WO2018070483A1 - 圧電素子およびその製造方法 - Google Patents

圧電素子およびその製造方法 Download PDF

Info

Publication number
WO2018070483A1
WO2018070483A1 PCT/JP2017/037030 JP2017037030W WO2018070483A1 WO 2018070483 A1 WO2018070483 A1 WO 2018070483A1 JP 2017037030 W JP2017037030 W JP 2017037030W WO 2018070483 A1 WO2018070483 A1 WO 2018070483A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nonwoven fabric
piezoelectric element
laminate
ceramic particles
Prior art date
Application number
PCT/JP2017/037030
Other languages
English (en)
French (fr)
Inventor
安田 健
康武 早川
大平 晃也
柿本 健一
Original Assignee
Ntn株式会社
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 国立大学法人 名古屋工業大学 filed Critical Ntn株式会社
Priority to US16/341,881 priority Critical patent/US20190229255A1/en
Priority to CN201780063178.2A priority patent/CN109997238A/zh
Publication of WO2018070483A1 publication Critical patent/WO2018070483A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/702Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • B29K2031/04Polymers of vinyl acetate, e.g. PVAc, i.e. polyvinyl acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/04Coating on the layer surface on a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/208Magnetic, paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning

Definitions

  • the present invention relates to a piezoelectric element and a manufacturing method thereof, and more particularly to a piezoelectric element suitable for vibration power generation using environmental vibration.
  • vibration power generation Power generation using vibration among environmental power generation
  • methods such as piezoelectric, electromagnetic induction, and electrostatic induction.
  • the piezoelectric method uses a piezoelectric element as a power generation element, and has an advantage that the structure is simpler than electromagnetic induction and electrostatic induction because the piezoelectric characteristics of the material are used.
  • the characteristics required for the piezoelectric element are high power generation performance, impact resistance and the like.
  • inorganic piezoelectric materials Materials constituting the piezoelectric element are roughly classified into inorganic piezoelectric materials and organic piezoelectric materials. Ceramics having a perovskite crystal structure typified by lead zirconate titanate (PZT) are widely used as inorganic piezoelectric materials, and polyvinylidene fluoride (hereinafter referred to as PVDF), vinylidene fluoride as organic piezoelectric materials. -Ethylene trifluoride copolymer, polylactic acid and the like. Inorganic piezoelectric materials have better power generation performance than organic piezoelectric materials, but are inferior in flexibility and impact resistance.
  • PZT lead zirconate titanate
  • PVDF polyvinylidene fluoride
  • -Ethylene trifluoride copolymer polylactic acid and the like.
  • Inorganic piezoelectric materials have better power generation performance than organic piezoelectric materials, but are inferior in flexibility and impact resistance.
  • Patent Document 1 proposes a composite piezoelectric element in which a piezoelectric layer having a resin and piezoelectric particles is laminated, and the piezoelectric particle concentration between the two first piezoelectric layers is higher than that of the first piezoelectric layer.
  • This is a structure in which a second piezoelectric layer having a low is disposed. The bending resistance of the composite piezoelectric element is improved by reducing the piezoelectric particle concentration of the second piezoelectric layer.
  • Patent Document 2 discloses a piezoelectric sheet including a nonwoven fabric or a woven fabric formed using a fiber including an organic polymer and including an inorganic filler.
  • Non-Patent Document 1 NKN particles are formed on a sheet layer composed of a polyvinyl alcohol (hereinafter referred to as PVA) resin composition in which sodium potassium niobate solid solution (hereinafter referred to as NKN) particles are blended, and a nonwoven fabric composed of fiberized PVDF.
  • PVA polyvinyl alcohol
  • NKN sodium potassium niobate solid solution
  • a piezoelectric element in which held nonwoven layers are alternately laminated and integrated. Since this structure has a porous nonwoven fabric layer, it is considered that the structure is more flexible than the structure of Patent Document 1.
  • both surfaces of the piezoelectric element are sheet layers made of a PVA resin composition containing NKN particles.
  • NKN particles In order to further improve the power generation performance, it is necessary to increase the surface charge density on the surface of the sheet layer by easily filling the PVA resin composition with NKN particles so that the charge can be easily taken out.
  • examination is not carried out in terms of the power generation performance with respect to the thickness of the sheet layer, the thickness of the nonwoven fabric layer, and the number of sheets of the sheet layer and the nonwoven fabric layer.
  • the power generation performance of a laminate composed of a sheet layer and a nonwoven fabric layer has not been studied in Patent Document 2.
  • the present invention has been made to address such problems, and an object of the present invention is to provide a piezoelectric element that can exhibit high power generation performance without impairing flexibility, and a method for manufacturing the same.
  • the piezoelectric element of the present invention is formed by laminating a polymer nonwoven fabric in which piezoelectric ceramic particles are held or blended and a polymer resin sheet in which piezoelectric ceramic particles are blended so that at least one layer of the polymer nonwoven fabric is included.
  • This laminate is a laminate capable of realizing a power generation amount equal to or greater than the power generation amount generated from a laminate in which one layer of the polymer resin sheet is laminated on each of the two main planes of one layer of the polymer nonwoven fabric. It is characterized by.
  • the polymer resin sheet is a sheet having a thickness of 10 to 100 ⁇ m in which 50 to 80% by volume of piezoelectric ceramic particles are blended, and the polymer nonwoven fabric is made of fibers constituting the polymer nonwoven fabric.
  • a non-woven fabric having an average diameter of 0.05 to 5 ⁇ m and a thickness of 10 to 300 ⁇ m of one layer holding or blending 30 to 60% by volume of piezoelectric ceramic particles.
  • the laminate constituting the piezoelectric element of the present invention is characterized in that a plurality of the polymer nonwoven fabrics are laminated, or the polymer nonwoven fabrics and the polymer resin sheets are alternately laminated. In particular, the two main plane sides of the laminate are both the polymer resin sheet.
  • the method for producing a piezoelectric element of the present invention includes a polymer nonwoven fabric in which piezoelectric ceramic particles are held or blended and a polymer resin sheet in which piezoelectric ceramic particles are blended so that at least one layer of the polymer nonwoven fabric is included. It is a method for manufacturing a piezoelectric element including a step of laminating and a step of integrating the laminated body by press-bonding using a press. Further, the polymer nonwoven fabric in which the piezoelectric ceramic particles are held or blended is obtained by an electrospinning method in which the slurry obtained by dispersing the piezoelectric ceramic particles in a solution in which the polymer is dissolved in water or an organic solvent is electrospun. It is a manufactured polymer nonwoven fabric.
  • the piezoelectric element of the present invention is integrated by laminating a polymer resin sheet layer and a polymer nonwoven fabric layer, high piezoelectricity can be expressed without impairing flexibility. Further, since the polymer resin sheet is highly filled with 50 to 80% by volume of piezoelectric ceramic particles, charges are induced on the surface of the piezoelectric element, and the charges can be easily taken out. Furthermore, since the polymer nonwoven fabric layer is highly filled with piezoelectric ceramic particles at 30 to 60% by volume, high piezoelectricity can be expressed without impairing flexibility.
  • the piezoelectric element of the present invention is a laminate that can realize a power generation amount that is greater than the power generation amount generated from a laminate in which one polymer resin sheet is laminated on each of the two main planes of one layer of the polymer nonwoven fabric.
  • the power generation performance can be further improved and maintained.
  • the power generation amount of the piezoelectric element integrated by laminating the polymer nonwoven fabric layer and the polymer resin sheet layer increases as the number of polymer nonwoven fabric layers in the laminate increases. Furthermore, when the number of stacked layers was increased, the power generation amount decreased. That is, it was found that there is an optimum value for the amount of power generation in the number of laminated layers of the polymer nonwoven fabric layer and the polymer resin sheet layer. The present invention is based on such knowledge.
  • FIG. 1 shows a case where the two main plane sides of the laminate are both polymer resin sheets
  • FIG. 1A is an example in which polymer resin sheets and polymer nonwoven fabrics are alternately laminated
  • 1 (b) is an example in which a plurality of polymer nonwoven fabrics are laminated.
  • FIG. 1 is a schematic diagram of a laminated body expressed by enlarging the thickness, and piezoelectric ceramic particles, nonwoven fabric, and the like are conceptually shown.
  • 1A shows a polymer resin sheet 2 in which piezoelectric ceramic particles are blended and a polymer nonwoven fabric 3 in which piezoelectric ceramic particles 4 are held or blended in a nonwoven fabric 5 are alternately laminated.
  • 2a and 2b form the front and back of the laminated body 1a.
  • the laminate having the minimum structure has two pieces of n and one piece of m, and this is a laminate having the minimum structure.
  • a plurality of the polymer nonwoven fabrics 3 are laminated, and the polymer resin sheets 2a and 2b form the front and back of the laminate 1b.
  • the minimum number of laminated bodies is 2 for n and 1 for m.
  • n is a constant 2
  • m is a value of 2, 3, 4,.
  • the laminate 1 is not limited to the laminate shown in FIGS. 1A and 1B, and may be a laminate that is laminated so that at least one layer of the polymer nonwoven fabric 3 is included.
  • a plurality of polymer nonwoven fabrics 3 can be laminated, and this laminate and the polymer resin sheet 2 can be laminated.
  • the amount of power generated by the piezoelectric element composed of the laminate 1 was studied.
  • a piezoelectric element as shown in FIG. 1A, a polymer resin sheet 2 and a polymer nonwoven fabric 3 are alternately laminated, and the polymer resin sheets 2a and 2b form the front and back of the laminate.
  • a laminate 1b was prepared in which a plurality of polymer nonwoven fabrics 3 were laminated and the polymer resin sheets 2a and 2b formed the front and back of the laminate.
  • the polymer resin sheet 2 was prepared by mixing 50% by volume of NKN particles having an average particle diameter of 1 ⁇ m in a PVA resin and having a thickness of 40 ⁇ m.
  • the polymer nonwoven fabric 3 is a nonwoven fabric having a thickness of 40 ⁇ m, produced by an electrospinning method using PVDF slurry containing 50% by volume of NKN particles having an average particle diameter of 1 ⁇ m.
  • the average diameter of the fibers of the polymer nonwoven fabric 3 was prepared in three levels of 0.05, 0.5, and 5 ⁇ m.
  • the laminate 1a is represented by an nm structure, where n is the number of laminated polymer resin sheets 2 and m is the number of laminated polymer nonwoven fabrics 3.
  • n is the number of laminated polymer resin sheets 2
  • m is the number of laminated polymer nonwoven fabrics 3.
  • a power generation amount measurement sample of a piezoelectric element six types of laminates of 2-1 structure, 3-2 structure, 4-3 structure, 5-4 structure, 6-5 structure, and 7-6 structure are provided, and the respective laminates Three levels of samples with average fiber diameters of 0.05, 0.5, and 5 ⁇ m were prepared. The total number of samples prepared is 18 samples.
  • the laminated body 1b is represented by a 2-m structure, where the number of laminated polymer nonwoven fabrics 3 is m, because the number of laminated polymer resin sheets 2 forming the front and back of the laminated body is two.
  • a power generation amount measurement sample of the piezoelectric element five types of laminates of 2-1 structure, 2-3 structure, 2-5 structure, 2-7 structure, and 2-9 structure were used, and the average of the fibers for each of the laminates Three levels of samples with diameters of 0.05, 0.5 and 5 ⁇ m were produced. The total number of samples prepared is 15 samples.
  • FIG. 2 is a schematic diagram showing an example of a polarization method of the laminated body 1a and the laminated body 1b.
  • the laminated body 1 is placed on a grounded sample stage 6, and subjected to polarization treatment by corona discharge generated by applying a DC electric field by a needle-like electrode 7 placed at a distance of 3 mm in the vertical direction from the upper surface of the laminated body 1. An element was produced.
  • the treatment conditions were a room temperature, a voltage of 20 kV, and a treatment time of 10 minutes.
  • FIG. 3 is a diagram of a piezoelectric element for testing. The layer thickness is shown enlarged.
  • 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along the line AA of the piezoelectric element A obtained from the laminate 1a shown in FIG. 1
  • FIG. 3C is a view shown in FIG.
  • FIG. 3 is a cross-sectional view of the piezoelectric element B obtained from the laminated body 1b along the line AA.
  • a silver paste 8 was applied to both surfaces of the piezoelectric elements A and B made of the laminate 1 subjected to polarization treatment, upper and lower electrodes were formed, and a copper foil tape 9 was attached to obtain a piezoelectric element for testing.
  • FIG. 4 is a circuit diagram showing a method for measuring the electric power generated by the piezoelectric element. Using the circuit shown in FIG. 4, a stretching vibration of 170 Hz was applied in the longitudinal direction (the arrow direction shown in FIG. 3) of the piezoelectric elements A and B, and the power generation amount per vibration was measured. The piezoelectric elements A and B were connected to the load resistor 10, and the electric power generated in the load resistor 10 was measured with an oscilloscope 11.
  • FIG. 5A shows the result of the piezoelectric element A obtained from the laminate 1a
  • FIG. 5B shows the result of the piezoelectric element B obtained from the laminate 1b.
  • the power generation amount is expressed as a percentage of the maximum power generation amount, with the maximum power generation amount being 100%.
  • the maximum power generation amount of the piezoelectric element A was a 4-3 structure when the average diameter (fiber diameter) of the fibers was 0.05 and 0.5 ⁇ m, and the power generation amount was 529 nW.
  • the maximum power generation amount of the piezoelectric element B was a 2-5 structure when the average fiber diameter (fiber diameter) was 0.05 and 0.5 ⁇ m, and the power generation amount was 495 nW.
  • the piezoelectric element A was higher in tensile stress and strain in the tensile test than the piezoelectric element B. As a result, the piezoelectric element A is a preferable structure.
  • 1 is the smallest unit. From this minimum unit, the amount of power generation tends to increase as the number of laminated polymer nonwoven fabrics 3 increases. However, this power generation amount does not increase monotonously, but the maximum power generation amount is obtained with the 4-3 structure in the case of the piezoelectric element A and the 2-5 structure in the case of the piezoelectric element B. Thereafter, the laminated layer of the polymer nonwoven fabric 3 is obtained. As the number increases, power generation tends to decrease.
  • the present invention specifies a certain range on both sides of this optimum value, and is a laminate capable of realizing a power generation amount equal to or greater than the power generation amount generated from the laminate 1 of the minimum unit.
  • the piezoelectric element A has a 2-1 structure, a 3-2 structure, a 4-3 structure, a 5-4 structure, a 6-5 structure, and a 7-6 structure, preferably 2-1
  • the structure is a 3-2 structure, a 4-3 structure, a 5-4 structure, and a 6-5 structure, and more preferably a 3-2 structure, a 4-3 structure, and a 5-4 structure.
  • the piezoelectric element B the 2-1 structure, 2-3 structure, 2-5 structure, 2-7 structure, and 2-9 structure are preferable, and the 2-1 structure, 2-3 structure, -5 structure and 2-7 structure.
  • the piezoelectric ceramic particles blended in the polymer resin sheet or the piezoelectric ceramic particles held or blended in the polymer nonwoven fabric may be the same type of piezoelectric ceramic particles or different types of piezoelectric ceramic particles. Similarly, in the polymer resin sheets or the polymer nonwoven fabrics, the piezoelectric ceramic particles may be the same type of piezoelectric ceramic particles or different types of piezoelectric ceramic particles. It is preferable to use piezoelectric ceramic particles having the same composition throughout the laminate constituting the piezoelectric element.
  • the piezoelectric ceramic particles are preferably piezoelectric ceramic particles having a perovskite crystal structure.
  • piezoelectric ceramic particles containing one or more elements of niobium, lead, titanium, zinc, barium, bismuth, zirconium, lanthanum, potassium, sodium, calcium, and magnesium are listed.
  • NKN particles not containing lead or barium titanate particles are more preferable because they are excellent in safety to the human body and the environment.
  • the NKN particles are ceramic particles represented by (Na 0.5 K 0.5 ) NbO 3 .
  • NKN particles can be produced by a solid reaction of sodium carbonate, potassium carbonate and niobium oxide.
  • the average particle size of the piezoelectric ceramic particles is 0.1 ⁇ m to 10 ⁇ m, preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 2 ⁇ m. If it is less than 0.1 ⁇ m, uniform dispersion in the polymer resin sheet or polymer resin nonwoven fabric is difficult, and if it exceeds 10 ⁇ m, the mechanical strength of the polymer resin sheet or polymer nonwoven fabric is lowered.
  • the average particle diameter in this invention is 50% particle diameter (D50) measured and calculated by the laser diffraction method.
  • the piezoelectric ceramic particles are blended in the polymer resin sheet, it is preferable to use a granulated powder bonded to the piezoelectric ceramic particles using a polymer binder.
  • the polymer binder is preferably a material different from the polymer material constituting the polymer resin sheet.
  • Specific examples of the polymer binder include acrylic, cellulose, PVA, polyvinyl acetal, urethane, and vinyl acetate polymers.
  • the granulation method is not particularly limited, and known methods such as spray granulation, rolling granulation, extrusion granulation, and compression granulation can be used.
  • the average particle diameter of the granulated powder is 10 ⁇ m to 100 ⁇ m, preferably 30 ⁇ m to 50 ⁇ m.
  • the type of the polymer material constituting the polymer resin sheet is not particularly limited, and may be any of thermoplastic resin, thermosetting resin, thermoplastic elastomer, synthetic rubber, and natural rubber.
  • a crystalline resin having a melting point of 150 ° C. or higher or an amorphous resin having a glass transition point of 150 ° C. or higher is more preferable.
  • polymer materials such as PVA, polyvinyl butyral (hereinafter referred to as PVB), polystyrene, polyimide, polyamideimide, polyetherimide, polysulfone, polyphenylsulfone, polyethersulfone, polyarylate, polyphenylene ether, etc. Can be mentioned.
  • the piezoelectric ceramic particles are blended with the polymer material.
  • the polymer resin sheet preferably contains an inorganic filler having no piezoelectricity together with the piezoelectric ceramic particles.
  • an inorganic filler it is preferable to blend a conductive filler for the purpose of facilitating charge transfer in the sheet layer.
  • the conductive filler include graphite, carbon black, carbon nanotube, fullerene, metal powder, carbon fiber, and metal fiber.
  • a reinforcing material can be blended as an inorganic filler in order to improve the mechanical reinforcement of the sheet layer. Examples of the reinforcing material include carbon nanotubes, whiskers, carbon fibers, and glass fibers.
  • the polymer resin sheet preferably contains 50 to 80% by volume of piezoelectric ceramic particles, and the remainder is the polymer material, or the remainder is the polymer material and the inorganic filler having no piezoelectricity,
  • the blending amount of the piezoelectric ceramic particles is more preferably 70 to 80% by volume.
  • the polymer material is preferably blended at least 20% by volume. If the piezoelectric ceramic particle is less than 50% by volume, the piezoelectricity is not improved, and if it exceeds 80% by volume, the mechanical strength of the polymer resin sheet is lowered.
  • the piezoelectric ceramic particles refer to particles before the granulated powder.
  • any method capable of forming a thin sheet can be used.
  • a slurry is prepared by dispersing a filler such as the piezoelectric ceramic particles in water or an organic solvent in which the polymer material is dissolved, and the slurry is applied onto a support to form a thin film.
  • a production method in which water or an organic solvent is removed by drying or the like is preferable.
  • a method for applying the slurry onto the support a known method such as a tape casting method represented by a doctor blade method, a spin coating method, or the like can be used.
  • the thickness of one polymer resin sheet is 10 to 100 ⁇ m, preferably 30 to 50 ⁇ m.
  • the thickness of the polymer resin sheet layer is less than 10 ⁇ m, the mechanical strength of the piezoelectric element is lowered, and when it exceeds 100 ⁇ m, the flexibility is lowered and cracking may occur when the piezoelectric element is vibrated.
  • the polymer nonwoven fabric can be used as long as it is made into a fabric by bonding or entanglement of a fiberized polymer material by thermal, mechanical or chemical action.
  • the average diameter of the fibers constituting the polymer nonwoven fabric is preferably 0.05 to 5 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • the average diameter is larger than 5 ⁇ m, the porous volume of the nonwoven fabric layer is reduced, so that the power generation performance is lowered.
  • the average diameter is less than 0.05 ⁇ m, the stress applied to the piezoelectric ceramic particles by the fiber is reduced, and the power generation performance is lowered.
  • the average diameter of the fiber in this invention is an average value measured and calculated by the image obtained with the scanning electron microscope.
  • the type of the polymer material used as the polymer nonwoven fabric is not particularly limited, and the presence or absence of piezoelectricity due to the molecular structure is not limited. From the viewpoint of heat resistance, a crystalline resin having a melting point of 150 ° C. or higher or an amorphous resin having a glass transition point of 150 ° C. or higher is preferable, and a resin having excellent flexibility is more preferable. Specific examples include PVA, PVB, PVDF, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, and the like. .
  • the piezoelectric ceramic particles are held or blended in the polymer nonwoven fabric.
  • the polymer nonwoven fabric preferably holds or blends an inorganic filler having no piezoelectricity with the piezoelectric ceramic particles.
  • the inorganic filler it is preferable to hold or blend a conductive filler for the purpose of facilitating charge transfer in the nonwoven fabric layer.
  • the conductive filler include graphite, carbon black, carbon nanotube, fullerene, and metal powder.
  • a reinforcing material can be held or blended in order to improve the mechanical reinforcement of the nonwoven fabric layer. Examples of the reinforcing material include carbon nanotubes and whiskers.
  • “Holding” means that the piezoelectric ceramic particles are fixed between the fibers of the polymer nonwoven fabric, and “mixing” means that the piezoelectric ceramic particles are contained in the fiberized polymer material. .
  • the polymer non-woven fabric retains or mixes 30 to 60% by volume of piezoelectric ceramic particles, and the remainder is the above-described fiberized polymer material, or the remainder is the above-mentioned fiberized polymer material and the inorganic material having no piezoelectricity.
  • a filler is preferable, and the holding or blending amount of the piezoelectric ceramic particles is more preferably 50 to 60% by volume. Further, it is preferable that at least 40% by volume of the fiberized polymer material is blended. If the piezoelectric ceramic particle is less than 30% by volume, the piezoelectricity is not improved, and if it exceeds 60% by volume, the mechanical strength of the polymer nonwoven fabric is lowered.
  • the polymer nonwoven fabric can be produced as long as it can be made into a thin nonwoven fabric using fibers having an average diameter of 0.05 to 5 ⁇ m.
  • the electrospinning method is a method for producing a nonwoven fabric by applying a voltage between a needle of a syringe of an electrospinning apparatus and a collector and injecting slurry in the syringe toward the collector.
  • the shape of the collector is not particularly limited, such as a drum type, a disk type, or a plate type, but a drum type capable of producing a large area nonwoven fabric is preferable. Water or an organic solvent can be removed by drying the obtained nonwoven fabric.
  • the thickness of one polymer nonwoven fabric is 10 to 300 ⁇ m, preferably 120 to 200 ⁇ m. If the thickness of the polymer nonwoven fabric is less than 10 ⁇ m, the piezoelectricity when the piezoelectric element is formed is lowered, and if it exceeds 300 ⁇ m, the piezoelectric nonwoven fabric may be broken when it is vibrated.
  • a sheet-like piezoelectric element can be obtained by integrating the laminate of the polymer resin sheet and the polymer nonwoven fabric.
  • a method of pressure bonding using a press can be used.
  • the method for polarizing a piezoelectric element of the present invention preferably includes a step of applying a DC electric field to the integrated piezoelectric element.
  • Specific examples of the polarization method include a method using corona discharge in the atmosphere, a method of applying a DC electric field in silicone oil heated to 100 to 200 ° C., and the like.
  • the piezoelectric element of the present invention the polymer resin sheet layer and the non-woven fabric layer are integrated, and charge is easily induced on the surface of the piezoelectric element by easily filling the polymer resin sheet layer with piezoelectric ceramic particles. Electric charge can be taken out. Moreover, high piezoelectricity can be expressed without impairing flexibility by highly filling the nonwoven fabric layer with piezoelectric ceramic particles. Furthermore, power generation performance can be improved by optimizing the thickness of the sheet layer, the thickness of the nonwoven fabric layer, and the number of sheets of the sheet layer and the nonwoven fabric layer. For this reason, the piezoelectric element of the present invention can be applied to uses of vibration power generation, current sensors, and voltage sensors, and is particularly suitable for vibration power generation using environmental vibration.
  • NKN particles used as piezoelectric ceramics are Na 2 CO 3 (purity 99.9%), K 2 CO 3 (purity 99.9%), and Nb 2 O 5 (purity 99.9%) as raw material powders.
  • the raw material powder was sufficiently mixed, and the mixture was sintered at 1098 ° C. for 2 hours and then pulverized to prepare a powder having an average particle diameter of 1 ⁇ m. This powder was dispersed in a polyurethane solution as a polymer binder, and granulated powder was prepared by a spray dryer method.
  • the polymer resin sheet was prepared by tape-casting a slurry prepared by dispersing this granulated powder in an aqueous solution in which 7% by mass of PVA was dissolved, on a support.
  • a doctor blade type coating machine manufactured by Imoto Manufacturing Co., Ltd .: IMC-70F0-C type was used for tape casting.
  • the obtained sheet was dried at room temperature to remove water, thereby obtaining a polymer resin sheet.
  • the polymer nonwoven fabric was prepared by electrospinning a slurry in which the NKN particles were dispersed in a dimethyl sulfoxide solution in which PVDF was dissolved.
  • As the electrospinning apparatus IMC-1639 type manufactured by Imoto Seisakusho was used.
  • the concentration of the dimethyl sulfoxide solution in which PVDF was dissolved was 0.11 g / mL, and a slurry in which 50% by volume of NKN particles were dispersed in PVDF was used.
  • a voltage of 18 kV was applied between the syringe needle and the collector. By applying, the slurry in the syringe was injected toward the collector, and a nonwoven fabric was produced.
  • the obtained non-woven fabric was dried at room temperature to remove dimethyl sulfoxide to obtain a polymer non-woven fabric.
  • the pressure is 40 MPa and the temperature is 65 ° C.
  • the laminate was obtained by pressurizing for 3 minutes.
  • Table 1 shows the structure and thickness of the laminate, the amount of NKN retained or blended in the polymer resin sheet and the polymer nonwoven fabric, the thickness of the polymer resin sheet and the polymer nonwoven fabric, and the average diameter of the fibers constituting the polymer nonwoven fabric. And in Table 2.
  • Example 6 the result was that the piezoelectric element having a 4-3 structure as the laminate had the maximum power generation amount. Further, the larger the amount of NKN particles in the polymer resin sheet layer, the larger the amount of power generation. Comparative Example 3 (thickness of polymer resin sheet 1 layer 40 ⁇ m, NKN particle content 90% by volume), comparison In Example 4 (the thickness of one layer of the polymer resin sheet was 5 ⁇ m and the amount of NKN particles was 70% by volume), the amount of power generation could not be measured because the sheet layer was broken. Further, the power generation amount showed a good value when the average diameter of the fibers of the polymer nonwoven fabric layer was in the range of 0.05 to 5 ⁇ m. Table 2 shows the amount of power generation depending on the thickness of the polymer nonwoven fabric layer. Example 13 (the thickness of one layer of the polymer nonwoven fabric was 200 ⁇ m) was the most excellent result.
  • the present invention can be used in the field of vibration power generation using environmental vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

柔軟性を損ねることなく高い発電性能を発現できる圧電素子およびその製造方法を提供する。圧電セラミックス粒子4が保持または配合された高分子不織布3と、圧電セラミックス粒子が配合された高分子樹脂シート2とを、高分子不織布が少なくとも1層含まれるように積層された積層体1からなる圧電素子である。この積層体は、高分子不織布1層の2つの主平面側に高分子樹脂シートがそれぞれ1層ずつ積層された積層体より発生する発電量以上の発電量を実現できる積層体である。

Description

圧電素子およびその製造方法
 本発明は、圧電素子とその製造方法に関し、特に環境振動を利用した振動発電に好適な圧電素子に関する。
 近年、身近に存在する振動、太陽光、室内光、電波等のエネルギーを採取し、電力変換する環境発電が注目されており、電子機器等の自立型電源への適用が進みつつある。環境発電のうち振動を利用する発電は振動発電と呼ばれ、圧電、電磁誘導、静電誘導等の方式がある。
 圧電方式は発電素子として圧電素子を用いるものであり、材料の圧電特性を利用することから電磁誘導、静電誘導に比べて構造が単純であることに利点がある。圧電素子に求められる特性は高い発電性能、耐衝撃性等である。
 圧電素子を構成する材料は無機圧電材料、有機圧電材料に大別される。無機圧電材料としては、チタン酸ジルコン酸鉛(PZT)に代表されるペロブスカイト型結晶構造を有するセラミックスが広く用いられており、有機圧電材料としてはポリフッ化ビニリデン(以下、PVDFという)、フッ化ビニリデン-三フッ化エチレン共重合体、ポリ乳酸等が挙げられる。無機圧電材料は有機圧電材料に比べて発電性能に優れるが、柔軟性、耐衝撃性は劣る。
 無機圧電材料と有機圧電材料を複合化させることで、高い発電性能と、柔軟性、耐衝撃性を併せ持つ圧電素子を作製する試みもなされている。例えば特許文献1では、樹脂と圧電粒子とを有する圧電体層を積層した複合圧電素子が提案されており、2つの第1圧電体層の間に、この第1圧電体層よりも圧電粒子濃度が低い第2圧電体層が配置された構造である。第2圧電体層の圧電粒子濃度を低くすることにより、複合圧電素子の曲げ耐性を向上させている。また、特許文献2では、有機ポリマーを含むファイバーを用いて形成された不織布または織布を含み、かつ、無機フィラーを含む圧電性シートが開示されている。
 非特許文献1では、ニオブ酸ナトリウムカリウム固溶体(以下、NKNという)粒子が配合されたポリビニルアルコール(以下、PVAという)樹脂組成物からなるシート層と、繊維化したPVDFからなる不織布にNKN粒子が保持されている不織布層と、を交互に積層し一体化した圧電素子が提案されている。この構造は多孔質の不織布層を有するため、特許文献1の構造よりさらに柔軟性が高いと考えられる。
特開2015-50432号 WO2015/005420
M. Kato, K. Kakimoto, Materials Letters, 156, 183-186(2015).
 しかしながら、非特許文献1では、圧電素子の両面がNKN粒子を配合したPVA樹脂組成物からなるシート層である。発電性能をさらに向上させるには、PVA樹脂組成物にNKN粒子を高充填することでシート層表面の面電荷密度を高め、電荷を取り出し易くする必要がある。また、シート層の厚み、不織布層の厚み、シート層と不織布層の層数に関して発電性能がどうなるかの点で検討がされていない。シート層および不織布層からなる積層体の発電性能については特許文献2においても検討されていない。
 本発明はこのような問題に対処するためになされたものであり、柔軟性を損ねることなく高い発電性能を発現できる圧電素子およびその製造方法の提供を目的とする。
 本発明の圧電素子は、圧電セラミックス粒子が保持または配合された高分子不織布と、圧電セラミックス粒子が配合された高分子樹脂シートとを、上記高分子不織布が少なくとも1層含まれるように積層された積層体からなる圧電素子である。この積層体は、上記高分子不織布1層の2つの主平面側に上記高分子樹脂シートがそれぞれ1層ずつ積層された積層体より発生する発電量以上の発電量を実現できる積層体であることを特徴とする。 
 上記高分子樹脂シートは、50~80体積%の圧電セラミックス粒子が配合されている1層の厚さが10~100μmのシートであり、上記高分子不織布は、この高分子不織布を構成する繊維の平均直径が0.05~5μmであり、30~60体積%の圧電セラミックス粒子が保持または配合されている1層の厚さが10~300μmの不織布であることを特徴とする。
 本発明の圧電素子を構成する積層体は、上記高分子不織布が複数枚積層されているか、または、上記高分子不織布と上記高分子樹脂シートとが交互に積層されていることを特徴とする。特に、上記積層体の2つの主平面側がいずれも上記高分子樹脂シートであることを特徴とする。
 本発明の圧電素子の製造方法は、圧電セラミックス粒子が保持または配合された高分子不織布と、圧電セラミックス粒子が配合された高分子樹脂シートとを、上記高分子不織布が少なくとも1層含まれるように積層させる工程と、上記積層された積層体をプレスを用いて圧着することで一体化する工程とを含む圧電素子の製造方法である。また、上記圧電セラミックス粒子が保持または配合された高分子不織布は、高分子を水または有機溶剤に溶解させた溶液に上記圧電セラミックス粒子を分散することで得たスラリーを電界紡糸する電界紡糸法によって製造された高分子不織布であることを特徴とする。
 本発明の圧電素子は、高分子樹脂シート層と高分子不織布層を積層することで一体化させているので、柔軟性を損ねることなく高い圧電性を発現できる。また、高分子樹脂シートに圧電セラミックス粒子が50~80体積%と高充填されているので、圧電素子表面に電荷が誘起され、容易に電荷を取り出すことができる。さらに、高分子不織布層に圧電セラミックス粒子が30~60体積%と高充填されているので、柔軟性を損ねることなく高い圧電性を発現できる。
 本発明の圧電素子は、高分子不織布1層の2つの主平面側に高分子樹脂シートがそれぞれ1層ずつ積層された積層体より発生する発電量以上の発電量を実現できる積層体であるので、発電性能をより向上させ維持することができる。
圧電素子の断面図の一例を示す図である。 積層体の分極方法の一例を示す図である。 供試用の圧電素子の図である。 圧電により発生する電力を測定する方法を示す回路図である。 発電量測定結果を示す図である。
 高分子不織布層と高分子樹脂シート層とを積層することで一体化させた圧電素子の発電量について研究した結果、積層体における高分子不織布の積層枚数が増加するに従って発電量が増加すること、さらに積層枚数を増加すると逆に発電量が減少するとの現象が見られた。すなわち、高分子不織布層と高分子樹脂シート層との積層枚数には発電量に関して最適値が存在することが分かった。本発明はこのような知見に基づくものである。
 本発明の圧電素子の断面図の一例を図1に示す。図1は、積層体の表裏2つの主平面側がいずれも高分子樹脂シートとなる場合であり、図1(a)は高分子樹脂シートと高分子不織布とを交互に積層した例であり、図1(b)は高分子不織布を複数枚積層した例である。なお、図1は厚さを拡大して表した積層体の模式図であり、圧電セラミックス粒子、不織布等は概念的に表している。
 図1(a)は、圧電セラミックス粒子が配合された高分子樹脂シート2と、圧電セラミックス粒子4が不織布5内に保持または配合された高分子不織布3とが交互に積層され、高分子樹脂シート2aおよび2bが積層体1aの表裏を形成している。高分子樹脂シート2の積層枚数をn、高分子不織布3の積層枚数をmとした場合、積層体1aにおける枚数の関係式としては、n=m+1となる。また、最小構造の積層体はnが2枚で、mが1枚であり、これが最小構造の積層体となる。
 図1(b)は、上記高分子不織布3が複数枚積層され、高分子樹脂シート2aおよび2bが積層体1bの表裏を形成している。この場合においても、最小積層体はnが2枚で、mが1枚である。積層体1bの枚数の関係式としては、nが定数2であり、mは高分子不織布3の積層枚数に応じて2、3、4、・・・の値となる。
 積層体1は、図1(a)および(b)に示される積層体のみに限定されることなく、高分子不織布3が少なくとも1層含まれるように積層された積層体であればよい。例えば高分子不織布3を複数枚積層して、この積層体と高分子樹脂シート2とを積層することができる。
 積層体1からなる圧電素子の発電量について研究した。圧電素子としては、図1(a)に示すように、高分子樹脂シート2と高分子不織布3とが交互に積層され、高分子樹脂シート2aおよび2bが積層体の表裏を形成している積層体1a、および図1(b)に示すように、高分子不織布3が複数枚積層され、高分子樹脂シート2aおよび2bが積層体の表裏を形成している積層体1bを準備した。
 高分子樹脂シート2は、PVA樹脂中に平均粒子径1μmのNKN粒子が50体積%配合され、1枚の厚さが40μmのシートを準備した。
 高分子不織布3は、平均粒子径1μmのNKN粒子が50体積%配合されたPVDFスラリーを用いて電界紡糸法により作製した、1枚の厚さが40μmの不織布である。高分子不織布3の繊維の平均直径は0.05、0.5、5μmの3水準を準備した。
 積層体1aは、高分子樹脂シート2の積層枚数をn、高分子不織布3の積層枚数をmとして、n-m構造で表される。圧電素子の発電量測定試料として、2-1構造、3-2構造、4-3構造、5-4構造、6-5構造、および7-6構造の6種類の積層体とし、それぞれの積層体について繊維の平均直径が0.05、0.5、5μmと異なる3水準の試料を作製した。準備した試料合計は18試料である。
 積層体1bは、積層体の表裏を形成している高分子樹脂シート2の積層枚数が2枚であるので、高分子不織布3の積層枚数をmとして、2-m構造で表される。圧電素子の発電量測定試料として、2-1構造、2-3構造、2-5構造、2-7構造、および2-9構造の5種類の積層体とし、それぞれの積層体について繊維の平均直径が0.05、0.5、5μmと異なる3水準の試料を作製した。準備した試料合計は15試料である。
 積層体1aおよび積層体1bをそれぞれ13mm×28mmの大きさに切断し、プレスにて圧力40MPa、温度65℃の条件で3分間加圧してシート状の積層体とした。
 図2は積層体1aおよび積層体1bの分極方法の一例を示した模式図である。アースされた試料台6上に積層体1を置き、積層体1の上面から垂直方向に3mmの距離に設置した針状電極7によって直流電界を印加して生じるコロナ放電によって分極処理をして圧電素子を作製した。処理条件は室温にて、電圧20kV、処理時間10分間とした。
 図3は供試用の圧電素子の図である。層厚さは拡大して表した。図3(a)は平面図であり、図3(b)は図1に示す積層体1aより得られた圧電素子AのA-A断面図であり、図3(c)は図1に示す積層体1bより得られた圧電素子BのA-A断面図である。分極処理をした積層体1からなる圧電素子AおよびBの両面に銀ペースト8を塗布し、上部および下部電極を形成し、銅箔テープ9を取り付けて供試用の圧電素子とした。
 図4は圧電により発生する電力を測定する方法を示す回路図である。図4に示す回路を用いて、圧電素子AおよびBの長手方向(図3に示す矢印方向)に170Hzの伸縮振動を与え、1振動当たりの発電量を測定した。圧電素子AおよびBは負荷抵抗10に接続され、負荷抵抗10に発生する電力はオシロスコープ11によって測定した。
 測定結果を図5に示す。図5(a)は積層体1aより得られた圧電素子A、図5(b)は積層体1bより得られた圧電素子Bの結果をそれぞれ示す。なお、発電量は最大発電量を100%として、この最大発電量に対する百分率で表した。圧電素子Aの最大発電量は繊維の平均直径(繊維径)が0.05および0.5μmのときの4-3構造であり、発電量は529nWであった。圧電素子Bの最大発電量は繊維の平均直径(繊維径)が0.05および0.5μmのときの2-5構造であり、発電量は495nWであった。
 また、圧電素子Aは圧電素子Bよりも引張試験における引張応力および歪が大きくなった。この結果、圧電素子Aが好ましい構造である。
 図5に示すように、1枚の高分子不織布3の2つの主平面側に2枚の高分子樹脂シート2がそれぞれ1枚ずつ積層された2-1構造の積層体1aおよび1bが積層体1の最小単位となる。この最小単位より、高分子不織布3の積層枚数が増加するに従い発電量は増加傾向を示す。しかし、この発電量は単調に増加するのではなく、圧電素子Aの場合は4-3構造、圧電素子Bの場合は2-5構造で最大発電量となり、それ以降は高分子不織布3の積層枚数が増加するに従い発電量が減少傾向を示す。すなわち、高分子樹脂シート2と高分子不織布3との積層枚数には発電量に関して最適値が存在する。
 本発明は、この最適値の両側一定範囲を特定するもので、上記最小単位の積層体1より発生する発電量以上の発電量を実現できる積層体とする。具体的には、圧電素子Aの場合は、2-1構造、3-2構造、4-3構造、5-4構造、6-5構造、および7-6構造であり、好ましくは2-1構造、3-2構造、4-3構造、5-4構造、および6-5構造であり、より好ましくは3-2構造、4-3構造、および5-4構造である。また、圧電素子Bの場合は、2-1構造、2-3構造、2-5構造、2-7構造、および2-9構造であり、好ましくは2-1構造、2-3構造、2-5構造、および2-7構造である。
 高分子樹脂シートに配合される圧電セラミックス粒子、または高分子不織布内に保持または配合される圧電セラミックス粒子は、同一種類の圧電セラミックス粒子であっても、異なる種類の圧電セラミックス粒子であってもよい。同様に高分子樹脂シート同士、または高分子不織布同士においても、圧電セラミックス粒子は、同一種類の圧電セラミックス粒子であっても、異なる種類の圧電セラミックス粒子であってもよい。圧電素子を構成する積層体全体が同一組成を有する圧電セラミックス粒子を用いることが好ましい。
 圧電セラミックス粒子は、ペロブスカイト型結晶構造を有する圧電セラミックス粒子であることが好ましい。例えば、ニオブ、鉛、チタン、亜鉛、バリウム、ビスマス、ジルコニウム、ランタン、カリウム、ナトリウム、カルシウム、マグネシウムの元素のうち、1種以上を含む圧電セラミックス粒子が挙げられる。これらの中で、鉛を含有しないNKN粒子、またはチタン酸バリウム粒子が人体および環境への安全に優れる点からより好ましい。NKN粒子は、(Na0.50.5)NbO3で代表されるセラミックス粒子である。NKN粒子は炭酸ナトリウムと、炭酸カリウムと、酸化ニオブの固体反応によって製造することができる。
 圧電セラミックス粒子の平均粒子径は0.1μm~10μm、好ましくは0.5μm~5μm、より好ましくは1μm~2μmである。0.1μm未満では、高分子樹脂シートまたは高分子樹脂不織布への均一分散が困難であり、10μmを超えると高分子樹脂シートまたは高分子不織布の機械的強度が低下する。なお、本発明における平均粒子径は、レーザー回析法により測定・算出された50%粒子径(D50)である。
 圧電セラミックス粒子を高分子樹脂シートに配合する場合、圧電セラミックス粒子に高分子バインダーを用いて結合させた造粒粉とすることが好ましい。高分子バインダーは、高分子樹脂シートを構成する高分子材料とは異なる材料であることが好ましい。高分子バインダーとして具体的には、アクリル系、セルロース系、PVA系、ポリビニルアセタール系、ウレタン系、酢酸ビニル系高分子などが挙げられる。造粒粉を用いることにより、圧電セラミックス粒子の高充填化が可能となる。造粒の方法は特に限定されるものではなく、噴霧造粒、転動造粒、押出し造粒、圧縮造粒等、公知の方法を用いることができる。造粒粉の平均粒子径は10μm~100μm、好ましくは30μm~50μmである。
 高分子樹脂シートを構成する高分子材料は、その種類が特に限定されるものではなく、熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、合成ゴム、天然ゴムのいずれであってもよい。圧電素子の耐熱性を上げるためには、融点が150℃以上の結晶性樹脂、またはガラス転移点が150℃以上の非晶性樹脂がより好ましい。具体的には、PVA、ポリビニルブチラール(以下、PVBという)、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリサルホン、ポリフェニルサルホン、ポリエーテルサルホン、ポリアリレート、ポリフェニレンエーテル等の高分子材料が挙げられる。
 上記高分子材料に上記圧電セラミックス粒子が配合される。高分子樹脂シートは上記圧電セラミックス粒子と共に圧電性を有しない無機充填剤を配合することが好ましい。無機充填剤を配合する場合、シート層内での電荷移動を容易にする目的で導電性フィラーを配合することが好ましい。導電性フィラーとしては、黒鉛、カーボンブラック、カーボンナノチューブ、フラーレン、金属粉末、炭素繊維、金属繊維等が挙げられる。また、無機充填剤として、シート層の機械的強化を向上させるために補強材を配合できる。補強材としてはカーボンナノチューブ、ウィスカー、炭素繊維、ガラス繊維等が挙げられる。
 高分子樹脂シートは、圧電セラミックス粒子を50~80体積%含有し、残部が上記高分子材料とするか、または残部が高分子材料および圧電性を有しない上記無機充填剤であることが好ましく、圧電セラミックス粒子の配合量は70~80体積%であることがより好ましい。高分子樹脂シートに圧電セラミックス粒子が高充填されていると高分子樹脂シート層の表面に電荷が誘起され易くなる。また、高分子樹脂シートにおいて、上記高分子材料は少なくとも20体積%配合されていることが好ましい。圧電セラミックス粒子が50体積%未満では圧電性が向上せず、80体積%を超えると高分子樹脂シートの機械的強度が低下する。なお、配合割合の算出において、圧電セラミックス粒子は、上記造粒粉とする前の粒子をいう。
 高分子樹脂シートの製造方法は、薄いシート状とできる方法であれば使用できる。本発明においては、上記高分子材料を溶解させた水または有機溶剤中に、上記圧電セラミックス粒子等の充填材を分散させてスラリーを製造し、このスラリーを支持体上に塗布して薄膜とし、水または有機溶剤を乾燥等により除去する製造方法が好ましい。スラリーを支持体上に塗布する方法はドクターブレード法に代表されるテープキャスト法、スピンコート法等、公知の方法を用いることができる。
 高分子樹脂シート1枚の厚さは、10~100μm、好ましくは30~50μmである。高分子樹脂シート層の厚みが10μm未満では圧電素子としたときの機械的強度が低下し、100μmを超えると柔軟性が低下して圧電素子に振動を与えた際にクラックを生じる場合がある。
 高分子不織布は、繊維化した高分子材料を熱・機械的または化学的な作用によって接着または絡み合わせることで布にしたものであれば使用できる。高分子不織布を構成する繊維の平均直径は0.05~5μmであることが好ましく、0.5~1μmがより好ましい。平均直径が5μmより大きいと、不織布層のポーラスの体積が減少するため発電性能が低下する。また、平均直径が0.05μm未満では、繊維が圧電セラミックス粒子に与える応力が小さくなり、発電性能が低下する。なお、本発明における繊維の平均直径は、走査型電子顕微鏡で得られた画像により測定・算出された平均値である。
 高分子不織布となる高分子材料は、その種類が特に限定されるものではなく、また、分子構造に起因する圧電性の有無は問わない。耐熱性の点から、融点が150℃以上の結晶性樹脂、またはガラス転移点が150℃以上の非晶性樹脂が好ましく、柔軟性に優れるものがより好ましい。具体的には、PVA、PVB、PVDF、四フッ化エチレン-エチレン共重合体、四フッ化エチレン-六フッ化プロピレン共重合体、四フッ化エチレン-パーフルオロアルコキシエチレン共重合体等が挙げられる。
 高分子不織布に上記圧電セラミックス粒子が保持または配合される。高分子不織布は上記圧電セラミックス粒子と共に圧電性を有しない無機充填剤を保持または配合することが好ましい。無機充填剤としては、不織布層内での電荷移動を容易にする目的で導電性フィラーを保持または配合することが好ましい。導電性フィラーとしては、黒鉛、カーボンブラック、カーボンナノチューブ、フラーレン、金属粉末等が挙げられる。また、無機充填剤として、不織布層の機械的強化を向上させるために補強材を保持または配合できる。補強材としてはカーボンナノチューブ、ウィスカー等が挙げられる。ここで保持されるとは、高分子不織布の繊維間に圧電セラミックス粒子が固定されることであり、配合するとは、繊維化した高分子材料の内部に圧電セラミックス粒子が含有されていることをいう。
 高分子不織布は、圧電セラミックス粒子を30~60体積%保持または配合し、残部が上記繊維化した高分子材料とするか、または残部が上記繊維化した高分子材料および圧電性を有しない上記無機充填剤であることが好ましく、圧電セラミックス粒子の保持または配合量は50~60体積%であることがより好ましい。また、繊維化した高分子材料は少なくとも40体積%配合されていることが好ましい。圧電セラミックス粒子が30体積%未満では圧電性が向上せず、60体積%を超えると高分子不織布の機械的強度が低下する。
 高分子不織布の製造方法は、平均直径が0.05~5μmの繊維を用いて薄い不織布とできる方法であれば使用できる。本発明においては、高分子材料を水または有機溶剤に溶解させた溶液に上記圧電セラミックス粒子を分散することで得たスラリーを用いて、電界紡糸法により製造することが好ましい。電界紡糸法は、電界紡糸装置のシリンジのニードルと、コレクターとの間に電圧を印加し、シリンジ内のスラリーをコレクターに向かって射出することで不織布を作製する方法である。コレクターの形状はドラム型、ディスク型、プレート型等、特に限定されるものではないが、大面積の不織布を作製できるドラム型が好ましい。得られた不織布は乾燥させることで水または有機溶剤を除去できる。
 高分子不織布1枚の厚さは、10~300μm、好ましくは120~200μmである。高分子不織布の厚みが10μm未満では圧電素子としたときの圧電性が低下し、300μmを超えると圧電素子に振動を与えた際に高分子不織布の内部で破断が生じる場合がある。
 本発明の圧電素子は、上記高分子樹脂シートと高分子不織布との積層体を一体化させることで、シート状の圧電素子が得られる。一体化はプレスを用いて圧着する方法等が挙げられる。
 また、本発明の圧電素子の分極方法は、上記一体化された圧電素子に直流電界を印加する工程を含むことが好ましい。具体的な分極方法として、大気中にてコロナ放電を用いる方法、100~200℃に加熱したシリコーンオイル中にて直流電界を印加する方法等が挙げられる。
 本発明の圧電素子は、高分子樹脂シート層と不織布層を一体化させており、高分子樹脂シート層に圧電セラミックス粒子を高充填することで、圧電素子表面に電荷が誘起され易く、容易に電荷を取り出すことができる。また、不織布層に圧電セラミックス粒子を高充填することで、柔軟性を損ねることなく高い圧電性を発現できる。さらに、シート層の厚み、不織布層の厚み、シート層と不織布層の層数を最適化することで発電性能を向上させることができる。このため、本発明の圧電素子は振動発電、電流センサー、電圧センサーの用途に適用でき、特に環境振動を利用した振動発電に好適である。
実施例1~14、および比較例1~7
 圧電セラミックスとして用いたNKN粒子は、Na2CO3(純度99.9%)、K2CO3(純度99.9%)、Nb25(純度99.9%)を原料粉末とし、この原料粉末を十分に混合し、混合物を1098℃で2時間焼結した後、解砕することで平均粒子径1μmの粉末を作製した。この粉末を高分子バインダーであるポリウレタン溶液に分散させて、スプレードライヤー法により造粒粉を作製した。
 高分子樹脂シートは、PVAを7質量%溶解させた水溶液に、この造粒粉を分散させることで調整したスラリーを、支持体上にテープキャストすることで作製した。テープキャストにはドクターブレード型塗工機(株式会社井元製作所製:IMC-70F0-C型)を用いた。得られたシートを室温で乾燥させることで水を除去し、高分子樹脂シートとした。
 高分子不織布はPVDFを溶解させたジメチルスルホキシド溶液に上記NKN粒子を分散させたスラリーを電界紡糸することで作製した。電界紡糸装置は井元製作所製:IMC-1639型を用いた。PVDFを溶解させたジメチルスルホキシド溶液の濃度を0.11g/mLとし、PVDFに対して50体積%のNKN粒子を分散させたスラリーを用い、シリンジのニードルと、コレクターとの間に18kVの電圧を印加することで、シリンジ内のスラリーをコレクターに向かって射出し、不織布を作製した。得られた不織布は室温で乾燥させることでジメチルスルホキシドを除去し、高分子不織布とした。
 高分子樹脂シート、高分子不織布をそれぞれ13mm×28mmの大きさに切断し、交互に積層させた後、または高分子不織布を複数枚積層させた後、プレスにて圧力40MPa、温度65℃の条件で3分間加圧することで積層体を得た。積層体の構造および厚さ、高分子樹脂シートおよび高分子不織布に保持または配合されるNKN量、高分子樹脂シートおよび高分子不織布の厚さ、高分子不織布を構成する繊維の平均直径について表1および表2に示す。
 得られた積層体の裏表両面に、図3に示すように、銀ペースト8を塗布し、上部および下部電極を形成し、銅箔テープ9を取り付けて圧電素子を得た。この圧電素子を用いて、図4に示す回路を用いて、圧電素子の長手方向(図3に示す矢印方向)に170Hzの伸縮振動を与え、1振動当たりの発電量を測定した。結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例6に示すように、積層体として4-3構造の圧電素子が最大の発電量となる結果であった。また、高分子樹脂シート層中のNKN粒子配合量は多いほど発電量が大きい値であったが、比較例3(高分子樹脂シート1層の厚み40μm、NKN粒子配合量90体積%)、比較例4(高分子樹脂シート1層の厚み5μm、NKN粒子配合量70体積%)ではシート層の破断が生じたため発電量の測定ができなかった。また、発電量は、高分子不織布層の繊維の平均直径が0.05~5μmの範囲で良好な値を示した。表2に高分子不織布層の厚みによる発電量を示した。実施例13(高分子不織布1層の厚み200μm)が最も優れる結果であった。
 本発明は、環境振動を利用した振動発電の分野で使用できる。
 1 積層体
 2 高分子樹脂シート
 3 高分子不織布
 4 圧電セラミックス粒子
 5 不織布
 6 試料台
 7 針状電極
 8 銀ペースト
 9 銅箔テープ
 10 負荷抵抗
 11 オシロスコープ

Claims (7)

  1.  圧電セラミックス粒子が保持または配合された高分子不織布と、圧電セラミックス粒子が配合された高分子樹脂シートとを、前記高分子不織布が少なくとも1層含まれるように積層された積層体からなる圧電素子であって、
     前記積層体は、前記高分子不織布1層の2つの主平面側に前記高分子樹脂シートがそれぞれ1層ずつ積層された積層体より発生する発電量以上の発電量を実現できる積層体であることを特徴とする圧電素子。
  2.  前記高分子不織布は、この高分子不織布を構成する繊維の平均直径が0.05~5μmであり、30~60体積%の圧電セラミックス粒子が保持または配合されている1層の厚さが10~300μmの不織布であり、
     前記高分子樹脂シートは、50~80体積%の圧電セラミックス粒子が配合されている1層の厚さが10~100μmのシートであることを特徴とする請求項1記載の圧電素子。
  3.  前記積層体は、前記高分子不織布が複数枚積層されていることを特徴とする請求項1記載の圧電素子。
  4.  前記積層体の2つの主平面側がいずれも前記高分子樹脂シートであることを特徴とする請求項3記載の圧電素子。
  5.  前記積層体は、前記高分子不織布と前記高分子樹脂シートとが交互に積層されていることを特徴とする請求項1記載の圧電素子。
  6.  前記積層体の2つの主平面側がいずれも前記高分子樹脂シートであることを特徴とする請求項5記載の圧電素子。
  7.  圧電セラミックス粒子が保持または配合された高分子不織布と、圧電セラミックス粒子が配合された高分子樹脂シートとを、前記高分子不織布が少なくとも1層含まれるように積層させる工程と、
     前記積層された積層体をプレスを用いて圧着することで一体化する工程とを含む圧電素子の製造方法であって、
     前記圧電セラミックス粒子が保持または配合された高分子不織布は、高分子を水または有機溶剤に溶解させた溶液に前記圧電セラミックス粒子を分散することで得たスラリーを電界紡糸する電界紡糸法によって製造された高分子不織布であることを特徴とする請求項1記載の圧電素子の製造方法。
PCT/JP2017/037030 2016-10-12 2017-10-12 圧電素子およびその製造方法 WO2018070483A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/341,881 US20190229255A1 (en) 2016-10-12 2017-10-12 Piezoelectric element and method of manufacturing the same
CN201780063178.2A CN109997238A (zh) 2016-10-12 2017-10-12 压电元件及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016200863 2016-10-12
JP2016-200863 2016-10-12
JP2017198502A JP7097564B2 (ja) 2016-10-12 2017-10-12 圧電素子
JP2017-198502 2017-10-12

Publications (1)

Publication Number Publication Date
WO2018070483A1 true WO2018070483A1 (ja) 2018-04-19

Family

ID=61967995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037030 WO2018070483A1 (ja) 2016-10-12 2017-10-12 圧電素子およびその製造方法

Country Status (4)

Country Link
US (1) US20190229255A1 (ja)
JP (1) JP7097564B2 (ja)
CN (1) CN109997238A (ja)
WO (1) WO2018070483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560002B1 (fr) * 2016-12-20 2022-06-15 Compagnie Générale des Etablissements Michelin Composites piézoélectriques en matrice souple

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130296B1 (en) * 2020-03-24 2021-09-28 Prince Mohammad Bin Fahd University Method of forming electrically and thermally conductive polyolefin-perovskite nanomaterial composites having increased dielectric permittivity and breakdown-induced electrical and thermal conduction pathways
CN111575918B (zh) * 2020-05-26 2022-08-02 哈尔滨理工大学 一种具有双梯度结构的聚醚酰亚胺基复合介质及其制备方法与应用
JP7445574B2 (ja) 2020-09-25 2024-03-07 株式会社Ihiエアロスペース 発電機能性プリプレグシート及び発電機能性複合材と発電機能性プリプレグシートの製造方法
CN112281222A (zh) * 2020-10-28 2021-01-29 中科传感技术(青岛)研究院 一种静电纺丝法制备压电陶瓷粉的工艺
CN112695462A (zh) * 2020-12-25 2021-04-23 湖北科技学院 一种具有多层梯度结构的复合电介质材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021176A (ja) * 2011-07-12 2013-01-31 Fujifilm Corp 圧電素子
JP2013225608A (ja) * 2012-04-23 2013-10-31 Fujifilm Corp エネルギ変換素子およびその製造方法
WO2015005420A1 (ja) * 2013-07-10 2015-01-15 日本バルカー工業株式会社 圧電性シート、該シートの製造方法および圧電積層体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591461B (zh) * 2009-06-24 2011-04-27 四川大学 无铅压电陶瓷-聚合物压电复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021176A (ja) * 2011-07-12 2013-01-31 Fujifilm Corp 圧電素子
JP2013225608A (ja) * 2012-04-23 2013-10-31 Fujifilm Corp エネルギ変換素子およびその製造方法
WO2015005420A1 (ja) * 2013-07-10 2015-01-15 日本バルカー工業株式会社 圧電性シート、該シートの製造方法および圧電積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO, MINATO ET AL.: "Processing and energy-harvesting ability of (Na, K)Nb03 particle-dispersed fibrous polyvinylidene fluoride multilayer composite", MATERIALS LETTERS, vol. 156, 1 October 2015 (2015-10-01), pages 183 - 186, XP029174949 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560002B1 (fr) * 2016-12-20 2022-06-15 Compagnie Générale des Etablissements Michelin Composites piézoélectriques en matrice souple

Also Published As

Publication number Publication date
JP2018064097A (ja) 2018-04-19
JP7097564B2 (ja) 2022-07-08
CN109997238A (zh) 2019-07-09
US20190229255A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018070483A1 (ja) 圧電素子およびその製造方法
Habib et al. A review of ceramic, polymer and composite piezoelectric materials
US11171281B2 (en) Piezoelectric nanoparticle-polymer composite structure
Shi et al. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity
Zhang et al. Novel piezoelectric paper‐based flexible nanogenerators composed of batio3 nanoparticles and bacterial cellulose
Du et al. Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators
JP5615988B1 (ja) 圧電積層体
Choi et al. Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle
JP5860350B2 (ja) 高分子複合圧電体及びそれを用いた圧電素子
Ganeshkumar et al. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers
Nivedhitha et al. Polyvinylidene fluoride, an advanced futuristic smart polymer material: A comprehensive review
JP2010520633A (ja) 圧電複合材料
Ansari et al. Piezoelectric polymeric foams as flexible energy harvesters: a review
Zhang et al. PVDF-based and its copolymer-based piezoelectric composites: Preparation methods and applications
Sharma et al. Recent progress on polyvinylidene difluoride-based nanocomposites: applications in energy harvesting and sensing
Kato et al. Processing and energy-harvesting ability of (Na, K) NbO3 particle-dispersed fibrous polyvinylidene fluoride multilayer composite
WO2015026928A1 (en) Electrospinning to form nanofibers
JP2019169561A (ja) 圧電素子およびその製造方法
JP2019079989A (ja) 圧電素子およびその製造方法
JP6908228B2 (ja) 圧電素子
Bajaj et al. Flexible carbon nanofiber electrodes for a lead zirconate titanate nanogenerator
Kou et al. Fabrication of lead-free Ba (Zr0. 2Ti0. 8) O3–(Ba0. 7Ca0. 3) TiO3 nanoparticles and the application in flexible piezoelectric nanogenerator
JP2020145408A (ja) 圧電素子および圧電素子シート
Rodrigues-Marinho et al. Introduction to piezoelectricity and electrospun piezoelectric materials and devices
KR101671673B1 (ko) 전기장을 이용해 수직 정렬된 압전 나노 입자를 이용한 플렉서블 압전소자 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860700

Country of ref document: EP

Kind code of ref document: A1