WO2018068449A1 - 一种控制方法、装置和头戴式设备 - Google Patents

一种控制方法、装置和头戴式设备 Download PDF

Info

Publication number
WO2018068449A1
WO2018068449A1 PCT/CN2017/073214 CN2017073214W WO2018068449A1 WO 2018068449 A1 WO2018068449 A1 WO 2018068449A1 CN 2017073214 W CN2017073214 W CN 2017073214W WO 2018068449 A1 WO2018068449 A1 WO 2018068449A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical component
light
liquid crystal
transmittance
crystal molecules
Prior art date
Application number
PCT/CN2017/073214
Other languages
English (en)
French (fr)
Inventor
吴永辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018068449A1 publication Critical patent/WO2018068449A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present disclosure relates to virtual reality technology, and in particular, to a control method, apparatus, and head mounted device.
  • Today's head-mounted devices such as virtual reality glasses and virtual reality helmets, have become an indispensable tool in people's life and entertainment. Under normal circumstances, after the user wears the head-mounted device, the user's eyes need to be in a closed dark room. If the light intensity of the external environment is too different from the brightness of the display of the head-mounted device, it is easy to stimulate the eyes of the user. Feeling, making the user feel uncomfortable with the headset.
  • the brightness of the head-mounted device by controlling the display brightness of the liquid crystal display (LCD), that is, setting a fixed value to achieve brightness control.
  • LCD liquid crystal display
  • the brightness adjustment of the LCD of the device under test is not suitable; or if the brightness of the LCD is set to a fixed value, the brightness of the human eye is inconsistent when different interfaces/scene appear during the user's use.
  • the light source controls the display brightness of the head mounted device is a problem that needs to be solved now.
  • the embodiments of the present disclosure provide a control method, a device, and a head mounted device, which are capable of adjusting a brightness value viewed by a user according to a real-time brightness of an environment, and matching the display brightness obtained by the brightness value. The actual viewing needs of the user.
  • the embodiment of the present disclosure provides a control method, which is applied to a head mounted device, and the method includes:
  • the light intensity of the light is controlled to meet a preset value according to the transmittance of the first optical component.
  • the method before the detecting whether the light intensity of the acquired light meets a preset value, the method further includes:
  • the second optical component is a beam splitter.
  • the first optical component is an optical component covered with a layer of liquid crystal molecules
  • the light intensity of the light does not meet a preset value, and the transmittance of the first optical component of the head mounted device is adjusted and controlled, including:
  • the light intensity of the light is less than the predetermined value, and the light flux of the light passing through the liquid crystal molecules is increased by changing the turning distortion of each liquid crystal molecule to increase the transmittance of the first optical component;
  • the light intensity of the light is greater than the predetermined value, and the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule to reduce the transmittance of the first optical component.
  • the light intensity of the light does not meet a preset value
  • adjusting the transmittance of the first optical component of the head mounted device further includes:
  • the turning distortion of the liquid crystal molecules in the partial region of the first optical component is changed such that the light flux of the light passing through the liquid crystal molecules is changed to adjust the transmittance of the light sensor corresponding to a partial region of the first optical component.
  • the first optical component is an addressable liquid crystal panel
  • the increasing or decreasing the transmittance of the first optical component includes:
  • the transmittance of the first optical component is increased or decreased according to a voltage value across the liquid crystal molecules of each unit pixel of the first optical component.
  • the method before the adjusting the transmittance of the first optical component of the head mounted device, the method further includes:
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • the embodiment of the present disclosure further provides a head mounted device, the head mounted device comprising: a first optical component, a control system;
  • the control system is configured to detect whether the light intensity of the acquired light meets a preset value
  • the head mounted device further includes: a photometry system
  • the photometric system is configured to detect, by a light sensor, an illumination intensity of the light reflected by a second optical component of the head mounted device;
  • the second optical component is a beam splitter.
  • the first optical component is an optical component covered with a layer of liquid crystal molecules
  • the control system is configured to change each liquid when the light intensity of the light is less than the preset value
  • the turning distortion of the crystal molecules causes the light flux of the light to pass through the liquid crystal molecules to increase, so as to increase the transmittance of the first optical component
  • the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule to reduce the transmission of the first optical component. rate.
  • control system is further configured to change a turning distortion of liquid crystal molecules in a portion of the first optical component such that a light flux of light passing through the liquid crystal molecules changes to adjust the light sensor to correspond to the first Transmittance of a partial area of an optical component.
  • the first optical component is an addressable liquid crystal panel
  • the control system is configured to adjust each unit of the first optical component according to a relationship between a voltage value of liquid crystal molecules at each unit pixel of each unit pixel of the first optical component and a transmittance of the first optical component The voltage value across the liquid crystal molecules of the pixel;
  • the transmittance of the first optical component is increased or decreased according to a voltage value across the liquid crystal molecules of each unit pixel of the first optical component.
  • control system is further configured to determine a standard light source brightness, and measure a brightness value of the first optical component when a voltage across the liquid crystal molecule takes a different voltage value;
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • the embodiment of the present disclosure further provides a head mounted device, the head mounted device comprising: a controller, a first optical component, a second optical component, and an array of light sensor groups;
  • the first optical component is located outside the second optical component, and the array of light sensor groups vertically receives the light reflected by the second optical component to obtain the light intensity of the light;
  • the first optical component and the array of light sensor groups are respectively electrically connected to the controller, and the controller detects whether the light intensity of the light reflected by the second optical component meets a preset value; The light intensity of the light does not meet the preset value, and the transmittance of the first optical component is adjusted and controlled; according to the transmittance of the first optical component, the light intensity of the light is controlled to meet a preset value.
  • the first optical component is an addressable liquid crystal panel, and the second optical component is a beam splitter;
  • the addressable liquid crystal panel includes, in order from top to bottom, an upper glass substrate, an upper polarizer, an alignment film, liquid crystal molecules, a common electrode, a lower polarizer, and a lower glass substrate.
  • a TFT transistor is included in the upper glass substrate and the lower glass substrate.
  • the controller includes: an electrically connected driving chip and a comparison module; wherein, by the comparing module, detecting whether the illumination intensity of the light reflected by the second optical component meets a preset value; If the illumination intensity of the light does not meet the preset value, the comparison result is sent to the driving chip.
  • the driving chip addresses the liquid crystal molecules of the first optical component according to the comparison result, and determines an addressing result of the TFT transistors at both ends of each liquid crystal molecule; by controlling the liquid crystal molecules The voltage difference of the TFT transistors at both ends adjusts the voltage across each liquid crystal molecule to adjust the transmittance of the first optical component.
  • the controller further includes: an electrically connected scan driver and a data driver; wherein the first optical component is adjusted at the scan driver and the data driver to receive the output of the driver chip After the command of transmittance, outputting a control signal to the first optical component through the scan driver, so that the first optical component controls on or off both ends of the TFT transistor of each row of liquid crystal molecules according to the control signal. Turning on to control whether data is received; after the data driver outputs data to the first optical component, liquid crystal molecules of the first optical component are received through data scanning lines of each row of liquid crystal molecules in the first optical component The data.
  • the controller further includes: a power management module;
  • the power management module includes: an electrically connected digital voltage converter, a voltage converter, and a timing controller; wherein, after the head mounted device is powered on, generating a DVDD voltage and passing through the digital voltage converter After the voltage converter performs boosting and/or step-down processing, power is supplied to the driving chip, the comparison module, and the first optical component.
  • An exemplary embodiment of the present disclosure further provides a control device applied to a head mounted device, including:
  • a memory for storing executable instructions of the controller
  • controller is set to:
  • the light intensity of the light is controlled to meet a preset value according to the transmittance of the first optical component.
  • Exemplary embodiments of the present disclosure also provide a non-transitory computer readable storage medium having stored therein computer program instructions that are executed by one or more processors of a head mounted device according to embodiments of the present disclosure
  • the head mounted device performs a control method, and the method includes: detecting whether the light intensity of the acquired light meets a preset value; if the light intensity of the light does not meet the preset value, adjusting the control The transmittance of the first optical component of the head mounted device; controlling the illumination intensity of the light to conform to a preset value according to the transmittance of the first optical component.
  • the control method, the device and the head mounted device provided by the embodiment of the present disclosure detect whether the light intensity of the acquired light meets a preset value; if the light intensity of the light does not meet the preset value, adjust and control the wearing
  • the transmittance of the first optical component of the device controlling the illumination intensity of the light to conform to a preset value according to the transmittance of the first optical component; the first optical component being an addressable liquid crystal panel.
  • the embodiment of the present disclosure adopts an addressable liquid crystal panel to realize the control of the transmittance of the lens group of the head mounted device, and can adjust the user's viewing according to the real-time brightness.
  • the brightness value is such that a brightness value suitable for viewing by the human eye is achieved.
  • FIG. 1 is a schematic flowchart of a control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a head mounted device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another head mounted device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a controller according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a power management module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another head mounted device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an addressable liquid crystal panel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of light passing through a polarizer and a cut-off according to an embodiment of the present disclosure
  • FIG. 9 is a schematic view showing the degree of distortion of liquid crystal molecules according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an array of light sensor groups according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of liquid crystal molecules flipping according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram showing a relationship between a voltage value and a transmittance of liquid crystal molecules of each unit pixel of an addressable liquid crystal panel according to an embodiment of the present disclosure
  • FIG. 13 is a diagram showing a pixel array of a longitudinal and horizontal direction of an addressable liquid crystal panel according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of an addressable liquid crystal panel and a peripheral circuit control system according to an embodiment of the present disclosure
  • FIG. 15 is a schematic flowchart of a method for controlling brightness of a head mounted device according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a control device according to an embodiment of the present disclosure.
  • detecting whether the light intensity of the acquired light meets a preset value if the light intensity of the light does not meet the preset value, adjusting and controlling the first optical component of the head mounted device
  • the transmittance of the light is controlled according to the transmittance of the first optical component to a preset value.
  • FIG. 1 is a schematic flowchart of a control method according to an embodiment of the present disclosure; as shown in FIG. 1 , the control method is applied to a head mounted device, including:
  • Step 101 Detect whether the light intensity of the acquired light meets a preset value
  • Step 102 If the illumination intensity of the light does not meet the preset value, adjust and control a transmittance of the first optical component of the head mounted device;
  • the light intensity of the light is controlled to meet a preset value according to the transmittance of the first optical component.
  • the method before the detecting whether the illumination intensity of the acquired light meets the preset value, the method further includes:
  • the second optical component is a beam splitter.
  • the light intensity of the light reflected by different positions of the second optical component of the head mounted device may be respectively detected by a plurality of light sensors; and the reflected by the second optical component is determined according to the light intensity detected by each light sensor.
  • the light intensity of the light may be respectively detected by a plurality of light sensors; and the reflected by the second optical component is determined according to the light intensity detected by each light sensor. The light intensity of the light.
  • the first optical component is an optical component covered with a liquid crystal molecular layer; in step 102, the light intensity of the light does not meet a preset value, and the first control of the head mounted device is adjusted.
  • Transmittance of optical components including:
  • the light intensity of the light is less than the predetermined value, and the light flux of the light passing through the liquid crystal molecules is increased by changing the turning distortion of each liquid crystal molecule of the first optical component to increase the first optical component.
  • the light intensity of the light is greater than the predetermined value, and the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule of the first optical component to reduce the first optical The transmittance of the component.
  • the first optical component is an addressable liquid crystal panel; the increasing or decreasing transmittance of the first optical component includes:
  • the transmittance of the first optical component is increased or decreased according to a voltage value across the liquid crystal molecules of each unit pixel of the first optical component.
  • the illumination intensity in step 102 is less than a preset value of the illumination intensity
  • the voltage value across the liquid crystal molecules of each unit pixel of the addressable liquid crystal panel is transmitted through the addressable liquid crystal panel.
  • the intensity is greater than the preset value, and the addressable liquid crystal is adjusted according to a relationship between a voltage value of liquid crystal molecules at each unit pixel of each unit pixel of the addressable liquid crystal panel and a transmittance of the addressable liquid crystal panel.
  • the voltage value across the liquid crystal molecules of each unit pixel of the panel changes the flip distortion of each liquid crystal molecule, and reduces the transmittance of the addressable liquid crystal panel.
  • the preset value of the illumination intensity is recorded as ⁇ pre-, which may be a default value, or may be set by the user through the interactive interface of the head-mounted device, and the erasable storage module (EPROM) stored in the head-mounted device
  • ⁇ pre- which may be a default value, or may be set by the user through the interactive interface of the head-mounted device
  • EPROM erasable storage module
  • the transmittance T0 of the first optical component can also be saved, or can be manually set by the user according to requirements.
  • the light intensity of the light does not meet a preset value
  • adjusting the transmittance of the first optical component of the head mounted device further includes:
  • the turning distortion of the liquid crystal molecules in the partial region of the first optical component is changed such that the light flux of the light passing through the liquid crystal molecules is changed to adjust the transmittance of the light sensor corresponding to a partial region of the first optical component.
  • the light intensity of the light reflected by different positions of the second optical component of the head mounted device may be respectively detected by each light sensor; and the light intensity distribution threshold is determined according to the light intensity of the light detected by each light sensor; Comparing the illumination intensity of the light detected by each light sensor with the illumination intensity distribution threshold respectively; if the illumination intensity detected by the second optical component detected by the light sensor is less than the illumination intensity distribution threshold, by changing the first
  • the turning distortion of the liquid crystal molecules in the corresponding region of the optical component increases the light flux of the light passing through the liquid crystal molecules to increase the transmittance of the partial region of the first optical component corresponding to the light sensor;
  • the light intensity reflected by the two optical components is greater than the light intensity distribution threshold, and the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule of the corresponding region of the first optical component to reduce a portion of the first optical component corresponding to the light sensor Transmittance region.
  • the illumination intensity distribution threshold may be an intermediate value of the illumination intensity of the light reflected by the second optical component detected by each light sensor; and may be a maximum value and a minimum value of the illumination intensity of the second optical component detected by the light sensor. Any one of the values of the light intensity reflected by the second optical component detected by each light sensor is not limited herein.
  • the transmittance of each light sensor corresponding to a partial region of the first optical component control or adjustment of a partial region of the first optical component is realized, thereby achieving uniform display of the screen.
  • the brightness of the center of the screen is high, and the brightness of the surrounding area is low.
  • the center transmittance of the first optical component can be reduced, and the surrounding transmittance can be increased to achieve uniform display of the image.
  • the adjusting the transmittance of the light sensor corresponding to a partial region of the first optical component comprises:
  • Determining a partial region of the first optical component corresponding to the light sensor according to a relationship between a voltage value of liquid crystal molecules at each unit pixel of the first optical component and a transmittance of the first optical component Adjusting a voltage value of liquid crystal molecules at each unit pixel of a partial region of the first optical component corresponding to the light sensor to change a flipping degree of each liquid crystal molecule, thereby increasing or decreasing a partial region corresponding to the first optical component Transmittance rate.
  • the method before adjusting the transmittance of the first optical component of the head mounted device, the method further includes: determining a voltage value across the liquid crystal molecule and a transmittance of the first optical component Relationship curve; specifically includes:
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • a first optical component having an 8-bit data bit number that is, an addressable liquid crystal panel
  • the standard light source brightness is 100 nits; respectively, output 0 to 255 images of different gray levels to the addressable liquid crystal panel; at the same time, the voltages of the TFT transistors corresponding to the liquid crystal molecules are V0 to V255, and the brightness of 256 different gray-scale liquid crystal panels is measured by the luminance meter. value;
  • FIG. 2 is a schematic structural diagram of a head-mounted device according to an embodiment of the present disclosure. As shown in FIG. 2, the head-mounted device includes: a first optical component and a control system;
  • the control system is configured to detect whether the light intensity of the acquired light meets a preset value; if the light intensity of the light does not meet the preset value, adjust and control the transmittance of the first optical component;
  • the light intensity of the light is controlled to meet a preset value according to the transmittance of the first optical component.
  • the head mounted device further includes: a photometric system, configured to detect, by the light sensor, the light reflected by the second optical component of the head mounted device Light intensity; the second optical component is a beam splitter.
  • the photometric system may include an array of light sensor groups, which may be n rows and m columns of light sensor groups, including n ⁇ m light sensors.
  • the first optical component is an optical component covered with a liquid crystal molecular layer;
  • the control system is configured to change the first when the light intensity of the light is less than the preset value
  • the turning distortion of each liquid crystal molecule of an optical component increases the luminous flux of light passing through the liquid crystal molecules to increase the transmittance of the first optical component;
  • the illumination intensity of the light is greater than the preset value of the illumination intensity
  • the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule of the first optical component to reduce the The transmittance of the first optical component.
  • control system is further configured to: change a turning distortion of liquid crystal molecules in a portion of the first optical component such that a light flux of light passing through the liquid crystal molecules changes to adjust the light sensor corresponding to the first The transmittance of a partial region of an optical component.
  • the first optical component is an addressable liquid crystal panel; the addressable liquid crystal panel is covered with liquid crystal molecules;
  • the control system is configured to adjust each unit of the first optical component according to a relationship between a voltage value of liquid crystal molecules at each unit pixel of each unit pixel of the first optical component and a transmittance of the first optical component Pixel The voltage value across the liquid crystal molecule;
  • the transmittance of the first optical component is increased or decreased according to a voltage value across the liquid crystal molecules of each unit pixel of the first optical component.
  • control system is further configured to determine a brightness of the standard light source, and measure a brightness value of the first optical component when a voltage across the liquid crystal molecule takes a different voltage value;
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • FIG. 3 is a schematic structural diagram of another head-mounted device according to an embodiment of the present disclosure
  • the head-mounted device includes: a controller, a first optical component, a second optical component, and an arrayed light sensor group;
  • the first optical component is located outside the second optical component, and the array of light sensor groups vertically receives the light reflected by the second optical component to detect the light intensity of the light;
  • the first optical component and the array of light sensor groups are respectively electrically connected to the controller, and the controller detects whether the light intensity of the light reflected by the second optical component meets a preset value; The light intensity of the light does not meet the preset value, and the transmittance of the first optical component is adjusted and controlled; according to the transmittance of the first optical component, the light intensity of the light is controlled to meet a preset value.
  • the first optical component is an addressable liquid crystal panel, and the second optical component is a beam splitter;
  • the addressable liquid crystal panel includes, in order from top to bottom, an upper glass substrate, an upper polarizer, an alignment film, liquid crystal molecules, a common electrode, a lower polarizer, and a lower glass substrate.
  • the upper glass substrate and the lower glass substrate include TFT transistors.
  • the liquid crystal molecules are interposed between the upper glass substrate and the lower glass substrate; the liquid crystal molecules change their flipping degree with the voltage of the TFT transistor, so that the light flux of the light passing through the liquid crystal molecules occurs. Varying, changing the transmittance of the first optical component.
  • the controller includes an electrically connected driving chip and a comparison module.
  • the controller further includes: an electrically connected scan driver and a data driver;
  • the scan driver and the data driver After the scan driver and the data driver receive an instruction to adjust a transmittance of the first optical component output by the driving chip, output a control signal to the first optical component through the scan driver to The first optical component controls on or off of the TFT transistors of each row of liquid crystal molecules according to the control signal to control whether data is received, after the data driver outputs data to the first optical component, The liquid crystal molecules of the first optical component receive the outputted data through data scanning lines of each row of liquid crystal molecules in the first optical component.
  • the controller further includes: a power management module;
  • FIG. 5 is a schematic structural diagram of a power management module according to an embodiment of the present disclosure; as shown in FIG. 5, the power management module includes: electrically connected digital voltage conversion , voltage converter and timing controller; among them,
  • the DVDD voltage is generated by the digital voltage converter and boosted and/or stepped down by the voltage converter, and then supplied to the driving chip, the comparison module, and the The first optical component.
  • the controller may further include: a storage module, configured to store the illumination intensity and the preset value detected by the arrayed light sensor group, and further store the liquid crystal molecules of each unit pixel of the first optical component The relationship between the voltage value of the terminal and the transmittance of the first optical component.
  • a storage module configured to store the illumination intensity and the preset value detected by the arrayed light sensor group, and further store the liquid crystal molecules of each unit pixel of the first optical component The relationship between the voltage value of the terminal and the transmittance of the first optical component.
  • FIG. 6 is a schematic structural diagram of still another head mounted device according to an embodiment of the present disclosure.
  • the head mounted device may include: a first optical component.
  • the light metering system, the control system, the second optical component, the lens group, etc., the first optical component may be an addressable liquid crystal panel, and the second optical component may be a beam splitter.
  • the addressable liquid crystal panel is improved according to the existing liquid crystal module, and the color filter, the diffusion sheet, the reflection plate, the light guide plate and the lamp tube are removed on the basis of the liquid crystal module.
  • the beam splitter is located behind the lens group, and the selection angle of the placement is mainly determined by the chief ray of the lens group. Since the lens group is a convex lens design, the surrounding light is easily affected by stray light such as reflection and refraction, and the light sensor receives the beam splitter. For the vertical light emitted, the center axis of the position where the beam splitter is placed can be selected to be 45° from the main optical axis, and the transmittance of the beam splitter is 1:1.
  • the beam splitter is used to transmit a part of the light to the human eye, and a part of the light is reflected to the photometric system.
  • the reflectivity is determined according to the refractive index of the selected beam splitter, and different transmittances or reflectances can be selected according to different requirements.
  • the first optical component When light is transmitted to the first optical component of the head mounted device, part of the light is attenuated, the first optical component initially sets the transmittance T0; after the first optical component, the light flux is ⁇ 11, and the light continues to be transmitted to the head. On the lens group of the wearing device, the light flux after passing through the lens group is ⁇ 21; the light continues to be transmitted to the second optical component, and the second optical component transmits a part of the light to the human eye, which is recorded as ⁇ 41, and a part of the light is reflected to the headwear.
  • the reflected light is recorded as ⁇ 31; the reflection and transmission ratio of the light is related to the material and parameters of the second optical component; the photometric system measures the light intensity of the light reflected by the second optical component, and the illumination is Intensity feedback to the control system.
  • FIG. 7 is a schematic structural diagram of an addressable liquid crystal panel according to an embodiment of the present disclosure; as shown in FIG. 7 , the addressable liquid crystal panel includes an upper glass substrate, an upper polarizer, and a glass substrate from the outside to the inside.
  • the working principle of the addressable liquid crystal panel is: using a TFT transistor to generate a voltage, changing the alignment direction of the liquid crystal molecules in the upper and lower glass substrates, thereby changing the transmittance of the external light, and realizing the brightness control.
  • the addressable liquid crystal panel is covered with liquid crystal molecules, and the liquid crystal molecules of the addressable liquid crystal panel have flipping characteristics, and the liquid crystal molecules are interposed between two transparent conductive indium tin oxides (ITO, Indium).
  • ITO transparent conductive indium tin oxides
  • the alignment direction of different liquid crystal molecules can be controlled, and the alignment direction of the liquid crystal molecules is closely related to the amount of light penetration, and the angle of controlling the liquid crystal molecules in each row can be controlled. Different transmittances are obtained, which serves the purpose of adjusting the light intensity of the outside world into the human eye.
  • the liquid crystal molecules By controlling the voltage value across the ITO of the addressable liquid crystal panel, the liquid crystal molecules can be flipped according to a certain rule, the degree of distortion of the liquid crystal molecules can be controlled, and the transmittance of the addressable liquid crystal panel can be realized, thereby realizing the control of human eye light. .
  • FIG. 8 is a schematic diagram of light passing through a polarizer and a cut-off according to an embodiment of the present disclosure; as shown in FIG. 8 , the principle of liquid crystal molecules controlling light is as follows: according to the fluctuation of light, the traveling direction of the light wave is perpendicular to the electric field and the magnetic field. At the same time, the electric field and magnetic field components of the light wave itself are also perpendicular to each other, that is, the direction of travel and the electric field and the magnetic field component are parallel to each other.
  • the polarizer acts like a fence, blocking the component perpendicular to the fence, allowing only the components parallel to the fence to pass, using two layers of polarizers that are perpendicular to each other.
  • the liquid crystal molecules When the external light passes through the upper polarizer, it remains only with the upper layer. The light in the parallel direction of the polarizer passes through the liquid crystal molecules. If the liquid crystal molecules are not energized, the liquid crystal molecules are disordered. When the liquid crystal molecules are subjected to the voltage of the TFT transistors, the liquid crystal molecules are regularly changed.
  • FIG. 9 is a schematic diagram showing the degree of distortion of liquid crystal molecules according to an embodiment of the present disclosure; as shown in FIG. 9 , according to different voltages controlled by TFT transistors, the degree of distortion of liquid crystal molecules is also different, and the degree of external light passing through the lower polarizer is reflected. Change.
  • the voltage controlled by the TFT transistor is the voltage difference across the electrode
  • the voltage change on the liquid crystal panel mainly includes: a gate driver voltage change of the TFT transistor, a source driver voltage change, and a common voltage. Variety.
  • the driving voltage of the common voltage is constantly changing, the absolute value of the voltage across the liquid crystal molecules is fixed, and the flipping form of the liquid crystal molecules constantly changes.
  • FIG. 12 is a schematic diagram showing a relationship between a voltage value and a transmittance of liquid crystal molecules of each unit pixel of an addressable liquid crystal panel according to an embodiment of the present disclosure, as shown in FIG. 12, wherein the transmittance is searchable.
  • the transmittance of the liquid crystal panel, volt is the voltage value across the liquid crystal molecules of each unit pixel of the addressable liquid crystal panel.
  • FIG. 13 is a diagram showing a vertical and horizontal pixel array of an addressable liquid crystal panel according to an embodiment of the present disclosure; as shown in FIG. 13 , in an embodiment of the present disclosure, if an addressable liquid crystal panel with a resolution of 320*240 is used, the vertical direction is 320. The row is 240 columns horizontally, and each address is driven by a driver chip in the control system.
  • the addressable liquid crystal panel can select different resolution liquid crystal panels. The higher the resolution, the more pixels, the better the display effect, and the greater the power consumption.
  • the control system of the head mounted device may include: a driving chip, a comparison module, a storage module, and a power supply. Management module, etc.
  • MCU mode also called MPU mode
  • RGB mode also called MPU mode
  • SPI mode SPI mode
  • VSYNC mode SPI mode
  • MDDI mode MDDI mode
  • DSI mode DSI mode
  • the driving principle of the driving chip is as follows: the addressable liquid crystal panel is controlled by the driving chip through the scan driver to control the switches of each row of TFT transistors, and when the TFT transistors are turned on at both ends (the TFT transistors are turned on), the data can be transmitted, and the TFT transistors are When the terminal is disconnected (the TFT transistor is turned off), the data cannot be transmitted; the driver chip controls the transmission scan line of each row and column of data through the data driver to perform data transmission;
  • the power management module includes a digital voltage converter (D/C converter), a voltage converter (LDO), and a timing controller.
  • the control flow includes: the total power of the entire system is supplied by the mobile terminal battery through the Type C USB interface. Or provided by the built-in battery in the head-mounted device, after the power supply, the DVDD voltage is generated by the digital voltage converter, and then the LDO voltage conversion chip performs the step-up and step-down processing, respectively, to the driving chip, the addressable liquid crystal panel, and the comparison.
  • Modules and storage modules include: the total power of the entire system is supplied by the mobile terminal battery through the Type C USB interface. Or provided by the built-in battery in the head-mounted device, after the power supply, the DVDD voltage is generated by the digital voltage converter, and then the LDO voltage conversion chip performs the step-up and step-down processing, respectively, to the driving chip, the addressable liquid crystal panel, and the comparison.
  • Modules and storage modules are examples of the total power of the entire system is supplied by the mobile terminal battery through the
  • the storage module can be used to save the detected illumination intensity and the preset value of the illumination intensity; the comparison module compares the real-time measured illumination intensity with the illumination intensity ⁇ 0 to ⁇ 8 detected by each light sensor, and analyzes the entire array of light sensors. The distribution and trend of the luminous flux, and save the comparison results to the storage module.
  • the comparison module is further configured to compare the light intensity measured in real time with a preset value or a light intensity distribution threshold, and adjust and control the transmittance of the first optical component according to the comparison result.
  • the switch driver controls the on and off of the TFT transistors at each liquid crystal molecule, and then performs data transmission in the data driver with timing control.
  • Timing controller which realizes the gray scale display of liquid crystal at different times.
  • FIG. 15 is a schematic flowchart of a method for controlling brightness of a head mounted device according to an embodiment of the present disclosure; as shown in FIG. 15, the method includes:
  • Step 201 The screen light is transmitted to the first optical component to address the liquid crystal panel.
  • the initially set transmittance of the addressable liquid crystal panel is T0, part of the light is attenuated, and the light flux of the light passing through the addressable liquid crystal panel is ⁇ 11;
  • Step 202 The light continues to be transmitted to the lens group of the head-mounted device, and the light flux after passing through the lens group is ⁇ 21;
  • Step 203 The light continues to be transmitted to the second optical component, that is, the beam splitter, and the beam splitter transmits a part of the light to the human eye, which is recorded as ⁇ 41, and a part of the light is reflected on the photometric system, and the reflected light is recorded as ⁇ 31;
  • Step 204 Reflecting light ⁇ 31 is reflected to the photometric system
  • Step 205 The photometric system feeds back the detected value to the control system
  • Step 206 The control system compares the measured light intensity with the light intensity threshold, and the real-time light intensity is less than the preset value of the light intensity, and increases the transmittance of the addressable liquid crystal panel; the real-time light intensity is greater than The preset value of the illumination intensity reduces the transmittance of the addressable liquid crystal panel;
  • Step 207 The liquid crystal molecules are flipped according to a certain rule by controlling the voltage values across the ITO of the addressable liquid crystal panel; and the light flux of the addressable liquid crystal panel is changed by changing the flip distortion of each liquid crystal molecule, and the control is performed. Light transmittance of addressable liquid crystal molecules;
  • Step 208 Implement control for transmitting brightness to the human eye
  • Figure 16 is a schematic structural diagram of a control device according to an embodiment of the present disclosure; as shown in Figure 16, the control device is applied to a head mounted device, including: a control module;
  • the control module is configured to detect whether the light intensity of the acquired light meets a preset value; if the light intensity of the light does not meet the preset value, adjust and control the transmission of the first optical component of the head mounted device Rate: controlling the light intensity of the light to meet a preset value according to the transmittance of the first optical component.
  • control device further includes a photometry module, configured to detect an illumination intensity of the light reflected by the second optical component of the head mounted device;
  • the two optical components are beamsplitters.
  • the first optical component is an optical component covered with a liquid crystal molecular layer
  • the control module is configured to change the liquid crystal molecular intensity by using less than the preset value.
  • the turning distortion of the light causes the light flux of the light to pass through the liquid crystal molecules to increase to increase the transmittance of the first optical component;
  • the light intensity of the light is greater than the predetermined value, and the light flux of the light passing through the liquid crystal molecules is reduced by changing the turning distortion of each liquid crystal molecule to reduce the transmittance of the first optical component.
  • control module is further configured to change a turning distortion of the liquid crystal molecules in the partial region of the first optical component such that a light flux of the light passing through the liquid crystal molecules changes to adjust the light sensor to correspond to the first Transmittance of a partial area of an optical component.
  • the first optical component is an addressable liquid crystal panel
  • the control module is further configured to adjust each of the first optical components according to a relationship between a voltage value of liquid crystal molecules at each unit pixel of each unit pixel of the first optical component and a transmittance of the first optical component a voltage value across a liquid crystal molecule of a unit pixel;
  • control module is further configured to determine a brightness of the standard light source, and measure a brightness value of the first optical component when a voltage across the liquid crystal molecule takes a different voltage value;
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • the control module can be implemented by a central processing unit (CPU), a microprocessor (MPU), or a digital signal processor (DSP) or the like.
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • embodiments of the present disclosure can be provided as a method, system, or computer program product.
  • embodiments of the present disclosure may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects.
  • embodiments of the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium having stored therein computer program instructions that are executed by one or more processors of a head mounted device provided by embodiments of the present disclosure
  • the method includes: detecting whether the light intensity of the acquired light meets a preset value; if the light intensity of the light does not meet the preset value, adjusting the control The transmittance of the first optical component of the head mounted device; controlling the light intensity of the light to conform to a preset value according to the transmittance of the first optical component.
  • An embodiment of the present disclosure further provides a control device applied to a head mounted device, including:
  • a memory for storing executable instructions of the controller
  • controller is set to:
  • the light intensity of the light is controlled to meet a preset value according to the transmittance of the first optical component.
  • the controller before the detecting whether the light intensity of the acquired light meets a preset value, the controller is further configured to:
  • the second optical component is a beam splitter.
  • the first optical component is an optical component covered with a layer of liquid crystal molecules
  • the controller is set to:
  • the light flux of the light passing through the liquid crystal molecules is increased by changing the turning distortion of each liquid crystal molecule to increase the transmittance of the first optical component;
  • the light flux of the light passing through the liquid crystal molecules is made small by changing the turning distortion of each liquid crystal molecule to reduce the transmittance of the first optical component.
  • the controller is further configured to:
  • the turning distortion of the liquid crystal molecules in the partial region of the first optical component is changed such that the light flux of the light passing through the liquid crystal molecules is changed to adjust the transmittance of the light sensor corresponding to a partial region of the first optical component.
  • the first optical component is an addressable liquid crystal panel
  • the controller is set to:
  • the transmittance of the first optical component is increased or decreased according to a voltage value across the liquid crystal molecules of each unit pixel of the first optical component.
  • the controller is configured to:
  • a relationship between a voltage value across the liquid crystal molecules and a transmittance of the first optical component is determined.
  • the disclosure can be applied to the field of virtual reality technology, and adopts an addressable liquid crystal panel to realize the control of the transmittance of the lens group of the head mounted device, and can adjust the brightness value of the user according to the real-time brightness, thereby achieving a more suitable person.
  • the brightness value of the eye can be applied to the field of virtual reality technology, and adopts an addressable liquid crystal panel to realize the control of the transmittance of the lens group of the head mounted device, and can adjust the brightness value of the user according to the real-time brightness, thereby achieving a more suitable person.
  • the brightness value of the eye can be applied to the field of virtual reality technology, and adopts an addressable liquid crystal panel to realize the control of the transmittance of the lens group of the head mounted device, and can adjust the brightness value of the user according to the real-time brightness, thereby achieving a more suitable person.
  • the brightness value of the eye can be applied to the field of virtual reality technology, and adopts an addressable liquid crystal panel to realize the control of the transmittance of

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种控制方法、装置及头戴式设备,其中控制方法包括:检测获取的光线的光照强度是否符合预设值(101);若光线的光照强度不符合预设值,则调整控制头戴式设备的第一光学组件的透过率,根据第一光学组件的透过率,控制光线的光照强度符合预设值(102)。控制方法能够根据实时亮度调整用户观看的亮度值,从而达到一种比较适合人眼观看的亮度值。

Description

一种控制方法、装置和头戴式设备 技术领域
本公开涉及虚拟现实技术,尤其涉及一种控制方法、装置和头戴式设备。
背景技术
现在的头戴式设备,如虚拟现实眼镜、虚拟现实头盔等已成为人们生活娱乐中的一种不可或缺的工具。一般情况下,用户在佩戴头戴式设备之后,用户的眼睛需处于封闭的暗室中,若外界环境的光强度与头戴式设备的显示屏亮度差异过大,容易给用户的眼睛带来刺激感,使用户感觉到不适头戴式设备。
目前,大多数厂家控制头戴式设备亮度的方法是通过控制液晶显示器(LCD,Liquid Crystal Display)的显示亮度,即设置一个固定值实现亮度控制。但是,在眼镜硬件光学指标测试的过程中发现被测设备的LCD亮度调整不适合;或者说如果将LCD亮度设置固定值,当用户使用过程中出现不同的界面/场景时人眼得到亮度是不一致的,用户在沉浸模式下观看时,若LCD亮度过高时,导致人眼伤害比较大,LCD亮度过低时,导致观看效果不佳,都无法获得符合实际观看需求的显示亮度,如何根据接收的光源控制头戴式设备的显示亮度是现在需要解决的问题。
发明内容
为解决现有存在的技术问题,本公开实施例提供一种控制方法、装置和头戴式设备,能够根据所处环境的实时亮度调整用户观看的亮度值,使该亮度值得到的显示亮度符合用户实际的观看需求。
为达到上述目的,本公开的技术方案是这样实现的:
本公开实施例提供了一种控制方法,应用于头戴式设备,所述方法包括:
检测获取的光线的光照强度是否符合预设值;
若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
根据一个示例性实施例,所述检测获取的光线的光照强度是否符合预设值之前,所述方法还包括:
通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;
所述第二光学组件为分光镜。
根据一个示例性实施例,所述第一光学组件为覆盖有液晶分子层的光学组件;
所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,包括:
所述光线的光照强度小于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
所述光线的光照强度大于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
根据一个示例性实施例,所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,还包括:
改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
根据一个示例性实施例,所述第一光学组件为可寻址液晶面板;
所述增加或减小所述第一光学组件的透过率,包括:
根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
根据一个示例性实施例,所述调整控制所述头戴式设备的第一光学组件的透过率之前,所述方法还包括:
确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
本公开实施例还提供了一种头戴式设备,所述头戴式设备包括:第一光学组件、控制系统;其中,
所述控制系统,用于检测获取的光线的光照强度是否符合预设值;
若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
根据一个示例性实施例,所述头戴式设备还包括:测光系统;
所述测光系统,用于通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;
所述第二光学组件为分光镜。
根据一个示例性实施例,所述第一光学组件为覆盖有液晶分子层的光学组件;
所述控制系统,用于在所述光线的光照强度小于所述预设值时,通过改变每个液 晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
在所述光线的光照强度大于所述光照强度预设值时,通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
根据一个示例性实施例,所述控制系统还用于,改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
根据一个示例性实施例,所述第一光学组件为可寻址液晶面板;
所述控制系统,用于根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
根据一个示例性实施例,所述控制系统还用于确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
本公开实施例再提供了一种头戴式设备,所述头戴式设备包括:控制器、第一光学组件、第二光学组件和阵列式光线传感器组;其中,
所述第一光学组件位于所述第二光学组件的外侧,所述阵列式光线传感器组垂直接收所述第二光学组件反射的光线,以获取所述光线的光线强度;
所述第一光学组件和所述阵列式光线传感器组分别与所述控制器电性连接,通过所述控制器检测所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
根据一个示例性实施例,所述第一光学组件为可寻址液晶面板,所述第二光学组件为分光镜;
所述可寻址液晶面板,从上至下依次包括:上层玻璃基板、上层偏光片、配向膜、液晶分子、共通电极、下层偏光片和下层玻璃基板。
根据一个示例性实施例,所述上层玻璃基板和所述下层玻璃基板内包括TFT晶体管。
根据一个示例性实施例,所述控制器包括:电性连接的驱动芯片和对比模块;其中,通过所述对比模块检测所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则将对比结果发送给所述驱动芯片,在所 述驱动芯片接收到所述对比结果后,根据所述对比结果对所述第一光学组件的液晶分子进行寻址,确定每个液晶分子两端的TFT晶体管的寻址结果;通过控制所述液晶分子两端的TFT晶体管的电压压差调节每个液晶分子两端的电压,以调整所述第一光学组件的透过率。
根据一个示例性实施例,所述控制器还包括:电性连接的扫描驱动器和数据驱动器;其中,在所述扫描驱动器和所述数据驱动器接收所述驱动芯片输出的调整所述第一光学组件的透过率的指令后,通过所述扫描驱动器向所述第一光学组件输出控制信号,使所述第一光学组件根据所述控制信号控制每行液晶分子的TFT晶体管两端的接通或断开,以控制是否接收数据;在所述数据驱动器向所述第一光学组件输出数据后,所述第一光学组件的液晶分子通过所述第一光学组件中每行液晶分子的数据扫描线接收所述数据。
根据一个示例性实施例,所述控制器还包括:电源管理模块;
所述电源管理模块,包括:电性连接的数字电压转换器、电压转换器和时序控制器;其中,在所述头戴式设备通电后,通过所述数字电压转换器生成DVDD电压及通过所述电压转换器进行升压和/或降压处理后,供电给所述驱动芯片、对比模块和所述第一光学组件。
本公开的示例性实施例还提供一种控制装置,应用于头戴式设备,包括:
控制器;
用于存储控制器的可执行指令的存储器;
其中,所述控制器被设置为:
检测获取的光线的光照强度是否符合预设值;
若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
本公开的示例性实施例还提供一种非临时性计算机可读存储介质,其中存储有计算机程序指令,当本公开实施例所述的头戴式设备的一个或多个处理器执行所述计算机程序指令时,所述头戴式设备执行一种控制方法,所述方法包括:检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
本公开实施例所提供的控制方法、装置和头戴式设备,检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值;所述第一光学组件为可寻址液晶面板。本公开实施例采用可寻址液晶面板实现对头戴式设备的镜片组的透过率的控制,能够根据实时亮度调整用户观看 的亮度值,从而达到一种比较适合人眼观看的亮度值。
附图说明
图1为本公开实施例提供的一种控制方法流程示意图;
图2为本公开实施例提供的一种头戴式设备的结构示意图;
图3为本公开实施例提供的另一种头戴式设备的结构示意图;
图4为本公开实施例提供的一种控制器的结构示意图;
图5为本公开实施例提供的一种电源管理模块的结构示意图;
图6为本公开实施例提供的再一种头戴式设备的结构示意图
图7为本公开实施例提供的一种可寻址液晶面板的结构示意图;
图8为本公开实施例提供的光线透过偏光片与截至的示意图;
图9为本公开实施例提供的液晶分子的扭曲程度示意图;
图10为本公开实施例提供的阵列光线传感器组的示意图;
图11为本公开实施例提供的液晶分子翻转的示意图;
图12为本公开实施例提供的可寻址液晶面板的每个单位像素的液晶分子两端的电压值与透过率的关系曲线示意图;
图13为本公开实施例提供的可寻址液晶面板纵横方向像素阵列图;
图14为本公开实施例提供的可寻址液晶面板与外围电路控制系统结构示意图;
图15为本公开实施例提供的一种头戴式设备亮度的控制方法流程示意图;
图16为本公开实施例提供的一种控制装置结构示意图。
具体实施方式
在本公开的各种实施例中,检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
下面结合实施例对本公开再作进一步详细的说明。
图1为本公开实施例提供的一种控制方法流程示意图;如图1所示,所述控制方法,应用于头戴式设备,包括:
步骤101、检测获取的光线的光照强度是否符合预设值;
步骤102、若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
在一个示例性实施例中,步骤101所述检测获取的光线的光照强度是否符合预设值之前,所述方法还包括:
通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强 度;
所述第二光学组件为分光镜。
这里,可以通过多个光线传感器分别检测到所述头戴式设备的第二光学组件不同位置反射的光线的光照强度;再根据各个光线传感器检测到的光照强度确定所述第二光学组件反射的所述光线的光照强度。
在一个示例性实施例中,所述第一光学组件为覆盖有液晶分子层的光学组件;步骤102中所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,包括:
所述光线的光照强度小于所述预设值,则通过改变所述第一光学组件的每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
所述光线的光照强度大于所述预设值,则通过改变所述第一光学组件的每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
在一个示例性实施例中,所述第一光学组件为可寻址液晶面板;所述增加或减小所述第一光学组件的透过率,包括:
根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
具体来说,步骤102中所述光照强度小于光照强度的预设值时,则根据可寻址液晶面板的每个单位像素的液晶分子两端的电压值与所述可寻址液晶面板的透过率的关系曲线,调节可寻址液晶面板的每个单位像素的液晶分子两端的电压值,改变每个液晶分子的翻转扭曲度,增加所述可寻址液晶面板的透过率;所述光照强度大于所述预设值,则根据所述可寻址液晶面板的每个单位像素的液晶分子两端的电压值与所述可寻址液晶面板的透过率的关系曲线,调节可寻址液晶面板的每个单位像素的液晶分子两端的电压值,改变每个液晶分子的翻转扭曲度,减小所述可寻址液晶面板的透过率。
这里,所述光照强度的预设值记做Φ预,可以是默认值,也可以由用户通过头戴式设备的交互界面设定,保存在头戴式设备中的可擦除存储模块(EPROM)上;EPROM上还可以保存第一光学组件的透过率T0,也可以由用户根据需求进行手动设置。
在一个示例性实施例中,所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,还包括:
改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
具体来说,可以由各个光线传感器分别检测所述头戴式设备的第二光学组件不同位置反射的光线的光照强度;根据所述各个光线传感器检测的光线的光照强度确定光照强度分布阈值;再将各个光线传感器检测的光线的光照强度分别与所述光照强度分布阈值进行比较;所述光线传感器检测的第二光学组件反射的光照强度小于所述光照强度分布阈值,则通过改变所述第一光学组件的对应区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述光线传感器对应的第一光学组件的部分区域的透过率;所述光线传感器检测的第二光学组件反射的光照强度大于所述光照强度分布阈值,则通过改变所述第一光学组件的对应区域的每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述光线传感器对应的第一光学组件的部分区域的透过率。
所述光照强度分布阈值,可以是各个光线传感器检测的第二光学组件反射光线的光照强度的中间值;可以是所述光线传感器检测的第二光学组件反射光线的光照强度的最大值和最小值中的任意一个值;还可以是各个光线传感器检测的第二光学组件反射光线的光照强度的平均值,这里不做限定。
这里,通过改变各个光线传感器对应第一光学组件的部分区域的透过率,实现对所述第一光学组件的局部区域的控制或调节,实现画面均匀显示。例如:画面中心亮度高,四周亮度低,根据各个光线传感器检测的实时亮度值,可以将所述第一光学组件的中心透过率降低,四周透过率增加,实现画面均匀显示。
在一个示例性实施例中,所述调节所述光线传感器对应第一光学组件的部分区域的透过率,包括:
确定所述光线传感器对应的所述第一光学组件的部分区域,根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节光线传感器对应的第一光学组件的部分区域的每个单位像素的液晶分子两端的电压值,以改变每个液晶分子的翻转扭曲度,从而增加或减小对应第一光学组件的部分区域的透过率。
在一个示例性实施例中,调整控制所述头戴式设备的第一光学组件的透过率之前,所述方法还包括:确定液晶分子两端的电压值与第一光学组件的透过率的关系曲线;具体包括:
确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
这里,提供一种应用实施例,以8bit数据位数的第一光学组件,即可寻址液晶面板为例,可显示28=256张灰阶图片;采用一个标准稳定的已知光源,例如标准光源亮度为100nits;分别输出0到255张不同灰阶的图像给可寻址液晶面板;同时对应液晶分子的TFT晶体管两端电压V0到V255,通过亮度计测量256个不同灰阶液晶面板亮度值;
Vi电压时,透过率=第i次亮度值(i=0到255)/标准光源亮度;根据已知的Vi电压、亮度值和标准光源亮度,计算出Vi电压对应的液晶面板的透过率;获得所述可寻址液晶面板的每个单位像素的液晶分子两端电压值与所述可寻址液晶面板的透过率的关系曲线。
图2为本公开实施例提供的一种头戴式设备的结构示意图,如图2所示,所述头戴式设备,包括:第一光学组件、控制系统;其中,
所述控制系统,用于检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;
根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
在一个示例性实施例中,所述头戴式设备还包括:测光系统,所述测光系统,用于通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;所述第二光学组件为分光镜。
这里,测光系统可以包括阵列式光线传感器组,所述阵列式光线传感器组可以是n行m列的光线传感器组,包括n×m个光线传感器。
所述第二光学组件反射的光线的光照强度记做Φ实,Φ实=(Φ11+Φ12+……+Φnm)/(n×m),其中,Φ11、Φ12、Φnm为各个光线传感器检测到的光照强度。
在一个示例性实施例中,所述第一光学组件为覆盖有液晶分子层的光学组件;所述控制系统用于在所述光线的光照强度小于所述预设值时,通过改变所述第一光学组件的每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
在所述光线的光照强度大于所述光照强度预设值时,通过改变所述第一光学组件的每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
在一个示例性实施例中,所述控制系统还用于:改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
在一个示例性实施例中,所述第一光学组件为可寻址液晶面板;所述可寻址液晶面板内覆盖有液晶分子;
所述控制系统,用于根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的 液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
在一个示例性实施例中,所述控制系统还用于确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
图3为本公开实施例提供的另一种头戴式设备的结构示意图;所述头戴式设备,包括:控制器、第一光学组件、第二光学组件和阵列式光线传感器组;其中,所述第一光学组件位于所述第二光学组件的外侧,所述阵列式光线传感器组垂直接收所述第二光学组件反射的光线,以检测所述光线的光照强度;
所述第一光学组件和所述阵列式光线传感器组分别与所述控制器电性连接,通过所述控制器检测所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
在一个示例性实施例中,所述第一光学组件为可寻址液晶面板,所述第二光学组件为分光镜;
所述可寻址液晶面板,从上至下依次包括:上层玻璃基板、上层偏光片、配向膜、液晶分子、共通电极、下层偏光片和下层玻璃基板。
在一个示例性实施例中,所述上层玻璃基板和所述下层玻璃基板内包括TFT晶体管。
所述液晶分子介于所述上层玻璃基板和所述下层玻璃基板之间;所述液晶分子随着TFT晶体管的电压变化,改变自身的翻转扭曲度,使得光线透过所述液晶分子的光通量发生变化,改变所述第一光学组件的透过率。
图4为本公开实施例提供的一种控制器的结构示意图,如图4所示,所述控制器包括电性连接的驱动芯片和对比模块;其中,
通过所述对比模块检测获取的所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则将对比结果发送给所述驱动芯片,在所述驱动芯片接收到所述对比结果后,根据所述对比结果对所述第一光学组件的液晶分子进行寻址,确定每个液晶分子两端的TFT晶体管的寻址结果;通过控制所述液晶分子两端的TFT晶体管的电压压差调节每个液晶分子两端的电压,以调整所述第一光学组件的透过率。
在一个示例性实施例中,所述控制器还包括:电性连接的扫描驱动器和数据驱动器;
在所述扫描驱动器和所述数据驱动器接收所述驱动芯片输出的调整所述第一光学组件的透过率的指令后,通过所述扫描驱动器向所述第一光学组件输出控制信号,使所述第一光学组件根据所述控制信号控制每行液晶分子的TFT晶体管两端的接通或断开,以控制是否接收数据,在所述数据驱动器向所述第一光学组件输出数据后,所述第一光学组件的液晶分子通过所述第一光学组件中每行液晶分子的数据扫描线接收输出的所述数据。
所述控制器还包括:电源管理模块;图5为本公开实施例提供的一种电源管理模块的结构示意图;如图5所示,所述电源管理模块,包括:电性连接的数字电压转换器、电压转换器和时序控制器;其中,
在所述头戴式设备通电后,通过所述数字电压转换器生成DVDD电压及通过所述电压转换器进行升压和/或降压处理后,供电给所述驱动芯片、对比模块和所述第一光学组件。
所述控制器还可以包括:存储模块,所述存储模块用于存储阵列式光线传感器组检测的光照强度和预设值,还可以存储所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线等。
对于头戴式设备的结构进行具体说明,图6为本公开实施例提供的再一种头戴式设备的结构示意图,如图6所示,所述头戴式设备可以包括:第一光学组件、测光系统、控制系统、第二光学组件、镜片组等,所述第一光学组件可以为可寻址液晶面板,所述第二光学组件可以为分光镜。其中,所述可寻址液晶面板根据现有的液晶模组改进而成,在液晶模组的基础上去除彩色滤光片、扩散片、反射板、导光板与灯管。
所述分光镜位于镜片组后方,放置夹角选择主要由镜片组的主光线决定,由于镜片组是凸透镜的设计,四周光线容易受到反射与折射等杂光的影响,且光线传感器要接收分光镜发射的垂直光线,可以选择分光镜放置位置的中心轴向与主光轴夹角成45°,分光镜的透射率为1:1。所述分光镜用于将一部分光线透射到人眼,一部分反射到测光系统,反射率根据选取分光镜的折射率而定,可以根据不同的要求选择不同的透射率或反射率。
当光线传输到所述头戴式设备的第一光学组件,部分光线被衰减掉,第一光学组件初始设置透射率为T0;通过第一光学组件后光线的光通量为Φ11,光线继续传输到头戴式设备的镜片组上,通过镜片组后的光线光通量为Φ21;光线继续传输到第二光学组件上,第二光学组件将一部分光线透射到人眼,记为Φ41,一部分光线反射到头戴式设备的测光系统上,反射光线记为Φ31;光线的反射与透射比例根据选取第二光学组件的材质和参数有关;测光系统测量第二光学组件反射的光线的光照强度,并将光照强度反馈给控制系统。
图7为本公开实施例提供的一种可寻址液晶面板结构示意图;如图7所示,所述可寻址液晶面板从外到里包括:上层玻璃基板、上层偏光片、沉积在玻璃基板上的 TFT(Thin Film Transistor,薄膜场效应)晶体管、配向膜、液晶分子、共通电极、下层偏光片、下层玻璃基板。所述可寻址液晶面板的工作原理为:利用TFT晶体管产生电压,将介于上下玻璃基板中的液晶分子排列方向改变,从而改变外界光的透过率,实现亮度控制。
具体来说,所述可寻址液晶面板内覆盖有液晶分子,所述可寻址液晶面板的液晶分子具有翻转特性,所述液晶分子介于两片透明导电的铟锡氧化物(ITO,Indium tin oxide)电极之间,通过控制ITO电极上的电压高低可以控制不同的液晶分子的排列方向,而液晶分子的排列方向与光线的穿透量息息相关,控制每排每列控制液晶分子的角度可以得到不同透过率,起到外界进入人眼的光强进行调节的目的。通过控制可寻址液晶面板的ITO两端的电压值,即可使液晶分子按照一定规则翻转,控制液晶分子的扭曲程度,实现可寻址液晶面板不同的透过率,从而实现人眼光线的控制。
图8为本公开实施例提供的光线透过偏光片与截至的示意图;如图8所示,液晶分子控制光线的原理如下:依据光的波动性,光波的行进方向与电场及磁场相互垂直,同时光波本身的电场与磁场分量彼此也是相互垂直,即行进的方向与电场以及磁场分量彼此是两两相互平行。偏光片的作用如同栅栏,会阻隔与栅栏垂直的分量,只准许与栅栏平行的分量通过,采用上下两层相互垂直的偏光片,当外界光线通过上层偏光片后,只留下与所述上层偏光片平行方向的光线,光线再经过液晶分子,如果液晶分子没有通电的状态下,液晶分子是杂乱无章的,当液晶分子受到TFT晶体管的电压作用时,液晶分子规则发生变化。
图9为本公开实施例提供的液晶分子的扭曲程度示意图;如图9所示,根据TFT晶体管控制的电压不同,液晶分子的扭曲程度也不同,同时反映出外界光线透过下层偏光片光线程度的改变。
这里,TFT晶体管控制的电压为电极两端压差,液晶面板上电压变化主要包括:TFT晶体管的栅极驱动器(gate driver)电压变化、源极驱动器(source driver)电压变化、公共(common)电压变化。
本公开实施例的方法中基于液晶分子不同的翻转扭曲度导致外界光透过液晶分子的光通量不同的原理,提出通过调节可寻址液晶面板的每个单位像素两端电压值,即改变每个单位像素的液晶分子的翻转扭曲度,实现对通过镜片的光照亮度的控制。
图10为本公开实施例提供的阵列光线传感器组的示意图;如图10所示,提供一种采用以“田”字方式布局的阵列光线传感器组,阵列光线传感器组检测到的数据包括:中心光线传感器检测到的图像光照强度Φ0、四周的光线传感器检测到的图像光照强度Φ1、Φ2……Φ8,实时光照强度Φ实=(Φ0+Φ1+Φ2+…Φ8)/9。图像质量品质要求越高,阵列光线传感器组的光线传感器越多。
如图11所示,采用公共(common)电压不停变动的驱动方式,液晶分子两端电压绝对值固定不变,液晶分子的翻转形式不停变化。
图12为本公开实施例中提供的可寻址液晶面板的每个单位像素的液晶分子两端的电压值与透过率的关系曲线示意图,如图12所示,其中,透过率为可寻址液晶面板的透过率,volt为可寻址液晶面板的每个单位像素的液晶分子两端电压值。
图13为本公开实施例提供的可寻址液晶面板纵横方向像素阵列图;如图13所示,本公开实施例中若使用分辨率为320*240的可寻址液晶面板,则纵向为320行,横向为240列,每个地址由控制系统中的驱动芯片进行驱动。可寻址液晶面板可选择不同分辨率的液晶面板,分辨率越高像素越多,显示效果越好,功耗越大。
图14为本公开实施例提供的可寻址液晶面板与外围电路控制系统结构示意图,如图14所示,所述头戴式设备的控制系统可以包括:驱动芯片、对比模块、存储模块、电源管理模块等;
可寻址液晶面板接口种类很多,主要与液晶面板的驱动方式和控制方式相关,常见的接口包括:MCU模式(也称MPU模式)、RGB模式、SPI模式、VSYNC模式、MDDI模式、DSI模式。
驱动芯片的驱动原理如下:可寻址液晶面板受到驱动芯片通过扫描驱动器(scan driver)控制每行TFT晶体管的开关,TFT晶体管两端接通(TFT晶体管打开)时,数据可以传输,TFT晶体管两端断开(TFT晶体管关闭)时,数据不可以传输;驱动芯片通过数据驱动器(data driver)控制每行每列数据的传输扫描线,进行数据传输;
电源管理模块,包括数字电压转换器(D/C converter)、电压转换器(LDO)、时序控制器(Timing controller),控制流程包括:整个系统的总电源由移动终端电池通过Type C USB接口供给或由头戴式设备中内置电池提供,电源供电之后通过数字电压转换器生成DVDD电压,再由LDO电压转换芯片进行升压与降压处理,分别供电给驱动芯片、可寻址液晶面板、对比模块与存储模块。
存储模块可以用于保存检测的光照强度、光照强度的预设值等;对比模块将实时测量的光照强度与各个光线传感器检测到的光照强度Φ0到Φ8值比较,分析出整个阵列式光线传感器各点光通量的分布与趋势,并将比较结果保存到存储模块。对比模块,还用于将实时测量的光照强度与预设值或光照强度分布阈值进行比较,根据比较结果调整控制所述第一光学组件的透过率。
控制系统进行可寻址液晶面板的寻址前,通过扫描驱动器(scan driver)控制每个液晶分子TFT晶体管两端的接通与断开,然后在数据驱动器(data driver)进行数据传输,搭配时序控制器(Timing controller),实现不同时刻的液晶灰阶显示。
图15为本公开实施例提供的一种头戴式设备亮度的控制方法流程示意图;如图15所示,所述方法包括:
步骤201:屏幕光线传输到第一光学组件,即可寻址液晶面板,可寻址液晶面板初始设置透射率为T0,部分光线被衰减掉,通过可寻址液晶面板后光线的光通量为Φ11;
步骤202:光线继续传输到头戴式设备的镜片组上,通过镜片组后的光线光通量为Φ21;
步骤203:光线继续传输到第二光学组件,即分光镜上,分光镜将一部分光线透射到人眼,记为Φ41,一部分光线反射到测光系统上,反射光线记为Φ31;
步骤204:反射光线Φ31反射到测光系统;
步骤205:测光系统将检测的数值反馈给控制系统;
步骤206:控制系统根据实测光照强度与光照强度阈值进行比较,所述实时光照强度小于所述光照强度预设值,则增加所述可寻址液晶面板的透过率;所述实时光照强度大于所述光照强度预设值,则减小所述可寻址液晶面板的透过率;
步骤207:通过控制可寻址液晶面板的ITO两端的电压值,将液晶分子按照一定规则翻转;通过改变每个液晶分子的翻转扭曲度以改变所述可寻址液晶面板的光通量,控制所述可寻址液晶分子的透光率;
步骤208:实现传输到人眼光照亮度的控制;
步骤209:结束。
图16为本公开实施例提供的一种控制装置结构示意图;如图16所示,所述控制装置,应用于头戴式设备,包括:控制模块;其中,
所述控制模块,用于检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
在一个示例性实施例中,所述控制装置还包括测光模块,所述测光模块,用于检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;所述第二光学组件为分光镜。
在一个示例性实施例中,所述第一光学组件为覆盖有液晶分子层的光学组件,所述控制模块用于所述光线的光照强度小于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
所述光线的光照强度大于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
在一个示例性实施例中,所述控制模块还用于改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
在一个示例性实施例中,所述第一光学组件为可寻址液晶面板;
所述控制模块,还用于根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或 减小所述第一光学组件的透过率。
在一个示例性实施例中,所述控制模块还用于确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
所述控制模块可以由中央处理器(CPU)、微处理器(MPU)、或数字信号处理器(DSP)等实现。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本公开的实施例还提供一种非临时性计算机可读存储介质,其中存储有计算机程序指令,当本公开实施例所提供的头戴式设备的一个或多个处理器执行所述计算机程序指令时,所述头戴式设备执行一种控制方法,所述方法包括:检测获取的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
本公开的实施例还提供一种控制装置,应用于头戴式设备,包括:
控制器;
用于存储控制器的可执行指令的存储器;
其中,所述控制器被设置为:
检测获取的光线的光照强度是否符合预设值;
若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
根据一个示例性实施例,所述检测获取的光线的光照强度是否符合预设值之前,所述控制器还设置为:
获取通过光线传感器检测到的所述头戴式设备的第二光学组件反射的所述光线的光照强度;
其中,所述第二光学组件为分光镜。
根据一个示例性实施例,所述第一光学组件为覆盖有液晶分子层的光学组件;
所述控制器被设置为:
如果所述光线的光照强度小于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
如果所述光线的光照强度大于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
根据一个示例性实施例,所述控制器还被设置为:
改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
根据一个示例性实施例,所述第一光学组件为可寻址液晶面板;
所述控制器被设置为:
根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
根据一个示例性实施例,所述控制器被设置为:
确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
工业实用性
本公开可应用于虚拟现实技术领域,采用可寻址液晶面板实现对头戴式设备的镜片组的透过率的控制,能够根据实时亮度调整用户观看的亮度值,从而达到一种比较适合人眼观看的亮度值。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种控制方法,应用于头戴式设备,所述方法包括:
    检测获取的光线的光照强度是否符合预设值;
    若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
    根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
  2. 根据权利要求1所述的方法,其中,所述检测获取的光线的光照强度是否符合预设值之前,所述方法还包括:
    通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;
    所述第二光学组件为分光镜。
  3. 根据权利要求1所述的方法,其中,所述第一光学组件为覆盖有液晶分子层的光学组件;
    所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,包括:
    所述光线的光照强度小于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
    所述光线的光照强度大于所述预设值,则通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
  4. 根据权利要求3所述的方法,其中,所述光线的光照强度不符合预设值,调整控制所述头戴式设备的第一光学组件的透过率,还包括:
    改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
  5. 根据权利要求3所述的方法,其中,所述第一光学组件为可寻址液晶面板;
    所述增加或减小所述第一光学组件的透过率,包括:
    根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
    根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
  6. 根据权利要求5所述的方法,其中,所述调整控制所述头戴式设备的第一光学组件的透过率之前,所述方法还包括:
    确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
    根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
    确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
  7. 一种头戴式设备,包括:第一光学组件、控制系统;其中,
    所述控制系统,设置为检测获取的光线的光照强度是否符合预设值;
    若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
  8. 根据权利要求7所述的头戴式设备,还包括:测光系统;
    所述测光系统,设置为通过光线传感器检测所述头戴式设备的第二光学组件反射的所述光线的光照强度;
    所述第二光学组件为分光镜。
  9. 根据权利要求7所述的头戴式设备,其中,所述第一光学组件为覆盖有液晶分子层的光学组件;
    所述控制系统,设置为:在所述光线的光照强度小于所述预设值时,通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变大,以增加所述第一光学组件的透过率;
    在所述光线的光照强度大于所述光照强度预设值时,通过改变每个液晶分子的翻转扭曲度使得光线透过液晶分子的光通量变小,以减小所述第一光学组件的透过率。
  10. 根据权利要求9所述的头戴式设备,其中,所述控制系统还设置为,改变所述第一光学组件部分区域的液晶分子的翻转扭曲度使得光线透过液晶分子的光通量改变,以调节所述光线传感器对应第一光学组件的部分区域的透过率。
  11. 根据权利要求9所述的头戴式设备,其中,所述第一光学组件为可寻址液晶面板;
    所述控制系统,设置为根据所述第一光学组件的每个单位像素的液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线,调节第一光学组件的每个单位像素的液晶分子两端的电压值;
    根据调节的所述第一光学组件的每个单位像素的液晶分子两端的电压值,增加或减小所述第一光学组件的透过率。
  12. 根据权利要求11所述的头戴式设备,其中,所述控制系统还设置为确定标准光源亮度,测量所述液晶分子两端的电压取不同的电压值时所述第一光学组件的亮度值;
    根据所述标准光源亮度和所述第一光学组件的亮度值,计算不同的液晶分子两端的电压值对应的第一光学组件的透过率;
    确定所述液晶分子两端的电压值与所述第一光学组件的透过率的关系曲线。
  13. 一种头戴式设备,包括:控制器、第一光学组件、第二光学组件和阵列式光线传感器组;其中,
    所述第一光学组件位于所述第二光学组件的外侧,所述阵列式光线传感器组垂直接收所述第二光学组件反射的光线,以获取所述光线的光线强度;
    所述第一光学组件和所述阵列式光线传感器组分别与所述控制器电性连接,通过所述控制器检测所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则调整控制所述第一光学组件的透过率;根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
  14. 根据权利要求13所述的头戴式设备,其中,所述第一光学组件为可寻址液晶面板,所述第二光学组件为分光镜;
    所述可寻址液晶面板,从上至下依次包括:上层玻璃基板、上层偏光片、配向膜、液晶分子、共通电极、下层偏光片和下层玻璃基板。
  15. 根据权利要求14所述的头戴式设备,其中,所述上层玻璃基板和所述下层玻璃基板内包括TFT晶体管。
  16. 根据权利要求15所述的头戴式设备,其中,所述控制器包括:电性连接的驱动芯片和对比模块;其中,通过所述对比模块检测所述第二光学组件反射的光线的光照强度是否符合预设值;若所述光线的光照强度不符合预设值,则将对比结果发送给所述驱动芯片,在所述驱动芯片接收到所述对比结果后,根据所述对比结果对所述第一光学组件的液晶分子进行寻址,确定每个液晶分子两端的TFT晶体管的寻址结果;通过控制所述液晶分子两端的TFT晶体管的电压压差调节每个液晶分子两端的电压,以调整所述第一光学组件的透过率。
  17. 根据权利要求16所述的头戴式设备,其中,所述控制器还包括:电性连接的扫描驱动器和数据驱动器;其中,
    在所述扫描驱动器和所述数据驱动器接收所述驱动芯片输出的调整所述第一光学组件的透过率的指令后,通过所述扫描驱动器向所述第一光学组件输出控制信号,使所述第一光学组件根据所述控制信号控制每行液晶分子的TFT晶体管两端的接通或断开,以控制是否接收数据;在所述数据驱动器向所述第一光学组件输出数据后,所述第一光学组件的液晶分子通过所述第一光学组件中每行液晶分子的数据扫描线接收所述数据。
  18. 根据权利要求16所述的头戴式设备,其中,所述控制器还包括:电源管理模块;
    所述电源管理模块,包括:电性连接的数字电压转换器、电压转换器和时序控制器;其中,在所述头戴式设备通电后,通过所述数字电压转换器生成DVDD电压及通过所述电压转换器进行升压和/或降压处理后,供电给所述驱动芯片、对比模块和所述第一光学组件。
  19. 一种控制装置,应用于头戴式设备,包括:
    控制器;
    用于存储控制器的可执行指令的存储器;
    其中,所述控制器被设置为:
    检测获取的光线的光照强度是否符合预设值;
    若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
    根据所述第一光学组件的透过率,控制所述光线的光照强度符合预设值。
  20. 一种非临时性计算机可读存储介质,其中存储有计算机程序指令,当如权利要求7所述的头戴式设备或权利如权利要求13所述的头戴式设备的一个或多个控制器执行所述计算机程序指令时,所述头戴式设备执行一种控制方法,所述方法包括:
    检测获取的光线的光照强度是否符合预设值;
    若所述光线的光照强度不符合预设值,则调整控制所述头戴式设备的第一光学组件的透过率;
    根据所述第一光学组件的透过率控制所述光线的光照强度符合预设值。
PCT/CN2017/073214 2016-10-11 2017-02-10 一种控制方法、装置和头戴式设备 WO2018068449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610890962.8 2016-10-11
CN201610890962.8A CN107919096A (zh) 2016-10-11 2016-10-11 一种控制方法和头戴式设备

Publications (1)

Publication Number Publication Date
WO2018068449A1 true WO2018068449A1 (zh) 2018-04-19

Family

ID=61892826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073214 WO2018068449A1 (zh) 2016-10-11 2017-02-10 一种控制方法、装置和头戴式设备

Country Status (2)

Country Link
CN (1) CN107919096A (zh)
WO (1) WO2018068449A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935388A (zh) * 2020-09-22 2020-11-13 Oppo广东移动通信有限公司 移动终端的闪光灯控制方法及移动终端、存储介质、设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011978A1 (en) * 2000-06-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
CN1987566A (zh) * 2005-12-23 2007-06-27 群康科技(深圳)有限公司 液晶显示器及其自动调节方法
CN202204988U (zh) * 2011-08-26 2012-04-25 深圳Tcl新技术有限公司 可调节光线亮度的3d眼镜
CN104869382A (zh) * 2014-02-20 2015-08-26 联想(北京)有限公司 一种信息处理方法及穿戴式设备
CN104932102A (zh) * 2014-03-17 2015-09-23 索尼公司 显示装置和光学装置
CN105849622A (zh) * 2013-11-18 2016-08-10 三星电子株式会社 头戴式显示设备以及改变该头戴式显示设备的光透射率的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256562A (en) * 1990-12-31 1993-10-26 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
CN202141872U (zh) * 2011-07-13 2012-02-08 京东方科技集团股份有限公司 半透半反液晶面板及显示设备
CN203025419U (zh) * 2012-12-19 2013-06-26 虢登科 头戴显示器
CN103955063B (zh) * 2014-04-21 2017-06-16 上海兆九光电技术有限公司 光束均匀化方法及光束均匀化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011978A1 (en) * 2000-06-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
CN1987566A (zh) * 2005-12-23 2007-06-27 群康科技(深圳)有限公司 液晶显示器及其自动调节方法
CN202204988U (zh) * 2011-08-26 2012-04-25 深圳Tcl新技术有限公司 可调节光线亮度的3d眼镜
CN105849622A (zh) * 2013-11-18 2016-08-10 三星电子株式会社 头戴式显示设备以及改变该头戴式显示设备的光透射率的方法
CN104869382A (zh) * 2014-02-20 2015-08-26 联想(北京)有限公司 一种信息处理方法及穿戴式设备
CN104932102A (zh) * 2014-03-17 2015-09-23 索尼公司 显示装置和光学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935388A (zh) * 2020-09-22 2020-11-13 Oppo广东移动通信有限公司 移动终端的闪光灯控制方法及移动终端、存储介质、设备
CN111935388B (zh) * 2020-09-22 2022-01-04 Oppo广东移动通信有限公司 移动终端的闪光灯控制方法及移动终端、存储介质、设备

Also Published As

Publication number Publication date
CN107919096A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
US10670929B2 (en) Enhanced spatial resolution using a segmented electrode array
JP6700044B2 (ja) 表示装置
US20200051512A1 (en) Image display processing method and device, display device and non-volatile storage medium
KR102649063B1 (ko) 디스플레이 장치 및 그 구동 방법
US9208744B2 (en) Display device and electronic apparatus
US20170032744A1 (en) Light valve panel and liquid crystal display using the same
US20170169749A1 (en) Image display device
JP5266573B2 (ja) 液晶表示装置
KR20120028427A (ko) 표시 장치
KR20160032758A (ko) 액정표시장치 및 그의 구동방법
KR20150026414A (ko) 액정표시장치와 그 구동방법
US20150228226A1 (en) Power-efficient steerable displays
KR20170136150A (ko) 광 밸브 패널과 이를 이용한 액정표시장치
WO2020238999A1 (zh) 显示面板及其驱动方法、显示装置
WO2016106866A1 (zh) 液晶显示装置及其驱动方法
US11130001B2 (en) Display apparatus including a lens
JP2008165184A (ja) 液晶表示装置及びその駆動方法
US11145263B2 (en) Display apparatus and driving method thereof
US10252080B2 (en) Display device and display system including first polarization layer formed over first display area and second polarization layer formed over second display area
KR20160056386A (ko) 표시 장치
WO2018068449A1 (zh) 一种控制方法、装置和头戴式设备
KR102270257B1 (ko) 표시장치 및 이를 이용한 표시장치의 구동방법
CN218767599U (zh) 一种抬头显示器和交通工具
WO2020080498A1 (ja) ヘッドマウントディスプレイ、表示システム及びミラー装置
KR100627288B1 (ko) 액정표시장치 및 그의 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860292

Country of ref document: EP

Kind code of ref document: A1