 빈 공간에는 리튬이 충진되어 있는 것인 리튬금속 이차전지용 음극을 제공한다.In order to solve the above problems, the present invention is a current collector; And a polymer layer formed on at least one surface of the current collector, wherein the polymer layers are arranged in a lattice structure with empty spaces, and the empty spaces are filled with lithium. do.
또한, 본 발명은 격자구조로 이루어진 폴리머층에 리튬을 충진하는 단계(단계 1); 및 상기 리튬이 충진된 폴리머층을 집전체의 적어도 일면 상에 형성시키는 단계(단계 2)를 포함하는 상기 리튬금속 이차전지용 음극의 제조방법을 제공한다. In addition, the present invention comprises the steps of filling the lithium polymer layer consisting of a lattice structure (step 1); And forming a lithium-filled polymer layer on at least one surface of a current collector (step 2).
아울러, 본 발명은 상기의 음극; 양극; 상기 음극과 양극 사이에 배치되는 분리막; 및 전해질을 포함하는 리튬금속 이차전지를 제공한다.In addition, the present invention is the negative electrode; anode; A separator disposed between the cathode and the anode; And it provides a lithium metal secondary battery comprising an electrolyte.
본 발명에 따른 음극은 빈 공간을 두고 격자구조로 배열되어 있는 폴리머층을 포함함으로써 음극의 비표면적이 증가할 수 있고 이에 전류밀도 분포가 균일하게 구현될 수 있어 수명특성이 우수하고 불규칙한 수지상 형성이 억제될 수 있다. The negative electrode according to the present invention includes a polymer layer arranged in a lattice structure with an empty space, so that the specific surface area of the negative electrode can be increased, and the current density distribution can be uniformly implemented, thereby providing excellent life characteristics and irregular dendritic formation. Can be suppressed.
또한, 본 발명에 따른 리튬금속 이차전지는 상기의 음극을 포함함으로써 폴리머층의 빈 공간 내 충진된 리튬에 의하여 충방전 효율이 증가할 수 있으며, 이에 수명특성이 개선될 수 있다. In addition, since the lithium metal secondary battery according to the present invention includes the negative electrode, charging and discharging efficiency may be increased by lithium filled in the empty space of the polymer layer, and thus life characteristics may be improved.
따라서, 본 발명에 따른 상기 음극 및 이를 포함하는 리튬금속 이차전지는 전지 산업에 유용하게 적용될 수 있다.Therefore, the negative electrode and the lithium metal secondary battery including the same according to the present invention can be usefully applied to the battery industry.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안된다. The following drawings, which are attached to this specification, illustrate exemplary embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical idea of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은, 본 발명의 일 실시예에 따른 음극(100)의 구조를 개략적으로 도시한 것으로, 도 1의 (a)는 상기 음극(100)의 일 단면을 개략적으로 도시한 것이고(리튬이 충진된 상태), 도 1의 (b)는 상기 음극(100)의 평면도를 개략적으로 도시(빈 공간에 리튬이 충진된 것은 표시되어 있지 않음)한 것이다.FIG. 1 schematically shows the structure of a negative electrode 100 according to an embodiment of the present invention, and FIG. 1A schematically shows one cross section of the negative electrode 100 (filled with lithium). 1B schematically shows a plan view of the cathode 100 (not shown in which an empty space is filled with lithium).
도 2는, 본 발명의 일 실시예에 따른 실시예 1의 코인형 반쪽전지의 충방전 후 음극 상에 형성된 수지상의 형상을 관찰한 SEM 이미지로, (a)는 배율 X2,000에서 측정한 것이고 (b)는 배율 X5,000에서 측정한 것이다. FIG. 2 is an SEM image of the dendritic shape formed on the negative electrode of the coin-shaped half cell of Example 1 according to an embodiment of the present invention after charging and discharging, wherein (a) is measured at a magnification X2,000. (b) is measured at magnification X5,000.
도 3은, 본 발명의 일 실시예에 따른 비교예 3의 코인형 반쪽전지의 충방전 후 음극 상에 형성된 수지상의 형상을 관찰한 SEM 이미지로, (a)는 배율 X2,000에서 측정한 것이고 (b)는 배율 X5,000에서 측정한 것이다.3 is a SEM image of the dendritic shape formed on the negative electrode after charge and discharge of the coin-type half-cell of Comparative Example 3 according to an embodiment of the present invention, (a) is measured at a magnification X2,000. (b) is measured at magnification X5,000.
[부호의 설명][Description of the code]
100: 음극100: cathode
10: 집전체10: whole house
20: 폴리머층20: polymer layer
21, 22: 격자구조21, 22: lattice structure
P: 빈 공간P: empty space
L: 리튬L: lithium
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 전류밀도 분포가 균일하게 구현될 수 있어, 이를 포함하는 리튬금속 이차전지의 충방전 효율 및 수명특성을 개선시킬 수 있는 리튬금속 이차전지용 음극을 제공한다. The present invention can be uniformly implemented in the current density distribution, to provide a negative electrode for a lithium metal secondary battery that can improve the charge and discharge efficiency and life characteristics of the lithium metal secondary battery comprising the same.
본 발명의 일 실시예에 따른 상기 리튬금속 이차전지용 음극은 집전체; 및 상기 집전체의 적어도 일면 상에 형성된 폴리머층을 포함하고, 상기 폴리머층은 빈 공간을 두고 격자구조로 배열되어 있는 것이고, 상기 빈 공간에는 리튬이 충진되어 있는 것을 특징으로 한다. The negative electrode for a lithium metal secondary battery according to an embodiment of the present invention is a current collector; And a polymer layer formed on at least one surface of the current collector, wherein the polymer layer is arranged in a lattice structure with an empty space, and the empty space is filled with lithium.
이하, 도 1을 참고하여 본 발명의 일 실시예에 따른 상기 전극을 구체적으로 설명한다. Hereinafter, the electrode according to an exemplary embodiment of the present invention will be described in detail with reference to FIG. 1.
도 1은, 본 발명의 일 실시예에 따른 음극의 구조를 개략적으로 도시한 것으로, 도 1a는 상기 음극의 일 단면을 개략적으로 도시한 것이고, 도 1b는 상기 음극의 평면도를 개략적으로 도시한 것이다. FIG. 1 schematically shows the structure of a negative electrode according to an embodiment of the present invention, FIG. 1A schematically shows a cross section of the negative electrode, and FIG. 1B schematically shows a plan view of the negative electrode. .
도 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 상기 음극(100)은 집전체(10); 및 폴리머층(20)을 포함하고, 상기 폴리머층(20)은 빈 공간(P)을 두고 격자구조(21, 22)로 배열되어 있는 것이며, 상기 빈 공간(P)에는 리튬(L)이 충진되어 있는 것일 수 있다. As shown in Figure 1, the negative electrode 100 according to an embodiment of the present invention is a current collector (10); And a polymer layer 20, wherein the polymer layer 20 is arranged in a lattice structure 21, 22 with an empty space P, and the empty space P is filled with lithium (L). It may be.
상기 집전체(10)는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니나, 예컨대 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티탄 또는 은 등으로 표면 처리한 것 등일 수 있다. 구체적으로는, 상기 집전체(10)는 구리인 것일 수 있다. The current collector 10 is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, the current collector 10 may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. And surface-treated with carbon, nickel, titanium, silver, or the like. Specifically, the current collector 10 may be copper.
또한, 상기 집전체(10)는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 갖는 것일 수 있다.In addition, the current collector 10 may be one having a thickness of typically 3 ㎛ to 500 ㎛.
상기 폴리머층(20)은 집전체(10)의 적어도 일면 상에 위치하는 것으로, 격자구조로 이루어진 것이며, 예컨대 메쉬(mesh)구조를 갖는 것일 수 있다. The polymer layer 20 is positioned on at least one surface of the current collector 10 and has a lattice structure. For example, the polymer layer 20 may have a mesh structure.
구체적으로, 상기 폴리머층(20)은 전술한 바와 같이 격자구조로 배열되어 형성된 것일 수 있으며, 상기 격자구조는 빈 공간(P)을 두고 배열되는 것일 수 있다. 이때, 상기 격자구조는 일정 간격을 두고 배열되는 것이며, 이에 상기 폴리머층(20) 내 빈 공간(P)은 일정한 크기를 가질 수 있다. Specifically, the polymer layer 20 may be formed in a lattice structure as described above, the lattice structure may be arranged with an empty space (P). In this case, the lattice structure is arranged at a predetermined interval, and thus the empty space P in the polymer layer 20 may have a predetermined size.
또한, 상기 빈 공간(P)은 폴리머층(20)의 전체면적 대비 40% 내지 60%의 면적을 차지하는 것일 수 있고, 구체적으로는 50%의 면적을 차지하는 것일 수 있다. 즉, 상기 폴리머층(20)의 공간율(open area)은 40% 내지 60%인 것일 수 있다. In addition, the empty space P may occupy an area of 40% to 60% of the total area of the polymer layer 20, and specifically, may occupy an area of 50%. That is, the open area of the polymer layer 20 may be 40% to 60%.
본 발명의 일 실시예에 따른 음극은 폴리머층이 메쉬구조를 가지고, 전술한 빈 공간을 가짐으로써 이를 포함하는 음극의 비표면적이 증가할 수 있어 전류밀도 분포가 균일할 수 있으며, 이에 상기 음극을 포함하는 리튬금속 이차전지의 충전시 양극으로부터 이동된 리튬이온의 충전이 용이할 수 있다. 또한, 상기 폴리머층은 보호층 역할을 하여 전해액과의 직접적인 접촉을 차단할 수 있다. In the negative electrode according to the embodiment of the present invention, the polymer layer has a mesh structure and the above-described empty space may increase the specific surface area of the negative electrode including the same, thereby providing a uniform current density distribution. Charging of lithium ions transferred from the positive electrode during charging of the lithium metal secondary battery may be easy. In addition, the polymer layer may serve as a protective layer to block direct contact with the electrolyte.
또한, 본 발명의 일 실시예에 따른 상기 음극(100)은 전술한 바와 같이 상기 빈 공간(P)에 리튬(L)이 충진되어 있는 것일 수 있으며, 구체적으로는 상기 리튬(L)은 폴리머층 빈 공간(P) 전체 면적 중 5% 내지 20%의 면적을 덮도록 충진되어 있는 것일 수 있다. 구체적으로는, 5% 내지 10%의 면적을 덮도록 충진되어 있는 것일 수 있다. 만약, 상기 리튬(L)이 상기의 범위로 충진되어 있는 경우 상기 폴리머층의 기공 및 비표면적을 크게 감소시키지 않으면서도 전기화학적 충방전 가역성을 개선시킬 수 있다. In addition, the negative electrode 100 according to an embodiment of the present invention may be a lithium (L) is filled in the empty space (P) as described above, specifically, the lithium (L) is a polymer layer The empty space P may be filled to cover an area of 5% to 20% of the total area. Specifically, it may be filled to cover an area of 5% to 10%. If the lithium (L) is filled in the above range, it is possible to improve the electrochemical charge and discharge reversibility without significantly reducing the pore and specific surface area of the polymer layer.
여기에서, 상기 리튬(L)은 후술하는 제조방법에 의하여 상기 빈 공간(P)에 충진되어 있는 것일 수 있으며, 이때 상기 리튬(L)은 격자구조 사이 빈 공간(P)에 위치하면서 상기 폴리머층에 붙어 있는 것일 수 있다. Here, the lithium (L) may be filled in the empty space (P) by the manufacturing method described below, wherein the lithium (L) is located in the empty space (P) between the lattice structure and the polymer layer It may be attached to.
한편, 상기 폴리머층(20)은 10 ㎛ 내지 100 ㎛의 두께를 갖는 것일 수 있다. 구체적으로는, 20 ㎛ 내지 50 ㎛의 두께를 갖는 것일 수 있다. Meanwhile, the polymer layer 20 may have a thickness of 10 μm to 100 μm. Specifically, it may have a thickness of 20 μm to 50 μm.
또한, 상기 폴리머층은 나일론으로 이루어진 것일 수 있으며, 격자구조의 격자 폭이 1 ㎛ 내지 10 ㎛인 것일 수 있다. 구체적으로는, 상기 격자구조의 격자 폭은 2 ㎛ 내지 5 ㎛인 것일 수 있다. 만약, 상기 격자구조의 격자 폭이 상기 범위를 벗어날 경우에는 이에 의하여 형성된 빈 공간(P)의 크기가 너무 커지거나 작아질 수 있으며, 결과적으로 이를 포함하는 음극을 적용한 리튬금속 이차전지의 충방전 시 리튬 이온 이동이 원활하지 못하는 문제가 발생할 수 있다. In addition, the polymer layer may be made of nylon, the lattice width of the lattice structure may be 1 ㎛ to 10 ㎛. Specifically, the lattice width of the lattice structure may be 2 ㎛ to 5 ㎛. If the lattice width of the lattice structure is out of the range, the size of the empty space P formed by the lattice structure may be too large or small, and as a result, when charging and discharging a lithium metal secondary battery using the negative electrode including the same, Lithium ion migration may not be smooth.
또한, 본 발명은 상기 리튬금속 이차전지용 음극의 제조방법을 제공한다. In addition, the present invention provides a method for producing a negative electrode for a lithium metal secondary battery.
본 발명의 일 실시예에 따른 상기 제조방법은 격자구조로 이루어진 폴리머층에 리튬을 충진하는 단계(단계 1); 및 상기 리튬이 충진된 폴리머층을 집전체의 적어도 일면 상에 형성시키는 단계(단계 2)를 포함하는 것을 특징으로 한다.The manufacturing method according to an embodiment of the present invention comprises the steps of filling the lithium polymer layer consisting of a lattice structure (step 1); And forming a lithium-filled polymer layer on at least one surface of a current collector (step 2).
상기 단계 1은 리튬이 충진된 폴리머층을 제조하기 위한 단계로, 리튬을 제공하는 리튬소스와 폴리머를 이용하여 코인형 반쪽전지를 제조한 후 전류를 가함으로써 수행하는 것일 수 있다. Step 1 is a step for manufacturing a lithium-filled polymer layer, it may be performed by applying a current after manufacturing a coin-type half-cell using a lithium source and a polymer for providing lithium.
구체적으로, 상기 단계 1은 리튬박막을 양극으로, 폴리머를 음극으로 하여 상기 리튬박막과 폴리머 사이에 분리막 및 전해질을 개재시켜 코인형 반쪽전지를 제조한 후 0.5 mA 내지 1 mA의 전류를 가하여 수행하는 것일 수 있다. 이때, 리튬은 리튬박막으로부터 폴리머로 이동되어 폴리머 내 격자구조 사이 빈 공간에 충진될 수 있다. Specifically, Step 1 is performed by applying a current of 0.5 mA to 1 mA after producing a coin-type half-cell through a separator and an electrolyte between the lithium thin film and the polymer using a lithium thin film as a positive electrode, a polymer as a negative electrode. It may be. At this time, lithium is transferred from the lithium thin film to the polymer may be filled in the empty space between the lattice structure in the polymer.
이때, 상기 폴리머는 나일론 와이어를 격자구조로 배열시켜 목적하는 빈 공간을 갖도록 제조하여 사용하거나, 시판되는 나일론 메쉬(나일론 망)를 구입하여 사용할 수 있다. In this case, the polymer may be manufactured and used to have a desired empty space by arranging nylon wires in a lattice structure, or may be used by purchasing a commercially available nylon mesh (nylon mesh).
상기 단계 2는 격자구조로 이루어진 폴리머층을 포함하는 리튬금속 이차전지용 음극을 제조하기 위한 단계로, 상기 리튬이 충진된 폴리머층을 집전체 적어도 일면 상에 위치시키고 부착시킴으로써 수행하는 것일 수 있다. Step 2 is a step for manufacturing a negative electrode for a lithium metal secondary battery including a polymer layer made of a lattice structure, it may be performed by placing and attaching the lithium-filled polymer layer on at least one surface of the current collector.
아울러, 본 발명은 상기 음극을 포함하는 리튬금속 이차전지를 제공한다. In addition, the present invention provides a lithium metal secondary battery including the negative electrode.
본 발명의 일 실시예에 따른 상기 리튬금속 이차전지는 상기 음극; 양극; 상기 음극과 양극 사이에 배치되는 분리막; 및 전해질을 포함하는 것을 특징으로 한다. The lithium metal secondary battery according to an embodiment of the present invention the negative electrode; anode; A separator disposed between the cathode and the anode; And an electrolyte.
상기 양극은 특별히 제한하는 것은 아니나, 리튬박막이거나 집전체 일면 상에 양극 활물질층이 형성되어 있는 것일 수 있다. 만약, 상기 양극이 집전체 일면 상에 양극 활물질층이 형성되어 있는 것인 경우, 상기 양극은 집전체 일면 상에 양극 활물질을 포함하는 양극 활물질 슬러리를 도포한 후 건조하여 제조할 수 있으며, 이때 상기 슬러리는 양극 활물질 이외에 결착체 및 도전재, 충진제, 분산제와 같은 첨가제를 더 포함하는 것일 수 있다. The positive electrode is not particularly limited, but may be a lithium thin film or a positive electrode active material layer formed on one surface of a current collector. If the positive electrode is a positive electrode active material layer formed on one surface of the current collector, the positive electrode may be prepared by applying a positive electrode active material slurry containing a positive electrode active material on one surface of the current collector and then drying it. The slurry may further include additives such as a binder and a conductive material, a filler, and a dispersant in addition to the positive electrode active material.
상기 양극 활물질은 특별히 제한되는 것은 아니나, 예컨대 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물일 수 있으며, 상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간 코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물 등일 수 있다. 구체적으로는, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(여기서, 0≤y<1), Li(NidCoeMnf)O4(여기서, 0<d<2, 0<e<2, 0<f<2, d+e+f=2), LiMn2-zNizO4, LiMn2-zCo2O4(여기서, 0<z<2)일 수 있다.The positive electrode active material is not particularly limited, but may be, for example, a manganese spinel active material, a lithium metal oxide, or a mixture thereof, and the lithium metal oxide may be lithium-manganese oxide, lithium-nickel-manganese oxide, lithium Manganese cobalt-based oxides and lithium-nickel-manganese-cobalt-based oxides. Specifically, the positive electrode active material is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (where 0 <a <1, 0 <b <1, 0 < c <1, a + b + c = 1), LiNi 1-y Co y O 2 , LiCo 1-y Mn y O 2 , LiNi 1-y Mn y O 2 (where 0 ≦ y <1), Li (Ni d Co e Mn f ) O 4 (where 0 <d <2, 0 <e <2, 0 <f <2, d + e + f = 2), LiMn 2-z Ni z O 4 , LiMn 2-z Co 2 O 4 , where 0 <z <2.
상기 결착제는 상기 양극 활물질과 도전재의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 슬러리 총량을 기준으로 1 중량% 내지 30 중량%로 첨가될 수 있다. 이러한 결착제는 특별히 제한하는 것은 아니나, 예컨대 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.The binder is a component that assists the bonding between the positive electrode active material and the conductive material and the current collector, and may generally be added in an amount of 1 wt% to 30 wt% based on the total amount of the positive electrode active material slurry. Such binders are not particularly limited but include, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate. Polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene- It may be one, or a mixture of two or more selected from the group consisting of diene monomer (EPDM), sulfonated EPDM, styrene-butyrene rubber (SBR) and fluorine rubber.
상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 활물질 슬러리 전체 중량을 기준으로 0.05 중량% 내지 5 중량%의 함량일 수 있다. The conductive material is not particularly limited, but for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives. The conductive material may typically be in an amount of 0.05 wt% to 5 wt% based on the total weight of the cathode active material slurry.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한하는 것은 아니나, 예컨대 폴리에틸렌 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다. The filler may be used as necessary to determine whether or not to be used as a component for inhibiting the expansion of the positive electrode, and if the fibrous material without causing chemical changes in the battery is not particularly limited, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
상기 분산제(분산액)로는 특별히 제한하는 것은 아니나, 예컨대 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등일 수 있다. The dispersant (dispersion) is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 상기 양극 활물질 슬러리를 상기 양극 집전체 일측 상면에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다. The coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on an upper surface of one side of the positive electrode current collector, and then uniformly dispersed using a doctor blade or the like. Can be. In addition, the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
상기 건조는 특별히 제한하는 것은 아니나 50℃ 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다.The drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 ℃ to 200 ℃.
상기 분리막으로는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막일 수 있으며, 일반적으로 0.01 ㎛ 내지 10 ㎛의 기공직경, 5 ㎛ 내지 300 ㎛의 두께를 갖는 것일 수 있다. 이러한 분리막으로는 다공성 고분자 필름, 예컨대 에틸렌 단독 중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있다. 또한, 통상적인 다공성 부직포, 예를 들어 고융점의 유리섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.The separator may be an insulating thin film having high ion permeability and mechanical strength, and may generally have a pore diameter of 0.01 μm to 10 μm and a thickness of 5 μm to 300 μm. As such a separator, a porous polymer film, such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / methacrylate copolymer, or the like, is made of a porous polymer film alone. Or these can be laminated | stacked and used. In addition, a conventional porous nonwoven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers and the like of high melting point may be used, but is not limited thereto.
상기 전해질은 전해질에 통상적으로 사용되는 유기용매 및 리튬염을 포함하는 것일 수 있으며, 특별히 제한되는 것은 아니다. The electrolyte may include an organic solvent and a lithium salt commonly used in the electrolyte, and are not particularly limited.
상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3CO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 1종 이상일 수 있다. With the lithium salt of the anion is F -, Cl -, I - , NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2 ) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 CO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2 ) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - may be at least one member selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N.
상기 유기용매로는 대표적으로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이드 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. Typical organic solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane and vinylene. It may be one or more selected from the group consisting of carbonate, sulfolane, gamma-butyrolactone, propylene sulfide and tetrahydrofuran.
특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직할 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, may be preferable because of high dielectric constant and high dissociation of lithium salts in the electrolyte, and dimethyl carbonate and diethyl carbonate in such cyclic carbonates. By using a low viscosity, low dielectric constant linear carbonate, such as mixed in an appropriate ratio it can be more preferably used to make an electrolyte having a high electrical conductivity.
또한, 상기 전해질은 필요에 따라 충방전 특성, 난연성 특성 등의 개선을 위하여 피리딘, 트리에틸포스페이트, 트리에탄올아민, 환상에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등을 추가로 포함할 수 있다. 경우에 따라서는, 불연성을 부여하기 위하여 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함할 수 있으며, 고온 보존 특성을 향상시키기 위하여 이산화탄산가스를 더 포함할 수도 있고, FEC(fluoro-ethylene carbonate), PRS(propene sultone), FPC(fluoro-propylene carbonate) 등을 더 포함할 수 있다. In addition, the electrolyte may be pyridine, triethyl phosphate, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, if necessary, in order to improve charge and discharge characteristics and flame retardancy characteristics. , Sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, and the like. . In some cases, the solvent may further include a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride to impart nonflammability, may further include carbon dioxide gas to improve high temperature storage characteristics, and may further include fluoro-ethylene carbonate. ), PRS (propene sultone), FPC (fluoro-propylene carbonate) may further include.
본 발명의 리튬금속 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다. In the lithium metal secondary battery of the present invention, an electrode assembly is formed by disposing a separator between a positive electrode and a negative electrode, and the electrode assembly may be prepared by putting an electrolyte into a cylindrical battery case or a square battery case. Alternatively, after stacking the electrode assembly, it may be prepared by impregnating it in an electrolyte and sealing the resultant obtained in a battery case.
상기 전지 케이스는 당업계에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. The battery case may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch (coin) type or coin (coin) using a can, etc. This can be
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이에 제한되는 것은 아니다.The lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells. Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
이하, 본 발명을 구체적으로 설명하기 위하여 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.EMBODIMENT OF THE INVENTION Hereinafter, an Example is given and it demonstrates in detail in order to demonstrate this invention concretely. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예 1Example 1
1) 음극의 제조1) Preparation of Cathode
두께 150 ㎛의 리튬박막을 양극으로, 나일론 메쉬를 음극으로 하여 상기 리튬박막과 폴리머 사이에 폴리올레핀 분리막을 개재시킨 후 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다. 이후 상기 전지에 0.5 mA의 전류를 가하여 리튬이 충진된 나일론 메쉬를 제조하였다. 이때, 나일론 메쉬는 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 것으로 상기 빈 공간은 나일론 메쉬 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고 격자 폭은 5 ㎛이었다. 또한, 리튬은 나일론 메쉬 빈 공간 전체면적 대비 10% 비율로 충진되었다.1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 μm as a positive electrode and a nylon mesh as a negative electrode. A coin-type half cell was prepared by injecting the dissolved electrolyte solution. Then, a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell. In this case, the nylon mesh was formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ㎛ and the grid width was 5 ㎛. In addition, lithium was charged at a rate of 10% of the total area of the nylon mesh void space.
제조된 리튬이 충진된 나일론 메쉬를 20 ㎛ 두께의 구리 박막 위에 접착시켜 음극을 제조하였다. The prepared lithium-filled nylon mesh was bonded to a 20 μm thick copper thin film to prepare a negative electrode.
2) 리튬금속 이차전지 제조2) Lithium metal secondary battery manufacturing
상기 제조된 음극을 작업전극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.The prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
실시예 2Example 2
1) 음극의 제조1) Preparation of Cathode
두께 150 ㎛의 리튬박막을 양극으로, 나일론 메쉬를 음극으로 하여 상기 리튬박막과 폴리머 사이에 폴리올레핀 분리막을 개재시킨 후 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다. 이후 상기 전지에 0.5 mA의 전류를 가하여 리튬이 충진된 나일론 메쉬를 제조하였다. 이때, 나일론 메쉬는 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 것으로 상기 빈 공간은 나일론 메쉬 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 2 ㎛이었다. 또한, 리튬은 나일론 메쉬 빈 공간 전체면적 대비 10% 비율로 충진되었다.1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 μm as a positive electrode and a nylon mesh as a negative electrode. A coin-type half cell was prepared by injecting the dissolved electrolyte solution. Then, a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell. In this case, the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ㎛, the grid width was 2 ㎛. In addition, lithium was charged at a rate of 10% of the total area of the nylon mesh void space.
제조된 리튬이 충진된 나일론 메쉬를 20 ㎛ 두께의 구리 박막 위에 접착시켜 음극을 제조하였다. The prepared lithium-filled nylon mesh was bonded to a 20 μm thick copper thin film to prepare a negative electrode.
2) 리튬금속 이차전지 제조2) Lithium metal secondary battery manufacturing
상기 제조된 음극을 작업전극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.The prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
실시예 3Example 3
1) 음극의 제조1) Preparation of Cathode
두께 150 ㎛의 리튬박막을 양극으로, 나일론 메쉬를 음극으로 하여 상기 리튬박막과 폴리머 사이에 폴리올레핀 분리막을 개재시킨 후 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다. 이후 상기 전지에 0.5 mA의 전류를 가하여 리튬이 충진된 나일론 메쉬를 제조하였다. 이때, 나일론 메쉬는 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 것으로 상기 빈 공간은 나일론 메쉬 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 5 ㎛이었다. 또한, 리튬은 나일론 메쉬 빈 공간 전체면적 대비 5% 비율로 충진되었다.1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 μm as a positive electrode and a nylon mesh as a negative electrode. A coin-type half cell was prepared by injecting the dissolved electrolyte solution. Then, a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell. In this case, the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ㎛, the grid width was 5 ㎛. In addition, lithium was filled at a rate of 5% of the total area of the nylon mesh void space.
제조된 리튬이 충진된 나일론 메쉬를 20 ㎛ 두께의 구리 박막 위에 접착시켜 음극을 제조하였다. The prepared lithium-filled nylon mesh was bonded to a 20 μm thick copper thin film to prepare a negative electrode.
2) 리튬금속 이차전지 제조2) Lithium metal secondary battery manufacturing
상기 제조된 음극을 작업전극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.The prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
실시예 4Example 4
1) 음극의 제조1) Preparation of Cathode
두께 150 ㎛의 리튬박막을 양극으로, 나일론 메쉬를 음극으로 하여 상기 리튬박막과 폴리머 사이에 폴리올레핀 분리막을 개재시킨 후 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다. 이후 상기 전지에 0.5 mA의 전류를 가하여 리튬이 충진된 나일론 메쉬를 제조하였다. 이때, 나일론 메쉬는 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 것으로 상기 빈 공간은 나일론 메쉬 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 5 ㎛이었다 또한, 리튬은 나일론 메쉬 빈 공간 전체면적 대비 25% 비율로 충진되었다.1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 μm as a positive electrode and a nylon mesh as a negative electrode. A coin-type half cell was prepared by injecting the dissolved electrolyte solution. Then, a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell. In this case, the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ㎛, the grid width was 5 ㎛, lithium is a nylon mesh It is filled at 25% of the total space.
제조된 리튬이 충진된 나일론 메쉬를 20 ㎛ 두께의 구리 박막 위에 접착시켜 음극을 제조하였다. The prepared lithium-filled nylon mesh was bonded to a 20 μm thick copper thin film to prepare a negative electrode.
2) 리튬금속 이차전지 제조2) Lithium metal secondary battery manufacturing
상기 제조된 음극을 작업전극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.The prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
실시예 5Example 5
1) 음극의 제조1) Preparation of Cathode
두께 150 ㎛의 리튬박막을 양극으로, 나일론 메쉬를 음극으로 하여 상기 리튬박막과 폴리머 사이에 폴리올레핀 분리막을 개재시킨 후 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다. 이후 상기 전지에 0.5 mA의 전류를 가하여 리튬이 충진된 나일론 메쉬를 제조하였다. 이때, 나일론 메쉬는 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 것으로 상기 빈 공간은 나일론 메쉬 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 5 ㎛이었다 또한, 리튬은 나일론 메쉬 빈 공간 전체면적 대비 3% 비율로 충진되었다.1M LiPF 6 is added to a solvent in which a polyolefin separator is interposed between the lithium thin film and the polymer with a lithium thin film having a thickness of 150 μm as a positive electrode and a nylon mesh as a negative electrode. A coin-type half cell was prepared by injecting the dissolved electrolyte solution. Then, a lithium mesh-filled nylon mesh was prepared by applying a current of 0.5 mA to the cell. In this case, the nylon mesh is formed in a lattice structure with a blank space, the void space was 50% of the total area of the nylon mesh, the thickness is 50 ㎛, the grid width was 5 ㎛, lithium is a nylon mesh It was filled at a rate of 3% of the total area of empty space.
제조된 리튬이 충진된 나일론 메쉬를 20 ㎛ 두께의 구리 박막 위에 접착시켜 음극을 제조하였다. The prepared lithium-filled nylon mesh was bonded to a 20 μm thick copper thin film to prepare a negative electrode.
2) 리튬금속 이차전지 제조2) Lithium metal secondary battery manufacturing
상기 제조된 음극을 작업전극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.The prepared negative electrode was used as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
비교예 1Comparative Example 1
작업전극으로 20 ㎛ 두께의 구리박막을 음극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.A copper thin film having a thickness of 20 μm was used as a cathode as a working electrode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode as a counter electrode. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
비교예 2Comparative Example 2
작업전극으로 20 ㎛ 두께의 구리박막에 나일론층을 형성시킨 집전체를 음극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 이때, 상기 나일론층은 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 나일론 메쉬를 사용하였으며, 나일론 메쉬 내 빈 공간은 나일론층 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 5 ㎛이었다. A current collector in which a nylon layer was formed on a copper thin film having a thickness of 20 μm was used as a working electrode as a cathode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode as a counter electrode. In this case, the nylon layer used a nylon mesh formed in a lattice structure with a blank space of the nylon wire, the void space in the nylon mesh was 50% of the total area of the nylon layer, the thickness is 50 ㎛, the grid width is 5 [Mu] m.
상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
비교예 3Comparative Example 3
작업전극으로 20 ㎛ 두께의 구리박막에 나일론층을 형성시킨 집전체를 음극으로 사용하고, 상대전극으로 두께가 150 ㎛인 리튬박막을 양극으로 사용하였다. 이때, 상기 나일론층은 나일론 와이어가 빈 공간을 두고 격자구조 배열로 형성된 나일론 메쉬를 사용하였으며, 나일론 메쉬 내 빈 공간은 나일론층 전체면적 중 50% 비율이었으며, 두께가 50 ㎛이고, 격자 폭은 5 ㎛이었다. 상기 음극과 양극 사이에 폴리올레핀 분리막을 개재시킨 후, 에틸렌 카보네이트, 에틸메틸 카보네이트를 50:50의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.A current collector in which a nylon layer was formed on a copper thin film having a thickness of 20 μm was used as a working electrode as a cathode, and a lithium thin film having a thickness of 150 μm was used as a positive electrode as a counter electrode. In this case, the nylon layer used a nylon mesh formed in a lattice structure with a blank space of the nylon wire, the void space in the nylon mesh was 50% of the total area of the nylon layer, the thickness is 50 ㎛, the grid width is 5 [Mu] m. After interposing the polyolefin separator between the negative electrode and the positive electrode, an electrolyte solution in which 1M LiPF 6 was dissolved was injected into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 50:50, thereby preparing a coin-type half cell.
실험예 1Experimental Example 1
상기 실시예 1, 실시예 2 및 비교예 1 내지 비교예 3에서 제조한 각 전지를 전기화학 충방전기를 이용하여 충전과 방전하여 충방전 용량 특성을 측정하였다. 결과를 하기 표 1 및 표 2에 나타내었으며, 표 1은 각 전지를 1 mA/cm2으로 충전한 것이고 표 2는 각 전지를 2 mA/cm2으로 충전하여 얻은 결과값이다. Charge and discharge capacity characteristics of the batteries prepared in Examples 1, 2, and Comparative Examples 1 to 3 were charged and discharged using an electrochemical charger. The results are shown in Tables 1 and 2, Table 1 shows each cell charged at 1 mA / cm 2 and Table 2 shows the results obtained by charging each cell at 2 mA / cm 2 .
구체적으로, 상기 각 전지를 1 mA/cm2 또는 2 mA/cm2으로 1시간에서 2시간까지 충전하고 전압이 1 V vs. Li/Li+가 될때까지 방전시켰다. 즉, 충전용량은 일정량으로 고정시키고 방전을 Voltage Cut-off를 주어 방전용량 값과 충방전 효율 값을 구하였다. Specifically, each battery was charged at 1 mA / cm 2 or 2 mA / cm 2 from 1 hour to 2 hours and the voltage was 1 V vs. Discharge was performed until Li / Li + . That is, the charge capacity was fixed to a certain amount and the discharge capacity was given a voltage cut-off to obtain the discharge capacity value and the charge / discharge efficiency value.
구분division 초기 충전 용량(mAh)Initial Charge Capacity (mAh) 50회 사이클 방전 용량(mAh)50 cycles discharge capacity (mAh) 50회 사이클 충방전 용량 유지율(%)50 cycles charge / discharge capacity retention rate (%)
실시예 1Example 1 3.993.99 3.823.82 95.7495.74
실시예 2Example 2 4.004.00 3.783.78 94.5094.50
실시예 3Example 3 3.983.98 3.803.80 95.5095.50
실시예 4Example 4 4.004.00 1.251.25 31.2531.25
실시예 5Example 5 3.963.96 1.361.36 34.334.3
비교예 1Comparative Example 1 3.973.97 0.780.78 19.6519.65
비교예 2Comparative Example 2 4.034.03 0.960.96 23.8223.82
비교예 3Comparative Example 3 4.024.02 0.680.68 16.9216.92
구분division 초기 충전 용량(mAh)Initial Charge Capacity (mAh) 50회 사이클 방전 용량(mAh)50 cycles discharge capacity (mAh) 50회 사이클 충방전 용량 유지율(%)50 cycles charge / discharge capacity retention rate (%)
실시예 1Example 1 3.993.99 3.243.24 81.2081.20
실시예 2Example 2 4.004.00 3.153.15 78.7578.75
실시예 3Example 3 3.983.98 3.183.18 79.9079.90
실시예 4Example 4 4.004.00 1.061.06 26.5026.50
실시예 5Example 5 9.369.36 1.071.07 27.0027.00
비교예 1Comparative Example 1 3.973.97 0.150.15 3.783.78
비교예 2Comparative Example 2 4.034.03 0.470.47 11.6611.66
비교예 3Comparative Example 3 4.024.02 0.320.32 7.967.96
상기 표 1 및 표 2에 나타난 바와 같이, 두 가지의 충전 조건 모두에서 실시예 1 내지 실시예 5의 전지가 비교예 1 내지 비교예 3의 전지에 비하여 충방전 용량 감소율이 현저히 적어 수명 특성이 우수한 것을 확인하였다. As shown in Table 1 and Table 2, the battery of Examples 1 to 5 is significantly less charge and discharge capacity reduction rate compared to the batteries of Comparative Examples 1 to 3 under both charging conditions and excellent life characteristics It was confirmed.
한편, 폴리머층 빈 공간 전체면적 중 리튬이 5% 내지 20%의 면적을 덮도록 충진되어 있는 실시예 1 내지 실시예 3이 각각 25% 및 3%의 면적을 덮도록 충진되어 있는 실시예 4 및 실시예 5에 비해서 현저히 개선된 수명 특성이 있는 것을 확인하였다. 이를 통하여, 폴리머층 빈 공간에 리튬이 특정 비율로 충진되어 있음으로써 더 현저한 효과를 달성할 수 있음을 확인하였다. Meanwhile, Examples 4 and 3, in which lithium is filled to cover an area of 5% to 20% of the total area of the polymer layer empty space, are filled in to cover 25% and 3%, respectively. It was confirmed that there was a markedly improved lifespan characteristic compared to Example 5. Through this, it was confirmed that more significant effects can be achieved by filling lithium in a specific ratio in the empty space of the polymer layer.
실험예 2Experimental Example 2
상기 실시예 1 및 비교예 3에서 제조된 각 리튬금속 이차전지의 충방전 후 전지를 분해하고 음극 표면을 SEM을 측정하여 수지상 형성 형태를 관찰하였으며, 결과를 도 2 및 도 3에 나타내었다.After charging and discharging each lithium metal secondary battery prepared in Example 1 and Comparative Example 3, the battery was disassembled and the dendritic formation was observed by measuring SEM on the negative electrode surface, and the results are shown in FIGS. 2 and 3.
도 2 및 도 3에 나타난 바와 같이, 비교예 3의 음극의 경우에는 날카롭고 실 같은 수지상이 전체적으로 형성되어 있는 반면, 실시예 1의 음극은 비교예 3과 비교하여 날카롭고 실 같은 수지상이 관찰되지 않았다.As shown in FIGS. 2 and 3, in the case of the negative electrode of Comparative Example 3, a sharp and thread-like resin phase was formed as a whole, whereas in the negative electrode of Example 1, a sharp and yarn-like dendritic phase was not observed. Did.

Claims (10)

  1. 집전체; 및 Current collector; And
    상기 집전체의 적어도 일면 상에 형성된 폴리머층을 포함하고,A polymer layer formed on at least one surface of the current collector;
    상기 폴리머층은 빈 공간을 두고 격자구조로 배열되어 있는 것이고, The polymer layers are arranged in a lattice structure with empty spaces,
    상기 빈 공간에는 리튬이 충진되어 있는 것인 리튬금속 이차전지용 음극.Lithium is filled in the empty space lithium metal secondary battery negative electrode.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 빈 공간은 폴리머층 전체면적 대비 40% 내지 60% 면적을 차지하는 것인 리튬금속 이차전지용 음극.The empty space is a lithium metal secondary battery negative electrode that occupies an area of 40% to 60% of the total area of the polymer layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬은 폴리머층 빈 공간 전체면적 중 5% 내지 20%의 면적을 덮도록 충진되어 있는 것인 리튬금속 이차전지용 음극.The lithium is a lithium metal secondary battery negative electrode that is filled to cover an area of 5% to 20% of the total area of the empty space of the polymer layer.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 폴리머층은 나일론으로 이루어지는 것인 리튬금속 이차전지용 음극. The polymer layer is a lithium metal secondary battery negative electrode made of nylon.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리머층은 두께가 10 ㎛ 내지 100 ㎛인 것인 리튬금속 이차전지용 음극.The polymer layer is a lithium metal secondary battery negative electrode having a thickness of 10 ㎛ to 100 ㎛.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 격자구조의 격자 폭이 1 ㎛ 내지 10 ㎛인 것인 리튬금속 이차전지용 음극.The lattice width of the lattice structure is a negative electrode for a lithium metal secondary battery of 1 ㎛ to 10 ㎛.
  7. 1) 격자구조로 이루어진 폴리머층에 리튬을 충진하는 단계; 및1) filling lithium into a lattice structure polymer layer; And
    2) 상기 리튬이 충진된 폴리머층을 집전체의 적어도 일면 상에 형성시키는 단계를 포함하는 청구항 1에 기재된 리튬금속 이차전지용 음극의 제조방법. 2) A method of manufacturing a negative electrode for a lithium metal secondary battery according to claim 1, comprising forming the lithium-filled polymer layer on at least one surface of a current collector.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 폴리머층은 나일론으로 이루어진 것인 리튬금속 이차전지용 음극의 제조방법. The polymer layer is a method of manufacturing a negative electrode for a lithium metal secondary battery that is made of nylon.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 단계 1)은 리튬박막을 양극으로, 폴리머를 음극으로 하여 상기 리튬박막과 폴리머 사이에 분리막 및 전해질을 개재시켜 코인형 반쪽전지를 제조한 후 0.5 mA 내지 1 mA의 전류를 가하여 수행하는 것인 리튬금속 이차전지용 음극의 제조방법. Step 1) is performed by applying a current of 0.5 mA to 1 mA after producing a coin-type half-cell through a separator and an electrolyte between the lithium thin film and the polymer using a lithium thin film as a positive electrode, a polymer as a negative electrode. Method of manufacturing a negative electrode for a lithium metal secondary battery.
  10. 청구항 1에 기재된 음극; 양극; 상기 음극과 양극 사이에 배치되는 분리막; 및 전해질을 포함하는 리튬금속 이차전지.A negative electrode according to claim 1; anode; A separator disposed between the cathode and the anode; And a lithium metal secondary battery comprising an electrolyte.
PCT/KR2017/010983 2016-10-11 2017-09-29 Anode for lithium metal secondary battery and lithium metal secondary battery comprising same WO2018070728A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17859518.7A EP3444871B1 (en) 2016-10-11 2017-09-29 Negative electrode for lithium-metal secondary battery and lithium metal secondary battery including the same
US16/303,039 US10804539B2 (en) 2016-10-11 2017-09-29 Negative electrode for lithium-metal secondary battery and lithium-metal secondary battery including the same
CN201780032793.7A CN109196690B (en) 2016-10-11 2017-09-29 Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0131411 2016-10-11
KR20160131411 2016-10-11
KR1020170125952A KR102094465B1 (en) 2016-10-11 2017-09-28 Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising the same
KR10-2017-0125952 2017-09-28

Publications (1)

Publication Number Publication Date
WO2018070728A1 true WO2018070728A1 (en) 2018-04-19

Family

ID=61905741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010983 WO2018070728A1 (en) 2016-10-11 2017-09-29 Anode for lithium metal secondary battery and lithium metal secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2018070728A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990055229A (en) * 1997-12-27 1999-07-15 전주범 Lithium Battery and Manufacturing Method Thereof
KR20050041661A (en) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
KR100582558B1 (en) * 2004-11-25 2006-05-22 한국전자통신연구원 Lithium metal anode for lithium metal polymer secondary battery comprising spacer and method for forming the same
KR20140058928A (en) * 2012-11-07 2014-05-15 현대자동차주식회사 The non-aqueous and high-capacity lithium secondary battery
KR101503807B1 (en) * 2013-10-30 2015-03-19 (주) 퓨리켐 A manufacture method of lithium ion capacitor using lithium metal powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990055229A (en) * 1997-12-27 1999-07-15 전주범 Lithium Battery and Manufacturing Method Thereof
KR20050041661A (en) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
KR100582558B1 (en) * 2004-11-25 2006-05-22 한국전자통신연구원 Lithium metal anode for lithium metal polymer secondary battery comprising spacer and method for forming the same
KR20140058928A (en) * 2012-11-07 2014-05-15 현대자동차주식회사 The non-aqueous and high-capacity lithium secondary battery
KR101503807B1 (en) * 2013-10-30 2015-03-19 (주) 퓨리켐 A manufacture method of lithium ion capacitor using lithium metal powder

Similar Documents

Publication Publication Date Title
WO2015130106A1 (en) Lithium-nickel based cathode active material, method for preparing same, and lithium secondary battery including same
WO2016159702A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2018012694A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
WO2016126046A1 (en) Secondary battery including high-capacity anode and manufacturing method therefor
WO2019194433A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2018135915A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage characteristics
WO2020145639A1 (en) Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2016053059A1 (en) Positive electrode active material slurry comprising heterogeneous binders and positive electrode produced from same
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2014193148A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2019031732A1 (en) Pre-lithiation using lithium metal and inorganic material composite layer
WO2018143733A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage properties
WO2019216695A1 (en) Lithium secondary battery
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2019013449A1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2018208035A1 (en) Method for manufacturing lithium secondary battery
WO2013180522A1 (en) Lithium secondary battery
WO2021040386A1 (en) Lithium secondary battery and method for manufacturing same
WO2020153728A1 (en) Anode active material for lithium secondary battery, and anode and lithium secondary battery which comprise same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2018062883A2 (en) Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017859518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017859518

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE