WO2018070014A1 - Water-based carbonaceous filler material - Google Patents

Water-based carbonaceous filler material Download PDF

Info

Publication number
WO2018070014A1
WO2018070014A1 PCT/JP2016/080366 JP2016080366W WO2018070014A1 WO 2018070014 A1 WO2018070014 A1 WO 2018070014A1 JP 2016080366 W JP2016080366 W JP 2016080366W WO 2018070014 A1 WO2018070014 A1 WO 2018070014A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous
powder
raw material
water
mass
Prior art date
Application number
PCT/JP2016/080366
Other languages
French (fr)
Japanese (ja)
Inventor
晋次郎 戸田
朗文 石川
Original Assignee
日本電極株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電極株式会社 filed Critical 日本電極株式会社
Priority to PCT/JP2016/080366 priority Critical patent/WO2018070014A1/en
Publication of WO2018070014A1 publication Critical patent/WO2018070014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Definitions

  • the present invention relates to an aqueous carbonaceous filler.
  • a water-based carbonaceous filler (hereinafter also simply referred to as a carbonaceous filler) is made by adding water to a carbonaceous raw material, which is an aggregate with excellent thermal conductivity, and cement, which is a hydraulic binder. Water-based filler.
  • a carbonaceous filler is excellent in corrosion resistance and thermal conductivity, and is indefinite at the time of construction. Therefore, the carbonaceous filler has expanded its application range to various fields such as refractory wall filling, blast furnace construction including the blast furnace bottom.
  • the amount of water to be added varies depending on the cement type and mixing ratio.
  • the carbonaceous raw material which is an aggregate, is usually porous and has a high porosity, so that moisture is absorbed inside the carbonaceous raw material.
  • the amount of moisture absorbed by the carbonaceous material increases in proportion to the amount of carbonaceous material blended.
  • the moisture absorbed in the carbonaceous raw material flows from the inside of the carbonaceous raw material to the outside in the process of kneading the carbonaceous raw material and cement to form a construction body, and becomes excessive moisture with respect to the cement. Therefore, when the carbonaceous filler is cured to form a construction body, there is a possibility that the denseness may be reduced or the mechanical strength may be reduced.
  • the amount of added water at the time of construction the amount of moisture removed from the carbonaceous material is suppressed by using a carbonaceous raw material to be blended with special construction, etc.
  • the strength is maintained.
  • the carbonaceous raw material used is needle-like coke that has been subjected to hydrophilic treatment or alumina-carbonaceous carbonaceous aggregate containing carbon, and the blending amount of the carbonaceous raw material is 15 masses. About%.
  • Patent Document 3 when a carbonaceous raw material having a high blending rate of 30 to 70% by mass is used as in Patent Document 3, a carbonaceous raw material having an apparent porosity of less than 5% is used, and silicon carbide is used. Therefore, the amount of water added during construction is reduced. As a result, it is possible to ensure both proper workability and maintenance of characteristics such as mechanical strength of the carbonaceous filler.
  • the present invention has been made in order to solve the above-described problems, and the object of the present invention is to reduce the carbonaceous raw material as a whole by using a simple structure such as using a powder having low water absorption for the carbonaceous raw material in the powder region. Water absorption can be properly managed, and even if the amount of carbonaceous raw material is increased, it is possible to prevent excessive addition of moisture, and it is inexpensive and has good workability, good thermal characteristics and mechanical strength. It is to provide an acquired water-based carbonaceous filler.
  • the present invention provides a water-based carbonaceous filler in which the total amount of the carbonaceous raw material and the hydraulic binder is 100% by mass, and a predetermined amount of water is added in an outer ratio. It has the following components (1) to (3).
  • the carbonaceous raw material is 65-80% by mass.
  • (3) The carbonaceous raw material contains powder having a DBP oil absorption of less than 60 mL / 100 g.
  • the powder having a DBP oil absorption of less than 60 mL / 100 g may be a powder having an average particle size of 20 to 250 ⁇ m, and at least one of roasted anthracite, artificial graphite, calcine coke, or It may be a mixture. Further, the powder having a DBP oil absorption of less than 60 mL / 100 g may be 5 to 30% by mass of the carbonaceous raw material of 65 to 80% by mass.
  • the carbonaceous raw material even if the carbonaceous raw material has a high blending ratio of 65 to 80% by mass, the carbonaceous raw material contains a powder having a DBP oil absorption of less than 60 mL / 100 g.
  • the carbonaceous raw material contains a powder having a DBP oil absorption of less than 60 mL / 100 g.
  • the band graph which shows the component of 1st Embodiment.
  • Table 1 which shows the compounding ratio of 1st Embodiment.
  • Table 2 which shows the compounding ratio of 1st Embodiment.
  • the graph which shows the relationship between the amount of DBP oil absorption of powder, and an addition water
  • the water-based carbonaceous filler 1 has a total amount of carbonaceous raw material 3 as an aggregate and cement 4 as a hydraulic binder of 100% by mass.
  • the raw material 3 is 65-80% by mass and the cement 4 is 20-35% by mass.
  • As the cement 4 Portland cement or alumina cement is used.
  • the carbonaceous filler 1 is made by mixing the carbonaceous raw material 3 and the cement 4, adding moisture 5 at the outer portion, and kneading.
  • the external addition amount of the moisture 5 is determined according to the blending rate or type of the carbonaceous raw material 3 or the cement 4. In this embodiment, the amount of moisture 5 added is determined in accordance with JIS R2553-1992.
  • the carbonaceous raw material 3 is made of fine aggregate.
  • the fine aggregate is an aggregate containing 85% or more by weight of a material that passes through a 10 mm sieve and is 5 mm or less.
  • the carbonaceous raw material 3 includes powder 2, coarse particles 6, and medium particles 7.
  • the powder 2 has an average particle size in the range of 20 to 250 ⁇ m, more preferably an average particle size in the range of 75 to 100 ⁇ m.
  • the powder 2 is a powder in which the oil absorption (unit: mL / 100 g) of DBP (dibutyl phthalate) is less than 60 mL / 100 g.
  • DBP oil absorption is known as an index used for evaluating the aggregate structure of carbon black, but here, it is used as an index for evaluating the water absorption of the powder 2.
  • the applicant pays attention to the DBP oil absorption amount used for the evaluation of the aggregate structure of carbon black, and quantitatively measures the water absorption rate of the carbonaceous raw material 3 by measuring the DBP oil absorption amount of the powder 2, It was decided to evaluate the water absorption of the body 2.
  • the carbonaceous raw material 3 includes the powder 2 having a DBP oil absorption of less than 60 mL / 100 g.
  • the powder 2 is 5 to 30% by mass.
  • the powder 2 include roasted anthracite such as gas roasted anthracite and electric roasted anthracite, artificial graphite, and calcine coke.
  • the powder 2 consists of at least one of these, or consists of a mixture thereof.
  • Calcine coke refers to a calcined petroleum pitch coke or coal pitch coke.
  • the electric roasted anthracite is most preferable as the powder 2 in consideration of raw material characteristics, quality uniformity, productivity, production cost, and the like.
  • the electroroasted anthracite is heat-treated at about 1700 ° C. by using a vertical shaft kiln furnace to generate self-resistance heat by energization. Since the electro-roasted anthracite has a dense structure, the DBP oil absorption is small, and the volatile content is very low at less than 0.1%, so that a very good construction body can be obtained.
  • the coarse particles 6 contained in the carbonaceous raw material 3 are particles having an average particle size of 1 to 4.5 mm.
  • the medium grain 7 is a grain having an average particle size of 0.1 to 1 mm or less.
  • the coarse particles 6 and the medium particles 7 are made of artificial graphite or the like.
  • Table 1 shown in FIG. 2 summarizes the compounding ratios and characteristics of the examples in which the present embodiment is adopted and the comparative examples for showing the effects of the present embodiment.
  • the carbonaceous raw material 3 and the cement 4 are put into a concrete mixer, water 5 is added, and the mixture is sufficiently kneaded in the concrete mixer. Set to 1. The amount of water 5 added was determined according to JIS R2553-1992.
  • Example 1 uses ordinary Portland cement, and Examples 2 to 9 use alumina cement. Comparative Examples 1-6 all use alumina cement. In addition, as the types of coarse particles 6 and medium particles 7 contained in the carbonaceous raw material 3, artificial graphite is used in common with Examples 1 to 9 and Comparative Examples 1 to 6.
  • Table 2 shown in FIG. 3 summarizes the results of measuring the DBP oil absorption of the powder in the carbonaceous raw material 3 in accordance with JIS K K6221-1982.
  • 46 is roasted charcoal (electro-roasted anthracite)
  • 59 is artificial graphite
  • 56 is calcine coke
  • 83 is scaly graphite
  • 190 is carbon black.
  • the electroroasted anthracite, artificial graphite, and calcine coke having a DBP oil absorption of less than 60 mL / 100 g correspond to the powder 2 of the present embodiment.
  • Examples 1 to 7 have electro-roasted anthracite, Example 8 has artificial graphite, and Example 9 has petroleum calcine coke.
  • Comparative Examples 1 and 2 contain powder having a DBP oil absorption of 60 mL / 100 g or more.
  • Comparative Example 1 uses scaly graphite having a DBP oil absorption of 83 mL / 100 g.
  • Comparative Example 2 includes carbon black in place of the powder mainly having an average particle diameter of 20 to 250 ⁇ m. Carbon black has a very large DBP oil absorption of 190 mL / 100 g (shown in Table 2).
  • Comparative Example 3 the carbonaceous raw material 3 is 85 mass%, the cement 4 is 15 mass%, and in the comparative example 4, the carbonaceous raw material 3 is 60 mass% and the cement 4 is 40 mass%. In these comparative examples 3 and 4, the mass% of the carbonaceous raw material 3 and the cement 4 deviates from the scope of the present embodiment. In Comparative Examples 5 and 6, the blending ratio of the powder 2 is outside the range of 5 to 30% by mass.
  • Examples 1 to 9 and Comparative Examples 1 to 6 obtained as described above are poured into a mold of W400 mm ⁇ L400 mm ⁇ H1100 mm, cured for 3 minutes, and then cured. In consideration of the characteristics of cement 4, Example 1 is demolded after curing for 28 days. Further, Examples 2 to 9 and Comparative Examples 1 to 6 are demolded after curing for 3 days. With respect to Examples 1 to 9 and Comparative Examples 1 to 6 after demolding, the compressive strength and thermal conductivity of the carbonaceous filler 1 as a construction body were measured.
  • the compressive strengths of Examples 1 to 9 are all 15 MPa or more, and have excellent compressive strength.
  • the compressive strength of Comparative Examples 1 to 3 is 11 MPa or less.
  • the compression strength of Comparative Example 2 is reduced to 2 MPa.
  • the thermal conductivity of Examples 1 to 9 is 7 W / mK or more.
  • the thermal conductivities of Comparative Examples 2, 4, and 6 are all less than 7 W / mK. If the thermal conductivity is less than 7 W / mK, it cannot be said that the thermal shock resistance is sufficient, and the function cannot be sufficiently satisfied when used in a place where heat conductivity is required. Therefore, the thermal conductivity is preferably 7 W / mK or more, and more preferably 8 W / mK or more.
  • Workability represents the construction characteristics related to a series of operations from mixing, transporting, driving and finishing of a carbonaceous filler.
  • the criteria for determining the quality of workability can be selected as appropriate, such as the type of structure, construction location, construction method, work at the time of pouring into a formwork, vibrator, or finishing with a spatula.
  • the following criteria (a) to (d) are used as judgment criteria.
  • A A state in which a phenomenon called bleeding occurs in which water floats on the construction surface.
  • B A state in which unevenness is generated on the construction surface.
  • C The carbonaceous filler 1 is in a clay state and has no fluidity.
  • D Even if a vibrator is applied, the bubbles do not come out and the structure of the construction body is rough.
  • This embodiment is a carbonaceous filler 1 in which a powder 2 having a DBP oil absorption of less than 60 mL / 100 g is included in a carbonaceous raw material 3.
  • the water absorption of the carbonaceous raw material 3 is reduced by setting the DBP oil absorption amount of the powder 2 to less than 60 mL / 100 g, and 5 to 30 mass% of such powder 2 is contained. It is possible to manage appropriately the water absorption amount in the carbonaceous raw material 3 by mix
  • the water absorption amount of the carbonaceous raw material 3 can be suppressed, and even if the blending amount of the carbonaceous raw material 3 is raised to a high level of 65 to 80% by mass, the carbonaceous filler can be obtained by adding a predetermined amount of water 5. 1 can ensure proper workability.
  • the cement 4 is not kneaded with excess water 5, and the denseness when the carbonaceous filler 1 becomes a construction body is improved, and the desired mechanical properties are increased. It is possible to obtain strength. Specifically, the compressive strengths of Comparative Examples 1 to 3 remain 11 MPa, 2 MPa, and 10 MPa, whereas the compressive strengths of Examples 1 to 9 are 15 MPa or more.
  • Comparative Examples 1 and 2 since the powder 2 having a DBP oil absorption of 60 mL / 100 g or more is used, the workability is also inferior. For example, in Comparative Example 1, a phenomenon called bleeding occurs in which water floats on the construction surface. Moreover, in the comparative example 2, the viscosity of the carbonaceous filler 1 becomes remarkably large, becomes clay-like and loses fluidity, and even when a vibrator is applied, almost no bubbles are removed and the structure of the construction body becomes rough.
  • each DBP oil absorption is 46 in Example 1 (roasted charcoal), 59 in Example 8 (artificial graphite), 56 in Example 9 (calcine coke), 83 in Comparative Example 1 (scaled graphite), Comparative Example 2 (carbon black) is 190.
  • the graph of FIG. 4 shows the relationship between the DBP oil absorption amount of the powder 2 and the required additional moisture.
  • the powder 2 since the blending ratio of the powder 2 is set to 30% by mass at the maximum, the powder 2 is less than half of the carbonaceous raw material 3 of 65 to 80% by mass. It becomes. Therefore, even if the thermal conductivity of the powder 2 is lower than the thermal conductivity of the coarse particles 6 and the intermediate particles 7, the carbonaceous raw material 3 as a whole does not reach a point where the thermal conductivity decreases. . Thereby, the carbonaceous filler 1 which concerns on this embodiment can exhibit the outstanding heat conductivity.
  • the mass% of the carbonaceous raw material 3 when the mass% of the carbonaceous raw material 3 is larger than the range of the present embodiment, the amount of cement decreases and the compressive strength may decrease, but the thermal conductivity increases (for example, Comparative Example 3). ).
  • the mass% of the carbonaceous raw material 3 when the mass% of the carbonaceous raw material 3 is less than the range of the present embodiment, the thermal conductivity may be reduced, but the amount of cement increases accordingly, so that the compressive strength becomes very strong (for example, Comparative Example 4). In any case, it is possible to obtain good workability by using the powder 2 having a DBP oil absorption of less than 60 mL / 100 g.
  • the blending ratio of the powder 2 when the blending ratio of the powder 2 is less than 5%, workability may be reduced, but as long as the DBP oil absorption of the powder 2 is less than 60 mL / 100 g, the compressive strength and thermal conductivity are as follows: A high level can be maintained (for example, Comparative Example 5).
  • the reason for the decrease in workability is that the amount of the carbon raw materials 6 and 7 having relatively coarse particles increases and the material separation resistance of the carbon filler 1 is increased. The reason for this is that there is a lot of flapping on the construction surface.
  • the coarse particles 6 that are considered to be mainly responsible for high thermal conductivity may decrease and the thermal conductivity may decrease. If the oil absorption is less than 60 mL / 100 g, good workability and high compressive strength can be obtained (Comparative Example 6).
  • the above embodiment is presented as an example in the present specification, and is not limited to the above embodiment.
  • the powder 2 having a DBP oil absorption of less than 50 mL / 100 g is a powder having an average particle size of 20 to 250 ⁇ m, but is not limited thereto.
  • the carbonaceous raw material 3 is 65 to 80% by mass and the powder 2 is 5 to 30% by mass, the carbonaceous raw material 3 excluding the powder 2 has an average particle size of 1 to 4.5 mm. Only the coarse particles 6 may be used, or only the medium particles 7 having an average particle size of 0.1 to 1 mm may be used. Moreover, if the blending ratio and particle size constitution of the coarse particles 6, the intermediate particles 7, and the powder 2 are appropriately adjusted, particles of 4.5 mm or more may be used.
  • the coarse particles 6 and the medium particles 7 of the carbonaceous raw material 3 are made of artificial graphite, but other carbonaceous raw materials such as calcine coke are used. There may be.
  • the powder 2 is a powder having a DBP oil absorption of less than 60 mL / 100 g, the type thereof can be selected as appropriate, and may be a glassy carbon, gas roasted anthracite, or a mixture thereof.
  • Portland cement is generally used, and as the castable refractory, alumina cement having excellent fire resistance and acid resistance is frequently used.
  • the type can be selected as appropriate, and for example, ultrafast cement or the like may be used.
  • water-reducing agent, AE agent, fluidizing agent, curing accelerator, setting retarder, foaming agent, antifoaming agent, expansion agent, thickener, fly ash which can be used for mortar and concrete mixed with cement
  • the amount of admixture such as blast furnace slag fine powder, silica fume, fiber, pigment, etc. can be added as required so long as the effects of the present invention are not substantially lost. Also in this invention, the addition effect and function of the amount of admixture can be obtained similarly to the case of using it for mortar and concrete.
  • the present invention assumes a use as a water-based carbon filler to fill a certain region or fill gaps or gaps in a structure. It can also be used as a so-called precast product which has been released after curing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided is a water-based carbonaceous filler material which makes it possible to prevent an excessive addition of water even when the content of a carbonaceous starting material is high, and which is a low-cost material that achieves excellent workability, excellent thermal properties, and mechanical strength. In this water-based carbonaceous filler material 1, the total amount of a carbonaceous starting material 3 and a cement 4 that is a hydraulic binding substance constitutes 100 mass%, and water 5 is added thereto in a prescribed amount as an added proportion. The carbonaceous starting material 3 constitutes 65–80 mass%, and the cement 4 constitutes 20–35 mass%. The carbonaceous starting material 3 includes 5–30 mass% of a powder 2 having a DBP absorption of less than 60 mL/100 g. The powder 2 has an average particle diameter of 20–250 μm.

Description

水系のカーボン質充填材Water-based carbon filler
 本発明は、水系のカーボン質充填材に関するものである。 The present invention relates to an aqueous carbonaceous filler.
 水系のカーボン質充填材(以下、単にカーボン質充填材とも呼ぶ)は、熱伝導率に優れた骨材であるカーボン質原料と、水硬性結合物であるセメントに、水分を添加して混練させた水系の充填材である。このようなカーボン質充填材は、耐食性や熱伝導性に優れており、施工時には不定形である。そのため、カーボン質充填材は、耐火壁の充填材をはじめとして、高炉炉底部を含めた高炉建設用途など、様々な分野に適用範囲を拡げている。 A water-based carbonaceous filler (hereinafter also simply referred to as a carbonaceous filler) is made by adding water to a carbonaceous raw material, which is an aggregate with excellent thermal conductivity, and cement, which is a hydraulic binder. Water-based filler. Such a carbonaceous filler is excellent in corrosion resistance and thermal conductivity, and is indefinite at the time of construction. Therefore, the carbonaceous filler has expanded its application range to various fields such as refractory wall filling, blast furnace construction including the blast furnace bottom.
 カーボン質充填材では、セメントの種類や配合率に応じて、添加する水分量が変化する。ところが、骨材であるカーボン質原料は通常、ポーラス状で気孔率が大きいため、カーボン質原料の内部に水分が吸収されてしまう。その結果、カーボン質充填材が適正な施工性を確保するためには、カーボン質原料に吸収される水分を補うべく、配合されたセメント量に必要な水分量以上に多くの水分を添加する必要がある。 In the carbonaceous filler, the amount of water to be added varies depending on the cement type and mixing ratio. However, the carbonaceous raw material, which is an aggregate, is usually porous and has a high porosity, so that moisture is absorbed inside the carbonaceous raw material. As a result, in order for carbonaceous fillers to ensure proper workability, it is necessary to add more water than is necessary for the amount of cement blended to compensate for the moisture absorbed by the carbonaceous material. There is.
 カーボン質原料に吸収される水分の量は、カーボン質原料の配合量に比例して多くなる。しかし、カーボン質原料に吸収された水分は、カーボン質原料とセメントとを混練させて施工体となっていく過程で、カーボン質原料の内部から外部へ流れ出て、セメントに対する過剰な水分となる。そのため、カーボン質充填材が硬化して施工体となった時に、緻密性が低下したり、機械的強度が低下したりするおそれがある。 The amount of moisture absorbed by the carbonaceous material increases in proportion to the amount of carbonaceous material blended. However, the moisture absorbed in the carbonaceous raw material flows from the inside of the carbonaceous raw material to the outside in the process of kneading the carbonaceous raw material and cement to form a construction body, and becomes excessive moisture with respect to the cement. Therefore, when the carbonaceous filler is cured to form a construction body, there is a possibility that the denseness may be reduced or the mechanical strength may be reduced.
 そこで従来技術では、配合するカーボン質原料に特殊な施工を施したものを使用するなどして、施工時の添加水分量=カーボン質原料から無かれ出る水分量を抑えて、カーボン充填材の機械的強度を維持するようにしている。例えば、特許文献1や2では、使用するカーボン質原料は、親水処理を施した針状コークスや、カーボンを含有したアルミナ-カーボン質カーボン質骨材であり、カーボン質原料の配合量は15質量%程度としている。このように特殊な加工を施したカーボン質原料を使用することで、添加水分は、さほど多くはならず、適切な施工性を確保しつつ、カーボン質充填材が施工体となった時に緻密性の低下を招く心配が無い。 Therefore, in the conventional technology, the amount of added water at the time of construction = the amount of moisture removed from the carbonaceous material is suppressed by using a carbonaceous raw material to be blended with special construction, etc. The strength is maintained. For example, in Patent Documents 1 and 2, the carbonaceous raw material used is needle-like coke that has been subjected to hydrophilic treatment or alumina-carbonaceous carbonaceous aggregate containing carbon, and the blending amount of the carbonaceous raw material is 15 masses. About%. By using a carbonaceous raw material that has been specially processed in this way, the amount of added water does not increase that much, ensuring adequate workability, and denseness when the carbonaceous filler becomes a construction body. There is no worry of incurring a decline.
 また、特許文献3などのように、30~70質量%という高い配合率のカーボン質原料を含む場合には、見掛け気孔率5%未満のカーボン質原料を使用し、かつ炭化珪素を使用することで、施工時の添加水分量を低減させている。これにより、適切な施工性の確保と、カーボン質充填材の機械的強度等の特性の維持との両立を図るようにしている。 In addition, when a carbonaceous raw material having a high blending rate of 30 to 70% by mass is used as in Patent Document 3, a carbonaceous raw material having an apparent porosity of less than 5% is used, and silicon carbide is used. Therefore, the amount of water added during construction is reduced. As a result, it is possible to ensure both proper workability and maintenance of characteristics such as mechanical strength of the carbonaceous filler.
特開平3-103366号公報Japanese Patent Laid-Open No. 3-103366 特開平11-236272号公報JP-A-11-236272 特開平5-117048号公報Japanese Patent Application Laid-Open No. 5-117048
 しかしながら、従来技術では、使用するカーボン質原料の量を増加させつつ、熱的特性、機械的特性、および良好な施工性を確保するためには、原料に特殊な加工が必要であったり、あるいは使用する全てのカーボン質原料を特定の特性を有するものに限定する必要があった。例えば、特許文献1や2ではカーボン質原料に特殊な処理を施したとしてもカーボン質配合量を15%以上にすることはできない。また、カーボン質原料の配合量を多くするためには、特許文献3などのように、配合するカーボン質原料全てを見掛け気孔率5%以下のものに限定しなければならない。このようなカーボン質原料は一般的に熱伝導率が低いので、カーボン質充填材の熱的特性が劣ると考えられ、また炭化珪素などを併用して強度を確保する必要があった。 However, in the prior art, in order to ensure the thermal characteristics, mechanical characteristics, and good workability while increasing the amount of carbonaceous raw material used, the raw materials require special processing, or It was necessary to limit all carbonaceous materials used to those having specific characteristics. For example, in Patent Documents 1 and 2, even if a special treatment is applied to the carbonaceous raw material, the carbonaceous blending amount cannot be increased to 15% or more. Further, in order to increase the blending amount of the carbonaceous raw material, all of the carbonaceous raw materials to be blended must be apparently limited to those having a porosity of 5% or less as in Patent Document 3. Such carbonaceous raw materials generally have low thermal conductivity, so it is considered that the thermal characteristics of the carbonaceous filler are inferior, and it is necessary to ensure strength by using silicon carbide or the like together.
 カーボン質充填材の需要が伸びている今日、熱伝導率の向上など、高性能化を図ったカーボン質充填材が望まれており、カーボン質原料の配合量を増やすことが要請されている。したがって、カーボン質原料の配合量を高くした状態でも添加水分量を適切に管理して、優れた施工性および機械的強度を発揮する水系のカーボン質充填材が求められていた。 Demand for carbonaceous fillers is increasing today, and carbonaceous fillers with improved performance, such as improved thermal conductivity, are desired, and it is required to increase the amount of carbonaceous raw materials. Accordingly, there has been a demand for a water-based carbonaceous filler that appropriately manages the amount of water added even when the amount of the carbonaceous raw material is increased, and exhibits excellent workability and mechanical strength.
 本発明は、上記の課題を解決するためになされたものであって、その目的は、粉域のカーボン質原料に吸水性の低い粉体を使用するといった簡単な構成によって、カーボン質原料全体の吸水性を適切に管理することができ、カーボン質原料の配合量を高くしても水分の過剰添加を防ぐことが可能となり、安価で良好な施工性、良好な熱的特性および機械的強度を獲得した水系のカーボン質充填材を提供することにある。 The present invention has been made in order to solve the above-described problems, and the object of the present invention is to reduce the carbonaceous raw material as a whole by using a simple structure such as using a powder having low water absorption for the carbonaceous raw material in the powder region. Water absorption can be properly managed, and even if the amount of carbonaceous raw material is increased, it is possible to prevent excessive addition of moisture, and it is inexpensive and has good workability, good thermal characteristics and mechanical strength. It is to provide an acquired water-based carbonaceous filler.
 上記目的を達成するために、本発明は、カーボン質原料と水硬性結合物との合計量を100質量%とし、外割で所定の水分量を添加してなる水系のカーボン質充填材において、次の構成要素(1)~(3)を有している。
(1)カーボン質原料を65~80質量%有する。
(2)水硬性結合物を20~35質量%有する。
(3)カーボン質原料はDBP吸油量60mL/100g未満の粉体を含む。
In order to achieve the above-mentioned object, the present invention provides a water-based carbonaceous filler in which the total amount of the carbonaceous raw material and the hydraulic binder is 100% by mass, and a predetermined amount of water is added in an outer ratio. It has the following components (1) to (3).
(1) The carbonaceous raw material is 65-80% by mass.
(2) 20 to 35% by mass of hydraulic binder.
(3) The carbonaceous raw material contains powder having a DBP oil absorption of less than 60 mL / 100 g.
 DBP吸油量60mL/100g未満の粉体は、平均粒径を20~250μmとした粉体であってもよく、また、焙焼無煙炭、人造黒鉛、カルサインコークスのうちの少なくとも1つ、あるいはその混合物であってもよい。さらに、DBP吸油量60mL/100g未満の粉体は、65~80質量%である前記カーボン質原料のうちの5~30質量%であってもよい。 The powder having a DBP oil absorption of less than 60 mL / 100 g may be a powder having an average particle size of 20 to 250 μm, and at least one of roasted anthracite, artificial graphite, calcine coke, or It may be a mixture. Further, the powder having a DBP oil absorption of less than 60 mL / 100 g may be 5 to 30% by mass of the carbonaceous raw material of 65 to 80% by mass.
 本発明に係る水系のカーボン質充填材では、カーボン質原料が65~80質量%といった高配合率であっても、カーボン質原料の中に、DBP吸油量60mL/100g未満の粉体を含めることによって、カーボン質原料の吸水性を適切に管理することが可能となり、過剰な水分添加を防いで、適切な施工性を確保すると共に、優れた機械的強度を維持することができる。 In the water-based carbonaceous filler according to the present invention, even if the carbonaceous raw material has a high blending ratio of 65 to 80% by mass, the carbonaceous raw material contains a powder having a DBP oil absorption of less than 60 mL / 100 g. Thus, it becomes possible to appropriately manage the water absorption of the carbonaceous raw material, and it is possible to prevent excessive water addition, to ensure appropriate workability, and to maintain excellent mechanical strength.
第1の実施形態の成分を示す帯グラフ。The band graph which shows the component of 1st Embodiment. 第1の実施形態の配合率を示す表1。Table 1 which shows the compounding ratio of 1st Embodiment. 第1の実施形態の配合率を示す表2。Table 2 which shows the compounding ratio of 1st Embodiment. 粉体のDBP吸油量と添加水分との関係を示すグラフ。The graph which shows the relationship between the amount of DBP oil absorption of powder, and an addition water | moisture content.
(実施形態)
(構成)
 以下、本発明の実施形態に係る水系のカーボン質充填材について、図1~図4を参照して具体的に説明する。
(Embodiment)
(Constitution)
Hereinafter, an aqueous carbonaceous filler according to an embodiment of the present invention will be specifically described with reference to FIGS.
 図1の帯グラフに示すように、水系のカーボン質充填材1は、骨材であるカーボン質原料3と、水硬性結合物であるセメント4との合計量が100質量%であって、カーボン質原料3を65~80質量%有し、セメント4を20~35質量%有している。セメント4としては、ポルトランドセメントまたはアルミナセメントを使用している。 As shown in the band graph of FIG. 1, the water-based carbonaceous filler 1 has a total amount of carbonaceous raw material 3 as an aggregate and cement 4 as a hydraulic binder of 100% by mass. The raw material 3 is 65-80% by mass and the cement 4 is 20-35% by mass. As the cement 4, Portland cement or alumina cement is used.
 カーボン質充填材1は、カーボン質原料3とセメント4とを混ぜ、外割で水分5を添加して、混練させる。水分5の外割添加量はカーボン質原料3あるいはセメント4の配合率あるいは種類などに応じて決定される。本実施形態では水分5の添加量はJIS R2553-1992に従って決定した。 The carbonaceous filler 1 is made by mixing the carbonaceous raw material 3 and the cement 4, adding moisture 5 at the outer portion, and kneading. The external addition amount of the moisture 5 is determined according to the blending rate or type of the carbonaceous raw material 3 or the cement 4. In this embodiment, the amount of moisture 5 added is determined in accordance with JIS R2553-1992.
(カーボン質原料)
 カーボン質原料3は細骨材からなる。細骨材とは10mmふるいを全て通過し5mm以下のものを、重量で85%以上含む骨材である。カーボン質原料3は、粉体2と、粗粒体6と、中粒体7とを含んでいる。
(Carbon material)
The carbonaceous raw material 3 is made of fine aggregate. The fine aggregate is an aggregate containing 85% or more by weight of a material that passes through a 10 mm sieve and is 5 mm or less. The carbonaceous raw material 3 includes powder 2, coarse particles 6, and medium particles 7.
(粉体)
 粉体2は、平均粒径が20~250μmの範囲であるものであり、平均粒径が75~100μmの範囲であることがより好ましい。粉体2は、DBP(フタル酸ジブチル)の吸油量(単位はmL/100g)が、60mL/100g未満となる粉体である。DBP吸油量とは、カーボンブラックの凝集構造の評価に用いられる指標として知られているが、ここでは粉体2の吸水性を評価するための指標として用いている。
(powder)
The powder 2 has an average particle size in the range of 20 to 250 μm, more preferably an average particle size in the range of 75 to 100 μm. The powder 2 is a powder in which the oil absorption (unit: mL / 100 g) of DBP (dibutyl phthalate) is less than 60 mL / 100 g. The DBP oil absorption is known as an index used for evaluating the aggregate structure of carbon black, but here, it is used as an index for evaluating the water absorption of the powder 2.
 一般に、カーボン質原料の吸水性は粒子形状、表面状態、粒度分布や表面積などの影響も受けるため、評価することは困難である。したがって、本実施形態のカーボン質原料3の吸水率を正確に測定することは極めて難しい。そこで出願人は、カーボンブラックの凝集構造の評価に用いられるDBP吸油量に着目して、粉体2のDBP吸油量を測定することによりカーボン質原料3の吸水率を定量的に測定し、粉体2の吸水性を評価することとした。 Generally, it is difficult to evaluate the water absorption of the carbonaceous raw material because it is affected by the particle shape, surface state, particle size distribution, surface area, and the like. Therefore, it is extremely difficult to accurately measure the water absorption rate of the carbonaceous raw material 3 of the present embodiment. Therefore, the applicant pays attention to the DBP oil absorption amount used for the evaluation of the aggregate structure of carbon black, and quantitatively measures the water absorption rate of the carbonaceous raw material 3 by measuring the DBP oil absorption amount of the powder 2, It was decided to evaluate the water absorption of the body 2.
 そして、出願人は、どのようなDBP吸油量を持つ粉体が、カーボン質原料3の吸水性に影響を与えるものなのかを種々検討した。その結果、出願人は、カーボン質原料3の吸水性を決定づける粉体として、DBP吸油量60mL/100g未満の粉体が有効であるという知見を得た。 And the applicant examined variously what kind of DBP oil absorption amount the powder has on the water absorption of the carbonaceous raw material 3. As a result, the applicant has found that a powder having a DBP oil absorption of less than 60 mL / 100 g is effective as a powder that determines the water absorption of the carbonaceous raw material 3.
 この知見に基づいて、本実施形態は、カーボン質原料3の中に、DBP吸油量が60mL/100g未満となる粉体2を含むようにしている。また、本実施形態では、65~80質量%であるカーボン質原料3のうち、粉体2は5~30質量%である。粉体2としては、ガス焙焼無煙炭および電気焙焼無煙などの焙焼無煙炭、人造黒鉛、カルサインコークスなどがある。粉体2は、これらのうちの少なくとも1つからなるか、あるいはその混合物からなる。なお、カルサインコークスとは、石油系ピッチコークスや石炭系ピッチコークスを仮焼したものを指すものとする。 Based on this knowledge, in the present embodiment, the carbonaceous raw material 3 includes the powder 2 having a DBP oil absorption of less than 60 mL / 100 g. In the present embodiment, of the carbonaceous raw material 3 that is 65 to 80% by mass, the powder 2 is 5 to 30% by mass. Examples of the powder 2 include roasted anthracite such as gas roasted anthracite and electric roasted anthracite, artificial graphite, and calcine coke. The powder 2 consists of at least one of these, or consists of a mixture thereof. Calcine coke refers to a calcined petroleum pitch coke or coal pitch coke.
 上記の粉体2の種類の中では、原料特性や品質均一性、生産性や生産コストなどを考慮すると、電気焙焼無煙炭が粉体2として最も好ましい。電気焙焼無煙炭とは、例えば縦型シャフトキルン炉を用いて、通電による自己抵抗発熱を生じさせて約1700℃に熱処理されたものである。電気焙焼無煙炭は、緻密な組織を有するのでDBP吸油量が小さく、また、揮発分も0.1%未満と非常に少ないため、非常に良好な施工体を得ることができる。 Among the types of the powder 2 described above, the electric roasted anthracite is most preferable as the powder 2 in consideration of raw material characteristics, quality uniformity, productivity, production cost, and the like. The electroroasted anthracite is heat-treated at about 1700 ° C. by using a vertical shaft kiln furnace to generate self-resistance heat by energization. Since the electro-roasted anthracite has a dense structure, the DBP oil absorption is small, and the volatile content is very low at less than 0.1%, so that a very good construction body can be obtained.
(粒体)
 カーボン質原料3に含まれる粗粒体6は、平均粒径を1~4.5mmとした粒体である。また、中粒体7とは平均粒径を0.1~1mm以下とした粒体である。粗粒体6および中粒体7は、人造黒鉛などからなる。
(Granule)
The coarse particles 6 contained in the carbonaceous raw material 3 are particles having an average particle size of 1 to 4.5 mm. Further, the medium grain 7 is a grain having an average particle size of 0.1 to 1 mm or less. The coarse particles 6 and the medium particles 7 are made of artificial graphite or the like.
(実施例と比較例)
 図2に示した表1は、本実施形態を採用した実施例と、本実施形態の効果を示すための比較例について、成分の配合率および特性をまとめたものである。表1に示した実施例1~9および比較例1~6は、カーボン質原料3とセメント4とをコンクリートミキサーに投入し、水分5を添加してコンクリートミキサーで十分混練し、カーボン質充填材1とする。水分5の添加量は、JIS R2553-1992に従って決定した。
(Examples and comparative examples)
Table 1 shown in FIG. 2 summarizes the compounding ratios and characteristics of the examples in which the present embodiment is adopted and the comparative examples for showing the effects of the present embodiment. In Examples 1 to 9 and Comparative Examples 1 to 6 shown in Table 1, the carbonaceous raw material 3 and the cement 4 are put into a concrete mixer, water 5 is added, and the mixture is sufficiently kneaded in the concrete mixer. Set to 1. The amount of water 5 added was determined according to JIS R2553-1992.
 セメント4の種類としては、実施例1は、普通ポルトランドセメントを使用し、実施例2~9はアルミナセメントを使用している。比較例1~6は全てアルミナセメントを使用している。また、カーボン質原料3に含まれる粗粒体6と中粒体7の種類としては、実施例1~9も比較例1~6も共通して、人造黒鉛を用いている。 As the type of cement 4, Example 1 uses ordinary Portland cement, and Examples 2 to 9 use alumina cement. Comparative Examples 1-6 all use alumina cement. In addition, as the types of coarse particles 6 and medium particles 7 contained in the carbonaceous raw material 3, artificial graphite is used in common with Examples 1 to 9 and Comparative Examples 1 to 6.
 図3に示す表2は、カーボン質原料3中の粉体のDBP吸油量について、JIS K 6221-1982に従って測定した結果をまとめたものである。各粉体のDBP吸油量に関しては、焙焼炭(電気焙焼無煙炭)が46、人造黒鉛が59、カルサインコークスが56、鱗状黒鉛が83、カーボンブラックが190である。 Table 2 shown in FIG. 3 summarizes the results of measuring the DBP oil absorption of the powder in the carbonaceous raw material 3 in accordance with JIS K K6221-1982. Regarding the DBP oil absorption amount of each powder, 46 is roasted charcoal (electro-roasted anthracite), 59 is artificial graphite, 56 is calcine coke, 83 is scaly graphite, and 190 is carbon black.
 これらの粉体は全て、平均粒径を20~250μmとしたものとする。以上の粉体の中では、DBP吸油量が60mL/100g未満である電気焙焼無煙炭、人造黒鉛及びカルサインコークスが、本実施形態の粉体2に該当する。実施例1~7が電気焙焼無煙炭を有し、実施例8が人造黒鉛、実施例9が石油系のカルサインコークスを有している。 These powders all have an average particle size of 20 to 250 μm. Among the powders described above, the electroroasted anthracite, artificial graphite, and calcine coke having a DBP oil absorption of less than 60 mL / 100 g correspond to the powder 2 of the present embodiment. Examples 1 to 7 have electro-roasted anthracite, Example 8 has artificial graphite, and Example 9 has petroleum calcine coke.
 一方、比較例1および2は、DBP吸油量が60mL/100g以上の粉体を含むものである。すなわち、比較例1はDBP吸油量が83mL/100gである鱗状黒鉛を使用している。また、比較例2は、平均粒径20~250μmを主体とした粉体に代えて、カーボンブラックを含むものとする。カーボンブラックのDBP吸油量は非常に大きく、190mL/100gである(表2に示す)。 On the other hand, Comparative Examples 1 and 2 contain powder having a DBP oil absorption of 60 mL / 100 g or more. In other words, Comparative Example 1 uses scaly graphite having a DBP oil absorption of 83 mL / 100 g. Further, Comparative Example 2 includes carbon black in place of the powder mainly having an average particle diameter of 20 to 250 μm. Carbon black has a very large DBP oil absorption of 190 mL / 100 g (shown in Table 2).
 比較例3は、カーボン質原料3が85質量%、セメント4が15質量%、比較例4は、カーボン質原料3が60質量%、セメント4が40質量%である。これら比較例3、4は、カーボン質原料3およびセメント4の質量%が本実施形態の範囲から逸脱したものである。また、比較例5、6は、粉体2の配合率が5~30質量%の範囲外のものである。 In Comparative Example 3, the carbonaceous raw material 3 is 85 mass%, the cement 4 is 15 mass%, and in the comparative example 4, the carbonaceous raw material 3 is 60 mass% and the cement 4 is 40 mass%. In these comparative examples 3 and 4, the mass% of the carbonaceous raw material 3 and the cement 4 deviates from the scope of the present embodiment. In Comparative Examples 5 and 6, the blending ratio of the powder 2 is outside the range of 5 to 30% by mass.
 以上のようにして得られた実施例1~9および比較例1~6は、W400mm×L400mm×H1100mmの型枠に流し込み、バイブレータを3分かけた後、養生する。セメント4の特性を考慮し、実施例1は28日間養生した後に脱型する。また、実施例2~9および比較例1~6については3日間養生した後に脱型する。脱型した後の実施例1~9および比較例1~6に関して、カーボン質充填材1の施工体としての圧縮強度および熱伝導率を測定した。 Examples 1 to 9 and Comparative Examples 1 to 6 obtained as described above are poured into a mold of W400 mm × L400 mm × H1100 mm, cured for 3 minutes, and then cured. In consideration of the characteristics of cement 4, Example 1 is demolded after curing for 28 days. Further, Examples 2 to 9 and Comparative Examples 1 to 6 are demolded after curing for 3 days. With respect to Examples 1 to 9 and Comparative Examples 1 to 6 after demolding, the compressive strength and thermal conductivity of the carbonaceous filler 1 as a construction body were measured.
 実施例1~9の圧縮強度は全て15MPa以上であり、優れた圧縮強度を有している。これに対して、比較例1~3の圧縮強度は11MPa以下である。比較例2の圧縮強度に至っては2MPaまで低下する。また、熱伝導率に関しては、実施例1~9の熱伝導率は7W/mK以上である。これに対して、比較例2、4および6の熱伝導率はいずれも7W/mK未満である。熱伝導率が7W/mK未満では、耐熱衝撃性が十分なものとはいえず、また、伝熱性が必要な場所での使用において機能を十分満たすことはできない。そのため、熱伝導率は7W/mK以上あることが好ましく、8W/mK以上がさらに好ましい。 The compressive strengths of Examples 1 to 9 are all 15 MPa or more, and have excellent compressive strength. On the other hand, the compressive strength of Comparative Examples 1 to 3 is 11 MPa or less. The compression strength of Comparative Example 2 is reduced to 2 MPa. Regarding the thermal conductivity, the thermal conductivity of Examples 1 to 9 is 7 W / mK or more. On the other hand, the thermal conductivities of Comparative Examples 2, 4, and 6 are all less than 7 W / mK. If the thermal conductivity is less than 7 W / mK, it cannot be said that the thermal shock resistance is sufficient, and the function cannot be sufficiently satisfied when used in a place where heat conductivity is required. Therefore, the thermal conductivity is preferably 7 W / mK or more, and more preferably 8 W / mK or more.
 また、実施例1~9および比較例1~6に関して、カーボン質充填材1の施工体における施工性(ワーカビリティー)についても評価した。施工性(ワーカビリティー)とは、カーボン質充填材の練混ぜから運搬、打込み、仕上げまでの一連の作業に関する施工特性を表すものである。施工性の良否判定の基準は、構造物の種類や施工箇所、施工方法、型枠への流し込み時やバイブレーター時、あるいはヘラでの仕上げ時における作業など、適宜選択可能である。ここでは次の(a)~(d)を判定基準とする。 Also, with respect to Examples 1 to 9 and Comparative Examples 1 to 6, the workability of the construction body of the carbonaceous filler 1 was also evaluated. Workability (workability) represents the construction characteristics related to a series of operations from mixing, transporting, driving and finishing of a carbonaceous filler. The criteria for determining the quality of workability can be selected as appropriate, such as the type of structure, construction location, construction method, work at the time of pouring into a formwork, vibrator, or finishing with a spatula. Here, the following criteria (a) to (d) are used as judgment criteria.
(a)施工表面に水が浮き上がってくるブリーディングという現象が発生している状態。
(b)施工表面に凹凸が発生している状態。
(c)カーボン質充填材1が粘土状となって流動性が無い状態。
(d)バイブレーターをかけても気泡が抜けず施工体の組織が粗い状態。
(A) A state in which a phenomenon called bleeding occurs in which water floats on the construction surface.
(B) A state in which unevenness is generated on the construction surface.
(C) The carbonaceous filler 1 is in a clay state and has no fluidity.
(D) Even if a vibrator is applied, the bubbles do not come out and the structure of the construction body is rough.
 上記(a)~(d)のうち、少なくとも1つが現れた場合、流し込みやバイブレーター作業や施工表面状態に難があるとして、施工性は「不良」であると判定する。また、(a)~(d)の状態が1つも現れなければ、流し込みが容易でバイブレーター作業や施工表面状態に難が無いとして、施工性は「良好」と判定する。実施例1~9では施工性が全て「良好」であるのに対して、比較例1、2、5の施工性は「不良」である。 When at least one of the above (a) to (d) appears, it is determined that the workability is “poor” because there is difficulty in pouring, vibrator work, or construction surface condition. If none of the states (a) to (d) appear, it is determined that the workability is “good” because it is easy to pour and there is no difficulty in the vibrator work and the construction surface condition. In Examples 1 to 9, the workability is all “good”, whereas the workability in Comparative Examples 1, 2, and 5 is “bad”.
(作用および効果)
(1)本実施形態は、DBP吸油量が60mL/100g未満である粉体2を、カーボン質原料3の中に含めたカーボン質充填材1である。このような本実施形態によれば、粉体2のDBP吸油量を60mL/100g未満としたことで、カーボン質原料3の吸水性は低くなり、このような粉体2を5~30質量%で配合することで、カーボン質原料3における吸水量を適切に管理することが可能である。したがって、カーボン質原料3の吸水量を抑えることができ、カーボン質原料3の配合量を65~80質量%という高いレベルに引き上げても、所定量の水分5を添加するだけでカーボン質充填材1は適正な施工性を確保することが可能となる。
(Function and effect)
(1) This embodiment is a carbonaceous filler 1 in which a powder 2 having a DBP oil absorption of less than 60 mL / 100 g is included in a carbonaceous raw material 3. According to this embodiment, the water absorption of the carbonaceous raw material 3 is reduced by setting the DBP oil absorption amount of the powder 2 to less than 60 mL / 100 g, and 5 to 30 mass% of such powder 2 is contained. It is possible to manage appropriately the water absorption amount in the carbonaceous raw material 3 by mix | blending with. Therefore, the water absorption amount of the carbonaceous raw material 3 can be suppressed, and even if the blending amount of the carbonaceous raw material 3 is raised to a high level of 65 to 80% by mass, the carbonaceous filler can be obtained by adding a predetermined amount of water 5. 1 can ensure proper workability.
 また、水分5の添加量が増大しないので、セメント4を過剰な水分5で混練するといったことがなく、カーボン質充填材1が施工体となった時の緻密性を高めて、所望の機械的強度を得ることが可能である。具体的には、比較例1~3の圧縮強度が11MPa、2MPa、10MPaに留まるのに対して、実施例1~9の圧縮強度は15MPa以上となる。 Further, since the amount of water 5 added does not increase, the cement 4 is not kneaded with excess water 5, and the denseness when the carbonaceous filler 1 becomes a construction body is improved, and the desired mechanical properties are increased. It is possible to obtain strength. Specifically, the compressive strengths of Comparative Examples 1 to 3 remain 11 MPa, 2 MPa, and 10 MPa, whereas the compressive strengths of Examples 1 to 9 are 15 MPa or more.
 また、比較例1、2においてはDBP吸油量が60mL/100g以上となる粉体2を使用しているので、施工性も劣るものとなっている。例えば、比較例1では施工表面に水が浮き上がってくるブリーディングという現象が生じる。また、比較例2ではカーボン質充填材1の粘性が著しく大きく粘土状となって流動性がなくなり、バイブレーターをかけても気泡がほとんど抜けず施工体の組織も粗となる。 In Comparative Examples 1 and 2, since the powder 2 having a DBP oil absorption of 60 mL / 100 g or more is used, the workability is also inferior. For example, in Comparative Example 1, a phenomenon called bleeding occurs in which water floats on the construction surface. Moreover, in the comparative example 2, the viscosity of the carbonaceous filler 1 becomes remarkably large, becomes clay-like and loses fluidity, and even when a vibrator is applied, almost no bubbles are removed and the structure of the construction body becomes rough.
 表1での実施例及び比較例の粉体2のDBP吸油量について整理すると、粗粒体6が50%、中粒体7が15%、粉体2が10%という値が共通している実施例1、8、9及び比較例1、2では、次のDBP吸油量となる。すなわち、各DBP吸油量は、実施例1(焙焼炭)で46、実施例8(人造黒鉛)が59、実施例9(カルサインコークス)が56、比較例1(鱗状黒鉛)が83、比較例2(カーボンブラック)が190となる。粉体2のDBP吸油量と、必要となる添加水分との関係について、図4のグラフに示す。 When the DBP oil absorption amounts of the powders 2 of the examples and comparative examples in Table 1 are summarized, the values of coarse particles 6 are 50%, medium particles 7 are 15%, and powders 2 are 10%. In Examples 1, 8, and 9 and Comparative Examples 1 and 2, the following DBP oil absorption amount is obtained. That is, each DBP oil absorption is 46 in Example 1 (roasted charcoal), 59 in Example 8 (artificial graphite), 56 in Example 9 (calcine coke), 83 in Comparative Example 1 (scaled graphite), Comparative Example 2 (carbon black) is 190. The graph of FIG. 4 shows the relationship between the DBP oil absorption amount of the powder 2 and the required additional moisture.
 このグラフからも明らかなように、DBP吸油量が60mL/100g未満である実施例1、8、9では、必要とする添加水分は22~23%であって吸水性を低く抑えることが可能である。これに対して、DBP吸油量が60mL/100gを超えた比較例1、2は、必要とする添加水分が26%を超えて吸水性が高くなってしまう。 As is apparent from this graph, in Examples 1, 8, and 9 where the DBP oil absorption is less than 60 mL / 100 g, the required additional moisture is 22 to 23%, and the water absorption can be kept low. is there. On the other hand, in Comparative Examples 1 and 2 in which the DBP oil absorption exceeds 60 mL / 100 g, the required added water exceeds 26% and the water absorption becomes high.
(2)また、本実施形態では、粉体2の配合率を最大でも30質量%までとしているので、粉体2は、65~80質量%であるカーボン質原料3のうちの1/2未満となる。したがって、粉体2の熱伝導率が粗粒体6や中粒体7の熱伝導率と比べて低かったとしても、カーボン質原料3全体としては、熱伝導率が低下するまでには至らない。これにより、本実施形態に係るカーボン質充填材1は優れた熱伝導率を発揮することができる。 (2) In the present embodiment, since the blending ratio of the powder 2 is set to 30% by mass at the maximum, the powder 2 is less than half of the carbonaceous raw material 3 of 65 to 80% by mass. It becomes. Therefore, even if the thermal conductivity of the powder 2 is lower than the thermal conductivity of the coarse particles 6 and the intermediate particles 7, the carbonaceous raw material 3 as a whole does not reach a point where the thermal conductivity decreases. . Thereby, the carbonaceous filler 1 which concerns on this embodiment can exhibit the outstanding heat conductivity.
 一方で、カーボン質原料3の質量%が本実施形態の範囲よりも多い場合には、セメント量が少なくなり圧縮強度が低下することがあるが、熱伝導率が高くなる(例えば、比較例3)。反対に、カーボン質原料3の質量%が本実施形態の範囲よりも少ない場合は、熱伝導率が低下することがあるが、その分セメントが多くなるので圧縮強度は非常に強くなる(例えば、比較例4)。なお、いずれの場合でも、DBP吸油量が60mL/100g未満である粉体2を使用したことで、良好な施工性を得ることが可能である。 On the other hand, when the mass% of the carbonaceous raw material 3 is larger than the range of the present embodiment, the amount of cement decreases and the compressive strength may decrease, but the thermal conductivity increases (for example, Comparative Example 3). ). On the other hand, when the mass% of the carbonaceous raw material 3 is less than the range of the present embodiment, the thermal conductivity may be reduced, but the amount of cement increases accordingly, so that the compressive strength becomes very strong (for example, Comparative Example 4). In any case, it is possible to obtain good workability by using the powder 2 having a DBP oil absorption of less than 60 mL / 100 g.
 さらに、粉体2の配合率が5%未満の場合、施工性が低下することはあるが、粉体2のDBP吸油量が60mL/100g未満である限り、圧縮強度と熱伝導率については、高いレベルを維持することができる(例えば、比較例5)。なお、粉体2の配合率が5%未満だと施工性に低下する理由は、相対的に粗い粒子のカーボン質原料6、7の量が多くなってカーボン質充填材1の材料分離抵抗性が低くなり、施工表面にあばたが多く発生するからである。一方、粉体2の配合率が30%以上の場合は、高い熱伝導率を主に担うと考えられる粗粒体6が少なくなり熱伝導率が低下することがあるが、粉体2のDBP吸油量が60mL/100g未満であれば、良好な施工性と高い圧縮強度を獲得することが可能である(比較例6)。 Furthermore, when the blending ratio of the powder 2 is less than 5%, workability may be reduced, but as long as the DBP oil absorption of the powder 2 is less than 60 mL / 100 g, the compressive strength and thermal conductivity are as follows: A high level can be maintained (for example, Comparative Example 5). In addition, when the blending ratio of the powder 2 is less than 5%, the reason for the decrease in workability is that the amount of the carbon raw materials 6 and 7 having relatively coarse particles increases and the material separation resistance of the carbon filler 1 is increased. The reason for this is that there is a lot of flapping on the construction surface. On the other hand, when the blending ratio of the powder 2 is 30% or more, the coarse particles 6 that are considered to be mainly responsible for high thermal conductivity may decrease and the thermal conductivity may decrease. If the oil absorption is less than 60 mL / 100 g, good workability and high compressive strength can be obtained (Comparative Example 6).
(3)本実施形態では、粉体2を単に混ぜ合わせるだけで、カーボン質原料3の配合率が高いカーボン質充填材1を得ることができ、カーボン質原料に特殊な処理をする必要や特別な製造工程を用いる必要もなく、また使用するカーボン質原料全てを見掛け気孔率の小さいものに選別あるいは限定する必要もない。したがって、選別や限定の手間が不要となり、原料の制約も少ないというコスト的なメリットを得ることができる。その結果、良好な生産性を発揮することが可能となって、経済的に有利である。 (3) In this embodiment, it is possible to obtain the carbonaceous filler 1 having a high blending ratio of the carbonaceous raw material 3 by simply mixing the powder 2, and it is necessary to specially treat the carbonaceous raw material. It is not necessary to use a simple manufacturing process, and it is not necessary to select or limit all the carbonaceous raw materials to be used to those with apparently low porosity. Therefore, there is no need for sorting and limiting, and it is possible to obtain a cost advantage that there are few restrictions on raw materials. As a result, good productivity can be exhibited, which is economically advantageous.
(他の実施形態)
 上記の実施形態は、本明細書において一例として提示したものであって、上記の実施形態に限定されるものではない。例えば、DBP吸油量が50mL/100g未満の粉体2は平均粒径を20~250μmとした粉体としたが、これに限らない。
(Other embodiments)
The above embodiment is presented as an example in the present specification, and is not limited to the above embodiment. For example, the powder 2 having a DBP oil absorption of less than 50 mL / 100 g is a powder having an average particle size of 20 to 250 μm, but is not limited thereto.
 また、カーボン質原料3が65~80質量%、かつ粉体2が5~30質量%であるならば、粉体2を除くカーボン質原料3が、平均粒径を1~4.5mmとした粗粒体6のみであってもよいし、あるいは、平均粒径を0.1~1mmとした中粒体7のみであってもよい。また、粗粒体6と中粒体7、および粉体2の配合率や粒度構成を適宜調整すれば、4.5mm以上の粒を使用してもよい。 If the carbonaceous raw material 3 is 65 to 80% by mass and the powder 2 is 5 to 30% by mass, the carbonaceous raw material 3 excluding the powder 2 has an average particle size of 1 to 4.5 mm. Only the coarse particles 6 may be used, or only the medium particles 7 having an average particle size of 0.1 to 1 mm may be used. Moreover, if the blending ratio and particle size constitution of the coarse particles 6, the intermediate particles 7, and the powder 2 are appropriately adjusted, particles of 4.5 mm or more may be used.
 また、表1に示した実施例1~7では、カーボン質原料3のうち、粗粒体6および中粒体7を人造黒鉛としたが、それ以外のカーボン質原料、例えばカルサインコークスなどであってもよい。さらに、粉体2は、DBP吸油量60mL/100g未満の粉体であるならば、その種類は適宜選択可能であり、グラッシーカーボンやガス焙焼無煙炭など、さらには、それらの混合物でもよい。 In Examples 1 to 7 shown in Table 1, the coarse particles 6 and the medium particles 7 of the carbonaceous raw material 3 are made of artificial graphite, but other carbonaceous raw materials such as calcine coke are used. There may be. Furthermore, if the powder 2 is a powder having a DBP oil absorption of less than 60 mL / 100 g, the type thereof can be selected as appropriate, and may be a glassy carbon, gas roasted anthracite, or a mixture thereof.
 セメント4としては、ポルトランドセメントが一般的であり、また、キャスタブル耐火物としては耐火性、耐酸性に優れるアルミナセメントが頻繁に利用されるが、これに限らず、施工対象などに応じてセメントの種類は適宜選択可能であり、例えば、超速硬セメントなどを使用するようにしてもよい。 As the cement 4, Portland cement is generally used, and as the castable refractory, alumina cement having excellent fire resistance and acid resistance is frequently used. The type can be selected as appropriate, and for example, ultrafast cement or the like may be used.
 また、セメントが配合されたモルタル、コンクリートに使用可能な、減水剤、AE剤、流動化剤、硬化促進剤、凝結遅延剤、発泡剤、消泡剤、膨張材、増粘剤、フライアッシュ、高炉スラグ微粉末、シリカフューム、繊維、顔料などの混和材量を必要に応じて本発明の効果を実質喪失させない範囲で添加することもできる。本発明においても、モルタル、コンクリートに使用した場合と同様に混和材量の添加効果、機能を得ることができる。 In addition, water-reducing agent, AE agent, fluidizing agent, curing accelerator, setting retarder, foaming agent, antifoaming agent, expansion agent, thickener, fly ash, which can be used for mortar and concrete mixed with cement, The amount of admixture such as blast furnace slag fine powder, silica fume, fiber, pigment, etc. can be added as required so long as the effects of the present invention are not substantially lost. Also in this invention, the addition effect and function of the amount of admixture can be obtained similarly to the case of using it for mortar and concrete.
 なお、本発明は水系のカーボン質充填材として、一定の領域を埋める、あるいは構造体の間隙、隙間を埋める用途を想定したものであるが、あらかじめ所望する形の型枠にて施工し、養生、硬化後に離形したもの、いわゆるプレキャスト品として使用することも可能である。 The present invention assumes a use as a water-based carbon filler to fill a certain region or fill gaps or gaps in a structure. It can also be used as a so-called precast product which has been released after curing.
1  水系のカーボン質充填材
2  粉体
3  カーボン質原料
4  セメント
5  水分
6  粗粒体
7  中粒体
1 Water-based carbonaceous filler 2 Powder 3 Carbonaceous raw material 4 Cement 5 Moisture 6 Coarse grain 7 Medium grain

Claims (4)

  1.  カーボン質原料と水硬性結合物との合計量を100質量%とし、外割で所定量の水分を添加してなる水系のカーボン質充填材であって、
     前記カーボン質原料を65~80質量%有し、
     前記水硬性結合物を20~35質量%有し、
     前記カーボン質原料はDBP吸油量60mL/100g未満の粉体を含むことを特徴とする水系のカーボン質充填材。
    The total amount of the carbonaceous raw material and the hydraulic binder is 100% by mass, and is a water-based carbonaceous filler obtained by adding a predetermined amount of moisture in an outer ratio,
    65 to 80% by mass of the carbonaceous raw material,
    20 to 35% by mass of the hydraulic binder,
    The carbonaceous raw material contains a powder having a DBP oil absorption of less than 60 mL / 100 g.
  2.  前記粉体は平均粒径を20~250μmとした粉体であることを特徴とする請求項1に記載の水系のカーボン質充填材。 2. The aqueous carbonaceous filler according to claim 1, wherein the powder is a powder having an average particle diameter of 20 to 250 μm.
  3.  前記粉体は、焙焼無煙炭、人造黒鉛、カルサインコークスのうちの少なくとも1つ、あるいはその混合物であることを特徴とする請求項1または2に記載の水系のカーボン質充填材。 3. The water-based carbonaceous filler according to claim 1, wherein the powder is at least one of roasted anthracite, artificial graphite, calcine coke, or a mixture thereof.
  4.  前記粉体は、65~80質量%である前記カーボン質原料のうちの5~30質量%であることを特徴とする請求項1~3のいずれかに記載の水系のカーボン質充填材。 The water-based carbonaceous filler according to any one of claims 1 to 3, wherein the powder is 5 to 30 mass% of the carbonaceous raw material of 65 to 80 mass%.
PCT/JP2016/080366 2016-10-13 2016-10-13 Water-based carbonaceous filler material WO2018070014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080366 WO2018070014A1 (en) 2016-10-13 2016-10-13 Water-based carbonaceous filler material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080366 WO2018070014A1 (en) 2016-10-13 2016-10-13 Water-based carbonaceous filler material

Publications (1)

Publication Number Publication Date
WO2018070014A1 true WO2018070014A1 (en) 2018-04-19

Family

ID=61905294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080366 WO2018070014A1 (en) 2016-10-13 2016-10-13 Water-based carbonaceous filler material

Country Status (1)

Country Link
WO (1) WO2018070014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012478A (en) * 2000-06-26 2002-01-15 Kawasaki Refract Co Ltd Slip casting material of hot-metal conduit including blast furnace conduit
JP2006188391A (en) * 2005-01-06 2006-07-20 Shinagawa Refract Co Ltd Water-based carbon-containing monolithic refractory
JP2011256074A (en) * 2010-06-09 2011-12-22 Shinagawa Refractories Co Ltd Closing material for blast furnace taphole
WO2012133788A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012478A (en) * 2000-06-26 2002-01-15 Kawasaki Refract Co Ltd Slip casting material of hot-metal conduit including blast furnace conduit
JP2006188391A (en) * 2005-01-06 2006-07-20 Shinagawa Refract Co Ltd Water-based carbon-containing monolithic refractory
JP2011256074A (en) * 2010-06-09 2011-12-22 Shinagawa Refractories Co Ltd Closing material for blast furnace taphole
WO2012133788A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
US4061501A (en) Refractory linings
CN106588059B (en) Prefabricated member for lime rotary kiln and preparation method thereof
KR102424551B1 (en) Concrete composition for revealing early strength
KR100681863B1 (en) Unshaped refractories
CN105198457A (en) Converter slag-stopping inner nozzle brick and preparation method thereof
KR101992802B1 (en) Method for manufacturing eco-friendly cement composite using nano-silica sol
KR101458252B1 (en) Cast bodies, castable compositions, and methods for their production
JP6456857B2 (en) Particles for irregular refractories
US3467535A (en) Refractory insulating compositions
JP6035784B2 (en) Medium fluidity concrete mixed with thickener and shrinkage reducing agent
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
WO2018070014A1 (en) Water-based carbonaceous filler material
CN109072085B (en) Precast block refractory for coke oven
US10093576B2 (en) Unshaped refractory material
JP6118490B2 (en) Medium fluidity concrete
JP2004137122A (en) Pouring refractory containing compact silicon carbide
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
WO2014132699A1 (en) Amorphous refractory for spraying
CN112778006B (en) Light mullite sagger and preparation method and application thereof
JP4456235B2 (en) Highly corrosion resistant carbon-containing amorphous refractory
JPH03174369A (en) Monolithic refractory
TWI724869B (en) Clinker block for coke oven and coke oven using it
JPH11199313A (en) Plate for slide gate and its production
JP2012006818A (en) Method for producing carbon-containing monolithic refractory
JP2539562B2 (en) Magnesia Carbon Amorphous refractory material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP