WO2018068340A1 - 信息传输设备及方法 - Google Patents

信息传输设备及方法 Download PDF

Info

Publication number
WO2018068340A1
WO2018068340A1 PCT/CN2016/102755 CN2016102755W WO2018068340A1 WO 2018068340 A1 WO2018068340 A1 WO 2018068340A1 CN 2016102755 W CN2016102755 W CN 2016102755W WO 2018068340 A1 WO2018068340 A1 WO 2018068340A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
different channels
analog
different
signal
Prior art date
Application number
PCT/CN2016/102755
Other languages
English (en)
French (fr)
Inventor
祁美丽
Original Assignee
邦彦技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦彦技术股份有限公司 filed Critical 邦彦技术股份有限公司
Publication of WO2018068340A1 publication Critical patent/WO2018068340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data

Definitions

  • the present invention relates to an information transmission technology, and in particular, to an information transmission device and method.
  • ADSL Asymmetric Digital Subscriber Line
  • the transmission distance of ADSL technology is usually 2-3 kilometers.
  • a covered line using conventional technology requires multiple relays.
  • the energy of the relay is provided by the battery, and the battery needs to be replaced after a period of time, which brings great difficulty to maintenance.
  • the present invention is directed to the problems existing in the prior art, and an object thereof is to provide an information transmission apparatus and method, so that multi-band and high-bandwidth long-distance transmission of information can be realized by one covered line.
  • the present invention provides an information transmission apparatus including: a frequency modulation unit for frequency-modulating a code stream of information into a plurality of different frequency bands, and filtering each frequency band to obtain simulation of a plurality of different frequencies a signal; an amplifying circuit for respectively amplifying the analog signals on different channels; n sets of 1 transformers for coupling the amplified analog signals to the covered line for transmission; 1 set of n transformers for receiving the covered wires Transmitting an analog signal and separating the analog signal into multiple signals; an amplifying unit for amplifying the separated multiple signals on different channels; and a trap for amplifying on different channels Multiple signals are notched to filter out signals in the interference band; bandpass filters are used to band multiple signals on different channels Filtering to separate signals of different frequency bands; and an analog-to-digital converter for converting the separated signals into digital signals on different channels to achieve signal demodulation.
  • the magnification of each analog signal when amplifying on different channels is determined according to the degree of attenuation during the transmission of the analog signal, so that the sine wave amplitude difference of each analog signal received by one set of n transformers Within the preset value.
  • the amplifying unit comprises a first-stage amplifying unit and a second-stage amplifying unit; and the first-stage amplifying unit is configured to perform the multiple signals separated by the analog signal on different channels according to a preset magnification.
  • the first-stage amplification; and the second-stage amplification unit are configured to perform the second-order amplification of the notched signal on the different channels according to a predetermined magnification.
  • the analog to digital converter is a high sampling rate chip.
  • the present invention provides an information transmission method running on a transmitting end, comprising the steps of: frequency-modulating a code stream of information into a plurality of different frequency bands, and filtering each frequency band to obtain a plurality of different frequencies.
  • the analog signal is respectively amplified on different channels; the amplified analog signal is coupled to the covered line for transmission; and when the receiving end receives the analog signal transmitted by the covered line, the receiving end transmits the analog signal Separating into multiple signals, the above-mentioned separated multi-channel signals are amplified on different channels, and the amplified multi-path signals are notched on different channels to filter out signals in the interference frequency band, and are more on different channels.
  • the signal is bandpass filtered to separate signals from a plurality of different frequency bands, and the separated signals are converted into digital signals on different channels to achieve signal demodulation.
  • the magnification of each analog signal when amplifying on different channels is determined according to the degree of attenuation during the transmission of the analog signal, so that the difference of the sine wave amplitude of each analog signal received by the receiving end is Set the value inside.
  • the present invention provides an information transmission method, running on a receiving end, comprising the steps of: receiving an analog signal transmitted by a covered line, and separating the analog signal into a multi-path signal;
  • the analog signal is that the transmitter transmits the code stream of the information to a plurality of different frequency bands, and filters each frequency band to obtain analog signals of a plurality of different frequencies.
  • the signals are separately amplified on different channels, and the amplified analog signals are coupled to the covered lines for transmission to the receiving end; the separated multiple signals are amplified on different channels; the amplified signals are amplified on different channels. Multiple signals are notched to filter out signals in the interference band; multi-channel signals are band-pass filtered on different channels to separate signals in different frequency bands; and the separated signals are converted into channels on different channels. Digital signals to achieve demodulation of the signal.
  • the amplifying the separated multiplexed signals on different channels comprises the steps of: performing the first-order amplification of the multiplexed signals separated by the analog signals on the different channels according to a preset magnification; The above-mentioned notched signal is subjected to secondary amplification at a predetermined magnification on different channels.
  • a high sampling rate chip is used to perform high frequency sampling on the separated signals on different channels.
  • multiple analog channels can be utilized to separately filter different frequency bands of different channels, and finally the analog signals of different channels are coupled to the same covered line, thereby solving the narrow transmission bandwidth of the traditional covered line.
  • the transmission speed is slow and cannot be transmitted over long distances; the receiving end receives analog signals of different frequency bands, and performs demodulation after sub-channel amplification, filtering, and analog-to-digital conversion, which alleviates the pressure of traditionally processing data by a single channel, and adopts
  • the high sampling rate analog-to-digital conversion chip performs sampling, which improves the correct rate of demodulation.
  • FIG. 1 is a schematic structural diagram of an information transmission device according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of connection of an information transmission device according to a preferred embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for transmitting information according to a preferred embodiment of the present invention.
  • the information transmission device realizes transmission of information from a transmitting end to a receiving end through a covered line.
  • This information includes, but is not limited to, text files, audio and video files.
  • the information transmission device 1000 includes a transmitting end 100, a covered line 200, and a receiving end 300.
  • the transmitting end 100 is connected to the receiving end 300 through the covered wire 200.
  • the transmitting end 100 includes, but is not limited to, a frequency modulating unit 10, an amplifying circuit 11, and an n-set 1 transformer 12.
  • the frequency modulating unit 10 is configured to frequency-modulate a code stream of information into a plurality of different frequency bands, and filter each frequency band to obtain a plurality of analog signals of different frequencies.
  • the analog signals are sinusoidal waves having different center frequencies, such as n analog signals, which are sinusoidal waves of center frequencies f c1 , f c2 , f c3 , . . . , f cn .
  • Each frequency band corresponds to one analog channel.
  • the amplifying circuit 11 is configured to separately amplify the analog signals of the different channels.
  • the magnification of each analog signal during amplification is determined according to the degree of attenuation during the transmission of the analog signal to ensure that the difference in amplitude of the sine wave of each analog signal at the receiving end 300 is within a preset value.
  • the preset value is preset by the user's demodulation accuracy of the analog signal. Because the center frequencies of different analog channels are different, and the sine waves of different frequencies are attenuated differently during transmission, the signal strength of the analog signals received by the receiving end 300 is different; therefore, the attenuation is large at the transmitting end during transmission.
  • the magnification factor is adjusted to a large magnification to ensure that the difference in amplitude of the sine waves of different frequencies received by the receiving end 300 is within the preset value, which facilitates the processing of the analog signal by the receiving end 300.
  • the n-set 1 transformer 12 is used to couple the amplified analog signal to the covered wire 200 for transmission.
  • the analog signal is transmitted from the transmitting end 100 to the receiving end 300 via the covered wire 200.
  • the information utilizes multiple analog channels, respectively filtering different frequency bands of different channels, coupling analog signals of different channels to the same covered line, solving the problem of the transmission bandwidth and transmission speed limitation of the covered line 200, And the long-distance transmission of information can be realized.
  • the receiving end 300 includes, but is not limited to, a set of n transformer 30, an amplifying unit 31, a trap 32, a band pass filter 33, and an analog to digital converter (Analog to Digital Converter, A/D converter or ADC). ) 34.
  • the set of n transformers 30 is used to receive an analog signal transmitted by the covered wire 200 and separate the analog signal into multiple signals. For example, the set of n transformers 30 divides the received sine waves of different frequencies superimposed together into n paths through a set of n filters.
  • the amplifying unit 31 includes a first-stage amplifying unit 1 and a second-stage amplifying unit 2.
  • the first-stage amplifying unit 1 is configured to perform the first-stage amplification of the separated multi-path signals on different channels according to a preset magnification.
  • the preset magnification is preset according to the attenuation performance of the covered wire 200. After being taken over a long distance After the transmission of the covered wire 200, the signal strength of the above multi-channel signal is weak, and after the first-stage amplification, the subsequent signal separation is facilitated.
  • the notch 32 is used to notch the first-stage amplified multi-path signal on different channels to filter out the signal of the interference band.
  • the notch filter 32 filters the signals of the unnecessary interference frequency bands in the first-stage amplified signals via the notch to reduce the interference when the unwanted signals are filtered by the subsequent band-pass filter 33.
  • the secondary amplification unit 2 is configured to perform secondary amplification on the different channels on the notch signal at a predetermined magnification.
  • the preset magnification is preset according to the range of amplitudes required by the analog to digital converter 34.
  • the band pass filter 33 is configured to band-pass filter the two-stage amplified signals on different channels to separate signals of different frequency bands.
  • the bandpass filter 33 performs bandpass filtering on the signals of the respective frequency bands according to different center frequencies.
  • the bandpass filtering can allow signals of a specific frequency band to pass and simultaneously shield signals of other frequency bands.
  • signals of a plurality of different frequency bands can be separated.
  • the n-channel signals are separately band-pass filtered, and the separated frequency bands of the signals are: the first channel takes f c1 as the center frequency, the second channel takes f c2 as the center frequency... the nth channel takes the f cn center frequency .
  • Bandpass filtering by bandpass filter 33 allows analog to digital converter 34 to receive a better quality signal for signal processing.
  • the analog to digital converter 34 is operative to convert the separated signals into digital signals on different channels to effect demodulation of the signals.
  • the analog to digital converter 34 is a high sampling rate chip.
  • the analog to digital converter 34 performs high frequency sampling using a high sampling rate chip when performing signal demodulation. Because the transmitting end 100 adopts a frequency modulation technology, some channels may be transmitted at a high frequency. After receiving a sine wave transmitted over a long distance, the receiving end 300 has a weak signal strength when received, and by increasing the sampling rate of the analog-to-digital converter 34, A sine wave of the corresponding frequency can be recovered.
  • the receiving end 300 receives the analog signals of different frequency bands, and performs demodulation after sub-channel amplification, filtering, and digital-to-analog conversion. On the one hand, it relieves the pressure of traditionally processing data using a single channel, On the one hand, a high sampling rate analog-to-digital converter is used to improve the correct rate of demodulation.
  • FIG. 2 is a diagram showing an example of connection of an information transmission device according to a preferred embodiment of the present invention.
  • the code stream of the information is modulated by the frequency modulation unit 10 to obtain sine waves having different center frequencies, the center frequencies of the sine waves are f c1 , f c2 , f c3 , . . . , f cn , and the amplifying circuit 11 separates the channels of the sine waves
  • the n sets of 1 transformer 12 couple the amplified sine wave to the covered wire 200 for transmission.
  • a set of n transformers 30 receives the sine waves of different frequencies superimposed by the covered wire 200 and separates them into n signals.
  • the first-stage amplifying unit 1 performs the first-stage amplification of the separated n-channel signals on different channels, and the trap 32 notches the first-stage amplified n-channel signals on different channels to filter out the signals of the interference frequency band.
  • the two-stage amplifying unit 2 performs two-stage amplification on the n-channel signals after notching on different channels, and the band-pass filter 33 performs band-pass filtering on the two-stage amplified sine waves on different channels to separate n different frequency bands of sine waves, the center frequencies of the separated sine waves are f c1 , f c2 , f c3 , ..., f cn , and the analog-to-digital converter 34 separates the separated sines on different channels The wave is demodulated.
  • FIG. 3 a block diagram of a method for transmitting information according to a preferred embodiment of the present invention is shown.
  • the frequency modulation unit 10 frequency-modulates the code stream of the information into a plurality of different frequency bands, and filters each frequency band to obtain analog signals of a plurality of different frequencies.
  • the analog signals are sinusoidal waves having different center frequencies, such as n analog signals, which are sinusoidal waves of center frequencies f c1 , f c2 , f c3 , . . . , f cn .
  • Each frequency band corresponds to one analog channel.
  • step S12 the amplifying circuit 11 respectively amplifies the analog signals of the different channels.
  • the magnification of each analog signal during amplification is determined according to the degree of attenuation during the transmission of the analog signal to ensure that the difference in amplitude of the sine wave of each analog signal at the receiving end 300 is within a preset value.
  • the preset value is preset by the user's demodulation accuracy of the analog signal.
  • step S14 the n-set 1 transformer 12 couples the amplified analog signal to the covered wire 200 for transmission.
  • the analog signal is transmitted from the transmitting end 100 to the receiving end 300 via the covered wire 200.
  • a set of n transformers 30 receives the analog signal transmitted by the covered wire 200, and separates the analog signal into multiple signals. For example, the set of n transformers 30 will receive the superimposed ones. Sine waves of different frequencies are divided into n ways by a set of n filters.
  • step S18 the first-stage amplifying unit 1 performs the first-stage amplification on the different channels on the different channels according to the preset magnification.
  • the preset magnification is preset according to the attenuation performance of the covered wire 200.
  • step S20 the trap 32 notches the first-stage amplified multi-channel signal on different channels to filter out the signal of the interference band.
  • the notch filter 32 filters the signals of the unnecessary interference frequency bands in the first-stage amplified signals via the notch to reduce the interference when the unwanted signals are filtered by the subsequent band-pass filter 33.
  • step S22 the two-stage amplifying unit 2 performs the second-stage amplification on the different signals on the notch signal at a predetermined magnification.
  • the preset magnification is preset according to the range of amplitudes required by the analog to digital converter 34.
  • the band pass filter 33 performs band pass filtering on the second amplified signal on different channels to separate signals of different frequency bands.
  • the bandpass filter 33 performs bandpass filtering on the signals of the respective frequency bands according to different center frequencies.
  • the bandpass filtering can allow signals of a specific frequency band to pass and simultaneously shield signals of other frequency bands.
  • signals of a plurality of different frequency bands can be separated.
  • the n-channel signals are separately band-pass filtered, and the separated frequency bands of the signals are: the first channel takes f c1 as the center frequency, the second channel takes f c2 as the center frequency... the nth channel takes the f cn center frequency .
  • Bandpass filtering by bandpass filter 33 allows analog to digital converter 34 to receive a better quality signal for signal processing.
  • step S26 the analog to digital converter 34 converts the separated signals into digital signals on different channels to achieve demodulation of the signals.
  • the analog to digital converter 34 is a high sampling rate chip.
  • the analog to digital converter 34 performs high frequency sampling using a high sampling rate chip when performing signal demodulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供了一种信息传输设备及方法。所述信息传输设备用于将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号;对上述模拟信号在不同的通道上分别进行放大;将上述放大的模拟信号耦合至被覆线进行传输;接收被覆线传输的模拟信号,并将该模拟信号分离为多路信号;将上述分离的多路信号在不同的通道上进行放大;在不同的通道上对放大的多路信号进行陷波,以滤除干扰频段的信号;在不同的通道上对多路信号进行带通滤波,以分离出多个不同频段的信号;及在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。本发明通过一条被覆线可实现信息的多频带、高带宽的远距离传输。

Description

信息传输设备及方法 技术领域
本发明涉及一种信息传输技术,尤其涉及一种信息传输设备及方法。
背景技术
随着被覆线技术的发展,ADSL(Asymmetric Digital Subscriber Line,非对称数字用户线路)技术已经普及,然而ADSL技术传输距离通常为2-3公里。在需要实现更远距离的传输时,使用传统技术的被覆线则需要多个中继。在比较恶劣的环境下,中继的能量由电池来提供,电池在一段时间过后需要进行更换,从而给维护带来了极大的困难。
发明内容
本发明针对现有技术存在的问题,其目的在于提供一种信息传输设备及方法,使得通过一条被覆线即可实现信息的多频带、高带宽的远距离传输。
为实现上述目的,本发明提供了一种信息传输设备,包括:频率调制单元,用于将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号;放大电路,用于对上述模拟信号在不同的通道上分别进行放大;n套1变压器,用于将上述放大的模拟信号耦合至被覆线进行传输;1套n变压器,用于接收被覆线传输的模拟信号,并将该模拟信号分离为多路信号;放大单元,用于将上述分离的多路信号在不同的通道上进行放大;陷波器,用于在不同的通道上对放大的多路信号进行陷波,以滤除干扰频段的信号;带通滤波器,用于在不同的通道上对多路信号进行带 通滤波,以分离出多个不同频段的信号;及模数转化器,用于在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
作为本发明的进一步改进,所述各模拟信号在不同的通道上放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以使1套n变压器接收的各模拟信号的正弦波幅度差异在预设数值内。
作为本发明的进一步改进,所述放大单元包括一级放大单元及二级放大单元;一级放大单元,用于将上述经由模拟信号分离的多路信号在不同的通道上分别按照预设倍率进行一级放大;及二级放大单元,用于在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。
作为本发明的进一步改进,所述模数转化器为高采样率芯片。
为实现上述目的,本发明提供了一种信息传输方法,运行于发送端上,包括如下步骤:将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号;对上述模拟信号在不同的通道上分别进行放大;将上述放大的模拟信号耦合至被覆线进行传输;及在接收端接收到被覆线传输的模拟信号时,接收端将该模拟信号分离为多路信号,将上述分离的多路信号在不同的通道上进行放大,在不同的通道上对放大的多路信号进行陷波以滤除干扰频段的信号,在不同的通道上对多路信号进行带通滤波以分离出多个不同频段的信号,及在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
作为本发明的进一步改进,所述各模拟信号在不同的通道上放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以使接收端接收的各模拟信号的正弦波幅度差异在预设数值内。
为实现上述目的,本发明提供了一种信息传输方法,运行于接收端上,包括如下步骤:接收被覆线传输的模拟信号,并将该模拟信号分离为多路信号;所述被覆线传输的模拟信号是由发送端将信息的码流通过频率调制至多个不同的频段,对各频段滤波以获得多个不同频率的模拟信号,对上述模拟 信号在不同的通道上分别进行放大,并将上述放大的模拟信号耦合至被覆线进行传输至接收端;将上述分离的多路信号在不同的通道上进行放大;在不同的通道上对放大的多路信号进行陷波以滤除干扰频段的信号;在不同的通道上对多路信号进行带通滤波以分离出多个不同频段的信号;及在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
作为本发明的进一步改进,将分离的多路信号在不同的通道上进行放大包括以下步骤:将上述经由模拟信号分离的多路信号在不同的通道上分别按照预设倍率进行一级放大;及在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。
作为本发明的进一步改进,在实现信号的解调时,采用高采样率芯片在不同的通道上对分离出的信号进行高频率采样。
利用本发明所述的信息传输设备及方法,可以利用多个模拟通道,针对不同通道的不同频段分别滤波,最后将不同通道的模拟信号耦合到同一条被覆线,解决了传统被覆线传输带宽窄、传输速度慢及无法远距离传输等问题;接收端接收到不同频段的模拟信号,经过分通道放大、滤波、模数转换后进行解调,缓解了传统采用单个通道处理数据的压力,同时采用高采样率的模数转换芯片进行采样,提高了解调的正确率。
附图说明
图1为本发明较佳实施例信息传输设备的结构模块示意图;
图2为本发明较佳实施例信息传输设备的连接示例图;
图3为本发明较佳实施例信息传输方法的流程框图。
主要元件符号说明
信息传输设备 1000
发送端 100
频率调制单元 10
放大电路 11
n套1变压器 12
被覆线 200
接收端 300
1套n变压器 30
放大单元 31
一级放大单元 1
二级放大单元 2
陷波器 32
带通滤波器 33
模数转换器 34
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构或功能上的变换均包含在本发明的保护范围内。
参阅图1所示为本发明较佳实施例信息传输设备的结构模块示意图,该信息传输设备通过被覆线实现信息由发送端至接收端的传输。该信息包括,但不限于,文本文件、音视频文件。该信息传输设备1000包括发送端100、被覆线200及接收端300。所述发送端100通过被覆线200与接收端300进行连接。
所述发送端100包括,但不限于,频率调制单元10、放大电路11及n套1变压器12。该频率调制单元10用于将信息的码流通过频率调制至多个 不同的频段,并对各频段滤波以获得多个不同频率的模拟信号。所述模拟信号为具有不同中心频率的正弦波,例如n个模拟信号,其为中心频率fc1、fc2、fc3、……、fcn的正弦波。每个频段对应一个模拟通道。
所述放大电路11用于对上述不同通道的模拟信号分别进行放大。各模拟信号在放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以保证各模拟信号在接收端300的正弦波幅度差异在预设数值内。该预设数值由用户对模拟信号的解调精度来预设。因不同的模拟通道设置的中心频率不同,而不同频率的正弦波在传输过程中衰减不同,从而导致接收端300接收的模拟信号的信号强度存在差异;因此在传输过程中衰减大的在发送端100将放大倍数调整为大倍率,以保证接收端300接收的不同频率的正弦波幅度差异在所述预设数值内,利于接收端300进行模拟信号的处理。
所述n套1变压器12用于将上述放大的模拟信号耦合至被覆线200进行传输。该模拟信号经被覆线200由发送端100传输至接收端300。
上述为信息从接收端100至被覆线200的传输过程。在该传输过程中,信息利用多个模拟通道,针对不同通道的不同频段分别滤波,将不同通道的模拟信号耦合到同一条被覆线,解决了被覆线200传输带宽和传输速度的限制等问题,且可实现信息的远距离传输。
所述接收端300包括,但不限于,1套n变压器30、放大单元31、陷波器32、带通滤波器33、模数转换器(Analog to Digital Converter,简称A/D转换器或ADC)34。
所述1套n变压器30用于接收被覆线200传输的模拟信号,并将该模拟信号分离为多路信号。例如,该1套n变压器30将接收到的叠加在一起的不同频率的正弦波,经过1套n滤波器分为n路。
所述放大单元31包括一级放大单元1及二级放大单元2。所述一级放大单元1用于将上述分离的多路信号在不同的通道上分别按照预设倍率进行一级放大。该预设倍率根据被覆线200的衰减性能来预设。在经过远距离的被 覆线200传输后,上述多路信号的信号强度弱,经过一级放大后,有利于后续的信号分离。
所述陷波器32用于在不同的通道上对一级放大的多路信号进行陷波,以滤除干扰频段的信号。该陷波器32经由陷波将经一级放大后的各路信号中的不需要的干扰频段的信号予以滤除,以减少无用信号对后续带通滤波器33滤波时的干扰。
所述二级放大单元2用于在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。该预设倍率根据模数转换器34所要求的幅度范围来预设。
所述带通滤波器33用于在不同的通道上对二级放大后的信号进行带通滤波,以分离出多个不同频段的信号。在本较佳实施例中,带通滤波器33根据不同的中心频率对各频段的信号进行带通滤波,带通滤波可以允许特定频段的信号通过并同时屏蔽其他频段的信号。所述二级放大后的多路信号经由不同通道上的带通滤波器33进行带通滤波后,可分离出多个不同频段的信号。例如,将n路信号分别进行带通滤波,分离出的各信号的频段为:第一路以fc1为中心频率,第二路以fc2为中心频率……第n路以fcn中心频率。通过带通滤波器33的带通滤波可使得模数转化器34接收较好质量的信号以便进行信号处理。
所述模数转化器34用于在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。在本较佳实施例中,所述模数转化器34为高采样率芯片。所述模数转化器34在进行信号解调时,采用高采样率芯片进行高频率采样。因为发送端100采用频率调制技术,因此有些通道可能在高频率上传输,经过远距离传输的正弦波,接收端300接收到时其信号强度弱,通过提高模数转化器34的采样率,则可以恢复出对应频率的正弦波。
上述接收端300接收到不同频段的模拟信号,经过分通道放大、滤波、数模转换后进行解调。一方面缓解了传统采用单个通道处理数据的压力,另 一方面采用高采样率的模数转化器,提高解调的正确率。
参阅图2所示为本发明较佳实施例信息传输设备的连接示例图。
信息的码流经频率调制单元10调制后获得具有不同中心频率的正弦波,正弦波的中心频率为fc1、fc2、fc3、……、fcn,放大电路11对各正弦波分通道进行放大,n套1变压器12将上述放大的正弦波耦合至被覆线200进行传输。1套n变压器30接收被覆线200传输的叠加在一起的不同频率的正弦波,并将其分离为n路信号。一级放大单元1在不同的通道上将上述分离的n路信号进行一级放大,陷波器32在不同的通道上对一级放大的n路信号进行陷波,以滤除干扰频段的信号,二级放大单元2在不同的通道上对陷波后的n路信号进行二级放大,带通滤波器33在不同的通道上对二级放大后的各正弦波进行带通滤波以分离出n个不同频段的正弦波,该分离出的正弦波的中心频率为fc1、fc2、fc3、……、fcn,模数转化器34在不同的通道上将该分离出的各正弦波进行解调。
参阅图3所示为本发明较佳实施例信息传输方法的流程框图。
步骤S10,频率调制单元10将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号。所述模拟信号为具有不同中心频率的正弦波,例如n个模拟信号,其为中心频率fc1、fc2、fc3、……、fcn的正弦波。每个频段对应一个模拟通道。
步骤S12,放大电路11对上述不同通道的模拟信号分别进行放大。各模拟信号在放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以保证各模拟信号在接收端300的正弦波幅度差异在预设数值内。该预设数值由用户对模拟信号的解调精度来预设。
步骤S14,n套1变压器12将上述放大的模拟信号耦合至被覆线200进行传输。该模拟信号经被覆线200由发送端100传输至接收端300。
步骤S16,1套n变压器30接收被覆线200传输的模拟信号,并将该模拟信号分离为多路信号。例如,该1套n变压器30将接收到的叠加在一起的 不同频率的正弦波,经过1套n滤波器分为n路。
步骤S18,一级放大单元1将上述分离的多路信号在不同的通道上分别按照预设倍率进行一级放大。该预设倍率根据被覆线200的衰减性能来预设。
步骤S20,陷波器32在不同的通道上对一级放大的多路信号进行陷波,以滤除干扰频段的信号。该陷波器32经由陷波将经一级放大后的各路信号中的不需要的干扰频段的信号予以滤除,以减少无用信号对后续带通滤波器33滤波时的干扰。
步骤S22,二级放大单元2在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。该预设倍率根据模数转换器34所要求的幅度范围来预设。
步骤S24,带通滤波器33在不同的通道上对二级放大后的信号进行带通滤波,以分离出多个不同频段的信号。在本较佳实施例中,带通滤波器33根据不同的中心频率对各频段的信号进行带通滤波,带通滤波可以允许特定频段的信号通过并同时屏蔽其他频段的信号。所述二级放大后的多路信号经由不同通道上的带通滤波器33进行带通滤波后,可分离出多个不同频段的信号。例如,将n路信号分别进行带通滤波,分离出的各信号的频段为:第一路以fc1为中心频率,第二路以fc2为中心频率……第n路以fcn中心频率。通过带通滤波器33的带通滤波可使得模数转化器34接收较好质量的信号以便进行信号处理。
步骤S26,模数转化器34在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。在本较佳实施例中,所述模数转化器34为高采样率芯片。所述模数转化器34在进行信号解调时,采用高采样率芯片进行高频率采样。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以 经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种信息传输设备,其特征在于,包括:
    频率调制单元,用于将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号;
    放大电路,用于对上述模拟信号在不同的通道上分别进行放大;
    n套1变压器,用于将上述放大的模拟信号耦合至被覆线进行传输;
    1套n变压器,用于接收被覆线传输的模拟信号,并将该模拟信号分离为多路信号;
    放大单元,用于将上述分离的多路信号在不同的通道上进行放大;
    陷波器,用于在不同的通道上对放大的多路信号进行陷波,以滤除干扰频段的信号;
    带通滤波器,用于在不同的通道上对多路信号进行带通滤波,以分离出多个不同频段的信号;及
    模数转化器,用于在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
  2. 根据权利要求1所述的信息传输设备,其特征在于,所述各模拟信号在不同的通道上放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以使1套n变压器接收的各模拟信号的正弦波幅度差异在预设数值内。
  3. 根据权利要求1所述的信息传输设备,其特征在于,所述放大单元包括一级放大单元及二级放大单元;
    一级放大单元,用于将上述经由模拟信号分离的多路信号在不同的通道上分别按照预设倍率进行一级放大;及
    二级放大单元,用于在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。
  4. 根据权利要求1所述的信息传输设备,其特征在于,所述模数转化器 为高采样率芯片。
  5. 一种信息传输方法,运行于发送端上,其特征在于,包括如下步骤:
    将信息的码流通过频率调制至多个不同的频段,并对各频段滤波以获得多个不同频率的模拟信号;
    对上述模拟信号在不同的通道上分别进行放大;
    将上述放大的模拟信号耦合至被覆线进行传输;及
    在接收端接收到被覆线传输的模拟信号时,接收端将该模拟信号分离为多路信号,将上述分离的多路信号在不同的通道上进行放大,在不同的通道上对放大的多路信号进行陷波以滤除干扰频段的信号,在不同的通道上对多路信号进行带通滤波以分离出多个不同频段的信号,及在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
  6. 根据权利要求5所述的信息传输方法,其特征在于,所述各模拟信号在不同的通道上放大时的放大倍率根据模拟信号传输过程中的衰减程度来确定,以使接收端接收的各模拟信号的正弦波幅度差异在预设数值内。
  7. 一种信息传输方法,运行于接收端上,其特征在于,包括如下步骤:
    接收被覆线传输的模拟信号,并将该模拟信号分离为多路信号;所述被覆线传输的模拟信号是由发送端将信息的码流通过频率调制至多个不同的频段,对各频段滤波以获得多个不同频率的模拟信号,对上述模拟信号在不同的通道上分别进行放大,并将上述放大的模拟信号耦合至被覆线进行传输至接收端;
    将上述分离的多路信号在不同的通道上进行放大;
    在不同的通道上对放大的多路信号进行陷波以滤除干扰频段的信号;
    在不同的通道上对多路信号进行带通滤波以分离出多个不同频段的信号;及
    在不同的通道上将分离出的信号转化为数字信号以实现信号的解调。
  8. 根据权利要求7所述的信息传输方法,其特征在于,将分离的多路信 号在不同的通道上进行放大包括以下步骤:
    将上述经由模拟信号分离的多路信号在不同的通道上分别按照预设倍率进行一级放大;及
    在不同的通道上对上述陷波后的信号按照预定倍率进行二级放大。
  9. 根据权利要求7所述的信息传输方法,其特征在于,在实现信号的解调时,采用高采样率芯片在不同的通道上对分离出的信号进行高频率采样。
PCT/CN2016/102755 2016-10-10 2016-10-20 信息传输设备及方法 WO2018068340A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610884851.6A CN106412354A (zh) 2016-10-10 2016-10-10 信息传输设备及方法
CN201610884851.6 2016-10-10

Publications (1)

Publication Number Publication Date
WO2018068340A1 true WO2018068340A1 (zh) 2018-04-19

Family

ID=59228520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102755 WO2018068340A1 (zh) 2016-10-10 2016-10-20 信息传输设备及方法

Country Status (2)

Country Link
CN (1) CN106412354A (zh)
WO (1) WO2018068340A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888276B (zh) * 2017-11-14 2020-05-08 中国电子科技集团公司第五十四研究所 一种多频段多模式调制解调装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362614A (zh) * 2002-01-21 2002-08-07 南京航空航天大学 旋转件非接触式双向多路信号和功率同步传输系统及方法
CN1394081A (zh) * 2001-06-22 2003-01-29 国家广播电影电视总局广播科学研究院 一种频带分割及其调制方法
CN202340257U (zh) * 2011-11-28 2012-07-18 烟台北方星空自控科技有限公司 基于有线的远距离数话同传设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307411B1 (en) * 2000-10-13 2001-10-23 Brookhaven Science Associates Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394081A (zh) * 2001-06-22 2003-01-29 国家广播电影电视总局广播科学研究院 一种频带分割及其调制方法
CN1362614A (zh) * 2002-01-21 2002-08-07 南京航空航天大学 旋转件非接触式双向多路信号和功率同步传输系统及方法
CN202340257U (zh) * 2011-11-28 2012-07-18 烟台北方星空自控科技有限公司 基于有线的远距离数话同传设备

Also Published As

Publication number Publication date
CN106412354A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN103259754B (zh) 一种用于电力线载波通信的数字前端系统及其实现方法
JPS55163927A (en) Sound-band multiplex transmission system
JPS5821466B2 (ja) デイジタル信号受信方式
CN101488795B (zh) 一种应用于直放站的光纤数字化传输方法
WO2018068340A1 (zh) 信息传输设备及方法
US2766325A (en) Narrow band communication system
US10404267B2 (en) Transmission system and wireless communication system
CN104579177A (zh) 适用于滤波多音调制系统的数字下变频电路
CN107231204B (zh) 调频广播多路数字调制系统
JP2010124334A (ja) 信号受信装置及び方法
US3517131A (en) System for superimposing individual channel spectra in a noninterfering manner
RU2714615C1 (ru) Способ обработки амплитудно-модулированного сигнала
US2794854A (en) Multichannel communication system
CN102282816B (zh) 用于减小传输多载波信号的量化噪声的方法和设备
US2276154A (en) Multichannel signaling system
RU2807194C1 (ru) Способ выделения речи путем анализа значений амплитуд помехи и сигнала в двухканальной системе обработки речевого сигнала
CN102244532A (zh) 一种移动通信带宽可调选带直放站装置
US2276132A (en) Carrier frequency system
CN212627873U (zh) 一种全数字无线多时轨音频发射系统及数字音频系统
KR100813238B1 (ko) 전대역 듀플렉서
EP3414875B1 (en) Analog signal width modulator apparatus with closed loop configuration
RU67364U1 (ru) Устройство понижения информационного потока оцифрованного речевого сигнала
SU120536A1 (ru) Способ однополосной модул ции при фототелеграфировании
GB371885A (en) Improvements in or relating to carrier current signalling systems
CN105743517A (zh) 一种用于数模混播数字音频广播发射机的数模混播结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918488

Country of ref document: EP

Kind code of ref document: A1