WO2018070071A1 - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
WO2018070071A1
WO2018070071A1 PCT/JP2017/018050 JP2017018050W WO2018070071A1 WO 2018070071 A1 WO2018070071 A1 WO 2018070071A1 JP 2017018050 W JP2017018050 W JP 2017018050W WO 2018070071 A1 WO2018070071 A1 WO 2018070071A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
molding machine
speed
injection molding
pressure
Prior art date
Application number
PCT/JP2017/018050
Other languages
French (fr)
Japanese (ja)
Inventor
英昭 飛田
啓祐 森
雄一 牧
Original Assignee
東芝機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝機械株式会社 filed Critical 東芝機械株式会社
Publication of WO2018070071A1 publication Critical patent/WO2018070071A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • Embodiments according to the present invention relate to an injection molding machine.
  • the injection molding machine flows the molten resin into the cavity inside the mold in the injection process, and maintains the pressure on the molten resin in the pressure-holding process so that the molten resin enters the cavity. Is filled.
  • the injection molding machine controls the screw speed in the injection process, and controls the pressure of the molten resin in the pressure holding process. In such switching from the injection process to the pressure holding process, the injection molding machine has switched from speed control to pressure control at a preset screw position.
  • the difference between the actual pressure at the time of control switching and the pressure command value is large due to the inertial force of the drive system such as the motor and screw. There is. In such a case, a situation in which pressure control is impossible at the time of control switching may occur, and mechanical damage or burrs may occur.
  • the resin pressure may increase as the mold is filled with molten resin and may peak near the control switching position. If the injection pressure in the vicinity of this peak cannot be controlled, it may cause defects such as flash and sink marks.
  • an object of the present invention is to provide an injection molding machine that can easily control the pressure of the molten resin and suppress the occurrence of defects.
  • the injection molding machine is an injection molding machine that molds a product by an injection process for injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold, and a barrel for storing the material.
  • a controller for controlling the speed of the screw.
  • the control unit may be able to set a stop period during which the screw is stopped during switching.
  • the deceleration start position may be set based on the material filling pressure in the injection process.
  • the stop position may be set based on the filling amount of the material in the injection process.
  • the injection molding machine is an injection molding machine that molds a product by an injection process for injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold, and a barrel for storing the material.
  • the screw that injects the material from the barrel to the mold, the screw deceleration start position in the switching from the injection process to the pressure holding process, and the screw speed command becomes zero after the screw reaches the deceleration start position.
  • a control unit that controls the speed of the screw based on the deceleration start position and the deceleration command period.
  • the setting unit may be able to set a stop period during which the screw is stopped during switching.
  • the deceleration start position may be set based on the material filling pressure in the injection process.
  • the controller may decelerate the screw speed with a substantially constant deceleration during switching.
  • the control unit may change the deceleration of the screw speed during switching.
  • the controller may decelerate the screw speed exponentially at the time of switching.
  • the controller may decelerate the screw speed in an S-shaped curve at the time of switching.
  • the control unit may decelerate the screw speed in accordance with the speed at a preset time in the switching.
  • the block diagram which shows the structural example of the injection molding machine 1 according to 1st Embodiment.
  • the figure which shows an example of a structure of the control part.
  • the graph which shows an example of operation
  • the graph which shows an example of the speed curve of the injection molding machine 1 according to 2nd Embodiment.
  • the graph which shows an example of the speed curve of the injection molding machine 1 according to 2nd Embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of an injection molding machine 1 according to the first embodiment.
  • the injection molding machine 1 is a machine that can repeatedly execute a series of injection molding operations. For example, an operation of molding a molded product once is repeated as a cycle operation.
  • the injection molding machine 1 includes a frame 2, a fixed plate 3, a moving plate 4, a tie bar 5, a mold clamping drive mechanism 6, an injection device 7, a control unit 8, an extrusion mechanism 9, a human machine
  • An interface 60, an injection pressure sensor S1, and a screw position sensor S2 are provided.
  • the frame 2 is the foundation of the injection molding machine 1.
  • the fixed platen 3 is fixed on the frame 2.
  • a fixed mold 11 is attached to the fixed platen 3.
  • One end of the tie bar 5 is fixed to the fixed platen 3 and the other end is fixed to the support platen 10.
  • the tie bar 5 extends from the fixed plate 3 to the support plate 10 through the moving plate 4.
  • the moving board 4 is placed on a linear guide (not shown) provided on the frame 2.
  • the movable platen 4 is guided by a tie bar 5 or a linear guide, and can move toward or away from the fixed platen 3.
  • a moving mold 12 is attached to the moving plate 4.
  • the moving mold 12 faces the fixed mold 11, approaches the fixed mold 11 together with the moving board 4, and is combined with the fixed mold 11.
  • a space corresponding to the product shape is formed between the moving mold 12 and the fixed mold 11.
  • the mold clamping drive mechanism 6 includes a toggle mechanism 13 and a toggle mechanism drive unit 14.
  • the toggle mechanism drive unit 14 includes a mold clamping servomotor 21, a ball screw 22, and a transmission mechanism 23 in order to drive the toggle mechanism 13.
  • a cross head 15 is attached to the tip of the ball screw 22. As the ball screw 22 rotates, the crosshead 15 moves toward or away from the moving board 4.
  • the transmission mechanism 23 transmits the rotation of the mold clamping servomotor 21 to the ball screw 22 and moves the crosshead 15.
  • the toggle mechanism drive unit 14 moves the crosshead 15
  • the toggle mechanism 13 is activated.
  • the cross head 15 moves toward the movable platen 4
  • the movable platen 4 moves toward the fixed platen 3 and the mold is closed.
  • the cross head 15 moves in a direction away from the movable platen 4
  • the movable platen 4 moves in a direction away from the fixed platen 3, and mold opening is performed.
  • the extrusion mechanism 9 includes an extrusion servo motor 71, a ball screw 72, and a transmission mechanism 73 in order to remove the molded product from the moving mold 12.
  • the tip of the ball screw 72 penetrates the inner surface of the moving mold 12. As the ball screw 72 rotates, the ball screw 72 pushes out the product adhered to the inner surface of the moving mold 12.
  • the transmission mechanism 73 transmits the rotation of the extrusion servomotor 71 to the ball screw 72, and moves the ball screw 72 in the left-right direction in FIG.
  • the injection device 7 includes a heating barrel (band heater) 41, a screw 42, a metering drive unit 43, and an injection drive unit 44.
  • the heating barrel 41 includes a nozzle 41a for injecting molten resin into the mold cavity.
  • the heating barrel 41 stores the resin from the hopper 45 while heating and melting it, and injects the molten resin from the nozzle.
  • the screw 42 is provided to be movable while rotating inside the heating barrel 41 or without rotating. In the measuring step, the screw 42 rotates, and the injection amount of the molten resin injected from the barrel 41 is measured and determined by the rotation amount (movement distance) of the screw 42. In the injection process, the screw 42 moves without rotating and injects the molten resin from the nozzle.
  • the weighing drive unit 43 includes a weighing servo motor 46 and a transmission mechanism 47 that transmits the rotation of the weighing servo motor 46 to the screw 42.
  • the resin is introduced from the hopper 45 into the heating barrel 41.
  • the introduced resin is sent to the front end side of the heating barrel 41 while being heated and kneaded.
  • the resin is melted and stored in the tip portion of the heating barrel 41.
  • the molten resin is injected from the barrel 41 by moving the screw 42 in the direction opposite to that during the measurement. At this time, the screw 42 moves without rotating and pushes the molten resin from the nozzle.
  • a molten resin is used as the molding material.
  • the molding material is not limited to the molten resin, and may be a metal, glass, rubber, a carbonized compound containing carbon fiber, or the like.
  • the injection drive unit 44 includes an injection servo motor 51, a ball screw 52, and a transmission mechanism 53.
  • the transmission mechanism 53 transmits the rotation of the injection servo motor 51 to the ball screw 52.
  • the injection servo motor 51 rotates, the screw 42 moves.
  • the screw 42 pushes out the molten resin stored in the tip portion of the heating barrel 41 from the nozzle 41a, the molten resin is injected from the nozzle 41a.
  • the injection pressure sensor S1 detects the filling pressure when the molten resin is filled from the barrel 41 into the mold and the holding pressure in the holding process. In the injection process, the injection pressure sensor S1 detects the injection pressure of the molten resin material from the barrel 41 to the mold. In the pressure holding process, the injection pressure sensor S1 detects the pressure of the molten resin after switching the pressure holding from speed control to pressure control.
  • the screw position sensor S2 detects the position of the screw 42. Since the screw 42 moves with the rotation of the injection servomotor 51, the screw position sensor S2 may detect the position of the screw 42 from the rotation speed or angular position of the injection servomotor 51. By detecting the position of the screw 42 at every predetermined control cycle, the speed and acceleration of the screw 42 can be known.
  • the human machine interface (HMI / F) 60 displays various information related to the injection molding machine 1.
  • the HMI / F 60 may include, for example, a display unit and a keyboard, or may be a touch panel display.
  • the user can input settings such as a command related to the operation of the injection molding machine 1 through the HMI / F 60.
  • a product is molded by an injection process (speed control) for injecting a molten resin into a mold and a pressure holding process (pressure control) for controlling the pressure of the molten resin in the mold.
  • a holding pressure switching period for maintaining the stop of the screw 42 is provided between the injection process and the holding pressure process.
  • the user moves the screw 42 in the injection process, the deceleration start position (LS4) of the speed command of the screw 42, the final stop position (LS4 ⁇ ) of the screw 42, or the stop position (from the deceleration start position LS4 of the screw 42).
  • Each set value such as a deceleration command period ta up to LS4 ⁇ is input by the HMI / F 60 (the speed command of the screw 42 becomes zero).
  • the moving speed, deceleration start position, stop position, and the like of the screw 42 can be set by the user based on the actual cycle operation and simulation of the injection molding machine 1. Further, the user may input the speed of the movable mold 12 in the mold clamping process and the mold opening process, the measurement speed in the measurement process, and the like with the HMI / F 60.
  • the control unit 8 monitors sensor information received from various sensors (not shown) during the injection process, and controls the injection device 7 based on the sensor information. Moreover, the control part 8 controls the screw 42 according to the said setting value set through HMI / F60. Further, the control unit 8 causes the display unit 100 to display necessary data.
  • FIG. 2 is a diagram illustrating an example of the configuration of the control unit 8.
  • the control unit 8 includes an arithmetic processing unit 61, a setting unit 62, a storage unit 63, an injection device control unit 64, and an input / output unit 65.
  • the arithmetic processing unit 61 compares the detected value obtained from various sensors such as a pressure sensor and a temperature sensor with the set value stored in the setting unit 62 while comparing the temperature of the heating barrel 41, the speed of the screw 42, and the injection pressure. To control.
  • the arithmetic processing unit 61 also controls each component of the control unit 8.
  • the setting unit 62 stores information input via the HMI / F 60. For example, the setting unit 62 rotates the rotation speed of the injection servo motor 51 or the moving speed of the screw 42, the holding pressure in the holding process, the deceleration start position (LS4) of the screw 42, and the final stop position (LS4 ⁇ ) of the screw 42. Or the setting information regarding the deceleration command period (ta) or the like is stored.
  • the storage unit 63 stores information such as a program for operating the injection molding machine 1, the set values, detection values obtained from various sensors, and the like.
  • the injection device control unit 64 controls the drive of the injection servo motor 51.
  • the injection device control unit 64 controls the injection pressure of the injection device 7 by controlling the driving of the injection servomotor 51, for example.
  • the injection device controller 64 receives the feedback from the screw position sensor S2, corrects the position command and the speed command, and controls the injection servo motor 51.
  • the input / output unit 65 is configured to take in information from the outside to the control unit 8 or output the information of the control unit 8 to the outside.
  • the input / output unit 65 can be communicably connected to other terminals by wire or wirelessly.
  • FIG. 3 (A) to 3 (C) are graphs showing an example of the operation of the injection molding machine 1.
  • FIG. The horizontal axis of the graphs of FIGS. 3A to 3C is time. 3A to 3C, the vertical axis represents the position of the screw 42, the speed of the screw 42, and the filling pressure of the molten resin, respectively.
  • the solid line Pa in FIG. 3A indicates the actual position of the screw 42, and the broken line Pb indicates the position command value of the screw 42.
  • the solid line Va in FIG. 3B indicates the actual speed of the screw 42, and the broken line Vb indicates the speed command value of the screw 42.
  • the operation of the injection molding machine 1 will be described in time series.
  • the position and speed of the screw 42 can be obtained based on the detection value from the screw position sensor S2.
  • the filling pressure can be obtained based on the detected value from the injection pressure sensor S1.
  • the injection process is started.
  • the screw 42 is at a position away from the origin 0 by LS5 as shown in FIG.
  • the screw 42 approaches the origin (the tip of the barrel 41).
  • the actual position Pa of the screw 42 is delayed with respect to the position command value Pb by the amount of delay due to feedback control. Accordingly, although the actual position Pa follows the position command value Pb, the position Pa is approximately (L1-L) away from the position command value Pb from t0 to t3.
  • the screw 42 is accelerated at a predetermined acceleration as shown in FIG.
  • the actual speed Va of the screw 42 is delayed with respect to the speed command value Vb by the amount of delay due to feedback control. Accordingly, the actual speed Va follows the speed command value Vb, but is displaced somewhat later than the speed command value Vb.
  • the speed command value Vb indicates the predetermined speed Vc at t1, but the actual speed Va reaches the predetermined speed Vc at t2.
  • the screw 42 maintains the predetermined speed Vc. After t0, also in this period, the molten resin flows from the barrel 41 into the mold and is filled in the mold cavity. When there are still many cavities in the cavity, the filling pressure shown in FIG. 3C changes at a relatively low value. On the other hand, when the number of cavities in the cavity decreases, the filling pressure increases as shown in the vicinity of t3.
  • the injection device controller 64 causes the screw to move as shown in FIG. 42 starts decelerating.
  • the deceleration start position LS4 can be arbitrarily set by the user as described above. For example, the user may confirm the position of the screw 42 when the filling pressure becomes the predetermined packing pressure Pp by trial operation or simulation, and set the position in the setting unit 62 as the deceleration start position LS4. At this time, the peak value Pmax immediately after the packing pressure Pp is set so as not to exceed the filling pressure for generating flash or the like.
  • the user can set the deceleration start position LS4 based on the packing pressure Pp with reference to the packing pressure Pp close to the peak value Pmax of the filling pressure.
  • production of defects, such as a flash can be suppressed.
  • the “burr” is a phenomenon in which the molten resin protrudes from the contact surface (parting surface) of the mold due to excessive filling pressure.
  • the stop position LS4 ⁇ can be arbitrarily set by the user. For example, since the weight of a molded product is usually determined, the amount of molten resin to be filled is also determined. The amount of molten resin to be filled can be converted into the moving distance Ds of the screw 42. Therefore, the stop position LS4 ⁇ of the screw 42 can be set in advance by the user.
  • the control unit 8 decelerates the screw 42 and stops the screw 42 at t4. Therefore, at t4, the control unit 8 sets the speed command value Vb to zero.
  • the deceleration start position LS4 and the stop position LS4 ⁇ are set in advance. Further, the speed of the screw 42 or the motor 51 (initial speed Vc) at the deceleration start position LS4 can be detected by a position encoder disposed in the motor 51 or the like.
  • the control unit 8 uses the difference between the deceleration start position LS4 and the stop position LS4 ⁇ (deceleration distance L1) and the initial speed Vc to set a predetermined acceleration (or so as to make the initial speed Vc at the deceleration start position LS4 zero at the stop position LS4 ⁇ .
  • the motor 51 is controlled by a speed command based on the movement amount.
  • the control unit 8 decelerates the initial speed Vc of the motor 51 and the screw 42 at the deceleration start position LS4 with the acceleration ⁇ , and sets the speed command value of the motor 51 to zero at t4.
  • the actual speed Va is delayed from the speed command value Vb, and thus is not zero.
  • the position command value Pb of the screw 42 is controlled to be zero at the final stop position LS4 ⁇ .
  • the actual position Pa is delayed with respect to the position command value Pb, it does not reach the stop position LS4 ⁇ .
  • the control unit 8 may determine that the screw 42 has stopped when the actual speed Va becomes less than a predetermined ratio of the speed at t4.
  • the command position Pb of the screw 42 stops at the stop position LS4 ⁇ at t4
  • the actual position Pa of the screw 42 stops at the stop position LS4 ⁇ at t5.
  • the control unit 8 can stop the motor 51 and the screw 42 at the stop position LS4 ⁇ by speed control.
  • the control unit 8 stops the screw 42 and enters the holding pressure switching period Ts.
  • the holding pressure switching period Ts as the stop period, the control unit 8 maintains the stop state of the screw 42. Accordingly, the molten resin can be sufficiently spread in the cavity of the mold by using natural pressure, and molding defects such as sink marks can be suppressed.
  • the “sink” is a phenomenon in which the resin in the mold cavity is dented or dented due to a decrease in filling pressure or holding pressure or molding shrinkage.
  • the injection device controller 64 controls the pressure of the screw 42 and enters the pressure holding process. Thereafter, the injection molding machine 1 completes one cycle operation through a cooling process, a metering process, a mold opening process, an extrusion process, and the like. The injection molding machine 1 may repeatedly execute the same cycle operation.
  • the deceleration start position LS4 and the stop position LS4 ⁇ are set by the user.
  • the control unit 8 can calculate the acceleration (deceleration) ⁇ from the difference (deceleration distance L1) between the deceleration start position LS4 and the stop position LS4 ⁇ , and can control the speed of the screw 42 by using the acceleration ⁇ . .
  • the speed control is switched to the pressure control when the screw reaches the deceleration start position LS4, the actual pressure at the time of switching from the speed control to the pressure control due to the inertial force of the screw drive system such as the motor
  • the difference from the holding pressure pressure command
  • it cannot be controlled by braking by pressure control, and a sudden pressure increase may occur, which causes damage to the machine or generation of burrs.
  • the control unit 8 stops the screw 42 at the stop position LS4 ⁇ by speed control. Thereafter, the control unit 8 maintains the stopped state of the screw 42 in the holding pressure switching period Ts, and switches from speed control to pressure control after reducing the difference between the actual pressure and the holding pressure (pressure command).
  • the injection molding machine according to the present embodiment suppresses the difference between the actual pressure and the holding pressure (pressure command) when switching from speed control to pressure control, and suppresses breakage of the machine and occurrence of burrs. Meanwhile, the holding pressure can be controlled in the holding step.
  • the timing for switching from the speed control to the pressure control is a time point t6 when the holding pressure switching period Ts ends.
  • the timing for switching from speed control to pressure control may be the time t4 when the speed command becomes zero or the time t5 when the screw 42 actually stops.
  • the holding pressure switching period Ts can be arbitrarily set by the user.
  • the time t5 when the screw 42 actually stops is smaller in the difference between the actual pressure and the holding pressure (pressure command) than the time t4 when the speed command becomes zero (see FIG. 3C). Therefore, it is preferable that the control unit 8 switches from speed control to pressure control at time t5 rather than time t4. In this case, the holding pressure switching period Ts becomes almost zero.
  • the time point t5 is after the elapse of the delay period tb from the time point t4.
  • the delay period tb (t4 to t5) of the actual speed Va with respect to the speed command value Vb is determined using the reciprocal of the position loop gain ⁇ 0, and is expressed by Expression 1.
  • the delay period tb is uniquely determined by the position loop gain ⁇ 0.
  • tb 1 / ⁇ 0 (Formula 1)
  • the control unit 8 may calculate Equation 1 and switch from speed control to pressure control after a time ta + tb has elapsed from the deceleration start time t3.
  • the timing for switching from speed control to pressure control may be the time t5 after the delay time tb has elapsed from the time t4 when the speed command becomes substantially zero.
  • the deceleration start position LS4 and the stop position LS4 ⁇ are parameters that can be set by the user.
  • the control unit 8 controls the screw 42 based on these parameters.
  • the deceleration distance L1 corresponds to the area of the hatched portion SL in FIG.
  • the sum of the deceleration start position LS4 and the deceleration distance L1 becomes the stop position LS4 ⁇ .
  • the holding pressure switching period Ts as the stop period of the screw 42 in the holding pressure switching period may be variable.
  • the user can set the holding pressure switching period Ts via the HMI / F60.
  • the holding pressure switching period Ts may be set to zero.
  • the injection molding machine 1 enters the pressure holding process from the time t5 when the screw 42 stops.
  • the deceleration ⁇ of the screw 42 in the deceleration command period ta is substantially constant.
  • the deceleration of the screw 42 is variable. Thereby, the curve of a filling pressure can be made into a desired curve.
  • FIG. 4 and 5 are graphs showing an example of a speed curve of the injection molding machine 1 according to the second embodiment.
  • the control unit 8 may decrease the speed command Vb exponentially.
  • the exponential function setting parameters time point and speed setting
  • the control unit 8 may decrease the speed command Vb in an S shape.
  • the setting parameter for the S-shaped curve may be stored in the storage unit 63 in advance.
  • FIG. 6 is a graph showing an example of a speed curve of the injection molding machine 1 according to the third embodiment.
  • the third embodiment is the same as the second embodiment in that the deceleration of the screw 42 is variable.
  • the user can arbitrarily set the speed and time. For example, as shown in t3 to t4 in FIG. 6, the user sets the speed of the screw 42 to Vs1 at the time ts1, sets the speed of the screw 42 to Vs2 at the time ts2, and sets the time ts3. Is set so that the speed of the screw 42 becomes Vs3, and at the time ts4, the speed of the screw 42 is set to Vs4.
  • These setting parameters are stored in the storage unit 63.
  • the control unit 8 decreases the speed command Vb according to the setting parameter stored in the storage unit 63.
  • the injection molding machine 1 according to the third embodiment can cope with various molding materials and molds.
  • the number of settable time points and the number of speeds are not limited to four, and may be more or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

[Problem] To provide an injection molding machine with which it is easy to control the pressure of molding material near a deceleration start position of a screw. [Solution] An injection molding machine according to the present embodiment molds a product through an injection step of injecting material into a mold and a pressure holding step of controlling a holding pressure of the material in the mold. The injection molding machine is provided with: a barrel in which the material is stored; a screw that injects the material from the barrel into the mold; a setting unit capable of setting a deceleration start position and a stop position of the screw in switching from the injection step to the pressure holding step; and a control unit that controls the speed of the screw on the basis of the deceleration start position and the stop position.

Description

射出成形機Injection molding machine
 本発明による実施形態は、射出成形機に関する。 Embodiments according to the present invention relate to an injection molding machine.
 従来、射出成形機は、溶融樹脂を金型へ充填するために、射出工程において溶融樹脂を金型内部のキャビティへ流し込み、保圧工程において溶融樹脂への圧力を保持してキャビティ内に溶融樹脂を充填させている。射出成形機は、射出工程においてスクリュの速度制御を行い、保圧工程において溶融樹脂の圧力制御を行う。このような射出工程から保圧工程への切替えにおいて、射出成形機は、予め設定されたスクリュ位置で速度制御から圧力制御へ切り替えていた。 Conventionally, in order to fill the molten resin into the mold, the injection molding machine flows the molten resin into the cavity inside the mold in the injection process, and maintains the pressure on the molten resin in the pressure-holding process so that the molten resin enters the cavity. Is filled. The injection molding machine controls the screw speed in the injection process, and controls the pressure of the molten resin in the pressure holding process. In such switching from the injection process to the pressure holding process, the injection molding machine has switched from speed control to pressure control at a preset screw position.
特開昭61-229522号公報Japanese Patent Application Laid-Open No. 61-229522
 しかし、速度制御から圧力制御への切替え時におけるスクリュ位置が設定されていても、モータおよびスクリュ等の駆動系の慣性力によって、制御切替え時における実際の圧力と圧力指令値との差が大きい場合がある。このような場合、制御切替時に圧力制御不能な事態が生じ、機械破損やバリが発生してしまうことがある。例えば、樹脂圧力は、金型に溶融樹脂を充填していくに従って上昇し、制御切替え位置付近においてピークとなる場合がある。このピーク付近における射出圧力が制御できないと、ばりやひけ等の不良の発生原因となる。 However, even if the screw position at the time of switching from speed control to pressure control is set, the difference between the actual pressure at the time of control switching and the pressure command value is large due to the inertial force of the drive system such as the motor and screw. There is. In such a case, a situation in which pressure control is impossible at the time of control switching may occur, and mechanical damage or burrs may occur. For example, the resin pressure may increase as the mold is filled with molten resin and may peak near the control switching position. If the injection pressure in the vicinity of this peak cannot be controlled, it may cause defects such as flash and sink marks.
 そこで、本発明の目的は、溶融樹脂の圧力の制御を容易にし、不良の発生を抑制することができる射出成形機を提供することである。 Therefore, an object of the present invention is to provide an injection molding machine that can easily control the pressure of the molten resin and suppress the occurrence of defects.
 本実施形態による射出成形機は、金型へ材料を射出する射出工程と金型における材料の保圧圧力を制御する保圧工程とによって製品を成形する射出成形機であって、材料を貯えるバレルと、バレルから金型へ材料を射出させるスクリュと、射出工程から保圧工程への切替えにおけるスクリュの減速開始位置およびスクリュの停止位置を設定可能な設定部と、減速開始位置および停止位置に基づいてスクリュを速度制御する制御部と、を備えている。 The injection molding machine according to the present embodiment is an injection molding machine that molds a product by an injection process for injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold, and a barrel for storing the material. A screw that injects material from the barrel into the mold, a setting unit that can set a screw deceleration start position and a screw stop position in switching from the injection process to the pressure holding process, and a deceleration start position and a stop position. And a controller for controlling the speed of the screw.
 制御部は、切替えにおいてスクリュを停止させている停止期間を設定可能にしてよい。 The control unit may be able to set a stop period during which the screw is stopped during switching.
 減速開始位置は、射出工程における材料の充填圧力に基づいて設定されてもよい。 The deceleration start position may be set based on the material filling pressure in the injection process.
 停止位置は、射出工程における材料の充填量に基づいて設定されてもよい。 The stop position may be set based on the filling amount of the material in the injection process.
 本実施形態による射出成形機は、金型へ材料を射出する射出工程と金型における材料の保圧圧力を制御する保圧工程とによって製品を成形する射出成形機であって、材料を貯えるバレルと、バレルから金型へ材料を射出させるスクリュと、射出工程から保圧工程への切替えにおけるスクリュの減速開始位置、および、スクリュが減速開始位置に達してからスクリュの速度指令がゼロになるまでの減速指令期間を設定可能な設定部と、減速開始位置および減速指令期間に基づいてスクリュを速度制御する制御部と、を備えている。 The injection molding machine according to the present embodiment is an injection molding machine that molds a product by an injection process for injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold, and a barrel for storing the material. The screw that injects the material from the barrel to the mold, the screw deceleration start position in the switching from the injection process to the pressure holding process, and the screw speed command becomes zero after the screw reaches the deceleration start position. And a control unit that controls the speed of the screw based on the deceleration start position and the deceleration command period.
 設定部は、切替えにおいてスクリュを停止させている停止期間を設定可能にしてよい。 The setting unit may be able to set a stop period during which the screw is stopped during switching.
 減速開始位置は、射出工程における材料の充填圧力に基づいて設定されてもよい。 The deceleration start position may be set based on the material filling pressure in the injection process.
 制御部は、切替えにおいてスクリュの速度をほぼ一定の減速度で減速してもよい。 The controller may decelerate the screw speed with a substantially constant deceleration during switching.
 制御部は、切替えにおいてスクリュの速度の減速度を変更してもよい。 The control unit may change the deceleration of the screw speed during switching.
 制御部は、切替えにおいてスクリュの速度を指数関数的に減速してもよい。 The controller may decelerate the screw speed exponentially at the time of switching.
 制御部は、切替えにおいてスクリュの速度をS字曲線的に減速してもよい。 The controller may decelerate the screw speed in an S-shaped curve at the time of switching.
 制御部は、切替えにおいてスクリュの速度を、予め設定された時点における速度に従って減速させてもよい。 The control unit may decelerate the screw speed in accordance with the speed at a preset time in the switching.
第1実施形態に従った射出成形機1の構成例を示すブロック図。The block diagram which shows the structural example of the injection molding machine 1 according to 1st Embodiment. 制御部8の構成の一例を示す図。The figure which shows an example of a structure of the control part. 射出成形機1の動作の一例を示すグラフ。The graph which shows an example of operation | movement of the injection molding machine. 第2実施形態に従った射出成形機1の速度曲線の一例を示すグラフ。The graph which shows an example of the speed curve of the injection molding machine 1 according to 2nd Embodiment. 第2実施形態に従った射出成形機1の速度曲線の一例を示すグラフ。The graph which shows an example of the speed curve of the injection molding machine 1 according to 2nd Embodiment. 第3実施形態に従った射出成形機1の速度曲線の一例を示すグラフ。The graph which shows an example of the speed curve of the injection molding machine 1 according to 3rd Embodiment.
 以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。 Embodiments according to the present invention will be described below with reference to the drawings. This embodiment does not limit the present invention.
(第1実施形態)
 図1は、第1実施形態に従った射出成形機1の構成例を示すブロック図である。射出成形機1は、一連の射出成形動作を繰り返し実行可能な機械であり、例えば、成形品を1回成形する動作をサイクル動作として繰り返す。
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration example of an injection molding machine 1 according to the first embodiment. The injection molding machine 1 is a machine that can repeatedly execute a series of injection molding operations. For example, an operation of molding a molded product once is repeated as a cycle operation.
 射出成形機1は、フレーム2と、固定盤3と、移動盤4と、タイバー5と、型締駆動機構6と、射出装置7と、制御部8と、押出機構9と、ヒューマン・マシン・インタフェース60と、射出圧力センサS1と、スクリュ位置センサS2とを備えている。 The injection molding machine 1 includes a frame 2, a fixed plate 3, a moving plate 4, a tie bar 5, a mold clamping drive mechanism 6, an injection device 7, a control unit 8, an extrusion mechanism 9, a human machine An interface 60, an injection pressure sensor S1, and a screw position sensor S2 are provided.
 フレーム2は、射出成形機1の土台である。固定盤3は、フレーム2上に固定されている。固定盤3には、固定金型11が取り付けられる。タイバー5の一端は、固定盤3に固定されており、その他端は、支持盤10に固定されている。タイバー5は、固定盤3から移動盤4を通過して支持盤10まで延びている。 The frame 2 is the foundation of the injection molding machine 1. The fixed platen 3 is fixed on the frame 2. A fixed mold 11 is attached to the fixed platen 3. One end of the tie bar 5 is fixed to the fixed platen 3 and the other end is fixed to the support platen 10. The tie bar 5 extends from the fixed plate 3 to the support plate 10 through the moving plate 4.
 移動盤4は、フレーム2に設けられたリニアガイド(図示せず)上に載置されている。移動盤4は、タイバー5またはリニアガイドに案内され、固定盤3に接近しあるいは固定盤3から離れるように移動することができる。移動盤4には、移動金型12が取り付けられる。移動金型12は、固定金型11に対向しており、移動盤4とともに固定金型11へ接近し、固定金型11に組み合わされる。移動金型12と固定金型11とが合わされ接触することによって、移動金型12と固定金型11との間に製品形状に対応した空間が形成される。 The moving board 4 is placed on a linear guide (not shown) provided on the frame 2. The movable platen 4 is guided by a tie bar 5 or a linear guide, and can move toward or away from the fixed platen 3. A moving mold 12 is attached to the moving plate 4. The moving mold 12 faces the fixed mold 11, approaches the fixed mold 11 together with the moving board 4, and is combined with the fixed mold 11. When the moving mold 12 and the fixed mold 11 are brought into contact with each other, a space corresponding to the product shape is formed between the moving mold 12 and the fixed mold 11.
 型締駆動機構6は、トグル機構13と、トグル機構駆動部14とを備えている。トグル機構駆動部14は、トグル機構13を駆動するために、型締サーボモータ21と、ボールねじ22と、伝達機構23とを備えている。ボールねじ22の先端部には、クロスヘッド15が取り付けられている。ボールねじ22が回転することで、クロスヘッド15が移動盤4に接近し、あるいは、移動盤4から離れるように移動する。伝達機構23は、型締サーボモータ21の回転をボールねじ22に伝達し、クロスヘッド15を移動させる。 The mold clamping drive mechanism 6 includes a toggle mechanism 13 and a toggle mechanism drive unit 14. The toggle mechanism drive unit 14 includes a mold clamping servomotor 21, a ball screw 22, and a transmission mechanism 23 in order to drive the toggle mechanism 13. A cross head 15 is attached to the tip of the ball screw 22. As the ball screw 22 rotates, the crosshead 15 moves toward or away from the moving board 4. The transmission mechanism 23 transmits the rotation of the mold clamping servomotor 21 to the ball screw 22 and moves the crosshead 15.
 トグル機構駆動部14がクロスヘッド15を移動させると、トグル機構13が作動する。例えば、クロスヘッド15が移動盤4へ向かって移動すると、移動盤4が固定盤3に向かって移動し、型閉が行われる。逆に、クロスヘッド15が移動盤4から離れる方向に移動すると、移動盤4が固定盤3から離れる方向に移動し、型開が行われる。 When the toggle mechanism drive unit 14 moves the crosshead 15, the toggle mechanism 13 is activated. For example, when the cross head 15 moves toward the movable platen 4, the movable platen 4 moves toward the fixed platen 3 and the mold is closed. On the contrary, when the cross head 15 moves in a direction away from the movable platen 4, the movable platen 4 moves in a direction away from the fixed platen 3, and mold opening is performed.
 押出機構9は、成形後の製品を移動金型12から取り外すために、押出サーボモータ71と、ボールねじ72と、伝達機構73とを備えている。ボールねじ72の先端部は、移動金型12の内面に貫通している。ボールねじ72が回転することによって、ボールねじ72が移動金型12の内面に付着した製品を押し出す。伝達機構73は、押出サーボモータ71の回転をボールねじ72に伝達し、ボールねじ72を図1の左右方向に移動させる。 The extrusion mechanism 9 includes an extrusion servo motor 71, a ball screw 72, and a transmission mechanism 73 in order to remove the molded product from the moving mold 12. The tip of the ball screw 72 penetrates the inner surface of the moving mold 12. As the ball screw 72 rotates, the ball screw 72 pushes out the product adhered to the inner surface of the moving mold 12. The transmission mechanism 73 transmits the rotation of the extrusion servomotor 71 to the ball screw 72, and moves the ball screw 72 in the left-right direction in FIG.
 射出装置7は、加熱バレル(バンドヒータ)41と、スクリュ42と、計量駆動部43と、射出駆動部44とを備えている。加熱バレル41は、溶融状態の樹脂を金型のキャビティ内に注入するノズル41aを備える。加熱バレル41は、ホッパ45からの樹脂を加熱溶融しつつ貯えておき、その溶融樹脂をノズルから射出する。スクリュ42は、加熱バレル41の内部で回転しながらあるいは回転せずに移動可能に設けられている。計量工程において、スクリュ42は回転し、スクリュ42の回転量(移動距離)によってバレル41から射出される溶融樹脂の射出量が計量され決定される。射出工程においては、スクリュ42は、回転することなく移動し、溶融樹脂をノズルから射出する。 The injection device 7 includes a heating barrel (band heater) 41, a screw 42, a metering drive unit 43, and an injection drive unit 44. The heating barrel 41 includes a nozzle 41a for injecting molten resin into the mold cavity. The heating barrel 41 stores the resin from the hopper 45 while heating and melting it, and injects the molten resin from the nozzle. The screw 42 is provided to be movable while rotating inside the heating barrel 41 or without rotating. In the measuring step, the screw 42 rotates, and the injection amount of the molten resin injected from the barrel 41 is measured and determined by the rotation amount (movement distance) of the screw 42. In the injection process, the screw 42 moves without rotating and injects the molten resin from the nozzle.
 計量駆動部43は、計量サーボモータ46と、計量サーボモータ46の回転をスクリュ42に伝える伝達機構47とを有する。計量サーボモータ46が駆動され、加熱バレル41内でスクリュ42が回転されると、樹脂がホッパ45から加熱バレル41内に導入される。導入された樹脂は、加熱されかつ混練されながら加熱バレル41の先端側に送られる。樹脂は、溶融されて加熱バレル41の先端部分に貯えられる。計量時と逆方向にスクリュ42を移動させることによって、溶融樹脂はバレル41から射出される。このとき、スクリュ42は、回転することなく移動し、溶融樹脂をノズルから押し出す。尚、本実施形態では、成形材料として溶融樹脂を用いているが、成形材料は溶融樹脂に限定されることはなく、金属、ガラス、ゴム、炭素繊維を含む炭化化合物などでもよい。 The weighing drive unit 43 includes a weighing servo motor 46 and a transmission mechanism 47 that transmits the rotation of the weighing servo motor 46 to the screw 42. When the weighing servo motor 46 is driven and the screw 42 is rotated in the heating barrel 41, the resin is introduced from the hopper 45 into the heating barrel 41. The introduced resin is sent to the front end side of the heating barrel 41 while being heated and kneaded. The resin is melted and stored in the tip portion of the heating barrel 41. The molten resin is injected from the barrel 41 by moving the screw 42 in the direction opposite to that during the measurement. At this time, the screw 42 moves without rotating and pushes the molten resin from the nozzle. In this embodiment, a molten resin is used as the molding material. However, the molding material is not limited to the molten resin, and may be a metal, glass, rubber, a carbonized compound containing carbon fiber, or the like.
 射出駆動部44は、射出サーボモータ51と、ボールねじ52と、伝達機構53とを有する。ボールねじ52が回転することで、加熱バレル41内でスクリュ42が図1の左右方向に移動する。伝達機構53は、射出サーボモータ51の回転をボールねじ52に伝達する。これにより、射出サーボモータ51が回転すると、スクリュ42が移動する。スクリュ42が加熱バレル41の先端部分に貯えられた溶融樹脂をノズル41aから押し出すことによって、溶融樹脂がノズル41aから射出される。 The injection drive unit 44 includes an injection servo motor 51, a ball screw 52, and a transmission mechanism 53. As the ball screw 52 rotates, the screw 42 moves in the left-right direction in FIG. The transmission mechanism 53 transmits the rotation of the injection servo motor 51 to the ball screw 52. Thereby, when the injection servo motor 51 rotates, the screw 42 moves. When the screw 42 pushes out the molten resin stored in the tip portion of the heating barrel 41 from the nozzle 41a, the molten resin is injected from the nozzle 41a.
 射出圧力センサS1は、バレル41から金型へ溶融樹脂を充填する際の充填圧力や保圧工程における保圧圧力を検出する。射出工程においては、射出圧力センサS1は、バレル41から金型への溶融樹脂料の射出圧力を検出する。保圧工程においては、射出圧力センサS1は、速度制御から圧力制御への保圧切替え後の溶融樹脂の保圧圧力を検出する。 The injection pressure sensor S1 detects the filling pressure when the molten resin is filled from the barrel 41 into the mold and the holding pressure in the holding process. In the injection process, the injection pressure sensor S1 detects the injection pressure of the molten resin material from the barrel 41 to the mold. In the pressure holding process, the injection pressure sensor S1 detects the pressure of the molten resin after switching the pressure holding from speed control to pressure control.
 スクリュ位置センサS2は、スクリュ42の位置を検出する。スクリュ42は、射出サーボモータ51の回転に伴って移動するので、スクリュ位置センサS2は、射出サーボモータ51の回転数や角度位置からスクリュ42の位置を検出してもよい。所定の制御周期ごとにスクリュ42の位置を検出することによって、スクリュ42の速度や加速度が分かる。 The screw position sensor S2 detects the position of the screw 42. Since the screw 42 moves with the rotation of the injection servomotor 51, the screw position sensor S2 may detect the position of the screw 42 from the rotation speed or angular position of the injection servomotor 51. By detecting the position of the screw 42 at every predetermined control cycle, the speed and acceleration of the screw 42 can be known.
 ヒューマン・マシン・インタフェース(HMI/F)60は、射出成形機1に関する様々な情報を表示する。HMI/F60は、例えば、表示部およびキーボードを備えてもよく、あるいは、タッチパネル式ディスプレイであってもよい。ユーザは、HMI/F60を通じて、射出成形機1の動作に関する指令等の設定を入力することができる。例えば、射出成形は、金型へ溶融樹脂を射出する射出工程(速度制御)と金型における溶融樹脂の保圧圧力を制御する保圧工程(圧力制御)とによって製品を成形する。本実施形態では、射出工程と保圧工程との間にスクリュ42の停止を維持する保圧切替期間が設けられている。ユーザは、射出工程におけるスクリュ42の移動速度、スクリュ42の速度指令の減速開始位置(LS4)、スクリュ42の最終的な停止位置(LS4α)、または、スクリュ42の減速開始位置LS4から停止位置(スクリュ42の速度指令がゼロになる)LS4αまでの減速指令期間ta等の各設定値をHMI/F60で入力する。スクリュ42の移動速度、減速開始位置、停止位置等は、射出成形機1の実際のサイクル動作やシミュレーションに基づいてユーザによって設定され得る。また、ユーザは、型締工程および型開工程における移動金型12の速度、計量工程における計量速度等をHMI/F60で入力してもよい。 The human machine interface (HMI / F) 60 displays various information related to the injection molding machine 1. The HMI / F 60 may include, for example, a display unit and a keyboard, or may be a touch panel display. The user can input settings such as a command related to the operation of the injection molding machine 1 through the HMI / F 60. For example, in injection molding, a product is molded by an injection process (speed control) for injecting a molten resin into a mold and a pressure holding process (pressure control) for controlling the pressure of the molten resin in the mold. In the present embodiment, a holding pressure switching period for maintaining the stop of the screw 42 is provided between the injection process and the holding pressure process. The user moves the screw 42 in the injection process, the deceleration start position (LS4) of the speed command of the screw 42, the final stop position (LS4α) of the screw 42, or the stop position (from the deceleration start position LS4 of the screw 42). Each set value such as a deceleration command period ta up to LS4α is input by the HMI / F 60 (the speed command of the screw 42 becomes zero). The moving speed, deceleration start position, stop position, and the like of the screw 42 can be set by the user based on the actual cycle operation and simulation of the injection molding machine 1. Further, the user may input the speed of the movable mold 12 in the mold clamping process and the mold opening process, the measurement speed in the measurement process, and the like with the HMI / F 60.
 制御部8は、射出工程中に各種センサ(図示せず)から受け取るセンサ情報を監視し、そのセンサ情報に基づいて射出装置7を制御する。また、制御部8は、HMI/F60を通じて設定された上記設定値に従ってスクリュ42を制御する。さらに、制御部8は、必要なデータを表示部100に表示させる。 The control unit 8 monitors sensor information received from various sensors (not shown) during the injection process, and controls the injection device 7 based on the sensor information. Moreover, the control part 8 controls the screw 42 according to the said setting value set through HMI / F60. Further, the control unit 8 causes the display unit 100 to display necessary data.
 図2は、制御部8の構成の一例を示す図である。制御部8は、演算処理部61と、設定部62と、記憶部63と、射出装置制御部64と、入出力部65とを含む。 FIG. 2 is a diagram illustrating an example of the configuration of the control unit 8. The control unit 8 includes an arithmetic processing unit 61, a setting unit 62, a storage unit 63, an injection device control unit 64, and an input / output unit 65.
 演算処理部61は、圧力センサや温度センサ等の各種センサから得られた検出値と設定部62に格納された設定値とを比較しながら、加熱バレル41の温度、スクリュ42の速度、射出圧力を制御する。また、演算処理部61は、制御部8の各構成要素の制御も行う。 The arithmetic processing unit 61 compares the detected value obtained from various sensors such as a pressure sensor and a temperature sensor with the set value stored in the setting unit 62 while comparing the temperature of the heating barrel 41, the speed of the screw 42, and the injection pressure. To control. The arithmetic processing unit 61 also controls each component of the control unit 8.
 設定部62は、HMI/F60を介して入力された情報を格納する。例えば、設定部62は、射出サーボモータ51の回転速度またはスクリュ42の移動速度、保圧工程における保圧圧力、スクリュ42の減速開始位置(LS4)、スクリュ42の最終的な停止位置(LS4α)あるいは減速指令期間(ta)等に関する設定情報を格納する。 The setting unit 62 stores information input via the HMI / F 60. For example, the setting unit 62 rotates the rotation speed of the injection servo motor 51 or the moving speed of the screw 42, the holding pressure in the holding process, the deceleration start position (LS4) of the screw 42, and the final stop position (LS4α) of the screw 42. Or the setting information regarding the deceleration command period (ta) or the like is stored.
 記憶部63は、射出成形機1を動作させるためのプログラム、上記設定値、各種センサから得られた検出値等の情報を格納する。 The storage unit 63 stores information such as a program for operating the injection molding machine 1, the set values, detection values obtained from various sensors, and the like.
 射出装置制御部64は、射出サーボモータ51の駆動を制御する。射出装置制御部64は、例えば射出サーボモータ51の駆動を制御することで、射出装置7の射出圧力を制御する。射出装置制御部64は、スクリュ位置センサS2からのフィードバックを受けて、位置指令や速度指令を補正して射出サーボモータ51を制御する。 The injection device control unit 64 controls the drive of the injection servo motor 51. The injection device control unit 64 controls the injection pressure of the injection device 7 by controlling the driving of the injection servomotor 51, for example. The injection device controller 64 receives the feedback from the screw position sensor S2, corrects the position command and the speed command, and controls the injection servo motor 51.
 入出力部65は、外部からの情報を制御部8へ取り込み、あるいは、制御部8の情報を外部へ出力するように構成されている。入出力部65は、他の端末と有線または無線で通信可能に接続され得る。 The input / output unit 65 is configured to take in information from the outside to the control unit 8 or output the information of the control unit 8 to the outside. The input / output unit 65 can be communicably connected to other terminals by wire or wirelessly.
 次に、射出成形機1の射出工程および保圧切替期間における動作例を説明する。 Next, an operation example of the injection molding machine 1 in the injection process and the holding pressure switching period will be described.
 図3(A)~図3(C)は、射出成形機1の動作の一例を示すグラフである。図3(A)~図3(C)のグラフの横軸は時間である。図3(A)~図3(C)のグラフの縦軸はそれぞれスクリュ42の位置、スクリュ42の速度、溶融樹脂の充填圧力である。図3(A)の実線Paはスクリュ42の実際の位置を示し、破線Pbは、スクリュ42の位置指令値を示す。図3(B)の実線Vaはスクリュ42の実速度を示し、破線Vbはスクリュ42の速度指令値を示す。以下、射出成形機1の動作を時系列に沿って説明する。尚、スクリュ42の位置や速度は、スクリュ位置センサS2からの検出値に基づいて得ることができる。充填圧力は、射出圧力センサS1からの検出値に基づいて得ることができる。また、金型の型締工程や溶融樹脂の計量工程はすでに終了しているものとし、射出工程から説明を開始する。 3 (A) to 3 (C) are graphs showing an example of the operation of the injection molding machine 1. FIG. The horizontal axis of the graphs of FIGS. 3A to 3C is time. 3A to 3C, the vertical axis represents the position of the screw 42, the speed of the screw 42, and the filling pressure of the molten resin, respectively. The solid line Pa in FIG. 3A indicates the actual position of the screw 42, and the broken line Pb indicates the position command value of the screw 42. The solid line Va in FIG. 3B indicates the actual speed of the screw 42, and the broken line Vb indicates the speed command value of the screw 42. Hereinafter, the operation of the injection molding machine 1 will be described in time series. The position and speed of the screw 42 can be obtained based on the detection value from the screw position sensor S2. The filling pressure can be obtained based on the detected value from the injection pressure sensor S1. In addition, it is assumed that the mold clamping process and the molten resin measurement process have already been completed, and the description starts from the injection process.
 まずt0において、射出工程が開始される。このとき、スクリュ42は、図3(A)に示すように、原点0からLS5だけ離れた位置にある。その後、スクリュ42は、原点(バレル41の先端部)に接近していく。ここで、スクリュ42の実際の位置Paは、フィードバック制御による遅れの分だけ位置指令値Pbに対して遅延する。従って、実際の位置Paは、位置指令値Pbに追従するが、t0~t3においては位置指令値Pbよりもほぼ(L1-L)だけ離間した位置となる。 First, at t0, the injection process is started. At this time, the screw 42 is at a position away from the origin 0 by LS5 as shown in FIG. Thereafter, the screw 42 approaches the origin (the tip of the barrel 41). Here, the actual position Pa of the screw 42 is delayed with respect to the position command value Pb by the amount of delay due to feedback control. Accordingly, although the actual position Pa follows the position command value Pb, the position Pa is approximately (L1-L) away from the position command value Pb from t0 to t3.
 t0~t2において、スクリュ42は、図3(B)に示すように、所定の加速度で加速される。ここで、スクリュ42の実際の速度Vaは、フィードバック制御による遅れの分だけ速度指令値Vbに対して遅延する。従って、実際の速度Vaは、速度指令値Vbに追従するが、速度指令値Vbよりも幾分遅れて変位する。例えば、速度指令値Vbはt1において所定速度Vcを示しているが、実際の速度Vaは、t2において所定速度Vcに達している。 From t0 to t2, the screw 42 is accelerated at a predetermined acceleration as shown in FIG. Here, the actual speed Va of the screw 42 is delayed with respect to the speed command value Vb by the amount of delay due to feedback control. Accordingly, the actual speed Va follows the speed command value Vb, but is displaced somewhat later than the speed command value Vb. For example, the speed command value Vb indicates the predetermined speed Vc at t1, but the actual speed Va reaches the predetermined speed Vc at t2.
 t2~t3において、スクリュ42は、所定速度Vcを維持している。t0以降、この期間においても、溶融樹脂はバレル41から金型へ流れ込み、金型のキャビティ内に充填されていく。キャビティ内にまだ空洞が多い場合、図3(C)に示す充填圧力は比較的低い値で推移する。一方、キャビティ内の空洞が少なくなると、t3近傍に示すように、充填圧力が上昇する。 From t2 to t3, the screw 42 maintains the predetermined speed Vc. After t0, also in this period, the molten resin flows from the barrel 41 into the mold and is filled in the mold cavity. When there are still many cavities in the cavity, the filling pressure shown in FIG. 3C changes at a relatively low value. On the other hand, when the number of cavities in the cavity decreases, the filling pressure increases as shown in the vicinity of t3.
 t3において、図3(A)に示すように、スクリュ42の実際の位置Paが予め設定された減速開始位置LS4に達すると、射出装置制御部64は、図3(B)に示すようにスクリュ42の減速を開始する。減速開始位置LS4は、上述の通り、ユーザが任意に設定可能である。例えば、ユーザは、充填圧力が所定のパッキング圧力Ppになるときのスクリュ42の位置を試運転やシミュレーションで確認し、その位置を減速開始位置LS4として設定部62に設定すればよい。このとき、パッキング圧力Ppの直後のピーク値Pmaxがばり等を発生させる充填圧力を超えないようにする。このように、ユーザは、充填圧力のピーク値Pmaxに近いパッキング圧力Ppを参照してパッキング圧力Ppに基づいて減速開始位置LS4を設定することができる。これにより、ばり等の不良の発生を抑制することができる。尚、“ばり”とは、過剰な充填圧力によって金型の接触面(パーティング面)から溶融樹脂がはみだす現象である。また、停止位置LS4αも、ユーザが任意に設定可能である。例えば、成形品の重量は通常決まっているので、充填される溶融樹脂の量も決まっている。充填される溶融樹脂の量は、スクリュ42の移動距離Dsに換算可能である。従って、スクリュ42の停止位置LS4αはユーザによって予め設定可能である。 At t3, as shown in FIG. 3A, when the actual position Pa of the screw 42 reaches a preset deceleration start position LS4, the injection device controller 64 causes the screw to move as shown in FIG. 42 starts decelerating. The deceleration start position LS4 can be arbitrarily set by the user as described above. For example, the user may confirm the position of the screw 42 when the filling pressure becomes the predetermined packing pressure Pp by trial operation or simulation, and set the position in the setting unit 62 as the deceleration start position LS4. At this time, the peak value Pmax immediately after the packing pressure Pp is set so as not to exceed the filling pressure for generating flash or the like. In this way, the user can set the deceleration start position LS4 based on the packing pressure Pp with reference to the packing pressure Pp close to the peak value Pmax of the filling pressure. Thereby, generation | occurrence | production of defects, such as a flash, can be suppressed. The “burr” is a phenomenon in which the molten resin protrudes from the contact surface (parting surface) of the mold due to excessive filling pressure. Further, the stop position LS4α can be arbitrarily set by the user. For example, since the weight of a molded product is usually determined, the amount of molten resin to be filled is also determined. The amount of molten resin to be filled can be converted into the moving distance Ds of the screw 42. Therefore, the stop position LS4α of the screw 42 can be set in advance by the user.
 t3~t4において、図3(B)に示すように、制御部8は、スクリュ42を減速させ、t4においてスクリュ42を停止させる。よって、t4において、制御部8は速度指令値Vbをゼロにしている。ここで、減速開始位置LS4および停止位置LS4αは予め設定されている。また、減速開始位置LS4におけるスクリュ42またはモータ51の速度(初速Vc)は、モータ51等に配置された位置エンコーダで検出することができる。制御部8は、減速開始位置LS4と停止位置LS4αとの差(減速距離L1)および初速Vcを用いて、減速開始位置LS4の初速Vcを停止位置LS4αでゼロにするように所定の加速度(または減速度)α(α=Vc/(2×L1))を算出することができる。さらに、制御部8は、加速度αで減速するときのサンプリング周期tsごとの移動量(分配量)D(D=Vc-α×ts×n)を計算して、各サンプリングにおいて該サンプリングに対応する移動量に基づいた速度指令でモータ51を制御する。尚、nは、減速開始位置LS4から停止位置LS4αまでのサンプリング数(n=1~2×L1/(Vc×ts))である。制御部8は、減速開始位置LS4におけるモータ51およびスクリュ42の初速Vcを加速度αで減速していき、t4においてモータ51の速度指令値をゼロにする。 From t3 to t4, as shown in FIG. 3B, the control unit 8 decelerates the screw 42 and stops the screw 42 at t4. Therefore, at t4, the control unit 8 sets the speed command value Vb to zero. Here, the deceleration start position LS4 and the stop position LS4α are set in advance. Further, the speed of the screw 42 or the motor 51 (initial speed Vc) at the deceleration start position LS4 can be detected by a position encoder disposed in the motor 51 or the like. The control unit 8 uses the difference between the deceleration start position LS4 and the stop position LS4α (deceleration distance L1) and the initial speed Vc to set a predetermined acceleration (or so as to make the initial speed Vc at the deceleration start position LS4 zero at the stop position LS4α. (Deceleration) α (α = Vc 2 / (2 × L1)) can be calculated. Further, the control unit 8 calculates a movement amount (distribution amount) D (D = Vc−α × ts × n) for each sampling period ts when decelerating at the acceleration α, and corresponds to the sampling in each sampling. The motor 51 is controlled by a speed command based on the movement amount. Note that n is the number of samplings from the deceleration start position LS4 to the stop position LS4α (n = 1 to 2 × L1 / (Vc × ts)). The control unit 8 decelerates the initial speed Vc of the motor 51 and the screw 42 at the deceleration start position LS4 with the acceleration α, and sets the speed command value of the motor 51 to zero at t4.
 t4の時点では、実際の速度Vaは、速度指令値Vbに対して遅延しているため、ゼロにはなっていない。また、このとき、図3(A)に示すように、スクリュ42の位置指令値Pbは、最終的な停止位置LS4αでゼロになるように制御される。しかし、実際の位置Paは位置指令値Pbに対して遅延しているため、停止位置LS4αに達していない。 At time t4, the actual speed Va is delayed from the speed command value Vb, and thus is not zero. At this time, as shown in FIG. 3A, the position command value Pb of the screw 42 is controlled to be zero at the final stop position LS4α. However, since the actual position Pa is delayed with respect to the position command value Pb, it does not reach the stop position LS4α.
 その後、t5において、スクリュ42の実際の速度Vaはほぼゼロになり、実際の位置Paは停止位置LS4αに達する。尚、制御部8は、実際の速度Vaがt4における速度の所定比率未満になったときにスクリュ42が停止したと判断してよい。このように、スクリュ42の指令位置Pbは、t4で停止位置LS4αにおいて停止し、スクリュ42の実際の位置Paは、t5で停止位置LS4αにおいて停止する。このように、本実施形態では、制御部8は、モータ51およびスクリュ42を速度制御によって停止位置LS4αに停止させることができる。 Thereafter, at t5, the actual speed Va of the screw 42 becomes almost zero, and the actual position Pa reaches the stop position LS4α. The control unit 8 may determine that the screw 42 has stopped when the actual speed Va becomes less than a predetermined ratio of the speed at t4. Thus, the command position Pb of the screw 42 stops at the stop position LS4α at t4, and the actual position Pa of the screw 42 stops at the stop position LS4α at t5. Thus, in the present embodiment, the control unit 8 can stop the motor 51 and the screw 42 at the stop position LS4α by speed control.
 t5~t6において、制御部8は、スクリュ42を停止させ、保圧切替期間Tsに入る。停止期間としての保圧切替期間Tsにおいて、制御部8は、スクリュ42の停止状態を維持する。これにより、自然な圧力を利用して金型のキャビティ内に溶融樹脂を充分に行き渡らせ、ひけ等の成形不良を抑制することができる。尚、“ひけ”とは、充填圧力または保圧圧力の低下や成形収縮によって金型のキャビティの樹脂が凹んだり窪んだりする現象である。 From t5 to t6, the control unit 8 stops the screw 42 and enters the holding pressure switching period Ts. In the holding pressure switching period Ts as the stop period, the control unit 8 maintains the stop state of the screw 42. Accordingly, the molten resin can be sufficiently spread in the cavity of the mold by using natural pressure, and molding defects such as sink marks can be suppressed. The “sink” is a phenomenon in which the resin in the mold cavity is dented or dented due to a decrease in filling pressure or holding pressure or molding shrinkage.
 図3(A)のDsは、スクリュ42の移動距離を示す。バレル41の断面積は、予め決まっているので、溶融樹脂の射出量は、移動距離Ds(射出量=バレル41の断面積×Ds)に基づいて一意に決まる。即ち、スクリュ42の移動距離Dsは、射出量を表していると言ってもよい。 Ds in FIG. 3 (A) indicates the moving distance of the screw 42. Since the cross-sectional area of the barrel 41 is determined in advance, the injection amount of the molten resin is uniquely determined based on the movement distance Ds (injection amount = cross-sectional area of the barrel 41 × Ds). That is, it may be said that the moving distance Ds of the screw 42 represents the injection amount.
 t6以降、射出装置制御部64は、スクリュ42を圧力制御し保圧工程に入る。その後、射出成形機1は、冷却工程、計量工程、型開工程および押出工程等を経て1つのサイクル動作を終了する。射出成形機1は、さらに同じサイクル動作を繰り返し実行してよい。 After t6, the injection device controller 64 controls the pressure of the screw 42 and enters the pressure holding process. Thereafter, the injection molding machine 1 completes one cycle operation through a cooling process, a metering process, a mold opening process, an extrusion process, and the like. The injection molding machine 1 may repeatedly execute the same cycle operation.
 以上のように、本実施形態では、減速開始位置LS4および停止位置LS4αはユーザによって設定されている。制御部8は、減速開始位置LS4と停止位置LS4αとの差(減速距離L1)から加速度(減速度)αを算出することができ、加速度αを用いることによってスクリュ42を速度制御することができる。 As described above, in this embodiment, the deceleration start position LS4 and the stop position LS4α are set by the user. The control unit 8 can calculate the acceleration (deceleration) α from the difference (deceleration distance L1) between the deceleration start position LS4 and the stop position LS4α, and can control the speed of the screw 42 by using the acceleration α. .
 もし、スクリュが減速開始位置LS4に達したときに速度制御から圧力制御に切り替えられたとすると、モータ等のスクリュの駆動系の慣性力により、速度制御から圧力制御への切り替え時における実際の圧力と保圧圧力(圧力指令)との差が大きくなる場合がある。この場合、圧力制御による制動では制御できず、急激な圧力上昇が生じてしまうことがあり、機械の破損やバリの発生の原因となる。 If the speed control is switched to the pressure control when the screw reaches the deceleration start position LS4, the actual pressure at the time of switching from the speed control to the pressure control due to the inertial force of the screw drive system such as the motor The difference from the holding pressure (pressure command) may increase. In this case, it cannot be controlled by braking by pressure control, and a sudden pressure increase may occur, which causes damage to the machine or generation of burrs.
 これに対し、本実施形態では、制御部8は、速度制御によってスクリュ42を停止位置LS4αに停止させる。その後、制御部8は、保圧切替期間Tsにおいて、スクリュ42の停止状態を維持し、実際の圧力と保圧圧力(圧力指令)との差を低減させた後に速度制御から圧力制御へ切り替える。これにより、本実施形態による射出成形機は、速度制御から圧力制御への切り替え時における実際の圧力と保圧圧力(圧力指令)との差を抑制し、機械の破損やバリの発生を抑制しつつ、保圧工程において保圧圧力の制御を可能にする。 In contrast, in the present embodiment, the control unit 8 stops the screw 42 at the stop position LS4α by speed control. Thereafter, the control unit 8 maintains the stopped state of the screw 42 in the holding pressure switching period Ts, and switches from speed control to pressure control after reducing the difference between the actual pressure and the holding pressure (pressure command). As a result, the injection molding machine according to the present embodiment suppresses the difference between the actual pressure and the holding pressure (pressure command) when switching from speed control to pressure control, and suppresses breakage of the machine and occurrence of burrs. Meanwhile, the holding pressure can be controlled in the holding step.
 本実施形態において、速度制御から圧力制御へ切り替えるタイミングは、保圧切替期間Tsが終了した時点t6である。しかし、速度制御から圧力制御へ切り替えるタイミングは、速度指令がゼロになる時点t4あるいは実際にスクリュ42が停止する時点t5であってもよい。保圧切替期間Tsは、ユーザによって任意に設定可能である。 In the present embodiment, the timing for switching from the speed control to the pressure control is a time point t6 when the holding pressure switching period Ts ends. However, the timing for switching from speed control to pressure control may be the time t4 when the speed command becomes zero or the time t5 when the screw 42 actually stops. The holding pressure switching period Ts can be arbitrarily set by the user.
 実際にスクリュ42が停止する時点t5は、速度指令がゼロになる時点t4よりも実際の圧力と保圧圧力(圧力指令)との差において小さい(図3(C)参照)。従って、制御部8は、時点t4よりも時点t5において速度制御から圧力制御へ切り替えることが好ましい。この場合、保圧切替期間Tsがほぼゼロとなる。時点t5は、時点t4から遅延期間tbだけ経過後になる。 The time t5 when the screw 42 actually stops is smaller in the difference between the actual pressure and the holding pressure (pressure command) than the time t4 when the speed command becomes zero (see FIG. 3C). Therefore, it is preferable that the control unit 8 switches from speed control to pressure control at time t5 rather than time t4. In this case, the holding pressure switching period Ts becomes almost zero. The time point t5 is after the elapse of the delay period tb from the time point t4.
 速度指令値Vbに対する実際の速度Vaの遅延期間tb(t4~t5)は、位置ループゲインω0の逆数を用いて決定され、式1で表される。遅延期間tbは、位置ループゲインω0によって一意に決まる。
   tb=1/ω0   (式1)
制御部8は、式1を演算して、減速開始時点t3からta+tbの経過後に速度制御から圧力制御へ切り替えてもよい。このように本実施形態において、速度制御から圧力制御へ切り替えるタイミングは、速度指令がほぼゼロになる時点t4から遅延時間tb経過後の時点t5であってもよい。
The delay period tb (t4 to t5) of the actual speed Va with respect to the speed command value Vb is determined using the reciprocal of the position loop gain ω0, and is expressed by Expression 1. The delay period tb is uniquely determined by the position loop gain ω0.
tb = 1 / ω0 (Formula 1)
The control unit 8 may calculate Equation 1 and switch from speed control to pressure control after a time ta + tb has elapsed from the deceleration start time t3. Thus, in the present embodiment, the timing for switching from speed control to pressure control may be the time t5 after the delay time tb has elapsed from the time t4 when the speed command becomes substantially zero.
(変形例)
 第1実施形態では、減速開始位置LS4および停止位置LS4αが、ユーザによって設定可能なパラメータとしている。制御部8は、これらのパラメータに基づいてスクリュ42を制御している。
(Modification)
In the first embodiment, the deceleration start position LS4 and the stop position LS4α are parameters that can be set by the user. The control unit 8 controls the screw 42 based on these parameters.
 これに対し、本変形例では、ユーザは、減速開始位置LS4および減速指令期間taを設定する。この場合、制御部8は、減速指令期間ta、減速開始位置LS4および初速度Vcに基づいて実際の減速距離L1(L1=Vc/(2×ta))を算出する。減速距離L1は、図3(B)の斜線部SLの面積に該当する。減速開始位置LS4および減速距離L1の和が停止位置LS4αとなる。演算部8は、減速距離L1および初速Vcを用いて、第1実施形態と同様に、加速度(または減速度)α(α=Vc/(2×L1))およびサンプリング周期tsごとの移動量(分配量)D(D=Vc-α×ts×n)を算出することができる。これにより、本変形例の制御部8は、モータ51およびスクリュ42を速度制御によって停止位置LS4αに停止させることができる。従って、本変形例も、上記第1実施形態と同様の効果を得ることができる。 On the other hand, in this modification, the user sets the deceleration start position LS4 and the deceleration command period ta. In this case, the control unit 8 calculates the actual deceleration distance L1 (L1 = Vc / (2 × ta)) based on the deceleration command period ta, the deceleration start position LS4, and the initial speed Vc. The deceleration distance L1 corresponds to the area of the hatched portion SL in FIG. The sum of the deceleration start position LS4 and the deceleration distance L1 becomes the stop position LS4α. The calculation unit 8 uses the deceleration distance L1 and the initial speed Vc, as in the first embodiment, the acceleration (or deceleration) α (α = Vc 2 / (2 × L1)) and the movement amount for each sampling period ts. (Distribution amount) D (D = Vc−α × ts × n) can be calculated. Thereby, the control part 8 of this modification can stop the motor 51 and the screw 42 to the stop position LS4α by speed control. Therefore, this modification can also obtain the same effect as the first embodiment.
 上記実施形態において、保圧切替期間においてスクリュ42の停止期間としての保圧切替期間Tsは可変にしてもよい。この場合、ユーザが保圧切替期間TsをHMI/F60を介して設定することができる。例えば、スクリュ42の停止期間(拘束期間)をほぼゼロにする場合、保圧切替期間Tsをゼロに設定すればよい。この場合、射出成形機1は、スクリュ42の停止時点t5から保圧工程に入る。 In the above embodiment, the holding pressure switching period Ts as the stop period of the screw 42 in the holding pressure switching period may be variable. In this case, the user can set the holding pressure switching period Ts via the HMI / F60. For example, when the stop period (restraint period) of the screw 42 is set to almost zero, the holding pressure switching period Ts may be set to zero. In this case, the injection molding machine 1 enters the pressure holding process from the time t5 when the screw 42 stops.
(第2実施形態)
 第1実施形態において、減速指令期間taにおけるスクリュ42の減速度αは、ほぼ一定である。これに対し、第2実施形態では、スクリュ42の減速度は可変にする。これにより、充填圧力の曲線を所望の曲線にすることができる。
(Second Embodiment)
In the first embodiment, the deceleration α of the screw 42 in the deceleration command period ta is substantially constant. On the other hand, in the second embodiment, the deceleration of the screw 42 is variable. Thereby, the curve of a filling pressure can be made into a desired curve.
 図4および図5は、第2実施形態に従った射出成形機1の速度曲線の一例を示すグラフである。例えば、図4のt3~t4に示すように、制御部8は、速度指令Vbを指数関数的に減少させてもよい。指数関数の設定パラメータ(時点および速度の設定)は、記憶部63に予め格納しておけばよい。また、図5のt3~t4に示すように、制御部8は、速度指令VbをS字状に減少させてもよい。S字状の曲線の設定パラメータも、記憶部63に予め格納しておけばよい。 4 and 5 are graphs showing an example of a speed curve of the injection molding machine 1 according to the second embodiment. For example, as shown at t3 to t4 in FIG. 4, the control unit 8 may decrease the speed command Vb exponentially. The exponential function setting parameters (time point and speed setting) may be stored in the storage unit 63 in advance. Further, as indicated by t3 to t4 in FIG. 5, the control unit 8 may decrease the speed command Vb in an S shape. The setting parameter for the S-shaped curve may be stored in the storage unit 63 in advance.
(第3実施形態)
 図6は、第3実施形態に従った射出成形機1の速度曲線の一例を示すグラフである。第3実施形態は、スクリュ42の減速度を可変にする点で第2実施形態と同様である。しかし、第3実施形態では、ユーザが速度および時間を任意に設定することができる。例えば、図6のt3~t4に示すように、ユーザは、時点ts1においてスクリュ42の速度がVs1になるように設定し、時点ts2においてスクリュ42の速度がVs2になるように設定し、時点ts3においてスクリュ42の速度がVs3になるように設定し、並びに、時点ts4においてスクリュ42の速度がVs4になるように設定する。これらの設定パラメータは、記憶部63に格納される。制御部8は、速度指令Vbを記憶部63に格納された設定パラメータに従って減少させる。
(Third embodiment)
FIG. 6 is a graph showing an example of a speed curve of the injection molding machine 1 according to the third embodiment. The third embodiment is the same as the second embodiment in that the deceleration of the screw 42 is variable. However, in the third embodiment, the user can arbitrarily set the speed and time. For example, as shown in t3 to t4 in FIG. 6, the user sets the speed of the screw 42 to Vs1 at the time ts1, sets the speed of the screw 42 to Vs2 at the time ts2, and sets the time ts3. Is set so that the speed of the screw 42 becomes Vs3, and at the time ts4, the speed of the screw 42 is set to Vs4. These setting parameters are stored in the storage unit 63. The control unit 8 decreases the speed command Vb according to the setting parameter stored in the storage unit 63.
 このように、ユーザが時間および速度の設定パラメータを任意に設定可能とすることによって、保圧切替期間における充填圧力の曲線(軌跡)を所望の曲線にすることができる。その結果、第3実施形態による射出成形機1は、様々な成形材料や金型に対応することができる。尚、設定可能な時点の数および速度の数は、4つに限定せず、それ以上あるいはそれ以下であってもよい。本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 In this way, by allowing the user to arbitrarily set the time and speed setting parameters, the filling pressure curve (trajectory) during the holding pressure switching period can be set to a desired curve. As a result, the injection molding machine 1 according to the third embodiment can cope with various molding materials and molds. The number of settable time points and the number of speeds are not limited to four, and may be more or less. Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1・・・射出成形機、7・・・射出装置、8・・・制御部、60・・・ヒューマン・マシン・インタフェース、S1・・・射出圧力センサ、S2・・・スクリュ位置センサ DESCRIPTION OF SYMBOLS 1 ... Injection molding machine, 7 ... Injection apparatus, 8 ... Control part, 60 ... Human machine interface, S1 ... Injection pressure sensor, S2 ... Screw position sensor

Claims (12)

  1.  金型へ材料を射出する射出工程と前記金型における前記材料の保圧圧力を制御する保圧工程とによって製品を成形する射出成形機であって、
     前記材料を貯えるバレルと、
     前記バレルから前記金型へ前記材料を射出させるスクリュと、
     前記射出工程から前記保圧工程への切替えにおける前記スクリュの減速開始位置および前記スクリュの停止位置を設定可能な設定部と、
     前記減速開始位置および前記停止位置に基づいて前記スクリュを速度制御する制御部と、を備えた射出成形機。
    An injection molding machine for molding a product by an injection process of injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold,
    A barrel for storing the material;
    A screw for injecting the material from the barrel into the mold;
    A setting unit capable of setting a deceleration start position of the screw and a stop position of the screw in switching from the injection process to the pressure holding process;
    An injection molding machine comprising: a control unit that controls the speed of the screw based on the deceleration start position and the stop position.
  2.  前記設定部は、前記切替えにおいて前記スクリュを停止させている停止期間を設定可能である、請求項1に記載の射出成形機。 The injection molding machine according to claim 1, wherein the setting unit is capable of setting a stop period during which the screw is stopped in the switching.
  3.  前記減速開始位置は、前記射出工程における前記材料の充填圧力に基づいて設定される、請求項1または請求項2に記載の射出成形機。 The injection molding machine according to claim 1 or 2, wherein the deceleration start position is set based on a filling pressure of the material in the injection process.
  4.  前記停止位置は、前記射出工程における前記材料の充填量に基づいて設定される、請求項1から請求項3のいずれか一項に記載の射出成形機。 The injection molding machine according to any one of claims 1 to 3, wherein the stop position is set based on a filling amount of the material in the injection process.
  5.  金型へ材料を射出する射出工程と前記金型における前記材料の保圧圧力を制御する保圧工程とによって製品を成形する射出成形機であって、
     前記材料を貯えるバレルと、
     前記バレルから前記金型へ前記材料を射出させるスクリュと、
     前記射出工程から前記保圧工程への切替えにおける前記スクリュの減速開始位置、および、前記スクリュが前記減速開始位置に達してから前記スクリュの速度指令がゼロになるまでの減速指令期間を設定可能な設定部と、
     前記減速開始位置および前記減速指令期間に基づいて前記スクリュを速度制御する制御部と、を備えた射出成形機。
    An injection molding machine for molding a product by an injection process of injecting a material into a mold and a pressure holding process for controlling a pressure holding pressure of the material in the mold,
    A barrel for storing the material;
    A screw for injecting the material from the barrel into the mold;
    The screw deceleration start position in switching from the injection process to the pressure holding process, and a deceleration command period from when the screw reaches the deceleration start position until the screw speed command becomes zero can be set. A setting section;
    An injection molding machine comprising: a control unit that performs speed control of the screw based on the deceleration start position and the deceleration command period.
  6.  前記設定部は、前記切替えにおいて前記スクリュを停止させている停止期間を設定可能である、請求項5に記載の射出成形機。 The injection molding machine according to claim 5, wherein the setting unit can set a stop period during which the screw is stopped in the switching.
  7.  前記減速開始位置は、前記射出工程における前記材料の充填圧力に基づいて設定される、請求項5または請求項6に記載の射出成形機。 The injection molding machine according to claim 5 or 6, wherein the deceleration start position is set based on a filling pressure of the material in the injection process.
  8.  前記制御部は、前記切替えにおいて前記スクリュの速度をほぼ一定の減速度で減速する、請求項1から請求項7のいずれか一項に記載の射出成形機。 The injection molding machine according to any one of claims 1 to 7, wherein the control unit decelerates the speed of the screw at a substantially constant deceleration in the switching.
  9.  前記制御部は、前記切替えにおいて前記スクリュの速度の減速度を変更する、請求項1から請求項7のいずれか一項に記載の射出成形機。 The injection molding machine according to any one of claims 1 to 7, wherein the control unit changes a deceleration of the screw speed in the switching.
  10.  前記制御部は、前記切替えにおいて前記スクリュの速度を指数関数的に減速させる、請求項6または請求項9に記載の射出成形機。 The injection molding machine according to claim 6 or 9, wherein the control unit exponentially reduces the speed of the screw in the switching.
  11.  前記制御部は、前記切替えにおいて前記スクリュの速度をS字曲線的に減速させる、請求項6または請求項9に記載の射出成形機。 The injection molding machine according to claim 6 or 9, wherein the control unit decelerates the speed of the screw in an S-shaped curve in the switching.
  12.  前記制御部は、前記切替えにおいて前記スクリュの速度を、予め設定された時点における速度に従って減速させる、請求項6または請求項9に記載の射出成形機。 The injection molding machine according to claim 6 or 9, wherein the control unit decelerates the speed of the screw in the switching according to a speed at a preset time point.
PCT/JP2017/018050 2016-10-12 2017-05-12 Injection molding machine WO2018070071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-201190 2016-10-12
JP2016201190A JP6935182B2 (en) 2016-10-12 2016-10-12 Injection molding machine

Publications (1)

Publication Number Publication Date
WO2018070071A1 true WO2018070071A1 (en) 2018-04-19

Family

ID=61905312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018050 WO2018070071A1 (en) 2016-10-12 2017-05-12 Injection molding machine

Country Status (2)

Country Link
JP (1) JP6935182B2 (en)
WO (1) WO2018070071A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172066B (en) * 2020-08-19 2022-09-06 广东伊之密精密注压科技有限公司 Control method and control device for glue injection of injection molding machine and injection molding machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334847A (en) * 2002-05-20 2003-11-25 Japan Steel Works Ltd:The Controlling method and apparatus for metering of injection molding machine
JP2010058299A (en) * 2008-09-01 2010-03-18 Sumitomo Heavy Ind Ltd Injection control device and injection control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334847A (en) * 2002-05-20 2003-11-25 Japan Steel Works Ltd:The Controlling method and apparatus for metering of injection molding machine
JP2010058299A (en) * 2008-09-01 2010-03-18 Sumitomo Heavy Ind Ltd Injection control device and injection control method

Also Published As

Publication number Publication date
JP2018062112A (en) 2018-04-19
JP6935182B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5092927B2 (en) INJECTION MOLDING CONTROL METHOD AND INJECTION MOLDING CONTROL DEVICE
CN108068282B (en) Forming machine
JP5998009B2 (en) Molding machine control device and molding machine control method
JP5031867B2 (en) Injection molding method and apparatus
JP6800962B2 (en) A method for determining the actual volume of an injection-moldable material in an injection-molding process
US9682508B2 (en) Molding machine and driving method thereof
US20150246462A1 (en) Injection molding machine
US9162386B2 (en) Controller for an injection molding machine
WO2018070071A1 (en) Injection molding machine
JP2012228822A (en) Method and device for controlling mold opening/closing speed of injection molding machine
JP6289917B2 (en) Injection molding machine
US7713049B2 (en) Injecting molding machine having a torque detecting device
KR102290699B1 (en) Injection molding machine with automatic configuration function of packing switching position and control method thereof
JP5575509B2 (en) Injection molding machine and injection molding method
KR102277106B1 (en) Apparatus and method for controlling injection molding machine
JP2011240602A (en) Injection molding method and device thereof
US20160200021A1 (en) Compression controller of injection molding machine
JP6599825B2 (en) Injection molding method and injection molding apparatus
JP5837124B2 (en) Control device for injection molding machine
JP6077427B2 (en) Control device and control method for injection molding machine
JP2018069627A (en) Injection molding machine
JP6222740B2 (en) Injection device and injection control method thereof
JP4423175B2 (en) Control device and control method for injection molding machine
JP2016221710A (en) Industrial machinery
JP2015136909A (en) Molding machine and driving method for the same

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860788

Country of ref document: EP

Kind code of ref document: A1