WO2018070367A1 - Vehicle control apparatus - Google Patents

Vehicle control apparatus Download PDF

Info

Publication number
WO2018070367A1
WO2018070367A1 PCT/JP2017/036598 JP2017036598W WO2018070367A1 WO 2018070367 A1 WO2018070367 A1 WO 2018070367A1 JP 2017036598 W JP2017036598 W JP 2017036598W WO 2018070367 A1 WO2018070367 A1 WO 2018070367A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
command value
rotation speed
main motor
locked state
Prior art date
Application number
PCT/JP2017/036598
Other languages
French (fr)
Japanese (ja)
Inventor
征輝 西山
広文 山下
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780063050.6A priority Critical patent/CN109843634B/en
Publication of WO2018070367A1 publication Critical patent/WO2018070367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicle control device.
  • Patent Document 1 a vehicle drive system using an electric motor as a vehicle drive source is known.
  • the motor is controlled by periodically outputting a torque command value to the inverter when the motor is locked.
  • An object of the present disclosure is to provide a rotating electrical machine control device that can prevent a vehicle from jumping out or sliding down when it is released from a locked state.
  • the vehicle control device includes a lock determination unit and a motor drive control unit.
  • the lock determination unit determines whether or not the vehicle is in a locked state.
  • the motor drive control unit includes a rotation speed command calculation unit that calculates a rotation speed command value related to the rotation speed of the main motor that is a drive source of the vehicle.
  • the motor drive control unit controls driving of the main motor by rotation speed control that is control using a rotation speed command value that is periodically changed.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle according to an embodiment.
  • FIG. 2 is an explanatory diagram illustrating a control device according to an embodiment.
  • FIG. 3 is a block diagram illustrating an MG control unit according to an embodiment.
  • FIG. 4 is an explanatory diagram illustrating a torque limit value according to an embodiment.
  • FIG. 5 is a flowchart illustrating motor control processing according to an embodiment.
  • FIG. 6 is an explanatory diagram illustrating phase currents according to an embodiment.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle according to an embodiment.
  • FIG. 2 is an explanatory diagram illustrating a control device according to an embodiment.
  • FIG. 3 is a block diagram illustrating an MG control unit according to an embodiment.
  • FIG. 4 is an explanatory diagram illustrating a torque limit value according to an embodiment.
  • FIG. 5 is a flowchart illustrating motor control processing according to an embodiment.
  • FIG. 6 is an explanatory diagram
  • FIG. 7 is a time chart for explaining the rotational speed command value and the MG rotational speed when the vehicle is in a non-hill-climbing locked state in one embodiment of the present invention.
  • FIG. 8 is a time chart illustrating a motor control process according to an embodiment.
  • FIG. 9 is a time chart for explaining the rotational speed command value and the MG rotational speed when the vehicle is in the uphill lock state in one embodiment.
  • FIG. 10 is a time chart illustrating motor control processing according to a reference example.
  • FIGS. 1 and 2 One embodiment is shown in FIGS.
  • the vehicle 90 of the present embodiment is an EV vehicle that travels with the driving force of the main motor 3.
  • the main motor 3 of the present embodiment is a permanent magnet type synchronous three-phase AC rotating electric machine, and is a so-called “motor generator” having both a function as an electric motor and a function as a generator.
  • the main motor 3 is appropriately set as “MG” and the main motor 3 functions as an electric motor will be mainly described.
  • currents that are passed through the phases of the main motor 3 are referred to as phase currents Iu, Iv, and Iw.
  • the main motor 3 is provided with a rotation angle sensor 4 that detects the rotation angle.
  • the driving force of the main motor 3 is transmitted to the drive shaft 91 via the clutch 81 and the transmission 82.
  • the driving force transmitted to the drive shaft 91 rotates the drive wheels 95 via the gear 92 and the axle 93.
  • the forward direction is the direction in which the vehicle 90 is moved forward
  • the reverse direction is the direction in which the vehicle 90 is moved backward.
  • the clutch 81 is provided between the main motor 3 and the transmission 82, and is configured to be able to connect and disconnect the main motor 3 and the transmission 82.
  • the transmission 82 is a continuously variable transmission (CVT) that can change continuously.
  • CVT continuously variable transmission
  • the drive wheel 95 is provided with a brake 97.
  • the brake 97 is a friction braking device such as a disc brake.
  • the vehicle 90 is braked by the regenerative brake of the main motor 3 and the frictional force of the brake 97.
  • the brake 97 is also provided on the wheel.
  • the main battery 10 is a secondary battery such as nickel metal hydride or lithium ion, and is configured to be chargeable / dischargeable. Main battery 10 is charged and discharged so that SOC (State of charge) falls within a predetermined range.
  • the main battery 10 may be composed of an electric double layer capacitor or the like.
  • relay unit 15 is provided between main unit battery 10 and inverter 20.
  • the relay unit 15 includes a high potential side relay 16 provided on the high potential side wiring 11 and a low potential side relay 17 provided on the low potential side wiring 12.
  • the high potential side relay 16 and the low potential side relay 17 may be mechanical relays or semiconductor relays.
  • Relay unit 15 switches between conduction and interruption between main unit battery 10 and main unit motor 3.
  • the main unit battery 10 and the main unit motor 3 are brought into conduction by turning on the relay unit 15, and the main unit battery 10 and the main unit motor 3 are cut off by being turned off.
  • the inverter 20 includes a drive circuit 21, a capacitor 25, and an MG control unit 52.
  • control unit is described as “ECU”.
  • Drive circuit 21 includes a three-phase inverter having six switching elements 211-216.
  • the switching elements 211 to 216 are all IGBTs and are provided so as to be able to dissipate heat on both sides.
  • the drive circuit 21 is cooled by an inverter cooler (not shown) through which cooling water circulates.
  • the switching elements 211 to 213 connected to the high potential side are connected to the collectors of the low potential side switching elements 214 to 216 whose collectors are connected to the high potential side wiring 11 and whose emitters are respectively paired.
  • the emitters of the switching elements 214 to 216 connected to the low potential side are connected to the low potential side wiring 12.
  • a connection point between the paired high potential side switching elements 211 to 213 and the low potential side switching elements 214 to 216 is connected to one end of each phase winding of the main motor 3.
  • the high-potential side switching elements 211 to 213 and the low-potential side switching elements 214 to 216 that are paired are alternately and complementarily turned on and off based on the drive signal from the MG control unit 52.
  • the inverter 20 converts the DC power into three-phase AC power by controlling the on / off operation of the switching elements 211 to 216, and outputs it to the main motor 3.
  • a boost converter (not shown) is provided between the drive circuit 21 and the relay unit 15, and a voltage boosted by the boost converter is applied to the drive circuit 21.
  • the capacitor 25 is connected to the drive circuit 21 in parallel.
  • the control device 50 includes a vehicle control unit 51, an MG control unit 52, a brake control unit 59, and the like.
  • the vehicle control unit 51, the MG control unit 52, and the brake control unit 59 are all composed mainly of a microcomputer or the like.
  • Each process in the vehicle control unit 51, the MG control unit 52, and the brake control unit 59 may be a software process in which a CPU stores a program stored in advance in a substantial memory device such as a ROM. Hardware processing by a dedicated electronic circuit may be used.
  • the vehicle control unit 51, the MG control unit 52, and the brake control unit 59 are connected via a vehicle communication network 60 such as a CAN (Controller Area Network) and can exchange information.
  • a vehicle communication network 60 such as a CAN (Controller Area Network)
  • the vehicle control unit 51 acquires signals from an accelerator sensor, a shift switch, a brake switch, a vehicle speed sensor and the like (not shown), and controls the entire vehicle 90 based on the acquired signals.
  • the vehicle control unit 51 calculates a torque command value trq * for driving the main motor 3 based on the accelerator opening and the vehicle speed. Torque command value trq * is output to MG control unit 52.
  • the vehicle control unit 51 controls the engagement state of the clutch 81.
  • an intermediate state between the state where the clutch 81 is completely engaged and the state where it is completely separated is referred to as a “half-clutch state”.
  • the vehicle control unit 51 controls the clutch 81 and corresponds to a “clutch control unit”.
  • the brake control unit 59 controls the brake 97.
  • the brake control unit 59 corresponds to a “brake control unit”.
  • the MG control unit 52 controls the driving of the main motor 3 by controlling the on / off operation of the switching elements 211 to 216 based on the torque command value trq * and the detection value of the rotation angle sensor 4 and the like.
  • driving of the main motor 3 is controlled by current feedback control. Instead of the current feedback control, torque feedback control or the like may be used.
  • the MG control unit 52 includes a rotation speed calculation unit 53, a lock determination unit 54, a torque limiting unit 55, a drive control unit 56 as a motor drive control unit, and the like.
  • the rotation speed calculation unit 53 calculates the MG rotation speed ⁇ that is the rotation speed of the main motor 3 based on the detection value of the rotation angle sensor 4.
  • the lock determination unit 54 determines whether or not the vehicle 90 is in a locked state.
  • the locked state of the vehicle 90 is a state in which the vehicle 90 is stopped due to an obstacle or the like even though the accelerator pedal is depressed, or the vehicle 90 is an ascending slope, and the vehicle 90 is not used. This is a state in which 90 stops are maintained.
  • “Climbing slope” means a state in which the front of the vehicle is on the upper side in the vertical direction compared to the rear, and the vehicle 90 is inclined at a predetermined inclination angle or more.
  • the lock determination unit 54 Judge that there is.
  • the lock determination threshold ⁇ th, the torque determination threshold trq_th, and the continuation determination time Xth can be arbitrarily set.
  • the lock determination threshold ⁇ th is 50 [rpm]
  • the torque determination threshold trq_th is 50 [Nm]
  • the continuation determination time Xth is 3 [s].
  • the torque limiter 55 limits the torque command value trq * according to the torque limit value trq_lim.
  • the torque limiter 55 directly sets the torque command value trq * as the post-limit torque command value trq_a * .
  • the torque limiter 55 sets the torque limit value trq_lim as the post-limit torque command value trq_a * .
  • Torque limiting unit 55 limits torque command value trq * based on cooling water temperature Wt that is the temperature of cooling water for cooling drive circuit 21 when vehicle 90 is in a locked state. As shown in FIG. 4, when the coolant temperature Wt is equal to or lower than the first threshold value Wt1, the torque limit value trq_lim is set as the lock maximum limit value trq_max. When the cooling water temperature Wt is higher than the first threshold value Wt1 and lower than or equal to the second threshold value Wt2, the torque limit value trq_lim is made smaller as the cooling water temperature Wt becomes higher. In FIG. 4, the torque limit value trq_lim is described so as to be linearly decreased.
  • the torque limit value trq_lim may be decreased nonlinearly.
  • the torque limit value trq_lim is set to the minimum limit value trq_min.
  • the minimum limit value trq_min is set to such an extent that it can be evacuated.
  • the MG torque trq is not uniformly limited so as to be the minimum limit value trq_min, but the cooling water temperature Wt is low and the cooling performance has a margin. It can also be understood that the torque limit is relaxed compared to the case where the coolant temperature Wt is high.
  • FIG. 4 illustrates the torque limitation based on the cooling water temperature Wt at the time of lock determination, but torque limitation based on the element temperature that is the temperature of the switching elements 211 to 216 is performed separately even at times other than the lock determination. Further, when the element temperature exceeds the overheat protection temperature, the torque limit value trq_lim is decreased, and when the element temperature exceeds the overheat abnormality determination value TmpH, the torque limit value trq_lim is set to 0 for component protection and the driving of the main motor 3 is stopped. .
  • the drive control unit 56 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216, and controls the switching elements 211 to 216 based on the drive signal, thereby driving the main motor 3.
  • the drive control unit 56 includes a rotation speed control unit 57 and a torque control unit 58.
  • the rotation speed control unit 57 includes a rotation speed command calculation unit 571, a subtracter 572, a controller 573, and an adder 574.
  • the rotation speed command calculation unit 571 calculates the rotation speed command value ⁇ * .
  • the subtractor 572 subtracts the MG rotational speed ⁇ from the rotational speed command value ⁇ * to calculate the rotational speed deviation ⁇ .
  • the controller 573 calculates the fluctuation torque command value trq * _f by PI calculation or the like so that the rotation speed deviation ⁇ is zero.
  • the adder 574 adds the fluctuation torque command value trq * _f to the post-restricted torque command value trq * _a, and calculates the torque command value trq_ ⁇ * during rotation speed control.
  • the rotation speed control of the present embodiment is control based on the MG rotation speed ⁇ and the rotation speed command value ⁇ * to be fed back, and can be said to be rotation speed feedback control.
  • the torque control unit 58 When performing the rotational speed control, the torque control unit 58 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216 based on the rotational speed control torque command value trq_ ⁇ * . Further, when the rotational speed control is not performed, the torque control unit 58 generates a drive signal based on the post-limit torque command value trq_a * .
  • the driving wheel 95 of the vehicle 90 may be locked due to an obstacle or an uphill.
  • the main motor 3 When in the locked state, the main motor 3 is not rotating or the rotation speed is small, so that current concentrates in a specific phase according to the position of the rotor. If the state where current concentrates in a specific phase is continued, the temperature of the switching element in the current concentration phase may increase. Further, if the temperature of the switching element exceeds the overheat abnormality determination value TmpH, a failure determination is made and the driving of the main motor 3 cannot be continued.
  • the main motor 3 is controlled by the rotational speed control that controls the MG rotational speed ⁇ , thereby avoiding current concentration on a specific phase and the vehicle 90 when it is released from the locked state. Suppresses jumping and sliding.
  • step S101 The motor control process of this embodiment is demonstrated based on the flowchart of FIG. This process is executed by the control device 50 at a predetermined interval (for example, 100 “ms”) while the start switch of the vehicle 90 is on.
  • a predetermined interval for example, 100 “ms”
  • step S101 the MG control unit 52 acquires the torque command value trq * from the vehicle control unit 51.
  • the lock determination unit 54 determines whether or not the vehicle 90 is in a locked state. When it is determined that the vehicle 90 is not in the locked state (S102: NO), the process proceeds to S110. When it is determined that the vehicle 90 is in the locked state (S102: YES), the process proceeds to S103.
  • the torque limiting unit 55 calculates a post-limit torque command value trq_a * based on the coolant temperature Wt.
  • the MG control unit 52 determines whether or not the coolant temperature Wt is higher than the rotation speed control threshold value Wt_r.
  • the rotation speed control threshold value Wt_r is set to the second threshold value Wt2, but may be a value different from the second threshold value Wt2.
  • the vehicle control unit 51 places the clutch 81 in a half-clutch state.
  • the MG control unit 52 determines whether or not the vehicle 90 is on an ascending slope. Whether the vehicle 90 is climbing or not may be determined inside the MG control unit 52 based on the detected value of the G sensor or the like acquired from the vehicle control unit 51, or the vehicle control unit 51 may You may judge based on information, such as a flag based on the judgment result which judged the inclination state.
  • S106: YES the process proceeds to S107. If it is determined that the vehicle 90 is not climbing (S106: NO), the process proceeds to S108.
  • the rotational speed command calculation unit 571 calculates the uphill rotational speed command value ⁇ C * as the rotational speed command value ⁇ * . In S108, the rotation speed command calculation unit 571 calculates the non-hill-climbing rotation speed command value ⁇ L * as the rotation speed command value ⁇ * .
  • the drive control unit 56 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216 by the rotation speed control based on the rotation speed command value ⁇ * .
  • the drive signal is generated based on the rotational speed control torque command value trq_ ⁇ * calculated based on the rotational speed command value ⁇ * .
  • the post-restricted torque command value trq * _a is calculated based on the element temperature or the like.
  • the drive control unit 56 does not perform the rotation speed control and generates a drive signal by torque control. To do. Specifically, the drive signal is generated based on the post-limit torque command value trq_a * .
  • the rotational speed command value ⁇ * will be described. Since the main motor 3 of the present embodiment is a three-phase motor, as shown in FIG. 6, by rotating the electrical angle by 120 ° or more, at least two-phase current becomes zero once and the current is maximum. The phases become. In addition, since the positive / negative of the phase currents Iu, Iv, Iw corresponds to the energization direction, the “phase with the maximum current” is the phase with the largest absolute value of the phase currents Iu, Iv, Iw. In the present embodiment, the rotational speed command value ⁇ * is set so that the main motor 3 rotates at an electrical angle of 120 ° or more during the switching periods PL and PC.
  • FIG. 7 The rotational speed control in a non-hill-climbing locked state where the vehicle 90 is other than the climbing slope and is locked by an obstacle or the like will be described with reference to FIGS. 7 and 8.
  • the non-uphill rotation speed command value ⁇ L * is shown in the upper stage
  • the MG rotation speed ⁇ is shown in the lower stage.
  • the first half period in one cycle of the switching cycle PL is set as the forward rotation period
  • the non-hill-climbing rotation speed command value ⁇ L * is set as the first command value ⁇ L1 * .
  • the latter half of the switching period PL is set as the reverse rotation period
  • the non-hill-climbing rotation speed command value ⁇ L * is set as the second command value ⁇ L2 * .
  • MG rotation speed ⁇ changes periodically.
  • the first command value ⁇ L1 * is positive
  • the second command value ⁇ L2 * is negative
  • the absolute values are equal
  • the length of the forward rotation period and the length of the reverse rotation period in the switching cycle PL are equal.
  • the switching period PL can be arbitrarily set, but is about 150 [ms], for example.
  • the first command value ⁇ L1 * is, for example, 30 [rpm]
  • the second command value ⁇ L2 * is, for example, ⁇ 30 [rpm].
  • the absolute values of the first command value ⁇ L1 * and the second command value ⁇ L2 * may be different. Further, the lengths of the forward rotation period and the reverse rotation period may be different.
  • the first command value ⁇ L1 * and the second command value ⁇ L2 * are rotated at an electrical angle of 60 ° or more in the forward rotation direction, rotated at an electrical angle of 60 ° or more in the reverse rotation direction, and aligned in the forward and reverse directions for an electrical angle of 120 ° or more. Determined to rotate. For example, if the number of magnetic poles is 4, to rotate the electrical angle by 120 °, the mechanical angle is 30 °, that is, the mechanical angle is 15 ° in the positive direction and the mechanical angle is 15 in the reverse direction in the switching cycle PL. Rotate for ° minutes.
  • a clutch 81, a transmission 82, and a gear 92 are provided between the main motor 3 and the axle 93.
  • the clutch 81, the transmission 82, and the gear 92 have backlash.
  • the total backlash existing between the main motor 3 and the axle 93 is simply referred to as “gear backlash”.
  • the axle 93 does not rotate. In other words, if the main motor 3 is rotating within the range of the gear backlash, the locked state is continued.
  • the non-climbing rotation speed command value ⁇ L * is determined so that the forward rotation and the reverse rotation of the main motor 3 are switched within the range of the gear backlash.
  • FIG. 8 is an example when the vehicle 90 is in a non-hill-climbing locked state.
  • the horizontal axis is the common time axis, and from the top, the accelerator opening, the vehicle speed, the MG rotation speed ⁇ , the MG torque trq, the lock determination, the cooling water temperature Wt, the element temperature, and the fail determination are shown.
  • the element temperature indicates the temperature of the switching element having the highest temperature.
  • the lock determination was “1” when in the locked state and “0” when in the locked state.
  • the time scale and the like are appropriately changed in FIG. The same applies to FIG.
  • the MG torque trq increases. At this time, when the vehicle 90 is locked due to an obstacle or the like, the main motor 3 does not rotate.
  • the MG torque trq exceeds the torque determination threshold trq_th at time x12 and this state continues for the continuation determination time Xth, a lock determination is made at time x13.
  • the MG torque trq is limited from time x14 when the cooling water temperature Wt exceeds the first threshold value Wt1, and is limited to the minimum limit value trq_min at time x15 when it exceeds the second threshold value Wt2.
  • the MG control unit 52 Is switched to rotation speed control. Specifically, as described with reference to FIG. 7, the first command value ⁇ L1 * and the second command value ⁇ L2 * are switched as the non-hill-climbing rotation speed command value ⁇ L * .
  • the main motor 3 is switched between the forward rotation and the reverse rotation to prevent current concentration in a specific phase. Yes.
  • FIG. 10 is a time chart according to a reference example.
  • the horizontal axis is the common time axis, and the MG rotation speed ⁇ , the MG torque trq, the lock determination, the phase currents Iu, Iv, Iw, the temperature of the switching element 212, and the fail determination are shown from the top.
  • the lock determination threshold ⁇ th is assumed to be 0.
  • the MG rotation speed ⁇ becomes 0 at time x91 and the state where the MG torque trq is larger than the torque determination threshold trq_th continues for the continuation determination time Xth
  • the lock determination is made at time x92.
  • the cooling water temperature Wt rises as the temperature of the switching element rises due to the locked state
  • the torque command value trq * is restricted and the MG torque trq is restricted.
  • the cooling water temperature Wt is not shown.
  • the rotational speed command value ⁇ * is periodically switched. Thereby, even if the locked state continues, current concentration on a specific phase is prevented and file determination is avoided, so that the main motor 3 can be continuously driven in the locked state. .
  • the uphill rotational speed command value ⁇ C * is shown in the upper stage
  • the MG rotational speed ⁇ is shown in the lower stage.
  • the uphill rotation speed command value ⁇ C * of the first half period in one cycle of the switching period PC is set to the first command value ⁇ C1 *
  • the uphill rotation speed command value ⁇ C * of the second half period is set to the second time.
  • the command value is ⁇ C2 * . If the main motor 3 is reversely rotated in the climbing lock state, the vehicle 90 may slip down.
  • the first command value ⁇ C1 * is a positive value, for example, 60 [rpm].
  • the second command value ⁇ C2 * is set to 0.
  • the second command value ⁇ C2 * may be a positive value different from the first command value ⁇ C1 * .
  • a climbing time of rotation speed command value .omega.C * is equal to the a period of the first command value Omegashi1 * period to the second command value Omegashi2 *, it may be different .
  • the switching cycle PC in the uphill lock state and the switching cycle PL in the non-uphill locked state are the same, but they may be different.
  • the forward rotation and the stop of the main motor 3 are switched in small increments to prevent current concentration in a specific phase.
  • the main motor 3 is not reversely rotated to prevent the vehicle 90 from moving down, so the vehicle 90 moves forward at a slow speed. At this time, whether the locked state is released or continued depends on the MG torque trq, the gradient, and the like.
  • the brake control unit 59 controls the brake 97. This prevents the vehicle 90 from sliding down.
  • the main motor 3 is stopped if it is not necessary to continue the locked state by the main motor 3.
  • the brake control unit 59 controls the brake 97 to brake the vehicle 90 and stop the main motor 3. If the main motor 3 is stopped, the element temperature and the cooling water temperature are lowered.
  • the MG rotational speed ⁇ is periodically changed by rotational speed control. Thereby, it is possible to continue driving the main motor 3 in the locked state by preventing current concentration on a specific phase and preventing temperature rise of a specific element due to current concentration. Further, since the MG rotational speed ⁇ in the locked state is controlled, even when the locked state is released, the rotational speed does not change suddenly, and unexpected jumping out or sliding down of the driver can be prevented.
  • the control device 50 of the present embodiment includes the lock determination unit 54 and the drive control unit 56.
  • the lock determination unit 54 determines whether or not the vehicle 90 is in a locked state.
  • the drive control unit 56 includes a rotation speed command calculation unit 571 that calculates a rotation speed command value ⁇ * related to the control of the rotation speed of the main motor 3 that is a drive source of the vehicle 90.
  • the drive control unit 56 controls the driving of the main motor 3 by rotation speed control that is control using the rotation speed command value ⁇ * that is periodically changed.
  • the rotation speed command calculation unit 571 switches the first command value and the second command value alternately as the rotation speed command value ⁇ * . Specifically, the rotational speed command calculation unit 571 switches the first command value ⁇ C1 * and the second command value ⁇ C2 * alternately when the vehicle 90 is on the climb slope, and when the vehicle 90 is not the climb slope, the first command The value ⁇ L1 * and the second command value ⁇ L2 * are alternately switched. As a result, the rotational speed command value ⁇ * can be appropriately switched.
  • the main motor 3 the rotational speed command value to be rotated in the forward direction omega * positive, and negative rotation speed command value omega * is rotated in the reverse direction.
  • the rotation speed command calculation unit 571 sets the first command value ⁇ C1 * to a positive value and sets the second command value ⁇ C2 * to 0 or the first command value ⁇ C1. A positive value different from * . Thereby, the vehicle 90 can be prevented from sliding down.
  • the rotation speed command calculating unit 571 sets the first command value ⁇ L1 * to a positive value and the second command value ⁇ L2 * to a negative value. To do. Thereby, the normal rotation and reverse rotation of the main motor 3 can be periodically repeated.
  • a gear backlash exists between the main motor 3 and the drive wheel 95.
  • the rotation speed command calculation unit 571 determines the first command value ⁇ L1 * and the second command value ⁇ L2 * so that the drive range of the main motor 3 is within the gear backlash range when in the non-hill climbing lock state. Since the main motor 3 is driven within the range of the gear backlash, the driving of the main motor 3 is not transmitted to the drive wheels 95. As a result, the MG rotation speed ⁇ can be switched periodically without causing the driver to feel uncomfortable.
  • the rotational speed command calculation unit 571 generates the first command so that the main motor 3 rotates at an electrical angle of 120 ° or more in one cycle of the switching cycle PL for switching between the first command value ⁇ L1 * and the second command value ⁇ L2 *.
  • the value ⁇ L1 * and the second command value ⁇ L2 * are determined.
  • the rotational speed command calculation unit 571 is configured so that the main motor 3 rotates at an electrical angle of 120 ° or more in one cycle of the switching cycle PC for switching between the first command value ⁇ C1 * and the second command value ⁇ C2 * .
  • First command value ⁇ C1 * and second command value ⁇ C2 * are determined. Thereby, the current concentration on the specific phase can be appropriately prevented.
  • the lock determination unit 54 continues the predetermined state in which the MG rotation speed ⁇ that is the rotation speed of the main motor 3 is smaller than the lock determination threshold value ⁇ th and the MG torque trq that is the torque of the main motor 3 is larger than the torque determination threshold trq_th.
  • it determines with the vehicle 90 being a locked state. Thereby, the locked state of the vehicle 90 can be determined appropriately.
  • the cooling water temperature Wt that is the temperature of the cooling water for cooling the inverter 20 that converts the electric power supplied to the main motor 3 is higher than the rotation speed control threshold value Wt_r. In this case, the rotational speed control is performed.
  • the cooling water temperature Wt is high and the element temperature is likely to rise, by controlling the rotational speed and changing the MG rotational speed ⁇ , it is possible to suppress the temperature rise at a specific location due to current concentration in a specific phase. it can.
  • the control device 50 includes a torque limiting unit 55 that limits the torque output from the main motor 3 based on the coolant temperature Wt when the vehicle 90 is in a locked state. Thereby, torque limitation can be appropriately performed according to the cooling performance.
  • the control device 50 is provided with a vehicle control unit 51 that controls a clutch 81 provided between the main motor 3 and the drive shaft 91.
  • the vehicle control unit 51 controls the engagement state of the clutch 81 to a half-clutch state between the fully engaged state and the completely separated state.
  • the control device 50 includes a brake control unit 59 that controls the brake 97 and stops the vehicle 90 when it is determined that the vehicle 90 is in the locked state and the moving amount of the vehicle 90 is larger than the sliding determination threshold value.
  • the vehicle 97 can be appropriately prevented from slipping down by controlling the brake 97.
  • a rotational speed command value is switched periodically by switching a 1st command value and a 2nd command value alternately.
  • the rotation speed command value may be periodically switched by sequentially switching three or more values. Further, the rotational speed command value may be periodically changed in any way.
  • a 1st command value and a 2nd command value are made into a different value by the case where a vehicle is a climbing gradient and the case except a climbing gradient.
  • the same rotational speed command value may be used regardless of the vehicle inclination state.
  • the rotation speed control when the coolant temperature is higher than the rotation speed control threshold, the rotation speed control is performed.
  • S104 in FIG. 5 may be omitted, and when the vehicle is locked, the rotational speed control may be performed regardless of the coolant temperature.
  • the clutch is controlled to the half-clutch state when the rotational speed control is performed.
  • S105 in FIG. 5 may be omitted, and the clutch may be completely engaged even during the rotational speed control without performing the half clutch control. Further, the clutch may not be provided.
  • control device includes three control units, a vehicle control unit, an MG control unit, and a brake control unit.
  • the number of control units constituting the control device may be two or less, or four or more. Further, as long as each control unit can exchange information by communication or the like, each process relating to the rotational speed control or the like may be performed by any control unit.
  • the main motor is a permanent magnet type three-phase AC rotating electric machine. In other embodiments, any main motor may be used.
  • (D) Vehicle In the above embodiment, the vehicle to which the power supply system control device is applied is an EV vehicle that travels using the power of one main motor. In other embodiments, a plurality of main motors may be provided. In another embodiment, the vehicle to which the rotating electrical machine control device is applied is not limited to an EV vehicle, but may be a hybrid vehicle including a main motor and a fuel cell vehicle as a drive source of the vehicle. As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

A vehicle control apparatus (50) is provided with: a lock determination unit (54); and a motor driving control unit (56). The lock determination unit (54) determines whether a vehicle (90) is in a locked state. The motor driving control unit (56) has a rotation speed command calculation unit (571) that calculates a rotation speed command value for controlling the rotation speed of a main machine motor (3) serving as a driving source for the vehicle (90). When the vehicle (90) is in the locked state, the motor driving control unit (56) controls driving of the main machine motor (3) through rotation speed control which uses the rotation speed command value which is periodically changed.

Description

車両制御装置Vehicle control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年10月12日に出願された特許出願番号2016-200687号に基づくものであり、ここにその記載内容を援用する。 This application is based on patent application No. 2016-200687 filed on Oct. 12, 2016, the description of which is incorporated herein by reference.
 本発明は、車両制御装置に関する。 The present invention relates to a vehicle control device.
 従来、車両の駆動源として電動機を用いる車両駆動システムが知られている。例えば特許文献1では、電動機のロック時に、インバータに対して周期的にトルク指令値を出力することによって電動機を制御している。 Conventionally, a vehicle drive system using an electric motor as a vehicle drive source is known. For example, in Patent Document 1, the motor is controlled by periodically outputting a torque command value to the inverter when the motor is locked.
特開2012-239276号公報JP 2012-239276 A
 しかしながら、特許文献1のように、トルク指令値に基づいて電動機を制御する場合、回転数は成り行きとなる。そのため、ロックされた状態から脱する際に、車両の飛び出しや、ずり下がりが生じる虞がある。
 本開示の目的は、ロック状態から脱したときの車両の飛び出しやずり下がりを防止可能な回転電機制御装置を提供することにある。
However, as in Patent Document 1, when the electric motor is controlled based on the torque command value, the number of revolutions becomes a result. Therefore, when the vehicle is released from the locked state, the vehicle may jump out or slip down.
An object of the present disclosure is to provide a rotating electrical machine control device that can prevent a vehicle from jumping out or sliding down when it is released from a locked state.
 本開示の車両制御装置は、ロック判定部と、モータ駆動制御部と、を備える。ロック判定部は、車両がロック状態か否かを判断する。モータ駆動制御部は、車両の駆動源である主機モータの回転数に係る回転数指令値を演算する回転数指令演算部を有する。モータ駆動制御部は、車両がロック状態である場合、周期的に変更される回転数指令値を用いた制御である回転数制御により、主機モータの駆動を制御する。
 車両がロック状態のとき、主機モータの回転数を周期的に変更することで、特定の相に電流が集中するのを防ぐことができ、発熱の偏りを低減することができる。また、車両ロック時に主機モータの回転数を制御しておくことで、ロック状態から脱したときの車両の飛び出しやずり下がりを防ぐことができる。
The vehicle control device according to the present disclosure includes a lock determination unit and a motor drive control unit. The lock determination unit determines whether or not the vehicle is in a locked state. The motor drive control unit includes a rotation speed command calculation unit that calculates a rotation speed command value related to the rotation speed of the main motor that is a drive source of the vehicle. When the vehicle is in a locked state, the motor drive control unit controls driving of the main motor by rotation speed control that is control using a rotation speed command value that is periodically changed.
By periodically changing the rotation speed of the main motor when the vehicle is in a locked state, current can be prevented from concentrating on a specific phase, and the bias of heat generation can be reduced. Further, by controlling the rotation speed of the main motor when the vehicle is locked, it is possible to prevent the vehicle from jumping out or sliding down when the vehicle is released from the locked state.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態による車両の構成を示す模式図であり、 図2は、一実施形態による制御装置を説明する説明図であり、 図3は、一実施形態によるMG制御部を説明するブロック図であり、 図4は、一実施形態によるトルク制限値を説明する説明図であり、 図5は、一実施形態によるモータ制御処理を説明するフローチャートであり、 図6は、一実施形態による相電流を説明する説明図であり、 図7は、本発明の一実施形態において、車両が非登坂ロック状態であるときの回転数指令値およびMG回転数を説明するタイムチャートであり、 図8は、一実施形態によるモータ制御処理を説明するタイムチャートであり、 図9は、一実施形態において、車両が登坂ロック状態であるときの回転数指令値およびMG回転数を説明するタイムチャートであり、 図10は、参考例によるモータ制御処理を説明するタイムチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic diagram illustrating a configuration of a vehicle according to an embodiment. FIG. 2 is an explanatory diagram illustrating a control device according to an embodiment. FIG. 3 is a block diagram illustrating an MG control unit according to an embodiment. FIG. 4 is an explanatory diagram illustrating a torque limit value according to an embodiment. FIG. 5 is a flowchart illustrating motor control processing according to an embodiment. FIG. 6 is an explanatory diagram illustrating phase currents according to an embodiment. FIG. 7 is a time chart for explaining the rotational speed command value and the MG rotational speed when the vehicle is in a non-hill-climbing locked state in one embodiment of the present invention. FIG. 8 is a time chart illustrating a motor control process according to an embodiment. FIG. 9 is a time chart for explaining the rotational speed command value and the MG rotational speed when the vehicle is in the uphill lock state in one embodiment. FIG. 10 is a time chart illustrating motor control processing according to a reference example.
 以下、車両制御装置を図面に基づいて説明する。
   (一実施形態)
 一実施形態を図1~図9に示す。
 図1および図2に示すように、車両制御装置としての制御装置50は、車両90に適用される。本実施形態の車両90は、主機モータ3の駆動力にて走行するEV車両である。本実施形態の主機モータ3は、永久磁石式同期型の3相交流の回転電機であって、電動機としての機能と発電機としての機能を併せ持つ、いわゆる「モータジェネレータ」である。以下適宜、主機モータ3を「MG」とし、主機モータ3が電動機として機能する場合を中心に説明する。また、主機モータ3の各相に通電される電流を相電流Iu、Iv、Iwとする。
 主機モータ3には、回転角を検出する回転角センサ4が設けられる。
Hereinafter, the vehicle control device will be described with reference to the drawings.
(One embodiment)
One embodiment is shown in FIGS.
As shown in FIGS. 1 and 2, a control device 50 as a vehicle control device is applied to a vehicle 90. The vehicle 90 of the present embodiment is an EV vehicle that travels with the driving force of the main motor 3. The main motor 3 of the present embodiment is a permanent magnet type synchronous three-phase AC rotating electric machine, and is a so-called “motor generator” having both a function as an electric motor and a function as a generator. Hereinafter, the case where the main motor 3 is appropriately set as “MG” and the main motor 3 functions as an electric motor will be mainly described. Further, currents that are passed through the phases of the main motor 3 are referred to as phase currents Iu, Iv, and Iw.
The main motor 3 is provided with a rotation angle sensor 4 that detects the rotation angle.
 主機モータ3の駆動力は、クラッチ81および変速機82を介して駆動軸91に伝達される。駆動軸91に伝達された駆動力は、ギア92および車軸93を介して駆動輪95を回転させる。主機モータ3の回転方向は、車両90を前進させる方向を正転方向、後進させる方向を逆転方向とする。
 クラッチ81は、主機モータ3と変速機82との間に設けられ、主機モータ3と変速機82とを断続可能に構成される。
 変速機82は、無段階に変速可能な無段変速機(CVT)である。
The driving force of the main motor 3 is transmitted to the drive shaft 91 via the clutch 81 and the transmission 82. The driving force transmitted to the drive shaft 91 rotates the drive wheels 95 via the gear 92 and the axle 93. As for the rotation direction of the main motor 3, the forward direction is the direction in which the vehicle 90 is moved forward, and the reverse direction is the direction in which the vehicle 90 is moved backward.
The clutch 81 is provided between the main motor 3 and the transmission 82, and is configured to be able to connect and disconnect the main motor 3 and the transmission 82.
The transmission 82 is a continuously variable transmission (CVT) that can change continuously.
 駆動輪95には、ブレーキ97が設けられる。ブレーキ97は、例えばディスクブレーキ等の摩擦式の制動装置である。本実施形態では、主機モータ3の回生ブレーキ、および、ブレーキ97の摩擦力により、車両90を制動させる。駆動輪95以外の図示しない車輪がある場合、ブレーキ97は、当該車輪にも設けられる。 The drive wheel 95 is provided with a brake 97. The brake 97 is a friction braking device such as a disc brake. In the present embodiment, the vehicle 90 is braked by the regenerative brake of the main motor 3 and the frictional force of the brake 97. When there is a wheel (not shown) other than the drive wheel 95, the brake 97 is also provided on the wheel.
 主機バッテリ10は、例えばニッケル水素またはリチウムイオン等の二次電池であり、充放電可能に構成される。主機バッテリ10は、SOC(State of charge)が所定の範囲となるように充放電される。なお、主機バッテリ10は、電気二重層キャパシタ等で構成してもよい。 The main battery 10 is a secondary battery such as nickel metal hydride or lithium ion, and is configured to be chargeable / dischargeable. Main battery 10 is charged and discharged so that SOC (State of charge) falls within a predetermined range. The main battery 10 may be composed of an electric double layer capacitor or the like.
 図2に示すように、リレー部15は、主機バッテリ10とインバータ20との間に設けられる。リレー部15は、高電位側配線11に設けられる高電位側リレー16、および、低電位側配線12に設けられる低電位側リレー17を含む。高電位側リレー16および低電位側リレー17は、機械式リレーであってもよいし、半導体リレーであってもよい。
 リレー部15は、主機バッテリ10と主機モータ3との導通または遮断を切り替える。リレー部15をオンすることで、主機バッテリ10と主機モータ3とが導通し、オフすることで、主機バッテリ10と主機モータ3を遮断する。
As shown in FIG. 2, relay unit 15 is provided between main unit battery 10 and inverter 20. The relay unit 15 includes a high potential side relay 16 provided on the high potential side wiring 11 and a low potential side relay 17 provided on the low potential side wiring 12. The high potential side relay 16 and the low potential side relay 17 may be mechanical relays or semiconductor relays.
Relay unit 15 switches between conduction and interruption between main unit battery 10 and main unit motor 3. The main unit battery 10 and the main unit motor 3 are brought into conduction by turning on the relay unit 15, and the main unit battery 10 and the main unit motor 3 are cut off by being turned off.
 インバータ20は、ドライブ回路21、コンデンサ25、および、MG制御ユニット52を有する。図中、「制御ユニット」を「ECU」と記載する。
 ドライブ回路21は、6つのスイッチング素子211~216を有する3相インバータを含む。スイッチング素子211~216は、いずれもIGBTであり、両面放熱可能に設けられる。ドライブ回路21は、冷却水が循環する図示しないインバータ冷却器により冷却される。
The inverter 20 includes a drive circuit 21, a capacitor 25, and an MG control unit 52. In the figure, “control unit” is described as “ECU”.
Drive circuit 21 includes a three-phase inverter having six switching elements 211-216. The switching elements 211 to 216 are all IGBTs and are provided so as to be able to dissipate heat on both sides. The drive circuit 21 is cooled by an inverter cooler (not shown) through which cooling water circulates.
 高電位側に接続されるスイッチング素子211~213は、コレクタが高電位側配線11に接続され、エミッタがそれぞれ対になる低電位側のスイッチング素子214~216のコレクタに接続される。低電位側に接続されるスイッチング素子214~216のエミッタは、低電位側配線12に接続される。対になる高電位側のスイッチング素子211~213と低電位側のスイッチング素子214~216との接続点は、それぞれ、主機モータ3の各相巻線の一端に接続される。 The switching elements 211 to 213 connected to the high potential side are connected to the collectors of the low potential side switching elements 214 to 216 whose collectors are connected to the high potential side wiring 11 and whose emitters are respectively paired. The emitters of the switching elements 214 to 216 connected to the low potential side are connected to the low potential side wiring 12. A connection point between the paired high potential side switching elements 211 to 213 and the low potential side switching elements 214 to 216 is connected to one end of each phase winding of the main motor 3.
 対になる高電位側のスイッチング素子211~213と低電位側のスイッチング素子214~216とは、MG制御ユニット52からの駆動信号に基づき、交互に、かつ、相補的にオンオフ作動される。インバータ20は、スイッチング素子211~216のオンオフ作動を制御することで、直流電力を3相交流電力に変換し、主機モータ3に出力する。
 ドライブ回路21とリレー部15との間には、図示しない昇圧コンバータが設けられ、ドライブ回路21には、昇圧コンバータにより昇圧された電圧が印加される。
 コンデンサ25は、ドライブ回路21に並列に接続される。
The high-potential side switching elements 211 to 213 and the low-potential side switching elements 214 to 216 that are paired are alternately and complementarily turned on and off based on the drive signal from the MG control unit 52. The inverter 20 converts the DC power into three-phase AC power by controlling the on / off operation of the switching elements 211 to 216, and outputs it to the main motor 3.
A boost converter (not shown) is provided between the drive circuit 21 and the relay unit 15, and a voltage boosted by the boost converter is applied to the drive circuit 21.
The capacitor 25 is connected to the drive circuit 21 in parallel.
 制御装置50は、車両制御ユニット51、MG制御ユニット52、および、ブレーキ制御ユニット59等を有する。図中、車両制御ユニット51、MG制御ユニット52、および、ブレーキ制御ユニット59は、いずれもマイコン等を主体として構成される。車両制御ユニット51、MG制御ユニット52、および、ブレーキ制御ユニット59における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
 車両制御ユニット51、MG制御ユニット52、および、ブレーキ制御ユニット59は、CAN(Controller Area Network)等の車両通信網60を介して接続されており、情報を授受可能である。
The control device 50 includes a vehicle control unit 51, an MG control unit 52, a brake control unit 59, and the like. In the figure, the vehicle control unit 51, the MG control unit 52, and the brake control unit 59 are all composed mainly of a microcomputer or the like. Each process in the vehicle control unit 51, the MG control unit 52, and the brake control unit 59 may be a software process in which a CPU stores a program stored in advance in a substantial memory device such as a ROM. Hardware processing by a dedicated electronic circuit may be used.
The vehicle control unit 51, the MG control unit 52, and the brake control unit 59 are connected via a vehicle communication network 60 such as a CAN (Controller Area Network) and can exchange information.
 車両制御ユニット51は、図示しないアクセルセンサ、シフトスイッチ、ブレーキスイッチ、車速センサ等からの信号を取得し、取得されたこれらの信号に基づき、車両90全体の制御を司る。車両制御ユニット51は、アクセル開度および車速等に基づいて主機モータ3の駆動に係るトルク指令値trq*を演算する。トルク指令値trq*は、MG制御ユニット52に出力される。 The vehicle control unit 51 acquires signals from an accelerator sensor, a shift switch, a brake switch, a vehicle speed sensor and the like (not shown), and controls the entire vehicle 90 based on the acquired signals. The vehicle control unit 51 calculates a torque command value trq * for driving the main motor 3 based on the accelerator opening and the vehicle speed. Torque command value trq * is output to MG control unit 52.
 車両制御ユニット51は、クラッチ81の係合状態を制御する。以下、クラッチ81が完全係合している状態と、完全離間している状態との間の中間的な状態を「半クラッチ状態」とする。本実施形態では、車両制御ユニット51がクラッチ81を制御しており、「クラッチ制御部」に対応する。
 ブレーキ制御ユニット59は、ブレーキ97を制御する。本実施形態では、ブレーキ制御ユニット59が「ブレーキ制御部」に対応する。
The vehicle control unit 51 controls the engagement state of the clutch 81. Hereinafter, an intermediate state between the state where the clutch 81 is completely engaged and the state where it is completely separated is referred to as a “half-clutch state”. In the present embodiment, the vehicle control unit 51 controls the clutch 81 and corresponds to a “clutch control unit”.
The brake control unit 59 controls the brake 97. In the present embodiment, the brake control unit 59 corresponds to a “brake control unit”.
 MG制御ユニット52は、トルク指令値trq*および回転角センサ4の検出値等に基づいてスイッチング素子211~216のオンオフ作動を制御することで、主機モータ3の駆動を制御する。本実施形態では、電流フィードバック制御により主機モータ3の駆動を制御する。電流フィードバック制御に替えて、トルクフィードバック制御等であってもよい。 The MG control unit 52 controls the driving of the main motor 3 by controlling the on / off operation of the switching elements 211 to 216 based on the torque command value trq * and the detection value of the rotation angle sensor 4 and the like. In the present embodiment, driving of the main motor 3 is controlled by current feedback control. Instead of the current feedback control, torque feedback control or the like may be used.
 図3に示すように、MG制御ユニット52は、回転数演算部53、ロック判定部54、トルク制限部55、および、モータ駆動制御部としての駆動制御部56等を有する。
 回転数演算部53は、回転角センサ4の検出値に基づき、主機モータ3の回転数であるMG回転数ωを演算する。
As shown in FIG. 3, the MG control unit 52 includes a rotation speed calculation unit 53, a lock determination unit 54, a torque limiting unit 55, a drive control unit 56 as a motor drive control unit, and the like.
The rotation speed calculation unit 53 calculates the MG rotation speed ω that is the rotation speed of the main motor 3 based on the detection value of the rotation angle sensor 4.
 ロック判定部54は、車両90がロック状態か否かを判断する。車両90のロック状態とは、アクセルペダルが踏み込まれているにも関わらず、障害物等により車両90が停止している状態や、車両90が登り勾配であって、ブレーキ97を用いずに車両90の停止を維持するような状態である。「登り勾配」とは、車両前方が後方と比較して鉛直方向上側であって、車両90が所定の傾斜角度以上で傾斜している状態を意味する。 The lock determination unit 54 determines whether or not the vehicle 90 is in a locked state. The locked state of the vehicle 90 is a state in which the vehicle 90 is stopped due to an obstacle or the like even though the accelerator pedal is depressed, or the vehicle 90 is an ascending slope, and the vehicle 90 is not used. This is a state in which 90 stops are maintained. “Climbing slope” means a state in which the front of the vehicle is on the upper side in the vertical direction compared to the rear, and the vehicle 90 is inclined at a predetermined inclination angle or more.
 ロック判定部54は、MG回転数ωがロック判定閾値ωth未満、かつ、MGトルクtrqがトルク判定閾値trq_thより大きい状態が所定の継続判定時間Xthに亘って継続した場合、車両90がロック状態であると判断する。ロック判定閾値ωth、トルク判定閾値trq_thおよび継続判定時間Xthは、任意に設定可能であり、例えば、ロック判定閾値ωthは50[rpm]、トルク判定閾値trq_thは50[Nm]、継続判定時間Xthは3[s]とする。 When the state in which the MG rotation speed ω is less than the lock determination threshold value ωth and the MG torque trq is greater than the torque determination threshold value trq_th continues for a predetermined continuation determination time Xth, the lock determination unit 54 Judge that there is. The lock determination threshold ωth, the torque determination threshold trq_th, and the continuation determination time Xth can be arbitrarily set. For example, the lock determination threshold ωth is 50 [rpm], the torque determination threshold trq_th is 50 [Nm], and the continuation determination time Xth is 3 [s].
 トルク制限部55は、トルク指令値trq*をトルク制限値trq_limに応じて制限する。
 トルク制限部55は、トルク指令値trq*がトルク制限値trq_lim以下の場合、トルク指令値trq*をそのまま制限後トルク指令値trq_a*とする。トルク制限部55は、トルク指令値trq*がトルク制限値trq_limより大きい場合、トルク制限値trq_limを制限後トルク指令値trq_a*とする。
The torque limiter 55 limits the torque command value trq * according to the torque limit value trq_lim.
When the torque command value trq * is equal to or less than the torque limit value trq_lim, the torque limiter 55 directly sets the torque command value trq * as the post-limit torque command value trq_a * . When the torque command value trq * is larger than the torque limit value trq_lim, the torque limiter 55 sets the torque limit value trq_lim as the post-limit torque command value trq_a * .
 トルク制限部55は、車両90がロック状態のとき、ドライブ回路21を冷却する冷却水の温度である冷却水温Wtに基づき、トルク指令値trq*を制限する。
 図4に示すように、冷却水温Wtが第1閾値Wt1以下の場合、トルク制限値trq_limをロック時最大制限値trq_maxとする。冷却水温Wtが第1閾値Wt1より高く、第2閾値Wt2以下の場合、冷却水温Wtが高くなるほどトルク制限値trq_limが小さくなるようにする。図4では、トルク制限値trq_limが線形的に小さくなるように記載しているが、トルク制限値trq_limが非線形的に小さくなるようにしてもよい。冷却水温Wtが第2閾値Wt2より高い場合、トルク制限値trq_limを最小制限値trq_minとする。最小制限値trq_minは、退避走行可能な程度に設定される。
Torque limiting unit 55 limits torque command value trq * based on cooling water temperature Wt that is the temperature of cooling water for cooling drive circuit 21 when vehicle 90 is in a locked state.
As shown in FIG. 4, when the coolant temperature Wt is equal to or lower than the first threshold value Wt1, the torque limit value trq_lim is set as the lock maximum limit value trq_max. When the cooling water temperature Wt is higher than the first threshold value Wt1 and lower than or equal to the second threshold value Wt2, the torque limit value trq_lim is made smaller as the cooling water temperature Wt becomes higher. In FIG. 4, the torque limit value trq_lim is described so as to be linearly decreased. However, the torque limit value trq_lim may be decreased nonlinearly. When the coolant temperature Wt is higher than the second threshold value Wt2, the torque limit value trq_lim is set to the minimum limit value trq_min. The minimum limit value trq_min is set to such an extent that it can be evacuated.
 本実施形態では、主機モータ3がロック状態となった場合、MGトルクtrqが最小制限値trq_minとなるように一律に制限を行うのではなく、冷却水温Wtが低く、冷却性能に余裕がある場合は、冷却水温Wtが高い場合と比較してトルク制限を緩めている、と捉えることもできる。 In the present embodiment, when the main motor 3 is in a locked state, the MG torque trq is not uniformly limited so as to be the minimum limit value trq_min, but the cooling water temperature Wt is low and the cooling performance has a margin. It can also be understood that the torque limit is relaxed compared to the case where the coolant temperature Wt is high.
 図4では、ロック判定時における冷却水温Wtに基づくトルク制限を説明したが、ロック判定時以外においても、スイッチング素子211~216の温度である素子温度に基づくトルク制限は、別途に行われる。また、素子温度が過熱保護温度を超えると、トルク制限値trq_limを減少させるとともに、過熱異常判定値TmpHを超えると、部品保護のためトルク制限値trq_limを0とし、主機モータ3の駆動を停止する。 FIG. 4 illustrates the torque limitation based on the cooling water temperature Wt at the time of lock determination, but torque limitation based on the element temperature that is the temperature of the switching elements 211 to 216 is performed separately even at times other than the lock determination. Further, when the element temperature exceeds the overheat protection temperature, the torque limit value trq_lim is decreased, and when the element temperature exceeds the overheat abnormality determination value TmpH, the torque limit value trq_lim is set to 0 for component protection and the driving of the main motor 3 is stopped. .
 図3に戻り、駆動制御部56は、スイッチング素子211~216のオンオフ作動を制御する駆動信号を生成し、駆動信号に基づいてスイッチング素子211~216を制御することで、主機モータ3の駆動を制御する。駆動制御部56は、回転数制御部57、および、トルク制御部58を有する。
 回転数制御部57は、回転数指令演算部571、減算器572、制御器573、および、加算器574を有する。
Returning to FIG. 3, the drive control unit 56 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216, and controls the switching elements 211 to 216 based on the drive signal, thereby driving the main motor 3. Control. The drive control unit 56 includes a rotation speed control unit 57 and a torque control unit 58.
The rotation speed control unit 57 includes a rotation speed command calculation unit 571, a subtracter 572, a controller 573, and an adder 574.
 回転数指令演算部571は、回転数指令値ω*を演算する。
 減算器572は、回転数指令値ω*からMG回転数ωを減算し、回転数偏差Δωを演算する。
 制御器573は、回転数偏差Δωを0にすべく、PI演算等により、変動分トルク指令値trq*_fを演算する。
 加算器574は、制限後トルク指令値trq*_aに、変動分トルク指令値trq*_fを加算し、回転数制御時トルク指令値trq_ω*を演算する。
 本実施形態の回転数制御は、フィードバックされるMG回転数ωと回転数指令値ω*に基づく制御であり、回転数フィードバック制御である、といえる。
The rotation speed command calculation unit 571 calculates the rotation speed command value ω * .
The subtractor 572 subtracts the MG rotational speed ω from the rotational speed command value ω * to calculate the rotational speed deviation Δω.
The controller 573 calculates the fluctuation torque command value trq * _f by PI calculation or the like so that the rotation speed deviation Δω is zero.
The adder 574 adds the fluctuation torque command value trq * _f to the post-restricted torque command value trq * _a, and calculates the torque command value trq_ω * during rotation speed control.
The rotation speed control of the present embodiment is control based on the MG rotation speed ω and the rotation speed command value ω * to be fed back, and can be said to be rotation speed feedback control.
 トルク制御部58は、回転数制御を行う場合、回転数制御時トルク指令値trq_ω*に基づき、スイッチング素子211~216のオンオフ作動を制御する駆動信号を生成する。また、トルク制御部58は、回転数制御を行わない場合、制限後トルク指令値trq_a*に基づき、駆動信号を生成する。 When performing the rotational speed control, the torque control unit 58 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216 based on the rotational speed control torque command value trq_ω * . Further, when the rotational speed control is not performed, the torque control unit 58 generates a drive signal based on the post-limit torque command value trq_a * .
 ところで、障害物や登り坂などで、車両90の駆動輪95がロックされるロック状態となることがある。ロック状態のとき、主機モータ3は回転していない、或いは、回転数が小さいため、ロータの位置に応じた特定の相に電流が集中する。特定の相に電流が集中する状態が継続されると、電流集中相のスイッチング素子の温度が上昇する虞がある。また、スイッチング素子の温度が過熱異常判定値TmpHを超えると、フェイル判定され、主機モータ3の駆動を継続することができない。 By the way, the driving wheel 95 of the vehicle 90 may be locked due to an obstacle or an uphill. When in the locked state, the main motor 3 is not rotating or the rotation speed is small, so that current concentrates in a specific phase according to the position of the rotor. If the state where current concentrates in a specific phase is continued, the temperature of the switching element in the current concentration phase may increase. Further, if the temperature of the switching element exceeds the overheat abnormality determination value TmpH, a failure determination is made and the driving of the main motor 3 cannot be continued.
 また、ロック状態においては、トルクを制御したとしても、主機モータ3のロータの回転には直接つながらない場合がある。そのため、ロック状態から脱したときに、MG回転数ωが急変し、車両90の飛び出しやずり下がりが生じる虞がある。
 そこで本実施形態では、ロック状態において、MG回転数ωを制御する回転数制御により主機モータ3を制御することで、特定相への電流集中を回避するとともに、ロック状態から脱したときの車両90の飛び出しやずり下がりを抑制する。
In the locked state, even if the torque is controlled, the rotation of the rotor of the main motor 3 may not be directly connected. Therefore, when the vehicle is released from the locked state, the MG rotation speed ω may change suddenly, and the vehicle 90 may jump out or slip down.
Therefore, in the present embodiment, in the locked state, the main motor 3 is controlled by the rotational speed control that controls the MG rotational speed ω, thereby avoiding current concentration on a specific phase and the vehicle 90 when it is released from the locked state. Suppresses jumping and sliding.
 本実施形態のモータ制御処理を図5のフローチャートに基づいて説明する。この処理は、車両90の始動スイッチがオンされている期間に、制御装置50にて所定の間隔(例えば100「ms」)で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。
 最初のS101では、MG制御ユニット52は、車両制御ユニット51からトルク指令値trq*を取得する。
The motor control process of this embodiment is demonstrated based on the flowchart of FIG. This process is executed by the control device 50 at a predetermined interval (for example, 100 “ms”) while the start switch of the vehicle 90 is on. Hereinafter, “step” in step S101 is omitted, and is simply referred to as “S”.
In the first S101, the MG control unit 52 acquires the torque command value trq * from the vehicle control unit 51.
 S102では、ロック判定部54は、車両90がロック状態か否かを判断する。車両90がロック状態ではないと判断された場合(S102:NO)、S110へ移行する。車両90がロック状態であると判断された場合(S102:YES)、S103へ移行する。 In S102, the lock determination unit 54 determines whether or not the vehicle 90 is in a locked state. When it is determined that the vehicle 90 is not in the locked state (S102: NO), the process proceeds to S110. When it is determined that the vehicle 90 is in the locked state (S102: YES), the process proceeds to S103.
 S103では、トルク制限部55は、冷却水温Wtに基づき、制限後トルク指令値trq_a*を演算する。
 S104では、MG制御ユニット52は、冷却水温Wtが回転数制御閾値Wt_rより高いか否かを判断する。本実施形態では、回転数制御閾値Wt_rを第2閾値Wt2とするが、第2閾値Wt2とは異なる値であってもよい。冷却水温Wtが回転数制御閾値Wt_r以下であると判断された場合(S104:NO)、S111へ移行する。すなわち冷却水温Wtが回転数制御閾値Wt_r以下の場合、冷却水温Wtに応じたパワーセーブは行うが、回転数制御は行わない。冷却水温Wtが回転数制御閾値Wt_rより高いと判断された場合(S104:YES)、S105へ移行する。
In S103, the torque limiting unit 55 calculates a post-limit torque command value trq_a * based on the coolant temperature Wt.
In S104, the MG control unit 52 determines whether or not the coolant temperature Wt is higher than the rotation speed control threshold value Wt_r. In the present embodiment, the rotation speed control threshold value Wt_r is set to the second threshold value Wt2, but may be a value different from the second threshold value Wt2. When it is determined that the coolant temperature Wt is equal to or lower than the rotation speed control threshold value Wt_r (S104: NO), the process proceeds to S111. That is, when the cooling water temperature Wt is equal to or lower than the rotation speed control threshold Wt_r, power saving is performed according to the cooling water temperature Wt, but rotation speed control is not performed. When it is determined that the coolant temperature Wt is higher than the rotation speed control threshold Wt_r (S104: YES), the process proceeds to S105.
 S105では、車両制御ユニット51は、クラッチ81を半クラッチ状態とする。
 S106では、MG制御ユニット52は、車両90が登り勾配か否かを判断する。車両90が登り勾配か否かは、車両制御ユニット51から取得されるGセンサ等の検出値に基づいてMG制御ユニット52の内部で判断してもよいし、車両制御ユニット51にて車両90の傾斜状態を判断した判断結果に基づくフラグ等の情報に基づいて判断してもよい。
 車両90が登り勾配であると判断された場合(S106:YES)、S107へ移行する。車両90が登り勾配ではないと判断された場合(S106:NO)、S108へ移行する。
In S105, the vehicle control unit 51 places the clutch 81 in a half-clutch state.
In S106, the MG control unit 52 determines whether or not the vehicle 90 is on an ascending slope. Whether the vehicle 90 is climbing or not may be determined inside the MG control unit 52 based on the detected value of the G sensor or the like acquired from the vehicle control unit 51, or the vehicle control unit 51 may You may judge based on information, such as a flag based on the judgment result which judged the inclination state.
When it is determined that the vehicle 90 has an uphill slope (S106: YES), the process proceeds to S107. If it is determined that the vehicle 90 is not climbing (S106: NO), the process proceeds to S108.
 S107では、回転数指令演算部571は、回転数指令値ω*として、登坂時回転数指令値ωC*を演算する。
 S108では、回転数指令演算部571は、回転数指令値ω*として、非登坂時回転数指令値ωL*を演算する。
In S107, the rotational speed command calculation unit 571 calculates the uphill rotational speed command value ωC * as the rotational speed command value ω * .
In S108, the rotation speed command calculation unit 571 calculates the non-hill-climbing rotation speed command value ωL * as the rotation speed command value ω * .
 S109では、駆動制御部56は、回転数指令値ω*に基づく回転数制御により、スイッチング素子211~216のオンオフ作動を制御する駆動信号を生成する。詳細には、回転数指令値ω*に基づいて演算された回転数制御時トルク指令値trq_ω*に基づいて、駆動信号を生成する。 In S109, the drive control unit 56 generates a drive signal for controlling the on / off operation of the switching elements 211 to 216 by the rotation speed control based on the rotation speed command value ω * . Specifically, the drive signal is generated based on the rotational speed control torque command value trq_ω * calculated based on the rotational speed command value ω * .
 車両90がロック状態ではないと判断された場合(S102:NO)に移行するS110では、素子温度等に基づき、制限後トルク指令値trq*_aを演算する。
 冷却水温Wtが回転数制御閾値Wt_r以下である場合(S104:NO)、または、S110に続いて移行するS111では、駆動制御部56は、回転数制御は行わず、トルク制御により駆動信号を生成する。詳細には、制限後トルク指令値trq_a*に基づいて、駆動信号を生成する。
When it is determined that the vehicle 90 is not in the locked state (S102: NO), the post-restricted torque command value trq * _a is calculated based on the element temperature or the like.
When the coolant temperature Wt is equal to or lower than the rotation speed control threshold value Wt_r (S104: NO), or in S111 that moves to S110, the drive control unit 56 does not perform the rotation speed control and generates a drive signal by torque control. To do. Specifically, the drive signal is generated based on the post-limit torque command value trq_a * .
 ここで、回転数指令値ω*について説明する。
 本実施形態の主機モータ3は3相モータであるので、図6に示すように、電気角で120°以上回転させることで、少なくとも2相の電流が一度は0になるとともに、電流が最大となる相が入れ替わる。なお、相電流Iu、Iv、Iwの正負は、通電方向に対応するので、「電流が最大となる相」は、相電流Iu、Iv、Iwの絶対値が最も大きい相である。
 本実施形態では、切替周期PL、PCの間に、主機モータ3が電気角で120°以上回転するように、回転数指令値ω*を設定する。
Here, the rotational speed command value ω * will be described.
Since the main motor 3 of the present embodiment is a three-phase motor, as shown in FIG. 6, by rotating the electrical angle by 120 ° or more, at least two-phase current becomes zero once and the current is maximum. The phases become. In addition, since the positive / negative of the phase currents Iu, Iv, Iw corresponds to the energization direction, the “phase with the maximum current” is the phase with the largest absolute value of the phase currents Iu, Iv, Iw.
In the present embodiment, the rotational speed command value ω * is set so that the main motor 3 rotates at an electrical angle of 120 ° or more during the switching periods PL and PC.
 車両90が登り勾配以外であって、例えば障害物等によりロック状態となっている非登坂ロック状態での回転数制御を図7および図8に基づいて説明する。図7では、上段に非登坂時回転数指令値ωL*、下段にMG回転数ωを示す。
 図7に示すように、車両90が非登坂ロック状態である場合、切替周期PLの1周期における前半期間を正転期間とし、非登坂時回転数指令値ωL*を第1指令値ωL1*とする。また、切替周期PLの1周期における後半期間を逆転期間とし、非登坂時回転数指令値ωL*を第2指令値ωL2*とする。
 これにより、MG回転数ωが周期的に変化する。
The rotational speed control in a non-hill-climbing locked state where the vehicle 90 is other than the climbing slope and is locked by an obstacle or the like will be described with reference to FIGS. 7 and 8. In FIG. 7, the non-uphill rotation speed command value ωL * is shown in the upper stage, and the MG rotation speed ω is shown in the lower stage.
As shown in FIG. 7, when the vehicle 90 is in the non-hill climbing lock state, the first half period in one cycle of the switching cycle PL is set as the forward rotation period, and the non-hill-climbing rotation speed command value ωL * is set as the first command value ωL1 * . To do. Further, the latter half of the switching period PL is set as the reverse rotation period, and the non-hill-climbing rotation speed command value ωL * is set as the second command value ωL2 * .
Thereby, MG rotation speed ω changes periodically.
 本実施形態では、第1指令値ωL1*が正、第2指令値ωL2*が負であって、絶対値が等しいものとする。また、本実施形態では、切替周期PLにおける正転期間の長さと逆転期間の長さとが等しい。切替周期PLは、任意に設定可能であるが、例えば150[ms]程度である。また、第1指令値ωL1*は、例えば30[rpm]であり、第2指令値ωL2*は、例えば-30[rpm]とする。第1指令値ωL1*および第2指令値ωL2*の絶対値は異なっていてもよい。また、正転期間および逆転期間の長さは異なっていてもよい。 In the present embodiment, the first command value ωL1 * is positive, the second command value ωL2 * is negative, and the absolute values are equal. In the present embodiment, the length of the forward rotation period and the length of the reverse rotation period in the switching cycle PL are equal. The switching period PL can be arbitrarily set, but is about 150 [ms], for example. The first command value ωL1 * is, for example, 30 [rpm], and the second command value ωL2 * is, for example, −30 [rpm]. The absolute values of the first command value ωL1 * and the second command value ωL2 * may be different. Further, the lengths of the forward rotation period and the reverse rotation period may be different.
 第1指令値ωL1*および第2指令値ωL2*は、正転方向に電気角で60°以上、逆転方向に電気角で60°以上回転させ、正逆合わせて電気角で120°分以上、回転するよう決定される。例えば、磁極数が4であれば、電気角120°分回転させるには、切替周期PLにて、機械角で30°分、すなわち正方向に機械角で15°、逆転方向に機械角で15°分、回転するようにする。 The first command value ωL1 * and the second command value ωL2 * are rotated at an electrical angle of 60 ° or more in the forward rotation direction, rotated at an electrical angle of 60 ° or more in the reverse rotation direction, and aligned in the forward and reverse directions for an electrical angle of 120 ° or more. Determined to rotate. For example, if the number of magnetic poles is 4, to rotate the electrical angle by 120 °, the mechanical angle is 30 °, that is, the mechanical angle is 15 ° in the positive direction and the mechanical angle is 15 in the reverse direction in the switching cycle PL. Rotate for ° minutes.
 また、図1に示すように、主機モータ3と車軸93との間には、クラッチ81、変速機82、および、ギア92が設けられている。クラッチ81、変速機82およびギア92には、バックラッシュが存在する。以下、主機モータ3と車軸93との間に存在するバックラッシュの合計を単に「ギアバックラッシュ」という。
 主機モータ3の回転量がギアバックラッシュの範囲内である場合、車軸93は回転しない。換言すると、主機モータ3がギアバックラッシュの範囲内で回転している状態であれば、ロック状態が継続される。
Further, as shown in FIG. 1, a clutch 81, a transmission 82, and a gear 92 are provided between the main motor 3 and the axle 93. The clutch 81, the transmission 82, and the gear 92 have backlash. Hereinafter, the total backlash existing between the main motor 3 and the axle 93 is simply referred to as “gear backlash”.
When the rotation amount of the main motor 3 is within the range of the gear backlash, the axle 93 does not rotate. In other words, if the main motor 3 is rotating within the range of the gear backlash, the locked state is continued.
 本実施形態では、非登坂ロック状態において、ギアバックラッシュの範囲内で、主機モータ3の正転、逆転が切り替わるように、非登坂時回転数指令値ωL*を決定する。これにより、回転数制御によりMG回転数ωを変化させても、その変化が駆動輪95に伝達されないので、ドライバビリティ(以下、「ドラビリ」)の悪化を防ぐことができる。 In the present embodiment, in the non-climbing slope locked state, the non-climbing rotation speed command value ωL * is determined so that the forward rotation and the reverse rotation of the main motor 3 are switched within the range of the gear backlash. As a result, even if the MG rotational speed ω is changed by the rotational speed control, the change is not transmitted to the drive wheels 95, so that it is possible to prevent the drivability (hereinafter referred to as “drivability”) from being deteriorated.
 本実施形態のMG制御処理を図8のタイムチャートに基づいて説明する。図8は、車両90が非登坂ロック状態である場合の例である。図8では、共通時間軸を横軸とし、上段から、アクセル開度、車速、MG回転数ω、MGトルクtrq、ロック判定、冷却水温Wt、素子温度、フェイル判定を示している。素子温度は、温度が最も高いスイッチング素子の温度を示している。ロック判定は、ロック状態のときを「1」、ロック状態のときを「0」とした。説明のため、図8ではタイムスケール等は適宜変更している。図10も同様である。 MG control processing of the present embodiment will be described based on the time chart of FIG. FIG. 8 is an example when the vehicle 90 is in a non-hill-climbing locked state. In FIG. 8, the horizontal axis is the common time axis, and from the top, the accelerator opening, the vehicle speed, the MG rotation speed ω, the MG torque trq, the lock determination, the cooling water temperature Wt, the element temperature, and the fail determination are shown. The element temperature indicates the temperature of the switching element having the highest temperature. The lock determination was “1” when in the locked state and “0” when in the locked state. For the sake of explanation, the time scale and the like are appropriately changed in FIG. The same applies to FIG.
 時刻x11にて、図示しないアクセルペダルが操作され、アクセル開度が0でなくなると、MGトルクtrqが増加する。このとき、車両90が障害物等によりロック状態となると、主機モータ3は回転しない。時刻x12にて、MGトルクtrqがトルク判定閾値trq_thを超え、この状態が継続判定時間Xthに亘って継続すると、時刻x13にてロック判定される。また冷却水温Wtが上昇すると、冷却水温Wtが第1閾値Wt1を超えた時刻x14からMGトルクtrqが制限され、第2閾値Wt2を超えた時刻x15にて、最小制限値trq_minに制限される。 When the accelerator pedal (not shown) is operated at time x11 and the accelerator opening is not zero, the MG torque trq increases. At this time, when the vehicle 90 is locked due to an obstacle or the like, the main motor 3 does not rotate. When the MG torque trq exceeds the torque determination threshold trq_th at time x12 and this state continues for the continuation determination time Xth, a lock determination is made at time x13. When the cooling water temperature Wt rises, the MG torque trq is limited from time x14 when the cooling water temperature Wt exceeds the first threshold value Wt1, and is limited to the minimum limit value trq_min at time x15 when it exceeds the second threshold value Wt2.
 本実施形態では、回転数制御閾値Wt_rが第2閾値Wt2と同じであるので、ロック状態にて冷却水温Wtが第2閾値Wt2を超えた時刻x15にて、MG制御ユニット52は、主機モータ3の制御を回転数制御に切り替える。詳細には、図7にて説明した通り、非登坂時回転数指令値ωL*として、第1指令値ωL1*と第2指令値ωL2*とを切り替える。換言すると、本実施形態では、車両90が登り勾配ではない状態でロック状態となった場合、主機モータ3の正転と逆転とを小刻みに切り替えることで、特定の相への電流集中を防いでいる。 In the present embodiment, since the rotation speed control threshold value Wt_r is the same as the second threshold value Wt2, at the time x15 when the cooling water temperature Wt exceeds the second threshold value Wt2 in the locked state, the MG control unit 52 Is switched to rotation speed control. Specifically, as described with reference to FIG. 7, the first command value ωL1 * and the second command value ωL2 * are switched as the non-hill-climbing rotation speed command value ωL * . In other words, in the present embodiment, when the vehicle 90 is in a locked state in a state where the vehicle 90 is not climbing, the main motor 3 is switched between the forward rotation and the reverse rotation to prevent current concentration in a specific phase. Yes.
 特定の相に電流が集中せず、相電流Iu、Iv、Iwの偏りが低減されると、電流が集中していた相への通電量が減るため、最も温度が高いスイッチング素子の温度は低下に転じる。また、ロック状態が継続された場合であっても、全ての相の素子温度が過熱異常判定値TmpHを超えなければ、フェイル判定されず、主機モータ3の駆動を継続することができる。 If the current does not concentrate on a specific phase and the bias of the phase currents Iu, Iv, Iw is reduced, the amount of current flowing to the phase where the current was concentrated decreases, so the temperature of the switching element with the highest temperature decreases. Turn to. Even if the locked state is continued, if the element temperatures of all phases do not exceed the overheat abnormality determination value TmpH, the fail determination is not made and the driving of the main motor 3 can be continued.
 図10は、参考例によるタイムチャートである。図10では、共通時間軸を横軸とし、上段から、MG回転数ω、MGトルクtrq、ロック判定、相電流Iu、Iv、Iw、スイッチング素子212の温度、フェイル判定を示している。図10では、ロック判定閾値ωthが0として説明する。
 図10に示すように、時刻x91にてMG回転数ωが0となり、MGトルクtrqがトルク判定閾値trq_thより大きい状態が継続判定時間Xthに亘って継続すると、時刻x92にてロック判定される。また、ロック状態となることで、スイッチング素子の温度上昇に伴って冷却水温Wtが上昇すると、トルク指令値trq*が制限され、MGトルクtrqが制限される。なお、図10では、冷却水温Wtの記載を省略した。
FIG. 10 is a time chart according to a reference example. In FIG. 10, the horizontal axis is the common time axis, and the MG rotation speed ω, the MG torque trq, the lock determination, the phase currents Iu, Iv, Iw, the temperature of the switching element 212, and the fail determination are shown from the top. In FIG. 10, the lock determination threshold ωth is assumed to be 0.
As shown in FIG. 10, when the MG rotation speed ω becomes 0 at time x91 and the state where the MG torque trq is larger than the torque determination threshold trq_th continues for the continuation determination time Xth, the lock determination is made at time x92. Further, when the cooling water temperature Wt rises as the temperature of the switching element rises due to the locked state, the torque command value trq * is restricted and the MG torque trq is restricted. In FIG. 10, the cooling water temperature Wt is not shown.
 車両90がロック状態となり、主機モータ3のロータ位置が変化しないと、各相に一定の電流が通電される状態が継続する。図10の例では、他の2相と比較し、V相電流Ivが大きい状態が継続する。この状態が継続すると、他の素子と比較し、V相のスイッチング素子212の温度上昇が大きくなる。
 そして、時刻x93にて、スイッチング素子212の温度が過熱異常判定値TmpHを超えると、フェイル判定され、主機モータ3の駆動を継続することができない。
When the vehicle 90 is in a locked state and the rotor position of the main motor 3 is not changed, a state in which a constant current is supplied to each phase continues. In the example of FIG. 10, the state where the V-phase current Iv is large is continued as compared with the other two phases. If this state continues, the temperature increase of the V-phase switching element 212 becomes larger than that of other elements.
If the temperature of the switching element 212 exceeds the overheat abnormality determination value TmpH at time x93, a failure determination is made and the driving of the main motor 3 cannot be continued.
 一方、本実施形態では、車両90がロック状態となったとき、回転数指令値ω*を周期的に切り替えている。これにより、ロック状態が継続した場合であっても、特定相への電流集中を防ぎ、ファイル判定となるのを回避しているので、ロック状態にて主機モータ3の駆動を継続することができる。 On the other hand, in the present embodiment, when the vehicle 90 is locked, the rotational speed command value ω * is periodically switched. Thereby, even if the locked state continues, current concentration on a specific phase is prevented and file determination is avoided, so that the main motor 3 can be continuously driven in the locked state. .
 車両90が登り勾配でロック状態となっている登坂ロック状態での回転数制御を図9に基づいて説明する。図7では、上段に登坂時回転数指令値ωC*、下段にMG回転数ωを示す。車両90が登坂ロック状態である場合、切替周期PCの1周期における前半期間の登坂時回転数指令値ωC*を第1指令値ωC1*、後半期間の登坂時回転数指令値ωC*を第2指令値ωC2*とする。
 登坂ロック状態にて、主機モータ3を逆回転させると、車両90がずり下がる虞がある。そこで、登坂ロック状態における回転数制御では、第1指令値ωC1*と正の値であって、例えば60[rpm]とする。また、第2指令値ωC2*を0とする。第2指令値ωC2*は、第1指令値ωC1*とは異なる正の値としてもよい。
The rotation speed control in the uphill lock state in which the vehicle 90 is in the locked state on the climb slope will be described with reference to FIG. In FIG. 7, the uphill rotational speed command value ωC * is shown in the upper stage, and the MG rotational speed ω is shown in the lower stage. When the vehicle 90 is in the uphill lock state, the uphill rotation speed command value ωC * of the first half period in one cycle of the switching period PC is set to the first command value ωC1 * , and the uphill rotation speed command value ωC * of the second half period is set to the second time. The command value is ωC2 * .
If the main motor 3 is reversely rotated in the climbing lock state, the vehicle 90 may slip down. Therefore, in the rotation speed control in the uphill lock state, the first command value ωC1 * is a positive value, for example, 60 [rpm]. The second command value ωC2 * is set to 0. The second command value ωC2 * may be a positive value different from the first command value ωC1 * .
 本実施形態では、切替周期PC内において、登坂時回転数指令値ωC*を、第1指令値ωC1*とする期間と第2指令値ωC2*とする期間とは等しいが、異なっていてもよい。また、登坂ロック状態の切替周期PCと非登坂ロック状態の切替周期PLとは等しいが、異なっていてもよい。 In this embodiment, in the switching period PC, a climbing time of rotation speed command value .omega.C *, is equal to the a period of the first command value Omegashi1 * period to the second command value Omegashi2 *, it may be different . In addition, the switching cycle PC in the uphill lock state and the switching cycle PL in the non-uphill locked state are the same, but they may be different.
 本実施形態では、車両90が登坂ロック状態のとき、主機モータ3の正転と停止とを小刻みに切り替えることで、特定の相への電流集中を防いでいる。車両90が登り勾配の場合、ずり下がりを防ぐべく、主機モータ3を逆転させないので、車両90は微速前進となる。このとき、ロック状態を脱するか継続されるかは、MGトルクtrqや勾配等による。 In the present embodiment, when the vehicle 90 is in the uphill lock state, the forward rotation and the stop of the main motor 3 are switched in small increments to prevent current concentration in a specific phase. When the vehicle 90 is on an uphill slope, the main motor 3 is not reversely rotated to prevent the vehicle 90 from moving down, so the vehicle 90 moves forward at a slow speed. At this time, whether the locked state is released or continued depends on the MG torque trq, the gradient, and the like.
 また本実施形態では、ロック状態において、車両90の後方への移動量がずり下がり判定値を超えた場合、車両90のずり下がりが生じていると判定し、ブレーキ制御ユニット59がブレーキ97を制御することで、車両90のずり下がりを防止する。なお、ブレーキ97により車両90が制動された場合、主機モータ3によるロック状態を継続する必要がなければ、主機モータ3を停止する。
 また、ロック状態において、冷却水温Wtの高温状態が続く場合、ブレーキ制御ユニット59によりブレーキ97を制御することで車両90を制動させて主機モータ3を停止させる。
 主機モータ3を停止すれば、素子温度や冷却水温を低下する。
In the present embodiment, when the amount of backward movement of the vehicle 90 exceeds the slippage determination value in the locked state, it is determined that the vehicle 90 has slipped, and the brake control unit 59 controls the brake 97. This prevents the vehicle 90 from sliding down. When the vehicle 90 is braked by the brake 97, the main motor 3 is stopped if it is not necessary to continue the locked state by the main motor 3.
In the locked state, when the high temperature state of the cooling water temperature Wt continues, the brake control unit 59 controls the brake 97 to brake the vehicle 90 and stop the main motor 3.
If the main motor 3 is stopped, the element temperature and the cooling water temperature are lowered.
 本実施形態では、車両90がロック状態となった場合、回転数制御により、MG回転数ωを周期的に変更する。これにより、特定の相への電流集中を防ぎ、電流集中による特定素子の昇温を防ぐことで、ロック状態での主機モータ3の駆動を継続可能である。
 また、ロック状態におけるMG回転数ωを制御しているので、ロック状態を脱したときにも、回転数の急変が生じず、ドライバが予期しない飛び出しやずり下がり等を防ぐことができる。
In the present embodiment, when the vehicle 90 is locked, the MG rotational speed ω is periodically changed by rotational speed control. Thereby, it is possible to continue driving the main motor 3 in the locked state by preventing current concentration on a specific phase and preventing temperature rise of a specific element due to current concentration.
Further, since the MG rotational speed ω in the locked state is controlled, even when the locked state is released, the rotational speed does not change suddenly, and unexpected jumping out or sliding down of the driver can be prevented.
 以上説明したように、本実施形態の制御装置50は、ロック判定部54と、駆動制御部56とを備える。
 ロック判定部54は、車両90がロック状態か否かを判定する。
 駆動制御部56は、車両90の駆動源である主機モータ3の回転数の制御に係る回転数指令値ω*を演算する回転数指令演算部571を有する。駆動制御部56は、車両90がロック状態である場合、周期的に変更される回転数指令値ω*を用いた制御である回転数制御により、主機モータ3の駆動を制御する。
As described above, the control device 50 of the present embodiment includes the lock determination unit 54 and the drive control unit 56.
The lock determination unit 54 determines whether or not the vehicle 90 is in a locked state.
The drive control unit 56 includes a rotation speed command calculation unit 571 that calculates a rotation speed command value ω * related to the control of the rotation speed of the main motor 3 that is a drive source of the vehicle 90. When the vehicle 90 is in the locked state, the drive control unit 56 controls the driving of the main motor 3 by rotation speed control that is control using the rotation speed command value ω * that is periodically changed.
 車両90がロック状態のとき、MG回転数ωを周期的に変更することで、特定の相に電流が集中するのを防ぐことができ、発熱の偏りを低減することができる。また、車両ロック時にMG回転数ωを制御しておくことで、ロック状態から脱したときの車両90の飛び出しやずり下がりを防ぐことができる。 When the vehicle 90 is in the locked state, by periodically changing the MG rotational speed ω, it is possible to prevent current from being concentrated on a specific phase and to reduce the bias of heat generation. Further, by controlling the MG rotation speed ω when the vehicle is locked, it is possible to prevent the vehicle 90 from jumping out or sliding down when the vehicle is released from the locked state.
 回転数指令演算部571は、回転数指令値ω*として、第1指令値と第2指令値とを交互に切り替える。詳細には、回転数指令演算部571は、車両90が登り勾配のとき、第1指令値ωC1*と第2指令値ωC2*とを交互に切り替え、車両90が登り勾配でないとき、第1指令値ωL1*と第2指令値ωL2*とを交互に切り替える。
 これにより、回転数指令値ω*を適切に切り替えることができる。
The rotation speed command calculation unit 571 switches the first command value and the second command value alternately as the rotation speed command value ω * . Specifically, the rotational speed command calculation unit 571 switches the first command value ωC1 * and the second command value ωC2 * alternately when the vehicle 90 is on the climb slope, and when the vehicle 90 is not the climb slope, the first command The value ωL1 * and the second command value ωL2 * are alternately switched.
As a result, the rotational speed command value ω * can be appropriately switched.
 主機モータ3を正方向に回転させる回転数指令値ω*を正、逆方向に回転させる回転数指令値ω*を負とする。
 回転数指令演算部571は、車両90が登り勾配にてロック状態となる登坂ロック状態のとき、第1指令値ωC1*を正の値、第2指令値ωC2*を0または第1指令値ωC1*とは異なる正の値とする。これにより、車両90のずり下がりを防ぐことができる。
 また、回転数指令演算部571は、車両90が登り勾配以外でロック状態となる非登坂ロック状態のとき、第1指令値ωL1*を正の値、第2指令値ωL2*を負の値とする。これにより、主機モータ3の正転と逆転とを周期的に繰り返すことができる。
The main motor 3 the rotational speed command value to be rotated in the forward direction omega * positive, and negative rotation speed command value omega * is rotated in the reverse direction.
When the vehicle 90 is in an uphill lock state in which the vehicle 90 is locked by an ascending slope, the rotation speed command calculation unit 571 sets the first command value ωC1 * to a positive value and sets the second command value ωC2 * to 0 or the first command value ωC1. A positive value different from * . Thereby, the vehicle 90 can be prevented from sliding down.
Further, when the vehicle 90 is in a non-hill-climbing locked state where the vehicle 90 is locked other than the climbing slope, the rotation speed command calculating unit 571 sets the first command value ωL1 * to a positive value and the second command value ωL2 * to a negative value. To do. Thereby, the normal rotation and reverse rotation of the main motor 3 can be periodically repeated.
 主機モータ3と駆動輪95との間には、ギアバックラッシュが存在している。
 回転数指令演算部571は、非登坂ロック状態のとき、主機モータ3の駆動範囲がギアバックラッシュの範囲内となるように、第1指令値ωL1*および第2指令値ωL2*を決定する。ギアバックラッシュの範囲内にて主機モータ3を駆動するので、主機モータ3の駆動は駆動輪95に伝達されない。これにより、ドライバに違和感を与えることなく、MG回転数ωを周期的に切り替えることができる。
A gear backlash exists between the main motor 3 and the drive wheel 95.
The rotation speed command calculation unit 571 determines the first command value ωL1 * and the second command value ωL2 * so that the drive range of the main motor 3 is within the gear backlash range when in the non-hill climbing lock state. Since the main motor 3 is driven within the range of the gear backlash, the driving of the main motor 3 is not transmitted to the drive wheels 95. As a result, the MG rotation speed ω can be switched periodically without causing the driver to feel uncomfortable.
 回転数指令演算部571は、第1指令値ωL1*と第2指令値ωL2*とを切り替える切替周期PLの1周期にて、主機モータ3が電気角120°以上回転するように、第1指令値ωL1*および第2指令値ωL2*を決定する。同様に、回転数指令演算部571は、第1指令値ωC1*と第2指令値ωC2*とを切り替える切替周期PCの1周期にて、主機モータ3が電気角120°以上回転するように、第1指令値ωC1*および第2指令値ωC2*を決定する。
 これにより、特定相への電流集中を適切に防ぐことができる。
The rotational speed command calculation unit 571 generates the first command so that the main motor 3 rotates at an electrical angle of 120 ° or more in one cycle of the switching cycle PL for switching between the first command value ωL1 * and the second command value ωL2 *. The value ωL1 * and the second command value ωL2 * are determined. Similarly, the rotational speed command calculation unit 571 is configured so that the main motor 3 rotates at an electrical angle of 120 ° or more in one cycle of the switching cycle PC for switching between the first command value ωC1 * and the second command value ωC2 * . First command value ωC1 * and second command value ωC2 * are determined.
Thereby, the current concentration on the specific phase can be appropriately prevented.
 ロック判定部54は、主機モータ3の回転数であるMG回転数ωがロック判定閾値ωthより小さく、かつ、主機モータ3のトルクであるMGトルクtrqがトルク判定閾値trq_thより大きい状態が所定の継続判定時間Xthに亘って継続した場合、車両90がロック状態であると判定する。
 これにより、車両90のロック状態を適切に判定することができる。
The lock determination unit 54 continues the predetermined state in which the MG rotation speed ω that is the rotation speed of the main motor 3 is smaller than the lock determination threshold value ωth and the MG torque trq that is the torque of the main motor 3 is larger than the torque determination threshold trq_th. When it continues over determination time Xth, it determines with the vehicle 90 being a locked state.
Thereby, the locked state of the vehicle 90 can be determined appropriately.
 駆動制御部56は、車両90がロック状態であって、かつ、主機モータ3に供給される電力を変換するインバータ20を冷却する冷却水の温度である冷却水温Wtが回転数制御閾値Wt_rより高い場合、回転数制御を行う。冷却水温Wtが高く、素子温度が上昇しやすいときに、回転数制御を行ってMG回転数ωを変動させることで、特定の相への電流集中に伴う特定箇所の昇温を抑制することができる。 In the drive control unit 56, the cooling water temperature Wt that is the temperature of the cooling water for cooling the inverter 20 that converts the electric power supplied to the main motor 3 is higher than the rotation speed control threshold value Wt_r. In this case, the rotational speed control is performed. When the cooling water temperature Wt is high and the element temperature is likely to rise, by controlling the rotational speed and changing the MG rotational speed ω, it is possible to suppress the temperature rise at a specific location due to current concentration in a specific phase. it can.
 制御装置50は、車両90がロック状態の場合、冷却水温Wtに基づき、主機モータ3から出力されるトルクを制限するトルク制限部55を備える。これにより、冷却性能に応じ、適切にトルク制限を行うことができる。 The control device 50 includes a torque limiting unit 55 that limits the torque output from the main motor 3 based on the coolant temperature Wt when the vehicle 90 is in a locked state. Thereby, torque limitation can be appropriately performed according to the cooling performance.
 制御装置50は、主機モータ3と駆動軸91との間に設けられるクラッチ81を制御する車両制御ユニット51が設けられる。車両制御ユニット51は、回転数制御を行うとき、クラッチ81の係合状態を、完全係合状態と完全離間状態との間の半クラッチ状態に制御する。
 これにより、MG回転数ωの変動が駆動輪95側に伝達されにくくなるので、MG回転数ωを変動させることによるドラビリの悪化を抑制することができる。
The control device 50 is provided with a vehicle control unit 51 that controls a clutch 81 provided between the main motor 3 and the drive shaft 91. When vehicle speed control is performed, the vehicle control unit 51 controls the engagement state of the clutch 81 to a half-clutch state between the fully engaged state and the completely separated state.
Thereby, since the fluctuation | variation of MG rotation speed (omega) becomes difficult to be transmitted to the driving wheel 95 side, the deterioration of drivability by changing MG rotation speed (omega) can be suppressed.
 制御装置50は、車両90がロック状態であって、車両90の移動量がずり下がり判定閾値より大きいと判定された場合、ブレーキ97を制御して車両90を停止させるブレーキ制御ユニット59を備える。
 主機モータ3にて車両90のロック状態を継続できない場合、ブレーキ97を制御することで、車両90のずり下がりを適切に防ぐことができる。
The control device 50 includes a brake control unit 59 that controls the brake 97 and stops the vehicle 90 when it is determined that the vehicle 90 is in the locked state and the moving amount of the vehicle 90 is larger than the sliding determination threshold value.
When the main motor 3 cannot continue the locked state of the vehicle 90, the vehicle 97 can be appropriately prevented from slipping down by controlling the brake 97.
   (他の実施形態)
 (ア)回転数制御
 上記実施形態では、第1指令値と第2指令値とを交互に切り替えることで、回転数指令値を周期的に切り替える。他の実施形態では、3つ以上の値を順次切り替えることで、回転数指令値を周期的に切り替えるようにしてもよい。また、回転数指令値は、どのように周期的に変更されてもよい。
 上記実施形態では、車両が登り勾配の場合と登り勾配以外の場合とで、第1指令値および第2指令値を異なる値とする。他の実施形態では、車両の傾斜状態によらず、同一の回転数指令値を用いてもよい。
(Other embodiments)
(A) Rotational speed control In the said embodiment, a rotational speed command value is switched periodically by switching a 1st command value and a 2nd command value alternately. In another embodiment, the rotation speed command value may be periodically switched by sequentially switching three or more values. Further, the rotational speed command value may be periodically changed in any way.
In the said embodiment, a 1st command value and a 2nd command value are made into a different value by the case where a vehicle is a climbing gradient and the case except a climbing gradient. In another embodiment, the same rotational speed command value may be used regardless of the vehicle inclination state.
 上記実施形態では、冷却水温が回転数制御閾値より高い場合、回転数制御を行う。他の実施形態では、図5中のS104を省略し、車両がロック状態のとき、冷却水温によらず、回転数制御を行うようにしてもよい。
 上記実施形態では、回転数制御を行う際、クラッチを半クラッチ状態に制御する。他の実施形態では、図5中のS105を省略し、半クラッチ制御を行わず、回転数制御時においてもクラッチを完全係合状態としてもよい。また、クラッチを設けなくてもよい。
In the above embodiment, when the coolant temperature is higher than the rotation speed control threshold, the rotation speed control is performed. In another embodiment, S104 in FIG. 5 may be omitted, and when the vehicle is locked, the rotational speed control may be performed regardless of the coolant temperature.
In the above embodiment, the clutch is controlled to the half-clutch state when the rotational speed control is performed. In another embodiment, S105 in FIG. 5 may be omitted, and the clutch may be completely engaged even during the rotational speed control without performing the half clutch control. Further, the clutch may not be provided.
 (イ)制御装置
 上記実施形態では、制御装置には、車両制御ユニット、MG制御ユニット、および、ブレーキ制御ユニットの3つの制御ユニットが含まれる。他の実施形態では、制御装置を構成する制御ユニットは、2つ以下、あるいは、4つ以上であってもよい。また、各制御ユニットが通信等にて情報を授受可能であれば、回転数制御等に係る各処理は、いずれの制御ユニットにて実施してもよい。
(A) Control Device In the above embodiment, the control device includes three control units, a vehicle control unit, an MG control unit, and a brake control unit. In other embodiments, the number of control units constituting the control device may be two or less, or four or more. Further, as long as each control unit can exchange information by communication or the like, each process relating to the rotational speed control or the like may be performed by any control unit.
 (ウ)主機モータ
 上記実施形態では、主機モータは、永久磁石式の3相交流の回転電機である。他の実施形態では、主機モータとしてどのようなものを用いてもよい。
 (エ)車両
 上記実施形態では、電源システム制御装置が適用される車両は、1つの主機モータの動力を用いて走行するEV車両である。他の実施形態では、主機モータは、複数であってもよい。他の実施形態では、回転電機制御装置が適用される車両は、EV車両に限らず、車両の駆動源として主機モータに加えエンジンを備えるハイブリッド車や、燃料電池車であってもよい。
 以上、本開示は、上記実施形態になんら限定されるものではなく、開示の趣旨を逸脱しない範囲において種々の形態で実施可能である。
(C) Main motor In the above embodiment, the main motor is a permanent magnet type three-phase AC rotating electric machine. In other embodiments, any main motor may be used.
(D) Vehicle In the above embodiment, the vehicle to which the power supply system control device is applied is an EV vehicle that travels using the power of one main motor. In other embodiments, a plurality of main motors may be provided. In another embodiment, the vehicle to which the rotating electrical machine control device is applied is not limited to an EV vehicle, but may be a hybrid vehicle including a main motor and a fuel cell vehicle as a drive source of the vehicle.
As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure.
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiment. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  車両(90)がロック状態か否かを判定するロック判定部(54)と、
     前記車両の駆動源である主機モータ(3)の回転数の制御に係る回転数指令値を演算する回転数指令演算部(571)を有するモータ駆動制御部(56)と、
     を備え、
     前記モータ駆動制御部は、前記車両がロック状態である場合、周期的に変更される前記回転数指令値を用いた制御である回転数制御により、前記主機モータの駆動を制御する車両制御装置。
    A lock determination unit (54) for determining whether the vehicle (90) is in a locked state;
    A motor drive control section (56) having a rotation speed command calculation section (571) for calculating a rotation speed command value relating to the control of the rotation speed of the main motor (3) which is a drive source of the vehicle;
    With
    When the vehicle is in a locked state, the motor drive control unit controls the drive of the main motor by rotation speed control that is control using the rotation speed command value that is periodically changed.
  2.  前記回転数指令演算部は、前記回転数指令値として、第1指令値と第2指令値とを交互に切り替える請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the rotation speed command calculation unit alternately switches between a first command value and a second command value as the rotation speed command value.
  3.  前記主機モータを正転方向に回転させる前記回転数指令値を正、逆転方向に回転させる前記回転数指令値を負とすると、
     前記回転数指令演算部は、
     前記車両が登り勾配にてロック状態となる登坂ロック状態のとき、前記第1指令値を正の値、前記第2指令値を0または前記第1指令値とは異なる正の値とし、
     前記車両が登り勾配以外にてロック状態となる非登坂ロック状態のとき、前記第1指令値を正の値、前記第2指令値を負の値とする請求項2に記載の車両制御装置。
    When the rotation speed command value for rotating the main motor in the forward rotation direction is positive and the rotation speed command value for rotating in the reverse rotation direction is negative,
    The rotational speed command calculation unit is
    When the vehicle is in an uphill lock state in which the vehicle is locked on an ascending slope, the first command value is a positive value, the second command value is 0 or a positive value different from the first command value,
    3. The vehicle control device according to claim 2, wherein when the vehicle is in a non-hill-climbing locked state where the vehicle is in a locked state other than climbing slope, the first command value is a positive value and the second command value is a negative value.
  4.  前記主機モータと駆動輪(95)との間には、ギアバックラッシュが存在しており、
     前記回転数指令演算部は、前記非登坂ロック状態のとき、前記主機モータの駆動範囲が前記ギアバックラッシュの範囲内となるように前記第1指令値および前記第2指令値を決定する請求項3に記載の車両制御装置。
    There is a gear backlash between the main motor and the drive wheel (95),
    The rotation speed command calculation unit determines the first command value and the second command value so that a driving range of the main motor is within a range of the gear backlash when in the non-hill climbing lock state. 4. The vehicle control device according to 3.
  5.  前記回転数指令演算部は、前記第1指令値と前記第2指令値を切り替える切替周期の1周期にて、前記主機モータが電気角120°以上回転するように、前記第1指令値および前記第2指令値を決定する請求項2~4のいずれか一項に記載の車両制御装置。 The rotation speed command calculation unit is configured to output the first command value and the first command value so that the main motor rotates at an electrical angle of 120 ° or more in one cycle of a switching cycle for switching between the first command value and the second command value. The vehicle control device according to any one of claims 2 to 4, wherein the second command value is determined.
  6.  前記ロック判定部は、前記主機モータの回転数がロック判定閾値より小さく、かつ、前記主機モータのトルクがトルク判定閾値より大きい状態が所定の継続判定時間に亘って継続した場合、前記車両がロック状態であると判定する請求項1~5のいずれか一項に記載の車両制御装置。 The lock determination unit locks the vehicle when the number of rotations of the main motor is smaller than a lock determination threshold and the torque of the main motor is larger than the torque determination threshold for a predetermined continuation determination time. The vehicle control device according to any one of claims 1 to 5, which is determined to be in a state.
  7.  前記モータ駆動制御部は、前記車両がロック状態であって、かつ、前記主機モータに供給される電力を変換するインバータ(20)を冷却する冷却水の温度が回転数制御閾値より高い場合、前記回転数制御を行う請求項1~6のいずれか一項に記載の車両制御装置。 When the vehicle is in a locked state and the temperature of cooling water for cooling the inverter (20) for converting the power supplied to the main motor is higher than the rotation speed control threshold, the motor drive control unit The vehicle control device according to any one of claims 1 to 6, wherein the vehicle speed control is performed.
  8.  前記車両がロック状態の場合、前記主機モータに供給される電力を変換するインバータ(20)を冷却する冷却水の温度に基づき、前記主機モータから出力されるトルクを制限するトルク制限部(55)を備える請求項1~7のいずれか一項に記載の車両制御装置。 When the vehicle is in a locked state, a torque limiter (55) that limits the torque output from the main motor based on the temperature of cooling water that cools the inverter (20) that converts the power supplied to the main motor. The vehicle control device according to any one of claims 1 to 7, further comprising:
  9.  前記主機モータと駆動軸(91)との間に設けられるクラッチ(81)を制御するクラッチ制御部(51)を備え、
     前記クラッチ制御部は、前記回転数制御を行うとき、前記クラッチの係合状態を、完全係合状態と完全離間状態との間の半クラッチ状態に制御する請求項1~8のいずれか一項に記載の車両制御装置。
    A clutch control unit (51) for controlling a clutch (81) provided between the main motor and the drive shaft (91);
    The clutch control unit, when performing the rotation speed control, controls the engagement state of the clutch to a half-clutch state between a complete engagement state and a complete separation state. The vehicle control device described in 1.
  10.  前記車両がロック状態であって、前記車両の移動量がずり下がり判定閾値より大きいと判定された場合、ブレーキ(97)を制御して前記車両を停止させるブレーキ制御部(59)を備える請求項1~9のいずれか一項に記載の車両制御装置。 A brake control unit (59) for controlling the brake (97) to stop the vehicle when the vehicle is in a locked state and it is determined that the amount of movement of the vehicle is larger than a threshold value for determining a slippage. The vehicle control device according to any one of 1 to 9.
PCT/JP2017/036598 2016-10-12 2017-10-10 Vehicle control apparatus WO2018070367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780063050.6A CN109843634B (en) 2016-10-12 2017-10-10 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-200687 2016-10-12
JP2016200687A JP6614092B2 (en) 2016-10-12 2016-10-12 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2018070367A1 true WO2018070367A1 (en) 2018-04-19

Family

ID=61905562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036598 WO2018070367A1 (en) 2016-10-12 2017-10-10 Vehicle control apparatus

Country Status (3)

Country Link
JP (1) JP6614092B2 (en)
CN (1) CN109843634B (en)
WO (1) WO2018070367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106331A1 (en) * 2021-12-08 2023-06-15 株式会社デンソー Vehicle brake device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278693B2 (en) * 2019-08-30 2023-05-22 ダイハツ工業株式会社 motor controller
JP6811820B1 (en) * 2019-09-27 2021-01-13 三菱電機株式会社 Motor control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113108A (en) * 1997-10-06 1999-04-23 Hitachi Ltd Electric vehicle
JP2005045863A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Power output device, method for controlling same and automobile
JP2008013028A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Motor lock prevention device for hybrid vehicle
JP2012065424A (en) * 2010-09-15 2012-03-29 Toyota Motor Corp Braking force control device for vehicle
JP2012239276A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Drive system of vehicle and control method thereof
JP2016028922A (en) * 2014-07-25 2016-03-03 富士重工業株式会社 Electric vehicle drive gear

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113108A (en) * 1997-10-06 1999-04-23 Hitachi Ltd Electric vehicle
JP2005045863A (en) * 2003-07-22 2005-02-17 Toyota Motor Corp Power output device, method for controlling same and automobile
JP2008013028A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Motor lock prevention device for hybrid vehicle
JP2012065424A (en) * 2010-09-15 2012-03-29 Toyota Motor Corp Braking force control device for vehicle
JP2012239276A (en) * 2011-05-11 2012-12-06 Toyota Motor Corp Drive system of vehicle and control method thereof
JP2016028922A (en) * 2014-07-25 2016-03-03 富士重工業株式会社 Electric vehicle drive gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106331A1 (en) * 2021-12-08 2023-06-15 株式会社デンソー Vehicle brake device

Also Published As

Publication number Publication date
CN109843634A (en) 2019-06-04
JP2018064343A (en) 2018-04-19
CN109843634B (en) 2022-05-31
JP6614092B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP4998591B2 (en) Electric vehicle
JP4975891B1 (en) Electric vehicle
US9236825B2 (en) Vehicle control device and control method
US9559626B2 (en) Apparatus for controlling motor in electric vehicle and method for preventing overheating of traction motor
JP5837439B2 (en) Electric vehicle
WO2018070367A1 (en) Vehicle control apparatus
JP2007244072A (en) Motor drive controller, electric vehicle mounted therewith, and motor drive control method
JP5880518B2 (en) Electric vehicle
JP2014241690A (en) Vehicle
JP2012101771A (en) Control device of hybrid electric vehicle
JP7459752B2 (en) Regenerative control method and regenerative control device
JP4735076B2 (en) Motor control device
JP2012095443A (en) Automobile
JP5737329B2 (en) Induction motor controller for vehicle
JP6950755B2 (en) Inverter control method and inverter control device
JP6614088B2 (en) Power system controller
JP2004023943A (en) Reversing suppression controller for electric vehicle
JP6137045B2 (en) Vehicle drive motor control device
JP2012170247A (en) Drive system of vehicle and control method therefor
WO2018139299A1 (en) Inverter control device
WO2018146793A1 (en) Inverter control device and vehicle driving system
JP5705677B2 (en) Rotating electrical machine control system
JPH0956184A (en) Motor controller for driving electric car
JP6492900B2 (en) Motor driving apparatus and motor driving method
WO2018066625A1 (en) Rotary electric machine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860037

Country of ref document: EP

Kind code of ref document: A1