WO2018070009A1 - Heat pump apparatus - Google Patents

Heat pump apparatus Download PDF

Info

Publication number
WO2018070009A1
WO2018070009A1 PCT/JP2016/080350 JP2016080350W WO2018070009A1 WO 2018070009 A1 WO2018070009 A1 WO 2018070009A1 JP 2016080350 W JP2016080350 W JP 2016080350W WO 2018070009 A1 WO2018070009 A1 WO 2018070009A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
pipe
heat pump
pump device
refrigerant
Prior art date
Application number
PCT/JP2016/080350
Other languages
French (fr)
Japanese (ja)
Inventor
周二 茂木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018544635A priority Critical patent/JP6590078B2/en
Priority to PCT/JP2016/080350 priority patent/WO2018070009A1/en
Publication of WO2018070009A1 publication Critical patent/WO2018070009A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a heat pump device.
  • a heat pump device that heats a liquid heat medium such as water using heat absorbed from outside air is widely used.
  • a heat pump device a refrigerant circuit in which a compressor, a gas cooler, a decompression device, and an evaporator are connected in an annular shape, and water supplied to a hot water tank after a hot water supply liquid passes through the gas cooler.
  • an apparatus comprising the circuit.
  • the water circuit of this apparatus is equipped with the shell heat exchanger which has a heat exchange part which contacts a compressor.
  • the shell heat exchanger has a configuration in which the jacket type is divided into two parts, and is attached around a cylindrical shell included in the compressor.
  • the shell heat exchanger can transfer the heat of the compressor from the shell surface to the heat medium flowing in the water circuit, it has the effect of improving the boiling efficiency and suppressing the overheating of the compressor.
  • the shell heat exchanger is a metal pipe, it is difficult to perform high-precision bending so as to be in close contact with the curved surface of the shell surface.
  • the conventional heat pump device has a structure in which the shell heat exchanger is fastened with a band or the like from the outside of the shell heat exchanger attached to the compressor in order to bring the shell heat exchanger into close contact with the shell surface of the compressor.
  • the structure tightened with a band or the like may gradually loosen due to the vibration of the compressor or the like. For this reason, the above-described conventional technology still has room for improvement in ensuring long-term reliability.
  • the present invention has been made to solve the above-described problems, and is a heat pump capable of maintaining the heat exchange efficiency of a shell heat exchanger that transmits heat of a compressor shell to a heat medium over a long period of time.
  • An object is to provide an apparatus.
  • a heat pump device includes a cylindrical shell, includes a compressor that compresses a refrigerant, and a pipe that wraps around the outer surface of the shell, and transmits the heat of the compressor to a heat medium that passes through the pipe.
  • a heat exchanger and a fixing member that is bonded to the outer surface of the shell and fixes the pipe line in close contact with the outer surface of the shell.
  • the pipe of the shell heat exchanger is closely fixed to the outer surface of the shell by the fixing member joined to the outer surface of the shell of the compressor. This makes it possible to maintain the heat exchange efficiency of the shell heat exchanger that transfers the heat of the compressor shell to the heat medium over a long period of time.
  • FIG. 1 It is a front view which shows the internal structure of the heat pump apparatus of Embodiment 1.
  • FIG. It is the external appearance perspective view which looked at the heat pump apparatus of Embodiment 1 from diagonally forward. It is the external appearance perspective view which looked at the heat pump apparatus of Embodiment 1 from diagonally back.
  • FIG. It is a figure which shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus of Embodiment 1.
  • FIG. It is a top view of the compressor with which the heat pump apparatus of Embodiment 1 is equipped, and a shell heat exchanger.
  • FIG. 6 is a diagram showing a part of a cross section of the compressor and shell heat exchanger in FIG. 5 cut along AA in the figure.
  • FIG. 1 is a front view showing the internal structure of the heat pump device 1 of the first embodiment.
  • FIG. 2 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from the front.
  • FIG. 3 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from behind.
  • FIG. 4 is a diagram illustrating a refrigerant circuit and a water circuit of the heat pump hot water supply system including the heat pump device 1 according to the first embodiment.
  • the heat pump device 1 of the present embodiment is installed outdoors.
  • the heat pump device 1 heats a liquid heat medium.
  • the heat medium in the present embodiment is water.
  • the heat pump device 1 generates hot water by heating water.
  • the heat medium in the present invention may be a brine other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or an alcohol.
  • the heat pump apparatus 1 includes a base 17 that forms the bottom of the housing. On the base 17, as viewed from the front, a machine room 14 is formed on the right side, and a blower room 15 is formed on the left side. The machine room 14 and the blower room 15 are separated by a partition plate 16.
  • the casing that forms the outline of the heat pump device 1 includes a casing front surface portion 18, a casing rear surface portion 19, a casing top surface portion 20, a casing right side surface portion 21, And a housing left side surface portion 22. These components of the housing are formed from, for example, a sheet metal material.
  • FIG. 1 shows a state in which each part of the casing other than the base 17 is removed. Further, in FIG. 1, illustration of some of the constituent devices is omitted.
  • a compressor 2 that compresses refrigerant
  • an expansion valve 10 that depressurizes the refrigerant (not shown in FIG. 1)
  • a suction pipe 4 that connects these
  • a discharge A refrigerant pipe such as the pipe 5 is incorporated.
  • the compressor 2 includes a cylindrical shell 2a.
  • the compressor 2 includes a compression unit (not shown) and a motor (not shown) inside the shell 2a.
  • the compression unit performs a refrigerant compression operation.
  • the motor drives the compression unit.
  • the compressor motor is driven by the electric power supplied from the outside.
  • the refrigerant is sucked into the compressor 2 through the suction pipe 4.
  • a discharge pipe 5 that discharges the refrigerant compressed in the compressor 2 is connected to the upper portion of the compressor 2.
  • the expansion valve 10 has a coil built-in member attached to the outer surface of the main body. By energizing the coil from the outside, the internal flow resistance adjusting unit is operated to adjust the flow resistance of the refrigerant.
  • the expansion valve 10 can adjust the pressure of the high-pressure refrigerant on the upstream side and the pressure of the low-pressure refrigerant on the downstream side.
  • the expansion valve 10 is an example of a decompression device that decompresses the refrigerant.
  • the blower room 15 has a larger space than the machine room 14 in order to secure an air passage.
  • a blower 6 is incorporated in the blower chamber 15.
  • the blower 6 includes two to three propeller blades and a motor that rotationally drives the propeller blades. The motor and propeller blades are rotated by electric power supplied from the outside.
  • An air refrigerant heat exchanger 7 is installed on the rear side of the blower chamber 15 so as to face the blower 6.
  • the air refrigerant heat exchanger 7 includes a large number of thin aluminum fins and a long refrigerant pipe that reciprocates several times in close contact with the thin aluminum fins.
  • the air refrigerant heat exchanger 7 has a flat outer shape bent in an L shape.
  • the air refrigerant heat exchanger 7 is installed from the rear surface to the left side surface of the heat pump device 1. In the air refrigerant heat exchanger 7, heat is exchanged between the refrigerant in the refrigerant pipe and the air around the fins. The air volume of the air flowing between the fins and passing by the blower 6 is increased and adjusted, and the amount of heat exchange is increased and adjusted.
  • the air refrigerant heat exchanger 7 is an example of an evaporator that evaporates the refrigerant.
  • the water / refrigerant heat exchanger 8 is installed on the base 17 at the bottom of the blower chamber 15.
  • the water-refrigerant heat exchanger 8 is housed and installed in a rectangular parallelepiped storage container 12 in a state covered with a heat insulating material.
  • the water-refrigerant heat exchanger 8 is bent so that it can be stored in the storage container 12 with a long water pipe and a long refrigerant pipe in close contact with each other.
  • heat is exchanged between the refrigerant in the refrigerant pipe and the water in the water pipe, that is, the heat medium.
  • water, that is, the heat medium is heated.
  • a blower 6 is disposed above the water-refrigerant heat exchanger 8.
  • a shell heat exchanger 23 is attached to the shell 2 a of the compressor 2.
  • the shell heat exchanger 23 includes a helical line 23 a that is wound around the outer periphery of the shell 2 a of the compressor 2.
  • the pipe line 23a is in contact with the outer peripheral surface of the shell 2a so as to be able to conduct heat.
  • the pipe line 23a is fixed to the outer surface of the shell 2a by a holder 3 as a fixing member. Details of the structure of the holder 3 will be described later.
  • the shell 2a is filled with compressed high-temperature and high-pressure refrigerant gas.
  • the shell 2a is heated by the heat of the refrigerant gas.
  • the shell heat exchanger 23 transfers the heat of the shell 2a to water passing through the pipe line 23a, that is, a heat medium.
  • the water, that is, the heat medium passing through the pipe line 23a is heated by receiving the heat of the shell 2a.
  • a heat insulating material (not shown) that at least partially covers the shell heat exchanger 23 may be provided outside the shell heat exchanger 23.
  • the outlet portion of the compressor 2 is connected to the refrigerant inlet portion of the water refrigerant heat exchanger 8 via the discharge pipe 5.
  • the refrigerant outlet portion of the water refrigerant heat exchanger 8 is connected to the inlet portion of the expansion valve 10 in the machine chamber 14 via a refrigerant pipe.
  • the outlet part of the expansion valve 10 is connected to the refrigerant inlet part of the air refrigerant heat exchanger 7 via a refrigerant pipe.
  • the refrigerant outlet portion of the air refrigerant heat exchanger 7 is connected to the inlet portion of the compressor 2 via the suction pipe 4.
  • Other refrigerant circuit components may be attached in the middle of each refrigerant pipe.
  • an electrical component storage box 9 is installed in the upper part of the machine room 14.
  • An electronic substrate 24 is stored in the electrical product storage box 9.
  • electronic parts, electric parts and the like constituting each module for driving and controlling the compressor 2, the expansion valve 10, the blower 6 and the like are attached.
  • Each module is controlled as follows, for example.
  • the rotation speed of the motor of the compressor 2 is changed to a rotation speed of about several tens rps (Hz) to one hundred rps (Hz).
  • the opening degree of the expansion valve 10 is changed.
  • the rotational speed of the blower 6 is changed to a rotational speed of about several hundred rpm to 1,000 rpm.
  • the electrical product storage box 9 is provided with a terminal block 9a for connecting external electrical wiring.
  • a service panel 27 for protecting the terminal block 9 a and a water inlet valve 28 and a hot water outlet valve 29 described later is attached to the right side surface portion 21 of the housing.
  • a refrigerant is sealed in a sealed space of a refrigerant circuit included in the heat pump device 1.
  • the refrigerant may be, for example, a CO 2 refrigerant.
  • water circuit components including an internal pipe 30, an internal pipe 31, and an internal pipe 32 are incorporated in the machine chamber 14.
  • the internal pipe 30 connects between the water inlet valve 28 and the water inlet portion of the water refrigerant heat exchanger 8.
  • the internal pipe 31 connects between the hot water outlet of the water-refrigerant heat exchanger 8 and the inlet of the shell heat exchanger 23.
  • the internal pipe 32 connects between the outlet of the shell heat exchanger 23 and the hot water outlet valve 29.
  • the heat pump hot water supply system is configured by the heat pump device 1 and the hot water storage device 33.
  • the hot water storage device 33 includes a hot water storage tank 34 having a capacity of, for example, several hundred liters, and a water pump 35 for sending water in the hot water storage tank 34 to the heat pump device 1.
  • the heat pump device 1 and the hot water storage device 33 are connected via an external tube 36, an external tube 37, and electrical wiring (not shown).
  • the lower part of the hot water storage tank 34 is connected to the inlet of the water pump 35 via a pipe 38.
  • the external pipe 36 connects between the outlet of the water pump 35 and the water inlet valve 28 of the heat pump device 1.
  • the external pipe 37 connects between the hot water outlet valve 29 of the heat pump device 1 and the hot water storage device 33.
  • the external pipe 37 can communicate with the upper part of the hot water storage tank 34 via a pipe 39 in the hot water storage device 33.
  • the hot water storage device 33 further includes a mixing valve 40.
  • a hot water supply pipe 41 branched from a pipe 39, a water supply pipe 42 through which water supplied from a water source such as water supply passes, and a hot water supply pipe 43 through which hot water supplied to the user passes.
  • the mixing valve 40 adjusts the hot water supply temperature by adjusting the mixing ratio of hot water flowing from the hot water supply pipe 41, that is, high-temperature water, and water flowing from the water supply pipe 42, that is, low-temperature water.
  • the hot water mixed by the mixing valve 40 passes through the hot water supply pipe 43 and is sent to a user terminal such as a bathtub, a shower, a faucet, or a dishwasher.
  • a water supply pipe 44 branched from the water supply pipe 42 is connected to the lower part of the hot water storage tank 34. The water flowing from the water supply pipe 44 is stored below the hot water storage tank 34.
  • the heat storage operation is an operation of accumulating hot water in the hot water storage tank 34 by sending hot water heated by the heat pump device 1 to the hot water storage device 33.
  • the heat storage operation it is as follows.
  • the compressor 2, the blower 6, and the water pump 35 are operated.
  • the rotational speed of the motor of the compressor 2 can vary in the range of several tens of rps (Hz) to about 100 rps (Hz).
  • Hz rps
  • the rotational speed of the motor of the blower 6 is changed to about several hundred rpm to 1,000 rpm, and the flow rate of air passing through the air refrigerant heat exchanger 7 is changed, whereby the heat of the refrigerant and air in the air refrigerant heat exchanger 7 is changed.
  • Exchange amount can be adjusted and controlled. Air is sucked from the rear of the air refrigerant heat exchanger 7 installed behind the blower 6, passes through the air refrigerant heat exchanger 7, passes through the blower chamber 15, and is opposite to the air refrigerant heat exchanger 7. It is discharged to the front of the housing front face 18.
  • the expansion valve 10 adjusts the flow path resistance of the refrigerant. Thereby, the pressures of the high-pressure refrigerant on the upstream side and the low-pressure refrigerant on the downstream side of the expansion valve 10 can be adjusted and controlled.
  • the rotational speed of the compressor 2, the rotational speed of the blower 6, and the flow path resistance of the expansion valve 10 are controlled according to the installation environment and use conditions of the heat pump device 1.
  • the low-pressure refrigerant is sucked into the compressor 2 through the suction pipe 4.
  • the low-pressure refrigerant is compressed by the compression unit in the compressor 2 and becomes a high-temperature high-pressure refrigerant.
  • This high-temperature and high-pressure refrigerant is discharged from the compressor 2 to the discharge pipe 5.
  • the high-temperature and high-pressure refrigerant passes through the discharge pipe 5 and flows into the refrigerant inlet portion of the water-refrigerant heat exchanger 8.
  • the high-temperature and high-pressure refrigerant heats water by exchanging heat with water in the water-refrigerant heat exchanger 8 to generate hot water.
  • the refrigerant reduces the enthalpy and lowers the temperature while passing through the water-refrigerant heat exchanger 8.
  • the high-pressure refrigerant having the lowered temperature flows from the refrigerant outlet portion of the water refrigerant heat exchanger 8 through the refrigerant pipe to the inlet portion of the expansion valve 10.
  • This high-pressure refrigerant drops in temperature by being decompressed by the expansion valve 10 and becomes a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows from the outlet portion of the expansion valve 10 through the refrigerant pipe and into the inlet portion of the air refrigerant heat exchanger 7.
  • the low-temperature and low-pressure refrigerant exchanges heat with air in the air refrigerant heat exchanger 7, increases enthalpy, flows into the suction pipe 4 from the outlet of the air refrigerant heat exchanger 7, and is sucked into the compressor 2. Thus, the refrigerant circulates and a heat pump cycle is performed.
  • the water in the hot water storage tank 34 flows into the water inlet portion of the water refrigerant heat exchanger 8 through the pipe 38, the outer pipe 36, the water inlet valve 28 and the inner pipe 30 by driving the water pump 35. To do.
  • This water exchanges heat with the refrigerant in the water refrigerant heat exchanger 8 and is heated to produce hot water.
  • This hot water flows into the inlet of the shell heat exchanger 23 through the inner pipe 31.
  • hotter hot water is generated.
  • the hot water flows from the outlet of the shell heat exchanger 23 through the inner pipe 32, the hot water outlet valve 29, the outer pipe 37 and the pipe 39 into the upper part of the hot water storage tank 34. By performing such a heat storage operation, hot water accumulates in the hot water storage tank 34 from the upper part toward the lower part.
  • the hot water heated by the heat pump device 1 may be directly supplied to the user side without accumulating in the hot water storage tank 34.
  • the heat medium heated by the heat pump device 1 may be used for heating or the like.
  • the following effects can be obtained by providing the shell heat exchanger 23.
  • the input of electric power to the compressor 2 can be reduced.
  • the efficiency of the heat pump device 1 is improved.
  • An increase in the temperature of the refrigerating machine oil in the compressor 2 and the temperature of the motor can be suppressed.
  • the damage of the sliding part in the compressor 2 and the damage of the motor winding can be more reliably suppressed.
  • the heat pump device 1 of the first embodiment is characterized by a structure for fixing the pipe line 23 a of the shell heat exchanger 23 in close contact with the outer surface of the shell 2 a of the compressor 2.
  • FIG. 5 is a plan view of the compressor 2 and the shell heat exchanger 23 provided in the heat pump device 1 of the first embodiment.
  • FIG. 5 is a diagram viewed from the axial direction of the shell 2 a of the compressor 2.
  • FIG. 6 is a view showing a part of a cross section of the compressor 2 and the shell heat exchanger 23 in FIG. 5 cut along AA in the drawing.
  • the pipe line 23a is arrange
  • the pipe line 23 a is fixed by the holder 3.
  • the holder 3 is formed from, for example, a sheet metal material.
  • the holder 3 is divided into a plurality of holder parts. 5 and 6 show the first holder part 3a and the second holder part 3b.
  • the holder 3 has an arcuate joint surface along the outer periphery of the shell 2a when viewed from the axial direction of the shell 2a.
  • the radius of curvature when the joining surface of the holder 3 is viewed from the axial direction of the shell 2a is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the joint surface of the holder 3 has a shape along the helical line 23a of the shell heat exchanger 23 when viewed from the side surface direction of the shell 2a.
  • the joint surface of the holder 3 is brazed to the shell 2a. Thereby, reliable heat conduction from the shell 2a to the holder 3 becomes possible.
  • the holder 3 Since the holder 3 is divided into a plurality of holder parts, the assembling property to the outer surface of the shell 2a is improved.
  • the 1st holder component 3a and the 2nd holder component 3b in a figure are joined with a clearance gap, they may be joined closely.
  • the holder 3 is elastically deformed with the pipe line 23a interposed therebetween, thereby biasing the pipe line 23a toward the side pressing the outer surface of the shell 2a.
  • the pipe line 23a is closely fixed to the shell 2a, reliable heat conduction from the shell 2a to the pipe line 23a becomes possible.
  • the holder 3 is also in contact with the pipe line 23a, heat conduction transmitted from the shell 2a to the pipe line 23a via the holder is also possible. Thereby, the heat conduction from the shell 2a to the pipe line 23a is remarkably increased.
  • FIG. 7 is a view of a part of the pipe line 23a of the shell heat exchanger 23 according to the first embodiment when viewed from the side surface side.
  • the holder 3 is omitted.
  • the pipe line 23a of the shell heat exchanger 23 is attached in the shape of a helix.
  • the pipe line 23a includes a first pipe part 23b, a second pipe part 23c, a first joint part 23d, and a second joint part 23e.
  • the pipeline 23a is as follows when viewed from the axial direction of the shell 2a.
  • the first pipe part 23b has an arc shape along the outer surface of the shell 2a. There is no restriction
  • the second pipe part 23c has an arc shape along the outer surface of the shell 2a. There is no restriction
  • the radius of curvature of the inner peripheral surface of the first pipe part 23b is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the radius of curvature of the inner peripheral surface of the second pipe part 23c is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the pipeline 23a is as follows when viewed from the side of the shell 2a.
  • the 1st pipe line part 23b has the shape of a helical line which advances, changing a position to an axial direction along the outer surface of the shell 2a.
  • a plurality of first pipe parts 23b are arranged in the axial direction of the shell 2a.
  • the 2nd pipe line part 23c has the shape of a helical line which advances, changing a position to an axial direction along the outer surface of the shell 2a.
  • a plurality of second pipe parts 23c are arranged in the axial direction of the shell 2a.
  • the first pipe part 23b is adjacent to the second pipe part 23c.
  • the first joint portion 23d connects one end of the first pipeline component 23b to one end of the second pipeline component 23c.
  • the second joint 23e connects the other end of the first pipe part 23b to the other end of the second pipe part 23c. Since the flow paths in the plurality of first pipe parts 23b and the flow paths in the plurality of second pipe parts 23c are connected to one through the first joint part 23d and the second joint part 23e, the A perforated line 23a is formed.
  • FIG. 8 is a view for explaining the structure of the joint portion between the first pipe part and the second pipe part.
  • the structure of the first joint portion 23d will be described as an example, but the same applies to the structure of the second joint portion 23e.
  • one end of the first pipeline component 23b is contracted.
  • One end of the first pipe part 23b is inserted into one end of the second pipe part 23c, and the first joint 23d is joined by brazing. Since the pipe line 23a is divided
  • the first joint part 23d is joined by inserting one end of the first pipe part 23b into one end of the second pipe part 23c, the first joint part 23d can be reliably joined.
  • the structure of the joint is not limited to the above. That is, any structure may be used as long as the ends of the first pipe part 23b and the second pipe part 23c are joined to each other.
  • the structure which expands the end of the 1st pipe line part 23b may be sufficient.
  • the structure which shrinks or expands the one end side of the 2nd pipe line part 23c may be sufficient.
  • FIG. 9 is a view for explaining a modification of the structure of the joint portion between the first pipe part and the second pipe part.
  • the ends of the first pipe part 23b and the second pipe part 23c may have a tapered shape.
  • the taper shape may be only one of the first pipe part 23b and the second pipe part 23c.
  • the pipe line 23a can be brought into close contact with the shell 2a using the holder 3 and can be fixed securely. Thereby, it becomes possible to maintain the heat exchange efficiency of the shell heat exchanger 23 high over a long period of time.
  • Embodiment 2 will be described with reference to FIGS.
  • the difference from the first embodiment will be mainly described, and the description of the same or corresponding parts will be simplified or omitted.
  • FIG. 10 is a plan view of the compressor 2 and the shell heat exchanger 23 provided in the heat pump device 1 of the second embodiment.
  • FIG. 10 is a diagram viewed from the axial direction of the shell 2 a of the compressor 2.
  • FIG. 11 is a view showing a part of a cross section of the compressor 2 and the shell heat exchanger 23 shown in FIG. 10 taken along the line BB in the figure.
  • a pipe line 23a is arranged on the outer surface of the shell 2a.
  • FIG. 12 is a view of a part of the pipe line 23a of the shell heat exchanger 23 according to the second embodiment as viewed from the side surface side. In FIG. 12, the holder 3 is omitted. As shown in FIGS.
  • the pipe line 23a includes a first pipe part 23f, a second pipe part 23g, a first joint part 23h, and a second joint part 23j.
  • the pipeline 23a is as follows when viewed from the axial direction of the shell 2a.
  • the first duct part 23f has an arc shape along the outer surface of the shell 2a. There is no restriction
  • the second pipe part 23g has an arc shape along the outer surface of the shell 2a. There is no restriction
  • the arc of the second pipe part 23g has a circumferential angle of 180 °.
  • the radius of curvature of the inner peripheral surface of the first pipe part 23f is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the curvature radius of the inner peripheral surface of the second pipe part 23g is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the pipeline 23a is as follows when viewed from the side of the shell 2a.
  • the first pipe part 23f includes a pipe 231f that travels in the direction perpendicular to the axial direction along the outer surface of the shell 2a, and a pipe 232f that travels while changing its position in the axial direction along the outer surface of the shell 2a. It has a continuous shape.
  • the pipe 231f and the pipe 232f may be configured as an integral pipe, or may be configured by connecting separate pipes.
  • a plurality of first pipeline parts 23f are arranged in the axial direction of the shell 2a.
  • the second pipe part 23g includes a pipe 231g that travels in a direction perpendicular to the axial direction along the outer surface of the shell 2a, and a pipe 232g that travels while changing its position in the axial direction along the outer surface of the shell 2a. It has a continuous shape.
  • the pipe 231g and the pipe 232g may be configured as an integral pipe, or may be configured by connecting separate pipes.
  • a plurality of second pipe parts 23g are arranged in the axial direction of the shell 2a.
  • the first pipeline component 23f is adjacent to the second pipeline component 23g.
  • the first joint portion 23h connects the end portion on the pipe 232f side of the first conduit component 23f to the end portion on the pipe 232g side of the second conduit component 23g.
  • the second joint 23j connects the end of the first pipe part 23f on the pipe 231f side to the end of the second pipe part 23g on the pipe 231g side.
  • the flow paths in the plurality of first pipe parts 23f and the flow paths in the plurality of second pipe parts 23g are connected to one through the first joint 23h and the second joint 23j.
  • a path 23a is formed.
  • the structure of the first joint 23h and the second joint 23j is the same as the structure of the first joint 23d in the first embodiment.
  • the pipe line 23 a is fixed by the holder 3. 10 and 11, the first holder part 3c and the second holder part 3d are shown.
  • the holder 3 has an arcuate joint surface along the outer periphery of the shell 2a when viewed from the axial direction of the shell 2a.
  • the radius of curvature when the joining surface of the holder 3 is viewed from the axial direction of the shell 2a is substantially equal to 1 ⁇ 2 of the diameter of the shell 2a.
  • the joint surface of the holder 3 has a shape along the pipe 231f and the pipe 231g that travels in a direction perpendicular to the axial direction of the pipe line 23a of the shell heat exchanger 23 when viewed from the side surface direction of the shell 2a.
  • the joint surface of the holder 3 is brazed to the shell 2a. Thereby, reliable heat conduction from the shell 2a to the holder 3 becomes possible.
  • the holder 3 is elastically deformed with the pipe line 23a interposed therebetween, thereby biasing the pipe line 23a toward the side pressing the outer surface of the shell 2a.
  • the pipe line 23a is closely fixed to the shell 2a, reliable heat conduction from the shell 2a to the pipe line 23a becomes possible.
  • the holder 3 is also in contact with the pipe line 23a, heat conduction transmitted from the shell 2a to the pipe line 23a via the holder is also possible. Thereby, the heat conduction from the shell 2a to the pipe line 23a is remarkably increased.
  • the holder 3 can comprise a joining surface by simple arc shape, a bending process becomes easy.

Abstract

This heat pump apparatus is provided with: a compressor that compresses a refrigerant and that is provided with a cylindrical shell; a shell heat exchanger that is provided with a pipeline wound on the outer surface of the shell and that transfers heat of the compressor to a heat medium passed through the pipeline; and a fixing member that is joined to the outer surface of the shell and that tightly bonds and fixes the pipeline to the outer surface of the shell. The pipeline is configured by being wound on the outer surface of the shell in a helical shape. The fixing member is joined to a position along the pipeline in the outer surface of the shell, and tightly bonds the outer surface of the shell and the pipeline to each other by pinching and fixing the pipeline.

Description

ヒートポンプ装置Heat pump equipment
 本発明は、ヒートポンプ装置に関する。 The present invention relates to a heat pump device.
 外気から吸収した熱を用いて水などの液状熱媒体を加熱するヒートポンプ装置が広く用いられている。特許文献1には、このようなヒートポンプ装置として、圧縮機、ガスクーラ、減圧装置及び蒸発器を環状に接続した冷媒回路と、給湯用の液体がガスクーラを通過した後に給湯タンクへと供給される水回路と、を備える装置が開示されている。また、この装置の水回路には、圧縮機と接する熱交換部分を有するシェル熱交換器が備えられている。シェル熱交換器は、ジャケットタイプを2分割した構成であり、圧縮機が備える円筒形のシェルの周囲に取り付けられている。 A heat pump device that heats a liquid heat medium such as water using heat absorbed from outside air is widely used. In Patent Document 1, as such a heat pump device, a refrigerant circuit in which a compressor, a gas cooler, a decompression device, and an evaporator are connected in an annular shape, and water supplied to a hot water tank after a hot water supply liquid passes through the gas cooler. And an apparatus comprising the circuit. Moreover, the water circuit of this apparatus is equipped with the shell heat exchanger which has a heat exchange part which contacts a compressor. The shell heat exchanger has a configuration in which the jacket type is divided into two parts, and is attached around a cylindrical shell included in the compressor.
日本特開2008-256360号公報Japanese Unexamined Patent Publication No. 2008-256360
 シェル熱交換器は、圧縮機の熱をシェル表面から水回路を流れる熱媒体に伝達させることができるので、沸き上げ効率の向上及び圧縮機の過熱抑制の効果がある。ここで、圧縮機のシェル表面からシェル熱交換器への熱伝達率を高めるためには、これらの間の接触面積を高めることが求められる。しかしながら、シェル熱交換器は金属製の配管であるため、シェル表面の曲面に密着するように高精度な曲げ加工を施すことは困難である。上記従来のヒートポンプ装置では、シェル熱交換器を圧縮機のシェル表面に密着させるために、圧縮機に取り付けられたシェル熱交換器の外側からバンド等で締め込む構造としている。しかしながら、バンド等で締め込む構造は、圧縮機の振動等によって次第に緩まるおそれがある。このため、上記従来の技術は、長期信頼性を確保する上で改善の余地が残されている。 Since the shell heat exchanger can transfer the heat of the compressor from the shell surface to the heat medium flowing in the water circuit, it has the effect of improving the boiling efficiency and suppressing the overheating of the compressor. Here, in order to increase the heat transfer rate from the shell surface of the compressor to the shell heat exchanger, it is required to increase the contact area between them. However, since the shell heat exchanger is a metal pipe, it is difficult to perform high-precision bending so as to be in close contact with the curved surface of the shell surface. The conventional heat pump device has a structure in which the shell heat exchanger is fastened with a band or the like from the outside of the shell heat exchanger attached to the compressor in order to bring the shell heat exchanger into close contact with the shell surface of the compressor. However, the structure tightened with a band or the like may gradually loosen due to the vibration of the compressor or the like. For this reason, the above-described conventional technology still has room for improvement in ensuring long-term reliability.
 本発明は、上述のような課題を解決するためになされたもので、圧縮機のシェルの熱を熱媒体に伝えるシェル熱交換器の熱交換効率を長期間に渡って維持することのできるヒートポンプ装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a heat pump capable of maintaining the heat exchange efficiency of a shell heat exchanger that transmits heat of a compressor shell to a heat medium over a long period of time. An object is to provide an apparatus.
 本発明に係るヒートポンプ装置は、円筒形のシェルを備え、冷媒を圧縮する圧縮機と、シェルの外表面に巻き付く管路を備え、当該管路を通る熱媒体に圧縮機の熱を伝えるシェル熱交換器と、シェルの外表面に接合され、管路をシェルの外表面に密着させて固定する固定部材と、を備えるものである。 A heat pump device according to the present invention includes a cylindrical shell, includes a compressor that compresses a refrigerant, and a pipe that wraps around the outer surface of the shell, and transmits the heat of the compressor to a heat medium that passes through the pipe. A heat exchanger and a fixing member that is bonded to the outer surface of the shell and fixes the pipe line in close contact with the outer surface of the shell.
 本発明のヒートポンプ装置によれば、圧縮機のシェルの外表面に接合された固定部材によって、シェル熱交換器の管路がシェルの外表面に密着して固定される。これにより、圧縮機のシェルの熱を熱媒体に伝えるシェル熱交換器の熱交換効率を長期間に渡って維持することが可能となる。 According to the heat pump device of the present invention, the pipe of the shell heat exchanger is closely fixed to the outer surface of the shell by the fixing member joined to the outer surface of the shell of the compressor. This makes it possible to maintain the heat exchange efficiency of the shell heat exchanger that transfers the heat of the compressor shell to the heat medium over a long period of time.
実施の形態1のヒートポンプ装置の内部構造を示す前面図である。It is a front view which shows the internal structure of the heat pump apparatus of Embodiment 1. FIG. 実施の形態1のヒートポンプ装置を斜め前から見た外観斜視図である。It is the external appearance perspective view which looked at the heat pump apparatus of Embodiment 1 from diagonally forward. 実施の形態1のヒートポンプ装置を斜め後ろから見た外観斜視図である。It is the external appearance perspective view which looked at the heat pump apparatus of Embodiment 1 from diagonally back. 実施の形態1のヒートポンプ装置を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。It is a figure which shows the refrigerant circuit and water circuit of a heat pump hot-water supply system provided with the heat pump apparatus of Embodiment 1. FIG. 実施の形態1のヒートポンプ装置が備える圧縮機及びシェル熱交換器の平面図である。It is a top view of the compressor with which the heat pump apparatus of Embodiment 1 is equipped, and a shell heat exchanger. 図5中の圧縮機及びシェル熱交換器を図中のA-Aにて切断した断面の一部を示す図である。FIG. 6 is a diagram showing a part of a cross section of the compressor and shell heat exchanger in FIG. 5 cut along AA in the figure. 実施の形態1のシェル熱交換器の管路の一部を側面側から見た図である。It is the figure which looked at a part of pipe line of the shell heat exchanger of Embodiment 1 from the side. 第一管路部品と第二管路部品の接合部の構造を説明するための図である。It is a figure for demonstrating the structure of the junction part of a 1st pipeline component and a 2nd pipeline component. 第一管路部品と第二管路部品の接合部の構造の変形例を説明するための図である。It is a figure for demonstrating the modification of the structure of the junction part of a 1st pipeline component and a 2nd pipeline component. 実施の形態2のヒートポンプ装置が備える圧縮機及びシェル熱交換器の平面図である。It is a top view of the compressor with which the heat pump apparatus of Embodiment 2 is equipped, and a shell heat exchanger. 図10中の圧縮機及びシェル熱交換器を図中のB-Bにて切断した断面の一部を示す図である。It is a figure which shows a part of cross section which cut | disconnected the compressor and shell heat exchanger in FIG. 10 by BB in a figure. 実施の形態2のシェル熱交換器の管路の一部を側面側から見た図である。It is the figure which looked at a part of pipe line of the shell heat exchanger of Embodiment 2 from the side.
 以下、図面を参照して実施の形態について説明する。各図において共通する要素には、同一の符号を付して、重複する説明を簡略化または省略する。また、本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。 Hereinafter, embodiments will be described with reference to the drawings. Elements common to the drawings are denoted by the same reference numerals, and redundant description is simplified or omitted. In addition, the present disclosure may include all combinations of configurations that can be combined among the configurations described in the following embodiments.
実施の形態1.
 図1は、実施の形態1のヒートポンプ装置1の内部構造を示す前面図である。図2は、実施の形態1のヒートポンプ装置1を斜め前から見た外観斜視図である。図3は、実施の形態1のヒートポンプ装置1を斜め後ろから見た外観斜視図である。図4は、実施の形態1のヒートポンプ装置1を備えたヒートポンプ給湯システムの冷媒回路及び水回路を示す図である。
Embodiment 1 FIG.
FIG. 1 is a front view showing the internal structure of the heat pump device 1 of the first embodiment. FIG. 2 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from the front. FIG. 3 is an external perspective view of the heat pump device 1 according to the first embodiment as viewed obliquely from behind. FIG. 4 is a diagram illustrating a refrigerant circuit and a water circuit of the heat pump hot water supply system including the heat pump device 1 according to the first embodiment.
 本実施の形態のヒートポンプ装置1は、室外に設置される。ヒートポンプ装置1は、液状の熱媒体を加熱する。本実施の形態での熱媒体は、水である。ヒートポンプ装置1は、水を加熱して湯を生成する。本発明における熱媒体は、例えば塩化カルシウム水溶液、エチレングリコール水溶液、アルコール、などの、水以外のブラインでもよい。 The heat pump device 1 of the present embodiment is installed outdoors. The heat pump device 1 heats a liquid heat medium. The heat medium in the present embodiment is water. The heat pump device 1 generates hot water by heating water. The heat medium in the present invention may be a brine other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or an alcohol.
 図1に示すように、ヒートポンプ装置1は、筐体の底部を形成するベース17を備える。ベース17上には、前方から見て、右側に機械室14が形成され、左側に送風機室15が形成されている。機械室14と送風機室15とは、仕切板16により隔てられている。図2及び図3に示すように、ヒートポンプ装置1の外郭を形成する筐体は、筐体前面部18と、筐体後面部19と、筐体上面部20と、筐体右側面部21と、筐体左側面部22とを更に備える。筐体のこれらの構成要素は例えば板金材から成形される。ヒートポンプ装置1の外面は、後面側に配置された空気冷媒熱交換器7を除いて、この筐体によって覆われている。筐体前面部18には、送風機室15を通った空気を排出するための開口が形成され、この開口には格子18aが取り付けられている。なお、図1は、ベース17以外の筐体の各部を取り外した状態を示している。また、図1では、一部の構成機器の図示を省略している。 As shown in FIG. 1, the heat pump apparatus 1 includes a base 17 that forms the bottom of the housing. On the base 17, as viewed from the front, a machine room 14 is formed on the right side, and a blower room 15 is formed on the left side. The machine room 14 and the blower room 15 are separated by a partition plate 16. As shown in FIGS. 2 and 3, the casing that forms the outline of the heat pump device 1 includes a casing front surface portion 18, a casing rear surface portion 19, a casing top surface portion 20, a casing right side surface portion 21, And a housing left side surface portion 22. These components of the housing are formed from, for example, a sheet metal material. The outer surface of the heat pump device 1 is covered with this casing except for the air refrigerant heat exchanger 7 disposed on the rear surface side. An opening for discharging the air that has passed through the blower chamber 15 is formed in the housing front surface portion 18, and a lattice 18 a is attached to the opening. FIG. 1 shows a state in which each part of the casing other than the base 17 is removed. Further, in FIG. 1, illustration of some of the constituent devices is omitted.
 図1に示すように、機械室14内には、冷媒回路部品として、冷媒を圧縮する圧縮機2、冷媒を減圧する膨張弁10(図1では省略)、これらを接続する吸入管4及び吐出管5等の冷媒管などが組み込まれている。 As shown in FIG. 1, in the machine room 14, as a refrigerant circuit component, a compressor 2 that compresses refrigerant, an expansion valve 10 that depressurizes the refrigerant (not shown in FIG. 1), a suction pipe 4 that connects these, and a discharge A refrigerant pipe such as the pipe 5 is incorporated.
 圧縮機2は、円筒形のシェル2aを備える。圧縮機2は、シェル2aの内部にある圧縮部(図示省略)及びモータ(図示省略)を備える。圧縮部は、冷媒の圧縮動作を行う。モータは、圧縮部を駆動する。外部から供給される電力により圧縮機のモータが駆動される。吸入管4を通って冷媒が圧縮機2に吸入される。圧縮機2の内部で圧縮された冷媒を吐出する吐出管5が圧縮機2の上部に接続されている。膨張弁10は、その本体の外側面にコイル組み込み部材が取り付けられている。コイルに外部から通電することにより、内部の流路抵抗調節部を稼動させて冷媒の流路抵抗を調節する。膨張弁10により、その上流側の高圧冷媒の圧力と、その下流側の低圧冷媒の圧力とを調節できる。膨張弁10は、冷媒を減圧する減圧装置の例である。 The compressor 2 includes a cylindrical shell 2a. The compressor 2 includes a compression unit (not shown) and a motor (not shown) inside the shell 2a. The compression unit performs a refrigerant compression operation. The motor drives the compression unit. The compressor motor is driven by the electric power supplied from the outside. The refrigerant is sucked into the compressor 2 through the suction pipe 4. A discharge pipe 5 that discharges the refrigerant compressed in the compressor 2 is connected to the upper portion of the compressor 2. The expansion valve 10 has a coil built-in member attached to the outer surface of the main body. By energizing the coil from the outside, the internal flow resistance adjusting unit is operated to adjust the flow resistance of the refrigerant. The expansion valve 10 can adjust the pressure of the high-pressure refrigerant on the upstream side and the pressure of the low-pressure refrigerant on the downstream side. The expansion valve 10 is an example of a decompression device that decompresses the refrigerant.
 送風機室15は、風路を確保するため、機械室14より大きな空間を有する。送風機室15内には、送風機6が組み込まれている。送風機6は、2枚~3枚のプロペラ翼とプロペラ翼を回転駆動させるモータとを備える。外部から供給される電力によりモータ及びプロペラ翼が回転する。送風機室15の後面側には、送風機6に対向して、空気冷媒熱交換器7が設置されている。空気冷媒熱交換器7は、多数のアルミ薄板のフィンと、アルミ薄板のフィンに多数密着して数回往復する長い冷媒管とを備える。空気冷媒熱交換器7は、L字状に曲がった平板状の外形を有する。空気冷媒熱交換器7は、ヒートポンプ装置1の後面から左側面にかけて設置されている。空気冷媒熱交換器7では、冷媒管内の冷媒とフィン周辺の空気との間で熱を交換する。送風機6により各フィン間を流れて通過する空気の風量が増やされて調節され、熱交換の量が増やされて調節されている。空気冷媒熱交換器7は、冷媒を蒸発させる蒸発器の例である。 The blower room 15 has a larger space than the machine room 14 in order to secure an air passage. A blower 6 is incorporated in the blower chamber 15. The blower 6 includes two to three propeller blades and a motor that rotationally drives the propeller blades. The motor and propeller blades are rotated by electric power supplied from the outside. An air refrigerant heat exchanger 7 is installed on the rear side of the blower chamber 15 so as to face the blower 6. The air refrigerant heat exchanger 7 includes a large number of thin aluminum fins and a long refrigerant pipe that reciprocates several times in close contact with the thin aluminum fins. The air refrigerant heat exchanger 7 has a flat outer shape bent in an L shape. The air refrigerant heat exchanger 7 is installed from the rear surface to the left side surface of the heat pump device 1. In the air refrigerant heat exchanger 7, heat is exchanged between the refrigerant in the refrigerant pipe and the air around the fins. The air volume of the air flowing between the fins and passing by the blower 6 is increased and adjusted, and the amount of heat exchange is increased and adjusted. The air refrigerant heat exchanger 7 is an example of an evaporator that evaporates the refrigerant.
 送風機室15の下部のベース17の上に、水冷媒熱交換器8が設置されている。水冷媒熱交換器8は、断熱材に覆われた状態で、直方体形状の収納容器12に収納されて設置されている。水冷媒熱交換器8は、長い水管と長い冷媒管とが密着した状態で、収納容器12に収納可能となるように曲げ成形されている。水冷媒熱交換器8内では、冷媒管内の冷媒と、水管内の水すなわち熱媒体との間で熱を交換する。水冷媒熱交換器8内では、水すなわち熱媒体が加熱される。水冷媒熱交換器8の上方に送風機6が配置されている。 The water / refrigerant heat exchanger 8 is installed on the base 17 at the bottom of the blower chamber 15. The water-refrigerant heat exchanger 8 is housed and installed in a rectangular parallelepiped storage container 12 in a state covered with a heat insulating material. The water-refrigerant heat exchanger 8 is bent so that it can be stored in the storage container 12 with a long water pipe and a long refrigerant pipe in close contact with each other. In the water refrigerant heat exchanger 8, heat is exchanged between the refrigerant in the refrigerant pipe and the water in the water pipe, that is, the heat medium. In the water-refrigerant heat exchanger 8, water, that is, the heat medium is heated. A blower 6 is disposed above the water-refrigerant heat exchanger 8.
 圧縮機2のシェル2aには、シェル熱交換器23が取り付けられている。シェル熱交換器23は、圧縮機2のシェル2aの外周に巻き付く、つるまき線状の管路23aを備える。管路23aは、シェル2aの外周面に対し、熱伝導可能に接触している。管路23aは固定部材としてのホルダ3によってシェル2aの外表面に固定される。ホルダ3の構造については詳細を後述する。 A shell heat exchanger 23 is attached to the shell 2 a of the compressor 2. The shell heat exchanger 23 includes a helical line 23 a that is wound around the outer periphery of the shell 2 a of the compressor 2. The pipe line 23a is in contact with the outer peripheral surface of the shell 2a so as to be able to conduct heat. The pipe line 23a is fixed to the outer surface of the shell 2a by a holder 3 as a fixing member. Details of the structure of the holder 3 will be described later.
 シェル2a内には、圧縮された高温高圧の冷媒ガスが充満している。シェル2aは、その冷媒ガスの熱で、高温になる。シェル熱交換器23は、シェル2aの熱を、管路23aを通る水すなわち熱媒体に伝える。管路23aを通る水すなわち熱媒体は、シェル2aの熱を受け取ることで、加熱される。シェル熱交換器23の外側に、シェル熱交換器23を少なくとも部分的に覆う断熱材(図示省略)が備えられてもよい。 The shell 2a is filled with compressed high-temperature and high-pressure refrigerant gas. The shell 2a is heated by the heat of the refrigerant gas. The shell heat exchanger 23 transfers the heat of the shell 2a to water passing through the pipe line 23a, that is, a heat medium. The water, that is, the heat medium passing through the pipe line 23a is heated by receiving the heat of the shell 2a. A heat insulating material (not shown) that at least partially covers the shell heat exchanger 23 may be provided outside the shell heat exchanger 23.
 圧縮機2の出口部は、吐出管5を介して、水冷媒熱交換器8の冷媒入口部に接続されている。水冷媒熱交換器8の冷媒出口部は、冷媒管を介して、機械室14内の膨張弁10の入口部に接続されている。膨張弁10の出口部は、冷媒管を介して、空気冷媒熱交換器7の冷媒入口部に接続されている。空気冷媒熱交換器7の冷媒出口部は、吸入管4を介して、圧縮機2の入口部に接続されている。各冷媒管の途中には、その他の冷媒回路部品が取り付けられていてもよい。 The outlet portion of the compressor 2 is connected to the refrigerant inlet portion of the water refrigerant heat exchanger 8 via the discharge pipe 5. The refrigerant outlet portion of the water refrigerant heat exchanger 8 is connected to the inlet portion of the expansion valve 10 in the machine chamber 14 via a refrigerant pipe. The outlet part of the expansion valve 10 is connected to the refrigerant inlet part of the air refrigerant heat exchanger 7 via a refrigerant pipe. The refrigerant outlet portion of the air refrigerant heat exchanger 7 is connected to the inlet portion of the compressor 2 via the suction pipe 4. Other refrigerant circuit components may be attached in the middle of each refrigerant pipe.
 機械室14の上部には、電気品収納箱9が設置されている。電気品収納箱9には、電子基板24が収納されている。電子基板24には、圧縮機2、膨張弁10、送風機6等を駆動制御する各モジュールを構成する電子部品及び電気部品等が取り付けられている。各モジュールは、例えば以下のように制御する。圧縮機2のモータの回転数を数十rps(Hz)~百rps(Hz)程度の回転数に変化させる。膨張弁10の開度を変化させる。送風機6の回転数を数百rpm~千rpm程度の回転数に変化させる。電気品収納箱9には、外部電気配線を接続する端子台9aが設けられている。図2及び図3に示すように、筐体右側面部21には、端子台9aと、後述する水入口バルブ28及び湯出口バルブ29とを保護するためのサービスパネル27が取り付けられている。 In the upper part of the machine room 14, an electrical component storage box 9 is installed. An electronic substrate 24 is stored in the electrical product storage box 9. On the electronic board 24, electronic parts, electric parts and the like constituting each module for driving and controlling the compressor 2, the expansion valve 10, the blower 6 and the like are attached. Each module is controlled as follows, for example. The rotation speed of the motor of the compressor 2 is changed to a rotation speed of about several tens rps (Hz) to one hundred rps (Hz). The opening degree of the expansion valve 10 is changed. The rotational speed of the blower 6 is changed to a rotational speed of about several hundred rpm to 1,000 rpm. The electrical product storage box 9 is provided with a terminal block 9a for connecting external electrical wiring. As shown in FIGS. 2 and 3, a service panel 27 for protecting the terminal block 9 a and a water inlet valve 28 and a hot water outlet valve 29 described later is attached to the right side surface portion 21 of the housing.
 ヒートポンプ装置1が備える冷媒回路の密閉空間内には、冷媒が封入されている。冷媒は、例えば、CO冷媒でもよい。 A refrigerant is sealed in a sealed space of a refrigerant circuit included in the heat pump device 1. The refrigerant may be, for example, a CO 2 refrigerant.
 次に、ヒートポンプ装置1及び貯湯装置33の水回路について説明する。図1に示すように、機械室14内には、内部管30、内部管31、及び内部管32を含む水回路部品が組み込まれている。ベース17の右側部には、水入口バルブ28が下側、湯出口バルブ29が上側になるように両者が併設されている。内部管30は、水入口バルブ28と、水冷媒熱交換器8の水入口部との間を接続している。内部管31は、水冷媒熱交換器8の湯出口部と、シェル熱交換器23の入口部との間を接続している。内部管32は、シェル熱交換器23の出口部と、湯出口バルブ29との間を接続している。 Next, the water circuit of the heat pump device 1 and the hot water storage device 33 will be described. As shown in FIG. 1, water circuit components including an internal pipe 30, an internal pipe 31, and an internal pipe 32 are incorporated in the machine chamber 14. On the right side of the base 17, both are provided side by side so that the water inlet valve 28 is on the lower side and the hot water outlet valve 29 is on the upper side. The internal pipe 30 connects between the water inlet valve 28 and the water inlet portion of the water refrigerant heat exchanger 8. The internal pipe 31 connects between the hot water outlet of the water-refrigerant heat exchanger 8 and the inlet of the shell heat exchanger 23. The internal pipe 32 connects between the outlet of the shell heat exchanger 23 and the hot water outlet valve 29.
 図4に示すように、ヒートポンプ装置1及び貯湯装置33により、ヒートポンプ給湯システムが構成される。貯湯装置33は、例えば数百リットル程度の容量を有する貯湯タンク34と、貯湯タンク34内の水をヒートポンプ装置1に送るための水ポンプ35とを備える。ヒートポンプ装置1と貯湯装置33との間は、外部管36と、外部管37と、電気配線(図示省略)とを介して接続される。 As shown in FIG. 4, the heat pump hot water supply system is configured by the heat pump device 1 and the hot water storage device 33. The hot water storage device 33 includes a hot water storage tank 34 having a capacity of, for example, several hundred liters, and a water pump 35 for sending water in the hot water storage tank 34 to the heat pump device 1. The heat pump device 1 and the hot water storage device 33 are connected via an external tube 36, an external tube 37, and electrical wiring (not shown).
 貯湯タンク34の下部は、管38を介して、水ポンプ35の入口に接続されている。外部管36は、水ポンプ35の出口と、ヒートポンプ装置1の水入口バルブ28との間を接続している。外部管37は、ヒートポンプ装置1の湯出口バルブ29と、貯湯装置33との間を接続している。外部管37は、貯湯装置33内の管39を介して、貯湯タンク34の上部に連通可能になっている。 The lower part of the hot water storage tank 34 is connected to the inlet of the water pump 35 via a pipe 38. The external pipe 36 connects between the outlet of the water pump 35 and the water inlet valve 28 of the heat pump device 1. The external pipe 37 connects between the hot water outlet valve 29 of the heat pump device 1 and the hot water storage device 33. The external pipe 37 can communicate with the upper part of the hot water storage tank 34 via a pipe 39 in the hot water storage device 33.
 貯湯装置33は、混合弁40を更に備えている。混合弁40には、管39から分岐した給湯管41と、水道等の水源から供給される水が通る給水管42と、ユーザ側に供給される湯が通る給湯管43とがそれぞれ接続されている。混合弁40は、給湯管41から流入する湯すなわち高温水と、給水管42から流入する水すなわち低温水との混合比を調整することで給湯温度を調節する。混合弁40により混合された湯は、給湯管43を通って、例えば、浴槽、シャワー、蛇口、食器洗い機などのユーザ側の端末に送られる。貯湯タンク34の下部には、給水管42から分岐した給水管44が接続されている。貯湯タンク34内の下側には、給水管44から流入した水が貯留される。 The hot water storage device 33 further includes a mixing valve 40. Connected to the mixing valve 40 are a hot water supply pipe 41 branched from a pipe 39, a water supply pipe 42 through which water supplied from a water source such as water supply passes, and a hot water supply pipe 43 through which hot water supplied to the user passes. Yes. The mixing valve 40 adjusts the hot water supply temperature by adjusting the mixing ratio of hot water flowing from the hot water supply pipe 41, that is, high-temperature water, and water flowing from the water supply pipe 42, that is, low-temperature water. The hot water mixed by the mixing valve 40 passes through the hot water supply pipe 43 and is sent to a user terminal such as a bathtub, a shower, a faucet, or a dishwasher. A water supply pipe 44 branched from the water supply pipe 42 is connected to the lower part of the hot water storage tank 34. The water flowing from the water supply pipe 44 is stored below the hot water storage tank 34.
 次に、蓄熱運転におけるヒートポンプ装置1の動作について説明する。蓄熱運転は、ヒートポンプ装置1で加熱された湯を貯湯装置33へ送ることで貯湯タンク34内に湯を蓄積する運転である。蓄熱運転では、以下のようになる。圧縮機2、送風機6及び水ポンプ35が運転される。圧縮機2のモータの回転速度は、数十rps(Hz)~百rps(Hz)程度の範囲で変化できる。これにより、冷媒の流量を変化させることで、加熱能力を調節制御できる。 Next, the operation of the heat pump device 1 in the heat storage operation will be described. The heat storage operation is an operation of accumulating hot water in the hot water storage tank 34 by sending hot water heated by the heat pump device 1 to the hot water storage device 33. In the heat storage operation, it is as follows. The compressor 2, the blower 6, and the water pump 35 are operated. The rotational speed of the motor of the compressor 2 can vary in the range of several tens of rps (Hz) to about 100 rps (Hz). Thereby, the heating capacity can be adjusted and controlled by changing the flow rate of the refrigerant.
 送風機6のモータの回転速度は数百rpm~千rpm程度に変化し、空気冷媒熱交換器7を通過する空気の流量を変化させることで、空気冷媒熱交換器7での冷媒と空気の熱交換量を調節制御できる。空気は、送風機6の後方に設置された空気冷媒熱交換器7の後方から吸い込まれ、空気冷媒熱交換器7を通過し、送風機室15を通過し、空気冷媒熱交換器7と反対側の筐体前面部18の前方へ排出される。 The rotational speed of the motor of the blower 6 is changed to about several hundred rpm to 1,000 rpm, and the flow rate of air passing through the air refrigerant heat exchanger 7 is changed, whereby the heat of the refrigerant and air in the air refrigerant heat exchanger 7 is changed. Exchange amount can be adjusted and controlled. Air is sucked from the rear of the air refrigerant heat exchanger 7 installed behind the blower 6, passes through the air refrigerant heat exchanger 7, passes through the blower chamber 15, and is opposite to the air refrigerant heat exchanger 7. It is discharged to the front of the housing front face 18.
 膨張弁10は、冷媒の流路抵抗度を調節する。これにより、膨張弁10の上流側の高圧冷媒及び下流側の低圧冷媒の圧力を調節制御できる。圧縮機2の回転速度、送風機6の回転速度、膨張弁10の流路抵抗度は、ヒートポンプ装置1の設置環境及び使用条件などに応じて制御される。 The expansion valve 10 adjusts the flow path resistance of the refrigerant. Thereby, the pressures of the high-pressure refrigerant on the upstream side and the low-pressure refrigerant on the downstream side of the expansion valve 10 can be adjusted and controlled. The rotational speed of the compressor 2, the rotational speed of the blower 6, and the flow path resistance of the expansion valve 10 are controlled according to the installation environment and use conditions of the heat pump device 1.
 低圧冷媒は吸入管4を通って圧縮機2へ吸入される。低圧冷媒は圧縮機2内の圧縮部で圧縮され、高温高圧冷媒になる。この高温高圧冷媒が圧縮機2から吐出管5へ吐出される。高温高圧冷媒は、吐出管5を通り、水冷媒熱交換器8の冷媒入口部に流入する。高温高圧冷媒は、水冷媒熱交換器8で水と熱交換することで水を加熱し湯を生成させる。冷媒は、水冷媒熱交換器8を通過する間にエンタルピを低下させ、温度を低下させる。この温度低下した高圧冷媒は、水冷媒熱交換器8の冷媒出口部から、冷媒管を通り、膨張弁10の入口部に流入する。この高圧冷媒は、膨張弁10で減圧されることで温度降下し、低温低圧冷媒となる。この低温低圧冷媒は、膨張弁10の出口部から、冷媒管を通り、空気冷媒熱交換器7の入口部に流入する。低温低圧冷媒は、空気冷媒熱交換器7で空気と熱交換し、エンタルピを増加させ、空気冷媒熱交換器7の出口部から吸入管4に流入し、圧縮機2に吸入される。このように冷媒が循環してヒートポンプサイクルが行われる。 The low-pressure refrigerant is sucked into the compressor 2 through the suction pipe 4. The low-pressure refrigerant is compressed by the compression unit in the compressor 2 and becomes a high-temperature high-pressure refrigerant. This high-temperature and high-pressure refrigerant is discharged from the compressor 2 to the discharge pipe 5. The high-temperature and high-pressure refrigerant passes through the discharge pipe 5 and flows into the refrigerant inlet portion of the water-refrigerant heat exchanger 8. The high-temperature and high-pressure refrigerant heats water by exchanging heat with water in the water-refrigerant heat exchanger 8 to generate hot water. The refrigerant reduces the enthalpy and lowers the temperature while passing through the water-refrigerant heat exchanger 8. The high-pressure refrigerant having the lowered temperature flows from the refrigerant outlet portion of the water refrigerant heat exchanger 8 through the refrigerant pipe to the inlet portion of the expansion valve 10. This high-pressure refrigerant drops in temperature by being decompressed by the expansion valve 10 and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows from the outlet portion of the expansion valve 10 through the refrigerant pipe and into the inlet portion of the air refrigerant heat exchanger 7. The low-temperature and low-pressure refrigerant exchanges heat with air in the air refrigerant heat exchanger 7, increases enthalpy, flows into the suction pipe 4 from the outlet of the air refrigerant heat exchanger 7, and is sucked into the compressor 2. Thus, the refrigerant circulates and a heat pump cycle is performed.
 同時に、水ポンプ35の駆動により、貯湯タンク34内の下部の水が、管38、外部管36、水入口バルブ28及び内部管30を通って、水冷媒熱交換器8の水入口部に流入する。この水が水冷媒熱交換器8で冷媒と熱交換し加熱されて湯が生成する。この湯は、内部管31を通ってシェル熱交換器23の入口部に流入する。この湯がシェル熱交換器23にて更に加熱されることで、より高温の湯が生成する。この高温の湯は、シェル熱交換器23の出口部から、内部管32、湯出口バルブ29、外部管37及び管39を通り、貯湯タンク34の上部に流入する。このような蓄熱運転を行うことで、貯湯タンク34内に上部から下部に向かって高温の湯が蓄積していく。 At the same time, the water in the hot water storage tank 34 flows into the water inlet portion of the water refrigerant heat exchanger 8 through the pipe 38, the outer pipe 36, the water inlet valve 28 and the inner pipe 30 by driving the water pump 35. To do. This water exchanges heat with the refrigerant in the water refrigerant heat exchanger 8 and is heated to produce hot water. This hot water flows into the inlet of the shell heat exchanger 23 through the inner pipe 31. When this hot water is further heated by the shell heat exchanger 23, hotter hot water is generated. The hot water flows from the outlet of the shell heat exchanger 23 through the inner pipe 32, the hot water outlet valve 29, the outer pipe 37 and the pipe 39 into the upper part of the hot water storage tank 34. By performing such a heat storage operation, hot water accumulates in the hot water storage tank 34 from the upper part toward the lower part.
 なお、ヒートポンプ装置1で加熱された湯を貯湯タンク34に溜めることなくユーザ側に直接供給しても良い。また、ヒートポンプ装置1で加熱された熱媒体を暖房等に利用しても良い。 Note that the hot water heated by the heat pump device 1 may be directly supplied to the user side without accumulating in the hot water storage tank 34. The heat medium heated by the heat pump device 1 may be used for heating or the like.
 本実施の形態であれば、シェル熱交換器23を備えたことで、以下の効果が得られる。圧縮機2への電力の入力を減らすことができる。ヒートポンプ装置1の効率が向上する。圧縮機2内の冷凍機油の温度及びモータの温度の上昇を抑制できる。圧縮機2内の摺動部の損傷及びモータ巻線の損傷をより確実に抑制できる。 In the present embodiment, the following effects can be obtained by providing the shell heat exchanger 23. The input of electric power to the compressor 2 can be reduced. The efficiency of the heat pump device 1 is improved. An increase in the temperature of the refrigerating machine oil in the compressor 2 and the temperature of the motor can be suppressed. The damage of the sliding part in the compressor 2 and the damage of the motor winding can be more reliably suppressed.
[実施の形態1の特徴]
 実施の形態1のヒートポンプ装置1は、シェル熱交換器23の管路23aを圧縮機2のシェル2aの外表面に密着させて固定するための構造に特徴を有している。図5は、実施の形態1のヒートポンプ装置1が備える圧縮機2及びシェル熱交換器23の平面図である。図5は、圧縮機2のシェル2aの軸方向から見た図である。また、図6は、図5中の圧縮機2及びシェル熱交換器23を図中のA-Aにて切断した断面の一部を示す図である。図5及び図6に示すように、シェル2aの外表面には、管路23aがつるまき線状に配置されている。管路23aの構造については詳細を後述する。管路23aはホルダ3によって固定されている。ホルダ3は、例えば板金材から成形される。ホルダ3は、複数のホルダ部品に分割されて構成されている。図5及び図6では、第一ホルダ部品3aと第二ホルダ部品3bを図示している。ホルダ3は、シェル2aの軸方向から見たとき、シェル2aの外周に沿う円弧状の接合面を有する。ホルダ3の接合面をシェル2aの軸方向から見たときの曲率半径は、シェル2aの直径の1/2に実質的に等しい。また、ホルダ3の接合面は、シェル2aの側面方向から見たとき、シェル熱交換器23のつるまき線状の管路23aに沿う形状を有する。ホルダ3の接合面はシェル2aにロウ付けされている。これにより、シェル2aからホルダ3への確実な熱伝導が可能となる。
[Features of Embodiment 1]
The heat pump device 1 of the first embodiment is characterized by a structure for fixing the pipe line 23 a of the shell heat exchanger 23 in close contact with the outer surface of the shell 2 a of the compressor 2. FIG. 5 is a plan view of the compressor 2 and the shell heat exchanger 23 provided in the heat pump device 1 of the first embodiment. FIG. 5 is a diagram viewed from the axial direction of the shell 2 a of the compressor 2. FIG. 6 is a view showing a part of a cross section of the compressor 2 and the shell heat exchanger 23 in FIG. 5 cut along AA in the drawing. As shown in FIG.5 and FIG.6, the pipe line 23a is arrange | positioned at the outer surface of the shell 2a in the shape of a helical line. Details of the structure of the pipe line 23a will be described later. The pipe line 23 a is fixed by the holder 3. The holder 3 is formed from, for example, a sheet metal material. The holder 3 is divided into a plurality of holder parts. 5 and 6 show the first holder part 3a and the second holder part 3b. The holder 3 has an arcuate joint surface along the outer periphery of the shell 2a when viewed from the axial direction of the shell 2a. The radius of curvature when the joining surface of the holder 3 is viewed from the axial direction of the shell 2a is substantially equal to ½ of the diameter of the shell 2a. Further, the joint surface of the holder 3 has a shape along the helical line 23a of the shell heat exchanger 23 when viewed from the side surface direction of the shell 2a. The joint surface of the holder 3 is brazed to the shell 2a. Thereby, reliable heat conduction from the shell 2a to the holder 3 becomes possible.
 ホルダ3が複数のホルダ部品に分割されているので、シェル2a外表面への組み付け性が向上する。なお、図中の第一ホルダ部品3aと第二ホルダ部品3bは、隙間が開いて接合されているが、密接して接合されていてもよい。 Since the holder 3 is divided into a plurality of holder parts, the assembling property to the outer surface of the shell 2a is improved. In addition, although the 1st holder component 3a and the 2nd holder component 3b in a figure are joined with a clearance gap, they may be joined closely.
 ホルダ3は、管路23aを挟んで弾性変形することにより、管路23aをシェル2aの外表面に押し付ける側に付勢する。これにより、管路23aはシェル2aに密着して固定されるため、シェル2aから管路23aへの確実な熱伝導が可能となる。また、ホルダ3は、管路23aにも接触しているため、シェル2aからホルダを介して管路23aへと伝わる熱伝導も可能となる。これにより、シェル2aから管路23aへの熱伝導が飛躍的に高まる。 The holder 3 is elastically deformed with the pipe line 23a interposed therebetween, thereby biasing the pipe line 23a toward the side pressing the outer surface of the shell 2a. Thereby, since the pipe line 23a is closely fixed to the shell 2a, reliable heat conduction from the shell 2a to the pipe line 23a becomes possible. Further, since the holder 3 is also in contact with the pipe line 23a, heat conduction transmitted from the shell 2a to the pipe line 23a via the holder is also possible. Thereby, the heat conduction from the shell 2a to the pipe line 23a is remarkably increased.
 次に、図5及び図7を参照して、シェル熱交換器23の管路23aの構造について説明する。図7は、実施の形態1のシェル熱交換器23の管路23aの一部を側面側から見た図である。なお、図7では、ホルダ3を省略して示している。図5及び図7に示すように、シェル熱交換器23の管路23aはつるまき線状に取り付けられる。管路23aは、第一管路部品23b、第二管路部品23c、第一接合部23d、及び第二接合部23eを備える。管路23aは、シェル2aの軸方向から見たとき、以下のようになる。第一管路部品23bは、シェル2aの外表面に沿う円弧状の形状を有する。第一管路部品23bの円弧の円周角には特に制限はない。図5では、第一管路部品23bの円弧は180°の円周角を有する。第二管路部品23cは、シェル2aの外表面に沿う円弧状の形状を有する。第二管路部品23cの円弧の円周角には特に制限はない。図5では、第二管路部品23cの円弧は180°の円周角を有する。第一管路部品23bの内周面の曲率半径は、シェル2aの直径の1/2に実質的に等しい。第二管路部品23cの内周面の曲率半径は、シェル2aの直径の1/2に実質的に等しい。 Next, the structure of the pipe line 23a of the shell heat exchanger 23 will be described with reference to FIGS. FIG. 7 is a view of a part of the pipe line 23a of the shell heat exchanger 23 according to the first embodiment when viewed from the side surface side. In FIG. 7, the holder 3 is omitted. As shown in FIG.5 and FIG.7, the pipe line 23a of the shell heat exchanger 23 is attached in the shape of a helix. The pipe line 23a includes a first pipe part 23b, a second pipe part 23c, a first joint part 23d, and a second joint part 23e. The pipeline 23a is as follows when viewed from the axial direction of the shell 2a. The first pipe part 23b has an arc shape along the outer surface of the shell 2a. There is no restriction | limiting in particular in the circumference angle of the circular arc of the 1st pipe line part 23b. In FIG. 5, the arc of the first pipe part 23b has a circumferential angle of 180 °. The second pipe part 23c has an arc shape along the outer surface of the shell 2a. There is no restriction | limiting in particular in the circumference angle of the circular arc of the 2nd pipe line part 23c. In FIG. 5, the arc of the second pipe part 23c has a circumferential angle of 180 °. The radius of curvature of the inner peripheral surface of the first pipe part 23b is substantially equal to ½ of the diameter of the shell 2a. The radius of curvature of the inner peripheral surface of the second pipe part 23c is substantially equal to ½ of the diameter of the shell 2a.
 管路23aは、シェル2aの側面方向から見たとき、以下のようになる。第一管路部品23bは、シェル2aの外表面に沿って軸方向へ位置を変えながら進行するつるまき線状の形状を有する。第一管路部品23bは、シェル2aの軸方向に複数並べられている。第二管路部品23cは、シェル2aの外表面に沿って軸方向へ位置を変えながら進行するつるまき線状の形状を有する。第二管路部品23cは、シェル2aの軸方向に複数並べられている。第一管路部品23bは、第二管路部品23cに隣り合う。第一接合部23dは、第一管路部品23bの一端を、第二管路部品23cの一端につなぐ。第二接合部23eは、第一管路部品23bの他端を、第二管路部品23cの他端につなぐ。複数の第一管路部品23b内の流路と、複数の第二管路部品23c内の流路とが第一接合部23d及び第二接合部23eを介して一本につながることで、つるまき線状の管路23aが形成される。 The pipeline 23a is as follows when viewed from the side of the shell 2a. The 1st pipe line part 23b has the shape of a helical line which advances, changing a position to an axial direction along the outer surface of the shell 2a. A plurality of first pipe parts 23b are arranged in the axial direction of the shell 2a. The 2nd pipe line part 23c has the shape of a helical line which advances, changing a position to an axial direction along the outer surface of the shell 2a. A plurality of second pipe parts 23c are arranged in the axial direction of the shell 2a. The first pipe part 23b is adjacent to the second pipe part 23c. The first joint portion 23d connects one end of the first pipeline component 23b to one end of the second pipeline component 23c. The second joint 23e connects the other end of the first pipe part 23b to the other end of the second pipe part 23c. Since the flow paths in the plurality of first pipe parts 23b and the flow paths in the plurality of second pipe parts 23c are connected to one through the first joint part 23d and the second joint part 23e, the A perforated line 23a is formed.
 図8は、第一管路部品と第二管路部品の接合部の構造を説明するための図である。以下、第一接合部23dの構造を例に説明するが、第二接合部23eの構造についても同様である。この図に示す例では、第一管路部品23bの一端が縮管されている。第一接合部23dは、第一管路部品23bの一端が第二管路部品23cの一端に挿入され、ロウ付けにより接合されている。管路23aは、複数に分割されているので、シェル2aへの管路23aの組み付け性が向上する。また、第一接合部23dは、第一管路部品23bの一端が第二管路部品23cの一端に挿入されて接合されるので、確実な接合が可能となる。なお、接合部の構造は上記のものに限られない。すなわち、第一管路部品23b及び第二管路部品23cの端部同士が接合される構造であればよい。例えば、第一管路部品23bの一端を拡管する構造でもよい。また、第二管路部品23cの一端の側を縮管または拡管する構造でもよい。 FIG. 8 is a view for explaining the structure of the joint portion between the first pipe part and the second pipe part. Hereinafter, the structure of the first joint portion 23d will be described as an example, but the same applies to the structure of the second joint portion 23e. In the example shown in this figure, one end of the first pipeline component 23b is contracted. One end of the first pipe part 23b is inserted into one end of the second pipe part 23c, and the first joint 23d is joined by brazing. Since the pipe line 23a is divided | segmented into plurality, the assembly | attachment property of the pipe line 23a to the shell 2a improves. In addition, since the first joint part 23d is joined by inserting one end of the first pipe part 23b into one end of the second pipe part 23c, the first joint part 23d can be reliably joined. The structure of the joint is not limited to the above. That is, any structure may be used as long as the ends of the first pipe part 23b and the second pipe part 23c are joined to each other. For example, the structure which expands the end of the 1st pipe line part 23b may be sufficient. Moreover, the structure which shrinks or expands the one end side of the 2nd pipe line part 23c may be sufficient.
 図9は、第一管路部品と第二管路部品の接合部の構造の変形例を説明するための図である。この図に示すように、第一管路部品23b及び第二管路部品23cの端部はテーパ形状を有していてもよい。これにより、管路23aの組み付け性が向上する。なお、テーパ形状は、第一管路部品23b及び第二管路部品23cの何れか一方のみでもよい。 FIG. 9 is a view for explaining a modification of the structure of the joint portion between the first pipe part and the second pipe part. As shown in this figure, the ends of the first pipe part 23b and the second pipe part 23c may have a tapered shape. Thereby, the assembly | attachment property of the pipe line 23a improves. The taper shape may be only one of the first pipe part 23b and the second pipe part 23c.
 以上説明した実施の形態1のヒートポンプ装置によれば、ホルダ3を用いて管路23aをシェル2aに密着させて確実に固定することができる。これにより、シェル熱交換器23の熱交換効率を長期間に渡って高く維持することが可能となる。 According to the heat pump apparatus of the first embodiment described above, the pipe line 23a can be brought into close contact with the shell 2a using the holder 3 and can be fixed securely. Thereby, it becomes possible to maintain the heat exchange efficiency of the shell heat exchanger 23 high over a long period of time.
実施の形態2.
 次に、図10から図12を参照して実施の形態2について説明する。実施の形態2の説明では、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。
Embodiment 2. FIG.
Next, Embodiment 2 will be described with reference to FIGS. In the description of the second embodiment, the difference from the first embodiment will be mainly described, and the description of the same or corresponding parts will be simplified or omitted.
 図10は、実施の形態2のヒートポンプ装置1が備える圧縮機2及びシェル熱交換器23の平面図である。図10は、圧縮機2のシェル2aの軸方向から見た図である。また、図11は、図10中の圧縮機2及びシェル熱交換器23を図中のB-Bにて切断した断面の一部を示す図である。図10及び図11に示すように、シェル2aの外表面には、管路23aが配置されている。図12は、実施の形態2のシェル熱交換器23の管路23aの一部を側面側から見た図である。なお、図12では、ホルダ3を省略して示している。図10及び図12に示すように、管路23aは、第一管路部品23f、第二管路部品23g、第一接合部23h、及び第二接合部23jを備える。管路23aは、シェル2aの軸方向から見たとき、以下のようになる。第一管路部品23fは、シェル2aの外表面に沿う円弧状の形状を有する。第一管路部品23fの円弧の円周角には特に制限はない。図10では、第一管路部品23fの円弧は180°の円周角を有する。第二管路部品23gは、シェル2aの外表面に沿う円弧状の形状を有する。第二管路部品23gの円弧の円周角には特に制限はない。図10では、第二管路部品23gの円弧は180°の円周角を有する。第一管路部品23fの内周面の曲率半径は、シェル2aの直径の1/2に実質的に等しい。第二管路部品23gの内周面の曲率半径は、シェル2aの直径の1/2に実質的に等しい。 FIG. 10 is a plan view of the compressor 2 and the shell heat exchanger 23 provided in the heat pump device 1 of the second embodiment. FIG. 10 is a diagram viewed from the axial direction of the shell 2 a of the compressor 2. FIG. 11 is a view showing a part of a cross section of the compressor 2 and the shell heat exchanger 23 shown in FIG. 10 taken along the line BB in the figure. As shown in FIGS. 10 and 11, a pipe line 23a is arranged on the outer surface of the shell 2a. FIG. 12 is a view of a part of the pipe line 23a of the shell heat exchanger 23 according to the second embodiment as viewed from the side surface side. In FIG. 12, the holder 3 is omitted. As shown in FIGS. 10 and 12, the pipe line 23a includes a first pipe part 23f, a second pipe part 23g, a first joint part 23h, and a second joint part 23j. The pipeline 23a is as follows when viewed from the axial direction of the shell 2a. The first duct part 23f has an arc shape along the outer surface of the shell 2a. There is no restriction | limiting in particular in the circumference angle of the circular arc of the 1st pipe line part 23f. In FIG. 10, the arc of the first pipe part 23f has a circumferential angle of 180 °. The second pipe part 23g has an arc shape along the outer surface of the shell 2a. There is no restriction | limiting in particular in the circumference angle of the circular arc of the 2nd pipe line part 23g. In FIG. 10, the arc of the second pipe part 23g has a circumferential angle of 180 °. The radius of curvature of the inner peripheral surface of the first pipe part 23f is substantially equal to ½ of the diameter of the shell 2a. The curvature radius of the inner peripheral surface of the second pipe part 23g is substantially equal to ½ of the diameter of the shell 2a.
 管路23aは、シェル2aの側面方向から見たとき、以下のようになる。第一管路部品23fは、シェル2aの外表面に沿って軸方向に垂直な方向に進行するパイプ231fと、シェル2aの外表面に沿って軸方向へ位置を変えながら進行するパイプ232fとが連続した形状を有する。パイプ231fとパイプ232fとは一体のパイプとして構成されていてもよいし、別体のパイプを連結した構成でもよい。第一管路部品23fは、シェル2aの軸方向に複数並べられている。第二管路部品23gは、シェル2aの外表面に沿って軸方向に垂直な方向に進行するパイプ231gと、シェル2aの外表面に沿って軸方向へ位置を変えながら進行するパイプ232gとが連続した形状を有する。パイプ231gとパイプ232gとは一体のパイプとして構成されていてもよいし、別体のパイプを連結した構成でもよい。第二管路部品23gは、シェル2aの軸方向に複数並べられている。第一管路部品23fは、第二管路部品23gに隣り合う。第一接合部23hは、第一管路部品23fのパイプ232f側の端部を、第二管路部品23gのパイプ232g側の端部につなぐ。第二接合部23jは、第一管路部品23fのパイプ231f側の端部を、第二管路部品23gのパイプ231g側の端部につなぐ。複数の第一管路部品23f内の流路と、複数の第二管路部品23g内の流路とが第一接合部23h及び第二接合部23jを介して一本につながることで、管路23aが形成される。なお、第一接合部23h及び第二接合部23jの構造は、実施の形態1の第一接合部23dの構造と同様である。 The pipeline 23a is as follows when viewed from the side of the shell 2a. The first pipe part 23f includes a pipe 231f that travels in the direction perpendicular to the axial direction along the outer surface of the shell 2a, and a pipe 232f that travels while changing its position in the axial direction along the outer surface of the shell 2a. It has a continuous shape. The pipe 231f and the pipe 232f may be configured as an integral pipe, or may be configured by connecting separate pipes. A plurality of first pipeline parts 23f are arranged in the axial direction of the shell 2a. The second pipe part 23g includes a pipe 231g that travels in a direction perpendicular to the axial direction along the outer surface of the shell 2a, and a pipe 232g that travels while changing its position in the axial direction along the outer surface of the shell 2a. It has a continuous shape. The pipe 231g and the pipe 232g may be configured as an integral pipe, or may be configured by connecting separate pipes. A plurality of second pipe parts 23g are arranged in the axial direction of the shell 2a. The first pipeline component 23f is adjacent to the second pipeline component 23g. The first joint portion 23h connects the end portion on the pipe 232f side of the first conduit component 23f to the end portion on the pipe 232g side of the second conduit component 23g. The second joint 23j connects the end of the first pipe part 23f on the pipe 231f side to the end of the second pipe part 23g on the pipe 231g side. The flow paths in the plurality of first pipe parts 23f and the flow paths in the plurality of second pipe parts 23g are connected to one through the first joint 23h and the second joint 23j. A path 23a is formed. The structure of the first joint 23h and the second joint 23j is the same as the structure of the first joint 23d in the first embodiment.
 管路23aはホルダ3によって固定されている。図10及び図11では、第一ホルダ部品3cと第二ホルダ部品3dを図示している。ホルダ3は、シェル2aの軸方向から見たとき、シェル2aの外周に沿う円弧状の接合面を有する。ホルダ3の接合面をシェル2aの軸方向から見たときの曲率半径は、シェル2aの直径の1/2に実質的に等しい。また、ホルダ3の接合面は、シェル2aの側面方向から見たとき、シェル熱交換器23の管路23aのうち軸方向に垂直な方向に進行するパイプ231f及びパイプ231gに沿う形状を有する。ホルダ3の接合面はシェル2aにロウ付けされている。これにより、シェル2aからホルダ3への確実な熱伝導が可能となる。 The pipe line 23 a is fixed by the holder 3. 10 and 11, the first holder part 3c and the second holder part 3d are shown. The holder 3 has an arcuate joint surface along the outer periphery of the shell 2a when viewed from the axial direction of the shell 2a. The radius of curvature when the joining surface of the holder 3 is viewed from the axial direction of the shell 2a is substantially equal to ½ of the diameter of the shell 2a. Further, the joint surface of the holder 3 has a shape along the pipe 231f and the pipe 231g that travels in a direction perpendicular to the axial direction of the pipe line 23a of the shell heat exchanger 23 when viewed from the side surface direction of the shell 2a. The joint surface of the holder 3 is brazed to the shell 2a. Thereby, reliable heat conduction from the shell 2a to the holder 3 becomes possible.
 ホルダ3は、管路23aを挟んで弾性変形することにより、管路23aをシェル2aの外表面に押し付ける側に付勢する。これにより、管路23aはシェル2aに密着して固定されるため、シェル2aから管路23aへの確実な熱伝導が可能となる。また、ホルダ3は、管路23aにも接触しているため、シェル2aからホルダを介して管路23aへと伝わる熱伝導も可能となる。これにより、シェル2aから管路23aへの熱伝導が飛躍的に高まる。また、ホルダ3は、接合面を簡易な円弧形状で構成することができるので、曲げ加工が容易となる。 The holder 3 is elastically deformed with the pipe line 23a interposed therebetween, thereby biasing the pipe line 23a toward the side pressing the outer surface of the shell 2a. Thereby, since the pipe line 23a is closely fixed to the shell 2a, reliable heat conduction from the shell 2a to the pipe line 23a becomes possible. Further, since the holder 3 is also in contact with the pipe line 23a, heat conduction transmitted from the shell 2a to the pipe line 23a via the holder is also possible. Thereby, the heat conduction from the shell 2a to the pipe line 23a is remarkably increased. Moreover, since the holder 3 can comprise a joining surface by simple arc shape, a bending process becomes easy.
1 ヒートポンプ装置、 2 圧縮機、 2a シェル、 3 ホルダ、 3a 第一ホルダ部品、 3b 第二ホルダ部品、 3c 第一ホルダ部品、 3d 第二ホルダ部品、 4 吸入管、 5 吐出管、 6 送風機、 7 空気冷媒熱交換器、 8 水冷媒熱交換器、 9 電気品収納箱、 9a 端子台、 10 膨張弁、 12 収納容器、 14 機械室、 15 送風機室、 16 仕切板、 17 ベース、 18 筐体前面部、 18a 格子、 19 筐体後面部、 20 筐体上面部、 21 筐体右側面部、 22 筐体左側面部、 23 シェル熱交換器、 23a 管路、 23b 第一管路部品、 23c 第二管路部品、 23d 第一接合部、 23e 第二接合部、 23f 第一管路部品、231f パイプ、 232f パイプ、 23g 第二管路部品、231g パイプ、 232g パイプ、 23h 第一接合部、 23j 第二接合部、 24 電子基板、 27 サービスパネル、 28 水入口バルブ、 29 湯出口バルブ、 30,31,32 内部管、 33 貯湯装置、 34 貯湯タンク、 35 水ポンプ、 36,37 外部管、 38,39 管、 40 混合弁、 41 給湯管、 42 給水管、 43 給湯管、 44 給水管 1 heat pump device, 2 compressor, 2a shell, 3 holder, 3a first holder part, 3b second holder part, 3c first holder part, 3d second holder part, 4 suction pipe, 5 discharge pipe, 6 blower, 7 Air refrigerant heat exchanger, 8 water refrigerant heat exchanger, 9 electrical goods storage box, 9a terminal block, 10 expansion valve, 12 storage container, 14 machine room, 15 blower room, 16 partition plate, 17 base, 18 front of housing Part, 18a lattice, 19 rear case part, 20 upper case part, 21 right side part of case, 22 left side part of case, 23 shell heat exchanger, 23a pipe, 23b first pipe part, 23c second pipe Road part, 23d first joint part, 23e second joint part, 23f first pipe part, 23 f pipe, 232f pipe, 23g second pipe part, 231g pipe, 232g pipe, 23h first joint, 23j second joint, 24 electronic board, 27 service panel, 28 water inlet valve, 29 hot water outlet valve, 30 , 31, 32 Internal pipe, 33 hot water storage device, 34 hot water storage tank, 35 water pump, 36, 37 external pipe, 38, 39 pipe, 40 mixing valve, 41 hot water supply pipe, 42 hot water supply pipe, 43 hot water supply pipe, 44 hot water supply pipe

Claims (11)

  1.  円筒形のシェルを備え、冷媒を圧縮する圧縮機と、
     前記シェルの外表面に巻き付く管路を備え、前記管路を通る熱媒体に前記圧縮機の熱を伝えるシェル熱交換器と、
     前記シェルの外表面に接合され、前記管路を前記シェルの外表面に密着させて固定する固定部材と、
     を備えることを特徴とするヒートポンプ装置。
    A compressor having a cylindrical shell and compressing the refrigerant;
    A shell heat exchanger that includes a pipe that wraps around the outer surface of the shell, and that transfers heat of the compressor to a heat medium passing through the pipe;
    A fixing member bonded to the outer surface of the shell and fixing the pipe line in close contact with the outer surface of the shell;
    A heat pump device comprising:
  2.  前記固定部材は、板金により形成されていることを特徴とする請求項1に記載のヒートポンプ装置。 The heat pump device according to claim 1, wherein the fixing member is formed of sheet metal.
  3.  前記固定部材は、前記管路を前記シェルの外表面の側に付勢するように前記管路を挟んで固定する構造であることを特徴とする請求項1又は請求項2に記載のヒートポンプ装置。 3. The heat pump device according to claim 1, wherein the fixing member has a structure in which the pipe is sandwiched and fixed so as to urge the pipe toward the outer surface of the shell. 4. .
  4.  前記固定部材は、前記シェルの外表面に接合される接合面が前記外表面に沿った円弧形状であることを特徴とする請求項1から請求項3の何れか1項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 3, wherein the fixing member has an arc shape along the outer surface of a joint surface joined to the outer surface of the shell.
  5.  前記管路は、つるまき線状に前記シェルの外表面に巻き付いて構成され、
     前記固定部材は、前記管路の一部に沿って延在するように前記外表面に接合されていることを特徴とする請求項4に記載のヒートポンプ装置。
    The pipe line is configured to wrap around the outer surface of the shell in a spiral line shape,
    The heat pump device according to claim 4, wherein the fixing member is joined to the outer surface so as to extend along a part of the pipe line.
  6.  前記管路は、
     前記シェルの外表面の一部を前記シェルの軸方向に垂直な方向に沿って進行する形状に構成された第1パイプと、
     前記シェルの外表面の一部を前記シェルの軸方向へ位置を変化させながら進行する第2パイプと、を有し、
     前記管路は、隣り合う前記第1パイプと第2パイプとが連続して1本につながるように前記シェルの外表面に巻き付いて構成されていることを特徴とする請求項1から請求項3の何れか1項に記載のヒートポンプ装置。
    The pipeline is
    A first pipe configured to advance a part of the outer surface of the shell along a direction perpendicular to the axial direction of the shell;
    A second pipe that progresses while changing a position of a part of the outer surface of the shell in the axial direction of the shell,
    The said pipe | tube path is wound around the outer surface of the said shell so that the said 1st pipe and 2nd pipe which adjoin each other may be connected to one, and it is comprised. The heat pump device according to any one of the above.
  7.  前記固定部材は、前記第1パイプの一部に沿って延在するように前記外表面に接合されていることを特徴とする請求項6に記載のヒートポンプ装置。 The heat pump device according to claim 6, wherein the fixing member is joined to the outer surface so as to extend along a part of the first pipe.
  8.  前記固定部材は、前記シェルの外表面にロウ付けにより接合されていることを特徴とする請求項1から請求項7の何れか1項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 7, wherein the fixing member is joined to an outer surface of the shell by brazing.
  9.  前記管路は、複数の配管により構成され、隣り合う前記配管の端部同士をつなぐ接合部を備えることを特徴とする請求項1から請求項8の何れか1項に記載のヒートポンプ装置。 The heat pump device according to any one of claims 1 to 8, wherein the pipe line includes a plurality of pipes and includes a joint portion that connects ends of the pipes adjacent to each other.
  10.  前記接合部は、前記配管の一方の端部を他方の端部に挿入して接合するように構成されていることを特徴とする請求項9に記載のヒートポンプ装置。 10. The heat pump device according to claim 9, wherein the joining portion is configured to be joined by inserting one end portion of the pipe into the other end portion.
  11.  前記接合部は、前記配管の一方の端部又は両方の端部にテーパ形状が形成されていることを特徴とする請求項10に記載のヒートポンプ装置。 The heat pump device according to claim 10, wherein the joining portion has a tapered shape at one end portion or both end portions of the pipe.
PCT/JP2016/080350 2016-10-13 2016-10-13 Heat pump apparatus WO2018070009A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018544635A JP6590078B2 (en) 2016-10-13 2016-10-13 Heat pump equipment
PCT/JP2016/080350 WO2018070009A1 (en) 2016-10-13 2016-10-13 Heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080350 WO2018070009A1 (en) 2016-10-13 2016-10-13 Heat pump apparatus

Publications (1)

Publication Number Publication Date
WO2018070009A1 true WO2018070009A1 (en) 2018-04-19

Family

ID=61905283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080350 WO2018070009A1 (en) 2016-10-13 2016-10-13 Heat pump apparatus

Country Status (2)

Country Link
JP (1) JP6590078B2 (en)
WO (1) WO2018070009A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914948U (en) * 1972-05-12 1974-02-07
JPS50141811U (en) * 1974-05-10 1975-11-21
JPS5539475U (en) * 1978-09-06 1980-03-13
JPS5874034U (en) * 1981-11-13 1983-05-19 松下電器産業株式会社 refrigerant heater
JPS61231394A (en) * 1985-04-04 1986-10-15 Shimadzu Corp Heat exchanger
JPS62138875U (en) * 1986-02-27 1987-09-01
JP2004211981A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008256360A (en) * 2008-07-31 2008-10-23 Mitsubishi Electric Corp Heat pump type water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914948U (en) * 1972-05-12 1974-02-07
JPS50141811U (en) * 1974-05-10 1975-11-21
JPS5539475U (en) * 1978-09-06 1980-03-13
JPS5874034U (en) * 1981-11-13 1983-05-19 松下電器産業株式会社 refrigerant heater
JPS61231394A (en) * 1985-04-04 1986-10-15 Shimadzu Corp Heat exchanger
JPS62138875U (en) * 1986-02-27 1987-09-01
JP2004211981A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008256360A (en) * 2008-07-31 2008-10-23 Mitsubishi Electric Corp Heat pump type water heater

Also Published As

Publication number Publication date
JP6590078B2 (en) 2019-10-16
JPWO2018070009A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6569801B2 (en) Heat pump equipment
TWI740871B (en) Heat exchanger with water box
JP6460236B2 (en) Heat pump equipment
JP6288377B2 (en) Heat pump equipment
WO2015079747A1 (en) Heat exchanger
JP5594220B2 (en) Heat pump type water heater
JP6590078B2 (en) Heat pump equipment
JP4650171B2 (en) Geothermal heat pump water heater
JP5749475B2 (en) Heat pump type hot water supply outdoor unit
US3399720A (en) Plate heat exchanger
EP3734194B1 (en) Heat pump hot water supplying outdoor unit
JP2006275322A (en) Outdoor unit for water heater
WO2018189860A1 (en) Water-refrigerant heat exchanger and heat pump device comprising water-refrigerant heat exchanger
JP2007132541A (en) Heat pump water heater
JP5630427B2 (en) Heat pump water heater outdoor unit
WO2019167136A1 (en) Heat pump apparatus
WO2019116525A1 (en) Heat pump hot water supply device
JPWO2019102595A1 (en) Heat pump equipment
JP2007333270A (en) Heat-pump heat source equipment
WO2021130957A1 (en) Heat exchanger and heat pump type water heater
EP3531041B1 (en) Heat pump device
WO2021117141A1 (en) Heat pump apparatus
JP4893047B2 (en) Heat pump type water heater
JP2019056536A (en) Refrigeration cycle device
AU2006201133A1 (en) Heat pump hot water system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018544635

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918550

Country of ref document: EP

Kind code of ref document: A1