WO2018070271A1 - Radiation imaging system and control method for same, control device and control method for same, and computer program - Google Patents

Radiation imaging system and control method for same, control device and control method for same, and computer program Download PDF

Info

Publication number
WO2018070271A1
WO2018070271A1 PCT/JP2017/035481 JP2017035481W WO2018070271A1 WO 2018070271 A1 WO2018070271 A1 WO 2018070271A1 JP 2017035481 W JP2017035481 W JP 2017035481W WO 2018070271 A1 WO2018070271 A1 WO 2018070271A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
image
imaging device
control device
Prior art date
Application number
PCT/JP2017/035481
Other languages
French (fr)
Japanese (ja)
Inventor
健太 遠藤
雄一 西井
光 田中
智大 川西
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018070271A1 publication Critical patent/WO2018070271A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging system, a control method thereof, a control device, a control method thereof, and a computer program.
  • a portable radiation imaging apparatus (FPD: Flat Panel Detector) that forms an image by detecting the incidence of radiation with a radiation detection element
  • the portable FPD is not used in a stand or the like, but in a so-called independent state.
  • a patient's hand which is a subject, is placed on the radiation incident surface of the FPD, and radiation images are captured by irradiating and receiving radiation from a portable or fixed radiation generator.
  • portable FPDs those that transmit and receive image data and the like to and from an external device such as a radiation control device via a wireless communication unit are increasing from the viewpoint of handling.
  • a power supply is not a wired cable from the outside, but a rechargeable battery is built in the housing.
  • the imaging mode is an operation mode in which power is supplied to the radiation detection element or the like and imaging of the radiation image is possible
  • the sleep mode is the power supply to the radiation detection element or the like and only the necessary members are stopped. This is an operation mode for supplying power. It is possible to prevent wasteful power consumption of the FPD that is not used for imaging, by changing only one FPD to the imaging-capable mode and maintaining the other FPD in the sleep mode at the time of imaging.
  • Patent Document 1 describes a system in which all FPDs that are considered to be used are shifted to an imageable mode and an image is acquired from an FPD that detects radiation irradiation. .
  • an FPD other than the intended FPD may also detect radiation irradiation.
  • the image data are grouped and stored in the radiation control apparatus.
  • the operator needs to select an image on the radiation control apparatus, which is a burden on the user.
  • the present invention can automatically select an imaging device used for imaging and acquire a captured image in a radiation imaging system using an imaging device capable of detecting radiation irradiation by itself.
  • the purpose is to provide technology.
  • a radiation imaging system comprises the following arrangement. That is, A plurality of imaging devices that generate images based on radiation emitted from a radiation generator that emits radiation; and A radiation imaging system comprising: a control device that communicates with the plurality of imaging devices; Each of the plurality of imaging devices can itself detect that the irradiation of radiation to the imaging device has started, The imaging device that detects radiation transmits predetermined notification information to the control device, The control device includes: Based on the received notification information, selecting means for selecting an imaging device from which the image is to be acquired from among the plurality of imaging devices; And an acquisition unit that acquires an image generated by the imaging device from the selected imaging device.
  • the imaging device used for imaging can be automatically selected to obtain a captured image.
  • the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
  • FIG. 1 shows an example of a hardware configuration diagram of a radiation imaging system according to the first embodiment (Embodiment 1) of the present invention.
  • the radiation imaging system includes an imaging control device 101, a first radiation imaging device 102, a second radiation imaging device 103, a radiation generation unit 104, a display unit 105, and an operation unit 106.
  • an example in which the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are realized by an FPD (Flat Panel Detector) will be described. Therefore, hereinafter, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are collectively referred to as FPD.
  • FPD Full Panel Detector
  • the imaging control device (radiation control device) 101 is an information processing device that controls an imaging device by communicating with a plurality of imaging devices.
  • the imaging control apparatus 101 includes a RAM 101a, a ROM 101b, a network I / F 101c, a CPU 101d, a nonvolatile storage device 101e, and a bus 101f.
  • the RAM 101a is a writable memory (Random Access Memory) and functions as a work area of the CPU 101d.
  • the ROM 101b is a read-only memory (Read Only Memory), and stores basic programs, data used for basic processing, and the like.
  • the network I / F 101c is a device that relays data exchange with an external device.
  • the CPU 101d is a central processing unit (Central Processing Unit), and controls the overall operation of the imaging control device 101 in cooperation with other components based on a computer program.
  • the nonvolatile storage device 101e is a device that functions as a large-capacity memory such as a hard disk. Various computer programs and data are stored in the non-volatile storage device 101e.
  • the bus 101f is a data bus that connects the components of the imaging control apparatus 101 to each other and manages the flow of data. With this configuration, the imaging control apparatus 101 has a general computer configuration that is operated by a computer program.
  • the imaging control apparatus 101 is realized by, for example, a general-purpose information processing apparatus such as a personal computer (PC: Personal Computer) or a tablet terminal, or a dedicated embedded device.
  • the imaging control apparatus 101 controls the operation of the FPD based on an operator input.
  • the imaging control apparatus 101 manages radiation imaging conditions, image data, and the like using a database or the like.
  • the display unit 105 is a device that displays image data, GUI (Graphical User Interface), and the like on a screen.
  • the display unit 105 includes a general monitor such as a CRT (CathodeathRay Tube) or a liquid crystal display.
  • the operation unit 106 is an apparatus used by an operator to input various commands and data to the imaging control apparatus 101, and includes an input device such as a pointing device such as a mouse, a keyboard, a touch panel, and an irradiation switch.
  • the radiation generator 104 is a radiation generator that generates and exposes radiation. Connection to the imaging control apparatus 101 may or may not be made.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are imaging apparatuses that generate an image based on the radiation emitted from the radiation generation unit 104 that emits radiation.
  • Each of the plurality of radiation imaging apparatuses 102 and 103 can detect by itself that radiation irradiation to the imaging apparatus has started.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are realized by an FPD that converts a radiation signal transmitted through a subject into image data and transfers the image data to the imaging control apparatus 101.
  • Each of the radiation imaging apparatuses 102 and 103 converts the radiation received by the photoelectric conversion element into an electric charge, and forms a radiation image.
  • FIG. 1 two radiation imaging devices (the first radiation imaging device 102 and the second radiation imaging device 103) are shown, but the number is not limited to two, and three or more radiation imaging devices are connected. May be. Note that the connection form between the imaging control device 101 and the radiation imaging devices 102 and 103, the radiation generation unit 104, the display unit 105, and the operation unit 106 is not limited to wired or wireless, and any communication protocol may be used. .
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the imaging control apparatus 101 according to the present embodiment.
  • Each functional element of the imaging control apparatus 101 is realized by the CPU 101d controlling the hardware components of the imaging control apparatus 101 based on a computer program.
  • the imaging control unit 201 is a functional element that controls all imaging processes, and performs overall imaging control such as FPD drive control and imaging progress management based on an operator input.
  • a notification receiving unit (detection notification receiving unit) 202 is a functional element that receives a radiation detection notification notified from each of the radiation imaging apparatuses 102 and 103. When the notification receiving unit 202 detects the reception of the radiation detection notification, the notification receiving unit 202 notifies the imaging control unit 201 of the reception.
  • the selection unit (imaging device selection unit) 203 is a functional element that identifies a radiation imaging device that is an imaging target.
  • the image acquisition unit 204 is a functional element that acquires radiation image data from the radiation imaging apparatus selected by the selection unit 203.
  • a state management unit (imaging apparatus state management unit) 205 is a functional element that performs state management of each radiation imaging apparatus and commands a transition from a sleep mode to an imageable mode.
  • the information input unit 206 is a functional element that receives input from the operator and transmits the input to the imaging control unit 201.
  • the imaging information management unit 207 is a functional element that manages radiation image data in association with the patient information, the imaged site, image processing parameter information, and the like.
  • the image processing unit 208 is a functional element that performs image processing on the radiation image data based on the image processing parameter information managed by the imaging information management unit 207.
  • the display unit 209 is a functional element that displays an image or GUI that has been subjected to image processing by the image processing unit 208.
  • FIG. 3 is an example of a flowchart showing an operation procedure until the radiation imaging apparatuses 102 and 103 perform imaging and generate radiation image data.
  • This processing flow shows a series of steps until the radiation imaging apparatuses 102 and 103 receive radiation from the radiation generation unit 104 and generate an image. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • the radiation imaging apparatuses 102 and 103 are waiting in a state where the sleep mode is maintained in order to suppress battery power consumption (S301).
  • the operator selects an imaging condition from the information input unit 206 on the imaging control apparatus 101, and causes the radiation imaging system to start imaging (S302).
  • the state management unit 205 transmits an irradiation waiting mode transition command to the radiation imaging apparatuses 102 and 103 (S303).
  • each of the radiation imaging apparatuses 102 and 103 shifts from the sleep mode to the irradiation waiting mode (S304).
  • Each radiation imaging apparatus 102, 103 notifies the imaging control apparatus 101 that it has shifted to the irradiation waiting mode (S305).
  • each of the radiation imaging apparatuses 102 and 103 waits until radiation is detected (S306).
  • the radiation imaging apparatuses 102 and 103 shift to the accumulation mode and start accumulating charges generated by photoelectric conversion (S307).
  • the radiation imaging apparatus that has detected the start of irradiation maintains the accumulation mode until it detects the end of radiation irradiation (S308).
  • FIG. 4 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG.
  • the following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • the radiation imaging apparatuses 102 and 103 that have generated the radiation image data notify the imaging control apparatus 101 that radiation has been detected (S401).
  • the notification receiving unit 202 receives notifications from the radiation imaging apparatuses 102 and 103, and identifies the radiation imaging apparatus that is first notified by the selection unit 203 as an imaging target. In response to this, the image acquisition unit 204 transmits an image transmission command to the radiation imaging apparatus 102 identified as the imaging target (S402).
  • the radiation imaging apparatus 102 that has received the command transmits the created radiation image data to the imaging control apparatus 101 (S403).
  • the imaging control apparatus 101 associates the received radiation image data with the imaging conditions stored in the imaging information management unit 207. Then, the image processing unit 208 performs image processing using the image processing parameters stored as part of the imaging information, and then displays the image on the display unit 209 (S404).
  • the radiation imaging apparatuses 102 and 103 have described the example of transmitting the notification that the radiation has been detected to the imaging control apparatus 101 after generating the radiation image data. It is not limited to this. For example, notification may be made before detection is started or before detection is completed and radiation image data is generated.
  • the radiation imaging apparatus that first receives the notification is determined as an imaging target, but the present invention is not limited to this. For example, as long as it is based on the reception order, the order may be late, or all notifications received within a certain period may be determined as imaging targets.
  • the radiation imaging apparatus that has detected radiation transmits predetermined notification information to the imaging control apparatus 101. Then, the imaging control apparatus 101 selects a radiation imaging apparatus from which an image is to be acquired from a plurality of radiation imaging apparatuses based on the received notification information, and selects an image generated by the radiation imaging apparatus from the radiation imaging apparatus. get.
  • the notification information is information for notifying that the radiation imaging apparatus has detected radiation irradiation
  • the imaging control apparatus 101 selects the radiation imaging apparatus that first received the notification information.
  • an imaging apparatus used for imaging can be automatically selected to obtain a captured image. Is possible.
  • Embodiment 2 In the second embodiment (Embodiment 2) of the present invention, a configuration for determining a radiation imaging apparatus to be imaged based on pixel information will be described.
  • the configuration of the radiation imaging system and the imaging control apparatus 101 and the operation procedure until the radiation imaging apparatuses 102 and 103 capture images and generate radiation image data are the same as those in the first embodiment, and detailed description thereof is omitted. .
  • FIG. 5 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG. Also in this embodiment, an operation example when the radiation imaging apparatuses 102 and 103 both detect radiation irradiation and generate radiation image data will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • the radiation imaging apparatuses 102 and 103 recognize the irradiation field from the generated radiation image data (S501).
  • each of the radiation imaging apparatuses 102 and 103 calculates a pixel average value in the recognized irradiation field, and uses this as statistical information related to imaging (S502).
  • a pixel average value is used as an example of statistical information.
  • the statistical information is not limited to this, and for example, a maximum value, a median value, a variance value, or the like may be used. Alternatively, it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values. Further, there may be two or more pieces of statistical information to be calculated.
  • the radiation imaging apparatuses 102 and 103 notify the imaging control apparatus 101 together with statistical information that radiation has been detected (S503). That is, in this embodiment, in addition to the notification information for notifying that radiation has been detected, statistical information is combined and transmitted from the radiation imaging apparatus to the imaging control apparatus 101.
  • the notification receiving unit 202 of the imaging control apparatus 101 receives notifications from the radiation imaging apparatuses 102 and 103, and passes statistical information to the selection unit 203.
  • the selection unit 203 identifies a radiation imaging apparatus having the largest pixel average value, which is statistical information, as an imaging target. This is because the pixel value of a pixel corresponding to a portion that has passed through a subject such as a human body is high, and thus an image having the largest pixel average value is highly likely to be an image that has passed through the subject. Therefore, in the configuration for acquiring an image with inverted luminance, the radiation imaging apparatus having the smallest pixel average value is specified as the imaging target.
  • the image acquisition unit 204 transmits an image transmission command to the radiation imaging device 102 identified as the imaging target (S504).
  • the radiation imaging apparatus 102 that has received the command transmits the created radiation image data to the imaging control apparatus 101 (S505).
  • the image acquisition unit 204 of the imaging control apparatus 101 receives the radiation image data
  • the radiation image data is associated with the imaging conditions stored in the imaging information management unit 207.
  • the image processing unit 208 performs image processing using the image processing parameters stored as part of the imaging information, and then displays the image on the display unit 209 (S506).
  • the average pixel value in the irradiation field is used as the statistical information.
  • the present invention is not limited to this, and the difference between the maximum pixel value and the minimum pixel value, the average value / dispersion value of luminance and density, May be used.
  • the radiation imaging apparatus that has detected radiation further transmits statistical information about imaging to the imaging control apparatus in addition to notification information about radiation detection.
  • the imaging control device 101 compares statistical information received from a plurality of radiation imaging devices and selects an imaging device that should acquire an image.
  • the statistical information here includes, for example, statistical information calculated from an image generated by the radiation imaging apparatus. For example, when the average pixel value of the image generated by the imaging device is used as the statistical information, the imaging device that has transmitted the largest average pixel value can be selected.
  • the radiation imaging apparatus is selected by comparing the statistical information related to imaging, and an image is acquired from the radiation imaging apparatus. Therefore, the radiation imaging apparatus that has actually performed the imaging is efficiently and more reliably determined. Thus, a captured image can be acquired.
  • the radiation imaging apparatus transmits information of an image generated by the radiation imaging apparatus in the radiation irradiation field to the imaging control apparatus as statistical information, the radiation imaging apparatus that has actually performed imaging can be correctly determined.
  • FIG. 6 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG. Also in this embodiment, an operation example when the radiation imaging apparatuses 102 and 103 both detect radiation irradiation and generate radiation image data will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • Each radiation imaging apparatus 102, 103 creates thinned image data obtained by thinning the image size in at least one of the vertical direction and the horizontal direction from the generated radiation image data (S601).
  • the radiation imaging apparatuses 102 and 103 notify the imaging control apparatus 101 that the radiation has been detected together with the thinned image data (S602).
  • the notification receiving unit 202 of the imaging control apparatus 101 receives notifications from the radiation imaging apparatuses 102 and 103 and passes the thinned image data to the selection unit 203.
  • the selection unit 203 acquires the pixel value average value from the thinned image data and sets it as statistical information (S603).
  • the selection unit 203 identifies a radiation imaging apparatus having the largest pixel average value, which is statistical information, as an imaging target. In the configuration for acquiring an image with inverted luminance, the radiation imaging apparatus having the smallest pixel average value is specified as the imaging target. In response to this, the image acquisition unit 204 transmits an image transmission command to the radiation imaging apparatus 102 identified as the imaging target (S604).
  • the imaging control unit 201 passes the thinned image to the image processing unit 208, performs image processing, and displays the preview on the display unit 209. Thereby, the operator can relieve the waiting time until all the radiation image data is stored in the display unit 209 (S605).
  • the radiation imaging apparatus 102 While performing the preview display, the radiation imaging apparatus 102 that has received the command transmits the remaining radiation pixel data other than the transmitted thinned image to the imaging control apparatus 101 among the generated radiation image data (S606). .
  • the image acquisition unit 204 When the image acquisition unit 204 receives the remaining radiation pixel data, the remaining radiation pixel data is merged with the thinned image data to generate the original radiation image data.
  • the radiation image data is associated with the imaging conditions stored in the imaging information management unit 207, and after image processing is performed by the image processing unit 208 using the image processing parameters stored as part of the imaging information, It is displayed on the display unit 209 (S607).
  • the pixel average value is used as the statistical information, but it is not limited to this as in the second embodiment.
  • the thinned image is transmitted in advance, but the present invention is not limited to this.
  • the form which sends the compressed image data which compressed radiation image data may be sufficient.
  • the compressed data size may be used as the statistical information, and the radiation imaging apparatus that has transmitted the image having the largest compressed data size may be identified as the imaging target. This is because when the subject is reflected in the radiation image, the compressed data size is larger than that of the dark image due to the presence of information corresponding to the transmission image of the subject. In this case, since it is not a thinned image, it is necessary to receive all the radiation image data in S606.
  • the radiation imaging apparatus transmits the thinned image generated by the radiation imaging apparatus to the imaging control apparatus as statistical information.
  • the imaging control apparatus selects a radiation imaging apparatus that has transmitted the thinned image having the largest average pixel value from the received thinned images, and acquires an image. Therefore, according to the present embodiment, it is possible to efficiently and surely determine the radiation imaging apparatus that has actually performed imaging and acquire the captured image.
  • the radiation imaging apparatus transmits information of an image generated by the radiation imaging apparatus in the radiation irradiation field to the imaging control apparatus as statistical information, the radiation imaging apparatus that has actually performed imaging can be correctly determined.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of the imaging control apparatus 101 according to the present embodiment.
  • the imaging control apparatus 101 of the present embodiment includes an image analysis unit 701 in addition to the configuration of FIG.
  • the image analysis unit 701 is a functional element that determines whether the radiographic image data determined as the imaging target matches the imaging conditions.
  • Functional elements in common with FIG. 2 are assigned the same reference numerals, and detailed descriptions thereof are omitted.
  • FIG. 8 shows an example of a flowchart according to the present embodiment. This flowchart is based on the flowchart of FIG. 5 referred to in the second embodiment, and the steps S801 to S805 are the same as the steps S501 to S505 of FIG. Therefore, steps after S806 will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • the image analysis unit 701 determines whether the acquired radiation image data matches the imaging condition selected in S302 of FIG. Then, the radiation image data is analyzed (S806).
  • the received radiation image data matches the imaging conditions acquired from the imaging information management unit 207 (S807). For example, when a part (for example, chest, head, etc.) corresponding to the imaging condition is captured in the radiographic image data, it can be determined that the radiographic image data matches the imaging condition. For example, by determining whether or not a part corresponding to the imaging condition is captured, feature data indicating the feature of the part of the subject is set in advance, and comparing the feature data with the feature of the received radiation image data It can be carried out. The imaging conditions are designated (set) in advance by the operator. If it is determined that the radiation image data matches the imaging condition (YES in S807), the process proceeds to S808. If it is determined that the radiation image data does not match (NO in S807), the process proceeds to S809.
  • the radiation image data is associated with the imaging conditions stored in the imaging information management unit 207, and image processing is performed by the image processing parameters stored as part of the imaging information by the image processing unit 208. After that, it is displayed on the display unit 209 (S808).
  • the step of S804 is executed again from the other radiation imaging apparatuses. This is repeated until radiation image data matching the imaging conditions is found (S809). When radiation image data matching the imaging conditions is not found, a message to that effect is displayed on the display unit 209.
  • the radiation image data matches the imaging condition is determined based on whether or not a part corresponding to the imaging condition is reflected in the image.
  • the suitability determination is not limited to this method.
  • the compatibility with the imaging conditions may be determined based on information such as the radiation intensity detected in the dark part, the image size, and the resolution.
  • the imaging control apparatus analyzes an image acquired from the radiation imaging apparatus and determines whether or not the image matches a preset imaging condition. As a result, when it is determined that the acquired image does not match the imaging condition, an image generated by the other radiation imaging apparatus is further acquired from the other radiation imaging apparatus. Therefore, according to the present embodiment, even when a captured image cannot be acquired from the radiation imaging apparatus that actually performed imaging, it is possible to acquire an image from another radiation imaging apparatus and acquire the captured image reliably. it can.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the radiation imaging system according to the present embodiment.
  • the radiation imaging apparatuses 102 and 103 include nonvolatile storage devices 901 and 902 such as hard disks, and permanently store the captured radiation image data. Since other components are the same as those in FIG. 1 referred to in the first embodiment, the same reference numerals are given to these components, and detailed description thereof is omitted. Further, the configuration of the imaging control apparatus 101 and the operation procedure from when the radiation imaging apparatuses 102 and 103 capture an image to generate radiation image data are the same as those in the first embodiment, and detailed description thereof is omitted.
  • FIG. 10 is a flowchart showing an operation example of the radiation imaging system according to the present embodiment.
  • the flow of FIG. 10 shows a procedure of processing for re-acquiring an image when the acquired radiation image data is not appropriate.
  • Each step of this flowchart is executed after executing a series of steps shown in FIG. 6 referred to in the third embodiment.
  • the radiation imaging system specifies the first radiation imaging apparatus 102 as an imaging target will be described as an example.
  • the following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
  • the imaging control apparatus 101 stores all the thinned images acquired from the radiation imaging apparatuses 102 and 103 in S602 of FIG. 6 in the imaging information management unit 207 (S1001).
  • the operator gives an instruction to change the radiographic image data from the information input unit 206 (S1002).
  • S1002 an example will be described in which the radiation image data acquired from the first radiation imaging apparatus 102 is not intended by the operator.
  • the display unit 209 performs display control so that the thinned image stored as the image related to imaging is subjected to image processing by the image processing unit 208 and then displayed as a list on the display unit 209.
  • the list display may or may not display a thinned image acquired from the first radiation imaging apparatus 102, which is an image not intended by the operator (S1003).
  • the operator selects image data to be acquired from the list of related images (S1004).
  • image data acquired from the second radiation imaging apparatus 103 is selected will be described.
  • the image acquisition unit 204 transmits an image transmission command to the second radiation imaging apparatus 103 that acquired the selected related image (S1005).
  • the second radiation imaging apparatus 103 that has received the command extracts the radiation image data from the nonvolatile storage device 902 and transmits it to the imaging control apparatus 101 (S1006).
  • the radiation image data is newly associated with the imaging condition stored in the imaging information management unit 207 (S1007).
  • step S1003 instead of displaying a list of images, information for identifying the radiation imaging apparatus may be displayed in a selectable manner.
  • the related images are appropriately processed and displayed in order to display a list, but may be stored in the imaging information management unit 207 after image processing is performed in advance.
  • the radiation imaging apparatus transmits a thinned image generated by the radiation imaging apparatus as statistical information to the imaging control apparatus, and the imaging control apparatus can designate the thinned images received from a plurality of radiation imaging apparatuses. Display control to be displayed on the display unit 209 is performed. Then, the imaging control apparatus selects the radiation imaging apparatus that has transmitted the thinned image designated by the operator, and acquires an image. Therefore, according to the present embodiment, when the radiation imaging control apparatus automatically determined by the imaging control apparatus is not actually imaging, the radiation imaging apparatus that has performed imaging is correctly selected by visual observation of the operator. Is possible.
  • the operator does not need to select an image on the radiation control apparatus, and the system automatically selects the radiation image data captured by the system. Work burden can be reduced.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC
  • 201 Imaging control unit
  • 202 Notification receiving unit
  • 203 Selection unit
  • 204 Image acquisition unit
  • 205 Status management unit
  • 206 Information input unit
  • 207 Imaging information management unit
  • 208 Image processing unit
  • 209 Display section

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided is a radiation imaging system comprising: a plurality of imaging devices that generate images on the basis of radiation emitted from a radiation generating device for emitting radiation; and a control device that communicates with the plurality of imaging devices. Each of the plurality of imaging devices can independently detect the start of the emission of radiation thereto, and an imaging device that has detected such radiation transmits prescribed notification information to the control device. The control device comprises: a selection unit that selects an imaging device from which to acquire an image from among the plurality of imaging devices; and an acquisition unit that acquires, from the selected imaging device, an image generated by said imaging device.

Description

放射線撮像システム及びその制御方法、制御装置及びその制御方法、コンピュータプログラムRadiation imaging system and control method thereof, control device and control method thereof, and computer program
 本発明は、放射線撮像システム及びその制御方法、制御装置及びその制御方法、コンピュータプログラムに関する。 The present invention relates to a radiation imaging system, a control method thereof, a control device, a control method thereof, and a computer program.
 近年、放射線の入射を放射線検出素子により検出して画像を形成する可搬型(ポータブル)の放射線撮像装置(FPD:Flat Panel Detector)が広く普及している。可搬型FPDは架台などには入れて使うのではなく、いわば単独の独立した状態で用いられる。例えば、FPDの放射線入射面上に被写体である患者の手等を載置し、可搬型又は固定の放射線発生装置から放射線を照射して受光することにより放射線画像の撮像を行う。こうした可搬型FPDには、取り回しの観点から無線通信部を介して放射線制御装置等の外部装置との間の画像データ等の送受信を行うものも増加している。このようなFPDは可搬性を高めるために、電源供給も外部からの有線ケーブルではなく、筐体内に充電可能なバッテリが内蔵される。 In recent years, a portable radiation imaging apparatus (FPD: Flat Panel Detector) that forms an image by detecting the incidence of radiation with a radiation detection element has been widely used. The portable FPD is not used in a stand or the like, but in a so-called independent state. For example, a patient's hand, which is a subject, is placed on the radiation incident surface of the FPD, and radiation images are captured by irradiating and receiving radiation from a portable or fixed radiation generator. Among such portable FPDs, those that transmit and receive image data and the like to and from an external device such as a radiation control device via a wireless communication unit are increasing from the viewpoint of handling. In order to improve the portability of such an FPD, a power supply is not a wired cable from the outside, but a rechargeable battery is built in the housing.
 こうしたバッテリが内蔵された可搬型FPDの多くは、バッテリの消耗を避けること等を目的として、放射線検出素子等に対する電力の供給状態を、撮像可能モードとスリープモードとの間で切り替えることができるように構成されている。ここで、撮像可能モードは放射線検出素子等に電力を供給して放射線画像撮像を可能とする動作モードであり、スリープモードは放射線検出素子等への電力の供給を停止して必要な部材にのみ電力を供給する動作モードである。一回の撮像に際して1つのFPDのみを撮像可能モードに遷移させ、他のFPDはスリープモードを維持するように構成することで、撮像に使用しないFPDの無駄な電力消費を防止することができる。 Many portable FPDs with a built-in battery can switch the power supply state for the radiation detection element between the imaging mode and the sleep mode for the purpose of avoiding battery consumption. It is configured. Here, the imaging mode is an operation mode in which power is supplied to the radiation detection element or the like and imaging of the radiation image is possible, and the sleep mode is the power supply to the radiation detection element or the like and only the necessary members are stopped. This is an operation mode for supplying power. It is possible to prevent wasteful power consumption of the FPD that is not used for imaging, by changing only one FPD to the imaging-capable mode and maintaining the other FPD in the sleep mode at the time of imaging.
 もっとも、こうしたシステムは、複数のFPDを使用するような環境では、操作者が確認を怠ると、間違えてスリープモードのFPDに対して放射線の曝射を行ってしまい、無効曝射となる危険性がある。操作者は、複数のFPDの中から、撮像に使用するFPDを識別しなければならないため、操作者にかかる作業上の負担や心理的な負担も大きい。 However, in such an environment where multiple FPDs are used, if the operator fails to confirm, there is a risk that radiation will be accidentally applied to the sleep mode FPD, resulting in invalid exposure. There is. Since the operator must identify the FPD to be used for imaging from among the plurality of FPDs, the work burden and psychological burden on the operator are large.
 上記の課題を解決するため、特許文献1には、使用することが考えられるすべてのFPDを撮像可能モードに移行させておき、放射照射を検知したFPDから画像を取得するシステムが記載されている。 In order to solve the above-described problem, Patent Document 1 describes a system in which all FPDs that are considered to be used are shifted to an imageable mode and an image is acquired from an FPD that detects radiation irradiation. .
特開2014-112889号公報JP 2014-112889 A
 しかしながら、複数のセンサーを撮像可能モードに移行させている場合、意図したFPD以外のFPDも放射線照射を検知してしまう可能性がある。特許文献1の構成では、複数の画像データが送信されてきた場合に、それらの画像データをグループ化して放射線制御装置で記憶する。しかし、これが意図しない動作の場合、操作者は放射線制御装置上で画像を選別する作業が必要となり、ユーザー負担となる。 However, when a plurality of sensors are shifted to the image pickup mode, an FPD other than the intended FPD may also detect radiation irradiation. In the configuration of Patent Document 1, when a plurality of image data are transmitted, the image data are grouped and stored in the radiation control apparatus. However, when this is an unintended operation, the operator needs to select an image on the radiation control apparatus, which is a burden on the user.
 そこで、本発明は、放射線の照射を自ら検知することが可能な撮像装置を用いた放射線撮像システムにおいて、撮像に用いられた撮像装置を自動的に選択して撮像画像を取得することが可能な技術を提供することを目的とする。 Therefore, the present invention can automatically select an imaging device used for imaging and acquire a captured image in a radiation imaging system using an imaging device capable of detecting radiation irradiation by itself. The purpose is to provide technology.
 上記目的を達成するため、本発明による放射線撮像システムは以下の構成を備える。即ち、
 放射線を照射する放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
 前記複数の撮像装置と通信する制御装置と
 を備える放射線撮像システムであって、
 前記複数の撮像装置の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができ、
 放射線を検知した前記撮像装置は所定の通知情報を前記制御装置へ送信し、
 前記制御装置は、
  受信した前記通知情報に基づき、前記複数の撮像装置の中から画像を取得すべき撮像装置を選択する選択手段と、
  当該選択された撮像装置から当該撮像装置が生成した画像を取得する取得手段とを備えることを特徴とする。
In order to achieve the above object, a radiation imaging system according to the present invention comprises the following arrangement. That is,
A plurality of imaging devices that generate images based on radiation emitted from a radiation generator that emits radiation; and
A radiation imaging system comprising: a control device that communicates with the plurality of imaging devices;
Each of the plurality of imaging devices can itself detect that the irradiation of radiation to the imaging device has started,
The imaging device that detects radiation transmits predetermined notification information to the control device,
The control device includes:
Based on the received notification information, selecting means for selecting an imaging device from which the image is to be acquired from among the plurality of imaging devices;
And an acquisition unit that acquires an image generated by the imaging device from the selected imaging device.
 本発明によれば、放射線の照射を自ら検知することが可能な撮像装置を用いた放射線撮像システムにおいて、撮像に用いられた撮像装置を自動的に選択して撮像画像を取得することができる。 According to the present invention, in a radiation imaging system using an imaging device capable of detecting radiation irradiation by itself, the imaging device used for imaging can be automatically selected to obtain a captured image.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
放射線撮像システムのハードウェア構成図。 撮像制御装置の機能構成図。 放射線撮像システムの動作を示すフローチャート。 放射線撮像システムの動作を示すフローチャート。 放射線撮像システムの動作を示すフローチャート。 放射線撮像システムの動作を示すフローチャート。 撮像制御装置の機能構成図。 放射線撮像システムの動作を示すフローチャート。 放射線撮像システムのハードウェア構成図。 放射線撮像システムの動作を示すフローチャート。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
The hardware block diagram of a radiation imaging system. The functional block diagram of an imaging control apparatus. The flowchart which shows operation | movement of a radiation imaging system. The flowchart which shows operation | movement of a radiation imaging system. The flowchart which shows operation | movement of a radiation imaging system. The flowchart which shows operation | movement of a radiation imaging system. The functional block diagram of an imaging control apparatus. The flowchart which shows operation | movement of a radiation imaging system. The hardware block diagram of a radiation imaging system. The flowchart which shows operation | movement of a radiation imaging system.
 以下、添付図面を参照して本発明の好適な実施の形態を説明する。尚、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また本実施の形態で説明されている特徴の組み合わせの全てが発明の解決部に必須のものとは限らない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims, and all the combinations of features described in the embodiments are not necessarily essential to the solution section of the invention. .
 <実施形態1>
 (放射線撮像システム)
 図1は本発明の第一の実施形態(実施形態1)に係る放射線撮像システムのハードウェア構成図の一例を示したものである。放射線撮像システムは、撮像制御装置101、第一の放射線撮像装置102、第二の放射線撮像装置103、放射線発生部104、表示部105、及び、操作部106を備える。後述するように、本実施形態では、第一の放射線撮像装置102、及び、第二の放射線撮像装置103をFPD(Flat Panel Detector)により実現する例を説明する。そこで、以下、第一の放射線撮像装置102、及び、第二の放射線撮像装置103を総称してFPDと呼ぶ。
<Embodiment 1>
(Radiation imaging system)
FIG. 1 shows an example of a hardware configuration diagram of a radiation imaging system according to the first embodiment (Embodiment 1) of the present invention. The radiation imaging system includes an imaging control device 101, a first radiation imaging device 102, a second radiation imaging device 103, a radiation generation unit 104, a display unit 105, and an operation unit 106. As will be described later, in the present embodiment, an example in which the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are realized by an FPD (Flat Panel Detector) will be described. Therefore, hereinafter, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are collectively referred to as FPD.
 撮像制御装置(放射線制御装置)101は、複数の撮像装置と通信して、撮像装置を制御する情報処理装置である。撮像制御装置101は、RAM101a、ROM101b、ネットワークI/F101c、CPU101d、不揮発性記憶装置101e、及び、バス101fを備える。RAM101aは書込み可能メモリ(Random Access Memory)であり、CPU101dのワークエリア等として機能する。ROM101bは読出し専用メモリ(Read Only Memory)であり、基本プログラムや基本処理に使用するデータ等を記憶する。ネットワークI/F101cは外部装置とのデータのやり取りを中継する装置である。CPU101dは中央演算処理装置(Central Processing Unit)であり、コンピュータプログラムに基づいて他の構成要素と協働し、撮像制御装置101全体の動作を制御する。不揮発性記憶装置101eはハードディスクなどの大容量メモリとして機能する装置である。不揮発性記憶装置101eには、各種コンピュータプログラムやデータが格納される。バス101fは、撮像制御装置101の各構成要素を互いに接続し、データの流れを司るデータバスである。撮像制御装置101はこのような構成により、コンピュータプログラムにより稼働する一般的なコンピュータ構成を備えている。撮像制御装置101は、例えば、パーソナルコンピュータ(PC:Personal Computer)やタブレット端末等の汎用情報処理装置や、専用の組込み機器により実現される。 The imaging control device (radiation control device) 101 is an information processing device that controls an imaging device by communicating with a plurality of imaging devices. The imaging control apparatus 101 includes a RAM 101a, a ROM 101b, a network I / F 101c, a CPU 101d, a nonvolatile storage device 101e, and a bus 101f. The RAM 101a is a writable memory (Random Access Memory) and functions as a work area of the CPU 101d. The ROM 101b is a read-only memory (Read Only Memory), and stores basic programs, data used for basic processing, and the like. The network I / F 101c is a device that relays data exchange with an external device. The CPU 101d is a central processing unit (Central Processing Unit), and controls the overall operation of the imaging control device 101 in cooperation with other components based on a computer program. The nonvolatile storage device 101e is a device that functions as a large-capacity memory such as a hard disk. Various computer programs and data are stored in the non-volatile storage device 101e. The bus 101f is a data bus that connects the components of the imaging control apparatus 101 to each other and manages the flow of data. With this configuration, the imaging control apparatus 101 has a general computer configuration that is operated by a computer program. The imaging control apparatus 101 is realized by, for example, a general-purpose information processing apparatus such as a personal computer (PC: Personal Computer) or a tablet terminal, or a dedicated embedded device.
 撮像制御装置101は操作者の入力に基づき、FPDの動作を制御する。また、データベースなどを用いて、撮像制御装置101は、放射線撮像条件、画像データなどを管理する。表示部105は、画像データやGUI(Graphical User Interface)などを画面に表示する装置である。表示部105は、CRT(Cathode Ray Tube、ブラウン管)や液晶ディスプレイなどの一般的なモニタによって構成される。操作部106は、操作者が撮像制御装置101に対して各種コマンドやデータを入力するために使用される装置であり、マウス等のポインティング装置、キーボード、タッチパネル、照射スイッチなどの入力装置によって構成される。 The imaging control apparatus 101 controls the operation of the FPD based on an operator input. The imaging control apparatus 101 manages radiation imaging conditions, image data, and the like using a database or the like. The display unit 105 is a device that displays image data, GUI (Graphical User Interface), and the like on a screen. The display unit 105 includes a general monitor such as a CRT (CathodeathRay Tube) or a liquid crystal display. The operation unit 106 is an apparatus used by an operator to input various commands and data to the imaging control apparatus 101, and includes an input device such as a pointing device such as a mouse, a keyboard, a touch panel, and an irradiation switch. The
 放射線発生部104は、放射線を発生して曝射する放射線発生装置である。撮像制御装置101との接続はされていてもされていなくてもよい。 The radiation generator 104 is a radiation generator that generates and exposes radiation. Connection to the imaging control apparatus 101 may or may not be made.
 第一の放射線撮像装置102および第二の放射線撮像装置103は、放射線を照射する放射線発生部104から照射された放射線に基づき画像を生成する撮像装置である。複数の放射線撮像装置102、103の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができる。本実施形態では、第一の放射線撮像装置102および第二の放射線撮像装置103は、被写体を透過した放射線信号を画像データ化し撮像制御装置101へと転送するFPDにより実現される。各放射線撮像装置102、103は、光電変換素子により受光した放射線を電荷に変換して、放射線画像を形成する。 The first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are imaging apparatuses that generate an image based on the radiation emitted from the radiation generation unit 104 that emits radiation. Each of the plurality of radiation imaging apparatuses 102 and 103 can detect by itself that radiation irradiation to the imaging apparatus has started. In the present embodiment, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are realized by an FPD that converts a radiation signal transmitted through a subject into image data and transfers the image data to the imaging control apparatus 101. Each of the radiation imaging apparatuses 102 and 103 converts the radiation received by the photoelectric conversion element into an electric charge, and forms a radiation image.
 図1では、2つの放射線撮像装置(第一の放射線撮像装置102および第二の放射線撮像装置103)を示しているが、2つに限るものではなく、3つ以上の放射線撮像装置が接続されてもよい。なお、撮像制御装置101と放射線撮像装置102、103、放射線発生部104、表示部105、操作部106との接続形態については有線、無線問わず、またどのような通信プロトコルを使用してもよい。 In FIG. 1, two radiation imaging devices (the first radiation imaging device 102 and the second radiation imaging device 103) are shown, but the number is not limited to two, and three or more radiation imaging devices are connected. May be. Note that the connection form between the imaging control device 101 and the radiation imaging devices 102 and 103, the radiation generation unit 104, the display unit 105, and the operation unit 106 is not limited to wired or wireless, and any communication protocol may be used. .
 (撮像制御装置)
 図2は、本実施形態に係る撮像制御装置101の機能構成の一例を示した図である。撮像制御装置101の各機能要素は、CPU101dが撮像制御装置101のハードウェア構成要素をコンピュータプログラムに基づき制御することにより実現される。
(Imaging control device)
FIG. 2 is a diagram illustrating an example of a functional configuration of the imaging control apparatus 101 according to the present embodiment. Each functional element of the imaging control apparatus 101 is realized by the CPU 101d controlling the hardware components of the imaging control apparatus 101 based on a computer program.
 撮像制御部201は撮像の処理をすべて制御する機能要素であり、操作者の入力に基づき、FPDの駆動制御や、撮像の進行管理など撮像全般に係る制御を行う。通知受信部(検出通知受信部)202は、各放射線撮像装置102、103から通知される放射線検出通知を受信する機能要素である。通知受信部202は放射線検出通知の受信を検知すると、撮像制御部201へ通知する。 The imaging control unit 201 is a functional element that controls all imaging processes, and performs overall imaging control such as FPD drive control and imaging progress management based on an operator input. A notification receiving unit (detection notification receiving unit) 202 is a functional element that receives a radiation detection notification notified from each of the radiation imaging apparatuses 102 and 103. When the notification receiving unit 202 detects the reception of the radiation detection notification, the notification receiving unit 202 notifies the imaging control unit 201 of the reception.
 選択部(撮像装置選択部)203は、撮像の対象となった放射線撮像装置を特定する機能要素である。画像取得部204は、選択部203が選択した放射線撮像装置から放射線画像データの取得を行う機能要素である。状態管理部(撮像装置状態管理部)205は、各放射線撮像装置の状態管理を行い、スリープモードから撮像可能なモードへの遷移などを命令する機能要素である。情報入力部206は、操作者からの入力を受け付け、撮像制御部201へと伝える機能要素である。 The selection unit (imaging device selection unit) 203 is a functional element that identifies a radiation imaging device that is an imaging target. The image acquisition unit 204 is a functional element that acquires radiation image data from the radiation imaging apparatus selected by the selection unit 203. A state management unit (imaging apparatus state management unit) 205 is a functional element that performs state management of each radiation imaging apparatus and commands a transition from a sleep mode to an imageable mode. The information input unit 206 is a functional element that receives input from the operator and transmits the input to the imaging control unit 201.
 撮像情報管理部207は、放射線画像データをその患者情報や撮像した部位、画像処理パラメータ情報などと対応付けて管理する機能要素である。画像処理部208は、放射線画像データを撮像情報管理部207により管理された画像処理パラメータ情報に基づいて画像処理を行う機能要素である。表示部209は、画像処理部208で画像処理を施された画像やGUIを表示する機能要素である。 The imaging information management unit 207 is a functional element that manages radiation image data in association with the patient information, the imaged site, image processing parameter information, and the like. The image processing unit 208 is a functional element that performs image processing on the radiation image data based on the image processing parameter information managed by the imaging information management unit 207. The display unit 209 is a functional element that displays an image or GUI that has been subjected to image processing by the image processing unit 208.
 (放射線撮像システムの動作)
 図3は放射線撮像装置102、103が撮像を行い、放射線画像データを生成するまでの動作手順を示すフローチャートの一例である。本処理フローは放射線撮像装置102、103が放射線発生部104からの放射線照射を受けて画像を生成するまでの一連のステップを示している。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。
(Operation of radiation imaging system)
FIG. 3 is an example of a flowchart showing an operation procedure until the radiation imaging apparatuses 102 and 103 perform imaging and generate radiation image data. This processing flow shows a series of steps until the radiation imaging apparatuses 102 and 103 receive radiation from the radiation generation unit 104 and generate an image. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・放射線撮像装置102、103はまず、バッテリ電力消費を抑えるため、スリープモードを維持している状態で待機している(S301)。 First, the radiation imaging apparatuses 102 and 103 are waiting in a state where the sleep mode is maintained in order to suppress battery power consumption (S301).
 ・操作者は撮像制御装置101上で情報入力部206から撮像条件を選択し、放射線撮像システムに撮像を開始させる(S302)。 The operator selects an imaging condition from the information input unit 206 on the imaging control apparatus 101, and causes the radiation imaging system to start imaging (S302).
 ・これを受け、状態管理部205は放射線撮像装置102、103へ照射待ちモード移行命令を送信する(S303)。 In response, the state management unit 205 transmits an irradiation waiting mode transition command to the radiation imaging apparatuses 102 and 103 (S303).
 ・モード移行命令を受けて、各放射線撮像装置102、103はスリープモードから照射待ちモードへ移行する(S304)。 In response to the mode shift command, each of the radiation imaging apparatuses 102 and 103 shifts from the sleep mode to the irradiation waiting mode (S304).
 ・各放射線撮像装置102、103は照射待ちモードへ移行したことを撮像制御装置101に通知する(S305)。 Each radiation imaging apparatus 102, 103 notifies the imaging control apparatus 101 that it has shifted to the irradiation waiting mode (S305).
 ・そして、各放射線撮像装置102、103は、放射線を検出するまで待機する(S306)。 Then, each of the radiation imaging apparatuses 102 and 103 waits until radiation is detected (S306).
 ・照射開始を検出すると(S306でYES)、放射線撮像装置102、103は蓄積モードに移行し、光電変換により生成された電荷の蓄積を開始する(S307)。 When the start of irradiation is detected (YES in S306), the radiation imaging apparatuses 102 and 103 shift to the accumulation mode and start accumulating charges generated by photoelectric conversion (S307).
 ・照射開始を検出した放射線撮像装置は放射線の照射終了を検出するまで蓄積モードを維持する(S308)。 The radiation imaging apparatus that has detected the start of irradiation maintains the accumulation mode until it detects the end of radiation irradiation (S308).
 ・そして、放射線照射の終了を検知すると(S308でYES)、蓄積モード中に蓄積された電荷を読み出し、放射線画像データを生成する(S309)。 When the end of radiation irradiation is detected (YES in S308), the charges accumulated during the accumulation mode are read and radiation image data is generated (S309).
 図4は本実施形態に係るフローチャートの一例を示している。本フローチャートは図3で示された放射線照射を受けて画像が生成されるまでの一連のステップ後に続くステップである。ここでは、放射線撮像装置102、103がともに放射線照射を検出し放射線画像データを生成した場合の動作例を説明する。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。 FIG. 4 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG. Here, an operation example when the radiation imaging apparatuses 102 and 103 both detect radiation irradiation and generate radiation image data will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・放射線画像データを生成した各放射線撮像装置102、103は、放射線を検知したことを撮像制御装置101に通知する(S401)。 The radiation imaging apparatuses 102 and 103 that have generated the radiation image data notify the imaging control apparatus 101 that radiation has been detected (S401).
 ・通知受信部202は、放射線撮像装置102、103から通知を受信し、選択部203が最初に通知してきた放射線撮像装置を撮像対象と特定する。これを受けて、画像取得部204は、撮像対象と特定した放射線撮像装置102へ画像送信命令を送信する(S402)。 The notification receiving unit 202 receives notifications from the radiation imaging apparatuses 102 and 103, and identifies the radiation imaging apparatus that is first notified by the selection unit 203 as an imaging target. In response to this, the image acquisition unit 204 transmits an image transmission command to the radiation imaging apparatus 102 identified as the imaging target (S402).
 ・命令を受けた放射線撮像装置102は作成した放射線画像データを撮像制御装置101へ送信する(S403)。 The radiation imaging apparatus 102 that has received the command transmits the created radiation image data to the imaging control apparatus 101 (S403).
 ・画像取得部204が放射線画像データを受け取ると、撮像制御装置101は、受け取った放射線画像データを撮像情報管理部207に保存された撮像条件と対応付ける。そして、画像処理部208によって撮像情報の一部として保存されていた画像処理パラメータにより画像処理を施したのち、表示部209にて表示する(S404)。 When the image acquisition unit 204 receives the radiation image data, the imaging control apparatus 101 associates the received radiation image data with the imaging conditions stored in the imaging information management unit 207. Then, the image processing unit 208 performs image processing using the image processing parameters stored as part of the imaging information, and then displays the image on the display unit 209 (S404).
 本実施形態では、放射線撮像装置102、103は、放射線画像データを生成したあとに、放射線を検出したことの通知を撮像制御装置101へ送信する例を説明したが、放射線検出の通知のタイミングはこれに限られない。例えば、検出を開始したタイミングや、検出を終了し放射線画像データを生成する前に通知をするようにしてもよい。また、ここでは、最初に通知を受信した放射線撮像装置を撮像対象と決定する例を説明したが、これに限定したものではない。例えば、受信順序に基づいていれば遅く来た順でもよいし、一定期間内に通知を受信したものはすべて撮像対象と判断してもよい。 In the present embodiment, the radiation imaging apparatuses 102 and 103 have described the example of transmitting the notification that the radiation has been detected to the imaging control apparatus 101 after generating the radiation image data. It is not limited to this. For example, notification may be made before detection is started or before detection is completed and radiation image data is generated. Here, an example has been described in which the radiation imaging apparatus that first receives the notification is determined as an imaging target, but the present invention is not limited to this. For example, as long as it is based on the reception order, the order may be late, or all notifications received within a certain period may be determined as imaging targets.
 上記のように、本実施形態では、放射線を検知した放射線撮像装置は所定の通知情報を撮像制御装置101へ送信する。そして、撮像制御装置101は、受信した通知情報に基づき、複数の放射線撮像装置の中から画像を取得すべき放射線撮像装置を選択して、その放射線撮像装置から当該放射線撮像装置が生成した画像を取得する。本実施形態ではそのような一例として、通知情報は、放射線撮像装置が放射線の照射を検知したことを通知する情報であり、撮像制御装置101は、通知情報を最初に受信した放射線撮像装置を選択して、画像を取得する例を説明した。放射線を最も早く検出した放射線撮像装置は放射線撮影を実際に行った蓋然性が高いため、本実施形態によれば、撮像に用いられた撮像装置を自動的に選択して撮像画像を取得することが可能である。 As described above, in this embodiment, the radiation imaging apparatus that has detected radiation transmits predetermined notification information to the imaging control apparatus 101. Then, the imaging control apparatus 101 selects a radiation imaging apparatus from which an image is to be acquired from a plurality of radiation imaging apparatuses based on the received notification information, and selects an image generated by the radiation imaging apparatus from the radiation imaging apparatus. get. In this embodiment, as an example, the notification information is information for notifying that the radiation imaging apparatus has detected radiation irradiation, and the imaging control apparatus 101 selects the radiation imaging apparatus that first received the notification information. Thus, an example of acquiring an image has been described. Since the radiation imaging apparatus that has detected radiation the earliest has a high probability of actually performing radiation imaging, according to the present embodiment, an imaging apparatus used for imaging can be automatically selected to obtain a captured image. Is possible.
 <実施形態2>
 本発明の第二の実施形態(実施形態2)では画素情報をもとに撮像対象となる放射線撮像装置を決定する構成について説明する。放射線撮像システムや撮像制御装置101の構成、及び、放射線撮像装置102、103が撮像して放射線画像データを生成するまでの動作手順は実施形態1と同様であり、これらの詳細な説明は省略する。
<Embodiment 2>
In the second embodiment (Embodiment 2) of the present invention, a configuration for determining a radiation imaging apparatus to be imaged based on pixel information will be described. The configuration of the radiation imaging system and the imaging control apparatus 101 and the operation procedure until the radiation imaging apparatuses 102 and 103 capture images and generate radiation image data are the same as those in the first embodiment, and detailed description thereof is omitted. .
 図5は本実施形態に係るフローチャートの一例を示している。本フローチャートは図3で示された放射線照射を受けて画像が生成されるまでの一連のステップ後に続くステップである。本実施形態でも、放射線撮像装置102、103がともに放射線照射を検出し放射線画像データを生成した場合の動作例を説明する。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。 FIG. 5 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG. Also in this embodiment, an operation example when the radiation imaging apparatuses 102 and 103 both detect radiation irradiation and generate radiation image data will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・各放射線撮像装置102、103は生成した放射線画像データから照射野を認識する(S501)。 The radiation imaging apparatuses 102 and 103 recognize the irradiation field from the generated radiation image data (S501).
 ・次に、各放射線撮像装置102、103は認識した照射野内の画素平均値を算出し、これを撮像に関する統計情報とする(S502)。ここでは、統計情報の一例として画素平均値を用いるものとする。もちろん、統計情報はこれに限定されるものではなく、例えば、最大値、中央値、分散値などが用いられてもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。 Next, each of the radiation imaging apparatuses 102 and 103 calculates a pixel average value in the recognized irradiation field, and uses this as statistical information related to imaging (S502). Here, a pixel average value is used as an example of statistical information. Of course, the statistical information is not limited to this, and for example, a maximum value, a median value, a variance value, or the like may be used. Alternatively, it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values. Further, there may be two or more pieces of statistical information to be calculated.
 ・各放射線撮像装置102、103は、放射線を検知したことを統計情報とともに撮像制御装置101へと通知する(S503)。すなわち本実施形態では、放射線を検知したことを通知する通知情報に加えて統計情報を合わせて放射線撮像装置から撮像制御装置101へ送信する。 The radiation imaging apparatuses 102 and 103 notify the imaging control apparatus 101 together with statistical information that radiation has been detected (S503). That is, in this embodiment, in addition to the notification information for notifying that radiation has been detected, statistical information is combined and transmitted from the radiation imaging apparatus to the imaging control apparatus 101.
 ・撮像制御装置101の通知受信部202は、放射線撮像装置102、103から通知を受信し、選択部203へと統計情報を渡す。選択部203は統計情報である画素平均値が最も大きい放射線撮像装置を撮像対象と特定する。これは、人体等の被写体を透過した部分に相当する画素の画素値は高くなるため、画素平均値が最も大きい画像は被写体を透過した画像である蓋然性が高いためである。したがって、輝度を反転した画像を取得する構成においては、画素平均値が最も小さい放射線撮像装置を撮像対象と特定する。撮像対象の放射線撮像装置を特定すると、画像取得部204は、撮像対象と特定した放射線撮像装置102へ画像送信命令を送信する(S504)。 The notification receiving unit 202 of the imaging control apparatus 101 receives notifications from the radiation imaging apparatuses 102 and 103, and passes statistical information to the selection unit 203. The selection unit 203 identifies a radiation imaging apparatus having the largest pixel average value, which is statistical information, as an imaging target. This is because the pixel value of a pixel corresponding to a portion that has passed through a subject such as a human body is high, and thus an image having the largest pixel average value is highly likely to be an image that has passed through the subject. Therefore, in the configuration for acquiring an image with inverted luminance, the radiation imaging apparatus having the smallest pixel average value is specified as the imaging target. When the radiation imaging device to be imaged is identified, the image acquisition unit 204 transmits an image transmission command to the radiation imaging device 102 identified as the imaging target (S504).
 ・命令を受けた放射線撮像装置102は、作成した放射線画像データを撮像制御装置101へ送信する(S505)。 The radiation imaging apparatus 102 that has received the command transmits the created radiation image data to the imaging control apparatus 101 (S505).
 ・撮像制御装置101の画像取得部204が放射線画像データを受け取ると、同放射線画像データは撮像情報管理部207に保存された撮像条件と対応付けられる。そして、画像処理部208によって撮像情報の一部として保存されていた画像処理パラメータにより画像処理を施されたのち、表示部209にて表示される(S506)。 When the image acquisition unit 204 of the imaging control apparatus 101 receives the radiation image data, the radiation image data is associated with the imaging conditions stored in the imaging information management unit 207. Then, the image processing unit 208 performs image processing using the image processing parameters stored as part of the imaging information, and then displays the image on the display unit 209 (S506).
 本実施形態では、統計情報として、照射野内の画素平均値を用いているが、これに限定されたものではなく、最大画素値と最小画素値の差分や輝度や濃度の平均値・分散値などを使用してもよい。 In the present embodiment, the average pixel value in the irradiation field is used as the statistical information. However, the present invention is not limited to this, and the difference between the maximum pixel value and the minimum pixel value, the average value / dispersion value of luminance and density, May be used.
 上記のように本実施形態では、放射線を検知した放射線撮像装置は、放射線検知に関する通知情報に加えて、撮像に関する統計情報を撮像制御装置へさらに送信する。撮像制御装置101は、複数の放射線撮像装置から受信した統計情報を比較して画像を取得すべき撮像装置を選択する。ここでの統計情報には、例えば、放射線撮像装置が生成した画像から算出された統計情報等が含まれる。そして例えば、撮像装置が生成した画像の平均画素値を統計情報として用いる場合は、最も大きな平均画素値を送信した撮像装置を選択するようにすることができる。このように本実施形態では、撮像に関する統計情報を比較して放射線撮像装置を選択し、その放射線撮像装置から画像を取得するため、現に撮像を行った放射線撮像装置を効率よく、より確実に判定して、撮像画像を取得することが可能である。また、放射線撮像装置は、放射線の照射野における放射線撮像装置が生成した画像の情報を統計情報として撮像制御装置へ送信するため、現に撮像を行った放射線撮像装置を正しく判定することができる。 As described above, in this embodiment, the radiation imaging apparatus that has detected radiation further transmits statistical information about imaging to the imaging control apparatus in addition to notification information about radiation detection. The imaging control device 101 compares statistical information received from a plurality of radiation imaging devices and selects an imaging device that should acquire an image. The statistical information here includes, for example, statistical information calculated from an image generated by the radiation imaging apparatus. For example, when the average pixel value of the image generated by the imaging device is used as the statistical information, the imaging device that has transmitted the largest average pixel value can be selected. As described above, in this embodiment, the radiation imaging apparatus is selected by comparing the statistical information related to imaging, and an image is acquired from the radiation imaging apparatus. Therefore, the radiation imaging apparatus that has actually performed the imaging is efficiently and more reliably determined. Thus, a captured image can be acquired. In addition, since the radiation imaging apparatus transmits information of an image generated by the radiation imaging apparatus in the radiation irradiation field to the imaging control apparatus as statistical information, the radiation imaging apparatus that has actually performed imaging can be correctly determined.
 <実施形態3>
 本発明の第三の実施形態(実施形態3)では間引き画像を先に受信する構成について説明する。放射線撮像システムや撮像制御装置101の構成、及び、放射線撮像装置102、103が撮像して放射線画像データを生成するまでの動作手順は実施形態1と同様であり、これらの詳細な説明は省略する。
<Embodiment 3>
In the third embodiment (Embodiment 3) of the present invention, a configuration for receiving a thinned image first will be described. The configuration of the radiation imaging system and the imaging control apparatus 101 and the operation procedure until the radiation imaging apparatuses 102 and 103 capture images and generate radiation image data are the same as those in the first embodiment, and detailed description thereof is omitted. .
 図6は本実施形態に係るフローチャートの一例を示している。本フローチャートは図3で示された放射線照射を受けて画像が生成されるまでの一連のステップ後に続くステップである。本実施形態でも、放射線撮像装置102、103がともに放射線照射を検出し放射線画像データを生成した場合の動作例を説明する。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。 FIG. 6 shows an example of a flowchart according to the present embodiment. This flowchart is a step subsequent to a series of steps until an image is generated upon receiving the radiation shown in FIG. Also in this embodiment, an operation example when the radiation imaging apparatuses 102 and 103 both detect radiation irradiation and generate radiation image data will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・各放射線撮像装置102、103は生成した放射線画像データから画像サイズを縦方向と横方向との少なくともいずれかに間引いた間引き画像データを作成する(S601)。 Each radiation imaging apparatus 102, 103 creates thinned image data obtained by thinning the image size in at least one of the vertical direction and the horizontal direction from the generated radiation image data (S601).
 ・各放射線撮像装置102、103は、放射線を検知したことを間引き画像データとともに撮像制御装置101へと通知する(S602)。 The radiation imaging apparatuses 102 and 103 notify the imaging control apparatus 101 that the radiation has been detected together with the thinned image data (S602).
 ・撮像制御装置101の通知受信部202は、放射線撮像装置102、103から通知を受信し、選択部203へと間引き画像データを渡す。選択部203は、例えば、間引き画像データから画素値平均値を取得して、統計情報とする(S603)。 The notification receiving unit 202 of the imaging control apparatus 101 receives notifications from the radiation imaging apparatuses 102 and 103 and passes the thinned image data to the selection unit 203. For example, the selection unit 203 acquires the pixel value average value from the thinned image data and sets it as statistical information (S603).
 ・選択部203は統計情報である画素平均値が最も大きい放射線撮像装置を撮像対象と特定する。輝度を反転した画像を取得する構成においては、画素平均値が最も小さい放射線撮像装置を撮像対象と特定する。これを受けて、画像取得部204は撮像対象と特定した放射線撮像装置102に画像送信命令を送信する(S604)。 The selection unit 203 identifies a radiation imaging apparatus having the largest pixel average value, which is statistical information, as an imaging target. In the configuration for acquiring an image with inverted luminance, the radiation imaging apparatus having the smallest pixel average value is specified as the imaging target. In response to this, the image acquisition unit 204 transmits an image transmission command to the radiation imaging apparatus 102 identified as the imaging target (S604).
 ・このあと、すべての放射線画像データが受信されるまでの間に、撮像制御部201は間引き画像を画像処理部208へ渡して画像処理を施し、表示部209にてプレビュー表示を行う。これにより操作者はすべての放射線画像データが表示部209に保存されるまでの待ち時間を緩和できる(S605)。 After this, until all the radiation image data is received, the imaging control unit 201 passes the thinned image to the image processing unit 208, performs image processing, and displays the preview on the display unit 209. Thereby, the operator can relieve the waiting time until all the radiation image data is stored in the display unit 209 (S605).
 ・プレビュー表示を行っている間に、命令を受けた放射線撮像装置102は作成した放射線画像データのうち、送信した間引き画像以外の残りの放射線画素データを撮像制御装置101へと送信する(S606)。 While performing the preview display, the radiation imaging apparatus 102 that has received the command transmits the remaining radiation pixel data other than the transmitted thinned image to the imaging control apparatus 101 among the generated radiation image data (S606). .
 ・画像取得部204が残りの放射線画素データを受け取ると、残りの放射線画素データは間引き画像データとマージされて、元の放射線画像データが生成される。そして、同放射線画像データは撮像情報管理部207に保存された撮像条件と対応付けられ、画像処理部208によって撮像情報の一部として保存されていた画像処理パラメータにより画像処理を施されたのち、表示部209にて表示される(S607)。 When the image acquisition unit 204 receives the remaining radiation pixel data, the remaining radiation pixel data is merged with the thinned image data to generate the original radiation image data. The radiation image data is associated with the imaging conditions stored in the imaging information management unit 207, and after image processing is performed by the image processing unit 208 using the image processing parameters stored as part of the imaging information, It is displayed on the display unit 209 (S607).
 本実施形態では、統計情報として、画素平均値を用いているが、実施形態2と同様これに限定するものではない。また、本実施形態では、間引き画像を予め送信したが、これに限定されたものではない。例えば、放射線画像データを圧縮した圧縮画像データを送る形態でもよい。この場合、統計情報として圧縮データサイズを使用し、圧縮データサイズが最も大きい画像を送信した放射線撮像装置を撮像対象と特定してもよい。放射線画像に被写体が写り込んでいる場合、被写体の透過画像に相当する情報の存在により、暗画像よりも圧縮データサイズが大きくなるためである。なお、この場合、間引き画像ではないため、S606では、すべての放射線画像データを受信する必要がある。 In this embodiment, the pixel average value is used as the statistical information, but it is not limited to this as in the second embodiment. In this embodiment, the thinned image is transmitted in advance, but the present invention is not limited to this. For example, the form which sends the compressed image data which compressed radiation image data may be sufficient. In this case, the compressed data size may be used as the statistical information, and the radiation imaging apparatus that has transmitted the image having the largest compressed data size may be identified as the imaging target. This is because when the subject is reflected in the radiation image, the compressed data size is larger than that of the dark image due to the presence of information corresponding to the transmission image of the subject. In this case, since it is not a thinned image, it is necessary to receive all the radiation image data in S606.
 上記のように、本実施形態では、放射線撮像装置は、その放射線撮像装置が生成した画像の間引き画像を統計情報として撮像制御装置へ送信する。撮像制御装置は、受信した間引き画像のうち、その平均画素値が最も大きな間引き画像を送信した放射線撮像装置を選択して、画像を取得する。したがって、本実施形態によれば、現に撮像を行った放射線撮像装置を効率よく、確実に判定して、撮像画像を取得することが可能である。また、放射線撮像装置は、放射線の照射野における放射線撮像装置が生成した画像の情報を統計情報として撮像制御装置へ送信するため、現に撮像を行った放射線撮像装置を正しく判定することができる。 As described above, in this embodiment, the radiation imaging apparatus transmits the thinned image generated by the radiation imaging apparatus to the imaging control apparatus as statistical information. The imaging control apparatus selects a radiation imaging apparatus that has transmitted the thinned image having the largest average pixel value from the received thinned images, and acquires an image. Therefore, according to the present embodiment, it is possible to efficiently and surely determine the radiation imaging apparatus that has actually performed imaging and acquire the captured image. In addition, since the radiation imaging apparatus transmits information of an image generated by the radiation imaging apparatus in the radiation irradiation field to the imaging control apparatus as statistical information, the radiation imaging apparatus that has actually performed imaging can be correctly determined.
 <実施形態4>
 本発明の第四の実施形態(実施形態4)では、撮像対象と特定した放射線撮像装置の確実性を高めるための構成を説明する。放射線撮像システムの構成、及び、放射線撮像装置102、103が撮像して放射線画像データを生成するまでの動作手順は実施形態1と同様であり、これらの詳細な説明は省略する。
<Embodiment 4>
In the fourth embodiment (Embodiment 4) of the present invention, a configuration for enhancing the certainty of a radiation imaging apparatus identified as an imaging target will be described. The configuration of the radiation imaging system and the operation procedure until the radiation imaging apparatuses 102 and 103 capture images and generate radiation image data are the same as those in the first embodiment, and detailed descriptions thereof are omitted.
 図7は、本実施形態に係る撮像制御装置101の機能構成の一例を示した図である。本実施形態の撮像制御装置101は、実施形態1において参照した図2の構成に加えて、画像解析部701を備えている。画像解析部701は撮像対象と判断された放射線画像データが撮像条件と合致しているかの判断を行う機能要素である。図2と共通する機能要素には同一の符号を付して詳細な説明を省略する。 FIG. 7 is a diagram illustrating an example of a functional configuration of the imaging control apparatus 101 according to the present embodiment. The imaging control apparatus 101 of the present embodiment includes an image analysis unit 701 in addition to the configuration of FIG. The image analysis unit 701 is a functional element that determines whether the radiographic image data determined as the imaging target matches the imaging conditions. Functional elements in common with FIG. 2 are assigned the same reference numerals, and detailed descriptions thereof are omitted.
 図8は本実施形態に係るフローチャートの一例を示している。本フローチャートは、実施形態2において参照した図5のフローチャートをベースにしており、S801~S805のステップは図5のS501~S505のステップと同様である。そこで、S806以降のステップを説明する。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。 FIG. 8 shows an example of a flowchart according to the present embodiment. This flowchart is based on the flowchart of FIG. 5 referred to in the second embodiment, and the steps S801 to S805 are the same as the steps S501 to S505 of FIG. Therefore, steps after S806 will be described. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・撮像制御装置101の画像取得部204が放射線撮像装置から放射線画像データを受け取ると、画像解析部701は、取得した放射線画像データが図3のS302で選択した撮像条件に合致するか判定するために、その放射線画像データを解析する(S806)。 When the image acquisition unit 204 of the imaging control apparatus 101 receives radiation image data from the radiation imaging apparatus, the image analysis unit 701 determines whether the acquired radiation image data matches the imaging condition selected in S302 of FIG. Then, the radiation image data is analyzed (S806).
 ・解析の結果、受け取った放射線画像データが、撮像情報管理部207から取得した撮像条件に合致するか否かを判定する(S807)。例えば、放射線画像データにおいて撮像条件に対応する部位(例えば、胸部、頭部など)が写っていた場合は、放射線画像データは撮像条件に合致すると判定することができる。撮像条件に対応する部位が写っているかの判定は、例えば、事前に被写体の部位の特徴を示す特徴データを設定しておき、その特徴データと受け取った放射線画像データの特徴とを比較することにより行うことができる。撮像条件は操作者が予め指定(設定)しておく。放射線画像データが撮像条件に合致すると判定された場合(S807でYES)はS808へ進み、合致しないと判定された場合(S807でNO)はS809へ進む。 As a result of the analysis, it is determined whether or not the received radiation image data matches the imaging conditions acquired from the imaging information management unit 207 (S807). For example, when a part (for example, chest, head, etc.) corresponding to the imaging condition is captured in the radiographic image data, it can be determined that the radiographic image data matches the imaging condition. For example, by determining whether or not a part corresponding to the imaging condition is captured, feature data indicating the feature of the part of the subject is set in advance, and comparing the feature data with the feature of the received radiation image data It can be carried out. The imaging conditions are designated (set) in advance by the operator. If it is determined that the radiation image data matches the imaging condition (YES in S807), the process proceeds to S808. If it is determined that the radiation image data does not match (NO in S807), the process proceeds to S809.
 ・解析完了後、同放射線画像データは撮像情報管理部207に保存された撮像条件と対応付けられ、画像処理部208によって撮像情報の一部として保存されていた画像処理パラメータにより画像処理を施されたのち、表示部209にて表示される(S808)。 After the analysis is completed, the radiation image data is associated with the imaging conditions stored in the imaging information management unit 207, and image processing is performed by the image processing parameters stored as part of the imaging information by the image processing unit 208. After that, it is displayed on the display unit 209 (S808).
 ・一方、解析の結果、撮像条件に合致しなかった放射線画像データを生成した放射線撮像装置は除外したのち、それ以外の放射線撮像装置の中から再度S804のステップを実行する。撮像条件に合致する放射線画像データが見つかるまでこれを繰り返す(S809)。撮像条件に合致する放射線画像データが発見されなかったときは、その旨を表示部209に表示させる。 On the other hand, after the radiation imaging apparatus that has generated the radiation image data that does not match the imaging conditions as a result of the analysis is excluded, the step of S804 is executed again from the other radiation imaging apparatuses. This is repeated until radiation image data matching the imaging conditions is found (S809). When radiation image data matching the imaging conditions is not found, a message to that effect is displayed on the display unit 209.
 なお、本実施形態では、放射線画像データが撮像条件に合致するか否かを、撮像条件に対応する部位が画像に写り込んでいるか否かに基づいて判定する例を説明したが、撮像条件との適合性の判定はこのような手法によるものに限られない。例えば、暗部において検出された放射線強度や画像のサイズ、解像度等の情報を基に撮像条件との適合性を判定してもよい。 In the present embodiment, an example is described in which whether or not the radiation image data matches the imaging condition is determined based on whether or not a part corresponding to the imaging condition is reflected in the image. The suitability determination is not limited to this method. For example, the compatibility with the imaging conditions may be determined based on information such as the radiation intensity detected in the dark part, the image size, and the resolution.
 上記のように本実施形態では、撮像制御装置は、放射線撮像装置から取得した画像を解析して、当該画像が予め設定された撮像条件に合致するか否かを判定する。その結果、取得した画像が撮像条件に合致しないと判定された場合は、他の放射線撮像装置から当該他の放射線撮像装置が生成した画像をさらに取得する。したがって、本実施形態によれば、仮に現に撮像を行った放射線撮像装置から撮像画像を取得できなかった場合でも、他の放射線撮像装置から画像を取得して、撮像画像を確実に取得することができる。 As described above, in this embodiment, the imaging control apparatus analyzes an image acquired from the radiation imaging apparatus and determines whether or not the image matches a preset imaging condition. As a result, when it is determined that the acquired image does not match the imaging condition, an image generated by the other radiation imaging apparatus is further acquired from the other radiation imaging apparatus. Therefore, according to the present embodiment, even when a captured image cannot be acquired from the radiation imaging apparatus that actually performed imaging, it is possible to acquire an image from another radiation imaging apparatus and acquire the captured image reliably. it can.
 <実施形態5>
 本発明の第五の実施形態(実施形態5)では、本放射線撮像システムによって特定された撮像対象となる放射線撮像装置が適切でなく、操作者の意図した放射線画像データを取得できなかった場合に再選択を可能にする構成を説明する。
<Embodiment 5>
In the fifth embodiment (Embodiment 5) of the present invention, when the radiation imaging apparatus to be imaged specified by the radiation imaging system is not appropriate and the radiographic image data intended by the operator cannot be acquired. A configuration that enables reselection will be described.
 図9は本実施形態に係る放射線撮像システムのハードウェア構成の一例を示した図である。本実施形態では、放射線撮像装置102、103はハードディスクなどの不揮発性記憶装置901、902を備えており、撮像した放射線画像データを永続化して記憶する。その他の構成要素は実施形態1において参照した図1と同様であるから、これらの構成要素には同一の符号を付して詳細な説明を省略する。また、撮像制御装置101の構成、及び、放射線撮像装置102、103が撮像して放射線画像データを生成するまでの動作手順は実施形態1と同様であり、これらの詳細な説明は省略する。 FIG. 9 is a diagram illustrating an example of a hardware configuration of the radiation imaging system according to the present embodiment. In the present embodiment, the radiation imaging apparatuses 102 and 103 include nonvolatile storage devices 901 and 902 such as hard disks, and permanently store the captured radiation image data. Since other components are the same as those in FIG. 1 referred to in the first embodiment, the same reference numerals are given to these components, and detailed description thereof is omitted. Further, the configuration of the imaging control apparatus 101 and the operation procedure from when the radiation imaging apparatuses 102 and 103 capture an image to generate radiation image data are the same as those in the first embodiment, and detailed description thereof is omitted.
 図10は本実施形態に係る放射線撮像システムの動作例を示すフローチャートである。図10のフローは、取得した放射線画像データが適切なものでなかった場合に画像を再取得する処理の手順を示している。本フローチャートの各ステップは、実施形態3において参照した図6に示される一連のステップを実行した後に実行される。本実施形態では、一例として、放射線撮像システムが第一の放射線撮像装置102を撮像対象として特定していた場合の例について説明する。以下の各ステップはCPU101dがコンピュータプログラムに基づき放射線撮像システムを制御することにより実行される。 FIG. 10 is a flowchart showing an operation example of the radiation imaging system according to the present embodiment. The flow of FIG. 10 shows a procedure of processing for re-acquiring an image when the acquired radiation image data is not appropriate. Each step of this flowchart is executed after executing a series of steps shown in FIG. 6 referred to in the third embodiment. In this embodiment, an example in which the radiation imaging system specifies the first radiation imaging apparatus 102 as an imaging target will be described as an example. The following steps are executed by the CPU 101d controlling the radiation imaging system based on the computer program.
 ・撮像制御装置101は、図6のS602において放射線撮像装置102、103から取得したすべての間引き画像を撮像情報管理部207に記憶しておく(S1001)。 The imaging control apparatus 101 stores all the thinned images acquired from the radiation imaging apparatuses 102 and 103 in S602 of FIG. 6 in the imaging information management unit 207 (S1001).
 ・撮像に対応づいた放射線画像データが操作者の意図したものではなかった場合、操作者は情報入力部206より放射線画像データの変更指示を行う(S1002)。ここでは、第一の放射線撮像装置102から取得した放射線画像データが操作者の意図したものでなかった場合の例を説明する。 When the radiographic image data corresponding to the imaging is not intended by the operator, the operator gives an instruction to change the radiographic image data from the information input unit 206 (S1002). Here, an example will be described in which the radiation image data acquired from the first radiation imaging apparatus 102 is not intended by the operator.
 ・これを受けて、表示部209は撮像の関連画像として記憶されていた間引き画像を画像処理部208による画像処理を行った後、表示部209に一覧表示するように表示制御する。このとき、一覧表示には、操作者が意図しなかった画像である、第一の放射線撮像装置102から取得した間引き画像を表示してもよいし、しなくてもよい(S1003)。 In response to this, the display unit 209 performs display control so that the thinned image stored as the image related to imaging is subjected to image processing by the image processing unit 208 and then displayed as a list on the display unit 209. At this time, the list display may or may not display a thinned image acquired from the first radiation imaging apparatus 102, which is an image not intended by the operator (S1003).
 ・操作者は関連画像の一覧表示から取得したい画像データを選択する(S1004)。以下、第二の放射線撮像装置103から取得した画像データが選択された例を説明する。 · The operator selects image data to be acquired from the list of related images (S1004). Hereinafter, an example in which image data acquired from the second radiation imaging apparatus 103 is selected will be described.
 ・操作者の選択を受けて、画像取得部204は選択された関連画像を取得した第二の放射線撮像装置103に画像送信命令を送信する(S1005)。 In response to the operator's selection, the image acquisition unit 204 transmits an image transmission command to the second radiation imaging apparatus 103 that acquired the selected related image (S1005).
 ・命令を受けた第二の放射線撮像装置103は不揮発性記憶装置902より放射線画像データを取り出し、撮像制御装置101へと送信する(S1006)。 The second radiation imaging apparatus 103 that has received the command extracts the radiation image data from the nonvolatile storage device 902 and transmits it to the imaging control apparatus 101 (S1006).
 ・画像取得部204が放射線画像データを受け取ると、その放射線画像データは撮像情報管理部207に保存された撮像条件と新たに対応付けられる(S1007)。 When the image acquisition unit 204 receives the radiation image data, the radiation image data is newly associated with the imaging condition stored in the imaging information management unit 207 (S1007).
 本実施形態では、実施形態3後の処理であるため、間引き画像を一覧表示する処理の例を示したが、これに限るものではない。例えば、S1003では画像を一覧表示するのではなく、放射線撮像装置を識別するための情報を選択可能に表示してもよい。また、S1003のステップで、一覧表示を行うために関連画像に適宜画像処理を行い表示しているが、予め画像処理を施した上で撮像情報管理部207に保存しておいてもよい。 In the present embodiment, since it is a process after the third embodiment, an example of a process for displaying a list of thinned images is shown, but the present invention is not limited to this. For example, in S1003, instead of displaying a list of images, information for identifying the radiation imaging apparatus may be displayed in a selectable manner. In step S1003, the related images are appropriately processed and displayed in order to display a list, but may be stored in the imaging information management unit 207 after image processing is performed in advance.
 本実施形態では、放射線撮像装置は、その放射線撮像装置が生成した画像の間引き画像を統計情報として撮像制御装置へ送信し、撮像制御装置は、複数の放射線撮像装置から受信した間引き画像を指定可能に表示部209に表示させる表示制御を行う。そして、撮像制御装置は、操作者により指定された間引き画像を送信した放射線撮像装置を選択して、画像を取得する。したがって、本実施形態によれば、撮像制御装置により自動的に判定された放射線撮像制御装置が仮に現に撮像を行っていない場合に、操作者の目視により、撮像を行った放射線撮像装置を正しく選択することが可能である。 In the present embodiment, the radiation imaging apparatus transmits a thinned image generated by the radiation imaging apparatus as statistical information to the imaging control apparatus, and the imaging control apparatus can designate the thinned images received from a plurality of radiation imaging apparatuses. Display control to be displayed on the display unit 209 is performed. Then, the imaging control apparatus selects the radiation imaging apparatus that has transmitted the thinned image designated by the operator, and acquires an image. Therefore, according to the present embodiment, when the radiation imaging control apparatus automatically determined by the imaging control apparatus is not actually imaging, the radiation imaging apparatus that has performed imaging is correctly selected by visual observation of the operator. Is possible.
 以上のように、本発明の各実施形態によれば、操作者は放射線制御装置上で画像を選別する作業が必要なく、システムが自動的に撮像した放射線画像データを選択するため、操作者の作業負担を軽減することができる。 As described above, according to each embodiment of the present invention, the operator does not need to select an image on the radiation control apparatus, and the system automatically selects the radiation image data captured by the system. Work burden can be reduced.
 <その他の実施形態>
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other embodiments>
The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2016年10月14日提出の日本国特許出願特願2016-203039を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
This application claims priority based on Japanese Patent Application No. 2016-203039 filed on Oct. 14, 2016, the entire contents of which are incorporated herein by reference.
 201:撮像制御部、202:通知受信部、203:選択部、204:画像取得部、205:状態管理部、206:情報入力部、207:撮像情報管理部、208:画像処理部、209:表示部 201: Imaging control unit, 202: Notification receiving unit, 203: Selection unit, 204: Image acquisition unit, 205: Status management unit, 206: Information input unit, 207: Imaging information management unit, 208: Image processing unit, 209: Display section

Claims (13)

  1.  放射線を照射する放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
     前記複数の撮像装置と通信する制御装置と
     を備える放射線撮像システムであって、
     前記複数の撮像装置の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができ、
     放射線を検知した前記撮像装置は所定の通知情報を前記制御装置へ送信し、
     前記制御装置は、
      受信した前記通知情報に基づき、前記複数の撮像装置の中から画像を取得すべき撮像装置を選択する選択手段と、
      当該選択された撮像装置から当該撮像装置が生成した画像を取得する取得手段と
     を備えることを特徴とする放射線撮像システム。
    A plurality of imaging devices that generate images based on radiation emitted from a radiation generator that emits radiation; and
    A radiation imaging system comprising: a control device that communicates with the plurality of imaging devices;
    Each of the plurality of imaging devices can itself detect that the irradiation of radiation to the imaging device has started,
    The imaging device that detects radiation transmits predetermined notification information to the control device,
    The control device includes:
    Based on the received notification information, selecting means for selecting an imaging device from which the image is to be acquired from among the plurality of imaging devices;
    A radiation imaging system comprising: an acquisition unit configured to acquire an image generated by the imaging device from the selected imaging device.
  2.  前記所定の通知情報は、撮像装置が放射線の照射を検知したことを通知する情報であり、
     前記選択手段は、前記通知情報を最初に受信した撮像装置を選択する
     ことを特徴とする請求項1に記載の放射線撮像システム。
    The predetermined notification information is information for notifying that the imaging apparatus has detected radiation irradiation,
    The radiation imaging system according to claim 1, wherein the selection unit selects an imaging apparatus that first receives the notification information.
  3.  放射線を検知した前記撮像装置は、撮像に関する統計情報を前記制御装置へさらに送信し、
     前記選択手段は、前記複数の撮像装置から受信した前記統計情報を比較して画像を取得すべき撮像装置を選択することを特徴とする請求項1に記載の放射線撮像システム。
    The imaging device that has detected radiation further transmits statistical information about imaging to the control device,
    The radiographic imaging system according to claim 1, wherein the selection unit selects the imaging device that should acquire an image by comparing the statistical information received from the plurality of imaging devices.
  4.  前記撮像装置は、前記統計情報として、該撮像装置が生成した画像から算出された統計情報を前記制御装置へ送信することを特徴とする請求項3に記載の放射線撮像システム。 The radiation imaging system according to claim 3, wherein the imaging device transmits, as the statistical information, statistical information calculated from an image generated by the imaging device to the control device.
  5.  前記撮像装置は、前記統計情報として、該撮像装置が生成した画像の平均画素値を前記制御装置へ送信し、
     前記選択手段は、最も大きな平均画素値を送信した撮像装置を選択する
     ことを特徴とする請求項4に記載の放射線撮像システム。
    The imaging device transmits, as the statistical information, an average pixel value of an image generated by the imaging device to the control device,
    The radiation imaging system according to claim 4, wherein the selection unit selects an imaging device that has transmitted the largest average pixel value.
  6.  前記撮像装置は、前記統計情報として、該撮像装置が生成した画像の間引き画像を前記制御装置へ送信し、
     前記選択手段は、受信した前記間引き画像のうち、その平均画素値が最も大きな間引き画像を送信した撮像装置を選択する
     ことを特徴とする請求項3に記載の放射線撮像システム。
    The imaging device transmits, as the statistical information, a thinned image generated by the imaging device to the control device,
    The radiation selecting system according to claim 3, wherein the selection unit selects an imaging device that has transmitted the thinned image having the largest average pixel value among the received thinned images.
  7.  前記撮像装置は、放射線の照射野における該撮像装置が生成した画像の情報を前記統計情報として前記制御装置へ送信することを特徴とする請求項3から6のいずれか1項に記載の放射線撮像システム。 The radiation imaging apparatus according to claim 3, wherein the imaging apparatus transmits information on an image generated by the imaging apparatus in a radiation irradiation field to the control apparatus as the statistical information. system.
  8.  前記制御装置は、前記取得手段が取得した画像を解析して、当該画像が予め設定された撮像条件に合致するか否かを判定する判定手段をさらに備え、
     前記取得手段は、前記判定手段により前記取得した画像が前記撮像条件に合致しないと判定された場合は、他の撮像装置から当該他の撮像装置が生成した画像をさらに取得する
     ことを特徴とする請求項3から5のいずれか1項に記載の放射線撮像システム。
    The control device further includes a determination unit that analyzes the image acquired by the acquisition unit and determines whether the image matches a preset imaging condition,
    The acquisition unit further acquires an image generated by the other imaging device from another imaging device when the determination unit determines that the acquired image does not match the imaging condition. The radiation imaging system according to any one of claims 3 to 5.
  9.  前記撮像装置は、前記統計情報として、該撮像装置が生成した画像の間引き画像を前記制御装置へ送信し、
     前記制御装置は、前記複数の撮像装置から受信した前記間引き画像を指定可能に表示手段に表示させる表示制御手段をさらに備え、
     前記選択手段は、操作者により指定された間引き画像を送信した撮像装置を前記他の撮像装置として選択する
     ことを特徴とする請求項8に記載の放射線撮像システム。
    The imaging device transmits, as the statistical information, a thinned image generated by the imaging device to the control device,
    The control device further includes a display control unit that causes the display unit to display the thinned image received from the plurality of imaging devices so as to be designated,
    The radiation imaging system according to claim 8, wherein the selection unit selects an imaging device that has transmitted a thinned image designated by an operator as the other imaging device.
  10.  放射線を照射する放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と通信する制御装置であって、
     前記複数の撮像装置の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができ、放射線を検知したことに応じて所定の通知情報を前記制御装置へ送信し、
     受信した前記通知情報に基づき、前記複数の撮像装置の中から画像を取得すべき撮像装置を選択する選択手段と、
     当該選択された撮像装置から当該撮像装置が生成した画像を取得する取得手段と
     を備えることを特徴とする制御装置。
    A control device that communicates with a plurality of imaging devices that generate images based on radiation emitted from a radiation generator that emits radiation,
    Each of the plurality of imaging devices can detect itself that radiation irradiation to the imaging device has started, and transmits predetermined notification information to the control device in response to detecting radiation,
    Based on the received notification information, selecting means for selecting an imaging device from which the image is to be acquired from among the plurality of imaging devices;
    A control device comprising: an acquisition unit configured to acquire an image generated by the imaging device from the selected imaging device.
  11.  放射線を照射する放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
     前記複数の撮像装置と通信する制御装置と
     を備える放射線撮像システムの制御方法であって、
     前記複数の撮像装置の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができ、
     放射線を検知した前記撮像装置は所定の通知情報を前記制御装置へ送信し、
     前記制御装置は、
      受信した前記通知情報に基づき、前記複数の撮像装置の中から画像を取得すべき撮像装置を選択し、
      当該選択された撮像装置から当該撮像装置が生成した画像を取得する
     ことを特徴とする放射線撮像システムの制御方法。
    A plurality of imaging devices that generate images based on radiation emitted from a radiation generator that emits radiation; and
    A control method of a radiation imaging system comprising: a control device that communicates with the plurality of imaging devices,
    Each of the plurality of imaging devices can itself detect that the irradiation of radiation to the imaging device has started,
    The imaging device that detects radiation transmits predetermined notification information to the control device,
    The control device includes:
    Based on the received notification information, select an imaging device to acquire an image from among the plurality of imaging devices,
    A method for controlling a radiation imaging system, comprising: acquiring an image generated by the imaging device from the selected imaging device.
  12.  放射線を照射する放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と通信する制御装置の制御方法であって、
     前記複数の撮像装置の各々は、当該撮像装置への放射線の照射が開始されたことを自ら検知することができ、放射線を検知したことに応じて所定の通知情報を前記制御装置へ送信し、
     受信した前記通知情報に基づき、前記複数の撮像装置の中から画像を取得すべき撮像装置を選択する選択工程と、
     当該選択された撮像装置から当該撮像装置が生成した画像を取得する取得工程と
     を有することを特徴とする制御装置の制御方法。
    A control method of a control device that communicates with a plurality of imaging devices that generate images based on radiation emitted from a radiation generating device that emits radiation,
    Each of the plurality of imaging devices can detect itself that radiation irradiation to the imaging device has started, and transmits predetermined notification information to the control device in response to detecting radiation,
    Based on the received notification information, a selection step of selecting an imaging device from which the image is to be acquired from among the plurality of imaging devices;
    A control method for a control device, comprising: an acquisition step of acquiring an image generated by the imaging device from the selected imaging device.
  13.  コンピュータを請求項10に記載の制御装置が備える各手段として機能させるためのコンピュータプログラム。 A computer program for causing a computer to function as each means included in the control device according to claim 10.
PCT/JP2017/035481 2016-10-14 2017-09-29 Radiation imaging system and control method for same, control device and control method for same, and computer program WO2018070271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203039A JP2018061783A (en) 2016-10-14 2016-10-14 Radiation imaging system, control method thereof, control device and control method thereof, and computer program
JP2016-203039 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070271A1 true WO2018070271A1 (en) 2018-04-19

Family

ID=61905558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035481 WO2018070271A1 (en) 2016-10-14 2017-09-29 Radiation imaging system and control method for same, control device and control method for same, and computer program

Country Status (2)

Country Link
JP (1) JP2018061783A (en)
WO (1) WO2018070271A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176692A (en) * 1999-12-15 2001-06-29 Shimadzu Corp X-ray photography device
JP2014059209A (en) * 2012-09-18 2014-04-03 Fujifilm Corp Radiation image detector
JP2016000369A (en) * 2015-10-08 2016-01-07 富士フイルム株式会社 Radiographic imaging device, radiographic imaging system, radiographic imaging program, and radiographic imaging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176692A (en) * 1999-12-15 2001-06-29 Shimadzu Corp X-ray photography device
JP2014059209A (en) * 2012-09-18 2014-04-03 Fujifilm Corp Radiation image detector
JP2016000369A (en) * 2015-10-08 2016-01-07 富士フイルム株式会社 Radiographic imaging device, radiographic imaging system, radiographic imaging program, and radiographic imaging method

Also Published As

Publication number Publication date
JP2018061783A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
US11832021B2 (en) Control apparatus, control method, and storage medium
US20170265834A1 (en) Apparatus for controlling x-ray imaging system to set therein an operation mode based on function information
US10238347B2 (en) Radiation imaging apparatus and control method for radiation imaging apparatus
JP2006305346A (en) Mobile radiology system with automated dicom image transfer and pps queue management
JP2007127414A (en) Radiographic image detector and radiographic image photographing system
JP6706136B2 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method and program
US20190046140A1 (en) Radiography system and method for operating radiography system
US10849577B2 (en) Radiation imaging apparatus and radiation imaging system
JP6434733B2 (en) Radiation imaging system, radiation imaging apparatus, control method thereof, and program
JP2010264000A (en) Radiation image detector and radiation image capturing system
KR20160057131A (en) Wireless probe, ultrasound diagnostic apparatus, and method for controlling wireless probe and ultrasound diagnostic apparatus
WO2018070271A1 (en) Radiation imaging system and control method for same, control device and control method for same, and computer program
US10677937B2 (en) Radiation imaging apparatus, radiation imaging system, and method for controlling radiation imaging apparatus
US11832985B2 (en) Radiography system, radiography apparatus used in the radiography system, and control apparatus used in the radiography system
US10939886B2 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method, and computer-readable medium
JP2012088312A (en) X-ray photographing system and control method therefor
JP2017108854A (en) Radiographic apparatus, radiographic system, control method of radiographic system
US20190223824A1 (en) Radiographic apparatus and radiographic system
JP2010012060A (en) Portable radiation image detector and radiation image photographing system
JP6666984B2 (en) Radiation imaging system, imaging apparatus, control method of radiation imaging system, and program
JP7163797B2 (en) Charging control device and mobile radiography system
US20230233170A1 (en) Radiographic imaging system, radiographic imaging apparatus, control apparatus, control method, and storage medium
US20230130230A1 (en) Radiation imaging system, radiation detector, control method for radiation imaging system, and storage medium
JP2017074204A (en) Radiographic system, control apparatus, radiographic apparatus, and radiographic system control method
JP2021090665A (en) Radiographic apparatus, radiographic system, method for controlling radiographic apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860137

Country of ref document: EP

Kind code of ref document: A1