WO2018068725A1 - Difluorobenze-based building blocks and conjugated polymers - Google Patents

Difluorobenze-based building blocks and conjugated polymers Download PDF

Info

Publication number
WO2018068725A1
WO2018068725A1 PCT/CN2017/105684 CN2017105684W WO2018068725A1 WO 2018068725 A1 WO2018068725 A1 WO 2018068725A1 CN 2017105684 W CN2017105684 W CN 2017105684W WO 2018068725 A1 WO2018068725 A1 WO 2018068725A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
conjugated polymer
straight
branched hydrocarbon
bicyclic
Prior art date
Application number
PCT/CN2017/105684
Other languages
French (fr)
Inventor
He Yan
Zhengke LI
Original Assignee
He Yan
Li Zhengke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by He Yan, Li Zhengke filed Critical He Yan
Publication of WO2018068725A1 publication Critical patent/WO2018068725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3245Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to novel donor-acceptor conjugated polymers, methods for their preparation and intermediates used therein, the use of formulations containing such polymers as semiconductors in organic photovoltaic (OPV) or other organic electronics (OE) , and to OE and OPV devices made from these formulations.
  • OCV organic photovoltaic
  • OE organic electronics
  • the organic solar cell (OSC) is considered a promising low-cost and environmentally friendly solar technology, as it can be produced using low-cost printing methods and does not contain any toxic components.
  • a typical OSC device consists of a pair of matching materials that function as electron donor and acceptor, respectively.
  • fullerene derivatives have been the dominant choice of materials for nearly two decades and best-efficiency (over 10%) OSCs can only be achieved using fullerene acceptors.
  • fullerenes exhibit many drawbacks such as high production cost and poor absorption properties.
  • non-fullerene OSCs OSCs based on a polymer donor and a small molecular acceptor (SMA) have seen rapid development in the past two years.
  • SMA OSCs intensive research efforts have been devoted to the design and synthesis of novel SMA materials, which then are typically combined with known donor polymers (for example, PTB7-Th) to construct polymer: SMA OSCs.
  • the donor polymer plays a critical role in controlling the bulk-heterojunction (BHJ) morphology of OSCs.
  • One successful approach of achieving a favorable morphology (containing highly crystalline and small domains) in fullerene OSCs is the use of a family of donor polymers with strong temperature dependent aggregation (TDA) properties, which yielded multiple cases of high-efficiency (higher than 10%) polymer: fullerene OSCs.
  • TDA temperature dependent aggregation
  • the crystallinity of these TDA polymers were much greater than conventional PTB7-family polymers.
  • the key property is the strong TDA behavior of polymers, which leads to well-controlled aggregation of the polymer during the film cooling and drying process, resulting in highly crystalline yet small domains (20 nm) at the same time.
  • FB-O difluorobenzene building blocks
  • PTFB-O difluorobenzene building blocks
  • PBTFB-DT related donor polymers
  • the T-FB-T-O building block can be used to construct many novel conjugated polymers.
  • T-FB-T-P another difluorobenzene building block, T-FB-T-P, can also be used to construct conjugated polymers for OPV devices, with high efficiency.
  • the formulations, methods and devices of the present invention provide surprising improvements in the efficiency of the OE devices and the production thereof. Unexpectedly, the performance, the lifetime and the efficiency of the OE devices can be improved, if these devices are achieved by using a formulation of the present subject matter. Furthermore, the formulation of the present subject matter provides an astonishingly high level of film forming. Especially, the homogeneity and the quality of the films can be improved. In addition thereto, the present subject matter enables better solution printing of OE devices, especially OPV devices.
  • FIG. 1 shows the solar cell characterization of bulk heterojunction devices prepared from Polymer: SMA.
  • SMA current-voltage plots under illumination with AM 1.5G solar simulated light at 100 mW cm -2 .
  • FIG. 2 shows optical characterization of PTFB-O and PTFB-P.
  • FIG. 3 shows UV-Vis absorption spectra evolutions of polymers.
  • PTFB-P PTFB-P
  • PTFB-O in dichlorobenzene solution.
  • Cooling process from 100 °C to 10 °C.
  • FIG. 4 shows two-dimensional (2D) GIWAXS pattern of pure polymer and polymer blend films.
  • PTFB-O PTFB-O
  • PTFB-P PTFB-P
  • ITIC ITIC
  • PTFB-P ITIC
  • PC 71 BM PC 71 BM
  • a conjugated polymer comprising one or more repeating units of the following formula:
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H, F, and straight or branched hydrocarbon group
  • X is S, O, or Se
  • Y is N or C-H.
  • the conjugated polymer were found to exhibit temperature dependent aggregation properties, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 °C to room temperature.
  • conjugated polymer comprising one or more repeating units of the following formula:
  • R is selected from H, F, and straight or branched hydrocarbon group
  • X is S, O, or Se
  • Y is N or C-H.
  • Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H and straight or branched hydrocarbon group
  • Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  • a conjugated polymer comprising one or more repeating units of the following formula:
  • R is branched hydrocarbon group
  • Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  • Ar is selected from:
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 are S, O, or Se;
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 is H, F, or Cl;
  • a conjugated polymer comprising one or more repeating units of the following formula:
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H, F, and straight or branched hydrocarbon group
  • X is S, O, or Se
  • Y is N or C-H.
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H, and straight or branched hydrocarbon groups.
  • the conjugated polymer were found to exhibit temperature dependent aggregation properties, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 °C to room temperature.
  • a conjugated polymer comprising one or more repeating units of the following formula:
  • R is selected from H and straight or branched hydrocarbon group
  • Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  • a conjugated polymer comprising one or more repeating units of the following formula:
  • R is straight or branched hydrocarbon group
  • Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is branched hydrocarbon group
  • Ar is selected from:
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 are S, O, or Se;
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 is H, F, or Cl;
  • Ar is selected from:
  • X can be independently selected from H or F, and R, R2 can be selected from straight-chain or branched saturated hydrocarbon group.
  • an organic photovoltaic (OPV) device is disclosed.
  • the OPV contains conjugated polymers comprising one or more repeating units of the following formula:
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H, F, and straight or branched hydrocarbon group
  • X is S, O, or Se
  • Y is N or C-H.
  • the conjugated polymer comprises one or more repeating units of the following formula:
  • R is selected from H, and straight or branched hydrocarbon groups.
  • S2a 1, 4-di (thiophen-2-yl) benzene
  • S1a 472 mg, 2.0 mmol
  • tributyl (thiophen-2-yl) stannane (1.87 g, 5.0 mmol)
  • Pd 2 (dba) 3 91.5 mg, 0.1 mmol
  • P- (o-tol) 3 182 mg, 0.6 mmol
  • Toluene The mixture was then put into microwave reactor and heated at 110 °C for 1h. After cooled to room temperature, the reaction mixture was filtered, diluted with chloroform and washed with brine 3 times.
  • S2b 2, 2'- (2, 5-difluoro-1, 4-8phenylene) dithiophene
  • S3b ( (2, 5-difluoro-1, 4-phenylene) bis (thiophene-5, 2-diyl) ) bis (trimethylstannane) (S3b) .
  • Synthesis of S3b was carried out in a similar manner to that of S3a using S2b (278 mg, 1.0 mmol) , 1.6 M n-BuLi in hexane (1.38mL, 2.2 mmol) and Me 3 SnCl (2.5mL, 2.5 mmol) .
  • S3b was yielded as a light yellow solid (486 mg, 81%yield) .
  • Example 3a Optical properties
  • Film UV-Vis absorption spectra of polymers from Example 2 were acquired on a Perkin Elmer Lambda 20 UV/VIS Spectrophotometer. All film samples were spin-cast on ITO/ZnO substrates. Solution UV-Vis absorption spectra at elevated temperatures were collected on a Perkin Elmer Lambda 950 UV/VIS/NIR Spectrophotometer. The temperature of the cuvette was controlled with a Perkin Elmer PTP 6+6 Peltier System, which is supplied by a Perkin Elmer PCB 1500 Water Peltier System. Before each measurement, the system was held for at least 10 min at the target temperature to reach thermal equilibrium. A cuvette with a stopper (Sigma Z600628) was used to avoid volatilization during the measurement. The onset of the absorption is used to estimate the polymer bandgap.
  • Cyclic voltammetry was carried out on a CHI760E electrochemical workstation with three electrodes configuration, using Ag/AgCl as the reference electrode, a Pt plate as the counter electrode, and a glassy carbon as the working electrode. Polymers were drop-cast onto the electrode from DCB solutions to form thin films. 0.1 mol L -1 tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile was used as the supporting electrolyte. Potentials were referenced to the ferrocenium/ferrocene couple by using ferrocene as external standards in acetonitrile solutions. The scan rate is 0.1 V s - 1 .
  • Pre-patterned ITO-coated glass with a sheet resistance of about 15 ⁇ per square was used as the substrate. It was cleaned by sequential sonications in soap DI water, DI water, acetone and isopropanol for 30 min at each step. After ultraviolet/ozone treatment for 60 min, a ZnO electron transport layer was prepared by spin coating at 5,000 r.p.m. from a ZnO precursor solution (diethyl zinc) . Active layer solutions (D/A ratio 1: 1.5 by weight) were prepared in CB. To completely dissolve the polymer, the active layer solution should be stirred on a hot plate at 100 °C for at least 3 h. Before spin coating, both the polymer solution and ITO substrate are preheated on a hot plate at about 110 °C.
  • Active layers were spin coated from the warm polymer solution on the preheated substrate in a N 2 glovebox at 1500 to 1800 r.p.m. to obtain thicknesses of about 100 nm.
  • the polymer: SMA films were then annealed at 90 °C for 5 min before being transferred to the vacuum chamber of a thermal evaporator inside the same glovebox.
  • a thin layer (20 nm) of MoO 3 or V 2 O 5 was deposited as the anode interlayer, followed by deposition of 100 nm of Al as the top electrode. All cells were encapsulated using epoxy inside the glovebox.
  • Device J-V characteristics was measured under AM1.5G (100 mW cm -2 ) using a Newport solar simulator (94021A, a Xenon lamp with an AM1.5G filter) in air at room temperature. The light intensity was calibrated using a standard Si diode as a reference cell to bring spectral mismatch to unity. J-V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells have devices area of 5.9 mm 2 , which is defined by a metal mask with an aperture aligned with the device area. EQEs were characterized using a Newport EQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300W lamp source.
  • GIWAXS grazing incidence wide angle X-ray scattering
  • the lamellar stacking d-spacing is also much smaller for PTFB-P (2.2 nm) than for PTFB-O (2.5 nm) , which proves that the interdigitation of alkyl chains in the PTFB-P film is much stronger.
  • both the (010) and (100) crystal sizes of PTFB-P polymer are significantly larger than those of PTFB-O.
  • the blend films of PTFB-O: PC 71 BM and PTFB-P: PC 71 BM were also characterized by GIWAXS.
  • the high polymer crystallinity of PTFB-P is maintained, as the (010) and (100) coherence length of PTFB-P: fullerene are 7.7 and 26 nm, which are significantly larger than those of PTFB-O: PC 71 BM blend.
  • the (010) peak of PTFB-P: PC 71 BM blend changed to a preferred face-on orientation, which should be beneficial for charge transport in the vertical direction across the electrodes.
  • the hole mobilities of the blends were estimated using Space charge limited current (SCLC) methods to be about 1.7 ⁇ 10 -3 cm 2 V -1 s -1 , and 4.7 ⁇ 10 -3 cm 2 V -1 s -1 for PTFB-O: PC 71 BM and PTFB-P: PC 71 BM respectively.
  • SCLC Space charge limited current
  • PTFB-O ITIC
  • PTFB-P ITIC blends were also characterized by GIWAXS and soft X-ray scattering (SoXS) .
  • SoXS soft X-ray scattering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Disclosed are donor-acceptor conjugated polymers, methods for their preparation and intermediates used therein. The conjugated polymer contains chemical structure with difluorobenze-based building blocks.

Description

DIFLUOROBENZE-BASED BUILDING BLOCKS AND CONJUGATED POLYMERS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Ser. No. 62/496,212 filed on 11 Oct. 2016 and entitled “DIFLUOROBENZE-BASED CONJUGATED POLYMERS FOR ELECTRONIC AND PHOTONIC APPLICATIONS” , which is incorporated by reference herein in its entirety.
TECHNICAL FIELD
The present invention relates to novel donor-acceptor conjugated polymers, methods for their preparation and intermediates used therein, the use of formulations containing such polymers as semiconductors in organic photovoltaic (OPV) or other organic electronics (OE) , and to OE and OPV devices made from these formulations.
BACKGROUND
The organic solar cell (OSC) is considered a promising low-cost and environmentally friendly solar technology, as it can be produced using low-cost printing methods and does not contain any toxic components.
A typical OSC device consists of a pair of matching materials that function as electron donor and acceptor, respectively. For the acceptor, fullerene derivatives have been the dominant choice of materials for nearly two decades and best-efficiency (over 10%) OSCs can only be achieved using fullerene acceptors. However, fullerenes exhibit many drawbacks such as high production cost and poor absorption properties.
To overcome these drawbacks, the OSC community has been actively exploring non-fullerene OSCs, which are believed to be the next generation of OSCs that will be more efficient and stable and lower in cost than conventional fullerene devices. There are several material options to construct non-fullerene OSCs. Among them, OSCs based on a polymer donor and a small molecular acceptor (SMA) have seen rapid development in the past two years. To develop efficient polymer: SMA OSCs, intensive research efforts have been devoted to the design and synthesis of novel SMA materials, which then are  typically combined with known donor polymers (for example, PTB7-Th) to construct polymer: SMA OSCs.
However, these known donor polymers were mainly designed for polymer: fullerene OSCs. Although they match well with fullerene acceptors and enable high-efficiency fullerene devices, they may not be the best matching donors for SMA materials.
To achieve efficient OSCs, the donor polymer plays a critical role in controlling the bulk-heterojunction (BHJ) morphology of OSCs. One successful approach of achieving a favorable morphology (containing highly crystalline and small domains) in fullerene OSCs is the use of a family of donor polymers with strong temperature dependent aggregation (TDA) properties, which yielded multiple cases of high-efficiency (higher than 10%) polymer: fullerene OSCs. The crystallinity of these TDA polymers were much greater than conventional PTB7-family polymers. The key property is the strong TDA behavior of polymers, which leads to well-controlled aggregation of the polymer during the film cooling and drying process, resulting in highly crystalline yet small domains (20 nm) at the same time.
However, we found that the state-of-the-art TDA polymers do not perform with in SMA OSCs. For example, while PffBT4T-2OD yielded 10.9%fullerene cells, it only produced lower than 4%devices with SMAs. The successful polymer design rationales for fullerene OSCs do not appear to work best for non-fullerene OSCs and a different polymer design rationale is needed.
SUMMARY
In this invention, we develop novel building blocks and conjugated polymers based on difluorinated benzene unit. Inserting a benzene ring into polymer backbone is usually believed to be harmful to the device performance of polymers, and there are few report of polymers based on benzene building block that can achieve excellent device performances. It is believed that due to the large twisting angle between benzene and thiophene, polymers containing benzene ring cannot form a planar structure and thus of lower mobility, which is harmful for device performances.
Figure PCTCN2017105684-appb-000001
There are significant twisting between benzene and thiophene units
However, it was surprising found in the present invention that when the benzene unit is substituted with two fluorine atoms, the twisting angle between the difluorobenzene unit and the neighboring thiophene units can be reduced. As a result, a near co-planar structure can be formed, which is beneficial for OPV performance.
In some embodiments, we developed difluorobenzene building blocks (named FB-O, T-FB-T-O) and related donor polymers (named PTFB-O, PBTFB-DT) that enable highly efficient non-fullerene OSCs with PCEs up to 10.9%, which is near the best PCEs achievable for fullerene or non-fullerene OSCs to date. Interestingly, this donor polymer does not yield high-efficiency OSCs when combined with fullerene acceptors, the PCE of which is only 6.5%.
Figure PCTCN2017105684-appb-000002
Another polymer (PBTFB-DT) based on this building block is also developed, and the PCE of which is 8.9%. The excellent OSCs device performance of these polymers indicate the difluorobenzene building block is promising for developing polymers in the field of photovoltaics.
In many embodiments, the T-FB-T-O building block can be used to construct  many novel conjugated polymers.
In some other embodiments, another difluorobenzene building block, T-FB-T-P, can also be used to construct conjugated polymers for OPV devices, with high efficiency.
Figure PCTCN2017105684-appb-000003
The formulations, methods and devices of the present invention (diflurobenzene building block) provide surprising improvements in the efficiency of the OE devices and the production thereof. Unexpectedly, the performance, the lifetime and the efficiency of the OE devices can be improved, if these devices are achieved by using a formulation of the present subject matter. Furthermore, the formulation of the present subject matter provides an astonishingly high level of film forming. Especially, the homogeneity and the quality of the films can be improved. In addition thereto, the present subject matter enables better solution printing of OE devices, especially OPV devices.
BRIEF DESCRIPTION OF THE DRAWINGS
It should be understood that the drawings described above or below are for illustration purposes only. The drawings are not necessarily to scale, with emphasis generally being placed upon illustrating the principles of the present teachings. The drawings are not intended to limit the scope of the present teachings in any way.
FIG. 1 shows the solar cell characterization of bulk heterojunction devices prepared from Polymer: SMA. (a) current-voltage plots under illumination with AM 1.5G solar simulated light at 100 mW cm-2. (b) EQE spectra of the BHJ solar cells with SMA.
FIG. 2 shows optical characterization of PTFB-O and PTFB-P. (a) UV-Vis absorption coefficients in solution; (b) comparison of the optical absorbance of pure films normalized by thickness
FIG. 3 shows UV-Vis absorption spectra evolutions of polymers. (a) PTFB-P and (b) PTFB-O in dichlorobenzene solution. (Cooling process, from 100 ℃ to 10 ℃. )
FIG. 4 shows two-dimensional (2D) GIWAXS pattern of pure polymer and polymer blend films. (a) PTFB-O, (b) PTFB-P, (c) PTFB-O: ITIC, (d) PTFB-P: ITIC, (e) PTFB-O: PC71BM, (f) PTFB-P: PC71BM.
DETAILED DESCRIPTION
In a first embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000004
In one example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000005
Wherein R is selected from H, F, and straight or branched hydrocarbon group;
X is S, O, or Se;
Y is N or C-H.
In another example of this embodiment, the conjugated polymer were found to exhibit temperature dependent aggregation properties, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 ℃ to room temperature.
In a second embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000006
Wherein R is selected from H, F, and straight or branched hydrocarbon group;
X is S, O, or Se;
Y is N or C-H.
Ar is selected from the group consisting of unsubstituted or substituted monocyclic,  bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
In one example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000007
wherein R is selected from H and straight or branched hydrocarbon group;
Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
In a third embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000008
wherein R is branched hydrocarbon group;
Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
In one example of this embodiment, Ar is selected from:
Figure PCTCN2017105684-appb-000009
Figure PCTCN2017105684-appb-000010
Z1, Z2, Z3, Z4, Z5, Z6 are S, O, or Se;
X1, X2, X3, X4, X5, X6, X7, X8 is H, F, or Cl;
R, R3, R4 are independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, - CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
In a fourth embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000011
In one example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000012
wherein R is selected from H, F, and straight or branched hydrocarbon group;
X is S, O, or Se;
Y is N or C-H.
In another example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000013
wherein R is selected from H, and straight or branched hydrocarbon groups.
In still another example of this embodiment, the conjugated polymer were found  to exhibit temperature dependent aggregation properties, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 ℃ to room temperature.
In a fifth embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000014
wherein R is selected from H and straight or branched hydrocarbon group;
Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
In a sixth embodiment of the present invention, a conjugated polymer is disclosed. The conjugated polymer comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000015
wherein R is straight or branched hydrocarbon group;
Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
In one example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000016
Figure PCTCN2017105684-appb-000017
wherein R is branched hydrocarbon group;
Ar is selected from:
Figure PCTCN2017105684-appb-000018
Figure PCTCN2017105684-appb-000019
Z1, Z2, Z3, Z4, Z5, Z6 are S, O, or Se;
X1, X2, X3, X4, X5, X6, X7, X8 is H, F, or Cl;
R, R3, R4 are independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl,  Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
In some embodiments, Ar is selected from:
Figure PCTCN2017105684-appb-000020
wherein X can be independently selected from H or F, and R, R2 can be selected from straight-chain or branched saturated hydrocarbon group.
In a seventh embodiment of the present invention, an organic photovoltaic (OPV) device is disclosed. The OPV contains conjugated polymers comprising one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000021
In one example of this embodiment, the conjugated polymer comprises one or  more repeating units of the following formula:
Figure PCTCN2017105684-appb-000022
Wherein R is selected from H, F, and straight or branched hydrocarbon group;
X is S, O, or Se;
Y is N or C-H.
In another example of this embodiment, the conjugated polymer comprises one or more repeating units of the following formula:
Figure PCTCN2017105684-appb-000023
wherein R is selected from H, and straight or branched hydrocarbon groups.
EXAMPLES
Example 1 -Synthesis of monomers
Figure PCTCN2017105684-appb-000024
1, 4-di (thiophen-2-yl) benzene (S2a) . To a 50 mL tube were added S1a (472 mg, 2.0 mmol) , tributyl (thiophen-2-yl) stannane (1.87 g, 5.0 mmol) , Pd2 (dba) 3 (91.5 mg, 0.1 mmol) , P- (o-tol) 3 (182 mg, 0.6 mmol) and Toluene. The mixture was then put into microwave reactor and heated at 110 ℃ for 1h. After cooled to room temperature, the reaction mixture was filtered, diluted with chloroform and washed with brine 3 times. The organic layer was dried over Na2SO4, filtered and concentrated. Then the residue was recrystallized from isopropanol to yield pure product S2a as a light yellow solid (308 mg, 64%yield) . 1H NMR (400 MHz, CDCl3) δ 7.62 (s, 4H) , 7.34 (d, J = 3.6 Hz, 2H) , 7.29 (d, J = 5.1 Hz, 2H) , 7.11 -7.07 (m, 2H) . 13C NMR (101 MHz, CDCl3) δ 143.90, 133.48,  128.10, 126.29, 124.90, 123.10. HRMS (MALDI+) Calcd for C14H10S2 (M +) : 242.0224, Found: 242.0230.
2, 2'- (2, 5-difluoro-1, 4-8phenylene) dithiophene (S2b) . Synthesis of S2b was carried out in a similar manner to that of S2a using S1b (544 mg, 2.0 mmol) , tributyl (thiophen-2-yl) stannane (1.87 g, 5.0 mmol) , Pd2 (dba) 3 (91.5 mg, 0.1 mmol) , P- (o-tol) 3 (182 mg, 0.6 mmol) and Toluene. . (406 mg, 73%yield) . 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 3.6 Hz, 2H) , 7.40 (d, J = 5.1 Hz, 2H) , 7.37 (d, J = 4.0 Hz, 2H) , 7.17 -7.11 (m, 2H) . 19F NMR (376 MHz, CDCl3) δ -139.10 (s) . 13C NMR (101 MHz, CDCl3) δ 148.02 (dd, J = 253.0, 15.9 Hz) , 135.88 (s) , 127.96 (s) , 126.89 (t, J = 3.2 Hz) , 126.39 (s) , 122.80 (t, J = 3.6 Hz) , 122.67 -122.44 (m) . HRMS (MALDI+) Calcd for C14H8F2S2 (M +) : 278.0035, Found: 278.0031.
2, 2'- (2, 3-difluoro-1, 4-phenylene) dithiophene (S2c) . Synthesis of S2c was carried out in a similar manner to that of S2b. (420 mg, 76%yield) . 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 3.6 Hz, 2H) , 7.41 (m, 4H) , 7.16 -7.11 (m, 2H) . 19F NMR (376 MHz, CDCl3) δ -119.17 (t, J = 9.1 Hz) . 13C NMR (101 MHz, CDCl3) δ 154.87 (dd, J =247.5, 3.3 Hz) , 135.79 (s) , 127.89 (s) , 126.86 (t, J = 3.2 Hz) , 126.54 (t, J = 1.8 Hz) , 122.25 -121.55 (m) , 115.38 (dd, J = 19.4, 12.1 Hz) . HRMS (MALDI+) Calcd for C14H8F2S2 (M +) : 278.0035, Found: 278.0038.
1, 4-bis (5- (trimethylstannyl) thiophen-2-yl) benzene (S3a) To a solution of S2a (242 mg, 1.0 mmol) in 20 mL fresh distilled anhydrous THF was added 1.6 M n-BuLi in hexane (1.38mL, 2.2 mmol) dropwise at -78 ℃ under N2. The mixture was warmed and stirred at 0 ℃ for 1h. 1.0 M Me3SnCl in hexane (2.5mL, 2.5 mmol) was then added in one portion at -78 ℃ and the reaction mixture was warmed to room temperature and stirred overnight. The resulted solution was then extracted by ethyl acetate 3 times. The organic layer was combined and washed with brine 3 times. The organic layer was dried over Na2SO4, filtered and concentrated. Then the residue was recrystallized from isopropanol to yield pure product S3a as a light green solid (402 mg, 71%yield) . 1H NMR (400 MHz, CDCl3) δ 7.61 (s, 4H) , 7.43 (d, J = 3.3 Hz, 2H) , 7.17 (d, J = 3.4 Hz, 2H) , 0.50 -0.30 (m, 18H) . 13C NMR (101 MHz, CDCl3) δ 149.71 (s) , 137.70 (s) , 136.24 (s) , 133.33 (s) , 126.23 (s) , 124.23 (s) , -8.23 (s) . HRMS (MALDI+) Calcd for C20H26S2Sn2 (M +) : 568.9520, Found: 568.9537.
( (2, 5-difluoro-1, 4-phenylene) bis (thiophene-5, 2-diyl) ) bis (trimethylstannane) (S3b) . Synthesis of S3b was carried out in a similar manner to that of S3a using S2b (278 mg, 1.0 mmol) , 1.6 M n-BuLi in hexane (1.38mL, 2.2 mmol) and Me3SnCl (2.5mL, 2.5 mmol) . S3b was yielded as a light yellow solid (486 mg, 81%yield) . 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 3.2 Hz, 2H) , 7.39 (d, J = 3.9 Hz, 2H) , 7.22 (d, J = 3.4 Hz, 2H) , 0.50 -0.33 (m, 18H) . 19F NMR (376 MHz, CDCl3) δ -139.08 (d, J = 7.4 Hz) . 13C NMR (101 MHz, CDCl3) δ 147.75 (dd, J = 252.6, 15.9 Hz) , 141.59 (s) , 139.52 (s) , 136.02 (s) , 127.83 (s) , 122.84 (s) , 122.44 (s) , -8.20 (s) . HRMS (MALDI+) Calcd for C20H24F2S2Sn2 (M +) : 605.9331, Found: 605.9329
( (2, 3-difluoro-1, 4-phenylene) bis (thiophene-5, 2-diyl) ) bis (trimethylstannane) (S3c) . Synthesis of S3c was carried out in a similar manner to that of S3b. S3c was yielded as a colorless solid (443 mg, 73%yield) 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 3.2 Hz, 2H) , 7.40 (t, J = 9.1 Hz, 2H) , 7.21 (m, 2H) , 0.62 -0.27 (m, 18H) . 19F NMR (376 MHz, CDCl3) δ -119.11 (m) . 13C NMR (101 MHz, CDCl3) δ 154.61 (dd, J = 247.1, 3.2 Hz) , 141.48 (s) , 139.70 (s) , 136.71 -135.42 (m) , 127.76 (t, J = 3.0 Hz) , 122.21 -121.44 (m) , 115.27 (dd, J = 19.3, 12.2 Hz) , -8.16 (s) . HRMS (MALDI+) Calcd for C20H24F2S2Sn2 (M +) : 605.9331, Found: 605.9328.
Example 2 -Synthesis of polymers
Figure PCTCN2017105684-appb-000025
Synthesis of PTB. To a 10 mL Microwave vial equipped with stir bar, S4 (23.8mg, 0.02 mmol) , S3a (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial  was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chloroform. After cooled to room temperature, the chloroform portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark red solid. (16.7mg, 66 %yield) : GPC: Mn: 36.2 kDa, Mw: 71.4 kDa; PDI=1.97.1H NMR (400 MHz, CDCl3) δ 8.19 (s, 2H) , 7.71 (s, 4H) , 7.39 (s, 2H) , 7.29 (s, 2H) , 4.83 (s, 2H) , 2.92 (s, 4H) , 2.30 (s, 2H) , 1.89 (s, 2H) , 1.65 -1.05 (m, 77H) , 0.91 (s, 12H) . Anal. Calcd for C65H93F4N3S4: C, 74.54; H, 9.11; N, 3.30. Found: C, 74.24; H, 9.08; N, 3.20.
Synthesis of PTFB-O. To a 10 mL Microwave vial equipped with stir bar, S4 (23.8mg, 0.02 mmol) , S3b (12.1mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone, chloroform and toluene. After cooled to room temperature, the toluene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark red solid. (15.0 mg, 57 %yield) : GPC: Mn: 43.8 kDa, Mw: 88.4 kDa; PDI=2.02.1H NMR (400 MHz, CDCl3) δ 8.20 (s, 2H) , 7.57 (s, 2H) , 7.49 (s, 2H) , 7.34 (s, 2H) , 4.84 (s, 2H) , 3.49 (s, 2H) , 2.93 (s, 4H) , 2.31 (s, 2H) , 1.90 (s, 2H) , 1.37 (d, J = 54.1 Hz, 74H) , 1.18 (s, 3H) , 0.92 (s, 12H) . Anal. Calcd for C65H93F4N3S4: C, 72.49; H, 8.70; N, 3.21. Found: C, 72.22; H, 8.90; N, 3.20.
Synthesis of PTFB-P. To a 10 mL Microwave vial equipped with stir bar, S4 (23.8mg, 0.02 mmol) , S3c (12.1mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and oroform. After cooled to room temperature, the toluene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark red solid. (18.3 mg, 70 %yield) : GPC: Mn: 46.1 kDa, Mw: 75.8 kDa; PDI=1.64.1H NMR (400 MHz, CDCl3) δ 8.20 (s, 2H) , 7.53 (s, 4H) , 7.33  (s, 2H) , 4.82 (s, 2H) , 2.92 (s, 4H) , 2.29 (s, 2H) , 1.89 (s, 2H) , 1.36 (d, J = 44.3 Hz, 74H) , 1.17 (s, 3H) , 0.91 (s, 12H) . Anal. Calcd for C65H93F4N3S4: C, 72.49; H, 8.70; N, 3.21. Found: C, 72.53; H, 8.81; N, 3.13.
Synthesis of P1
Figure PCTCN2017105684-appb-000026
To a 10 mL Microwave vial equipped with stir bar, S5 (22.3mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark green solid. (14.1mg, 54.6 %yield. )
Synthesis of P 2
Figure PCTCN2017105684-appb-000027
To a 10 mL Microwave vial equipped with stir bar, S6 (27.0mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The  resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark blue solid. (20.8mg, 66.0%yield)
Synthesis of P3
Figure PCTCN2017105684-appb-000028
To a 10 mL Microwave vial equipped with stir bar, S7 (27.0mg, 0.02 mmol) , S3b (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark blue solid. (22.4mg, 71.1%yield)
Synthesis of P4
Figure PCTCN2017105684-appb-000029
To a 10 mL Microwave vial equipped with stir bar, S8 (24.0mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After  transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chloroform. After cooled to room temperature, the chloroform portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark green solid. (18.0mg, 67%yield)
Synthesis of P5
Figure PCTCN2017105684-appb-000030
To a 10 mL Microwave vial equipped with stir bar, S9 (23.0mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark green solid. (21.5mg, 74.1 %yield)
Synthesis of P6
Figure PCTCN2017105684-appb-000031
To a 10 mL Microwave vial equipped with stir bar, S10 (23.7mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark purple solid. (17.5mg, 65.8 %yield)
Synthesis of P7
Figure PCTCN2017105684-appb-000032
To a 10 mL Microwave vial equipped with stir bar, S10 (23.7mg, 0.02 mmol) , S3b (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark purple solid. (18.6mg, 69.9 %yield)
Synthesis of P8
Figure PCTCN2017105684-appb-000033
To a 10 mL Microwave vial equipped with stir bar, S11 (31.4mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark purple solid. (24.5mg, 71.5 %yield)
Synthesis of P9
Figure PCTCN2017105684-appb-000034
To a 10 mL Microwave vial equipped with stir bar, S11 (31.4mg, 0.02 mmol) , S3b (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark purple solid. (23.1mg, 67.2 %yield)
Synthesis of P10
Figure PCTCN2017105684-appb-000035
To a 10 mL Microwave vial equipped with stir bar, S12 (32.9mg, 0.02 mmol) , S3b (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark green solid. (24.8mg, 69.1 %yield)
Synthesis of P11
Figure PCTCN2017105684-appb-000036
To a 10 mL Microwave vial equipped with stir bar, S12 (32.9mg, 0.02 mmol) , S3c (11.4mg, 0.02 mmol) , Pd2 (dba) 3 (0.3 mg) and P (o-tol) 3 (0.6 mg) were added. After transferred to glove box and 0.3 mL chlorobenzene added, the vial was sealed and heated at 140 ℃ for 24h. Then the product was diluted with chlorobenzene and precipitated in methanol. The resulting solids were subsequently subjected to Soxhlet extraction with acetone and chlorobenzene. After cooled to room temperature, the chlorobenzene portion was concentrated, precipitated in methanol, collected by filtration and dried in vacuo to get the polymer as dark green solid. (20.7mg, 57.7 %yield)
Example 3 -Characterization of Polymers
Example 3a: Optical properties
Film UV-Vis absorption spectra of polymers from Example 2 were acquired on a Perkin Elmer Lambda 20 UV/VIS Spectrophotometer. All film samples were spin-cast on ITO/ZnO substrates. Solution UV-Vis absorption spectra at elevated temperatures were collected on a Perkin Elmer Lambda 950 UV/VIS/NIR Spectrophotometer. The temperature of the cuvette was controlled with a Perkin Elmer PTP 6+6 Peltier System, which is supplied by a Perkin Elmer PCB 1500 Water Peltier System. Before each measurement, the system was held for at least 10 min at the target temperature to reach thermal equilibrium. A cuvette with a stopper (Sigma Z600628) was used to avoid volatilization during the measurement. The onset of the absorption is used to estimate the polymer bandgap.
Example 3b: Electronic properties
Cyclic voltammetry was carried out on a CHI760E electrochemical workstation with three electrodes configuration, using Ag/AgCl as the reference electrode,  a Pt plate as the counter electrode, and a glassy carbon as the working electrode. Polymers were drop-cast onto the electrode from DCB solutions to form thin films. 0.1 mol L-1 tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile was used as the supporting electrolyte. Potentials were referenced to the ferrocenium/ferrocene couple by using ferrocene as external standards in acetonitrile solutions. The scan rate is 0.1 V s- 1.
Example 4 -Device Fabrication
Pre-patterned ITO-coated glass with a sheet resistance of about 15Ω per square was used as the substrate. It was cleaned by sequential sonications in soap DI water, DI water, acetone and isopropanol for 30 min at each step. After ultraviolet/ozone treatment for 60 min, a ZnO electron transport layer was prepared by spin coating at 5,000 r.p.m. from a ZnO precursor solution (diethyl zinc) . Active layer solutions (D/A ratio 1: 1.5 by weight) were prepared in CB. To completely dissolve the polymer, the active layer solution should be stirred on a hot plate at 100 ℃ for at least 3 h. Before spin coating, both the polymer solution and ITO substrate are preheated on a hot plate at about 110 ℃. Active layers were spin coated from the warm polymer solution on the preheated substrate in a N2 glovebox at 1500 to 1800 r.p.m. to obtain thicknesses of about 100 nm. The polymer: SMA films were then annealed at 90 ℃ for 5 min before being transferred to the vacuum chamber of a thermal evaporator inside the same glovebox. At a vacuum level of 3 × 10-6 Torr, a thin layer (20 nm) of MoO3 or V2O5 was deposited as the anode interlayer, followed by deposition of 100 nm of Al as the top electrode. All cells were encapsulated using epoxy inside the glovebox. Device J-V characteristics was measured under AM1.5G (100 mW cm-2) using a Newport solar simulator (94021A, a Xenon lamp with an AM1.5G filter) in air at room temperature. The light intensity was calibrated using a standard Si diode as a reference cell to bring spectral mismatch to unity. J-V characteristics were recorded using a Keithley 2400 source meter unit. Typical cells have devices area of 5.9 mm2, which is defined by a metal mask with an aperture aligned with the device area. EQEs were characterized using a Newport EQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300W lamp source.
Example 5 -Device Performance
The performance of OSCs based on PTFB-O and PTFB-P combined with a SMA (named ITIC, Figure 1b) or fullerene acceptor are summarized in Table 1. When ITIC was combined with PTFB-O, an impressive PCE of 10.1%was obtained, while the combination of PTFB-P and ITIC only achieved a PCE of 7.9% (Table 1, Figure 1) . However, when PTFB-O and PTFB-P were combined with PC71BM, PTFB-P yielded much better performance than PTFB-O (Supplementary Figure 2) . It thus appears that PTFB-O is a much more superior donor polymer match for ITIC, while PTFB-P is a better donor match for fullerene acceptor. By further optimizing the small molecule, 10.9%cell can be achieved combining PTFB-O with ITIC-Th (Figure 1) , mainly due to higher Jsc, originating from the stronger absorption properties of ITIC-Th.
Table 1. Photovoltaic properties of solar cells based on polymer: PC71BM and SMA. The average values are from 30 devices.
Figure PCTCN2017105684-appb-000037
Example 6 -Mophology Characterization
We characterize the pure PTFB-O and PTFB-P films by grazing incidence wide angle X-ray scattering (GIWAXS) and compare their polymer crystallinity. The GIWAXS 2D maps of pure PTFB-O and PTFB-P films are shown in Figure 4 and the (010) and (100) crystal size and d spacing data are summarized in Table 2. It is clear that PTFB-P exhibits exceptionally strong lamellar stacking as high order diffraction peaks of (100) , (200) , (300) and (400) are all clearly visible. In contrast, the PTFB-O film does not exhibit high order lamellar stacking peaks and the peak intensity is quite low. The lamellar stacking d-spacing is also much smaller for PTFB-P (2.2 nm) than for PTFB-O (2.5 nm) , which proves that the interdigitation of alkyl chains in the PTFB-P film is much  stronger. In addition, both the (010) and (100) crystal sizes of PTFB-P polymer are significantly larger than those of PTFB-O. These GIWAXS results are in good agreement with the highly regioregular structure and parallel alkyl chain arrangement of PTFB-P.
To understand the performance difference of fullerene OSCs based on PTFB-O and PTFB-P, the blend films of PTFB-O: PC71BM and PTFB-P: PC71BM were also characterized by GIWAXS. For polymer: fullerene blend films, the high polymer crystallinity of PTFB-P is maintained, as the (010) and (100) coherence length of PTFB-P: fullerene are 7.7 and 26 nm, which are significantly larger than those of PTFB-O: PC71BM blend. In addition, the (010) peak of PTFB-P: PC71BM blend changed to a preferred face-on orientation, which should be beneficial for charge transport in the vertical direction across the electrodes. The hole mobilities of the blends were estimated using Space charge limited current (SCLC) methods to be about 1.7 × 10-3 cm2 V-1 s-1, and 4.7 × 10-3 cm2 V-1 s-1 for PTFB-O: PC71BM and PTFB-P: PC71BM respectively. Indeed, the high polymer crystallinity of PTFB-P leads to significantly higher hole mobility, which can explain the high FF of the OSCs based on PTFB-P: PC71BM. These results are consistent with our previous reports showing that regioregular polymers typically exhibit stronger interdigitation and thus enhanced lamellar stacking and larger crystal size. These data explained the higher FF and efficiencies of PTFB-P than PTFB-O in fullerene based OSCs.
For non-fullerene OSCs based on SMA, PTFB-O: ITIC and PTFB-P: ITIC blends were also characterized by GIWAXS and soft X-ray scattering (SoXS) . Although the PTFB-P polymer is highly crystalline, GIWAXS data show that it cannot maintain its high crystallinity when blended with ITIC. As shown in Figure 4, the scattering intensity of PTFB-P: ITIC film is low and the (010) coherence length is reduced to only 3.4 nm. Integration of the scattering intensity of the (010) peaks of PTFB-P: ITIC and PTFB-O: ITIC films show that the scattering intensity of PTFB-P: ITIC is only 50%as much as that of PTFB-O: ITIC, which indicates that there is a significantly smaller volume fraction of crystalline domain for PTFB-P: ITIC. This result is also consistent with the hole mobility data of the two blends, which showed that the PTFB-O: ITIC blend exhibits a higher SCLC mobility of 4.4 × 10-4 cm2 V-1 s-1, versus 3.3 × 10-4 cm2 V-1 s-1 for PTFB-P: ITIC.
R-SoXS data revealed that the average domain size of PTFB-P: ITIC is about 50 nm, which is significantly larger than that of PTFB-O: ITIC. This result is also consistent with TEM and AFM images of the blend films, indicative of a significantly larger domain size for PTFB-P: ITIC. Considering that the commonly accepted optimal domain size for OSCs is about 20 ~ 30 nm, the excessively large domain size of the PTFB-P: ITIC should be one of the reasons that hurts the performance of PTFB-P: ITIC-based devices. The larger domain size of PTFB-P: PC71BM could be due to the stronger π-π and lamellar stacking tendency of the PTFB-P polymer, which tend to stack into larger domains.
Table 2. Coherence length, d spacing and integration of peak intensity for pure polymer, polymer: SMA and polymer: PC71BM films

Claims (19)

  1. A conjugated polymer comprising one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100001
  2. The conjugated polymer in claim 1, wherein the conjugated polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100002
    Wherein R is selected from H, F, and straight or branched hydrocarbon group;
    X is S, O, or Se;
    Y is N or C-H.
  3. The conjugated polymer in claim 1, wherein the conjugated polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100003
    Wherein R is selected from H, and straight or branched hydrocarbon groups.
  4. The conjugated polymer of claim 1, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 ℃ to room temperature.
  5. The conjugated polymer of claim 1, wherein the conjugated polymer contains one or more repeating unit of the formula of:
    Figure PCTCN2017105684-appb-100004
    Wherein R is selected from H, F, and straight or branched hydrocarbon group;
    X is S, O, or Se;
    Y is N or C-H.
    Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  6. The conjugated polymer of claim 1, wherein the polymer contains one or more repeating unit of formula of:
    Figure PCTCN2017105684-appb-100005
    Wherein R is selected from H and straight or branched hydrocarbon group;
    Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  7. The conjugated polymer of claim 1, wherein the polymer contains one or more repeating unit of formula selected from:
    Figure PCTCN2017105684-appb-100006
    Wherein R is branched hydrocarbon group;
    Ar is selected from the group consisting of unsubstituted or substituted monocyclic,  bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  8. The conjugated polymer of claim 1, wherein the polymer contains one or more repeating unit of formula selected from:
    Figure PCTCN2017105684-appb-100007
    Wherein R is straight or branched hydrocarbon group;
    Ar is selected from:
    Figure PCTCN2017105684-appb-100008
    Figure PCTCN2017105684-appb-100009
    Z1, Z2, Z3, Z4, Z5, Z6 are S, O, or Se;
    X1, X2, X3, X4, X5, X6, X7, X8 is H, F, or Cl;
    R, R3, R4 are independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, - CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl, Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
  9. A conjugated polymer comprising one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100010
  10. The conjugated polymer in claim 10, wherein the polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100011
    Wherein R is selected from H, F, and straight or branched hydrocarbon group;
    X is S, O, or Se;
    Y is N or C-H.
  11. The conjugated polymer in claim 10, wherein the polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100012
    Wherein R is selected from H, and straight or branched hydrocarbon groups.
  12. The conjugated polymer of claim 10, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 ℃ to room temperature.
  13. The conjugated polymer of claim 10, wherein the polymer contains one or more repeating unit of formula of:
    Figure PCTCN2017105684-appb-100013
    Wherein R is selected from H and straight or branched hydrocarbon group;
    Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  14. The conjugated polymer of claim 10, wherein the polymer contains one or more repeating unit of formula selected from:
    Figure PCTCN2017105684-appb-100014
    Wherein R is straight or branched hydrocarbon group;
    Ar is selected from the group consisting of unsubstituted or substituted monocyclic, bicyclic, and polycyclic arylene, and monocyclic, bicyclic, and polycyclic heteroarylene, wherein Ar may contain one to five of said arylene or heteroarylene each of which may be fused or linked.
  15. The conjugated polymer of claim 10, wherein the polymer contains one or more repeating unit of formula selected from:
    Figure PCTCN2017105684-appb-100015
    Figure PCTCN2017105684-appb-100016
    Wherein R is branched hydrocarbon group;
    Ar is selected from:
    Figure PCTCN2017105684-appb-100017
    Figure PCTCN2017105684-appb-100018
    Z1, Z2, Z3, Z4, Z5, Z6 are S, O, or Se;
    X1, X2, X3, X4, X5, X6, X7, X8 is H, F, or Cl;
    R, R3, R4 are independently selected from the group consisting of straight-chain, branched, and cyclic alkyl with 2-40 C atoms, wherein one or more non-adjacent C atoms are optically replaced by -O-, -S-, -C (O) -, -C (O-) -O-, -O-C (O) -, -O-C (O) -O-, -CR0=CR00-, or -C≡C-, and wherein one or more H atoms are optionally replaced by F, Cl,  Br, I, or CN or denote aryl, heteroaryl, aryoxy, heteroaryloxy, arycarbonyl, heteroarycarbonyl, arycarbonyloxy, heteroarylcarbonyloxy, aryxycarbonyl, or heteroaryloxycarbonyl having 4 to 30 ring atoms unsubstituted or substituted by one or more non-aromatic groups, wherein R0 and R00 are independently a straight-chain, branched, or cyclic alkyl group;
  16. An organic photovoltaic (OPV) device that contains conjugated polymers comprising one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100019
  17. An organic solar cell device of claim 17, wherein the conjugated polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100020
    Wherein R is selected from H, F, and straight or branched hydrocarbon group;
    X is S, O, or Se;
    Y is N or C-H.
  18. The conjugated polymer in claim 17, wherein the polymer comprises one or more repeating units of the following formula:
    Figure PCTCN2017105684-appb-100021
    Wherein R is selected from H, and straight or branched hydrocarbon groups.
  19. The conjugated polymer of claim 17, characterized in that the absorption onset of the polymer solution exhibits a red shift of at least 50 nm when the solution is cooled from 140 ℃ to room temperature.
PCT/CN2017/105684 2016-10-11 2017-10-11 Difluorobenze-based building blocks and conjugated polymers WO2018068725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662496212P 2016-10-11 2016-10-11
US62/496,212 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068725A1 true WO2018068725A1 (en) 2018-04-19

Family

ID=61905184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105684 WO2018068725A1 (en) 2016-10-11 2017-10-11 Difluorobenze-based building blocks and conjugated polymers

Country Status (1)

Country Link
WO (1) WO2018068725A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018196792A1 (en) * 2017-04-25 2018-11-01 The Hong Kong University Of Science And Technology Vertical benzodithiophene-based donor-acceptor polymers for electronic and photonic applications
KR20200042173A (en) * 2018-10-15 2020-04-23 주식회사 엘지화학 Polymer, composition comprising the same and organic solar cell comprising the same
CN114276523A (en) * 2022-01-26 2022-04-05 华南理工大学 Conjugated polymer containing monohalogenated benzene and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031479A1 (en) * 2008-09-19 2010-03-25 Merck Patent Gmbh Polymers derived from bis(thienocyclopenta)benzothiadiazole and their use as organic semiconductors
WO2011060526A1 (en) * 2009-11-18 2011-05-26 National Research Council Of Canada Fluorinated monomers, oligomers and polymers for use in organic electronic devices
CN102504212A (en) * 2011-11-04 2012-06-20 南昌大学 Cross-linkable fluorobenzene-containing end-capped conjugated polymer based on benzodithiophene and double thiophene-substituted difluorobenzothiadiazole and application thereof to solar cell
WO2012079675A2 (en) * 2010-12-17 2012-06-21 Merck Patent Gmbh Conjugated polymers
WO2013120590A1 (en) * 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013159862A1 (en) * 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031479A1 (en) * 2008-09-19 2010-03-25 Merck Patent Gmbh Polymers derived from bis(thienocyclopenta)benzothiadiazole and their use as organic semiconductors
WO2011060526A1 (en) * 2009-11-18 2011-05-26 National Research Council Of Canada Fluorinated monomers, oligomers and polymers for use in organic electronic devices
WO2012079675A2 (en) * 2010-12-17 2012-06-21 Merck Patent Gmbh Conjugated polymers
CN102504212A (en) * 2011-11-04 2012-06-20 南昌大学 Cross-linkable fluorobenzene-containing end-capped conjugated polymer based on benzodithiophene and double thiophene-substituted difluorobenzothiadiazole and application thereof to solar cell
WO2013120590A1 (en) * 2012-02-15 2013-08-22 Merck Patent Gmbh Conjugated polymers
WO2013159862A1 (en) * 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018196792A1 (en) * 2017-04-25 2018-11-01 The Hong Kong University Of Science And Technology Vertical benzodithiophene-based donor-acceptor polymers for electronic and photonic applications
KR20200042173A (en) * 2018-10-15 2020-04-23 주식회사 엘지화학 Polymer, composition comprising the same and organic solar cell comprising the same
KR102560363B1 (en) 2018-10-15 2023-07-26 주식회사 엘지화학 Polymer, composition comprising the same and organic solar cell comprising the same
CN114276523A (en) * 2022-01-26 2022-04-05 华南理工大学 Conjugated polymer containing monohalogenated benzene and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US9035015B1 (en) Photovoltaic cell containing novel photoactive polymer
EP3044817B1 (en) Inverted solar cell and process for producing the same
Wang et al. New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor–acceptor unit for solar cell applications
EP2072557A1 (en) Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
CN107365411B (en) Hole transport layer containing organic conjugated polymer semiconductor material and application thereof
US10446756B2 (en) Conjugated polymers based on terthiophene and their applications
US9296864B2 (en) Polymer material for highly efficient organic thin-film solar cell, and organic thin-film solar cell using same
KR101853395B1 (en) Electron donating polymer and solar cell including the same
US10312446B2 (en) Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
EP3094688B9 (en) Hole transporting and light absorbing material for solid state solar cells
TW201130883A (en) High-polymer compound, film containing the same and ink composition
WO2018068725A1 (en) Difluorobenze-based building blocks and conjugated polymers
US10727414B2 (en) Functional hole transport materials for optoelectronic and/or electrochemical devices
WO2018035695A1 (en) Polymeric semiconductors and their preparation methods, as well as their uses
KR20140047812A (en) New organic semiconductor compound and a method for manufacturing the same
Liu et al. Benzothiadiazole–an excellent acceptor for indacenodithiophene based polymer solar cells
Liu et al. Polymer Solar Cells Based on the Copolymers of Naphtho [1, 2‐c: 5, 6‐c] bis (1, 2, 5‐thiadiazole) and Alkoxylphenyl Substituted Benzodithiophene with High Open‐Circuit Voltages
TW201247737A (en) Polymeric compound and electronic element by using the same
KR20160041144A (en) Polythiophene composition, and organic photoelectronic device including the same
US11114619B2 (en) Conjugated polymer for a photoactive layer, a coating composition including the conjugated polymer, and an organic solar cell including the photoactive layer
Wang et al. Polythiophenes comprising conjugated pendants toward long-term air-stable inverted polymer solar cells with high open circuit voltages
KR20170140582A (en) Ethanol processible photovoltaic polymer and fullerene derivative, method for preparing the same, polymer solar cell comprising the polymer and fullerene derivative as active layer, and method for preparing the same
JP2018039968A (en) Polymer, method of preparing the same, and organic optoelectric device including the same
KR20120084968A (en) Copolymer containing thienylenevinylene unit and organic electronic devices using the copolymer
KR101833215B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronic device containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859729

Country of ref document: EP

Kind code of ref document: A1