WO2018068302A1 - Trajectory velocity planning method and trajectory velocity planning device - Google Patents

Trajectory velocity planning method and trajectory velocity planning device Download PDF

Info

Publication number
WO2018068302A1
WO2018068302A1 PCT/CN2016/102126 CN2016102126W WO2018068302A1 WO 2018068302 A1 WO2018068302 A1 WO 2018068302A1 CN 2016102126 W CN2016102126 W CN 2016102126W WO 2018068302 A1 WO2018068302 A1 WO 2018068302A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
point
trajectory
maximum value
target trajectory
Prior art date
Application number
PCT/CN2016/102126
Other languages
French (fr)
Chinese (zh)
Inventor
陈晓颖
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201680038477.6A priority Critical patent/CN108235742B/en
Priority to PCT/CN2016/102126 priority patent/WO2018068302A1/en
Publication of WO2018068302A1 publication Critical patent/WO2018068302A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34432Speed and current control integrated into nc control system

Definitions

  • the implementation of the present application relates to the field of numerical control systems, and in particular, to a track speed planning method and a track speed planning device.
  • the trajectory speed planning performed by the numerical control system usually includes T-type speed planning or S-type speed planning.
  • speed planning for a specified target trajectory the user usually gives the desired feed speed F and maximum acceleration A, and then calculates Track acceleration on this trajectory And according to the obtained trajectory acceleration Calculate track speed Related motion parameters.
  • the trajectory speed Refers to the actual speed at which the workpiece moves along the target trajectory, which is the combined speed of the velocity relative to a single axis; trajectory acceleration Yes and track speed Corresponding acceleration Track speed The initial speed.
  • the embodiment of the invention is used to solve the prior art, because the synthetic acceleration will be
  • the maximum value is set to feedrate A, resulting in acceleration of a single axis
  • the value cannot reach the maximum acceleration A, which reduces the problem of processing efficiency.
  • An aspect of the embodiments of the present invention provides a method for trajectory speed planning, including:
  • the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
  • the target trajectory MP is an arc MP
  • the arc MP is terminated by a point M and a point P.
  • the coordinates of the point M are M(x M , yM , z M ),
  • the coordinates of point P are P(x P , y P , z P ), which determines the acceleration of a single axis Synthetic acceleration
  • the relationship coefficient f i between them includes:
  • Determining the maximum value of the relationship coefficient f i as B includes: determining The maximum value in the
  • the maximum value a rm for the target trajectory MP speed planning includes:
  • a rm is the value of the first target trajectory acceleration
  • the value of the first target trajectory acceleration For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration Value, ie
  • the centripetal unit direction vector at point M is The tangential unit direction vector at point M is Point N is the point on the arc MP, determining the acceleration of a single axis at point N Synthetic acceleration
  • the relationship coefficient f i between them includes:
  • determining that the maximum value of the relationship coefficient f i is B includes:
  • the maximum values of f x , f y and f z are calculated by Newton iteration method as f xm , f ym and f zm , respectively ;
  • the maximum value a rm for the target trajectory MP speed planning includes:
  • a second aspect of the embodiments of the present invention provides a trajectory speed planning apparatus, including:
  • a relationship coefficient determination module for determining the acceleration of a single axis for a specified target trajectory MP Synthetic acceleration
  • the relationship coefficient f i between Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
  • a maximum value determining module configured to determine that the maximum value of the relationship coefficient f i is B;
  • the maximum value of a rm , get A is the given maximum acceleration value
  • a speed planning module for synthesizing acceleration according to the The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
  • the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
  • the target trajectory MP is an arc MP
  • the arc MP is a point M and a point P as end points.
  • the coordinates of the point M are M(x M , y M , z M )
  • the coordinates of the point P are P(x P , y P , z P )
  • the relationship coefficient determining module includes:
  • a first determining unit configured to determine that the relationship coefficient f i is:
  • the maximum value determining module includes:
  • a second determining unit for determining The maximum value in the
  • the speed planning module includes:
  • a third determining unit configured to determine the combined acceleration
  • the maximum value a rm is the value of the first target trajectory acceleration
  • the value of the first target trajectory acceleration For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration Value, ie
  • a first calculating unit configured to calculate a value of the first target trajectory acceleration Calculating the trajectory speed with the given feed rate F
  • the centripetal unit direction vector at the point M is The tangential unit direction vector at point M is Point N is a point on the arc MP
  • the relationship coefficient determining module includes:
  • the fourth determining unit is used according to the following formula:
  • a fifth determining unit configured to determine a tangential acceleration at a point N according to the system of equations (4) And centripetal acceleration The numerical relationship is
  • a third calculating unit for substituting the formula (5) into the system of equations (3) to obtain the relationship coefficient f i is:
  • the maximum value determining module includes:
  • a fourth calculating unit for calculating the maximum values of f x , f y , and f z by the Newton iteration method according to the equation group (6), respectively, f xm , f ym , and f zm , and determining f xm , f ym , and f zm
  • the speed planning module includes:
  • a sixth determining unit for determining Maximum value The value of the second target trajectory acceleration which is The value of the second target trajectory acceleration For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration Value
  • An eighth calculating unit configured to calculate a value of the second target trajectory acceleration Calculating the trajectory speed with the given feed rate F
  • a third aspect of the embodiments of the present invention provides a trajectory speed planning apparatus, including:
  • the processor is configured to perform the following steps by calling an operation instruction stored by the memory:
  • the maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
  • the acceleration of a single axis is adopted.
  • the maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
  • the maximum value of a rm as is usually the case Therefore, a rm >A improves processing efficiency.
  • FIG. 1 is a schematic diagram of an embodiment of a method for planning a trajectory speed according to the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a method for planning a trajectory speed according to the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a method for planning a trajectory speed according to the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a track speed planning device of the present invention.
  • Figure 5 is a schematic view showing another embodiment of the track speed planning device of the present invention.
  • Figure 6 is a schematic view showing another embodiment of the track speed planning device of the present invention.
  • Figure 7 is a schematic illustration of another embodiment of the trajectory velocity planning apparatus of the present invention.
  • Embodiments of the present invention provide a trajectory speed planning method and a trajectory speed planning device by using an acceleration of a single axis
  • the maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
  • the maximum value of a rm is to improve processing efficiency.
  • an embodiment of the method for trajectory speed planning in the embodiment of the present invention includes:
  • determining f i means determining the relationship coefficient between the acceleration of the axis and the combined acceleration; if there are two or more axes in the path velocity planning process, for example, including X and Y , Z three axes, then determine f i is to determine the acceleration of the X axis Synthetic acceleration The relationship between the relationship coefficient f x and the acceleration of the Y axis Synthetic acceleration The relationship between the coefficient f y and the acceleration of the Z axis Synthetic acceleration The relationship between the factors f z , where
  • the user gives the maximum acceleration A, ie the acceleration of a single axis The value cannot exceed the maximum acceleration A.
  • Will f i B and Into the formula Calculated In other words, to ensure the acceleration of a single axis The value does not exceed the maximum acceleration A, the resultant acceleration Value cannot exceed Synthetic acceleration Maximum value
  • the user For the speed planning of the target trajectory MP, the user gives the desired feed rate F. According to the resulting synthetic acceleration
  • the maximum value a rm and the given feed rate F can be used for speed planning of the target trajectory MP, for example, calculating the trajectory acceleration on this trajectory And according to the obtained trajectory acceleration Calculate track speed Related motion parameters.
  • Embodiment of the present application by accelerating a single axis
  • the maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration Maximum value Since f i ⁇ 1, and usually, synthetic acceleration Acceleration with a single axis They are not on the same line, so f i ⁇ 1, so B ⁇ 1, and therefore a rm >A, which improves the processing efficiency compared with the prior art.
  • the speed planning for the target trajectory MP may include linear velocity planning and arc velocity planning.
  • the target trajectory MP may be a line segment MP or an arc MP, which are respectively described below:
  • the target track MP is the line segment MP:
  • the speed of the target trajectory MP is planned as a linear velocity plan
  • the target trajectory MP is a line segment MP
  • the line segment MP is represented by a point M and a point P.
  • the trajectory speed planning method of the present invention is another Examples include:
  • the line segment MP starts with one end point M and ends with the other end point P.
  • the coordinates of the point M are M(x M , y M , z M )
  • the coordinates of the point P are P(x P , y P , z P )
  • the projection of the line segment MP on the X-axis is
  • the projection of the line segment MP on the Y-axis is
  • the acceleration of each single axis of the CNC system is the same as the X, Y, and Z axes, respectively, the acceleration of the single axis at this time.
  • Determining the relationship coefficient f i means determining the acceleration of the X axis separately Synthetic acceleration The relationship between the coefficient fx and the acceleration of the Y-axis Synthetic acceleration The relationship between the coefficient fy, the acceleration of the Z axis Synthetic acceleration The relationship coefficient fz, where And, for linear velocity planning, synthetic acceleration The direction is the same as the direction of the line segment MP. Therefore, the following equations can be obtained:
  • the user gives the maximum acceleration A, ie the acceleration of a single axis
  • the value cannot exceed the maximum acceleration A.
  • the resultant acceleration Value cannot exceed Synthetic acceleration Maximum value
  • the user For the speed planning of the line segment MP, the user gives the desired feed rate F. According to the determined value of the first target trajectory acceleration And the given feed rate F can calculate the track speed on the target line segment MP Related motion parameters.
  • the embodiment of the present application determines the maximum value of the relationship coefficient f i And the acceleration of a single axis
  • the maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration Maximum value Normally, synthetic acceleration Acceleration with a single axis Not on the same line, so Therefore, a rm >A, the processing efficiency is improved as compared with the prior art.
  • the target track MP is an arc MP:
  • the speed of the target trajectory MP is planned to be an arc speed plan
  • the target trajectory MP is an arc MP
  • the arc MP is represented by a point M and a point P.
  • the trajectory speed planning of the present invention includes:
  • the centripetal unit direction vector at point M is The tangential unit direction vector at point M is Synthetic acceleration at point N when the workpiece is running to point N
  • point N can be any point N on the arc MP
  • is the radians of the angle from point M to point N.
  • the projection on the Y axis is:
  • the tangential acceleration at point N can be determined according to the equation (4) And centripetal acceleration The numerical relationship is:
  • step 303 and step 301 there is no timing limitation between step 303 and step 301 between step 303 and step 301, as long as step 303 is completed before step 304.
  • the maximum values of f x , f y and f z are calculated by the Newton iteration method to be f xm , f ym and f zm , respectively . Then, the sizes of f xm , f ym , and f zm can be compared.
  • the value B f xm .
  • the user gives the maximum acceleration A, ie the acceleration of a single axis
  • the value cannot exceed the maximum acceleration A.
  • the synthetic acceleration The maximum value reaches a rm .
  • Step 306 determines the resultant acceleration Maximum value due to the relationship So you can be sure Range of values, and then determine The maximum value.
  • the movement of the workpiece on the arc MP may have the following two conditions: 1) The uniform circular motion is always performed, and when moving to the point P, the tangential velocity is the trajectory linear velocity. The value reaches the maximum; 2) the uniform acceleration circular motion is first accelerated to the user-specified feed rate, ie After that, the uniform speed circular motion is performed at the speed F.
  • the trajectory acceleration Tangential acceleration Tangential acceleration In this embodiment, in the speed planning of the arc MP, the trajectory acceleration Tangential acceleration Tangential acceleration The maximum value is In order to improve the processing efficiency, it is necessary to maximize the second target trajectory acceleration. Value of the second target trajectory For T-speed planning or S-type speed planning, the trajectory acceleration in the uniform acceleration and deceleration phases of the arc MP Therefore, the second target trajectory acceleration can be made Tangential acceleration The maximum value, namely:
  • the user For the speed planning of the arc MP, the user gives the desired feed rate F. According to the determined value of the second target trajectory acceleration And the given feed speed F can calculate the track speed on the target arc MP Related motion parameters.
  • the trajectory velocity planning method in the embodiment of the present invention has been described above.
  • the trajectory velocity planning device in the embodiment of the present invention will be described below.
  • an embodiment of a trajectory speed planning apparatus includes:
  • the relationship coefficient determining module 401 is configured to determine the relationship between the acceleration of the single axis and the combined acceleration Coefficient
  • a maximum value determining module 402 configured to determine a maximum value of the relationship coefficient
  • a calculation module 403 configured to calculate a maximum value of the combined acceleration
  • the speed planning module 404 is configured to perform speed planning of the target trajectory MP.
  • another embodiment of the trajectory speed planning apparatus in the embodiment of the present invention includes:
  • a projection determining module 501 configured to determine a projection of the line segment MP on the coordinate axis
  • a first determining unit 502 configured to determine a relationship coefficient according to a projection of the line segment MP on the coordinate axis;
  • a second determining unit 503, configured to determine a maximum value of the relationship coefficient
  • a ninth calculating unit 504, configured to calculate a maximum value of the combined acceleration
  • a third determining unit 505 configured to determine a maximum value of the combined acceleration as a value of the first target trajectory acceleration
  • the first calculating unit 506 is configured to calculate a track speed.
  • another embodiment of the trajectory speed planning apparatus in the embodiment of the present invention includes:
  • a fourth determining unit 601, configured to determine a combined acceleration at the point N;
  • a second calculating unit 602 configured to determine an expression of a relationship coefficient at a point N;
  • a fifth determining unit 603, configured to determine a relationship between the tangential acceleration at the point N and the centripetal acceleration
  • a third calculating unit 604 configured to calculate a relationship coefficient at the point N;
  • a fourth calculating unit 605, configured to determine a maximum value of the relationship coefficient
  • a tenth calculating unit 606, configured to calculate a maximum value of the combined acceleration
  • a fifth calculating unit 607 configured to determine a relationship between the combined acceleration and the centripetal acceleration
  • a sixth calculating unit 608, configured to determine a maximum value of the centripetal acceleration
  • a seventh calculating unit 609 configured to determine a maximum value of the tangential acceleration
  • a sixth determining unit 610 configured to determine that a maximum value of the tangential acceleration is a value of the second target trajectory acceleration
  • the eighth calculating unit 611 is configured to calculate a track speed.
  • trajectory speed planning apparatus in the embodiment of the present invention is described above from the perspective of a modular functional entity.
  • the trajectory speed planning apparatus in the embodiment of the present invention is described below from the perspective of hardware processing.
  • FIG. 7 in the embodiment of the present invention, Another embodiment of the trajectory velocity planning apparatus includes:
  • the processor 701 is configured to perform the following steps by calling an operation instruction stored in the memory 702:
  • Synthetic acceleration The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
  • the processor 701 is further configured to perform the following steps:
  • the coordinates of the point M are M(x M , y M , z M ), and the coordinates of the point P are P(x P , y P , z P ), and the relationship coefficient f i is determined as:
  • Determining the maximum value of the relationship coefficient f i as B includes: determining The maximum value in the
  • the processor 701 is further configured to perform the following steps:
  • a rm is the value of the first target trajectory acceleration
  • the value of the first target trajectory acceleration For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration Value, ie
  • the processor 701 is further configured to perform the following steps:
  • centripetal unit direction vector at point M is The tangential unit direction vector at point M is Point N is the point on the arc MP, according to the following formula:
  • the processor 701 is further configured to perform the following steps:
  • the maximum values of f x , f y and f z are calculated by Newton iteration method as f xm , f ym and f zm , respectively ;
  • the processor 701 is further configured to perform the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Disclosed are a trajectory velocity planning method and a trajectory velocity planning device. The method comprises: for a designated target trajectory MP, determining a relationship coefficient fi between single-axis acceleration (I) and composite acceleration (II) to obtain (III), wherein M is a start point of the target trajectory MP, and P is an end point of the target trajectory MP; determining the maximum value of the relationship coefficient fi as B; according to the maximum value B of the relationship coefficient fi and the maximum value of the single-axis acceleration (I), calculating the maximum value arm of the composite acceleration (II) to obtain (IV), wherein A is the given maximum acceleration value; and, according to the maximum value arm of the composite acceleration (II) and a given feed speed F, performing velocity planning for the target trajectory MP. By setting the maximum value of the single-axis acceleration (I) as the maximum acceleration A, and thus determining the maximum value arm of the composite acceleration (II), processing efficiency may be improved.

Description

一种轨迹速度规划方法及轨迹速度规划装置Track speed planning method and track speed planning device 技术领域Technical field
本申请实施涉及数控系统领域,尤其涉及一种轨迹速度规划方法及轨迹速度规划装置。The implementation of the present application relates to the field of numerical control systems, and in particular, to a track speed planning method and a track speed planning device.
背景技术Background technique
数控系统进行的轨迹速度规划,通常包括T型速度规划或S型速度规划,在对指定的一段目标轨迹进行速度规划时,用户通常会给定期望的进给速度F和最大加速度A,之后计算此段轨迹上的轨迹加速度
Figure PCTCN2016102126-appb-000001
并根据得到的轨迹加速度
Figure PCTCN2016102126-appb-000002
计算轨迹速度
Figure PCTCN2016102126-appb-000003
等相关运动参数。其中,轨迹速度
Figure PCTCN2016102126-appb-000004
是指工件沿目标轨迹运动的实际速度,是相对于单个轴的速度的合成速度;轨迹加速度
Figure PCTCN2016102126-appb-000005
是和轨迹速度
Figure PCTCN2016102126-appb-000006
相对应的加速度,满足
Figure PCTCN2016102126-appb-000007
为轨迹速度
Figure PCTCN2016102126-appb-000008
的初始速度。
The trajectory speed planning performed by the numerical control system usually includes T-type speed planning or S-type speed planning. When speed planning for a specified target trajectory, the user usually gives the desired feed speed F and maximum acceleration A, and then calculates Track acceleration on this trajectory
Figure PCTCN2016102126-appb-000001
And according to the obtained trajectory acceleration
Figure PCTCN2016102126-appb-000002
Calculate track speed
Figure PCTCN2016102126-appb-000003
Related motion parameters. Where the trajectory speed
Figure PCTCN2016102126-appb-000004
Refers to the actual speed at which the workpiece moves along the target trajectory, which is the combined speed of the velocity relative to a single axis; trajectory acceleration
Figure PCTCN2016102126-appb-000005
Yes and track speed
Figure PCTCN2016102126-appb-000006
Corresponding acceleration
Figure PCTCN2016102126-appb-000007
Track speed
Figure PCTCN2016102126-appb-000008
The initial speed.
在进行速度规划的过程中,由于单个轴的最大加速度关系到电机本身的加速能力和加工过程中的震动情况,所以与工件的表面加工质量直接相关,因此需要限定各个轴的合成加速度
Figure PCTCN2016102126-appb-000009
的最大值,以将单个轴的加速度
Figure PCTCN2016102126-appb-000010
限定在小于最大加速度A的范围内,对于笛卡尔坐标系XYZ,
Figure PCTCN2016102126-appb-000011
包括
Figure PCTCN2016102126-appb-000012
Figure PCTCN2016102126-appb-000013
同时,为了提高加工效率,减少总加工时间,需要提高各个轴的合成加速度
Figure PCTCN2016102126-appb-000014
即尽量提高单个轴的加速度
Figure PCTCN2016102126-appb-000015
In the process of speed planning, since the maximum acceleration of a single shaft is related to the acceleration capability of the motor itself and the vibration during machining, it is directly related to the surface machining quality of the workpiece, so it is necessary to limit the combined acceleration of each axis.
Figure PCTCN2016102126-appb-000009
Maximum value to increase the acceleration of a single axis
Figure PCTCN2016102126-appb-000010
Limited to a range less than the maximum acceleration A, for the Cartesian coordinate system XYZ,
Figure PCTCN2016102126-appb-000011
include
Figure PCTCN2016102126-appb-000012
with
Figure PCTCN2016102126-appb-000013
At the same time, in order to improve the processing efficiency and reduce the total processing time, it is necessary to increase the combined acceleration of each axis.
Figure PCTCN2016102126-appb-000014
That is to maximize the acceleration of a single axis
Figure PCTCN2016102126-appb-000015
通常情况下,合成加速度
Figure PCTCN2016102126-appb-000016
与单个轴的加速度
Figure PCTCN2016102126-appb-000017
不在同一直线上,因此
Figure PCTCN2016102126-appb-000018
现有技术中,在对指定的一段轨迹进行速度规划时,为了保证
Figure PCTCN2016102126-appb-000019
不超过给定的最大加速度A并且尽量提高合成加速度
Figure PCTCN2016102126-appb-000020
会将
Figure PCTCN2016102126-appb-000021
的最大值arm设定为A,并根据确定的
Figure PCTCN2016102126-appb-000022
的最大值arm计算相关运动参数。
Normally, synthetic acceleration
Figure PCTCN2016102126-appb-000016
Acceleration with a single axis
Figure PCTCN2016102126-appb-000017
Not on the same line, so
Figure PCTCN2016102126-appb-000018
In the prior art, when speed planning is performed on a specified trajectory, in order to ensure
Figure PCTCN2016102126-appb-000019
Does not exceed a given maximum acceleration A and maximizes the resultant acceleration
Figure PCTCN2016102126-appb-000020
Will
Figure PCTCN2016102126-appb-000021
The maximum value a rm is set to A, and is determined according to
Figure PCTCN2016102126-appb-000022
The maximum value a rm is calculated for the relevant motion parameters.
但是,在进行轨迹速度规划时,将
Figure PCTCN2016102126-appb-000023
的最大值设定为A,会导致
Figure PCTCN2016102126-appb-000024
的值无法达到最大加速度A,
Figure PCTCN2016102126-appb-000025
的最大值仍有提高的空间,因此加工效率并未得到充分提高。
However, when planning the trajectory speed,
Figure PCTCN2016102126-appb-000023
The maximum value is set to A, which will result in
Figure PCTCN2016102126-appb-000024
The value cannot reach the maximum acceleration A,
Figure PCTCN2016102126-appb-000025
The maximum value still has room for improvement, so the processing efficiency has not been sufficiently improved.
发明内容Summary of the invention
本发明实施例用于解决现有技术中,因将合成加速度
Figure PCTCN2016102126-appb-000026
的最大值设定为进给速度A,导致单个轴的加速度
Figure PCTCN2016102126-appb-000027
的值无法达到最大加速度A,降低加工效率的问题。
The embodiment of the invention is used to solve the prior art, because the synthetic acceleration will be
Figure PCTCN2016102126-appb-000026
The maximum value is set to feedrate A, resulting in acceleration of a single axis
Figure PCTCN2016102126-appb-000027
The value cannot reach the maximum acceleration A, which reduces the problem of processing efficiency.
本发明实施例的一方面提供了一种轨迹速度规划方法,包括:An aspect of the embodiments of the present invention provides a method for trajectory speed planning, including:
对于指定的目标轨迹MP,确定单个轴的加速度
Figure PCTCN2016102126-appb-000028
与合成加速度
Figure PCTCN2016102126-appb-000029
之间的关系系数fi,得到
Figure PCTCN2016102126-appb-000030
点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;确定关系系数fi的最大值为B;根据关系系数fi的最大值B和单个轴的加速度
Figure PCTCN2016102126-appb-000031
的最大值A,计算合成加速度
Figure PCTCN2016102126-appb-000032
的最大值arm,得到
Figure PCTCN2016102126-appb-000033
A为给定的最大加速度值;根据合成加速度
Figure PCTCN2016102126-appb-000034
的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
Determine the acceleration of a single axis for the specified target trajectory MP
Figure PCTCN2016102126-appb-000028
Synthetic acceleration
Figure PCTCN2016102126-appb-000029
The relationship coefficient f i between
Figure PCTCN2016102126-appb-000030
Point M is the starting point of the target trajectory MP, point P is the end point of the target trajectory MP; determining the maximum value of the relation coefficient f i is B; according to the maximum value B of the relationship coefficient f i and the acceleration of the single axis
Figure PCTCN2016102126-appb-000031
Maximum value A, calculate the composite acceleration
Figure PCTCN2016102126-appb-000032
The maximum value of a rm , get
Figure PCTCN2016102126-appb-000033
A is the given maximum acceleration value; according to the combined acceleration
Figure PCTCN2016102126-appb-000034
The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
结合第一方面,在第一方面的第一种可能的实现方式中,目标轨迹MP为线段MP,线段MP以点M和点P作为端点。In conjunction with the first aspect, in a first possible implementation of the first aspect, the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
结合第一方面,在第一方面的第二种可能的实现方式中,目标轨迹MP为圆弧MP,圆弧MP以点M和点P作为端点。In conjunction with the first aspect, in a second possible implementation of the first aspect, the target trajectory MP is an arc MP, and the arc MP is terminated by a point M and a point P.
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),所述确定单个轴的加速度
Figure PCTCN2016102126-appb-000035
与合成加速度
Figure PCTCN2016102126-appb-000036
之间的关系系数fi包括:
In conjunction with the first possible implementation of the first aspect, in a third possible implementation of the first aspect, for the Cartesian coordinate system XYZ, the coordinates of the point M are M(x M , yM , z M ), The coordinates of point P are P(x P , y P , z P ), which determines the acceleration of a single axis
Figure PCTCN2016102126-appb-000035
Synthetic acceleration
Figure PCTCN2016102126-appb-000036
The relationship coefficient f i between them includes:
确定所述关系系数fi为:Determining that the relationship coefficient f i is:
Figure PCTCN2016102126-appb-000037
Figure PCTCN2016102126-appb-000037
其中|MP|为线段MP的长度;Where |MP| is the length of the line segment MP;
确定关系系数fi的最大值为B包括:确定
Figure PCTCN2016102126-appb-000038
中的最大值,得到
Figure PCTCN2016102126-appb-000039
Determining the maximum value of the relationship coefficient f i as B includes: determining
Figure PCTCN2016102126-appb-000038
The maximum value in the
Figure PCTCN2016102126-appb-000039
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,根据合成加速度
Figure PCTCN2016102126-appb-000040
的最大值arm进行目标轨迹MP的速度规划包括:
In conjunction with the third possible implementation of the first aspect, in a fourth possible implementation of the first aspect,
Figure PCTCN2016102126-appb-000040
The maximum value a rm for the target trajectory MP speed planning includes:
确定合成加速度
Figure PCTCN2016102126-appb-000041
的最大值arm为第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000042
第一 目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000043
为线段MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000044
的取值,即
Figure PCTCN2016102126-appb-000045
Determining synthetic acceleration
Figure PCTCN2016102126-appb-000041
The maximum value a rm is the value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000042
The value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000043
For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000044
Value, ie
Figure PCTCN2016102126-appb-000045
根据第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000046
和给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000047
According to the value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000046
Calculate the path velocity with a given feedrate F
Figure PCTCN2016102126-appb-000047
结合第一方面的第二种可能的实现方式,在第一方面的第五种可能的实现方式中,对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
Figure PCTCN2016102126-appb-000048
点M处的切向单位方向矢量为
Figure PCTCN2016102126-appb-000049
点N为圆弧MP上的点,确定点N处单个轴的加速度
Figure PCTCN2016102126-appb-000050
与合成加速度
Figure PCTCN2016102126-appb-000051
之间的关系系数fi包括:
In conjunction with the second possible implementation of the first aspect, in a fifth possible implementation of the first aspect, for the Cartesian coordinate system XYZ, the centripetal unit direction vector at point M is
Figure PCTCN2016102126-appb-000048
The tangential unit direction vector at point M is
Figure PCTCN2016102126-appb-000049
Point N is the point on the arc MP, determining the acceleration of a single axis at point N
Figure PCTCN2016102126-appb-000050
Synthetic acceleration
Figure PCTCN2016102126-appb-000051
The relationship coefficient f i between them includes:
根据如下公式:According to the following formula:
Figure PCTCN2016102126-appb-000052
Figure PCTCN2016102126-appb-000052
确定点N处的合成加速度
Figure PCTCN2016102126-appb-000053
其中
Figure PCTCN2016102126-appb-000054
Figure PCTCN2016102126-appb-000055
分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值,得到:
Determine the combined acceleration at point N
Figure PCTCN2016102126-appb-000053
among them
Figure PCTCN2016102126-appb-000054
with
Figure PCTCN2016102126-appb-000055
The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N, which yields:
Figure PCTCN2016102126-appb-000056
Figure PCTCN2016102126-appb-000056
根据方程(2)获得如下方程组:Obtain the following equations according to equation (2):
Figure PCTCN2016102126-appb-000057
Figure PCTCN2016102126-appb-000057
若目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,存在如下方程组,其中r为圆弧MN的半径,s为从点M至点N转过角度的弧长,
Figure PCTCN2016102126-appb-000058
为点N处的轨迹速度:
If the velocity of the target trajectory MP is planned to be T-speed planning, and the point M to the point N is in the uniform acceleration motion phase, there is a system of equations where r is the radius of the arc MN and s is rotated from the point M to the point N The arc length of the angle,
Figure PCTCN2016102126-appb-000058
For the track speed at point N:
Figure PCTCN2016102126-appb-000059
Figure PCTCN2016102126-appb-000059
根据方程组(4)确定点N处的切向加速度
Figure PCTCN2016102126-appb-000060
和向心加速度
Figure PCTCN2016102126-appb-000061
的数值关系为
Figure PCTCN2016102126-appb-000062
Determine the tangential acceleration at point N according to equation (4)
Figure PCTCN2016102126-appb-000060
And centripetal acceleration
Figure PCTCN2016102126-appb-000061
The numerical relationship is
Figure PCTCN2016102126-appb-000062
将公式(5)代入方程组(3)得到关系系数fi为:Substituting equation (5) into equation (3) yields the relationship coefficient f i as:
Figure PCTCN2016102126-appb-000063
Figure PCTCN2016102126-appb-000063
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,确定关系系数fi的最大值为B包括:With reference to the fifth possible implementation manner of the first aspect, in a sixth possible implementation manner of the first aspect, determining that the maximum value of the relationship coefficient f i is B includes:
根据方程组(6),用牛顿迭代法计算fx、fy和fz的最大值分别为fxm、fym和fzmAccording to the equation (6), the maximum values of f x , f y and f z are calculated by Newton iteration method as f xm , f ym and f zm , respectively ;
确定fxm、fym和fzm中的最大值,得到B=max(fxm,fym,fzm)。The maximum values in f xm , f ym , and f zm are determined, and B = max (f xm , f ym , f zm ) is obtained.
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,根据合成加速度
Figure PCTCN2016102126-appb-000064
的最大值arm进行目标轨迹MP的速度规划包括:
In conjunction with the sixth possible implementation of the first aspect, in a seventh possible implementation of the first aspect,
Figure PCTCN2016102126-appb-000064
The maximum value a rm for the target trajectory MP speed planning includes:
将公式(5)代入如下公式:Substituting equation (5) into the following formula:
Figure PCTCN2016102126-appb-000065
Figure PCTCN2016102126-appb-000065
得到
Figure PCTCN2016102126-appb-000066
get
Figure PCTCN2016102126-appb-000066
当点N与点P重合时,θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
Figure PCTCN2016102126-appb-000067
达到最大值
Figure PCTCN2016102126-appb-000068
得到
Figure PCTCN2016102126-appb-000069
其中
Figure PCTCN2016102126-appb-000070
When point N coincides with point P, θ=θ P , where θ P is the radians of the opening angle corresponding to the arc MP, at this time
Figure PCTCN2016102126-appb-000067
Reaches the maximum value
Figure PCTCN2016102126-appb-000068
get
Figure PCTCN2016102126-appb-000069
among them
Figure PCTCN2016102126-appb-000070
将arm
Figure PCTCN2016102126-appb-000071
代入公式(7)中,得到
Figure PCTCN2016102126-appb-000072
的最大值
Figure PCTCN2016102126-appb-000073
Figure PCTCN2016102126-appb-000074
Will a rm and
Figure PCTCN2016102126-appb-000071
Substituting into formula (7), get
Figure PCTCN2016102126-appb-000072
Maximum value
Figure PCTCN2016102126-appb-000073
Figure PCTCN2016102126-appb-000074
确定
Figure PCTCN2016102126-appb-000075
的最大值
Figure PCTCN2016102126-appb-000076
为第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000077
Figure PCTCN2016102126-appb-000078
第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000079
为圆弧MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000080
的取值;
determine
Figure PCTCN2016102126-appb-000075
Maximum value
Figure PCTCN2016102126-appb-000076
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000077
which is
Figure PCTCN2016102126-appb-000078
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000079
For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000080
Value
根据第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000081
和给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000082
According to the value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000081
Calculate the path velocity with a given feedrate F
Figure PCTCN2016102126-appb-000082
本发明实施例的第二方面提供了一种轨迹速度规划装置,包括:A second aspect of the embodiments of the present invention provides a trajectory speed planning apparatus, including:
关系系数确定模块,对于指定的目标轨迹MP,用于确定单个轴的加速度
Figure PCTCN2016102126-appb-000083
与合成加速度
Figure PCTCN2016102126-appb-000084
之间的关系系数fi,得到
Figure PCTCN2016102126-appb-000085
点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
A relationship coefficient determination module for determining the acceleration of a single axis for a specified target trajectory MP
Figure PCTCN2016102126-appb-000083
Synthetic acceleration
Figure PCTCN2016102126-appb-000084
The relationship coefficient f i between
Figure PCTCN2016102126-appb-000085
Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
最大值确定模块,用于确定所述关系系数fi的最大值为B;a maximum value determining module, configured to determine that the maximum value of the relationship coefficient f i is B;
计算模块,用于根据所述关系系数fi的最大值B和所述单个轴的加速度
Figure PCTCN2016102126-appb-000086
的最大值A,计算所述合成加速度
Figure PCTCN2016102126-appb-000087
的最大值arm,得到
Figure PCTCN2016102126-appb-000088
A为给定的最大加速度值;
a calculation module for using a maximum value B of the relationship coefficient f i and an acceleration of the single axis
Figure PCTCN2016102126-appb-000086
Maximum value A, calculate the combined acceleration
Figure PCTCN2016102126-appb-000087
The maximum value of a rm , get
Figure PCTCN2016102126-appb-000088
A is the given maximum acceleration value;
速度规划模块,用于根据所述合成加速度
Figure PCTCN2016102126-appb-000089
的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
a speed planning module for synthesizing acceleration according to the
Figure PCTCN2016102126-appb-000089
The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
结合第二方面,在第二方面的第一种可能的实现方式中,所述目标轨迹MP为线段MP,所述线段MP以点M和点P作为端点。In conjunction with the second aspect, in a first possible implementation of the second aspect, the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
结合第二方面,在第二方面的第二种可能的实现方式中,所述目标轨迹MP为圆弧MP,所述圆弧MP以点M和点P作为端点。In conjunction with the second aspect, in a second possible implementation manner of the second aspect, the target trajectory MP is an arc MP, and the arc MP is a point M and a point P as end points.
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),所述关系系数确定模块包括:In conjunction with the first possible implementation of the second aspect, in a third possible implementation of the second aspect, for the Cartesian coordinate system XYZ, the coordinates of the point M are M(x M , y M , z M ) The coordinates of the point P are P(x P , y P , z P ), and the relationship coefficient determining module includes:
第一确定单元,用于确定所述关系系数fi为: a first determining unit, configured to determine that the relationship coefficient f i is:
Figure PCTCN2016102126-appb-000090
Figure PCTCN2016102126-appb-000090
其中|MP|为线段MP的长度;Where |MP| is the length of the line segment MP;
所述最大值确定模块包括:The maximum value determining module includes:
第二确定单元,用于确定
Figure PCTCN2016102126-appb-000091
中的最大值,得到
Figure PCTCN2016102126-appb-000092
a second determining unit for determining
Figure PCTCN2016102126-appb-000091
The maximum value in the
Figure PCTCN2016102126-appb-000092
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述速度规划模块包括:In conjunction with the third possible implementation of the second aspect, in a fourth possible implementation of the second aspect, the speed planning module includes:
第三确定单元,用于确定所述合成加速度
Figure PCTCN2016102126-appb-000093
的最大值arm为第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000094
所述第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000095
为线段MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000096
的取值,即
a third determining unit, configured to determine the combined acceleration
Figure PCTCN2016102126-appb-000093
The maximum value a rm is the value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000094
The value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000095
For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000096
Value, ie
Figure PCTCN2016102126-appb-000097
Figure PCTCN2016102126-appb-000097
第一计算单元,用于根据所述第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000098
和所述给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000099
a first calculating unit, configured to calculate a value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000098
Calculating the trajectory speed with the given feed rate F
Figure PCTCN2016102126-appb-000099
结合第二方面的第二种可能的实现方式,在第二方面的第五种可能的实现方式中,对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
Figure PCTCN2016102126-appb-000100
点M处的切向单位方向矢量为
Figure PCTCN2016102126-appb-000101
点N为圆弧MP上的点,关系系数确定模块包括:
In conjunction with the second possible implementation of the second aspect, in a fifth possible implementation of the second aspect, for the Cartesian coordinate system XYZ, the centripetal unit direction vector at the point M is
Figure PCTCN2016102126-appb-000100
The tangential unit direction vector at point M is
Figure PCTCN2016102126-appb-000101
Point N is a point on the arc MP, and the relationship coefficient determining module includes:
第四确定单元,用于根据如下公式:The fourth determining unit is used according to the following formula:
Figure PCTCN2016102126-appb-000102
Figure PCTCN2016102126-appb-000102
确定点N处的合成加速度
Figure PCTCN2016102126-appb-000103
其中
Figure PCTCN2016102126-appb-000104
Figure PCTCN2016102126-appb-000105
分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值,得到:
Determine the combined acceleration at point N
Figure PCTCN2016102126-appb-000103
among them
Figure PCTCN2016102126-appb-000104
with
Figure PCTCN2016102126-appb-000105
The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N, which yields:
Figure PCTCN2016102126-appb-000106
Figure PCTCN2016102126-appb-000106
第二计算单元,用于根据方程(2)获得如下方程组:a second calculation unit for obtaining the following system of equations according to equation (2):
Figure PCTCN2016102126-appb-000107
Figure PCTCN2016102126-appb-000107
若所述目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,存在如下方程组,其中r为圆弧MN的半径,s为从点M至点N转过角度的弧长,
Figure PCTCN2016102126-appb-000108
为点N处的轨迹速度:
If the speed of the target trajectory MP is planned to be a T-type velocity plan, and the point M to the point N are in the uniform acceleration motion phase, there is a following equation group, where r is the radius of the arc MN, and s is from the point M to the point N The arc length of the angle is turned,
Figure PCTCN2016102126-appb-000108
For the track speed at point N:
Figure PCTCN2016102126-appb-000109
Figure PCTCN2016102126-appb-000109
第五确定单元,用于根据方程组(4)确定点N处的切向加速度
Figure PCTCN2016102126-appb-000110
和向心加速度
Figure PCTCN2016102126-appb-000111
的数值关系为
Figure PCTCN2016102126-appb-000112
a fifth determining unit, configured to determine a tangential acceleration at a point N according to the system of equations (4)
Figure PCTCN2016102126-appb-000110
And centripetal acceleration
Figure PCTCN2016102126-appb-000111
The numerical relationship is
Figure PCTCN2016102126-appb-000112
第三计算单元,用于将公式(5)代入方程组(3)得到所述关系系数fi为:a third calculating unit for substituting the formula (5) into the system of equations (3) to obtain the relationship coefficient f i is:
Figure PCTCN2016102126-appb-000113
Figure PCTCN2016102126-appb-000113
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述最大值确定模块包括:With reference to the fifth possible implementation of the second aspect, in a sixth possible implementation manner of the second aspect, the maximum value determining module includes:
第四计算单元,用于根据方程组(6),用牛顿迭代法计算fx、fy和fz的 最大值分别为fxm、fym和fzm,确定fxm、fym和fzm中的最大值,得到a fourth calculating unit for calculating the maximum values of f x , f y , and f z by the Newton iteration method according to the equation group (6), respectively, f xm , f ym , and f zm , and determining f xm , f ym , and f zm The maximum value in the
B=max(fxm,fym,fzm)。B = max (f xm , f ym , f zm ).
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述速度规划模块包括:In conjunction with the sixth possible implementation of the second aspect, in a seventh possible implementation of the second aspect, the speed planning module includes:
第五计算单元,用于将公式(5)代入如下公式:A fifth calculation unit for substituting the formula (5) into the following formula:
Figure PCTCN2016102126-appb-000114
Figure PCTCN2016102126-appb-000114
得到
Figure PCTCN2016102126-appb-000115
get
Figure PCTCN2016102126-appb-000115
第六计算单元,用于当点N与点P重合时,θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
Figure PCTCN2016102126-appb-000116
达到最大值
Figure PCTCN2016102126-appb-000117
得到
a sixth calculating unit, configured to: when the point N coincides with the point P, θ=θ P , where θ P is a radians of the opening angle corresponding to the arc MP,
Figure PCTCN2016102126-appb-000116
Reaches the maximum value
Figure PCTCN2016102126-appb-000117
get
Figure PCTCN2016102126-appb-000118
其中
Figure PCTCN2016102126-appb-000119
Figure PCTCN2016102126-appb-000118
among them
Figure PCTCN2016102126-appb-000119
第七计算单元,用于将arm
Figure PCTCN2016102126-appb-000120
代入公式(7)中,得到
Figure PCTCN2016102126-appb-000121
的最大值
Figure PCTCN2016102126-appb-000122
a seventh calculation unit for a rm and
Figure PCTCN2016102126-appb-000120
Substituting into formula (7), get
Figure PCTCN2016102126-appb-000121
Maximum value
Figure PCTCN2016102126-appb-000122
第六确定单元,用于确定
Figure PCTCN2016102126-appb-000123
的最大值
Figure PCTCN2016102126-appb-000124
为第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000125
Figure PCTCN2016102126-appb-000126
所述第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000127
为圆弧MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000128
的取值;
a sixth determining unit for determining
Figure PCTCN2016102126-appb-000123
Maximum value
Figure PCTCN2016102126-appb-000124
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000125
which is
Figure PCTCN2016102126-appb-000126
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000127
For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000128
Value
第八计算单元,用于根据所述第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000129
和所述给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000130
An eighth calculating unit, configured to calculate a value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000129
Calculating the trajectory speed with the given feed rate F
Figure PCTCN2016102126-appb-000130
本发明实施例的第三方面提供了一种轨迹速度规划装置,包括:A third aspect of the embodiments of the present invention provides a trajectory speed planning apparatus, including:
存储器和处理器;Memory and processor;
通过调用所述存储器存储的操作指令,所述处理器,用于执行如下步骤:The processor is configured to perform the following steps by calling an operation instruction stored by the memory:
对于指定的目标轨迹MP,确定单个轴的加速度
Figure PCTCN2016102126-appb-000131
与合成加速度
Figure PCTCN2016102126-appb-000132
之间的关系系数fi,得到
Figure PCTCN2016102126-appb-000133
点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
Determine the acceleration of a single axis for the specified target trajectory MP
Figure PCTCN2016102126-appb-000131
Synthetic acceleration
Figure PCTCN2016102126-appb-000132
The relationship coefficient f i between
Figure PCTCN2016102126-appb-000133
Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
确定所述关系系数fi的最大值为B;Determining that the maximum value of the relationship coefficient f i is B;
根据所述关系系数fi的最大值B和所述单个轴的加速度
Figure PCTCN2016102126-appb-000134
的最大值A, 计算所述合成加速度
Figure PCTCN2016102126-appb-000135
的最大值arm,得到
Figure PCTCN2016102126-appb-000136
A为给定的最大加速度值;
According to the maximum value B of the relationship coefficient f i and the acceleration of the single axis
Figure PCTCN2016102126-appb-000134
Maximum value A, calculate the combined acceleration
Figure PCTCN2016102126-appb-000135
The maximum value of a rm , get
Figure PCTCN2016102126-appb-000136
A is the given maximum acceleration value;
根据所述合成加速度
Figure PCTCN2016102126-appb-000137
的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
According to the combined acceleration
Figure PCTCN2016102126-appb-000137
The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
本申请实施例提供的方案中,通过将单个轴的加速度
Figure PCTCN2016102126-appb-000138
的最大值设定为最大加速度A,进而确定合成加速度
Figure PCTCN2016102126-appb-000139
的最大值arm,由于通常情况下,
Figure PCTCN2016102126-appb-000140
因此arm>A,提高了加工效率。
In the solution provided by the embodiment of the present application, the acceleration of a single axis is adopted.
Figure PCTCN2016102126-appb-000138
The maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
Figure PCTCN2016102126-appb-000139
The maximum value of a rm , as is usually the case
Figure PCTCN2016102126-appb-000140
Therefore, a rm >A improves processing efficiency.
附图说明DRAWINGS
图1是本发明轨迹速度规划方法一个实施例示意图;1 is a schematic diagram of an embodiment of a method for planning a trajectory speed according to the present invention;
图2是本发明轨迹速度规划方法另一个实施例示意图;2 is a schematic diagram of another embodiment of a method for planning a trajectory speed according to the present invention;
图3是本发明轨迹速度规划方法另一个实施例示意图;3 is a schematic diagram of another embodiment of a method for planning a trajectory speed according to the present invention;
图4是本发明轨迹速度规划装置一个实施例示意图;4 is a schematic diagram of an embodiment of a track speed planning device of the present invention;
图5是本发明轨迹速度规划装置另一个实施例示意图;Figure 5 is a schematic view showing another embodiment of the track speed planning device of the present invention;
图6是本发明轨迹速度规划装置另一个实施例示意图;Figure 6 is a schematic view showing another embodiment of the track speed planning device of the present invention;
图7是本发明轨迹速度规划装置另一个实施例示意图。Figure 7 is a schematic illustration of another embodiment of the trajectory velocity planning apparatus of the present invention.
具体实施方式detailed description
本发明实施例提供了一种轨迹速度规划方法及轨迹速度规划装置,通过将单个轴的加速度
Figure PCTCN2016102126-appb-000141
的最大值设定为最大加速度A,进而确定合成加速度
Figure PCTCN2016102126-appb-000142
的最大值arm,提高加工效率。
Embodiments of the present invention provide a trajectory speed planning method and a trajectory speed planning device by using an acceleration of a single axis
Figure PCTCN2016102126-appb-000141
The maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
Figure PCTCN2016102126-appb-000142
The maximum value of a rm is to improve processing efficiency.
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is an embodiment of the invention, but not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts shall fall within the scope of the present invention.
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、 产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. (if present) in the specification and claims of the present invention and the above figures are used to distinguish similar objects without having to use To describe a specific order or order. It is to be understood that the data so used may be interchanged where appropriate so that the embodiments described herein can be implemented in a sequence other than what is illustrated or described herein. In addition, the terms "comprises" and "comprises" and "the" and "the" are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or units is not necessarily limited to Those steps or units, but may include those that are not clearly listed or for these processes, methods, Other steps or units inherent to the product or equipment.
为便于理解,下面对本发明实施例中的具体流程进行描述,请参阅图1,本发明实施例中轨迹速度规划方法一个实施例包括:For ease of understanding, the specific process in the embodiment of the present invention is described below. Referring to FIG. 1, an embodiment of the method for trajectory speed planning in the embodiment of the present invention includes:
101、确定单个轴的加速度与合成加速度之间的关系系数;101. Determine a relationship coefficient between an acceleration of a single axis and a combined acceleration;
对于指定的目标轨迹MP,其中,点M为目标轨迹MP的起点,点P为目标轨迹MP的终点,确定单个轴的加速度
Figure PCTCN2016102126-appb-000143
与合成加速度
Figure PCTCN2016102126-appb-000144
之间的关系系数fi,得到
Figure PCTCN2016102126-appb-000145
其中fi的取值与该轴相对应,不同轴的加速度与合成加速度之间的关系系数取值可以不同。若轨迹速度规划过程中只有一个轴,那么确定fi是指确定该轴的加速度与合成加速度之间的关系系数;若轨迹速度规划过程中有两个或两个以上轴,比如包括X、Y、Z三个轴,那么确定fi是指分别确定X轴的加速度
Figure PCTCN2016102126-appb-000146
与合成加速度
Figure PCTCN2016102126-appb-000147
之间的关系系数fx、Y轴的加速度
Figure PCTCN2016102126-appb-000148
与合成加速度
Figure PCTCN2016102126-appb-000149
之间的关系系数fy、Z轴的加速度
Figure PCTCN2016102126-appb-000150
与合成加速度
Figure PCTCN2016102126-appb-000151
之间的关系系数fz,其中
Figure PCTCN2016102126-appb-000152
For the specified target trajectory MP, where point M is the starting point of the target trajectory MP, point P is the end point of the target trajectory MP, and the acceleration of the single axis is determined
Figure PCTCN2016102126-appb-000143
Synthetic acceleration
Figure PCTCN2016102126-appb-000144
The relationship coefficient f i between
Figure PCTCN2016102126-appb-000145
Where f i corresponds to the axis, and the relationship between the acceleration of the different axes and the combined acceleration may be different. If there is only one axis in the path velocity planning process, then determining f i means determining the relationship coefficient between the acceleration of the axis and the combined acceleration; if there are two or more axes in the path velocity planning process, for example, including X and Y , Z three axes, then determine f i is to determine the acceleration of the X axis
Figure PCTCN2016102126-appb-000146
Synthetic acceleration
Figure PCTCN2016102126-appb-000147
The relationship between the relationship coefficient f x and the acceleration of the Y axis
Figure PCTCN2016102126-appb-000148
Synthetic acceleration
Figure PCTCN2016102126-appb-000149
The relationship between the coefficient f y and the acceleration of the Z axis
Figure PCTCN2016102126-appb-000150
Synthetic acceleration
Figure PCTCN2016102126-appb-000151
The relationship between the factors f z , where
Figure PCTCN2016102126-appb-000152
102、确定关系系数的最大值;102. Determine a maximum value of the relationship coefficient;
对于指定的目标轨迹MP,确定单个轴的加速度
Figure PCTCN2016102126-appb-000153
与合成加速度
Figure PCTCN2016102126-appb-000154
之间的关系系数fi之后,可以计算关系系数fi的最大值,得到关系系数fi的最大值为B。
Determine the acceleration of a single axis for the specified target trajectory MP
Figure PCTCN2016102126-appb-000153
Synthetic acceleration
Figure PCTCN2016102126-appb-000154
After the relationship between the coefficients f i, the relationship between the maximum value may be calculated coefficients f i, the maximum value is obtained for the relationship between the coefficient f i B.
103、计算合成加速度的最大值;103. Calculate a maximum value of the combined acceleration;
对于目标轨迹MP的速度规划,用户给定最大加速度A,即单个轴的加速度
Figure PCTCN2016102126-appb-000155
的值不能超过最大加速度A。将fi=B和
Figure PCTCN2016102126-appb-000156
代入公式
Figure PCTCN2016102126-appb-000157
计算得到
Figure PCTCN2016102126-appb-000158
也就是说,为了保证单个轴的加速度
Figure PCTCN2016102126-appb-000159
的值不超过最大加速度A,合成加速度
Figure PCTCN2016102126-appb-000160
的值不能超过
Figure PCTCN2016102126-appb-000161
即合成加速度
Figure PCTCN2016102126-appb-000162
的最大值
Figure PCTCN2016102126-appb-000163
For the speed planning of the target trajectory MP, the user gives the maximum acceleration A, ie the acceleration of a single axis
Figure PCTCN2016102126-appb-000155
The value cannot exceed the maximum acceleration A. Will f i =B and
Figure PCTCN2016102126-appb-000156
Into the formula
Figure PCTCN2016102126-appb-000157
Calculated
Figure PCTCN2016102126-appb-000158
In other words, to ensure the acceleration of a single axis
Figure PCTCN2016102126-appb-000159
The value does not exceed the maximum acceleration A, the resultant acceleration
Figure PCTCN2016102126-appb-000160
Value cannot exceed
Figure PCTCN2016102126-appb-000161
Synthetic acceleration
Figure PCTCN2016102126-appb-000162
Maximum value
Figure PCTCN2016102126-appb-000163
104、进行目标轨迹MP的速度规划。104. Perform speed planning of the target trajectory MP.
对于目标轨迹MP的速度规划,用户给定期望的进给速度F。根据得到的合成加速度
Figure PCTCN2016102126-appb-000164
的最大值arm和给定的进给速度F可以进行目标轨迹MP的速度规划,比如,计算此段轨迹上的轨迹加速度
Figure PCTCN2016102126-appb-000165
并根据得到的轨迹加速度
Figure PCTCN2016102126-appb-000166
计算轨迹速度
Figure PCTCN2016102126-appb-000167
等相关运动参数。
For the speed planning of the target trajectory MP, the user gives the desired feed rate F. According to the resulting synthetic acceleration
Figure PCTCN2016102126-appb-000164
The maximum value a rm and the given feed rate F can be used for speed planning of the target trajectory MP, for example, calculating the trajectory acceleration on this trajectory
Figure PCTCN2016102126-appb-000165
And according to the obtained trajectory acceleration
Figure PCTCN2016102126-appb-000166
Calculate track speed
Figure PCTCN2016102126-appb-000167
Related motion parameters.
本申请实施例通过将单个轴的加速度
Figure PCTCN2016102126-appb-000168
的最大值设定为最大加速度A,进而确定合成加速度
Figure PCTCN2016102126-appb-000169
的最大值
Figure PCTCN2016102126-appb-000170
由于fi≤1,并且通常情况下,合成加速度
Figure PCTCN2016102126-appb-000171
与单个轴的加速度
Figure PCTCN2016102126-appb-000172
不在同一直线上,因此fi<1,故B<1,因此arm>A,和现有技术相比,提高了加工效率。
Embodiment of the present application by accelerating a single axis
Figure PCTCN2016102126-appb-000168
The maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
Figure PCTCN2016102126-appb-000169
Maximum value
Figure PCTCN2016102126-appb-000170
Since f i ≤ 1, and usually, synthetic acceleration
Figure PCTCN2016102126-appb-000171
Acceleration with a single axis
Figure PCTCN2016102126-appb-000172
They are not on the same line, so f i <1, so B<1, and therefore a rm >A, which improves the processing efficiency compared with the prior art.
上述实施例中,对目标轨迹MP的速度规划可以包括直线速度规划和圆弧速度规划,相应的,目标轨迹MP可以为线段MP,也可以为圆弧MP,下面分别进行说明:In the above embodiment, the speed planning for the target trajectory MP may include linear velocity planning and arc velocity planning. Correspondingly, the target trajectory MP may be a line segment MP or an arc MP, which are respectively described below:
一、目标轨迹MP为线段MP:First, the target track MP is the line segment MP:
在本实施例中,对目标轨迹MP的速度规划为直线速度规划,目标轨迹MP为线段MP,线段MP以点M和点P作为端点,具体请参阅图2,本发明轨迹速度规划方法另一实施例包括:In this embodiment, the speed of the target trajectory MP is planned as a linear velocity plan, the target trajectory MP is a line segment MP, and the line segment MP is represented by a point M and a point P. For details, refer to FIG. 2, the trajectory speed planning method of the present invention is another Examples include:
201、确定线段MP在坐标轴的投影;201. Determine a projection of the line segment MP on the coordinate axis;
线段MP以一个端点M为起点,以另一个端点P为终点。对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),那么线段MP在X轴的投影为|xP-xM|,线段MP在Y轴的投影为|yP-yM|,线段MP在X轴的投影为|zP-zM|。The line segment MP starts with one end point M and ends with the other end point P. For the Cartesian coordinate system XYZ, the coordinates of the point M are M(x M , y M , z M ), and the coordinates of the point P are P(x P , y P , z P ), then the projection of the line segment MP on the X-axis is |x P -x M |, the projection of the line segment MP on the Y-axis is |y P -y M |, and the projection of the line segment MP on the X-axis is |z P -z M |.
202、根据线段MP在坐标轴的投影确定关系系数;202. Determine a relationship coefficient according to a projection of the line segment MP on the coordinate axis;
若数控系统各单个轴的加速度的方向分别与X、Y、Z轴相同,此时单个轴的加速度
Figure PCTCN2016102126-appb-000173
Figure PCTCN2016102126-appb-000174
Figure PCTCN2016102126-appb-000175
确定关系系数fi是指分别确定X轴的加速度
Figure PCTCN2016102126-appb-000176
与合成加速度
Figure PCTCN2016102126-appb-000177
之间的关系系数fx、Y轴的加速度
Figure PCTCN2016102126-appb-000178
与合成加速度
Figure PCTCN2016102126-appb-000179
之间的关系系数fy、Z轴的加速度
Figure PCTCN2016102126-appb-000180
与合成加速度
Figure PCTCN2016102126-appb-000181
之间的关系系数fz,其中
Figure PCTCN2016102126-appb-000182
并且,对于直线速度规划,合成加速度
Figure PCTCN2016102126-appb-000183
的方向与线段MP的方向相同。因此可以得到如下方程组:
If the acceleration of each single axis of the CNC system is the same as the X, Y, and Z axes, respectively, the acceleration of the single axis at this time.
Figure PCTCN2016102126-appb-000173
for
Figure PCTCN2016102126-appb-000174
with
Figure PCTCN2016102126-appb-000175
Determining the relationship coefficient f i means determining the acceleration of the X axis separately
Figure PCTCN2016102126-appb-000176
Synthetic acceleration
Figure PCTCN2016102126-appb-000177
The relationship between the coefficient fx and the acceleration of the Y-axis
Figure PCTCN2016102126-appb-000178
Synthetic acceleration
Figure PCTCN2016102126-appb-000179
The relationship between the coefficient fy, the acceleration of the Z axis
Figure PCTCN2016102126-appb-000180
Synthetic acceleration
Figure PCTCN2016102126-appb-000181
The relationship coefficient fz, where
Figure PCTCN2016102126-appb-000182
And, for linear velocity planning, synthetic acceleration
Figure PCTCN2016102126-appb-000183
The direction is the same as the direction of the line segment MP. Therefore, the following equations can be obtained:
Figure PCTCN2016102126-appb-000184
Figure PCTCN2016102126-appb-000184
其中|MP|为线段MP的长度。Where |MP| is the length of the line segment MP.
由于单个轴的加速度
Figure PCTCN2016102126-appb-000185
与合成加速度
Figure PCTCN2016102126-appb-000186
之间存在关系系数fi,使得
Figure PCTCN2016102126-appb-000187
因此关系系数fi为:
Due to the acceleration of a single axis
Figure PCTCN2016102126-appb-000185
Synthetic acceleration
Figure PCTCN2016102126-appb-000186
There is a relationship coefficient f i between them
Figure PCTCN2016102126-appb-000187
Therefore the relationship coefficient f i is:
Figure PCTCN2016102126-appb-000188
Figure PCTCN2016102126-appb-000188
203、确定关系系数的最大值;203. Determine a maximum value of the relationship coefficient.
在确定关系系数fx、fy和fz的值之后,比较fx、fy和fz的值的大小,即比较
Figure PCTCN2016102126-appb-000189
的大小,假设
Figure PCTCN2016102126-appb-000190
的值最大,那么关系系数fi的最大值
Figure PCTCN2016102126-appb-000191
After determining the values of the relationship coefficients f x , f y , and f z , compare the magnitudes of the values of f x , f y , and f z , that is, compare
Figure PCTCN2016102126-appb-000189
Size, hypothesis
Figure PCTCN2016102126-appb-000190
The value is the largest, then the maximum value of the relationship coefficient f i
Figure PCTCN2016102126-appb-000191
204、计算合成加速度的最大值;204. Calculate a maximum value of the combined acceleration;
对于线段MP的速度规划,用户给定最大加速度A,即单个轴的加速度
Figure PCTCN2016102126-appb-000192
的值不能超过最大加速度A。将
Figure PCTCN2016102126-appb-000193
Figure PCTCN2016102126-appb-000194
代入公式
Figure PCTCN2016102126-appb-000195
计算得到
Figure PCTCN2016102126-appb-000196
也就是说,为了保证单个轴的加速度
Figure PCTCN2016102126-appb-000197
的值不超过最大加速度A,合成加速度
Figure PCTCN2016102126-appb-000198
的值不能超过
Figure PCTCN2016102126-appb-000199
即合成 加速度
Figure PCTCN2016102126-appb-000200
的最大值
Figure PCTCN2016102126-appb-000201
For the speed planning of the line segment MP, the user gives the maximum acceleration A, ie the acceleration of a single axis
Figure PCTCN2016102126-appb-000192
The value cannot exceed the maximum acceleration A. will
Figure PCTCN2016102126-appb-000193
with
Figure PCTCN2016102126-appb-000194
Into the formula
Figure PCTCN2016102126-appb-000195
Calculated
Figure PCTCN2016102126-appb-000196
In other words, to ensure the acceleration of a single axis
Figure PCTCN2016102126-appb-000197
The value does not exceed the maximum acceleration A, the resultant acceleration
Figure PCTCN2016102126-appb-000198
Value cannot exceed
Figure PCTCN2016102126-appb-000199
Synthetic acceleration
Figure PCTCN2016102126-appb-000200
Maximum value
Figure PCTCN2016102126-appb-000201
205、确定合成加速度的最大值为第一目标轨迹加速度的取值;205. Determine a maximum value of the combined acceleration as a value of the first target trajectory acceleration;
由于直线速度规划中,合成加速度
Figure PCTCN2016102126-appb-000202
的方向与线段MP的方向相同,因此合成加速度
Figure PCTCN2016102126-appb-000203
即为线段MP的轨迹加速度
Figure PCTCN2016102126-appb-000204
为了提高加工效率,需要尽量提高第一目标轨迹加速度
Figure PCTCN2016102126-appb-000205
的值,第一目标轨迹加速度
Figure PCTCN2016102126-appb-000206
为T型速度规划或S型速度规划中线段MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000207
因此可以令第一目标轨迹加速度
Figure PCTCN2016102126-appb-000208
的取值为合成加速度
Figure PCTCN2016102126-appb-000209
的最大值arm,即:
Synthetic acceleration due to linear velocity planning
Figure PCTCN2016102126-appb-000202
The direction is the same as the direction of the line segment MP, so the resultant acceleration
Figure PCTCN2016102126-appb-000203
That is the trajectory acceleration of the line segment MP
Figure PCTCN2016102126-appb-000204
In order to improve the processing efficiency, it is necessary to maximize the first target trajectory acceleration.
Figure PCTCN2016102126-appb-000205
Value of the first target trajectory
Figure PCTCN2016102126-appb-000206
For T-speed planning or S-type speed planning, the trajectory acceleration in the uniform acceleration and deceleration phases of the line segment MP
Figure PCTCN2016102126-appb-000207
Therefore, the first target trajectory acceleration can be made
Figure PCTCN2016102126-appb-000208
Synthetic acceleration
Figure PCTCN2016102126-appb-000209
The maximum value of a rm , ie:
Figure PCTCN2016102126-appb-000210
Figure PCTCN2016102126-appb-000210
206、计算轨迹速度。206. Calculate the trajectory speed.
对于线段MP的速度规划,用户给定期望的进给速度F。根据确定的第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000211
和给定的进给速度F可以计算目标线段MP上轨迹速度
Figure PCTCN2016102126-appb-000212
等相关运动参数。
For the speed planning of the line segment MP, the user gives the desired feed rate F. According to the determined value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000211
And the given feed rate F can calculate the track speed on the target line segment MP
Figure PCTCN2016102126-appb-000212
Related motion parameters.
本申请实施例通过确定关系系数fi的最大值
Figure PCTCN2016102126-appb-000213
并将单个轴的加速度
Figure PCTCN2016102126-appb-000214
的最大值设定为最大加速度A,进而确定合成加速度
Figure PCTCN2016102126-appb-000215
的最大值
Figure PCTCN2016102126-appb-000216
通常情况下,合成加速度
Figure PCTCN2016102126-appb-000217
与单个轴的加速度
Figure PCTCN2016102126-appb-000218
不在同一直线上,因此
Figure PCTCN2016102126-appb-000219
因此arm>A,和现有技术相比,提高了加工效率。
The embodiment of the present application determines the maximum value of the relationship coefficient f i
Figure PCTCN2016102126-appb-000213
And the acceleration of a single axis
Figure PCTCN2016102126-appb-000214
The maximum value is set to the maximum acceleration A, which in turn determines the combined acceleration
Figure PCTCN2016102126-appb-000215
Maximum value
Figure PCTCN2016102126-appb-000216
Normally, synthetic acceleration
Figure PCTCN2016102126-appb-000217
Acceleration with a single axis
Figure PCTCN2016102126-appb-000218
Not on the same line, so
Figure PCTCN2016102126-appb-000219
Therefore, a rm >A, the processing efficiency is improved as compared with the prior art.
二、目标轨迹MP为圆弧MP:Second, the target track MP is an arc MP:
在本实施例中,对目标轨迹MP的速度规划为圆弧速度规划,目标轨迹MP为圆弧MP,圆弧MP以点M和点P作为端点,具体请参阅图3,本发明轨迹速度规划方法另一实施例包括:In this embodiment, the speed of the target trajectory MP is planned to be an arc speed plan, the target trajectory MP is an arc MP, and the arc MP is represented by a point M and a point P. For details, refer to FIG. 3, the trajectory speed planning of the present invention. Another embodiment of the method includes:
301、确定点N处的合成加速度;301. Determine a synthetic acceleration at a point N;
对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
Figure PCTCN2016102126-appb-000220
点M处的切向单位方向矢量为
Figure PCTCN2016102126-appb-000221
当工件运行至点N处时,点N处的合成加速度
Figure PCTCN2016102126-appb-000222
其中点N可以为圆弧MP上的任意一点N,
Figure PCTCN2016102126-appb-000223
Figure PCTCN2016102126-appb-000224
分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值。将上述
Figure PCTCN2016102126-appb-000225
的表达式进一步整 理为关于
Figure PCTCN2016102126-appb-000226
Figure PCTCN2016102126-appb-000227
的表达式,得到:
For the Cartesian coordinate system XYZ, the centripetal unit direction vector at point M is
Figure PCTCN2016102126-appb-000220
The tangential unit direction vector at point M is
Figure PCTCN2016102126-appb-000221
Synthetic acceleration at point N when the workpiece is running to point N
Figure PCTCN2016102126-appb-000222
Where point N can be any point N on the arc MP,
Figure PCTCN2016102126-appb-000223
with
Figure PCTCN2016102126-appb-000224
The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N. Will be above
Figure PCTCN2016102126-appb-000225
The expression is further organized into
Figure PCTCN2016102126-appb-000226
with
Figure PCTCN2016102126-appb-000227
Expression, get:
Figure PCTCN2016102126-appb-000228
Figure PCTCN2016102126-appb-000228
302、确定点N处关系系数的表达式;302. Determine an expression of a relationship coefficient at a point N;
当工件运行至点N处时,根据公式(2),可以得到
Figure PCTCN2016102126-appb-000229
在各坐标轴上的投影,其中
Figure PCTCN2016102126-appb-000230
在X轴上的投影为:
When the workpiece runs to point N, according to formula (2), you can get
Figure PCTCN2016102126-appb-000229
Projection on each coordinate axis, where
Figure PCTCN2016102126-appb-000230
The projection on the X axis is:
Figure PCTCN2016102126-appb-000231
Figure PCTCN2016102126-appb-000231
Figure PCTCN2016102126-appb-000232
在Y轴上的投影为:
Figure PCTCN2016102126-appb-000232
The projection on the Y axis is:
Figure PCTCN2016102126-appb-000233
Figure PCTCN2016102126-appb-000233
Figure PCTCN2016102126-appb-000234
在Z轴上的投影为:
Figure PCTCN2016102126-appb-000234
The projection on the Z axis is:
Figure PCTCN2016102126-appb-000235
Figure PCTCN2016102126-appb-000235
若数控系统各单个轴的加速度的方向分别与X、Y、Z轴相同,此时单个轴的加速度
Figure PCTCN2016102126-appb-000236
Figure PCTCN2016102126-appb-000237
Figure PCTCN2016102126-appb-000238
单个轴的加速度
Figure PCTCN2016102126-appb-000239
与合成加速度
Figure PCTCN2016102126-appb-000240
之间存在关系系数fi,使得
Figure PCTCN2016102126-appb-000241
确定关系系数fi是指分别确定X轴的加速度
Figure PCTCN2016102126-appb-000242
与合成加速度
Figure PCTCN2016102126-appb-000243
之间的关系系数fx、Y轴的加速度
Figure PCTCN2016102126-appb-000244
与合成加速度
Figure PCTCN2016102126-appb-000245
之间的关系系数fy、Z轴的加速度
Figure PCTCN2016102126-appb-000246
与合成加速度
Figure PCTCN2016102126-appb-000247
之间的关系系数fz,其中
Figure PCTCN2016102126-appb-000248
If the acceleration of each single axis of the CNC system is the same as the X, Y, and Z axes, respectively, the acceleration of the single axis at this time.
Figure PCTCN2016102126-appb-000236
for
Figure PCTCN2016102126-appb-000237
with
Figure PCTCN2016102126-appb-000238
Acceleration of a single axis
Figure PCTCN2016102126-appb-000239
Synthetic acceleration
Figure PCTCN2016102126-appb-000240
There is a relationship coefficient f i between them
Figure PCTCN2016102126-appb-000241
Determining the relationship coefficient f i means determining the acceleration of the X axis separately
Figure PCTCN2016102126-appb-000242
Synthetic acceleration
Figure PCTCN2016102126-appb-000243
The relationship between the relationship coefficient f x and the acceleration of the Y axis
Figure PCTCN2016102126-appb-000244
Synthetic acceleration
Figure PCTCN2016102126-appb-000245
The relationship between the coefficient f y and the acceleration of the Z axis
Figure PCTCN2016102126-appb-000246
Synthetic acceleration
Figure PCTCN2016102126-appb-000247
The relationship between the factors f z , where
Figure PCTCN2016102126-appb-000248
因此点N处关系系数fi的表达式为:Therefore, the expression of the relationship coefficient f i at point N is:
Figure PCTCN2016102126-appb-000249
Figure PCTCN2016102126-appb-000249
其中,
Figure PCTCN2016102126-appb-000250
among them,
Figure PCTCN2016102126-appb-000250
303、确定点N处的切向加速度和向心加速度的关系式;303. Determine a relationship between a tangential acceleration at a point N and a centripetal acceleration;
若目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,则存在如下方程组,其中r为圆弧MN的半径,s为从点M至点N转过角度的弧长,
Figure PCTCN2016102126-appb-000251
为点N处的轨迹速度:
If the speed of the target trajectory MP is planned to be T-type velocity planning, and the point M to point N is in the uniform acceleration motion phase, there is a system of equations where r is the radius of the arc MN and s is from the point M to the point N The arc length over the angle,
Figure PCTCN2016102126-appb-000251
For the track speed at point N:
Figure PCTCN2016102126-appb-000252
Figure PCTCN2016102126-appb-000252
根据方程组(4)可以确定点N处的切向加速度
Figure PCTCN2016102126-appb-000253
和向心加速度
Figure PCTCN2016102126-appb-000254
的数值关系为:
The tangential acceleration at point N can be determined according to the equation (4)
Figure PCTCN2016102126-appb-000253
And centripetal acceleration
Figure PCTCN2016102126-appb-000254
The numerical relationship is:
Figure PCTCN2016102126-appb-000255
Figure PCTCN2016102126-appb-000255
304、计算点N处的关系系数;304. Calculate a relationship coefficient at a point N;
将公式(5)代入方程组(3)得到点N处的关系系数fi为:Substituting equation (5) into equation (3) yields the relationship coefficient f i at point N as:
Figure PCTCN2016102126-appb-000256
Figure PCTCN2016102126-appb-000256
需要说明的是,步骤303与步骤301之间,步骤303与步骤302之间均没有时序限制,只要步骤303在步骤304之前完成即可。It should be noted that there is no timing limitation between step 303 and step 301 between step 303 and step 301, as long as step 303 is completed before step 304.
305、确定关系系数的最大值;305. Determine a maximum value of the relationship coefficient.
根据方程组(6),用牛顿迭代法计算fx、fy和fz的最大值分别为fxm、fym和fzm。之后可以比较fxm、fym和fzm的大小,本实施例以三者中的最大值max(fxm,fym,fzm)=fxm为例进行说明,那么关系系数fi的最大值B=fxmAccording to the equation (6), the maximum values of f x , f y and f z are calculated by the Newton iteration method to be f xm , f ym and f zm , respectively . Then, the sizes of f xm , f ym , and f zm can be compared. In this embodiment, the maximum value max(f xm , f ym , f zm )=f xm among the three is taken as an example, and then the maximum of the relationship coefficient f i . The value B = f xm .
306、计算合成加速度的最大值;306. Calculate a maximum value of the combined acceleration;
对于圆弧MP的速度规划,用户给定最大加速度A,即单个轴的加速度
Figure PCTCN2016102126-appb-000257
的值不能超过最大加速度A。将fi=B=fxm
Figure PCTCN2016102126-appb-000258
代入公式
Figure PCTCN2016102126-appb-000259
计算得到
Figure PCTCN2016102126-appb-000260
也就是说,为了保证单个轴的加速度
Figure PCTCN2016102126-appb-000261
的值不超过最大加速度A,合成加速度
Figure PCTCN2016102126-appb-000262
的值不能超过
Figure PCTCN2016102126-appb-000263
即合成加速度
Figure PCTCN2016102126-appb-000264
的最大值
Figure PCTCN2016102126-appb-000265
为了提高加工效率,在速度规划中,令合成加速度
Figure PCTCN2016102126-appb-000266
的最大值达到arm
For the speed planning of the arc MP, the user gives the maximum acceleration A, ie the acceleration of a single axis
Figure PCTCN2016102126-appb-000257
The value cannot exceed the maximum acceleration A. Will f i = B = f xm and
Figure PCTCN2016102126-appb-000258
Into the formula
Figure PCTCN2016102126-appb-000259
Calculated
Figure PCTCN2016102126-appb-000260
In other words, to ensure the acceleration of a single axis
Figure PCTCN2016102126-appb-000261
The value does not exceed the maximum acceleration A, the resultant acceleration
Figure PCTCN2016102126-appb-000262
Value cannot exceed
Figure PCTCN2016102126-appb-000263
Synthetic acceleration
Figure PCTCN2016102126-appb-000264
Maximum value
Figure PCTCN2016102126-appb-000265
In order to improve the processing efficiency, in the speed planning, the synthetic acceleration
Figure PCTCN2016102126-appb-000266
The maximum value reaches a rm .
在本实施例对圆弧MP的速度规划中,轨迹加速度
Figure PCTCN2016102126-appb-000267
为切向加速度
Figure PCTCN2016102126-appb-000268
为了确定圆弧MP上的轨迹加速度
Figure PCTCN2016102126-appb-000269
需要确定切向加速度
Figure PCTCN2016102126-appb-000270
的最大值。步骤306确定了合成加速度
Figure PCTCN2016102126-appb-000271
的最大值,由于存在关系式
Figure PCTCN2016102126-appb-000272
因此可以确定
Figure PCTCN2016102126-appb-000273
的取值范围,进而确定
Figure PCTCN2016102126-appb-000274
的最大值。
In the speed planning of the arc MP in this embodiment, the trajectory acceleration
Figure PCTCN2016102126-appb-000267
Tangential acceleration
Figure PCTCN2016102126-appb-000268
In order to determine the trajectory acceleration on the arc MP
Figure PCTCN2016102126-appb-000269
Need to determine tangential acceleration
Figure PCTCN2016102126-appb-000270
The maximum value. Step 306 determines the resultant acceleration
Figure PCTCN2016102126-appb-000271
Maximum value due to the relationship
Figure PCTCN2016102126-appb-000272
So you can be sure
Figure PCTCN2016102126-appb-000273
Range of values, and then determine
Figure PCTCN2016102126-appb-000274
The maximum value.
307、确定合成加速度与向心加速度的关系式;307. Determine a relationship between the combined acceleration and the centripetal acceleration;
将公式(5)代入如下公式:Substituting equation (5) into the following formula:
Figure PCTCN2016102126-appb-000275
Figure PCTCN2016102126-appb-000275
可以得到合成加速度
Figure PCTCN2016102126-appb-000276
与向心加速度
Figure PCTCN2016102126-appb-000277
的关系式:
Figure PCTCN2016102126-appb-000278
Synthetic acceleration
Figure PCTCN2016102126-appb-000276
Centripetal acceleration
Figure PCTCN2016102126-appb-000277
Relationship:
Figure PCTCN2016102126-appb-000278
308、确定向心加速度的最大值;308. Determine a maximum value of the centripetal acceleration;
工件在圆弧MP上的运动可能有以下两种情况:1)一直做匀加速圆周运动,当运动到点P时,切向速度即轨迹线速度
Figure PCTCN2016102126-appb-000279
的值达到最大;2)先做匀加速圆周运动,加速至用户给定的进给速度,即
Figure PCTCN2016102126-appb-000280
之后,以速度F做匀速圆周运动。
The movement of the workpiece on the arc MP may have the following two conditions: 1) The uniform circular motion is always performed, and when moving to the point P, the tangential velocity is the trajectory linear velocity.
Figure PCTCN2016102126-appb-000279
The value reaches the maximum; 2) the uniform acceleration circular motion is first accelerated to the user-specified feed rate, ie
Figure PCTCN2016102126-appb-000280
After that, the uniform speed circular motion is performed at the speed F.
由于
Figure PCTCN2016102126-appb-000281
并且
Figure PCTCN2016102126-appb-000282
因此在从点M运动到点P的过程中,对于第一种情况,当运动到点P时,
Figure PCTCN2016102126-appb-000283
达到最大,
Figure PCTCN2016102126-appb-000284
达到最大值arm;对于第二种情况,当
Figure PCTCN2016102126-appb-000285
时,
Figure PCTCN2016102126-appb-000286
达到最大,
Figure PCTCN2016102126-appb-000287
达到最大值arm。由于在匀加速圆周运动过程中,满足
Figure PCTCN2016102126-appb-000288
因此当
Figure PCTCN2016102126-appb-000289
达到最大值arm时,以上两种情况相比,第一种情况下,点N与点P重合,θ可以取到最大值θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
Figure PCTCN2016102126-appb-000290
达到最大值
Figure PCTCN2016102126-appb-000291
due to
Figure PCTCN2016102126-appb-000281
and
Figure PCTCN2016102126-appb-000282
Therefore, in the process of moving from point M to point P, for the first case, when moving to point P,
Figure PCTCN2016102126-appb-000283
to reach maximum,
Figure PCTCN2016102126-appb-000284
Achieve the maximum value a rm ; for the second case, when
Figure PCTCN2016102126-appb-000285
Time,
Figure PCTCN2016102126-appb-000286
to reach maximum,
Figure PCTCN2016102126-appb-000287
The maximum value a rm is reached. Satisfied during the uniform acceleration of the circular motion
Figure PCTCN2016102126-appb-000288
So when
Figure PCTCN2016102126-appb-000289
When the maximum value a rm is reached, compared with the above two cases, in the first case, the point N coincides with the point P, and θ can take the maximum value θ=θ P , where θ P is the opening angle corresponding to the arc MP Radian value, at this time
Figure PCTCN2016102126-appb-000290
Reaches the maximum value
Figure PCTCN2016102126-appb-000291
考虑到
Figure PCTCN2016102126-appb-000292
因此
Figure PCTCN2016102126-appb-000293
在本实施例中,假设
Figure PCTCN2016102126-appb-000294
因此
Figure PCTCN2016102126-appb-000295
considering
Figure PCTCN2016102126-appb-000292
therefore
Figure PCTCN2016102126-appb-000293
In this embodiment, it is assumed
Figure PCTCN2016102126-appb-000294
therefore
Figure PCTCN2016102126-appb-000295
309、确定切向加速度的最大值;309. Determine a maximum value of the tangential acceleration;
Figure PCTCN2016102126-appb-000296
Figure PCTCN2016102126-appb-000297
代入公式(7)中,得到
Figure PCTCN2016102126-appb-000298
由于
Figure PCTCN2016102126-appb-000299
为合成加速度
Figure PCTCN2016102126-appb-000300
的最大值,
Figure PCTCN2016102126-appb-000301
为向心加速度
Figure PCTCN2016102126-appb-000302
的最大值,因此
Figure PCTCN2016102126-appb-000303
为切向加速度
Figure PCTCN2016102126-appb-000304
的最大值。
will
Figure PCTCN2016102126-appb-000296
with
Figure PCTCN2016102126-appb-000297
Substituting into formula (7), get
Figure PCTCN2016102126-appb-000298
due to
Figure PCTCN2016102126-appb-000299
Synthetic acceleration
Figure PCTCN2016102126-appb-000300
Maximum value,
Figure PCTCN2016102126-appb-000301
Centripetal acceleration
Figure PCTCN2016102126-appb-000302
Maximum value, therefore
Figure PCTCN2016102126-appb-000303
Tangential acceleration
Figure PCTCN2016102126-appb-000304
The maximum value.
310、确定切向加速度的最大值为第二目标轨迹加速度的取值;310. Determine a maximum value of the tangential acceleration as a value of the second target trajectory acceleration;
本实施例对圆弧MP的速度规划中,轨迹加速度
Figure PCTCN2016102126-appb-000305
为切向加速度
Figure PCTCN2016102126-appb-000306
切向加速度
Figure PCTCN2016102126-appb-000307
的最大值为
Figure PCTCN2016102126-appb-000308
为了提高加工效率,需要尽量提高第二目标轨迹加速度
Figure PCTCN2016102126-appb-000309
的值,第二目标轨迹加速度
Figure PCTCN2016102126-appb-000310
为T型速度规划或S型速度规划中圆弧MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000311
因此可以令第二目标轨迹加速度
Figure PCTCN2016102126-appb-000312
的取值为切向加速度
Figure PCTCN2016102126-appb-000313
的最大值,即:
In this embodiment, in the speed planning of the arc MP, the trajectory acceleration
Figure PCTCN2016102126-appb-000305
Tangential acceleration
Figure PCTCN2016102126-appb-000306
Tangential acceleration
Figure PCTCN2016102126-appb-000307
The maximum value is
Figure PCTCN2016102126-appb-000308
In order to improve the processing efficiency, it is necessary to maximize the second target trajectory acceleration.
Figure PCTCN2016102126-appb-000309
Value of the second target trajectory
Figure PCTCN2016102126-appb-000310
For T-speed planning or S-type speed planning, the trajectory acceleration in the uniform acceleration and deceleration phases of the arc MP
Figure PCTCN2016102126-appb-000311
Therefore, the second target trajectory acceleration can be made
Figure PCTCN2016102126-appb-000312
Tangential acceleration
Figure PCTCN2016102126-appb-000313
The maximum value, namely:
Figure PCTCN2016102126-appb-000314
Figure PCTCN2016102126-appb-000314
311、计算轨迹速度。311. Calculate the trajectory speed.
对于圆弧MP的速度规划,用户给定期望的进给速度F。根据确定的第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000315
和给定的进给速度F可以计算目标圆弧MP上轨迹速度
Figure PCTCN2016102126-appb-000316
等相关运动参数。
For the speed planning of the arc MP, the user gives the desired feed rate F. According to the determined value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000315
And the given feed speed F can calculate the track speed on the target arc MP
Figure PCTCN2016102126-appb-000316
Related motion parameters.
上面对本发明实施例中的轨迹速度规划方法进行了描述,下面对本发明实施例中的轨迹速度规划装置进行描述。The trajectory velocity planning method in the embodiment of the present invention has been described above. The trajectory velocity planning device in the embodiment of the present invention will be described below.
请参阅图4,本发明实施例中轨迹速度规划装置的一个实施例包括:Referring to FIG. 4, an embodiment of a trajectory speed planning apparatus according to an embodiment of the present invention includes:
关系系数确定模块401,用于确定单个轴的加速度与合成加速度之间的关 系系数;The relationship coefficient determining module 401 is configured to determine the relationship between the acceleration of the single axis and the combined acceleration Coefficient
最大值确定模块402,用于确定关系系数的最大值;a maximum value determining module 402, configured to determine a maximum value of the relationship coefficient;
计算模块403,用于计算合成加速度的最大值;a calculation module 403, configured to calculate a maximum value of the combined acceleration;
速度规划模块404,用于进行目标轨迹MP的速度规划。The speed planning module 404 is configured to perform speed planning of the target trajectory MP.
本实施例中的轨迹速度规划装置各模块间的关系参照图1对应的实施例,此处不再赘述。The relationship between the modules of the trajectory speed planning apparatus in this embodiment refers to the corresponding embodiment of FIG. 1 and will not be described herein.
请参阅图5,本发明实施例中轨迹速度规划装置的另一个实施例包括:Referring to FIG. 5, another embodiment of the trajectory speed planning apparatus in the embodiment of the present invention includes:
投影确定模块501,用于确定线段MP在坐标轴的投影;a projection determining module 501, configured to determine a projection of the line segment MP on the coordinate axis;
第一确定单元502,用于根据线段MP在坐标轴的投影确定关系系数;a first determining unit 502, configured to determine a relationship coefficient according to a projection of the line segment MP on the coordinate axis;
第二确定单元503,用于确定关系系数的最大值;a second determining unit 503, configured to determine a maximum value of the relationship coefficient;
第九计算单元504,用于计算合成加速度的最大值;a ninth calculating unit 504, configured to calculate a maximum value of the combined acceleration;
第三确定单元505,用于确定合成加速度的最大值为第一目标轨迹加速度的取值;a third determining unit 505, configured to determine a maximum value of the combined acceleration as a value of the first target trajectory acceleration;
第一计算单元506,用于计算轨迹速度。The first calculating unit 506 is configured to calculate a track speed.
本实施例中的轨迹速度规划装置各模块间的关系参照图2对应的实施例,此处不再赘述。The relationship between the modules of the trajectory speed planning device in this embodiment refers to the corresponding embodiment in FIG. 2, and details are not described herein again.
请参阅图6,本发明实施例中轨迹速度规划装置的另一个实施例包括:Referring to FIG. 6, another embodiment of the trajectory speed planning apparatus in the embodiment of the present invention includes:
第四确定单元601,用于确定点N处的合成加速度;a fourth determining unit 601, configured to determine a combined acceleration at the point N;
第二计算单元602,用于确定点N处关系系数的表达式;a second calculating unit 602, configured to determine an expression of a relationship coefficient at a point N;
第五确定单元603,用于确定点N处的切向加速度和向心加速度的关系式;a fifth determining unit 603, configured to determine a relationship between the tangential acceleration at the point N and the centripetal acceleration;
第三计算单元604,用于计算点N处的关系系数;a third calculating unit 604, configured to calculate a relationship coefficient at the point N;
第四计算单元605,用于确定关系系数的最大值;a fourth calculating unit 605, configured to determine a maximum value of the relationship coefficient;
第十计算单元606,用于计算合成加速度的最大值;a tenth calculating unit 606, configured to calculate a maximum value of the combined acceleration;
第五计算单元607,用于确定合成加速度与向心加速度的关系式;a fifth calculating unit 607, configured to determine a relationship between the combined acceleration and the centripetal acceleration;
第六计算单元608,用于确定向心加速度的最大值;a sixth calculating unit 608, configured to determine a maximum value of the centripetal acceleration;
第七计算单元609,用于确定切向加速度的最大值;a seventh calculating unit 609, configured to determine a maximum value of the tangential acceleration;
第六确定单元610,用于确定切向加速度的最大值为第二目标轨迹加速度的取值;a sixth determining unit 610, configured to determine that a maximum value of the tangential acceleration is a value of the second target trajectory acceleration;
第八计算单元611,用于计算轨迹速度。The eighth calculating unit 611 is configured to calculate a track speed.
本实施例中的轨迹速度规划装置各模块间的关系参照图3对应的实施例, 此处不再赘述。The relationship between the modules of the trajectory speed planning device in this embodiment refers to the corresponding embodiment of FIG. 3, I will not repeat them here.
上面从模块化功能实体的角度对本发明实施例中的轨迹速度规划装置进行描述,下面从硬件处理的角度对本发明实施例中的轨迹速度规划装置进行描述,请参阅图7,本发明实施例中的轨迹速度规划装置另一实施例包括:The trajectory speed planning apparatus in the embodiment of the present invention is described above from the perspective of a modular functional entity. The trajectory speed planning apparatus in the embodiment of the present invention is described below from the perspective of hardware processing. Referring to FIG. 7, in the embodiment of the present invention, Another embodiment of the trajectory velocity planning apparatus includes:
处理器701和存储器702等,其中轨迹速度规划装置中的处理器的数量可以一个或多个,图7中以一个处理器701为例。本领域技术人员可以理解,图7中示出的轨迹速度规划装置结构并不构成对轨迹速度规划装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。The processor 701 and the memory 702 and the like, wherein the number of processors in the trajectory speed planning device may be one or more, and one processor 701 is taken as an example in FIG. It will be understood by those skilled in the art that the trajectory velocity planning device structure shown in FIG. 7 does not constitute a limitation of the trajectory velocity planning device, and may include more or less components than those illustrated, or combine some components, or different. Parts layout.
其中,通过调用存储器702存储的操作指令,处理器701,用于执行如下步骤:The processor 701 is configured to perform the following steps by calling an operation instruction stored in the memory 702:
对于指定的目标轨迹MP,确定单个轴的加速度
Figure PCTCN2016102126-appb-000317
与合成加速度
Figure PCTCN2016102126-appb-000318
之间的关系系数fi,得到
Figure PCTCN2016102126-appb-000319
点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
Determine the acceleration of a single axis for the specified target trajectory MP
Figure PCTCN2016102126-appb-000317
Synthetic acceleration
Figure PCTCN2016102126-appb-000318
The relationship coefficient f i between
Figure PCTCN2016102126-appb-000319
Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
确定关系系数fi的最大值为B;Determining that the maximum value of the relationship coefficient f i is B;
根据关系系数fi的最大值B和单个轴的加速度
Figure PCTCN2016102126-appb-000320
的最大值A,计算合成加速度
Figure PCTCN2016102126-appb-000321
的最大值arm,得到
Figure PCTCN2016102126-appb-000322
A为给定的最大加速度值;
According to the maximum value B of the relationship coefficient f i and the acceleration of a single axis
Figure PCTCN2016102126-appb-000320
Maximum value A, calculate the composite acceleration
Figure PCTCN2016102126-appb-000321
The maximum value of a rm , get
Figure PCTCN2016102126-appb-000322
A is the given maximum acceleration value;
根据合成加速度
Figure PCTCN2016102126-appb-000323
的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
Synthetic acceleration
Figure PCTCN2016102126-appb-000323
The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
在本发明的一些实施例中,处理器701还用于执行以下步骤:In some embodiments of the present invention, the processor 701 is further configured to perform the following steps:
对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),确定关系系数fi为:For the Cartesian coordinate system XYZ, the coordinates of the point M are M(x M , y M , z M ), and the coordinates of the point P are P(x P , y P , z P ), and the relationship coefficient f i is determined as:
Figure PCTCN2016102126-appb-000324
Figure PCTCN2016102126-appb-000324
其中|MP|为线段MP的长度; Where |MP| is the length of the line segment MP;
确定关系系数fi的最大值为B包括:确定
Figure PCTCN2016102126-appb-000325
中的最大值,得到
Figure PCTCN2016102126-appb-000326
Determining the maximum value of the relationship coefficient f i as B includes: determining
Figure PCTCN2016102126-appb-000325
The maximum value in the
Figure PCTCN2016102126-appb-000326
在本发明的一些实施例中,处理器701还用于执行以下步骤:In some embodiments of the present invention, the processor 701 is further configured to perform the following steps:
确定合成加速度
Figure PCTCN2016102126-appb-000327
的最大值arm为第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000328
第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000329
为线段MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000330
的取值,即
Figure PCTCN2016102126-appb-000331
Determining synthetic acceleration
Figure PCTCN2016102126-appb-000327
The maximum value a rm is the value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000328
The value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000329
For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000330
Value, ie
Figure PCTCN2016102126-appb-000331
根据第一目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000332
和给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000333
According to the value of the first target trajectory acceleration
Figure PCTCN2016102126-appb-000332
Calculate the path velocity with a given feedrate F
Figure PCTCN2016102126-appb-000333
在本发明的一些实施例中,处理器701还用于执行以下步骤:In some embodiments of the present invention, the processor 701 is further configured to perform the following steps:
对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
Figure PCTCN2016102126-appb-000334
点M处的切向单位方向矢量为
Figure PCTCN2016102126-appb-000335
点N为圆弧MP上的点,根据如下公式:
For the Cartesian coordinate system XYZ, the centripetal unit direction vector at point M is
Figure PCTCN2016102126-appb-000334
The tangential unit direction vector at point M is
Figure PCTCN2016102126-appb-000335
Point N is the point on the arc MP, according to the following formula:
Figure PCTCN2016102126-appb-000336
Figure PCTCN2016102126-appb-000336
确定点N处的合成加速度
Figure PCTCN2016102126-appb-000337
其中
Figure PCTCN2016102126-appb-000338
Figure PCTCN2016102126-appb-000339
分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值,得到:
Determine the combined acceleration at point N
Figure PCTCN2016102126-appb-000337
among them
Figure PCTCN2016102126-appb-000338
with
Figure PCTCN2016102126-appb-000339
The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N, which yields:
Figure PCTCN2016102126-appb-000340
Figure PCTCN2016102126-appb-000340
根据方程(2)获得如下方程组:Obtain the following equations according to equation (2):
Figure PCTCN2016102126-appb-000341
Figure PCTCN2016102126-appb-000341
若目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,存在如下方程组,其中r为圆弧MN的半径,s为从点M至点N转过角度的弧长,
Figure PCTCN2016102126-appb-000342
为点N处的轨迹速度:
If the velocity of the target trajectory MP is planned to be T-speed planning, and the point M to the point N is in the uniform acceleration motion phase, there is a system of equations where r is the radius of the arc MN and s is rotated from the point M to the point N The arc length of the angle,
Figure PCTCN2016102126-appb-000342
For the track speed at point N:
Figure PCTCN2016102126-appb-000343
Figure PCTCN2016102126-appb-000343
根据方程组(4)确定点N处的切向加速度
Figure PCTCN2016102126-appb-000344
和向心加速度
Figure PCTCN2016102126-appb-000345
的数值关系为
Figure PCTCN2016102126-appb-000346
Determine the tangential acceleration at point N according to equation (4)
Figure PCTCN2016102126-appb-000344
And centripetal acceleration
Figure PCTCN2016102126-appb-000345
The numerical relationship is
Figure PCTCN2016102126-appb-000346
将公式(5)代入方程组(3)得到关系系数fi为:Substituting equation (5) into equation (3) yields the relationship coefficient f i as:
Figure PCTCN2016102126-appb-000347
Figure PCTCN2016102126-appb-000347
在本发明的一些实施例中,处理器701还用于执行以下步骤:In some embodiments of the present invention, the processor 701 is further configured to perform the following steps:
根据方程组(6),用牛顿迭代法计算fx、fy和fz的最大值分别为fxm、fym和fzmAccording to the equation (6), the maximum values of f x , f y and f z are calculated by Newton iteration method as f xm , f ym and f zm , respectively ;
确定fxm、fym和fzm中的最大值,得到B=max(fxm,fym,fzm)。The maximum values in f xm , f ym , and f zm are determined, and B = max (f xm , f ym , f zm ) is obtained.
在本发明的一些实施例中,处理器701还用于执行以下步骤:In some embodiments of the present invention, the processor 701 is further configured to perform the following steps:
将公式(5)代入如下公式:Substituting equation (5) into the following formula:
Figure PCTCN2016102126-appb-000348
Figure PCTCN2016102126-appb-000348
得到
Figure PCTCN2016102126-appb-000349
get
Figure PCTCN2016102126-appb-000349
当点N与点P重合时,θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
Figure PCTCN2016102126-appb-000350
达到最大值
Figure PCTCN2016102126-appb-000351
得到
Figure PCTCN2016102126-appb-000352
其中
Figure PCTCN2016102126-appb-000353
When point N coincides with point P, θ=θ P , where θ P is the radians of the opening angle corresponding to the arc MP, at this time
Figure PCTCN2016102126-appb-000350
Reaches the maximum value
Figure PCTCN2016102126-appb-000351
get
Figure PCTCN2016102126-appb-000352
among them
Figure PCTCN2016102126-appb-000353
将arm
Figure PCTCN2016102126-appb-000354
代入公式(7)中,得到
Figure PCTCN2016102126-appb-000355
的最大值
Figure PCTCN2016102126-appb-000356
Figure PCTCN2016102126-appb-000357
Will a rm and
Figure PCTCN2016102126-appb-000354
Substituting into formula (7), get
Figure PCTCN2016102126-appb-000355
Maximum value
Figure PCTCN2016102126-appb-000356
Figure PCTCN2016102126-appb-000357
确定
Figure PCTCN2016102126-appb-000358
的最大值
Figure PCTCN2016102126-appb-000359
为第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000360
Figure PCTCN2016102126-appb-000361
第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000362
为圆弧MP上匀加速和匀减速阶段轨迹加速度
Figure PCTCN2016102126-appb-000363
的取值;
determine
Figure PCTCN2016102126-appb-000358
Maximum value
Figure PCTCN2016102126-appb-000359
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000360
which is
Figure PCTCN2016102126-appb-000361
The value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000362
For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration
Figure PCTCN2016102126-appb-000363
Value
根据第二目标轨迹加速度的取值
Figure PCTCN2016102126-appb-000364
和给定的进给速度F计算轨迹速度
Figure PCTCN2016102126-appb-000365
According to the value of the second target trajectory acceleration
Figure PCTCN2016102126-appb-000364
Calculate the path velocity with a given feedrate F
Figure PCTCN2016102126-appb-000365
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 The above embodiments are only used to illustrate the technical solutions of the present invention, and are not intended to be limiting; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that The technical solutions are described as being modified, or equivalent to some of the technical features, and the modifications and substitutions do not depart from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (17)

  1. 一种轨迹速度规划方法,其特征在于,包括:A method for trajectory velocity planning, comprising:
    对于指定的目标轨迹MP,确定单个轴的加速度
    Figure PCTCN2016102126-appb-100001
    与合成加速度
    Figure PCTCN2016102126-appb-100002
    之间的关系系数fi,得到
    Figure PCTCN2016102126-appb-100003
    点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
    Determine the acceleration of a single axis for the specified target trajectory MP
    Figure PCTCN2016102126-appb-100001
    Synthetic acceleration
    Figure PCTCN2016102126-appb-100002
    The relationship coefficient f i between
    Figure PCTCN2016102126-appb-100003
    Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
    确定所述关系系数fi的最大值为B;Determining that the maximum value of the relationship coefficient f i is B;
    根据所述关系系数fi的最大值B和所述单个轴的加速度
    Figure PCTCN2016102126-appb-100004
    的最大值A,计算所述合成加速度
    Figure PCTCN2016102126-appb-100005
    的最大值arm,得到
    Figure PCTCN2016102126-appb-100006
    A为给定的最大加速度值;
    According to the maximum value B of the relationship coefficient f i and the acceleration of the single axis
    Figure PCTCN2016102126-appb-100004
    Maximum value A, calculate the combined acceleration
    Figure PCTCN2016102126-appb-100005
    The maximum value of a rm , get
    Figure PCTCN2016102126-appb-100006
    A is the given maximum acceleration value;
    根据所述合成加速度
    Figure PCTCN2016102126-appb-100007
    的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
    According to the combined acceleration
    Figure PCTCN2016102126-appb-100007
    The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
  2. 根据权利要求1所述的轨迹速度规划方法,其特征在于,所述目标轨迹MP为线段MP,所述线段MP以点M和点P作为端点。The trajectory velocity planning method according to claim 1, wherein the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
  3. 根据权利要求1所述的轨迹速度规划方法,其特征在于,所述目标轨迹MP为圆弧MP,所述圆弧MP以点M和点P作为端点。The trajectory velocity planning method according to claim 1, wherein the target trajectory MP is an arc MP, and the arc MP is represented by a point M and a point P.
  4. 根据权利要求2所述的轨迹速度规划方法,其特征在于,对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),所述确定单个轴的加速度
    Figure PCTCN2016102126-appb-100008
    与合成加速度
    Figure PCTCN2016102126-appb-100009
    之间的关系系数fi包括:
    The trajectory velocity planning method according to claim 2, wherein for the Cartesian coordinate system XYZ, the coordinates of the point M are M (x M , y M , z M ), and the coordinates of the point P are P (x P , y P , z P ), the determination of the acceleration of a single axis
    Figure PCTCN2016102126-appb-100008
    Synthetic acceleration
    Figure PCTCN2016102126-appb-100009
    The relationship coefficient f i between them includes:
    确定所述关系系数fi为:Determining that the relationship coefficient f i is:
    Figure PCTCN2016102126-appb-100010
    Figure PCTCN2016102126-appb-100010
    其中|MP|为线段MP的长度;Where |MP| is the length of the line segment MP;
    所述确定所述关系系数fi的最大值为B包括:确定
    Figure PCTCN2016102126-appb-100011
    Figure PCTCN2016102126-appb-100012
    中的最大值,得到
    Figure PCTCN2016102126-appb-100013
    Determining that the maximum value of the relationship coefficient f i is B includes: determining
    Figure PCTCN2016102126-appb-100011
    Figure PCTCN2016102126-appb-100012
    The maximum value in the
    Figure PCTCN2016102126-appb-100013
  5. 根据权利要求4所述的轨迹速度规划方法,其特征在于,所述根据所述合成加速度
    Figure PCTCN2016102126-appb-100014
    的最大值arm进行目标轨迹MP的速度规划包括:
    The trajectory velocity planning method according to claim 4, wherein said synthetic acceleration is based on said
    Figure PCTCN2016102126-appb-100014
    The maximum value a rm for the target trajectory MP speed planning includes:
    确定所述合成加速度
    Figure PCTCN2016102126-appb-100015
    的最大值arm为第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100016
    所述第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100017
    为线段MP上匀加速和匀减速阶段轨迹加速度
    Figure PCTCN2016102126-appb-100018
    的取值,即
    Figure PCTCN2016102126-appb-100019
    Determining the combined acceleration
    Figure PCTCN2016102126-appb-100015
    The maximum value a rm is the value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100016
    The value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100017
    For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration
    Figure PCTCN2016102126-appb-100018
    Value, ie
    Figure PCTCN2016102126-appb-100019
    根据所述第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100020
    和所述给定的进给速度F计算轨迹速度
    Figure PCTCN2016102126-appb-100021
    According to the value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100020
    Calculating the trajectory speed with the given feed rate F
    Figure PCTCN2016102126-appb-100021
  6. 根据权利要求3所述的轨迹速度规划方法,其特征在于,对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
    Figure PCTCN2016102126-appb-100022
    点M处的切向单位方向矢量为
    Figure PCTCN2016102126-appb-100023
    点N为圆弧MP上的点,确定点N处单个轴的加速度
    Figure PCTCN2016102126-appb-100024
    与合成加速度
    Figure PCTCN2016102126-appb-100025
    之间的关系系数fi包括:
    The trajectory velocity planning method according to claim 3, wherein for the Cartesian coordinate system XYZ, the centripetal unit direction vector at the point M is
    Figure PCTCN2016102126-appb-100022
    The tangential unit direction vector at point M is
    Figure PCTCN2016102126-appb-100023
    Point N is the point on the arc MP, determining the acceleration of a single axis at point N
    Figure PCTCN2016102126-appb-100024
    Synthetic acceleration
    Figure PCTCN2016102126-appb-100025
    The relationship coefficient f i between them includes:
    根据如下公式:According to the following formula:
    Figure PCTCN2016102126-appb-100026
    Figure PCTCN2016102126-appb-100026
    确定点N处的合成加速度
    Figure PCTCN2016102126-appb-100027
    其中
    Figure PCTCN2016102126-appb-100028
    Figure PCTCN2016102126-appb-100029
    分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值,得到:
    Determine the combined acceleration at point N
    Figure PCTCN2016102126-appb-100027
    among them
    Figure PCTCN2016102126-appb-100028
    with
    Figure PCTCN2016102126-appb-100029
    The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N, which yields:
    Figure PCTCN2016102126-appb-100030
    Figure PCTCN2016102126-appb-100030
    根据方程(2)获得如下方程组:Obtain the following equations according to equation (2):
    Figure PCTCN2016102126-appb-100031
    Figure PCTCN2016102126-appb-100031
    若所述目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,存在如下方程组,其中r为圆弧MN的半径,s为从点M至 点N转过角度的弧长,
    Figure PCTCN2016102126-appb-100032
    为点N处的轨迹速度:
    If the speed of the target trajectory MP is planned to be a T-type velocity plan, and the point M to the point N are in the uniform acceleration motion phase, there is a following equation group, where r is the radius of the arc MN, and s is from the point M to the point N The arc length of the angle is turned,
    Figure PCTCN2016102126-appb-100032
    For the track speed at point N:
    Figure PCTCN2016102126-appb-100033
    Figure PCTCN2016102126-appb-100033
    根据方程组(4)确定点N处的切向加速度
    Figure PCTCN2016102126-appb-100034
    和向心加速度
    Figure PCTCN2016102126-appb-100035
    的数值关系为
    Figure PCTCN2016102126-appb-100036
    Determine the tangential acceleration at point N according to equation (4)
    Figure PCTCN2016102126-appb-100034
    And centripetal acceleration
    Figure PCTCN2016102126-appb-100035
    The numerical relationship is
    Figure PCTCN2016102126-appb-100036
    将公式(5)代入方程组(3)得到所述关系系数fi为:Substituting equation (5) into equation (3) yields the relationship coefficient f i as:
    Figure PCTCN2016102126-appb-100037
    Figure PCTCN2016102126-appb-100037
  7. 根据权利要求6所述的轨迹速度规划方法,其特征在于,所述确定所述关系系数fi的最大值为B包括:The trajectory velocity planning method according to claim 6, wherein the determining that the maximum value of the relationship coefficient f i is B comprises:
    根据方程组(6),用牛顿迭代法计算fx、fy和fz的最大值分别为fxm、fym和fzmAccording to the equation (6), the maximum values of f x , f y and f z are calculated by Newton iteration method as f xm , f ym and f zm , respectively ;
    确定fxm、fym和fzm中的最大值,得到B=max(fxm,fym,fzm)。The maximum values in f xm , f ym , and f zm are determined, and B = max (f xm , f ym , f zm ) is obtained.
  8. 根据权利要求7所述的轨迹速度规划方法,其特征在于,所述根据所述合成加速度
    Figure PCTCN2016102126-appb-100038
    的最大值arm进行目标轨迹MP的速度规划包括:
    The trajectory velocity planning method according to claim 7, wherein said synthetic acceleration is based on said
    Figure PCTCN2016102126-appb-100038
    The maximum value a rm for the target trajectory MP speed planning includes:
    将公式(5)代入如下公式:Substituting equation (5) into the following formula:
    Figure PCTCN2016102126-appb-100039
    Figure PCTCN2016102126-appb-100039
    得到
    Figure PCTCN2016102126-appb-100040
    get
    Figure PCTCN2016102126-appb-100040
    当点N与点P重合时,θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
    Figure PCTCN2016102126-appb-100041
    达到最大值
    Figure PCTCN2016102126-appb-100042
    得到
    Figure PCTCN2016102126-appb-100043
    其中
    Figure PCTCN2016102126-appb-100044
    When point N coincides with point P, θ=θ P , where θ P is the radians of the opening angle corresponding to the arc MP, at this time
    Figure PCTCN2016102126-appb-100041
    Reaches the maximum value
    Figure PCTCN2016102126-appb-100042
    get
    Figure PCTCN2016102126-appb-100043
    among them
    Figure PCTCN2016102126-appb-100044
    将arm
    Figure PCTCN2016102126-appb-100045
    代入公式(7)中,得到
    Figure PCTCN2016102126-appb-100046
    的最大值
    Figure PCTCN2016102126-appb-100047
    Figure PCTCN2016102126-appb-100048
    Will a rm and
    Figure PCTCN2016102126-appb-100045
    Substituting into formula (7), get
    Figure PCTCN2016102126-appb-100046
    Maximum value
    Figure PCTCN2016102126-appb-100047
    Figure PCTCN2016102126-appb-100048
    确定
    Figure PCTCN2016102126-appb-100049
    的最大值
    Figure PCTCN2016102126-appb-100050
    为第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100051
    Figure PCTCN2016102126-appb-100052
    所述第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100053
    为圆弧MP上匀加速和匀减速阶段轨迹加速度
    Figure PCTCN2016102126-appb-100054
    的取值;
    determine
    Figure PCTCN2016102126-appb-100049
    Maximum value
    Figure PCTCN2016102126-appb-100050
    The value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100051
    which is
    Figure PCTCN2016102126-appb-100052
    The value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100053
    For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration
    Figure PCTCN2016102126-appb-100054
    Value
    根据所述第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100055
    和所述给定的进给速度F计算轨迹速度
    Figure PCTCN2016102126-appb-100056
    According to the value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100055
    Calculating the trajectory speed with the given feed rate F
    Figure PCTCN2016102126-appb-100056
  9. 一种轨迹速度规划装置,其特征在于,包括:A trajectory speed planning device, comprising:
    关系系数确定模块,对于指定的目标轨迹MP,用于确定单个轴的加速度
    Figure PCTCN2016102126-appb-100057
    与合成加速度
    Figure PCTCN2016102126-appb-100058
    之间的关系系数fi,得到
    Figure PCTCN2016102126-appb-100059
    点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
    A relationship coefficient determination module for determining the acceleration of a single axis for a specified target trajectory MP
    Figure PCTCN2016102126-appb-100057
    Synthetic acceleration
    Figure PCTCN2016102126-appb-100058
    The relationship coefficient f i between
    Figure PCTCN2016102126-appb-100059
    Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
    最大值确定模块,用于确定所述关系系数fi的最大值为B;a maximum value determining module, configured to determine that the maximum value of the relationship coefficient f i is B;
    计算模块,用于根据所述关系系数fi的最大值B和所述单个轴的加速度
    Figure PCTCN2016102126-appb-100060
    的最大值A,计算所述合成加速度
    Figure PCTCN2016102126-appb-100061
    的最大值arm,得到
    Figure PCTCN2016102126-appb-100062
    A为给定的最大加速度值;
    a calculation module for using a maximum value B of the relationship coefficient f i and an acceleration of the single axis
    Figure PCTCN2016102126-appb-100060
    Maximum value A, calculate the combined acceleration
    Figure PCTCN2016102126-appb-100061
    The maximum value of a rm , get
    Figure PCTCN2016102126-appb-100062
    A is the given maximum acceleration value;
    速度规划模块,用于根据所述合成加速度
    Figure PCTCN2016102126-appb-100063
    的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
    a speed planning module for synthesizing acceleration according to the
    Figure PCTCN2016102126-appb-100063
    The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
  10. 根据权利要求9所述的轨迹速度规划装置,其特征在于,所述目标轨迹MP为线段MP,所述线段MP以点M和点P作为端点。The trajectory velocity planning apparatus according to claim 9, wherein the target trajectory MP is a line segment MP, and the line segment MP has a point M and a point P as end points.
  11. 根据权利要求9所述的轨迹速度规划装置,其特征在于,所述目标轨迹MP为圆弧MP,所述圆弧MP以点M和点P作为端点。The trajectory velocity planning apparatus according to claim 9, wherein the target trajectory MP is an arc MP, and the arc MP is represented by a point M and a point P.
  12. 根据权利要求10所述的轨迹速度规划装置,其特征在于,对于笛卡尔坐标系XYZ,点M的坐标为M(xM,yM,zM),点P的坐标为P(xP,yP,zP),所述关系系数确定模块包括:The trajectory velocity planning apparatus according to claim 10, wherein for the Cartesian coordinate system XYZ, the coordinates of the point M are M (x M , y M , z M ), and the coordinates of the point P are P (x P , y P , z P ), the relationship coefficient determining module includes:
    第一确定单元,用于确定所述关系系数fi为: a first determining unit, configured to determine that the relationship coefficient f i is:
    Figure PCTCN2016102126-appb-100064
    Figure PCTCN2016102126-appb-100064
    其中|MP|为线段MP的长度;Where |MP| is the length of the line segment MP;
    所述最大值确定模块包括:The maximum value determining module includes:
    第二确定单元,用于确定
    Figure PCTCN2016102126-appb-100065
    中的最大值,得到
    Figure PCTCN2016102126-appb-100066
    a second determining unit for determining
    Figure PCTCN2016102126-appb-100065
    The maximum value in the
    Figure PCTCN2016102126-appb-100066
  13. 根据权利要求12所述的轨迹速度规划装置,其特征在于,所述速度规划模块包括:The trajectory speed planning apparatus according to claim 12, wherein the speed planning module comprises:
    第三确定单元,用于确定所述合成加速度
    Figure PCTCN2016102126-appb-100067
    的最大值arm为第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100068
    所述第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100069
    为线段MP上匀加速和匀减速阶段轨迹加速度
    Figure PCTCN2016102126-appb-100070
    的取值,即
    a third determining unit, configured to determine the combined acceleration
    Figure PCTCN2016102126-appb-100067
    The maximum value a rm is the value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100068
    The value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100069
    For the line segment MP, uniform acceleration and uniform deceleration phase trajectory acceleration
    Figure PCTCN2016102126-appb-100070
    Value, ie
    Figure PCTCN2016102126-appb-100071
    Figure PCTCN2016102126-appb-100071
    第一计算单元,用于根据所述第一目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100072
    和所述给定的进给速度F计算轨迹速度
    Figure PCTCN2016102126-appb-100073
    a first calculating unit, configured to calculate a value of the first target trajectory acceleration
    Figure PCTCN2016102126-appb-100072
    Calculating the trajectory speed with the given feed rate F
    Figure PCTCN2016102126-appb-100073
  14. 根据权利要求11所述的轨迹速度规划装置,其特征在于,对于笛卡尔坐标系XYZ,点M处的向心单位方向矢量为
    Figure PCTCN2016102126-appb-100074
    点M处的切向单位方向矢量为
    Figure PCTCN2016102126-appb-100075
    点N为圆弧MP上的点,关系系数确定模块包括:
    The trajectory velocity planning apparatus according to claim 11, wherein for the Cartesian coordinate system XYZ, the centripetal unit direction vector at the point M is
    Figure PCTCN2016102126-appb-100074
    The tangential unit direction vector at point M is
    Figure PCTCN2016102126-appb-100075
    Point N is a point on the arc MP, and the relationship coefficient determining module includes:
    第四确定单元,用于根据如下公式:The fourth determining unit is used according to the following formula:
    Figure PCTCN2016102126-appb-100076
    Figure PCTCN2016102126-appb-100076
    确定点N处的合成加速度
    Figure PCTCN2016102126-appb-100077
    其中
    Figure PCTCN2016102126-appb-100078
    Figure PCTCN2016102126-appb-100079
    分别为点N处的切向加速度和向心加速度,θ为从点M至点N转过角度的弧度值,得到:
    Determine the combined acceleration at point N
    Figure PCTCN2016102126-appb-100077
    among them
    Figure PCTCN2016102126-appb-100078
    with
    Figure PCTCN2016102126-appb-100079
    The tangential acceleration and the centripetal acceleration at point N, respectively, θ is the radians of the angle from point M to point N, which yields:
    Figure PCTCN2016102126-appb-100080
    Figure PCTCN2016102126-appb-100080
    第二计算单元,用于根据方程(2)获得如下方程组:a second calculation unit for obtaining the following system of equations according to equation (2):
    Figure PCTCN2016102126-appb-100081
    Figure PCTCN2016102126-appb-100081
    若所述目标轨迹MP的速度规划为T型速度规划,且从点M至点N处于匀加速运动阶段,存在如下方程组,其中r为圆弧MN的半径,s为从点M至点N转过角度的弧长,
    Figure PCTCN2016102126-appb-100082
    为点N处的轨迹速度:
    If the speed of the target trajectory MP is planned to be a T-type velocity plan, and the point M to the point N are in the uniform acceleration motion phase, there is a following equation group, where r is the radius of the arc MN, and s is from the point M to the point N The arc length of the angle is turned,
    Figure PCTCN2016102126-appb-100082
    For the track speed at point N:
    Figure PCTCN2016102126-appb-100083
    Figure PCTCN2016102126-appb-100083
    第五确定单元,用于根据方程组(4)确定点N处的切向加速度
    Figure PCTCN2016102126-appb-100084
    和向心加速度
    Figure PCTCN2016102126-appb-100085
    的数值关系为
    Figure PCTCN2016102126-appb-100086
    a fifth determining unit, configured to determine a tangential acceleration at a point N according to the system of equations (4)
    Figure PCTCN2016102126-appb-100084
    And centripetal acceleration
    Figure PCTCN2016102126-appb-100085
    The numerical relationship is
    Figure PCTCN2016102126-appb-100086
    第三计算单元,用于将公式(5)代入方程组(3)得到所述关系系数fi为:a third calculating unit for substituting the formula (5) into the system of equations (3) to obtain the relationship coefficient f i is:
    Figure PCTCN2016102126-appb-100087
    Figure PCTCN2016102126-appb-100087
  15. 根据权利要求14所述的轨迹速度规划装置,其特征在于,所述最大值确定模块包括:The trajectory speed planning apparatus according to claim 14, wherein the maximum value determining module comprises:
    第四计算单元,用于根据方程组(6),用牛顿迭代法计算fx、fy和fz的最大值分别为fxm、fym和fzm,确定fxm、fym和fzm中的最大值,得到 a fourth calculating unit for calculating the maximum values of f x , f y , and f z by the Newton iteration method according to the equation (6), respectively, f xm , f ym , and f zm , and determining f xm , f ym , and f zm The maximum value in the
    B=max(fxm,fym,fzm)。B = max (f xm , f ym , f zm ).
  16. 根据权利要求15所述的轨迹速度规划装置,其特征在于,所述速度规划模块包括:The trajectory speed planning apparatus according to claim 15, wherein the speed planning module comprises:
    第五计算单元,用于将公式(5)代入如下公式:A fifth calculation unit for substituting the formula (5) into the following formula:
    Figure PCTCN2016102126-appb-100088
    Figure PCTCN2016102126-appb-100088
    得到
    Figure PCTCN2016102126-appb-100089
    get
    Figure PCTCN2016102126-appb-100089
    第六计算单元,用于当点N与点P重合时,θ=θP,其中θP为圆弧MP对应的张角的弧度值,此时
    Figure PCTCN2016102126-appb-100090
    达到最大值
    Figure PCTCN2016102126-appb-100091
    得到
    a sixth calculating unit, configured to: when the point N coincides with the point P, θ=θ P , where θ P is a radians of the opening angle corresponding to the arc MP,
    Figure PCTCN2016102126-appb-100090
    Reaches the maximum value
    Figure PCTCN2016102126-appb-100091
    get
    Figure PCTCN2016102126-appb-100092
    其中
    Figure PCTCN2016102126-appb-100093
    Figure PCTCN2016102126-appb-100092
    among them
    Figure PCTCN2016102126-appb-100093
    第七计算单元,用于将arm
    Figure PCTCN2016102126-appb-100094
    代入公式(7)中,得到
    Figure PCTCN2016102126-appb-100095
    的最大值
    Figure PCTCN2016102126-appb-100096
    a seventh calculation unit for a rm and
    Figure PCTCN2016102126-appb-100094
    Substituting into formula (7), get
    Figure PCTCN2016102126-appb-100095
    Maximum value
    Figure PCTCN2016102126-appb-100096
    第六确定单元,用于确定
    Figure PCTCN2016102126-appb-100097
    的最大值
    Figure PCTCN2016102126-appb-100098
    为第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100099
    Figure PCTCN2016102126-appb-100100
    所述第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100101
    为圆弧MP上匀加速和匀减速阶段轨迹加速度
    Figure PCTCN2016102126-appb-100102
    的取值;
    a sixth determining unit for determining
    Figure PCTCN2016102126-appb-100097
    Maximum value
    Figure PCTCN2016102126-appb-100098
    The value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100099
    which is
    Figure PCTCN2016102126-appb-100100
    The value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100101
    For the arc MP, uniform acceleration and uniform deceleration phase trajectory acceleration
    Figure PCTCN2016102126-appb-100102
    Value
    第八计算单元,用于根据所述第二目标轨迹加速度的取值
    Figure PCTCN2016102126-appb-100103
    和所述给定的进给速度F计算轨迹速度
    Figure PCTCN2016102126-appb-100104
    An eighth calculating unit, configured to calculate a value of the second target trajectory acceleration
    Figure PCTCN2016102126-appb-100103
    Calculating the trajectory speed with the given feed rate F
    Figure PCTCN2016102126-appb-100104
  17. 一种轨迹速度规划装置,其特征在于,包括:A trajectory speed planning device, comprising:
    存储器和处理器;Memory and processor;
    通过调用所述存储器存储的操作指令,所述处理器,用于执行如下步骤:The processor is configured to perform the following steps by calling an operation instruction stored by the memory:
    对于指定的目标轨迹MP,确定单个轴的加速度
    Figure PCTCN2016102126-appb-100105
    与合成加速度
    Figure PCTCN2016102126-appb-100106
    之间的关系系数fi,得到
    Figure PCTCN2016102126-appb-100107
    点M为目标轨迹MP的起点,点P为目标轨迹MP的终点;
    Determine the acceleration of a single axis for the specified target trajectory MP
    Figure PCTCN2016102126-appb-100105
    Synthetic acceleration
    Figure PCTCN2016102126-appb-100106
    The relationship coefficient f i between
    Figure PCTCN2016102126-appb-100107
    Point M is the starting point of the target trajectory MP, and point P is the end point of the target trajectory MP;
    确定所述关系系数fi的最大值为B;Determining that the maximum value of the relationship coefficient f i is B;
    根据所述关系系数fi的最大值B和所述单个轴的加速度
    Figure PCTCN2016102126-appb-100108
    的最大值A, 计算所述合成加速度
    Figure PCTCN2016102126-appb-100109
    的最大值arm,得到
    Figure PCTCN2016102126-appb-100110
    A为给定的最大加速度值;
    According to the maximum value B of the relationship coefficient f i and the acceleration of the single axis
    Figure PCTCN2016102126-appb-100108
    Maximum value A, calculate the combined acceleration
    Figure PCTCN2016102126-appb-100109
    The maximum value of a rm , get
    Figure PCTCN2016102126-appb-100110
    A is the given maximum acceleration value;
    根据所述合成加速度
    Figure PCTCN2016102126-appb-100111
    的最大值arm和给定的进给速度F进行目标轨迹MP的速度规划。
    According to the combined acceleration
    Figure PCTCN2016102126-appb-100111
    The maximum value a rm and the given feed speed F are used for speed planning of the target trajectory MP.
PCT/CN2016/102126 2016-10-14 2016-10-14 Trajectory velocity planning method and trajectory velocity planning device WO2018068302A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680038477.6A CN108235742B (en) 2016-10-14 2016-10-14 Trajectory speed planning method and trajectory speed planning device
PCT/CN2016/102126 WO2018068302A1 (en) 2016-10-14 2016-10-14 Trajectory velocity planning method and trajectory velocity planning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102126 WO2018068302A1 (en) 2016-10-14 2016-10-14 Trajectory velocity planning method and trajectory velocity planning device

Publications (1)

Publication Number Publication Date
WO2018068302A1 true WO2018068302A1 (en) 2018-04-19

Family

ID=61904924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102126 WO2018068302A1 (en) 2016-10-14 2016-10-14 Trajectory velocity planning method and trajectory velocity planning device

Country Status (2)

Country Link
CN (1) CN108235742B (en)
WO (1) WO2018068302A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130197688A1 (en) * 2010-10-13 2013-08-01 Omoron Corporation Control apparatus, control system and control method
CN103970073A (en) * 2013-01-24 2014-08-06 北京配天大富精密机械有限公司 Acceleration and deceleration planning method and device for numerical control system and numerical control machine tool
CN104181860A (en) * 2014-08-25 2014-12-03 浙江理工大学 S-type acceleration and deceleration control method of numerical control machine tool
CN104678899A (en) * 2015-02-11 2015-06-03 北京配天技术有限公司 Curve velocity planning method and device, as well as numerical control machining path data processing method
CN105892402A (en) * 2016-06-17 2016-08-24 浙江理工大学 Point-to-point motion control method for mechanical arm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231381B (en) * 2013-05-03 2015-10-21 中山大学 A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm
CN105500354B (en) * 2016-02-02 2017-05-17 南京埃斯顿机器人工程有限公司 Transitional track planning method applied by industrial robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130197688A1 (en) * 2010-10-13 2013-08-01 Omoron Corporation Control apparatus, control system and control method
CN103970073A (en) * 2013-01-24 2014-08-06 北京配天大富精密机械有限公司 Acceleration and deceleration planning method and device for numerical control system and numerical control machine tool
CN104181860A (en) * 2014-08-25 2014-12-03 浙江理工大学 S-type acceleration and deceleration control method of numerical control machine tool
CN104678899A (en) * 2015-02-11 2015-06-03 北京配天技术有限公司 Curve velocity planning method and device, as well as numerical control machining path data processing method
CN105892402A (en) * 2016-06-17 2016-08-24 浙江理工大学 Point-to-point motion control method for mechanical arm

Also Published As

Publication number Publication date
CN108235742B (en) 2021-01-08
CN108235742A (en) 2018-06-29

Similar Documents

Publication Publication Date Title
US7979158B2 (en) Blending algorithm for trajectory planning
US4528632A (en) Industrial articulated robot linear interpolation control device
WO2017113069A1 (en) S-shaped curve planning method and device, and numerically-controlled machine tool
US20180088551A1 (en) Curve velocity planning method, device, and numerical control machining route data processing method thereof
JP2019517929A (en) Trajectory planning method of point-to-point movement in robot joint space
CN107756400B (en) 6R robot inverse kinematics geometric solving method based on momentum theory
Rahaman et al. A new approach to contour error control in high speed machining
JP2017094438A (en) Robot system having function of simplifying teaching work by learning and function of improving operation performance
WO2017113195A1 (en) Processing path planning method, processing path planning apparatus and numerically controlled machine tool
CN109623825A (en) A kind of motion track planing method, device, equipment and storage medium
JP2017127964A (en) Robot apparatus having learning function
CN113084792A (en) Method for determining joint singular area, robot and storage device
WO2018195689A1 (en) S-type velocity planning method, device and system, and robot and numerical control machine tool
WO2018068302A1 (en) Trajectory velocity planning method and trajectory velocity planning device
WO2024041646A1 (en) Trajectory planning method and apparatus for joint space of multi-shaft device
CN112720492A (en) Complex track fairing method and device for multi-axis robot, medium and electronic equipment
JP2016049607A (en) Robot device, method of controlling robot device, program, and recording medium
CN113858213B (en) Robot dynamic track planning method for target synchronization
CN112066943B (en) Calculation method and device for rotation angle of vector adjustment rotating mechanism
JP2003076410A (en) Speed control device, speed control method and program for carrying the method with computer
CN114415598A (en) Transition method and device of machining path, storage medium and computer equipment
CN113946139A (en) Speed prediction method of numerical control system, control method of numerical control system and numerical control system
Duong et al. Effectiveness of input shaping and real-time NURBS interpolation for reducing feedrate fluctuation
Kang et al. Accurate Contour Error Estimation-based robust contour control for dual-linear-motor-driven gantry stages
CN116985136B (en) Quaternion-based mechanical arm node attitude speed look-ahead control method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918896

Country of ref document: EP

Kind code of ref document: A1