WO2018070665A1 - Apparatus and method for measuring residual chlorine concentration - Google Patents

Apparatus and method for measuring residual chlorine concentration Download PDF

Info

Publication number
WO2018070665A1
WO2018070665A1 PCT/KR2017/009597 KR2017009597W WO2018070665A1 WO 2018070665 A1 WO2018070665 A1 WO 2018070665A1 KR 2017009597 W KR2017009597 W KR 2017009597W WO 2018070665 A1 WO2018070665 A1 WO 2018070665A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
sample water
unit
residual chlorine
chlorine concentration
Prior art date
Application number
PCT/KR2017/009597
Other languages
French (fr)
Korean (ko)
Inventor
박규원
김성태
이해돈
이광호
박혜진
조유경
Original Assignee
(주) 테크로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크로스 filed Critical (주) 테크로스
Publication of WO2018070665A1 publication Critical patent/WO2018070665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/79Photometric titration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • G01N1/2042Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping using a piston actuated by the pressure of the liquid to be sampled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The present invention relates to an apparatus for measuring residual chlorine concentration, comprising: a measuring part having a light emitting part and a light receiving part, and having a sample water inflow tube through which sample water flows in; a reagent storing part made from a shrinkable material so as to inject a reagent into the measuring part, and having a reagent inflow tube; and a control part for measuring the concentration of an oxidant in the sample water on the basis of a signal generated when light generated by the light emitting part passes through the sample water and then is received in the light receiving part, thereby simplifying a structure so as to improve durability, and controlling the amount of the reagent injected.

Description

잔류 염소농도 측정장치 및 방법Residual Chlorine Concentration Measurement Apparatus and Method
본 발명은 잔류 염소농도 측정장치 및 방법에 관한 것이다. 보다 상세하게는 시약을 공급하기 위한 구성을 단순화하여 내구성을 향상시킬 뿐만 아니라, 시약 공급량을 제어할 수 있도록 하는 잔류 염소농도 측정장치 및 방법에 관한 것이다. The present invention relates to an apparatus and method for measuring residual chlorine concentration. More particularly, the present invention relates to a residual chlorine concentration measuring apparatus and method for simplifying a configuration for supplying a reagent to improve durability as well as controlling a reagent supply amount.
일반적으로 해상에서 운송하는 화물 선박은 유사한 화물의 상호 교환을 위하여 왕복 항해하는 선박을 제외하고는 대부분 편도 운항을 한다. 그리고, 편도 운항을 만재 상태로 항해한 후 귀환 항해 시에는 선박의 균형, 안전성 및 조종 성능 향상 등을 위하여 선박평형수(ballast water)를 선내로 유입하여 밸러스트 상태로 항해를 하게 된다.Generally, cargo ships transported by sea are mostly one-way except for ships reciprocating to exchange similar cargoes. In addition, when returning sailing with the one-way operation at full load, the ballast water is introduced into the ship to sail in the ballast state for improving the balance, safety, and steering performance of the ship.
이때, 선박평형수는 한 항구에서 채워져서 다른 곳으로 이송되어, 거기서 새로운 항구 내에 배출된다. 이와 같이, 먼 위치로부터 실려져 온 선박평형수에 포함된 해양 생물 및 병원균의 방출은 새로운 환경에 유해할 뿐만 아니라, 새로운 항구에서도 사람과 동물 모두에게 위험할 수 있다.At this time, the ballast water is filled in one port and transported to another, where it is discharged in a new port. As such, the release of marine organisms and pathogens contained in ballast water taken from remote locations is not only harmful to the new environment, but also dangerous for both humans and animals in new ports.
비-천연적인 해양 생물을 신규 생태계로 도입시키면, 신규 종에 대해 자연적인 방어체계를 지니고 있지 않을 수 있는 천연 식물군 및 동물군에게 파괴적인 효과를 미칠 수 있다. 또한, 콜레라와 같은 해로운 세균성 병원균이 원래의 항구에 존재할 수 있다. 이러한 병원균은 시간이 지남에 따라 밸러스트 탱크 내에서 증식되어, 이들이 방출되는 영역에서 질병을 발생시킬 수 있다.Introducing non-natural marine life into new ecosystems can have destructive effects on natural flora and fauna that may not have natural defenses against new species. In addition, harmful bacterial pathogens such as cholera may be present in the original ports. These pathogens can multiply in the ballast tanks over time, causing disease in the areas where they are released.
이러한 해양 생물 및 병원균에 의해 제기되는 위험은 선박평형수 내에 존재하는 상기한 종들을 치사(致死)시켜 조절할 수 있다.The risk posed by these marine organisms and pathogens can be controlled by lethal species mentioned above in ballast water.
선박평형수를 살균 처리하는데 주로 전기 분해 방식을 이용하는데, 전기 분해 방식을 이용한 선박평형수 처리 시스템은 밸러스트 수의 TRO 측정하기 위한 TRO 센서 유닛을 구비하고 있다. The electrolysis method is mainly used for sterilizing ballast water, and the ballast water treatment system using the electrolysis method is equipped with a TRO sensor unit for measuring the TRO of ballast water.
여기서 "TRO"는 "Total Residual Oxidant"의 약어로서, 밸러스트 수에 존재하는 전체 잔류 산화제를 의미하며, 통상적으로 전기 분해 과정을 통하여 발생하는 염소가 밸러스트 수 내의 수중 생물을 산화시키고 남은 염소의 잔류 염소 수치를 측정하여 구한다. TRO는 바닷물이나 염분이 섞여있는 물을 전기분해 또는 염소 소독할 경우 활성 염소 대신 브로민 등의 원자로 대체되어 여러 종류의 산화제가 공존하게 되는데, 이때 존재하는 모든 활성 산화제를 가리킨다.Here, "TRO" is an abbreviation of "Total Residual Oxidant", which means the total residual oxidant present in the ballast water, and chlorine generated through electrolysis process oxidizes the aquatic organisms in the ballast water, and the remaining chlorine of the remaining chlorine Measure and find the value. When electrolysis or chlorination of seawater or salty water is performed, TRO is replaced with an atom such as bromine instead of active chlorine, and various types of oxidants coexist.
전술한 TRO 센서는 선박이 항해하는 경로에 따라 담수, 해수 등 다양한 수질 조건에서 작동해야 하기 때문에, 수질변화에 덜 민감한 DPD 시약을 이용한 TRO 센서를 주로 사용한다. Since the above-described TRO sensor must operate in various water quality conditions such as fresh water and sea water depending on the route of the ship, the TRO sensor is mainly used with a DPD reagent which is less sensitive to changes in water quality.
DPD시약을 이용한 TRO 측정 센서는 시약통에서 측정부에 시약을 주입하기 위해 이송 펌프를 포함하고 있을 뿐만 아니라, 이송 펌프를 통한 시약의 이송시에 역류를 막기 위해 공급관에 체크밸브 등을 포함하고 있어 구성이 매우 복잡하다.The TRO measuring sensor using DPD reagent not only includes a transfer pump to inject reagent into the measuring part in the reagent container, but also includes a check valve in the supply pipe to prevent backflow during the transfer of the reagent through the transfer pump. The configuration is very complicated.
TRO 측정센서에 포함된 이송 펌프는 화학제품인 DPD시약의 이송에 사용하므로 부식이 쉽게 발생하여 내구성에 문제가 있고, 고장이 자주 발생하는 문제점이 있다.Since the transfer pump included in the TRO measuring sensor is used for the transfer of the DPD reagent, which is a chemical product, corrosion is easily generated, and there is a problem in durability and frequent failure.
또한, 압력에 따른 투입량 변화폭이 커서 DPD 시약을 정량으로 투입하는 것이 어려운 문제점이 있다.In addition, there is a problem that it is difficult to add the DPD reagent quantitatively because the change in the input amount is large depending on the pressure.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 특히 선박평형수의 시약을 공급하기 위한 구성을 보다 단순화하고, 시약 공급량을 제어할 수 있는 잔류 염소농도 측정장치 및 방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, and in particular, to simplify the configuration for supplying the reagents of ballast water, and to provide a residual chlorine concentration measuring apparatus and method that can control the reagent supply amount There is a purpose.
상기 목적을 달성하기 위해 안출된 본 발명의 일관점에 따른 잔류 염소농도 측정장치는, 발광부와 수광부를 구비하고, 샘플수가 유입되는 샘플수 유입관이 설치되는 측정부; 상기 측정부로 시약을 주입하도록 수축이 가능한 재질로 구성되고, 시약 유입관이 구비되는 시약 저장부; 및 상기 발광부에서 생성된 빛이 상기 샘플수를 투과한 후, 상기 수광부에서 수신되는 신호를 근거로 상기 샘플수의 산화제 농도를 측정하는 제어부;를 포함한다.Residual chlorine concentration measuring device according to the consistent point of the present invention devised to achieve the above object is provided with a light emitting unit and a light receiving unit, the measuring unit is provided with a sample water inlet tube is introduced into the sample water; A reagent reservoir configured of a material capable of shrinking to inject reagent into the measurement unit, and having a reagent inlet pipe; And a control unit measuring the oxidizer concentration of the sample water based on the signal received from the light receiving unit after the light generated by the light emitting unit has passed through the sample water.
여기서, 시약 유입관에는 시약 조절밸브가 설치될 수 있다. 특히, 시약 조절밸브는 핀치 밸브(Pinch Valve)로 구성할 수 있다.Here, a reagent control valve may be installed in the reagent inlet tube. In particular, the reagent control valve may be configured as a pinch valve (Pinch Valve).
시약 저장부는 연속적인 공급을 위해 복수개가 구비될 수 있다.The reagent reservoir may be provided in plurality for continuous supply.
또한, 시약 저장부는, 내구성 및 내화학성이 우수하고 탄성재질인 불소 고무로 형성될 수 있다.In addition, the reagent reservoir may be formed of fluororubber having excellent durability and chemical resistance and an elastic material.
측정부는, 상기 샘플수 유입관에 유입밸브가 설치되고, 측정이 완료된 샘플수가 배출되는 샘플수 배출관이 설치되고, 상기 샘플수 배출관에는 배출밸브가 설치될 수 있다.The measuring unit may be provided with an inlet valve in the sample water inlet tube, a sample water discharge tube for discharging the finished sample water, and a discharge valve may be installed in the sample water discharge tube.
여기서, 측정부는, 빛이 통과할 수 있는 투명 재질로 형성될 수 있다.Here, the measuring unit may be formed of a transparent material through which light can pass.
또한, 시약 유입관은 내화학성 튜브로 구성될 수 있다.In addition, the reagent inlet tube may be composed of a chemical resistant tube.
본 발명의 잔류 염소농도 측정장치는, 발광부는 백색 LED로 구성하고, 수광부는 RGB 센서로 구성할 수 있다.In the residual chlorine concentration measuring apparatus of the present invention, the light emitting portion may be configured by a white LED, and the light receiving portion may be configured by an RGB sensor.
한편, 본 발명의 다른 관점에 따른 잔류 염소농도 측정방법은, 발광부와 수광부를 구비하고, 샘플수가 유입/배출되는 샘플수 유입관과 샘플수 배출관이 설치되고, 상기 샘플수 유입관 및 상기 샘플수 배출관에 유입밸브 및 배출밸브가 각각 설치되는 측정부; 상기 측정부로 시약을 주입하도록 수축 가능한 재질로 구성되어 시약이 수축 압력에 의해 배출되고, 시약 유입관이 구비되어 상기 시약 유입관에 시약 조절밸브가 설치되는 시약 저장부; 및 상기 유입밸브와 상기 배출밸브, 상기 시약 조절밸브의 개폐를 조절하는 제어부를 포함하는 잔류 염소농도 측정장치를 이용하되, 상기 측정부에서 시약이 주입되지 않은 샘플수의 흡광도를 측정하여 기준 흡광도를 획득하는 단계; 기준 흡광도 측정이 완료된 상기 샘플수를 배출하고, 새로운 샘플수를 주입하는 단계; 교체된 상기 샘플수에 시약을 주입하여 발색 흡광도를 획득하는 단계; 상기 기준 흡광도와 상기 발색 흡광도를 근거로 잔류 염소 농도를 획득하는 단계;를 포함한다.On the other hand, the residual chlorine concentration measuring method according to another aspect of the present invention is provided with a light emitting portion and a light receiving portion, the sample water inlet tube and the sample water discharge tube is installed and the sample water inlet / discharge, the sample water inlet tube and the sample A measuring unit having an inlet valve and a discharge valve respectively installed in the water discharge pipe; A reagent reservoir configured of a shrinkable material to inject the reagent into the measuring unit, the reagent being discharged by the contraction pressure, and having a reagent inlet tube provided with a reagent control valve in the reagent inlet tube; And using a residual chlorine concentration measuring device including a control unit for controlling the opening and closing of the inlet valve, the discharge valve, the reagent control valve, by measuring the absorbance of the sample water is not injected reagent in the measuring unit to measure the standard absorbance Obtaining; Discharging the sample water having completed the reference absorbance measurement and injecting a new sample water; Injecting a reagent into the replaced sample water to obtain color absorbance; And obtaining residual chlorine concentration based on the reference absorbance and the color absorbance.
본 발명에 의하면 별도의 가압수단을 구비하지 않고 시약 저장부를 수축되는 재질로 구성함으로써 구조를 단순화하여 내구성을 향상시키는 효과가 있다.According to the present invention, there is an effect of simplifying the structure and improving durability by forming a material that shrinks the reagent reservoir without providing a separate pressurizing means.
또한, 본 발명에 의하면 시약 조절밸브에 의해 시약 공급량이 조절되도록 함으로써 시약의 공급량을 제어할 수 있는 효과가 있다.In addition, according to the present invention, the reagent supply amount is controlled by the reagent control valve, thereby controlling the supply amount of the reagent.
도 1은 본 발명의 일실시예에 따른 잔류 염소농도 측정장치를 도시한 구성도이고,1 is a block diagram showing a residual chlorine concentration measuring apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일실시예에 따른 잔류 염소농도 측정장치에 구비된 수광부의 상대 반응도(Relative Responsivity)를 도시한 그래프이고, Figure 2 is a graph showing the relative response (Relative Responsivity) of the light receiving unit provided in the residual chlorine concentration measuring apparatus according to an embodiment of the present invention,
도 3은 본 발명의 일실시예에 따른 잔류 염소농도 측정방법을 도시한 순서도이다.3 is a flowchart illustrating a method of measuring residual chlorine concentration according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible, even if shown on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the following will describe a preferred embodiment of the present invention, but the technical idea of the present invention is not limited thereto and may be variously modified and modified by those skilled in the art.
도 1은 본 발명의 일실시예에 따른 잔류 염소농도 측정장치를 도시한 구성도이다.1 is a block diagram showing a residual chlorine concentration measuring apparatus according to an embodiment of the present invention.
도 1을 참조하면, 잔류 염소농도 측정장치(100)은, 샘플수의 잔류 염소 농도를 측정하는 측정부(110)와, 시약을 보관하고 있다가 상기 측정부(110)로 시약을 주입하는 시약 저장부(130)와, 측정부(110)에서 측정된 센싱정보에 따라 밸브들을 개방 또는 폐쇄시키는 제어부(150)을 포함한다.Referring to FIG. 1, the residual chlorine concentration measuring device 100 includes a measuring unit 110 for measuring the residual chlorine concentration of a sample water and a reagent for storing a reagent and then injecting the reagent into the measuring unit 110. The storage unit 130 and the control unit 150 for opening or closing the valve in accordance with the sensing information measured by the measuring unit 110.
측정부(110)는, 양 측면부에 발광부(111)와 수광부(113)이 각각 마주보도록 설치된다. 또한, 상기 측정부(110)는, 빛이 통과할 수 있는 투명 재질로 형성되어 발광부(111)에서 생성된 빛이 측정부(110)를 관통하여 수광부(113)에 도달할 수 있도록 구성된다. The measuring unit 110 is provided at both side surfaces such that the light emitting unit 111 and the light receiving unit 113 face each other. In addition, the measuring unit 110 is formed of a transparent material through which light can pass and is configured to allow the light generated by the light emitting unit 111 to reach the light receiving unit 113 through the measuring unit 110. .
여기서, 상기 발광부(111)는 3채널 파장대역을 모두 측정하기 위해 백색 LED로 구성될 수 있다. 또한, 상기 수광부(113)는 Red, Green, Blue에 해당하는 color filter를 구비한 RGB 센서로 구성되어 3채널의 파장 모두를 인식할 수 있도록 구성된다. 3개의 파장 대역을 확인하므로 DPD로 발색된 산화제의 농도를 측정하는데 있어서 정확도를 높일 수 있고, 서로 다른 색으로 발색하는 다양한 종류의 시약에 하나의 기기로 모두 대응할 수 있는 장점을 지닐 수 있다. Here, the light emitting unit 111 may be configured as a white LED to measure all three channel wavelength band. In addition, the light receiving unit 113 is composed of an RGB sensor having a color filter corresponding to red, green, and blue, and is configured to recognize all three channel wavelengths. By identifying three wavelength bands, it is possible to increase the accuracy in measuring the concentration of the oxidizing agent developed by DPD, and have the advantage that it can cope with various kinds of reagents that develop in different colors with one device.
이와 같은 구성을 통해 발광부(111)의 백색 LED가 온(On)되면 수광부(113)의 RGB 센서에서 투과된 빛의 세기(광량)를 측정하여 잔류 염소 농도를 측정할 수 있게 된다. Through this configuration, when the white LED of the light emitting unit 111 is turned on, the residual chlorine concentration may be measured by measuring the intensity (light quantity) of the light transmitted from the RGB sensor of the light receiving unit 113.
상기 측정부(110)는, 샘플수가 유입되도록 샘플수 유입관(121)이 설치되고, 측정이 완료된 샘플수가 배출되도록 샘플수 배출관(125)이 설치된다. The measurement unit 110, the sample water inlet tube 121 is installed so that the sample water is introduced, and the sample water discharge pipe 125 is installed so that the sample water is completed.
또한, 샘플수 유입관(121)에는 유입밸브(123)가 설치되고, 샘플수 배출관(125)에는 배출밸브(127)가 설치됨으로써 시약 저장부(130)에서 유입된 시약이 샘플수와 반응된 후에 원활히 배출될 수 있도록 구성한다.In addition, an inlet valve 123 is installed in the sample water inlet pipe 121, and a discharge valve 127 is installed in the sample water outlet pipe 125 so that the reagent introduced from the reagent storage unit 130 reacts with the sample water. It is configured to be discharged smoothly later.
본 발명의 일실시예에 따른 잔류 염소농도 측정장치(100)는, 선박평형수에 투입되는 산화제를 측정하는 여러가지 방식의 장치중에 DPD(diethyl-p-phenylende diamine) 시약을 측정 대상 선박평형수에 반응시켜 잔류 산화제의 농도를 측정하는 방식을 적용한다. Residual chlorine concentration measuring apparatus 100 according to an embodiment of the present invention, the DPD (diethyl-p-phenylende diamine) reagent in a variety of devices for measuring the oxidant is added to the ballast water The reaction is applied to measure the concentration of residual oxidant.
이와 같은 DPD방식 산화제 측정장치는, 처리된 선박평형수의 일부를 채취한 후 DPD 시약을 투입하여 산화물질 농도를 측정하기 때문에 DPD 시약을 보관하기 위한 시약 저장부(130)를 구성요소로 한다. DPD 시약은 완충(Buffer) 용액과 혼합되어 측정부(110)로 주입되는데, DPD 시약과 Buffer 용액이 하나의 용기에 혼합되어 보관될 수도 있으나, 각각 별도의 용기에 보관되는 것이 보관상 바람직하다.Since the DPD type oxidant measuring device collects a part of the treated ballast water, the DPD reagent is input to measure the oxide quality, and thus the reagent storage unit 130 for storing the DPD reagent is used as a component. The DPD reagent is mixed with the buffer solution and injected into the measuring unit 110. The DPD reagent and the buffer solution may be mixed and stored in one container, but it is preferable that the DPD reagent is stored in a separate container.
또한, 상기 시약 저장부(130)는 일정온도로 유지되는 온도유지수단(미도시)를 추가적으로 구비하여 시약의 반응성과 시약의 유효기간을 증가시킬 수도 있다. In addition, the reagent storage unit 130 may further include a temperature maintaining means (not shown) maintained at a constant temperature to increase the reactivity of the reagent and the shelf life of the reagent.
본 발명의 일실시예에 따른 잔류 염소농도 측정장치(100)에 포함된 시약 저장부(130)는, 별도의 가압수단이 없이 측정부(110)로 시약이 유입되도록 수축이 가능한 재질로 구성된다.Reagent storage unit 130 included in the residual chlorine concentration measuring apparatus 100 according to an embodiment of the present invention is composed of a material capable of shrinkage so that the reagent is introduced into the measuring unit 110 without a separate pressing means. .
시약 저장부(130)는 수축이 가능한 탄성 재질로 구성되는 것이 바람직하다. 또한, 균일한 압력을 발생시키기 위해 대칭되는 형상, 예를 들면 구 형상으로 형성하는 것이 바람직하다.The reagent storage unit 130 is preferably made of an elastic material that can shrink. It is also preferable to form a symmetrical shape, for example a spherical shape, in order to generate a uniform pressure.
본 발명의 시약 저장부(130)는, 그 일측에 마련된 시약 주입부(미도시)로 시약이 주입될 때 주입 압력에 의해 시약 저장부(130)가 팽창되고, 시약 주입이 완료된 다음, 시약 주입부(미도시)를 폐쇄하면 팽창된 시약 저장부(130)가 복원력에 의해 스스로 수축되는데, 이 때 발생되는 수축 압력에 의해 시약이 측정부(110)로 유입되도록 구성됨으로써 추가적인 가압수단이 필요 없게 된다.In the reagent storage unit 130 of the present invention, when the reagent is injected into the reagent injection unit (not shown) provided on one side thereof, the reagent storage unit 130 is expanded by the injection pressure, and after the reagent injection is completed, the reagent injection is completed. When the part (not shown) is closed, the expanded reagent storage unit 130 contracts itself by the restoring force, and the reagent is introduced into the measuring unit 110 by the contraction pressure generated at this time, so that no additional pressurization means is required. do.
이와 같이 탄성 재질로 형성된 시약 저장부(130)는, 후크(Hook)의 법칙에 의해 가압력을 발생시키는데, 가해지는 힘 F는 상수 k와 변위 또는 길이의 변화 x의 곱과 같게 된다. 즉, F=kx가 된다. 여기서, k의 값은 고려 대상인 시약 저장부(103) 재질의 종류뿐만 아니라 크기나 모양과도 관련이 있다.Thus, the reagent storage unit 130 formed of an elastic material generates a pressing force by the law of the hook (Hook), the force applied is equal to the product of the constant k and the change x of the displacement or length. That is, F = kx. Here, the value of k is related to the size or shape as well as the kind of material of the reagent storage unit 103 under consideration.
또한, 시약 저장부(130)는 내부에 시약이 저장되고 팽창/수축 작용을 반복하기 때문에 내구성 및 내화학성이 우수한 소재가 바람직하다.In addition, the reagent storage unit 130 is a material excellent in durability and chemical resistance because the reagent is stored therein and repeats the expansion / contraction action.
시약 저장부(130) 재질의 실시예들로서, 탄성과 내마모성이 우수한 천연 고무(NR), 부타디엔 고무(BR), 스틸렌부타디엔 고무(SBR), 아크릴로니트릴부타디엔 고무(NBR), 수소화니트릴부타디엔 고무(H-NBR), 클로로프렌 고무(CR), 에틸렌 프로필렌 고무(EPDM) 등을 적용할 수 있으며, 탄성 뿐만 아니라 내약품성이 뛰어난 부틸 고무(IIR), 클로로술푼화 폴리에틸렌 고무(CSM), 아플라스(FEPM), 과불소고무(FFKM), 불소 고무(FKM, FPM) 등을 적용할 수도 있다. 특히, 내약품성과 내구성이 우수한 불소 고무를 적용하는 것이 바람직하다. Examples of the material of the reagent storage unit 130 include natural rubber (NR), butadiene rubber (BR), styrenebutadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and hydrogenated nitrile butadiene rubber having excellent elasticity and abrasion resistance ( H-NBR), chloroprene rubber (CR), ethylene propylene rubber (EPDM), etc. can be applied, and butyl rubber (IIR), chlorosulfonated polyethylene rubber (CSM), and aplas (FEPM) with excellent elasticity as well as chemical resistance ), Perfluorinated rubber (FFKM), fluororubbers (FKM, FPM) and the like can also be applied. In particular, it is preferable to apply fluororubber excellent in chemical resistance and durability.
한편, 시약 저장부(130)에 구비된 시약 주입부(미도시)는, 측정부(110)로 시약을 공급하는 시약 유입관(141)과 체결되도록 구성할 수도 있다. 이와 같이 구성할 경우, 시약 주입이 완료되면 시약 주입부(미도시)를 폐쇄시키지 않고 시약 유입관(141)과 연결되어 시약을 공급하는 경로로 사용할 수 있게 된다.On the other hand, the reagent injection unit (not shown) provided in the reagent storage unit 130 may be configured to be coupled to the reagent inlet pipe 141 for supplying the reagent to the measuring unit 110. In such a configuration, when reagent injection is completed, the reagent inlet tube 141 may be connected to the reagent inlet pipe 141 without closing the reagent inlet unit (not shown), and may be used as a path for supplying the reagent.
본 발명의 일실시예에 따른 잔류 염소농도 측정장치(100)은, 시약 저장부(130)에 보관된 DPD 시약이 샘플수를 담는 측정부(110)로 원활히 공급되도록 시약 저장부(130)와 측정부(110) 사이에는 시약 유입관(141)이 설치되고, 시약의 유입 흐름을 제어하도록 시약 유입관(141)에는 시약 조절밸브(143)가 설치될 수 있다.Residual chlorine concentration measuring apparatus 100 according to an embodiment of the present invention, the reagent storage unit 130 and so that the DPD reagent stored in the reagent storage unit 130 is smoothly supplied to the measuring unit 110 containing the sample number A reagent inlet tube 141 may be installed between the measuring units 110, and a reagent control valve 143 may be installed in the reagent inlet tube 141 to control the flow of reagents.
상기 시약 저장부(130)는 도 1에 도시된 바와 같이 복수개가 구비될 수 있다. 제1 시약 저장부(130a) 및 제2 시약 저장부(130b)에 모두 시약을 저장하도록 구성함으로써, 하나의 제1 시약 저장부(130a)의 시약이 모두 소비되더라도 예비적으로 제2 시약 저장부(130b)를 통해 시약이 공급될 수 있기 때문에 연속적인 시약 공급이 가능해진다. The reagent reservoir 130 may be provided in plural as shown in FIG. 1. By storing the reagents in both the first reagent storage unit 130a and the second reagent storage unit 130b, the second reagent storage unit is preliminarily even if all of the reagents of the first reagent storage unit 130a are consumed. Reagents can be supplied via 130b, allowing for continuous reagent supply.
여기서, 상기 시약 유입관(141)은 공급되는 시약에 의해 부식, 파손되는 것을 방지하도록 내화학성 튜브로 구성될 수 있다.Here, the reagent inlet tube 141 may be composed of a chemical resistant tube to prevent corrosion and breakage by the supplied reagent.
상기 시약 조절밸브(143)는 핀치 밸브(Pinch Valve)로 구성할 수 있다. 핀치 밸브는 탄성체를 상하 2 개의 바(BAR)로 눌러 주었다가 띄어주었다 하면서 밸브 개폐를 조정하는 장치로서, 이송되는 유체는 오로지 탄성체 내부에만 접액이 되며 어떠한 구동파트도 접액이 되지 않기 때문에 밸브와 시약이 접촉하지 않아 밸브의 부식 우려가 없고, 내구성이 향상되어 유지, 보수 비용을 최소화할 수 있게 된다.The reagent control valve 143 may be configured as a pinch valve. The pinch valve is a device that controls the opening and closing of the valve while pressing the elastic body with two bars up and down, and the conveyed fluid comes into contact with only the inside of the elastic body, and no driving parts come into contact with the valve and reagents. This contact eliminates the risk of corrosion of the valve, and improves durability, thereby minimizing maintenance and repair costs.
본 발명의 일실시예에 따른 잔류 염소농도 측정장치(100)에 구비된 시약 저장부(130)는 시약이 내측으로 주입되면 초기위치에서 일정 변위만큼 팽창되고 시약 주입이 완료되면 복원력에 의해 가압력을 발생시키게 되는데, 전술한 후크의 법칙에 의해 동작하기 때문에 시약이 측정부(110)로 공급됨에 따라 변위가 축소되면서 가압력도 선형적으로 감소된다. Reagent storage unit 130 provided in the residual chlorine concentration measuring apparatus 100 according to an embodiment of the present invention is expanded by a predetermined displacement at the initial position when the reagent is injected into the inside and the pressing force by the restoring force when the reagent injection is completed Since the operation is performed by the above-described hook law, as the reagent is supplied to the measuring unit 110, the displacement is reduced and the pressing force is linearly reduced.
본 발명의 잔류 염소농도 측정장치(100)는 정량의 시약을 공급하기 위해서 이와 같은 가압력의 선형적 변화를 고려하여 시약 조절밸브(143)의 개방시간을 조절하여야 한다. 예를 들면, 시약 저장부(130)가 초기 팽창위치에서 수축되며 가압력이 초기에 비해 1/2이 되는 지점에서는 시약 조절밸브(143)의 개방시간을 2배로 하여 시약 주입량이 정량으로 공급될 수 있도록 구성할 수 있다.Residual chlorine concentration measuring apparatus 100 of the present invention should adjust the opening time of the reagent control valve 143 in consideration of such a linear change in the pressing force in order to supply a quantitative reagent. For example, at the point where the reagent reservoir 130 is contracted at the initial expansion position and the pressing force is 1/2 of the initial pressure, the reagent injection amount can be supplied quantitatively by doubling the opening time of the reagent control valve 143. Can be configured to
제어부(150)는, 발광부(111)에서 생성된 빛이 샘플수를 투과한 후, 수광부(113)에서 수신되는 신호를 근거로 상기 샘플수의 잔류 염소 농도를 측정하게 된다.The controller 150 measures the residual chlorine concentration of the sample water based on the signal received by the light receiver 113 after the light generated by the light emitter 111 passes through the sample water.
여기서, 제어부(150)는, 유입밸브(123)가 개방후 측정부(110)에 샘플수가 차지 않으면 샘플수가 유입되지 않는 것으로 파악하여 알람을 발생시킬 수 있으며, 배출밸브(125)가 개방후 측정부(110)의 샘플수가 배출되지 않으면 알람을 발생시킬 수 있다. 제어부(150)은 측정부(110)가 빈 상태에서 발광부(111)를 켜고 수광부(113)에서 측정된 광량을 저장하고, 이를 기준으로 충수(充水)여부를 판단하게 된다. 즉, 광량이 일정이상 약해지면 샘플수가 채워진 것으로 판단하게 된다. 또한, 샘플수가 비워진 상태에서도 일정 이상 광량이 약해져 있으면 측정부(110)가 오염된 것으로 판단하게 된다.Here, the controller 150 may determine that the sample water does not flow if the inflow valve 123 does not occupy the measuring unit 110 after opening, and may generate an alarm, and the discharge valve 125 may measure after opening. If the sample water of the unit 110 is not discharged, an alarm may be generated. The controller 150 turns on the light emitter 111 when the measuring unit 110 is empty and stores the amount of light measured by the light receiving unit 113, and determines whether the water is supplemented based on this. That is, when the amount of light becomes weaker than a certain amount, it is determined that the sample number is filled. In addition, even when the sample number is empty, if the amount of light is weaker than a certain amount, the measurement unit 110 is determined to be contaminated.
또한, 제어부(150)는, 측정부(110)에 주입된 시약이 잘 섞이도록 유입밸브(121)의 개방/폐쇄 동작을 반복시킬 수도 있다. In addition, the controller 150 may repeat the opening / closing operation of the inlet valve 121 so that the reagent injected into the measuring unit 110 is mixed well.
본 발명의 도 1에 도시되지 않았지만, 측정부(110)는 중공의 원통형으로 형성되고, 샘플수 유입부의 방향이 내측벽면에 접하는 방향으로 형성하여 유입부를 따라 분사된 샘플수가 내측벽면을 따라 회전하도록 구성할 수도 있다. Although not shown in FIG. 1 of the present invention, the measuring unit 110 is formed in a hollow cylindrical shape, the direction of the sample water inlet is formed in a direction in contact with the inner wall surface so that the number of samples injected along the inlet to rotate along the inner wall surface It can also be configured.
한편, 본 실시예에서는, 측정부(110) 내의 샘플수가 넘칠 때 배출시키는 오버플로우 기능을 수행하도록 측정부(110)와 연결되는 오버플로우관(160)을 더 포함할 수도 있다.On the other hand, in the present embodiment, it may further include an overflow tube 160 connected to the measuring unit 110 to perform an overflow function to discharge when the number of samples in the measuring unit 110 overflows.
도 2는 본 발명의 일실시예에 따른 잔류 염소농도 측정장치에 구비된 수광부의 상대 반응도(Relative Responsivity)를 도시한 그래프이다.Figure 2 is a graph showing the relative response (Relative Responsivity) of the light receiving unit provided in the residual chlorine concentration measuring apparatus according to an embodiment of the present invention.
도 2를 참조하면, Red, Green, Blue 영역의 상대 반응도는 파장에 따라 달라지게 되는데, 예를 들면 Red 영역은 약 750nm 파장에서 상대 반응도가 올라가고, Green 영역은 약 560nm 파장에서 상대 반응도가 올라감을 알 수 있다. Referring to FIG. 2, the relative reactivity of the red, green, and blue regions varies depending on the wavelength. For example, the red region increases relative responsiveness at about 750 nm and the green region increases at about 560 nm. Able to know.
본 발명의 측정부(110)는, 도 2의 그래프를 이용하여 샘플수의 충수(充水)여부는 RGB 센서의 RED 영역을 사용하여 측정하고, 샘플수의 잔류염소 농도는 RGB 센서의 GREEN 영역을 사용하여 측정할 수 있다.The measurement unit 110 of the present invention, using the graph of Figure 2 is measured whether the sample water is filled using the RED area of the RGB sensor, the residual chlorine concentration of the sample water is the GREEN area of the RGB sensor Can be measured using.
즉, 측정부(110)가 빈 상태에서 발광부(111)를 켜고 수광부(113)로 RED(약 750nm 파장)영역으로 측정한 광량을 저장하여 충수여부의 기준값으로 설정하고, 측정부(110)에 물이 채워진 상태에서는 시약을 샘플수에 투입하고 발광부(111)를 켠 다음, 수광부(113)의 GREEN 영역 (560nm 파장)을 이용하여 광량을 측정하게 된다.That is, when the measuring unit 110 is empty, the light emitting unit 111 is turned on, and the light receiving unit 113 stores the light quantity measured in the RED (wavelength of about 750 nm) region and sets it as a reference value of the number of fillings, and the measuring unit 110. In the state filled with water, the reagent is added to the sample water, the light emitting unit 111 is turned on, and then the amount of light is measured using the GREEN region (560 nm wavelength) of the light receiving unit 113.
도 3은 본 발명의 일실시예에 따른 잔류 염소농도 측정방법을 도시한 순서도이다. 그리고, 본 발명의 잔류 염소농도 측정방법은 도 1에 개시된 잔류 염소농도 측정장치를 사용한다.3 is a flowchart illustrating a method of measuring residual chlorine concentration according to an embodiment of the present invention. In addition, the residual chlorine concentration measuring method of the present invention uses the residual chlorine concentration measuring apparatus disclosed in FIG.
도 1 및 도 3을 참조하면, 본 발명의 일실시예에 따른 잔류 염소농도 측정방법은, 먼저, 유입밸브(123) 및 배출밸브(127)를 개방하여 샘플수를 바이패스한다(S110). 바이패스되는 샘플수는 샘플수 유입관(121) 및 샘플수 배출관(125), 측정부(110)의 샘플수 유입공간을 세척하게 된다.1 and 3, the residual chlorine concentration measuring method according to an embodiment of the present invention, first, by opening the inlet valve 123 and the discharge valve 127 to bypass the sample water (S110). The sample water that is bypassed washes the sample water inflow space of the sample water inflow pipe 121, the sample water discharge pipe 125, and the measurement unit 110.
다음으로, 배출밸브(127)를 폐쇄하여 측정부(110)에 샘플수를 채운다(S120). 샘플수의 충수 여부는 발광부(111)를 온(ON) 한 다음, 수광부(113)에서 광량을 측정하여 판단한다. 소정 용량의 샘플수가 채워지면 유입밸브(123)을 폐쇄한다.Next, the discharge valve 127 is closed to fill the sample water in the measurement unit 110 (S120). Whether the number of samples is filled or not is determined by turning on the light emitting unit 111 and then measuring the amount of light in the light receiving unit 113. When the sample water of the predetermined volume is filled, the inlet valve 123 is closed.
그리고, 채워진 샘플수에 시약을 주입하지 않은 채 샘플수의 흡광도 측정해서 기준점을 설정한다(S130). 이 기준점이 기준 흡광도가 된다.The absorbance of the sample water is measured without setting a reagent into the filled sample water, and a reference point is set (S130). This reference point becomes the reference absorbance.
이후, 배출밸브(127)를 개방하여 기준 흡광도 측정이 완료된 샘플수를 측정부(110)에서 배출하고, 배출이 완료된 후 배출밸브(127)을 폐쇄하여 새로운 샘플수가 측정부(110)로 주입되도록 한다(S140). Thereafter, the discharge valve 127 is opened to discharge the number of samples for which reference absorbance measurement is completed from the measurement unit 110, and after discharge is completed, the discharge valve 127 is closed to inject new sample water into the measurement unit 110. (S140).
이때, 샘플수의 배출 완료 확인을 위해서는 측정부(110)에서 흡광도를 측정하는데, 배출이 확인된 다음에도 수초간 더 배출밸브(127)를 개방된 상태로 놔둔 후 폐쇄하도록 조작함으로써 샘플수가 보다 확실하게 배출되도록 한다. 이러한 조작을 통해 측정 오차를 줄일 수 있게 된다.At this time, in order to confirm the completion of the discharge of the sample water, the absorbance is measured by the measuring unit 110. Even after the discharge is confirmed, the number of samples is more reliably operated by leaving the discharge valve 127 open for a few seconds and then closing it. To be discharged. This operation reduces the measurement error.
또한, 상기 샘플수 교체 단계(S140)에서 새로운 샘플수가 측정부(110)로 주입될 때에는, 유입밸브(123)을 개방하여 샘플수를 채우는데, 샘플수의 충수 여부는 측정부(110)의 흡광도로 확인한다. 그리고, 샘플수를 채울 때에는 유입밸브(123)의 개방/폐쇄를 반복 조작한다. 예를 들면, 약 0.5초정도 개방한 후 약 0.5초정도 폐쇄하여 샘플수가 와류를 형성하면서 측정부(110)로 유입되도록 한다. 이러한 조작을 통해 유입되는 시약이 잘 섞이게 된다.In addition, when the new sample water is injected into the measuring unit 110 in the sample water replacement step (S140), the inlet valve 123 is opened to fill the sample water, and whether or not the sample water is filled is determined by the measurement unit 110. Check with absorbance. When the sample water is filled, the opening / closing of the inlet valve 123 is repeatedly operated. For example, about 0.5 seconds of opening and closing about 0.5 seconds to allow the sample water to flow into the measuring unit 110 while forming a vortex. Through this manipulation, the incoming reagents are mixed well.
다음으로, 교체된 샘플수에 시약을 주입하고(S150), 측정부(110)에서 발색 흡광도를 측정한다(S160).Next, the reagent is injected into the replaced sample water (S150), and the color absorbance is measured by the measuring unit 110 (S160).
여기서, 시약을 주입하는 단계(S150)에서는, 유입밸브(123)의 개방/폐쇄 조작을 초기 2~3회 한 후에 미량의 시약을 주입하기 위해 시약 조절밸브(143)를 짧은시간 개방한 후에 폐쇄함으로써, 전술한 바와 같이 와류가 형성되면서 측정부(110) 내에서 시약이 잘 섞이게 된다. Here, in the step of injecting the reagent (S150), after the opening / closing operation of the inlet valve 123 is performed two to three times, the reagent control valve 143 is opened for a short time to inject a small amount of reagent, and then closed. As a result, the vortex is formed as described above, and the reagents are well mixed in the measurement unit 110.
또한, 본 발명의 실시예에서 시약의 주입은, 전술한 바와 같이 시약 저장부(130)가 수축 가능한 재질로 구성되어 시약이 수축 압력에 의해 배출되도록 구성된다.In addition, in the embodiment of the present invention the injection of the reagent, as described above the reagent reservoir 130 is It is made of a shrinkable material so that the reagent is discharged by the shrinkage pressure.
이후, 제어부(150)에서는, 측정된 기준 흡광도와 발색 흡광도를 근거로 잔류 염소 농도를 환산한다(S170). 즉, 기준 흡광도를 측정할 때에는 시약을 넣지 않은 상태의 샘플수 광량을 측정하고, 발색 흡광도를 측정할 때에는 시약을 주입한 샘플수의 광량을 측정하여 서로의 광량 차이를 구한 후, 적절한 변환 공식으로 잔류염소 농도로 환산한다. 변환 공식의 예로서, 광량 차이값에 a 값을 곱하면 잔류염소 농도가 되는데, 상기 a값은 발광부(111)인 LED와, 측정부(110) 투과도, 수광부(113)인 RGB 센서에 정해진다. 시약을 섞은 후에는 샘플수가 발색되기 때문에 흡광력이 생겨 수광부(113)에서 측정된 광량값은 약해지는데, 잔류 염소 농도가 높을수록 발색이 많이 되어 광량값이 작아진다. 시약을 섞은 후 발색이 전혀 되지 않으면 기준 광량과 동일한 광량이 측정되며 차이가 없기 때문에 잔류염소 농도가 0이 된다.Thereafter, the controller 150 converts the residual chlorine concentration based on the measured reference absorbance and color absorbance (S170). That is, when measuring the standard absorbance, the light quantity of the sample water without the reagent is measured, and when the color absorbance is measured, the light quantity of the sample water injected with the reagent is measured to find the difference in the light quantity between each other, Convert to residual chlorine concentration. As an example of the conversion formula, multiplying the difference in light quantity by a value gives a residual chlorine concentration. The a value is determined by the LED of the light emitting unit 111, the transmittance of the measuring unit 110, and the RGB sensor of the light receiving unit 113. All. After mixing the reagents, the number of samples develops color, so that light absorption occurs, and thus the amount of light measured by the light receiving unit 113 is weakened. As the residual chlorine concentration increases, the amount of light is increased and the amount of light decreases. If no color develops after mixing the reagent, the same amount of light as the reference light is measured and there is no difference, so the residual chlorine concentration is zero.
다음으로, 잔류 염소 농도 측정이 완료된 샘플수는 배출밸브(127)가 개방되면서 배출된다(S180). Next, the sample water of the residual chlorine concentration measurement is discharged while the discharge valve 127 is opened (S180).
이후, 새로운 샘플수의 잔류 염소 농도 측정을 위해서 샘플수를 바이패스하는 단계(S110)부터 다시 반복 동작을 수행하게 된다.Subsequently, a repeating operation is performed again from the step S110 of bypassing the sample water in order to measure the residual chlorine concentration of the new sample water.
이와 같이 본 발명의 일실시예에 따른 잔류 염소농도 측정장치(100)는 수축되는 재질로 시약 저장부(130)을 구성함으로써, 별도의 가압수단(예를 들면, 펌프)과 체크밸브 등이 구성이 필요 없게 되어 내구성이 향상되고, 유지 관리가 보다 쉬워졌을 뿐만 아니라, 시약 조절밸브(143)의 개방시간을 제어함으로써 시약의 투입량이 일정하게 유지되어 시약의 정량공급이 가능하게 되는 효과가 있다.As such, the residual chlorine concentration measuring apparatus 100 according to the exemplary embodiment of the present invention comprises a reagent storage unit 130 made of a contracted material, so that a separate pressurizing means (for example, a pump) and a check valve are configured. This eliminates the need for improved durability, easier maintenance, and control of the opening time of the reagent control valve 143, thereby maintaining a constant dose of reagents, thereby enabling quantitative supply of reagents.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. will be. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 발광부와 수광부를 구비하고, 샘플수가 유입되는 샘플수 유입관이 설치되는 측정부;A measuring unit having a light emitting unit and a light receiving unit and installed with a sample water inlet tube through which sample water is introduced;
    상기 측정부로 시약을 주입하도록 수축이 가능한 재질로 구성되고, 시약 유입관이 구비되는 시약 저장부; 및A reagent reservoir configured of a material capable of shrinking to inject reagent into the measurement unit, and having a reagent inlet pipe; And
    상기 발광부에서 생성된 빛이 상기 샘플수를 투과한 후, 상기 수광부에서 수신되는 신호를 근거로 상기 샘플수의 산화제 농도를 측정하는 제어부;를 포함하는, 잔류 염소농도 측정장치.And a control unit for measuring the oxidant concentration of the sample water based on the signal received from the light receiving unit after the light generated by the light emitting unit has passed through the sample water.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 시약 유입관에는 시약 조절밸브가 설치되는, 잔류 염소농도 측정장치.The reagent inlet pipe is provided with a reagent control valve, residual chlorine concentration measuring device.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 시약 조절밸브는 핀치 밸브(Pinch Valve)인, 잔류 염소농도 측정장치.The reagent control valve is a pinch valve (Pinch Valve), residual chlorine concentration measuring device.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 시약 저장부는 복수개가 구비되는, 잔류 염소농도 측정장치.Reagent storage unit is provided with a plurality of the reagent storage unit.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 측정부는,The measuring unit,
    상기 샘플수 유입관에 유입밸브가 설치되고,An inlet valve is installed in the sample water inlet pipe,
    측정이 완료된 샘플수가 배출되는 샘플수 배출관이 설치되고, 상기 샘플수 배출관에는 배출밸브가 설치되는, 잔류 염소농도 측정장치.Residual chlorine concentration measuring apparatus is provided with a sample water discharge pipe for discharging the sample water is completed, the discharge valve is installed in the sample water discharge pipe.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 측정부는,The measuring unit,
    빛이 통과할 수 있는 투명 재질로 형성되는, 잔류 염소농도 측정장치.Residual chlorine concentration measuring device is formed of a transparent material that can pass light.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 발광부는 백색 LED로 구성되고,The light emitting portion is composed of a white LED,
    상기 수광부는 RGB 센서로 구성되는, 잔류 염소농도 측정장치.The light receiving unit is composed of an RGB sensor, residual chlorine concentration measuring device.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 시약 유입관은 내화학성 튜브로 구성되는, 잔류 염소농도 측정장치.The reagent inlet tube is composed of a chemical resistance tube, residual chlorine concentration measuring apparatus.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 시약 저장부는, The reagent storage unit,
    불소 고무로 형성되는, 잔류 염소농도 측정장치.A residual chlorine concentration measuring device formed of fluorine rubber.
  10. 발광부와 수광부를 구비하고, 샘플수가 유입/배출되는 샘플수 유입관과 샘플수 배출관이 설치되고, 상기 샘플수 유입관 및 상기 샘플수 배출관에 유입밸브 및 배출밸브가 각각 설치되는 측정부; A measuring unit having a light emitting unit and a light receiving unit, and having a sample water inlet tube and a sample water discharge tube in which sample water is introduced / exhausted, and an inlet valve and a discharge valve are respectively installed in the sample water inlet tube and the sample water discharge tube;
    상기 측정부로 시약을 주입하도록 수축 가능한 재질로 구성되어 시약이 수축 압력에 의해 배출되고, 시약 유입관이 구비되어 상기 시약 유입관에 시약 조절밸브가 설치되는 시약 저장부; 및 A reagent reservoir configured of a shrinkable material to inject the reagent into the measuring unit, the reagent being discharged by the contraction pressure, and having a reagent inlet tube provided with a reagent control valve in the reagent inlet tube; And
    상기 유입밸브와 상기 배출밸브, 상기 시약 조절밸브의 개폐를 조절하는 제어부를 포함하는 잔류 염소농도 측정장치를 이용하되,Using a residual chlorine concentration measuring device including a control unit for controlling the opening and closing of the inlet valve, the discharge valve, the reagent control valve,
    상기 측정부에서 시약이 주입되지 않은 샘플수의 흡광도를 측정하여 기준 흡광도를 획득하는 단계;Obtaining a reference absorbance by measuring the absorbance of the sample number into which the reagent is not injected in the measurement unit;
    기준 흡광도 측정이 완료된 상기 샘플수를 배출하고, 새로운 샘플수를 주입하는 단계;Discharging the sample water having completed the reference absorbance measurement and injecting a new sample water;
    교체된 상기 샘플수에 시약을 주입하여 발색 흡광도를 획득하는 단계;Injecting a reagent into the replaced sample water to obtain color absorbance;
    상기 기준 흡광도와 상기 발색 흡광도를 근거로 잔류 염소 농도를 획득하는 단계;를 포함하는 잔류 염소농도 측정방법.And obtaining a residual chlorine concentration based on the reference absorbance and the color absorbance.
PCT/KR2017/009597 2016-10-10 2017-09-01 Apparatus and method for measuring residual chlorine concentration WO2018070665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0130495 2016-10-10
KR1020160130495A KR101859984B1 (en) 2016-10-10 2016-10-10 Apparatus and method for measuring TRO

Publications (1)

Publication Number Publication Date
WO2018070665A1 true WO2018070665A1 (en) 2018-04-19

Family

ID=61905769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009597 WO2018070665A1 (en) 2016-10-10 2017-09-01 Apparatus and method for measuring residual chlorine concentration

Country Status (2)

Country Link
KR (1) KR101859984B1 (en)
WO (1) WO2018070665A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125704B1 (en) * 2018-05-18 2020-06-23 (주) 테크로스 Apparatus and method for measuring TRO
KR102464351B1 (en) * 2020-12-14 2022-11-21 현대종합금속 주식회사 System for measuring residual chlorine concentration of ballast water
KR102249269B1 (en) * 2021-02-02 2021-05-10 주식회사 제이텍 Real-time by-products measuring device using optical concentration analyser of Sodium Hypochlorite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194709A (en) * 2001-10-19 2003-07-09 Nippon Filcon Co Ltd Optical analyzing cell and optical analyzing system using the same and its method
JP2007085881A (en) * 2005-09-22 2007-04-05 Miura Co Ltd Method and instrument for measuring concentration of component
JP2007093398A (en) * 2005-09-29 2007-04-12 Miura Co Ltd Measuring method of concentration of residual chlorine and measuring instrument therefor
KR20140017037A (en) * 2012-07-20 2014-02-11 (주) 테크로스 Measuring method for total residual oxidant of ballast water
KR101649968B1 (en) * 2014-02-26 2016-08-22 남병현 a residual chlorine detector and the multi-funtional residual chlorine detecting system using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802940B2 (en) 2006-08-29 2011-10-26 三浦工業株式会社 Method of measuring the concentration of the test component in the test water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194709A (en) * 2001-10-19 2003-07-09 Nippon Filcon Co Ltd Optical analyzing cell and optical analyzing system using the same and its method
JP2007085881A (en) * 2005-09-22 2007-04-05 Miura Co Ltd Method and instrument for measuring concentration of component
JP2007093398A (en) * 2005-09-29 2007-04-12 Miura Co Ltd Measuring method of concentration of residual chlorine and measuring instrument therefor
KR20140017037A (en) * 2012-07-20 2014-02-11 (주) 테크로스 Measuring method for total residual oxidant of ballast water
KR101649968B1 (en) * 2014-02-26 2016-08-22 남병현 a residual chlorine detector and the multi-funtional residual chlorine detecting system using thereof

Also Published As

Publication number Publication date
KR20180039779A (en) 2018-04-19
KR101859984B1 (en) 2018-05-21

Similar Documents

Publication Publication Date Title
WO2018070665A1 (en) Apparatus and method for measuring residual chlorine concentration
KR101784704B1 (en) Apparatus and method for measuring TRO
US20050276724A1 (en) Apparatus for mixing and/or testing small volumes of fluids
WO2013077496A1 (en) Method and device for treating ship ballast water
KR20210006805A (en) Water quality measurement system of ship ballast water
KR20110140095A (en) Measuring device, monitoring method and monitoring system of total residual oxidants(tro) concentration within ballast water
KR101775927B1 (en) Apparatus for measuring TRO
KR20150116313A (en) Method for measuring TRO of ballast water
KR102143278B1 (en) Explosion proof TRO measuring apparatus
KR102125704B1 (en) Apparatus and method for measuring TRO
WO2021045329A1 (en) Reagent storage unit and residual chlorine concentration measurement device comprising same
WO2020179997A1 (en) Explosion-proof apparatus for measuring concentration of residual chlorine
WO2022092720A1 (en) Explosion-proof apparatus for measuring concentration of residual chlorine
KR101302734B1 (en) Tro sensor with quantity of flow and fluid pressure buffer chamber
KR101997435B1 (en) A system for controlling the movement of ballast water between tanks
KR101804835B1 (en) Apparatus for measuring TRO
KR20130053551A (en) Apparatus for treating water, method for treating water and a ship having the same
WO2018084415A1 (en) Reagent-supplying device for residual chlorine-measuring device
WO2012077958A2 (en) Electrolysis unit and apparatus and method for treating ship ballast water using the electrolysis unit
KR101205960B1 (en) Ship having ballast tank using freshwater and sea water
WO2018190574A1 (en) Ballast water treatment system
KR102356414B1 (en) Ballast water measuring device and ballast water measuring method
WO2018084416A1 (en) Residual chlorine-measuring device having washing function
WO2018021690A1 (en) Ballast water treatment system dedicated to small and old vessels
WO2018194188A1 (en) Hydrogen gas discharging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860708

Country of ref document: EP

Kind code of ref document: A1