WO2018068775A1 - Procédé et système de détermination de la surface d'au moins un défaut sur au moins une surface fonctionnelle d'un composant ou d'un corps de test - Google Patents

Procédé et système de détermination de la surface d'au moins un défaut sur au moins une surface fonctionnelle d'un composant ou d'un corps de test Download PDF

Info

Publication number
WO2018068775A1
WO2018068775A1 PCT/DE2017/000170 DE2017000170W WO2018068775A1 WO 2018068775 A1 WO2018068775 A1 WO 2018068775A1 DE 2017000170 W DE2017000170 W DE 2017000170W WO 2018068775 A1 WO2018068775 A1 WO 2018068775A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional surface
defect
image
component
real
Prior art date
Application number
PCT/DE2017/000170
Other languages
German (de)
English (en)
Inventor
Peter Bannwitz
Jan-Philipp Köhler
Original Assignee
INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH filed Critical INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH
Publication of WO2018068775A1 publication Critical patent/WO2018068775A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • G01N2021/8825Separate detection of dark field and bright field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0666Selectable paths; insertable multiple sources

Definitions

  • the invention relates to a method and a system for determining the defect surface of at least one defect on at least one functional surface of a component or specimen.
  • the testing of functional surfaces for damage such as e.g. Pores, scratches, dents, etc. are usually also in largely fully automated manufacturing processes usually by a personal visual inspection according to specified test specifications at the end of the manufacturing process.
  • the person to be tested must be in good order (i.O.) or not in order (n.i.O.) in the production cycle about the quality. decide on a component.
  • the quality specifications prescribed by the test regulations are in the range of tenths of millimeters, such as, for example, given error sizes i.O. ⁇ 500 ⁇ m and n.i.O. > 500 ⁇ m, the human eye is only able to dissolve and reproduce such a size range unreliably.
  • the extensive test specifications such. extremely complex and varied geometry of the surfaces with different evaluation ranges with respect to error sizes and types of overtaxing the visually inspecting person. Decisions on i.O.- or n.i.O.
  • Judgments are therefore made on the basis of estimated error magnitudes, subjective perception, and experience, so that irregular slip, ie, the examiner does not test accurately enough, and / or pseudo, ie, the examiner examines too accurately in manufacturing , which results in delays in the production process and additional costs.
  • Optical methods in particular laser-based, generally require a relatively high calibration effort.
  • a special camera - based optical method is the stereometry, in which the surface of a component or specimen to be examined is recorded from slightly different angles and from the evaluation of the minor stereoscopic deviations are calculated the structures of the surface of the component or specimen.
  • Changes in the inclination angle course or even flat structures such as low depressions and / or slight inclinations with low inclination can be determined by the method of shape-from-shading (see in particular X. Jiang, H. Bunke, Three-dimensional Computer Vision, Springer Verlag, 1997 Berlin ). In this case, small changes in the reflected light intensity are evaluated in order to close the known inclination of the reflective areas with a known geometric arrangement between the camera, component or specimen and light source.
  • a device for detecting defects of a surface of an object is known to be known from DE 203170 95 U1, in which a light source for illuminating the object is provided with an illumination beam incident on the object at an angle of incidence to the surface and a light sensor from which a beam reflected from the surface of the object towards the exposure beam is detected, which is reflected at a projection angle to the surface of the object from the latter.
  • the angle of reflection is equal to the angle of incidence in order to obtain image data which are to be evaluated by an evaluation unit in order to detect possible errors.
  • a determination of the real area of defects of the inspected object surface is also not provided in this known method and is not considered.
  • the present invention is therefore based on the object of providing a method and a plant of the type mentioned above, with which or a determination of the real geometric features of at least one defect on at least one functional surface of a component or strigovipers is possible.
  • the component or the specimen is sequentially illuminated from at least four different positions in at least one measuring range of the functional surface with at least one light source defined in terms of radiation intensity, direction and position,
  • a real image image (raw image) of a functional surface in the measuring region, which is illuminated from different directions, is created with at least one camera connected to a control and computer system,
  • the inclination patterns in the x- or y-derivative of the functional surface are calculated on the basis of the shape-from-shading method for the four differently illuminated real image recordings (raw images),
  • the real defect area of the at least one defect in the measurement area of the functional surface of the component or specimen is determined by means of the control and computer system.
  • the calculated inclination images are binarized, and the at least one defect on the at least one functional surface is detected from the binarized inclination images, wherein for a defect size in the range of tenths of millimeters, its geometry in the binarized inclination images approximately matches the real defect surface of the defect the case, however, that the size of Subareas of the defect lies in a larger area, these sub-areas, which are reproduced only incompletely in the inclination images, are binarized via the dark field image acquisition of the functional surface and combined with the binarization of the inclination images. From the combined binarization of the tilt images and the dark field image acquisition, the real geometry of the defect surface of the defect of the functional surface is then determined approximately accurately.
  • four individual, in series reflectors are used as light sources, of which the functional surface is illuminated for at least one image acquisition series with four real image recordings (raw images) successively each with a defined exposure time.
  • LED strips preferably four LED strips, used, which are all connected together.
  • three image acquisition series with four real image recordings are created by the functional surface by means of a CCD camera, wherein the functional surface in each of the three image acquisition series is illuminated successively by the series-connected reflectors with a defined exposure time.
  • bright field illumination can be generated, during which a bright field image acquisition of the at least one functional surface in the at least one measurement range is created. Subsequently, from the inclination image calculations of the functional surface and the information of the bright field image acquisition, the real defect surface of the at least one defect in the at least one measurement region of the functional surface of the component or specimen is determined by means of the control and computer system.
  • a grayscale equalization can take place via a Savitzky-Golay filter.
  • the at least one measuring range of the functional surface is subdivided into sectors, and a separate parameterization is carried out per inclination image recording and per dark field image recording or per bright field image recording.
  • Masking may be performed in the processing of the inclination image recordings and the darkfield image recordings or the bright field image recordings, wherein error detection is performed with realistic geometric information about the combination of information of the respective inclination image recordings and dark field and bright field image recordings and the detected errors are classified, displayed and / or stored.
  • At least one high-resolution CCD camera with 29 or more megapixels is used for imaging.
  • a system for determining the defect surface of at least one defect on at least one functional surface of a component or specimen comprising: a box-shaped housing in which either a fixed storage or a movable linear unit with defined storage and support surface for receiving the component or specimen is provided, at least one light source defined with regard to radiation intensity, direction and position, from which at least one measuring area of the functional surface of the component or test body positioned in the box-shaped housing on the support surface of the linear unit is to be illuminated sequentially from at least four different positions, at least one camera of known position, by means of the one of the functional surface of the component or test specimen in the measuring range in each case a different real image acquisition (raw image) is to create a positioned in the box-shaped housing dark field illumination device, of which is to be generated in the housing dark field illumination, of which Function surface of the component or specimen during the dark field illumination by means of the at least one camera to create a dark field image recording of the at least one functional surface in the at least one measuring range, and
  • a control and computer system connected to the at least one light source, the dark field illumination device and the at least one camera with automatic control / evaluation software, on the basis of the shape-from-shading method for the four different real image recordings (raw material). Images) to produce the x- or y-tilt image calculations of the at least one functional surface and from the tilt image calculations of the functional surface and the information of the darkfield image acquisition the real defect surface of the at least one defect in the at least one measurement range of the functional surface of the component or Specimen is to be determined.
  • the dark field illumination device is preferably constructed of LED strips.
  • four LED strips are provided, which are positioned in the box-shaped housing in each case parallel to one of the edges of the receiving surface of the fixed bearing or the linear unit on correctly aligned height of the functional surface to be tested and interconnected.
  • the box-shaped housing can, depending on the structure (fixed storage or displaceable linear unit), be installed in-line in a production or set up close to the production offline.
  • four individual, series-connected reflectors are preferably arranged in the box-shaped housing in its ceiling area, of which the functional surface of the mounted on the storage (fixed storage or linear unit) component or specimen for at least one image acquisition series with four real Shoot images (raw images) one after another with each defined exposure time to illuminate.
  • At least one high-resolution CCD camera with at least 29 megapixels is provided for imaging in the box-shaped housing, from which e.g. three image acquisition series with four real images (raw images) are to be created with different exposure times.
  • the method according to the invention makes it possible to use test systems for the optical control of functional surfaces of components of which not only defects as such can be detected, but also a realistic detection and specification of geometric properties such as length, width and area of the detected defect is guaranteed. In this way, a correct and reproducible transfer of the requirements of quality assurance in the test regulations in the series process is possible. In addition, an adaptation of the test specification is possible at any time, since it can be used directly with length specifications.
  • Fig. 1 is a plan view of a schematically illustrated system for determining the defect surface of at least one defect on at least one functional surface of a component or specimen.
  • Fig. 2 is a schematic view of the box-shaped housing of the system, which is open at the front.
  • Fig. 3 is a diagrammatic representation of a complete image recording series with four real image recordings (raw images) in each case different illumination direction for the tilt image calculation according to the shape-from-shading method and a fifth image recording in dark field illumination.
  • Fig. 4 is a diagrammatic representation of three complete image recording series respectively corresponding to Fig. 3, but at different exposure times.
  • 5 is a block diagram-like flow chart of a schematic sequence of the determination of the defect area of at least one defect of a functional surface of a component or test specimen in the production process.
  • the system according to the invention for determining the defect surface DF of at least one defect surface 7 of at least one functional surface Z (x, y) of a component or test body 1 comprises a box-shaped housing 8 which can be moved, as shown in FIG. 2 shows.
  • a fixed bearing or a movable linear unit 9 with a defined bearing and rubberized support surface 10 for receiving the component or specimen 1 to be tested is provided in the lower region of the box-shaped housing 8.
  • four individual reflectors 3 a , 3 b , 3 c , 3 d are provided in the box-shaped housing 8 in its ceiling region 13 at four positions a, b, c, d as light sources, which defines electrical radiation in terms of radiation intensity, direction and position connected in series and connected to a control and computer system 5, which includes an automatic control / evaluation software.
  • the functional surface Z (x, y) of the component or specimen 1 positioned on the rubberized support surface 10 of the fixed support or linear unit 9 is, as shown in FIGS. 1 and 2, of the four reflectors 3 a , 3 b connected in series. 3 c , 3 d sequentially from the four different positions a, b, c, d to illuminate each with a defined exposure time.
  • At least one CCD camera 4 preferably with 29 or more megapixels in a defined position, is provided within the box-shaped housing 8 above the bearing surface 10 of the bearing 9 and connected to the control and computer system 5.
  • dark field illumination device 1 1 is provided, which, as can be seen in Fig. 1, preferably of four LED strips 12 is formed, which are connected together. According to FIG. 1, the four LED strips 12 are each arranged parallel to an edge of the bearing surface 10 of the bearing 9 on which the component or the test body 1 is positioned.
  • the dark-field image acquisition D of the functional surface Z (x, y) in the at least one measuring region 2 is additionally created by the at least one CCD camera 4, as shown in FIG.
  • FIG. 4 is a schematic diagrammatic representation of three complete image acquisition series S 1; S 2 , S 3 respectively corresponding to the image recording series S
  • the second and the third image acquisition series S 1 or S 2 or S 3 each have a dark field image acquisition D 5 or Dio or D] 5 for the respective determination of the defect surface DF of the defect 7 in the at least created a measuring range 2 of the functional surface Z (x, y) of the component or specimen 1.
  • FIG. 5 shows a block diagram-like flow diagram of a schematic sequence of the determination of the defect surface DF of at least one defect 7 of the functional surface Z (x, y) of a component or test specimen 1 in the production process with the following method steps:
  • R a 1 , R b2 , R c3 , R d4 real images (raw images) of the first image acquisition series S 1 R a6 , R b7 , R c8 , R d9 real images (raw images) of the second image acquisition series S 2 R a 1 1 , R b 1 2 , R c 13 , R d 14 real image recordings (raw images) of the third image acquisition series S 3 N x , N y inclination image calculations in x or y derivation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

L'invention concerne un procédé de détermination de la surface (DF) d'au moins un défaut (7) sur au moins une surface fonctionnelle Z (x, y) d'un composant ou d'un échantillon (1), le procédé comprenant les étapes suivantes : - le composant ou l'échantillon (1) est éclairé dans au moins une zone de mesure (2) de la surface fonctionnelle Z (x, y) avec au moins une source de lumière (3), définie en termes d'intensité, de direction et de position du rayonnement, séquentiellement à partir d'au moins quatre positions différentes (a, b, c, d), - une capture d'image réelle différente (image brute) (Ra, Rb, Rc, Rd) de la surface fonctionnelle Z (x, y) est réalisée dans l'au moins une zone de mesure (2) à chaque fois à l'aide au moins une caméra (4), de position connue, reliée à un système de commande et de calcul (5) à partir de la surface fonctionnelle Z (x, y) du composant ou de l'échantillon (1), - les images d'inclinaison x et y (N x, N y) de la surface fonctionnelle Z (x, y) sont calculées sur la base de la méthode Shape-from-Shading (SfS) pour les quatre captures d'image réelles (images brutes) (Ra, Rb, Re, Rd) par le système de commande et de calcul (5), - une capture d'image en fond noir (D) de la surface fonctionnelle Z (x, y) est réalisée dans la zone de mesure (2) pendant l'illumination à partir de la surface fonctionnelle Z (x, y) du composant ou de l'échantillon (1), - la surface réelle (DF) de l'au moins un défaut (7) est déterminée dans l'au moins une zone de mesure (2) de la surface fonctionnelle Z (x, y) du composant ou de l'échantillon (1) par le système de commande et de calcul à partir des calculs d'image d'inclinaison x ou y (N x, N y) de la surface fonctionnelle Z (x, y) et des informations de la capture d'image en fond noir (D).
PCT/DE2017/000170 2016-10-15 2017-06-14 Procédé et système de détermination de la surface d'au moins un défaut sur au moins une surface fonctionnelle d'un composant ou d'un corps de test WO2018068775A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016012371.0A DE102016012371A1 (de) 2016-10-15 2016-10-15 Verfahren und Anlage zum Ermitteln der Defektfläche mindestens einer Fehlstelle auf mindestens einer Funktionsoberfläche eines Bauteils oder Prüfkörpers
DE102016012371.0 2016-10-15

Publications (1)

Publication Number Publication Date
WO2018068775A1 true WO2018068775A1 (fr) 2018-04-19

Family

ID=59501117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/000170 WO2018068775A1 (fr) 2016-10-15 2017-06-14 Procédé et système de détermination de la surface d'au moins un défaut sur au moins une surface fonctionnelle d'un composant ou d'un corps de test

Country Status (2)

Country Link
DE (1) DE102016012371A1 (fr)
WO (1) WO2018068775A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733181B1 (en) 2019-06-04 2023-08-22 Saec/Kinetic Vision, Inc. Imaging environment testing fixture and methods thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123924A1 (de) 2022-09-19 2024-03-21 TRUMPF Werkzeugmaschinen SE + Co. KG Verfahren und Vorrichtung zur intelligenten Sichtfeldwahl von Kameras an einer Werkzeugmaschine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064291A (en) * 1990-04-03 1991-11-12 Hughes Aircraft Company Method and apparatus for inspection of solder joints utilizing shape determination from shading
DE4123916A1 (de) * 1990-07-19 1992-01-23 Reinhard Malz Verfahren zum beleuchtungsdynamischen erkennen und klassifizieren von oberflaechenmerkmalen und -defekten eines objektes und vorrichtung hierzu
EP0898163A1 (fr) * 1997-08-22 1999-02-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et appareil d'inspection automatique des surfaces en mouvement
DE20317095U1 (de) 2003-11-07 2004-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Erkennung von Oberflächenfehlern
US20040233421A1 (en) * 2001-05-08 2004-11-25 Wolfgang Weinhold Method and device for examining an object in a contactless manner, especially for examining the surface form of the same
US20050168729A1 (en) * 2004-01-30 2005-08-04 Leica Microsystems Semiconductor Gmbh Method for inspecting a wafer
DE102004038761A1 (de) * 2004-08-09 2006-02-23 Daimlerchrysler Ag Kamera-basierte Objektprüfung mittels Shape-from-Shading
EP1742041A1 (fr) * 2005-07-04 2007-01-10 Massen Machine Vision Systems GmbH Inspection de surface multi sensorielle économique
US20110262007A1 (en) * 2010-04-26 2011-10-27 Omron Corporation, Shape measurement apparatus and calibration method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064291A (en) * 1990-04-03 1991-11-12 Hughes Aircraft Company Method and apparatus for inspection of solder joints utilizing shape determination from shading
DE4123916A1 (de) * 1990-07-19 1992-01-23 Reinhard Malz Verfahren zum beleuchtungsdynamischen erkennen und klassifizieren von oberflaechenmerkmalen und -defekten eines objektes und vorrichtung hierzu
EP0898163A1 (fr) * 1997-08-22 1999-02-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et appareil d'inspection automatique des surfaces en mouvement
US20040233421A1 (en) * 2001-05-08 2004-11-25 Wolfgang Weinhold Method and device for examining an object in a contactless manner, especially for examining the surface form of the same
DE20317095U1 (de) 2003-11-07 2004-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Erkennung von Oberflächenfehlern
US20050168729A1 (en) * 2004-01-30 2005-08-04 Leica Microsystems Semiconductor Gmbh Method for inspecting a wafer
DE102004038761A1 (de) * 2004-08-09 2006-02-23 Daimlerchrysler Ag Kamera-basierte Objektprüfung mittels Shape-from-Shading
DE102004038761B4 (de) 2004-08-09 2009-06-25 Daimler Ag Kamera-basierte Objektprüfung mittels Shape-from-Shading
EP1742041A1 (fr) * 2005-07-04 2007-01-10 Massen Machine Vision Systems GmbH Inspection de surface multi sensorielle économique
US20110262007A1 (en) * 2010-04-26 2011-10-27 Omron Corporation, Shape measurement apparatus and calibration method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. JIANG; H. BUNKE: "Dreidimensionales Computersehen", 1997, SPRINGER VERLAG

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733181B1 (en) 2019-06-04 2023-08-22 Saec/Kinetic Vision, Inc. Imaging environment testing fixture and methods thereof

Also Published As

Publication number Publication date
DE102016012371A1 (de) 2018-04-19

Similar Documents

Publication Publication Date Title
EP1716410B1 (fr) Procede et dispositif pour contrôler des surfaces
EP0249799B1 (fr) Appareil pour inspecter des éléments en matériau transparent pour la détection de défauts de surface et d'inclusions
DE102005050882A1 (de) System und Verfahren zur optischen Inspektion von Glasscheiben
DE102015116047A1 (de) Prüfvorrichtung und Steuerverfahren für eine Prüfvorrichtung
DE102019205706A1 (de) System und Verfahren zum Überprüfern der Brechkraft und der Dicke ophthalmischer Linsen, die in eine Lösung eingetaucht sind
WO2013117282A1 (fr) Dispositif et procédé de détection de défauts à l'intérieur du volume d'une vitre transparente et utilisation du dispositif
DE102012101377B4 (de) Verfahren bei der Vorbereitung von Proben zum Mikroskopieren und Vorrichtung zum Überprüfen der Eindeckqualität von Proben
DE102018202051B4 (de) Vorrichtung zum automatischen Prüfen von Linsen und Verfahren zum automatischen Prüfen einer Vielzahl von Linsen
DE102016107900B4 (de) Verfahren und Vorrichtung zur Kantenermittlung eines Messobjekts in der optischen Messtechnik
DE102013216566A1 (de) Vorrichtung und verfahren zur erfassung einer zumindest teilweise spiegelnden oberfläche
DE3937559A1 (de) Verfahren zum ermitteln von optischen fehlern in scheiben aus einem transparenten material, insbesondere aus glas
DE102009058215A1 (de) Verfahren und Vorrichtung zur Oberflächenprüfung eines Lagerbauteils
DE102010032241A1 (de) Verfahren und Vorrichtung zum Erkennen von Oberflächenfehlern
DE102018206376B4 (de) Prüfvorrichtung zum Prüfung von Intraokularlinsen
DE102013108722B4 (de) Verfahren und Vorrichtung zum Erfassen von Defekten einer ebenen Oberfläche
WO2018068775A1 (fr) Procédé et système de détermination de la surface d'au moins un défaut sur au moins une surface fonctionnelle d'un composant ou d'un corps de test
DE10131665B4 (de) Verfahren und Vorrichtung zur Inspektion des Randbereichs eines Halbleiterwafers
DE102018214280A1 (de) Inspektionssystem und Verfahren zum Korrigieren eines Bildes für eine Inspektion
DE4434475C2 (de) Verfahren und Vorrichtung zur Qualitätskontrolle eines Gegenstandes, insbesondere einer Compact-Disc
DE60317595T2 (de) Dreidimensionale Randlokalisierung unter Anwendung von seitlicher Beleuchtung
AT514553B1 (de) Verfahren und Vorrichtung zur optischen Untersuchung einer Oberfläche eines Körpers
EP3803351A1 (fr) Dispositif et procédé d'inspection de surface d'un véhicule automobile
DE102015203396A1 (de) Verfahren und Vorrichtung zur Bestimmung der Topografie einer Oberflache
EP0987541B1 (fr) Dispositif de contrôle optique de qualité de la surface interne d'un tube
DE102011089856A1 (de) Inspektion eines Prüfobjektes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17745966

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17745966

Country of ref document: EP

Kind code of ref document: A1