WO2018070592A1 - 데이터 집중 장치, 전력량계 및 이의 동작 방법 - Google Patents

데이터 집중 장치, 전력량계 및 이의 동작 방법 Download PDF

Info

Publication number
WO2018070592A1
WO2018070592A1 PCT/KR2016/013072 KR2016013072W WO2018070592A1 WO 2018070592 A1 WO2018070592 A1 WO 2018070592A1 KR 2016013072 W KR2016013072 W KR 2016013072W WO 2018070592 A1 WO2018070592 A1 WO 2018070592A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
layer
hdlc
internet protocol
adaptation
Prior art date
Application number
PCT/KR2016/013072
Other languages
English (en)
French (fr)
Inventor
김태경
김영현
백종목
조병갑
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to US16/335,192 priority Critical patent/US20190346495A1/en
Publication of WO2018070592A1 publication Critical patent/WO2018070592A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • H04W80/045Network layer protocols, e.g. mobile IP [Internet Protocol] involving different protocol versions, e.g. MIPv4 and MIPv6

Definitions

  • the present invention relates to a data concentrator, a power meter, and a method of operating the same, and more particularly, in an AMI network based on high-speed power line communication technology, which is an ISO and IEC international standard.
  • the present invention relates to a data concentrator capable of transmitting and receiving power metering data of an internet protocol communication method, a power meter, and a method of operating the same.
  • the existing high-speed PLC-based Advanced Metering Infrastructure (AMI) communication network is a method of configuring a neighboring network by connecting a high-level data link control (HDLC) serial communication power meter to a high-speed power line communication modem (see FIG. 1). That is, a method of delivering encapsulated metering data by HDLC method on a high speed power line communication PHY (Physical) layer and a MAC (Medium Access Control) layer.
  • HDLC high-level data link control
  • PHY Physical
  • MAC Medium Access Control
  • High-Speed Power Line Communication is a 24Mbps power line communication technology standardized by ISO / IEC 12139-1 (2009), and it is used to establish the PHY layer and MAC layer of the neighboring networks for low voltage remote meter reading in Korea. Used to construct
  • IEC 62056 DLMS Device Language Message Specification
  • IP Internet Protocol
  • Smart Metering real-time meter reading
  • High-speed power line communication based AMI network can be equipped with only HDLC (High-level Data Link Control) communication method as the upper layer protocol of high speed power line communication medium access control (MAC) layer. This is impossible.
  • HDLC High-level Data Link Control
  • MAC medium access control
  • Korean Patent No. 1380003 name: power line communication modem and power line communication system for charging an electric vehicle
  • An object of the present invention is to provide a data concentrator, a power meter, and an operation method thereof capable of transmitting and receiving power meter data of an Internet protocol communication method in an AMI communication network based on ISO and IEC international standards. .
  • the high-level data link control (HDLC) -based electricity meter of the present invention and the electricity meter data collected from the electricity meter including the Internet protocol-based electricity meter, and transfers the collected power metering data to the AMI server
  • the data concentrator collects power metering data according to a communication model preset for high-speed power line communication, and the communication model is configured between the high-speed power line communication MAC layer, the Internet protocol layer, and the high-speed power line communication MAC layer and the Internet protocol layer.
  • an adaptation layer supporting communication with the HDLC-based electricity meter and the internet protocol-based electricity meter is configured between the high-speed power line communication MAC layer, the Internet protocol layer, and the high-speed power line communication MAC layer and the Internet protocol layer.
  • the adaptation layer may also include an IP Service Specific Adaptation Sublayer that associates power metering data delivered by protocol data of the Internet Protocol layer, including IPv4 and IPv6, with the high speed powerline communication MAC layer. have.
  • IP Service Specific Adaptation Sublayer that associates power metering data delivered by protocol data of the Internet Protocol layer, including IPv4 and IPv6, with the high speed powerline communication MAC layer.
  • adaptation layer may further include an HDLC service support adaptation sublayer that connects protocol data of the data link layer based on IEC 62056-46 HDLC with a high-speed power line communication MAC layer.
  • adaptation layer may further include a common partial adaptation sublayer including adaptation layer functions commonly supported in the Internet protocol layer and the data link layer based on the IEC 62056-46 HDLC.
  • the common part adaptation sublayer may be lower than the IP service support adaptation sublayer and the HDLC service support adaptation sublayer.
  • the CPAS frame used in the common partial adaptation sublayer may include a header part and an SSAS message, and the header part of the CPAS frame may include a source address information field, a destination address information field, and an Ethernet type information field.
  • Ethernet type information field may include information on at least one of the IPv4 protocol, the IPv6 protocol, and the HDLC datalink protocol.
  • the SSAS message may be classified into an SSAS control packet and an SSAS data packet, and the SSAS control packet may perform an address resolution function performed through an address resolution protocol (ARP).
  • ARP address resolution protocol
  • the SSAS control packet may include a control type field, a sender IP address field, a sender CPAS address field, a destination IP address field and a destination CPAS address field.
  • the SSAS data packet may include a packet type field, a compression type field, an octet length field of data, and a data field.
  • the method of operating the data concentrator of the present invention for solving the above problems comprises the steps of: collecting power metering data from a meter, including an HDLC-based meter and an internet protocol-based meter; And transferring the collected power metering data to the AMI server, wherein collecting the power metering data is performed according to a communication model preset for high-speed powerline communication, and the communication model is a high-speed powerline communication MAC layer and an internet protocol.
  • Layer and high-speed power line communication is configured between the MAC layer and the Internet protocol layer, characterized in that it comprises an adaptation layer for supporting communication between the HDLC-based electricity meter and the Internet protocol-based electricity meter.
  • the adaptation layer may also include an IP service support adaptation sublayer that connects the power meter data delivered by the protocol data of the Internet protocol layer including IPv4 and IPv6 with the high speed powerline communication MAC layer.
  • adaptation layer may further include an HDLC service support adaptation sublayer that connects protocol data of the data link layer based on IEC 62056-46 HDLC with a high-speed power line communication MAC layer.
  • adaptation layer may further include a common partial adaptation sublayer including adaptation layer functions commonly supported in the internet protocol layer and the data link layer based on the IEC 62056-46 HDLC.
  • the common partial adaptation sublayer may be lower than the IP service support adaptation sublayer and the HDLC service support adaptation sublayer.
  • the CPAS frame used in the common partial adaptation sublayer may include a header part and an SSAS message, and the header part of the CPAS frame may include source address information, destination address information, and Ethernet type information.
  • Ethernet type information field may include information on at least one of the IPv4 protocol, the IPv6 protocol, and the HDLC datalink protocol.
  • the SSAS message is divided into an SSAS control packet and an SSAS data packet, and the SSAS control packet may perform an address resolution function performed through ARP.
  • the SSAS control packet may include a control type field, a sender IP address field, a sender CPAS address field, a destination IP address field and a destination CPAS address field.
  • the SSAS data packet may include a packet type field, a compression type field, an octet length field of data, and a data field.
  • the electricity meter for generating the electricity metering data for the customer of the present invention for solving the above problems, and delivering the electricity metering data to the data concentrator through a built-in or externally connected communication unit is HDLC-based electricity meter, Internet protocol A power meter of one of the base-meters, and transmits power metering data to the data concentrator according to a preset communication model for high-speed power line communication, and the communication model includes a high-speed power line communication MAC layer, an Internet protocol layer, and the high-speed power line communication MAC layer. It is configured between the Internet protocol layer, characterized in that it comprises an adaptation layer for supporting communication with the data concentrator.
  • the data concentrator, the electricity meter, and an operation method thereof according to an embodiment of the present invention have an advantage of improving an AMI communication speed. That is, according to the data concentrator, the electricity meter and the operating method thereof according to an embodiment of the present invention, by applying IP (Internet Protocol) technology to a high-speed power line communication network, the data transmission rate due to the inherent property of the existing HDLC serial communication method Limitations can be overcome. In other words, it is possible to realize real-time metering, which is the ultimate goal of the AMI system, by dramatically improving and improving the metering data transmission speed in a high speed power line communication network.
  • IP Internet Protocol
  • the electricity meter and the operation method thereof according to an embodiment of the present invention there is an advantage that the compatibility and economical efficiency can be improved by applying an IP type electronic electricity meter. That is, according to the data concentrator, the electricity meter and the operation method thereof according to an embodiment of the present invention, the IP-type electronic electricity meter can be used in a high-speed power line communication-based AMI communication network, and the electronic electricity meter and the meter reading server (Head End System) By applying the Internet protocol to the transmission of inter-quantity data, compatibility with external Internet-based information and communication systems can be improved. Accordingly, adopting an IP-based electricity meter and improving compatibility with external systems may be a technical foundation for economic construction of the AMI infrastructure.
  • the data concentrator, the electricity meter, and an operation method thereof may provide a coexistence technique with an existing HDLC communication apparatus. That is, the present invention enables the HDLC and IP metering data to coexist on one high-speed powerline communication network MAC layer without changing or improving the existing power metering device.
  • FIG. 1 is a conceptual diagram illustrating an AMI communication network.
  • FIG. 2 is a block diagram of an AMI system including a data concentrator according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a communication model preset for high-speed power line communication according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a structure of a CPAS frame according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of operating a data concentrator according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of an AMI system 1000 including a data concentrator 100 according to an embodiment of the present invention.
  • the data concentrator 100 may transmit and receive power metering data of an internet protocol communication method in an AMI network based on a high-speed power line communication technology, which is an ISO and IEC international standard. It is characterized by being.
  • the data concentrator 100 according to an embodiment of the present invention not only has a first electronic electricity meter 40 representing an HDLC-based electricity meter but also power metering data from a second electronic electricity meter 50 representing an internet protocol-based electricity meter 50. It can collect and deliver it to the AMI server 10.
  • the data concentrator 100 has designed the adaptation layer so that the Internet protocol can be mounted on the high-speed power line communication medium access control (MAC) layer. It is characterized by the achievement.
  • the adaptation layer proposed by the present invention is composed of three adaptation sublayers. Each sublayer protocol in the adaptation layer provides the following functions.
  • FIG. 3 is a conceptual diagram of a communication model preset for high-speed power line communication according to an embodiment of the present invention. Now, a description is given of a communication model according to an embodiment of the present invention with reference to FIG.
  • the data concentrator 100 may collect power meter data read from the IP-type electricity meter as well as the HDLC electricity meter.
  • the data concentrator 100 is characterized by performing communication using a communication model having the structure shown in FIG. 3. That is, the communication model is provided between the Internet protocol layer 130 and the high-speed power line communication medium access control (MAC) layer 140 of the TCP / IP protocol to deliver an IP packet including power metering data via a high speed power line communication network. It is characterized by adding an adaptation layer.
  • MAC medium access control
  • a communication model is constructed between the high speed power line communication MAC layer 120, the internet protocol layer 130, and the high speed power line communication MAC layer 120 and the internet protocol layer 130, and the HDLC-based power meter and the Internet.
  • an adaptation layer 110 that supports communication with the protocol-based electricity meter.
  • the adaptation layer 110 may include an HDLC service support adaptation sublayer 111, an IP service support adaptation sublayer 112, and a common partial adaptation sublayer 113.
  • the HDLC service support adaptation sublayer (111, HDLC SSAS) connects protocol data of the data link layer based on the IEC 62056-46 HDLC with the high-speed power line communication MAC layer.
  • IP Service Specific Adaptation Sublayer (IP SSAS) 112 functions to connect the power metering data delivered by protocol data of the Internet protocol layer including IPv4 and IPv6 with the high-speed power line communication MAC layer. .
  • IP SSAS IP Service Specific Adaptation Sublayer
  • the common part adaptation sublayer 113 includes the adaptation layer functions commonly supported in the Internet protocol layer and the data link layer based on the IEC 62056-46 HDLC.
  • the common partial adaptation sublayer 113 is located at a lower layer than the HDLC service support adaptation sublayer 111 and the IP service support adaptation sublayer 112 as illustrated in FIG. 3 to implement the above functions. can do.
  • the communication model according to an embodiment of the present invention may explicitly designate a higher protocol by setting an Ethernet type information field value among CPAS frames supported by the common partial adaptation sublayer 113.
  • the Ethernet type field exists in the original Ethernet, but in the case of high-speed PLC technology, the compatibility with Ethernet has been considered since the initial development, and it is designed to utilize the technical advantages inherent in Ethernet. Accordingly, high-speed PLC technology is characterized by making the form of payload mounted on the PHY / MAC similar to Ethernet.
  • the Ethernet type field actually functions to determine the type of higher layer payload data transmitted by the Ethernet MAC. Accordingly, the present invention is characterized by identifying the type of SSAS message by redefining the Ethernet type field.
  • the CPAS frame may include a header part and an SSAS message.
  • the header of the CPAS frame may be largely divided into three fields, and each field may include destination address information, source address information, and Ethernet type information for designating a high-speed power line communication destination address.
  • the SSAS message is a protocol data unit of the HDLC service support adaptation sublayer 111 or the IP service support adaptation sublayer 112, and is composed of each SSAS layer header and payload data.
  • the function of the Ethernet type information field including the Ethernet type information included in the header of the CPAS frame is as follows.
  • the high-speed power line communication-based AMI network is implemented by mounting the HDLC data link protocol or IP protocol including power metering data on top of the high-speed power line communication MAC layer 120.
  • a protocol of an upper layer protocol may be read by reading a value of an Ethernet type information field so that a power metering device using HDLC communication method and a power metering device using IP communication method may be used in a neighbor network. It provides a way to explicitly distinguish Accordingly, the value of the Ethernet type information field included in the header of the CPAS frame should be specified in advance by being explicitly classified for the IPv4 protocol, the IPv6 protocol, the HDLC data link protocol, and the like.
  • the SSAS message may be divided into an SSAS control packet and an SSAS data packet.
  • the SSAS message may include an SSAS control packet.
  • the above-described CPAS address resolution function may be performed using a control packet included in the IP SSAS message. That is, the IP SSAS data packet provides IP data transmission and IP protocol header compression including power metering data.
  • the IP SSAS control packet can provide the same function as address resolution performed by the Address Resolution Protocol (ARP) in the Internet protocol stack in a high-speed power line communication medium access control (MAC) based AMI communication environment.
  • ARP Address Resolution Protocol
  • MAC medium access control
  • control packet included in the IP SSAS message may have a structure as shown in Table 1 below, and the principle of CPAS address resolution is shown in Table 2 below.
  • the value of the CTR_Type field is set to 0x00.
  • the value of the CTR_Type field is set to 0x01. If the sender node knows the destination IP address but does not know the CPAS address, it creates an AR_Request_CMD request packet that contains the sender and destination IP address and IP address length information and sends the AR_Request_CMD packet. At this time, the Target_CPAS_ADDR field of the request packet is filled with a series of OxFF (All bit-1s).
  • the destination node receiving the AR_Request_CMD packet puts its CPAS address into Target_CPAS_ADDR, copies the remaining fields from the corresponding field of the AR_Request_CMD packet, and generates and sends an AR_Response_CMD packet to the sender.
  • the AR_Request_CMD packet is transmitted in broadcast mode, and the AR_Response_CMD packet should be transmitted in unicast mode.
  • the communication model according to an embodiment of the present invention is characterized in that it can accommodate various IP header compression schemes.
  • the IP SSAS packet may be divided into an IP SSAS data packet and an IP SSAS control packet.
  • the IP SSAS data packet may be divided into Table 3 and Table 3 to provide IP data transmission and IP protocol header compression functions including power metering data. It may be defined in the same format, the description of each format is shown in Table 4.
  • Packet_Type represents a packet type field
  • Comp_Type represents a compression type field
  • IP_Data_Len represents an octet length of data
  • IP_Data represents a data field.
  • Technical Committee 13 the Power Metering Technical Committee of the International Electrotechnical Commission (IEC), the international standardization organization for electrical and electronics, recommends the implementation of IP header compression for efficient AMI network implementation.
  • IEC International Electrotechnical Commission
  • the present invention it is possible to apply three types of IP header compression functions by setting the value of the Comp_Type field of the IP SSAS data packet header part. Also, compressed or uncompressed IP protocol packet data coexist in the same AMI network. To do it. That is, by reading and reading the Comp_Type field of the received IP SSAS data packet, the header uncompressed IPv4 packet, the header uncompressed IPv6 packet, the header compressed IPv4 packet by the IETF RFC 1144 method, and the header compressed IP packet by the RFC 2508 method. It is possible to identify five types of IP packet header types, such as IP packets compressed with a header by the IETF RFC 3095 method. In accordance with each identified compression scheme or specification, the received IP header may be decompressed and restored to the data before compression.
  • the version information of the IP packet can be explicitly checked.
  • FIG. 5 is a flowchart illustrating a method of operating a data concentrator according to an embodiment of the present invention.
  • the method of operating a data concentrator according to an embodiment of the present invention may transmit and receive power metering data of an internet protocol communication method in an AMI network based on high-speed power line communication technology, which is an ISO and IEC international standard. It is characterized by being.
  • Step S110 is a step of collecting power metering data from the first electronic electricity meter indicating the HDLC-based electricity meter and the second electronic electricity meter indicating the Internet protocol-based electricity meter.
  • the step S120 is a step of delivering the power meter data collected through the step S110 to the AMI server.
  • the method of operating the data concentrator according to an embodiment of the present invention has been described by only collecting data from the electricity meter and transferring the data to the AMI server, but this is only an example and a control signal generated by the AMI server. It is also possible to deliver to the meter.
  • the communication model has been described as applied to the data concentrator.
  • a communication unit ie, a modem

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

본 발명은 데이터 집중 장치, 전력량계 및 이의 동작 방법에 관한 것이다. 이를 위한 본 발명의 HDLC(High-level Data Link Control) 기반 전력량계와, 인터넷 프로토콜 기반 전력량계를 포함하는 전력량계로부터 전력 계량 데이터를 수집하고, 수집한 전력 계량 데이터를 AMI 서버로 전달하는 데이터 집중 장치는 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 전력 계량 데이터를 수집하며, 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, HDLC 기반 전력량계와 상기 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 한다.

Description

데이터 집중 장치, 전력량계 및 이의 동작 방법
본 발명은 데이터 집중 장치, 전력량계 및 이의 동작 방법(DATA CONCENTRATION UNIT, ELECTRONIC POWER METER AND METHOD FOR OPERATING THE SAME)에 관한 것이고, 보다 상세하게 ISO 및 IEC 국제표준 규격인 고속 전력선통신 기술 기반의 AMI 통신망에서 인터넷 프로토콜 통신 방식의 전력계량 데이터를 전송 및 수신할 수 있는 데이터 집중 장치, 전력량계 및 이의 동작 방법에 관한 것이다.
기존에 사용하던 고속 PLC 기반 AMI(Advanced Metering Infrastructure) 통신망은 고속 전력선통신 모뎀에 HDLC(High-level Data Link Control) 직렬통신 방식 전력량계를 연결하여 이웃망을 구성하는 방식이다(도 1 참조). 즉, 고속 전력선통신 PHY(Physical) 계층과 MAC(Medium Access Control) 계층 위에 HDLC 방식으로 인캡슐레이션 된 계량데이터를 실어서 전달하는 방식이다.
고속 전력선통신(High-Speed Power Line Communication)이란 ISO/IEC 12139-1(2009)에 의해 표준화된 24Mbps의 전력선 통신 기술로서, 국내 저압 원격검침용 이웃망(Neighbourhood networks)의 PHY 계층과 MAC 계층을 구성하는데 사용된다.
전자식 전력량계 및 전력계량에 관한 국제표준은 IEC 62056 DLMS (Device Language Message Specification)으로 국내 모든 저압 전자식 전력량계에 적용된다.
북미나 유럽 등 전력계량 분야 선진각국에서는 미래 AMI 통신망에 인터넷 기술을 적용하기 위해 IP(Internet Protocol) 방식 AMI 통신장치 및 전자식 전력량계의 개발을 진행 중이다. IP 방식을 전력계량 인프라(Infrastructure)에 적용할 경우 기존 인터넷에서 사용되어온 장치 및 기술을 그대로 적용할 수 있어 기기 개발이나 제작의 경제성을 제고할 수 있으며 초고속 AMI 통신 구현이 용이하여 실시간 검침 등 스마트 미터링(Smart Metering) 시스템 구축이 가능하다.
기존의 고속 전력선통신 기반 AMI 통신망은 HDLC(High-level Data Link Control) 통신 방식만을 고속 전력선통신 MAC(Medium Access Control) 계층의 상위 계층 프로토콜로 탑재할 수 있어 IP 방식 전자식 전력량계 및 인터넷 프로토콜 기술의 적용이 불가능하다. 이러한 기술적 제약은 초고속 AMI 통신망 구현, 인터넷 기술 호환성 확보 및 경제적인 전력량계 장치 제작을 어렵게 하는 주요한 요인이 된다.
또한 미래에 IP 방식의 전자식 전력량계가 보급되어 고속 전력선통신망에서 혼용될 경우 HDLC 방식과 IP 방식의 전력계량장치 각각이 공존하여 운전될 수 있는 수단이 현재까지는 개발되어 있지 않은 문제가 있다.
이에 관련하여, 한국등록특허 제1338003호(명칭: 전기자동차 충전을 위한 전력선 통신 모뎀 및 전력선 통신 시스템)가 존재한다.
본 발명은 ISO 및 IEC 국제표준 규격인 고속 전력선통신 기술 기반의 AMI 통신망에서 인터넷 프로토콜 통신 방식의 전력계량 데이터를 전송 및 수신할 수 있는 데이터 집중 장치, 전력량계 및 이의 동작 방법을 제공하는데 그 목적이 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 HDLC(High-level Data Link Control) 기반 전력량계와, 인터넷 프로토콜 기반 전력량계를 포함하는 전력량계로부터 전력 계량 데이터를 수집하고, 수집한 전력 계량 데이터를 AMI 서버로 전달하는 데이터 집중 장치는 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 전력 계량 데이터를 수집하며, 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, HDLC 기반 전력량계와 상기 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 한다.
또한, 적응 계층은 IPv4 및 IPv6를 포함하는 인터넷 프로토콜 계층의 프로토콜 데이터에 의해 전달된 전력 계량 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 IP 서비스 지원 적응 부계층(IP Service Specific Adaptation Sublayer)을 포함할 수 있다.
또한, 적응 계층은 IEC 62056-46 HDLC 기반 따른 데이터링크 계층의 프로토콜 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 HDLC 서비스 지원 적응 부계층을 더 포함할 수 있다.
또한, 적응 계층은 상기 인터넷 프로토콜 계층과 상기 IEC 62056-46 HDLC 기반 따른 데이터링크 계층에 공통적으로 지원되는 적응 계층 기능들을 포함하는 공통 부분 적응 부계층을 더 포함할 수 있다.
또한, 공통 부분 적응 부계층(Common Part Adaptation Sublayer)은 IP 서비스 지원 적응 부계층과 HDLC 서비스 지원 적응 부계층 보다 하위 계층일 수 있다.
또한, 공통 부분 적응 부계층에서 이용되는 CPAS 프레임은 헤더부와 SSAS 메시지로 구성되고, CPAS 프레임의 헤더부는 소스 주소 정보 필드, 목적지 주소 정보 필드 및 이더넷 종류 정보 필드를 포함하여 구성될 수 있다.
또한, 이더넷 종류 정보 필드는 IPv4 프로토콜, IPv6 프로토콜 및 HDLC 데이터링크 프로토콜 중 적어도 하나에 대한 정보를 포함할 수 있다.
또한, SSAS 메시지는 SSAS 제어 패킷과 SSAS 데이터 패킷으로 구분되고, 상기 SSAS 제어 패킷은 ARP(Address Resolution Protocol)를 통해 이루어지는 주소 해석 기능을 수행할 수 있다.
또한, SSAS 제어 패킷은 제어 종류 필드, 송신자 IP 주소 필드, 송신자 CPAS 주소 필드, 목적지 IP 주소 필드 및 목적지 CPAS 주소 필드를 포함할 수 있다.
또한, SSAS 데이터 패킷은 패킷 종류 필드, 압축 종류 필드, 데이터의 옥텟 길이 필드 및 데이터 필드를 포함할 수 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 데이터 집중 장치의 동작 방법은 HDLC 기반 전력량계와, 인터넷 프로토콜 기반 전력량계를 포함하는 전력량계로부터 전력 계량 데이터를 수집하는 단계; 및 수집한 전력 계량 데이터를 AMI 서버로 전달하는 단계를 포함하고, 전력 계량 데이터를 수집하는 단계는 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 이루어지고, 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, HDLC 기반 전력량계와 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 한다.
또한, 적응 계층은 IPv4 및 IPv6를 포함하는 인터넷 프로토콜 계층의 프로토콜 데이터에 의해 전달된 전력 계량 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 IP 서비스 지원 적응 부계층을 포함할 수 있다.
또한, 적응 계층은 IEC 62056-46 HDLC 기반 따른 데이터링크 계층의 프로토콜 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 HDLC 서비스 지원 적응 부계층을 더 포함할 수 있다.
또한, 적응 계층은 상기 인터넷 프로토콜 계층과 IEC 62056-46 HDLC 기반 따른 데이터링크 계층에 공통적으로 지원되는 적응 계층 기능들을 포함하는 공통 부분 적응 부계층을 더 포함할 수 있다.
또한, 공통 부분 적응 부계층은 IP 서비스 지원 적응 부계층과 HDLC 서비스 지원 적응 부계층 보다 하위 계층일 수 있다.
또한, 공통 부분 적응 부계층에서 이용되는 CPAS 프레임은 헤더부와 SSAS 메시지로 구성되고, CPAS 프레임의 헤더부는 소스 주소 정보, 목적지 주소 정보 및 이더넷 종류 정보를 포함할 수 있다.
또한, 이더넷 종류 정보 필드는 IPv4 프로토콜, IPv6 프로토콜 및 HDLC 데이터링크 프로토콜 중 적어도 하나에 대한 정보를 포함할 수 있다.
또한, SSAS 메시지는 SSAS 제어 패킷과 SSAS 데이터 패킷으로 구분되고, 상기 SSAS 제어 패킷은 ARP를 통해 이루어지는 주소 해석 기능을 수행할 수 있다.
또한, SSAS 제어 패킷은 제어 종류 필드, 송신자 IP 주소 필드, 송신자 CPAS 주소 필드, 목적지 IP 주소 필드 및 목적지 CPAS 주소 필드를 포함할 수 있다.
또한, SSAS 데이터 패킷은 패킷 종류 필드, 압축 종류 필드, 데이터의 옥텟 길이 필드 및 데이터 필드를 포함할 수 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 수용가에 대한 전력 계량 데이터를 생성하고, 내장된 또는 외부에 연결된 통신부를 통해 상기 전력 계량 데이터를 데이터 집중 장치로 전달하는 전력량계는 HDLC 기반 전력량계와, 인터넷 프로토콜 기반 전력량계 중 하나의 전력량계이고, 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 전력 계량 데이터를 데이터 집중 장치로 송신하며, 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, 데이터 집중 장치와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 한다.
먼저, 본 발명의 일 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법은 AMI 통신 속도를 개선시킬 수 있는 장점이 있다. 즉, 본 발명의 일 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법에 따르면, 고속 전력선 통신망에 IP(Internet Protocol) 기술을 적용함으로써, 기존 HDLC 직렬통신 방식 고유의 속성에 기인한 데이터 전송속도 제한을 극복할 수 있다. 즉, 고속 전력선통신망에서 계량데이터 전송 속도의 획기적 개선 및 향상으로 AMI 시스템의 궁극적 목표인 실시간 검침을 가능하게 한다.
또한, 본 발명의 일 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법에 따르면, IP 방식 전자식 전력량계 적용으로 호환성 및 경제성을 제고할 수 있는 장점이 있다. 즉, 본 발명의 일 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법에 따르면, IP 방식의 전자식 전력량계를 고속 전력선 통신 기반 AMI 통신망에서 사용할 수 있게 되고, 전자식 전력량계와 검침서버(Head End System)간 계량 데이터의 전송에 인터넷 프로토콜을 적용함으로써 외부의 인터넷 기반 정보 통신 시스템과의 호환성을 향상시킬 수 있다. 이에 따라, IP 방식의 전력량계 채택과 외부 시스템 연계 호환성 제고는 AMI 인프라의 경제적 구축의 기술적 토대가 될 수 있다.
또한, 본 발명의 일 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법은 기존 HDLC 통신방식 장치와의 상호 공존 기술을 제공할 수 있다. 즉, 본 발명은 기존 전력계량 장치의 변경이나 개선 없이도 HDLC 방식 및 IP 방식의 계량 데이터가 하나의 고속 전력선통신 이웃망 MAC 계층 상에서 공존할 수 있도록 한다.
도 1은 AMI 통신망을 설명하기 위한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 데이터 집중 장치를 포함하는 AMI 시스템에 대한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 고속 전력선 통신을 위해 미리 설정된 통신 모델에 대한 개념도이다.
도 4는 본 발명의 일 실시예에 따른 CPAS 프레임의 구조를 설명하기 위한 개념도이다.
도 5는 본 발명의 일 실시예에 따른 데이터 집중 장치의 동작 방법에 대한 흐름도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
이하, 본 발명의 실시예에 따른 데이터 집중 장치, 전력량계 및 이의 동작 방법에 대하여 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 데이터 집중 장치(100)를 포함하는 AMI 시스템(1000)에 대한 블록도이다. 상술한 바와 같이, 본 발명의 일 실시예에 따른 데이터 집중 장치(100)는 ISO 및 IEC 국제표준 규격인 고속 전력선통신 기술 기반의 AMI 통신망에서 인터넷 프로토콜 통신 방식의 전력계량 데이터를 전송 및 수신할 수 있는 것을 특징으로 한다. 다시 말해, 본 발명의 일 실시예에 따른 데이터 집중 장치(100)는 HDLC 기반 전력량계를 나타내는 제 1 전자식 전력량계(40) 뿐만 아니라, 인터넷 프로토콜 기반 전력량계를 나타내는 제 2 전자식 전력량계(50)로부터 전력 계량 데이터를 수집하고, 이를 AMI 서버(10)에 전달할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 데이터 집중 장치(100)는 고속 전력선 통신 MAC(Medium Access Control) 계층의 상위에 인터넷 프로토콜을 탑재할 수 있도록 적응계층(Adaptation layer)을 설계함으로써 상기 목적을 달성한 것을 특징으로 한다. 본 발명이 제시하는 적응 계층은 3개의 적응-부계층(Adaptation sublayer)으로 구성되며 적응계층 내의 각 부계층 프로토콜들은 아래와 같은 기능을 제공한다.
1) 고속 전력선통신 MAC과 인터넷 프로토콜의 연계
2) 동일 통신망에서 HDLC 방식 상위계층과 IP 방식 상위계층의 공존
3) 기지의 IP 주소를 통한 고속 전력선통신 스테이션 주소(CPAS Address) 획득
4) IP 헤더 압축 방법의 지정 및 헤더 압축되거나 압축되지 않은 IP 패킷의 식별.
도 3은 본 발명의 일 실시예에 따른 고속 전력선 통신을 위해 미리 설정된 통신 모델에 대한 개념도이다. 이제, 도 3을 참조로 본 발명의 일 실시예에 따른 통신 모델에 대한 설명이 이루어진다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 데이터 집중 장치(100)는 HDLC 방식 전력량계 뿐만 아니라, IP 방식 전력량계에서 검침된 전력계량 데이터를 함께 수집할 수 있는 것을 특징으로 한다. 이를 위해, 본 발명의 일 실시예에 따른 데이터 집중 장치(100)는 도 3에 도시된 구조를 갖는 통신 모델을 이용하여 통신을 수행하는 것을 특징으로 한다. 즉, 상기 통신 모델은 전력 계량 데이터를 포함하는 IP 패킷을 고송 전력선 통신망을 경유하여 전달하도록 TCP/IP 프로토콜의 인터넷 프로토콜 계층(130)과 고속 전력선 통신 MAC(Medium Access Control) 계층(140) 사이에 적응 계층을 추가한 것을 특징으로 한다.
정리하면, 통신 모델은 고속 전력선 통신 MAC 계층(120), 인터넷 프로토콜 계층(130) 및 상기 고속 전력선 통신 MAC 계층(120)과 인터넷 프로토콜 계층(130) 사이에 구성되어, 상기 HDLC 기반 전력량계와 상기 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층(110)을 포함하는 것을 특징으로 한다. 상기 목적을 달성하기 위해, 적응 계층(110)은 HDLC 서비스 지원 적응 부계층(111), IP 서비스 지원 적응 부계층(112) 및 공통 부분 적응 부계층(113)을 포함할 수 있다.
HDLC 서비스 지원 적응 부계층(111, HDLC SSAS: High-level Data Link Control Service Specific Adaptation Sublayer)은 IEC 62056-46 HDLC 기반 따른 데이터링크 계층의 프로토콜 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 기능을 한다.
IP 서비스 지원 적응 부계층(112, IP SSAS: IP Service Specific Adaptation Sublayer)은 IPv4 및 IPv6를 포함하는 인터넷 프로토콜 계층의 프로토콜 데이터에 의해 전달된 전력 계량 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 기능을 한다.
공통 부분 적응 부계층(113, Common Part Adaptation Sublayer)은 인터넷 프로토콜 계층과 상기 IEC 62056-46 HDLC 기반 따른 데이터링크 계층에 공통적으로 지원되는 적응 계층 기능들을 포함하여, 그 기능을 수행한다. 또한, 공통 부분 적응 부계층(113)은 상기 기능을 구현하기 위해, 도 3에 도시된 것처럼, HDLC 서비스 지원 적응 부계층(111)과, IP 서비스 지원 적응 부계층(112)보다 하위 계층에 위치할 수 있다.
또한, 본 발명의 일 실시예에 따른 통신 모델은 공통 부분 적응 부계층(113)을 통해 지원되는 CPAS 프레임 중 이더넷 종류 정보 필드 값 설정을 통해 상위 프로토콜을 명시적으로 지정할 수 있다. 일반적으로, 이더넷 종류 필드의 경우 원래의 이더넷에도 존재하는 항목이나, 고속 PLC 기술의 경우 애초 개발시부터 이더넷과의 호환성을 고려하였고, 이더넷 고유의 기술적 장점을 활용하도록 설계되었다. 이에 따라, 고속 PLC 기술은 PHY/MAC위에 탑재되는 페이로드의 형태를 Ethernet과 유사하게 만든 것을 특징으로 한다. 다만, 이러한 이더넷 종류 필드는 이더넷과의 호환성을 고려한 점에 기인하여, 실제로는 이더넷 MAC이 전송하는 상위계층 페이로드 데이터의 종류를 결정하는 기능을 한다. 이에 따라, 본 발명은 이더넷 종류 필드를 재정의함으로써 SSAS 메시지의 종류를 식별하는 것을 특징으로 한다.
또한, 도 4에 도시된 것처럼 CPAS 프레임은 헤더부와 SSAS 메시지로 구성될 수 있다. 또한, CPAS 프레임의 헤더부는 크게 3개의 필드로 구분될 수 있고, 각 필드에는 고속 전력선 통신 목적지 주소를 지정하기 위한 목적지 주소 정보, 소스 주소 정보, 그리고 이더넷 종류 정보를 포함할 수 있다. 또한, SSAS 메시지는 HDLC 서비스 지원 적응 부계층(111) 또는 IP 서비스 지원 적응 부계층(112)의 프로토콜 데이터 유닛으로, 각각의 SSAS 계층 헤더와 페이로드 데이터로 구성된다.
또한, CPAS 프레임의 헤더부에 포함된 이더넷 종류 정보를 포함하는 이더넷 종류 정보 필드의 기능은 다음과 같다. 고속 전력선 통신 기반 AMI 통신망은 고속 전력선 통신 MAC 계층(120)의 상위에 전력 계량 데이터를 포함하는 HDLC 데이터링크 프로토콜 또는 IP 프로토콜을 탑재함으로써 구현된다. 본 발명의 일 실시예에서는 하나의 이웃망에서 HDLC 통신방식을 사용하는 전력 계량 장치 및 IP 통신방식을 사용하는 전력계량장치를 혼용하여 사용할 수 있도록 이더넷 종류 정보 필드의 값을 판독하여 상위 계층의 프로토콜을 명시적으로 구분하는 방법을 제시한다. 이에 따라, CPAS 프레임의 헤더부에 포함된 이더넷 종류 정보 필드의 값은 IPv4 프로토콜, IPv6 프로토콜 및 HDLC 데이터링크 프로토콜 등에 대해 명시적으로 구분되어 사전에 지정되어야 한다.
또한, SSAS 메시지는 SSAS 제어 패킷과 SSAS 데이터 패킷으로 구분될 수 있다. 이제, 인터넷 프로토콜 계층(130)을 통해 전력 계량 데이터가 수집된 상황을 가정하여, 설명이 이루어진다. 상술한 것처럼 SSAS 메시지는 SSAS 제어 패킷을 포함하여 구성될 수 있는데, IP SSAS 메시지의 경우, IP SSAS 메시지에 포함된 제어 패킷을 이용하여, 상술한 CPAS 주소 해석 기능을 수행할 수 있다. 즉, IP SSAS 데이터 패킷은 전력계량 데이터가 포함된 IP 데이터 전송과 IP 프로토콜 헤더압축 기능을 제공한다. 반면 IP SSAS 제어 패킷은 인터넷 프로토콜 스택에서 ARP(Address Resolution Protocol)이 수행하는 주소해석(Address Resolution)과 동일한 기능을 고속 전력선통신 MAC(Medium Access Control) 기반의 AMI 통신환경에서 제공할 수 있다.
여기서, IP SSAS 메시지에 포함된 제어 패킷은 아래의 표 1과 같은 구조를 가질 수 있고, CPAS 주소 해석의 원리는 아래의 표 2에 도시된다.
Figure PCTKR2016013072-appb-T000001
Figure PCTKR2016013072-appb-T000002
예를 들어, 주소 해석(Address Resolution)을 요청할 경우 CTR_Type 필드의 값은 0x00으로 지정된다. 반면 요청에 대한 응답 상황인 경우 CTR_Type 필드의 값은 0x01로 설정된다. 발신자 노드가 목적지의 IP 주소는 알고 있으나 CPAS 주소를 모를 경우 발신자 및 목적지의 IP주소와 IP주소 길이 정보를 포함하는 AR_Request_CMD 요청 패킷을 생성하여 AR_Request_CMD 패킷을 전송한다. 이때 요청 패킷의 Target_CPAS_ADDR 필드는 일련의 OxFF(All bit-1s)로 채워진다.
AR_Request_CMD 패킷을 수신한 목적지 노드는 자신의 CPAS 주소를 Target_CPAS_ADDR에 넣고 나머지 필드는 AR_Request_CMD 패킷의 대응하는 필드에서 복사하여 AR_Response_CMD 패킷을 생성하여 발신자에게 전송한다. 이때 AR_Request_CMD 패킷은 브로드캐스트 모드로 전송되며, AR_Response_CMD 패킷은 유니캐스트 모드로 전송되어야 한다.
또한, 본 발명의 일 실시예에 따른 통신 모델은 다양한 IP 헤더 압축 방식을 수용할 수 있는 것을 특징으로 한다. 상술한 것처럼, IP SSAS 패킷은 IP SSAS 데이터 패킷과 IP SSAS 제어 패킷으로 구분될 수 있고, IP SSAS 데이터 패킷은 전력 계량 데이터가 포함된 IP 데이터 전송과 IP 프로토콜 헤더압축 기능을 제공하기 위해 표 3과 같은 포맷으로 정의될 수 있고, 각 포맷에 대한 설명은 표 4에 도시된다.
Figure PCTKR2016013072-appb-T000003
Figure PCTKR2016013072-appb-T000004
표 3 및 표 4에서, Packet_Type는 패킷 종류 필드를 나타내고, Comp_Type는 압축 종류 필드를 나타나고, IP_Data_Len은 데이터의 옥텟 길이를 나타내며, IP_Data는 데이터 필드를 나타낸다. 전기 및 전자분야 국제표준화 기구인 IEC(International Electrotechnical Commission)의 전력계량분야 기술위원회인 Technical Committee 13에서는 효율적인 AMI 통신망 구현을 위해 IP 헤더 압축 기능의 구현을 권고하고 있다.
본 발명의 일 실시예에서는 IP SSAS 데이터 패킷 헤더부의 Comp_Type 필드의 값 설정을 통해 3가지의 IP 헤더 압축 기능의 적용을 가능하게 하며, 또한 압축되거나 압축되지 않은 IP 프로토콜 패킷 데이터가 동일한 AMI 통신망에서 공존할 수 있게 한다. 즉, 수신된 IP SSAS 데이터 패킷의 Comp_Type 필드를 읽어 판독함으로써 헤더 압축되지 않은 IPv4 패킷, 헤더 압축되지 않은 IPv6 패킷, IETF RFC 1144 방식으로 헤더 압축된 IPv4 패킷, RFC 2508 방식으로 헤더 압축된 된 IP 패킷, IETF RFC 3095 방식으로 헤더 압축된 IP 패킷 등 5 종의 IP 패킷 헤더 형태를 식별할 수 있다. 각각의 식별된 압축방식 또는 규격에 따라 수신된 IP 헤더는 압축전의 데이터로 신장되어 복구될 수 있다.
또한 수신된 IP 패킷의 Packet_Type 필드를 읽음으로써 IP 패킷의 버전(Version) 정보를 명시적으로 확인할 수 있다.
도 5는 본 발명의 일 실시예에 따른 데이터 집중 장치의 동작 방법에 대한 흐름도이다. 상술한 바와 같이, 본 발명의 일 실시예에 따른 데이터 집중 장치의 동작 방법은 ISO 및 IEC 국제표준 규격인 고속 전력선통신 기술 기반의 AMI 통신망에서 인터넷 프로토콜 통신 방식의 전력계량 데이터를 전송 및 수신할 수 있는 것을 특징으로 한다.
S110 단계는 HDLC 기반 전력량계를 나타내는 제 1 전자식 전력량계와, 인터넷 프로토콜 기반 전력량계를 나타내는 제 2 전자식 전력량계로부터 전력 계량 데이터를 수집하는 단계이다.
S120 단계는 S110 단계를 통해 수집한 전력 계량 데이터를 AMI 서버로 전달하는 단계이다.
상술한 것처럼, 본 발명의 일 실시예에 따른 데이터 집중 장치의 동작 방법은 고속 전력선 통신 MAC 계층과, 인터넷 프로토콜 계층 사이에 HDLC 및 IP 기반 전력량계와의 통신을 지원할 수 있도록 적응 계층을 추가함으로써, S110 단계 및 S120 단계를 통해 이루어지는 데이터의 수집 및 전달 과정이 가능한 것을 특징으로 한다. 여기서, 적응 계층을 포함하는 통신 모델에 대한 설명과, 적응 계층에 포함된 부계층들, 그리고 부계층에서 전달되는 프레임 및 이의 구조 등에 대한 설명은 위에서 상세히 언급하였으므로, 이에 대한 설명은 생략된다.
또한, 위의 설명에서 본 발명의 일 실시예에 따른 데이터 집중 장치의 동작 방법은 전력량계로부터 데이터를 수집하여, 이를 AMI 서버에 전달하는 것만으로 설명되었으나, 이는 예시일 뿐이고 AMI 서버에서 생성된 제어 신호를 전력량계에 전달하는 것도 가능하다.
또한, 위의 설명에서 통신 모델은 데이터 집중 장치에 적용되는 것으로 설명되었다. 다만 이는 예시일 뿐이고, 상술한 통신 모델은 전력량계에도 동일하게 적용되어 데이터 집중 장치와의 통신에 이용될 수 있다. 즉, 전력량계의 경우 전력량계에 내장된 또는 외부에 위치한 통신부(즉, 모뎀)를 통해 데이터 집중 장치로 전력 계량 데이터를 송신하는데, 상술한 통신 모델을 이용하는 것도 가능하다. 여기서, 전력량계에 적용되는 통신 모델은 데이터 집중 장치에 적용되는 통신 모델과 동일하므로, 중복되는 설명은 생략한다.
이상에서와 같이 도면과 명세서에서 최적의 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (21)

  1. 전력량계로부터 전력 계량 데이터를 수집하고, 수집한 전력 계량 데이터를 AMI 서버로 전달하는 데이터 집중 장치로서,
    상기 전력량계는 HDLC(High-level Data Link Control) 기반 전력량계와, 인터넷 프로토콜 기반 전력량계를 포함하고, 상기 데이터 집중 장치는 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 전력 계량 데이터를 수집하며, 상기 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, 상기 HDLC 기반 전력량계와 상기 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 하는 데이터 집중 장치.
  2. 제1항에 있어서,
    상기 적응 계층은 IPv4 및 IPv6를 포함하는 인터넷 프로토콜 계층의 프로토콜 데이터에 의해 전달된 전력 계량 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 IP 서비스 지원 적응 부계층(IP Service Specific Adaptation Sublayer)을 포함하는 것을 특징으로 하는 것을 특징으로 하는 데이터 집중 장치.
  3. 제2항에 있어서,
    상기 적응 계층은 IEC 62056-46 HDLC 기반 따른 데이터링크 계층의 프로토콜 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 HDLC 서비스 지원 적응 부계층을 더 포함하는 것을 특징으로 하는 것을 특징으로 하는 데이터 집중 장치.
  4. 제3항에 있어서,
    상기 적응 계층은 상기 인터넷 프로토콜 계층과 상기 IEC 62056-46 HDLC 기반 따른 데이터링크 계층에 공통적으로 지원되는 적응 계층 기능들을 포함하는 공통 부분 적응 부계층을 더 포함하는 것을 특징으로 하는 데이터 집중 장치.
  5. 제4항에 있어서,
    상기 공통 부분 적응 부계층(Common Part Adaptation Sublayer)은 상기 IP 서비스 지원 적응 부계층과 상기 HDLC 서비스 지원 적응 부계층 보다 하위 계층인 것을 특징으로 하는 데이터 집중 장치.
  6. 제4항에 있어서,
    상기 공통 부분 적응 부계층에서 이용되는 CPAS 프레임은 헤더부와 SSAS 메시지로 구성되고, 상기 CPAS 프레임의 헤더부는 소스 주소 정보 필드, 목적지 주소 정보 필드 및 이더넷 종류 정보 필드를 포함하여 구성되는 것을 특징으로 하는 데이터 집중 장치.
  7. 제6항에 있어서,
    상기 이더넷 종류 정보 필드는 IPv4 프로토콜, IPv6 프로토콜 및 HDLC 데이터링크 프로토콜 중 적어도 하나에 대한 정보를 포함하는 것을 특징으로 하는 데이터 집중 장치.
  8. 제6항에 있어서,
    상기 SSAS 메시지는 SSAS 제어 패킷과 SSAS 데이터 패킷으로 구분되고, 상기 SSAS 제어 패킷은 ARP(Address Resolution Protocol)를 통해 이루어지는 주소 해석 기능을 수행하는 것을 특징으로 하는 데이터 집중 장치.
  9. 제8항에 있어서,
    상기 SSAS 제어 패킷은 제어 종류 필드, 송신자 IP 주소 필드, 송신자 CPAS 주소 필드, 목적지 IP 주소 필드 및 목적지 CPAS 주소 필드를 포함하는 것을 특징으로 하는 데이터 집중 장치.
  10. 제8항에 있어서,
    상기 SSAS 데이터 패킷은 패킷 종류 필드, 압축 종류 필드, 데이터의 옥텟 길이 필드 및 데이터 필드를 포함하는 것을 특징으로 하는 데이터 집중 장치.
  11. 데이터 집중 장치의 동작 방법으로서,
    HDLC 기반 전력량계와, 인터넷 프로토콜 기반 전력량계를 포함하는 전력량계로부터 전력 계량 데이터를 수집하는 단계; 및
    상기 수집한 전력 계량 데이터를 AMI 서버로 전달하는 단계를 포함하고,
    상기 전력 계량 데이터를 수집하는 단계는 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 이루어지고, 상기 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, 상기 HDLC 기반 전력량계와 상기 인터넷 프로토콜 기반 전력량계와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  12. 제11항에 있어서,
    상기 적응 계층은 IPv4 및 IPv6를 포함하는 인터넷 프로토콜 계층의 프로토콜 데이터에 의해 전달된 전력 계량 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 IP 서비스 지원 적응 부계층을 포함하는 것을 특징으로 하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  13. 제12항에 있어서,
    상기 적응 계층은 IEC 62056-46 HDLC 기반 따른 데이터링크 계층의 프로토콜 데이터를 고속 전력선 통신 MAC 계층과 연결시키는 HDLC 서비스 지원 적응 부계층을 더 포함하는 것을 특징으로 하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  14. 제13항에 있어서,
    상기 적응 계층은 상기 인터넷 프로토콜 계층과 상기 IEC 62056-46 HDLC 기반 따른 데이터링크 계층에 공통적으로 지원되는 적응 계층 기능들을 포함하는 공통 부분 적응 부계층을 더 포함하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  15. 제14항에 있어서,
    상기 공통 부분 적응 부계층은 상기 IP 서비스 지원 적응 부계층과 상기 HDLC 서비스 지원 적응 부계층 보다 하위 계층인 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  16. 제14항에 있어서,
    상기 공통 부분 적응 부계층에서 이용되는 CPAS 프레임은 헤더부와 SSAS 메시지로 구성되고, 상기 CPAS 프레임의 헤더부는 소스 주소 정보, 목적지 주소 정보 및 이더넷 종류 정보를 포함하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  17. 제16항에 있어서,
    상기 이더넷 종류 정보 필드는 IPv4 프로토콜, IPv6 프로토콜 및 HDLC 데이터링크 프로토콜 중 적어도 하나에 대한 정보를 포함하는 것을 특징으로 하는 데이터 집중 방법.
  18. 제17항에 있어서,
    상기 SSAS 메시지는 SSAS 제어 패킷과 SSAS 데이터 패킷으로 구분되고, 상기 SSAS 제어 패킷은 ARP를 통해 이루어지는 주소 해석 기능을 수행하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  19. 제18항에 있어서,
    상기 SSAS 제어 패킷은 제어 종류 필드, 송신자 IP 주소 필드, 송신자 CPAS 주소 필드, 목적지 IP 주소 필드 및 목적지 CPAS 주소 필드를 포함하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  20. 제18항에 있어서,
    상기 SSAS 데이터 패킷은 패킷 종류 필드, 압축 종류 필드, 데이터의 옥텟 길이 필드 및 데이터 필드를 포함하는 것을 특징으로 하는 데이터 집중 장치의 동작 방법.
  21. 수용가에 대한 전력 계량 데이터를 생성하고, 내장된 또는 외부에 연결된 통신부를 통해 상기 전력 계량 데이터를 데이터 집중 장치로 전달하는 전력량계로서,
    상기 전력량계는 HDLC 기반 전력량계와, 인터넷 프로토콜 기반 전력량계 중하나의 전력량계이고, 고속 전력선 통신을 위해 미리 설정된 통신 모델에 따라 상기 전력 계량 데이터를 상기 데이터 집중 장치로 송신하며, 상기 통신 모델은 고속 전력선 통신 MAC 계층, 인터넷 프로토콜 계층 및 상기 고속 전력선 통신 MAC 계층과 인터넷 프로토콜 계층 사이에 구성되어, 상기 데이터 집중 장치와의 통신을 지원하는 적응 계층을 포함하는 것을 특징으로 하는 전력량계.
PCT/KR2016/013072 2016-10-11 2016-11-14 데이터 집중 장치, 전력량계 및 이의 동작 방법 WO2018070592A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/335,192 US20190346495A1 (en) 2016-10-11 2016-11-14 Data concentration unit, power meter, and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0131373 2016-10-11
KR1020160131373A KR101787284B1 (ko) 2016-10-11 2016-10-11 데이터 집중 장치, 전력량계 및 이의 동작 방법

Publications (1)

Publication Number Publication Date
WO2018070592A1 true WO2018070592A1 (ko) 2018-04-19

Family

ID=60296251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013072 WO2018070592A1 (ko) 2016-10-11 2016-11-14 데이터 집중 장치, 전력량계 및 이의 동작 방법

Country Status (3)

Country Link
US (1) US20190346495A1 (ko)
KR (1) KR101787284B1 (ko)
WO (1) WO2018070592A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739861A (zh) * 2018-12-30 2019-05-10 国网新疆电力有限公司阿克苏供电公司 一种仪表数据处理方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083408B1 (fr) * 2018-06-28 2020-09-18 Sagemcom Energy & Telecom Sas Procede permettant de transporter des trames lora sur un reseau cpl.
CN113341365B (zh) * 2021-05-31 2024-03-01 安徽南瑞中天电力电子有限公司 一种智能电能表协议层数据的处理方法、系统、装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041378A1 (en) * 2004-12-27 2007-02-22 Bin Chul Ihm Method of transmitting feedback information using an extended subheader
KR100808445B1 (ko) * 2006-09-15 2008-02-29 한국전력공사 전력량계 원격 검침 및 관리 시스템
US20090092138A1 (en) * 2007-10-09 2009-04-09 Samsung Electronics Co. Ltd. Apparatus and method for generating and parsing mac pdu in a mobile communication system
KR20110025048A (ko) * 2009-09-02 2011-03-09 엘지전자 주식회사 Mac 헤더 타입 정보를 이용한 mac pdu 송수신 방법 및 장치
KR20140106067A (ko) * 2013-02-25 2014-09-03 주식회사 엘지유플러스 전력 검침 시스템 및 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006905B1 (ko) * 2010-04-20 2011-01-13 한국전력공사 원격검침 시스템을 위한 통합 모뎀 및 원격 검침 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041378A1 (en) * 2004-12-27 2007-02-22 Bin Chul Ihm Method of transmitting feedback information using an extended subheader
KR100808445B1 (ko) * 2006-09-15 2008-02-29 한국전력공사 전력량계 원격 검침 및 관리 시스템
US20090092138A1 (en) * 2007-10-09 2009-04-09 Samsung Electronics Co. Ltd. Apparatus and method for generating and parsing mac pdu in a mobile communication system
KR20110025048A (ko) * 2009-09-02 2011-03-09 엘지전자 주식회사 Mac 헤더 타입 정보를 이용한 mac pdu 송수신 방법 및 장치
KR20140106067A (ko) * 2013-02-25 2014-09-03 주식회사 엘지유플러스 전력 검침 시스템 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739861A (zh) * 2018-12-30 2019-05-10 国网新疆电力有限公司阿克苏供电公司 一种仪表数据处理方法及装置
CN109739861B (zh) * 2018-12-30 2022-02-15 国网新疆电力有限公司阿克苏供电公司 一种仪表数据处理方法及装置

Also Published As

Publication number Publication date
KR101787284B1 (ko) 2017-10-18
US20190346495A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US7609719B2 (en) System and method for simultaneous communication on modbus and DNP 3.0 over Ethernet for electronic power meter
JP5689179B2 (ja) 低電力ワイヤレスパーソナルエリアネットワーク上のIPv6データパケットを送信する方法および装置
US7058524B2 (en) Electrical power metering system
KR100477513B1 (ko) 이기종 프로토콜간 상호 데이터 전송을 위한 공통프로토콜 계층 구조 및 방법과 공통 프로토콜 패킷
US7616656B2 (en) System and method for providing communication between intelligent electronic devices via an open channel
US9400193B2 (en) Device, and associated method, for communication
WO2011043514A1 (ko) 전력선을 이용한 열차 네트워크 데이타 통신 시스템 및 방법
WO2018070592A1 (ko) 데이터 집중 장치, 전력량계 및 이의 동작 방법
WO2002037701A9 (en) Utilizing powerline networking as a general purpose transport for a variety of signals
CA2803659A1 (en) Data collecting concentrator and data collecting method
CN102932461A (zh) 网络加速传输方法及装置
WO2016195175A1 (ko) 지능형 원격검침 시스템의 주소 생성 장치 및 그 방법
KR20170037320A (ko) 원격 검침용 유무선 통신 인터페이스 및 이를 포함하는 지능형 원격 검침 시스템
KR20140106067A (ko) 전력 검침 시스템 및 방법
US20140292532A1 (en) Device, and associated method, for communication
WO2011097888A1 (zh) 一种利用ipv6过渡协议支持对等网络地址转换的系统及方法
WO2019235684A1 (ko) 고밀집 네트워크 환경을 위한 wifi 네트워크 시스템
CN106506306A (zh) 一种数据报文传输的方法和装置
WO2012043916A1 (ko) 스마트 배전시스템과 ami 시스템을 연계하기 위한 게이트웨이 및 이를 이용한 시스템 연계방법
Hsi et al. Distribution automation communication infrastructure
WO2012043969A1 (ko) 데이터 통합 제공 장치 및 그 방법
WO2012018190A2 (ko) 트래픽 기반 통신 시스템 및 방법
CN214205565U (zh) 一种融合LoRa及NB-IOT无线通信技术的智能网关设备
WO2022097761A1 (ko) 원격 검침 시스템 및 원격 검침 시스템의 제어 방법
CN108565964A (zh) 一种配电终端及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918494

Country of ref document: EP

Kind code of ref document: A1