WO2018066939A1 - Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same - Google Patents

Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same Download PDF

Info

Publication number
WO2018066939A1
WO2018066939A1 PCT/KR2017/011001 KR2017011001W WO2018066939A1 WO 2018066939 A1 WO2018066939 A1 WO 2018066939A1 KR 2017011001 W KR2017011001 W KR 2017011001W WO 2018066939 A1 WO2018066939 A1 WO 2018066939A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical cell
current
bipolar
bipolar electrode
Prior art date
Application number
PCT/KR2017/011001
Other languages
French (fr)
Korean (ko)
Inventor
호 송마이클
영 송마이클
Original Assignee
호 송마이클
영 송마이클
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호 송마이클, 영 송마이클 filed Critical 호 송마이클
Publication of WO2018066939A1 publication Critical patent/WO2018066939A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/06Detection or inhibition of short circuits in the cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention relates to a bipolar electrode assembly, an electrochemical cell and an electrochemical cell management system using the same, which visualize the current flowing through the bipolar electrode to enable quantitative measurement. It is to maximize the efficiency of the electrochemical cell by visualizing through the current sensor to enable quantitative measurement.
  • the design of an electrolyzer for producing hydrogen through electrolysis of water is divided into two types: a method using a unipolar electrode and a method using a bipolar electrode.
  • an electrolytic cell composed of a monopolar electrode is also referred to as a tank type electrolytic cell in which an anode electrode and a cathode electrode are alternately arranged in the electrolytic cell.
  • a metal plate (bipolar electrode) that is not physically connected to a power source electrically connects the cell to the cell.
  • the voltage applied to the entire electrolytic cell is equal to the voltage applied to each cell.
  • the monopolar electrode electrolyzer has the advantage of easy manufacturing and maintenance of the electrolytic device due to the simple arrangement of the electrode, but it is pointed out that the low ohmic voltage is required during operation, resulting in large ohmic losses.
  • An electrolytic cell composed of a bipolar electrode has a single or multiple electrode which is not connected to a power source between a positive electrode and a negative electrode connected to a power source, and metal electrodes not connected to the power source are formed by a positive electrode and a negative electrode connected to a power source.
  • the electric field induces internal electron distribution such that both sides of the electrode have positive and negative dipoles, resulting in different electrochemical reactions of redox on both sides of the electrode.
  • the total voltage applied to the entire electrolytic cell is the sum of the unit cell voltages.
  • Such electrode arrangements allow the electrochemical cell to be modularized, which has the advantage of operating at higher voltages and lower currents than in monopolar designs.
  • Such a bipolar electrode electrolyzer has a problem in that the design is complicated and the risk of leakage of the electrolyte is great, with the problem of sealing between unit cells, compared to the monopolar electrode electrolyzer, but it is nevertheless preferred in the industry for its high power efficiency.
  • bipolar electrolyzer The principle of operation of a bipolar electrolyzer is explained by electric field theory and electrochemistry theory.
  • an electric field line having a property of a vector is formed from the surface of the anode electrode to the surface. Is generated perpendicular to and the electric field line density is related to the strength of the electric field. Free electrons in a conductor exposed to an electric field easily move along the applied electric field. As a result, the conductor exposed to the electric field is bipolarized so that the electron distribution has a bipolar distribution, thereby forming a bipolar electrode.
  • the conductor exposed to the electric field and the charge is electrostatically balanced has a high electron density on the surface facing the anode, and the electrons are reduced by the reduction of the cation generated by the voltage applied on the surface of the bipolar electrode facing the anode. Once removed, this electrostatic equilibrium is broken, and the electrode needs to be supplied with electrons through oxidation of anions from the electrode surface of the other side.
  • the bipolar electrode applied to the electrolyzer produces hydrogen on one surface and oxygen on the other surface even though it is not connected to a power source.
  • the electrodes inserted between the anode and cathode of the electrolyzer will have a high electron density at the cathode surface facing the anode, which is the cathode side of the electrode in equilibrium electrically neutral by the applied electric field. Reduction of cations at the surface will lead to an overall electron hungry state, that is, an electrically positive state. In this electron poverty state, electrons generated through the oxidation of negative ions at the opposite electrode surface move through the inside of the electrode to the cathode surface, thereby completing the electrical circuit. That is, the anode surface of the electrode acts as an electron donor or electron source by an externally applied electric field, and the cathode surface acts as an electron acceptor electrode or an electron sink electrode. will be.
  • Electrochemical theory also states that an electrolyte is a nonconductor for electrons and a conductor for ions.
  • One electron in the cathode electrode connected to the power source reduces one hydrogen ion (H +).
  • one Faraday (96500 coulomb) current from the power source is 2 moles of hydrogen (H), one mole each at the cathode and the cathode.
  • an electrolyzer consisting of a monopolar electrode and an electrolyzer consisting of a positive electrode and a negative electrode and a bipolar electrode
  • the number of electrodes in the installation of the bipolar electrode array would be The total of three voltages will be 4.4 volts.
  • an electrolysis device consisting of a bipolar electrode would consume twice as much power as a monopolar electrode. That is, the bipolar electrolyzer consumes twice the power instead of producing twice the hydrogen in the current economy.
  • the bipolar electrode electrolyzer is preferred in the industrial field. Since the bipolar electrode flows through the inside from one surface of the electrode to the other surface, the current flowing inside the electrode is visualized and measured quantitatively. Can't be. Therefore, it is not possible to monitor and diagnose the operating state of the electrode, so that the real time production rate or real time efficiency measurement of the electrolytic product cannot be realized. Since the amount of current flowing inside the bipolar electrode was not useful, it was not possible to measure the real-time power efficiency, and the related industry was found to calculate efficiency inversely based on the electrolytic results. In other words, it has been found that the power efficiency of electrolysis has been calculated as "energy consumed to produce HHV / 1 kg of hydrogen.”
  • the present invention has been completed in consideration of these points.
  • the balance between electrodes has a significant effect on the cell voltage and current.
  • the electrolyte leakage between the cells together with the balance of the electrode is also a battery.
  • An electrolysis facility composed of a bipolar electrode circulates an electrolyte to supply electrolyte to an electrolyte supply pump and sometimes to promote removal of product bubbles. Therefore, there is a need for an effective means for preventing cross-diffusion and salt bridge phenomenon of ions due to the difference in concentration through an electrolyte supply pipe or a circulation circuit.
  • the cell design should be considered along with the electrode balance, where the cathode- and anode-side pressures must remain constant around the separator or thin film, where gaseous products are an important factor, such as in the electrolysis of water.
  • the difference in temperature, concentration, and pressure around the separator or thin film is a driving force of diffusion, and the pressure difference between both sides of the separator or thin film may cause crosscontamination of two gases.
  • the pressure applied to the anode and the catholyte is determined by the pressure difference and the concentration difference and the pressure of the anolyte and the catholyte in consideration of the diffusion coefficient in the medium of each gas. There is a need for means to remain constant.
  • an object of the present invention is to visualize the current flowing through the bipolar electrode through a current sensor to measure the quantity, thereby measuring the production rate of the electrolytic product and the current density of the electrode in real time and calculating information for calculating the cumulative production amount. To monitor the health of the cell.
  • the output power is directly applied to the electrochemical cell without using a voltage regulator (dc-dc voltage regulator) to maximize the efficiency of the system.
  • the anolyte solution and the diffusion coefficient are considered in consideration of the solubility and diffusion coefficient of the electrolyte of different gases generated at the cathode and the anode by reduction and oxidation of ions.
  • the electrochemical cell management system in conjunction with the smart grid system by applying the operating reserve (spinning reserve) to the electrochemical cell except the minimum safety margin (safety margin) is essentially dissipated dissipated without utility ( dissipative) to create the utility of operational reserve power.
  • the electrochemical cell system acts as an electrical load (adjustable load) in real time according to the real-time power demand by the grid operator.
  • a bipolar electrode assembly of the present invention for achieving the above object, the bipolar electrode assembly that the current is visualized quantitative measurement, the electrode adjacent to each other not connected to an external power source; An insulator film inserted between the electrodes to shield the electrodes; And an electrode connecting circuit provided with an ammeter or a current sensor connecting the electrodes shielded by the insulator film, wherein the electrodes are flat or cylindrical having a hollow shape.
  • the bipolar electrode electrochemical cell in which the current is visualized is a bipolar electrode electrochemical cell module composed of a bipolar electrode assembly in which the current is visible, the casing; An insulator film provided on the inner surface of the casing; An electrode whose one surface is shielded by an insulator film on one side of the casing; And another electrode spaced apart from and facing the electrode in the casing, wherein one or more bipolar electrode assemblies are provided with the same distance between electrodes between the electrode and the electrode, and the two electrodes of the bipolar electrode electrochemical cell module are It is characterized in that connected to the power connection circuit.
  • a bipolar electrode electrochemical cell module composed of a bipolar electrode unit module of the current is visible, the casing; An insulator film provided on the inner surface of the casing; An electrode whose one surface is shielded by an insulator film on one side of the casing; Two or more unit modules including a second electrode spaced apart from the electrode in the casing is provided, the ammeter or current sensor for connecting the neighboring electrodes in the unit module and the neighboring unit module is provided with Including an electrode connection circuit, the electrode of the bipolar unit module is characterized in that the cylindrical having a hollow.
  • the bipolar electrode electrochemical cell module consisting of a cylindrical bipolar electrode assembly of the current is visible, the cylindrical casing; A cylindrical insulator film provided on the inner surface of the casing; An outer electrode whose one surface is shielded by an insulator film on one side of the casing; And a central electrode attached to the outer electrode at a distance from the outer electrode, or a central electrode attached to an outer surface of the cylindrical insulator film or the cylindrical insulator, wherein at least one bipolar electrode assembly is formed between the electrodes.
  • the center electrode and the outer electrode may be connected to a power connection circuit including a voltmeter or a voltage sensor and an ammeter or a current sensor.
  • the cylindrical outer electrode having a hollow; Cylindrical bipolar electrode unit module including a hollow; a cylindrical central electrode having a hollow inserted into the outer electrode structure in the outer electrode; two or more are stacked in series, the center electrode and the last module of the first module of the unit modules loaded in series
  • the outer electrode is connected to the power connection circuit; And an electrode connecting circuit having an ammeter or a current sensor connecting the outer electrode of the one unit module and the center electrode of the neighboring unit module.
  • another bipolar electrode electrochemical cell is a bipolar electrode electrochemical cell in which a current is visualized, and includes a solid electrolyte such as a liquid electrolyte and a PEM electrolyzer (PEM electrolyzer).
  • a bipolar electrochemical cell that operates as a solid electrolyte and also produces a gaseous product such as hydrogen, oxygen or chlorine. It characterized in that it comprises a bipolar electrode electrochemical cell to produce a metal electrolytic product as shown.
  • the electrochemical cell management system of the present invention an electrochemical cell management system (Electrochemical Cell Management System), the cell current and voltage, the cell pressure, the cell collected in real time from the electrochemical cell composed of a bipolar electrode of the current is visible It calculates and presents real-time current density, production rate and cumulative production rate, and power efficiency from information such as temperature and electrolyte level, and safety of facility based on data such as cross contamination of electrolytic product and leakage data of gas product.
  • An electronic management system that guarantees operation; a data collection unit; A data bus; Control Unit; It is composed of a Monitoring & Control Computer System, and the electrochemical cell system is characterized by total management to operate at optimal operating conditions based on real-time data.
  • the current flowing through the bipolar electrode of the electrochemical cell can be visualized to measure quantitatively, and thus the generation rate of the electrolytic byproduct, the current density of the electrode, and the cumulative production amount of the electrolytic byproduct from current information through the plurality of bipolar electrodes. It is possible to monitor in real time. In addition, since the current density of the electrode is measured in real time from the current through the bipolar electrode in which the current is visualized, there is an effect that real-time information of current economy and power efficiency is useful.
  • real-time power efficiency information is analyzed in real time through the electrochemical cell management system to control the voltage and current of the power supply or to adjust the number of operating cells or modules according to the demand of the power grid in real time, so that the grid operator controls the electrochemical cell facilities in real time. Can be used as possible variable load.
  • the operating reserve power excluding the minimum safety margin is applied to the production of hydrogen, so that dissipative standby power, which is essentially wasted and disappeared, is applied to the production of hydrogen, and surplus power from variable renewable energy is applied to the grid. It accepts this bottleneck and applies it to hydrogen production, and uses the produced hydrogen for power generation to promote decarbonization in the power generation and transportation fuel sectors, and to promote the universalization of hydrogen fuel cell vehicles and hydrogen internal combustion engine vehicles. It has the effect of promoting.
  • FIG. 1 is a view showing a basic module of an electrochemical cell composed of a flat plate type bipolar electrode assembly in which one current is visualized according to an embodiment of the present invention.
  • FIG. 2 is a view showing a module to which a plurality of bipolar battery assemblies are applied in a flat bipolar electrode electrochemical cell module according to an embodiment of the present invention.
  • FIG. 3 is a view showing an example in which a cylindrical bipolar battery assembly of an electrochemical cell is configured to allow quantitative measurement by visualizing current according to an embodiment of the present invention.
  • FIG. 4 is a view showing a flat electrode unit module of an electrochemical cell according to another embodiment of the present invention.
  • FIG. 5 is a view showing a state in which a plurality of unit modules of the electrochemical cell according to another embodiment of the present invention are stacked in series.
  • FIG. 6 is an anatomical diagram of an example of implementing an electrochemical cell unit module in a cylindrical shape according to another embodiment of the present invention.
  • FIG. 7 is a view showing an example in which a plurality of cylindrical unit modules of Figure 6 stacked in series.
  • FIG. 8 is a schematic diagram showing an electrochemical cell management system according to the present invention.
  • an electrochemical cell is used to produce a gaseous electrolytic product, as in a bipolar electrode electrolysis device of water or brine, or to electrorefining, electrowinning, or electroplating.
  • Means a device for producing a metal electrolytic product from bipolar electrodes not connected to the power supply under the voltage and current conditions provided through the electrode connected to the power supply.
  • the electrochemical cell of the present specification is a solid as in a bipolar PEM electrolyzer with a bipolar electrode electrolyzer using a liquid electrolyte as in a brine or alkaline electrolyzer. It includes a bipolar electrode electrolyzer including, but not limited to, a bipolar electrode electrolysis device using an electrolyte.
  • the present invention is characterized in that the current flowing through the electrode of the bipolar electrode to visualize, quantitative measurement is possible.
  • the bipolar electrode assembly 10 of the present invention in the bipolar electrode assembly 10 used in the electrochemical cell, the neighboring electrodes (11, 12) not connected to an external power source; An insulator film (13) inserted between the electrodes (11) and (12) to shield the electrodes (11, 12); And an electrode connecting circuit 14 having an ammeter or a current sensor 15 for connecting the electrodes 11 and 12 shielded by the insulator film 13.
  • the neighboring electrodes 11 ′ and 12 ′ are not provided in the same unit module 1, 1 ′, but in different unit modules 1, 1 ′. Can be stacked in series, so that adjacent electrodes 11 'and 12 are shielded by one or more non-conductive films 13 and 13', and between the non-conducting films 13 and 13 '.
  • the casings 100, 100 'and the like may be interposed, that is, provided, and embodiments thereof are not limited.
  • the bipolar electrode assembly 10 in which the current of the present invention is visualized may include the electrodes 11 and 12 adjacent to each other, and at least one non-conductive film 13 interposed between the electrodes to shield the current, in addition to the specific embodiment. And an electrode connection circuit 14 provided with an ammeter or a current sensor 15 for connecting the electrodes 11 and 12 shielded by the non-conductive film 13.
  • the bipolar electrode assembly 10 is applied to an electrochemical cell, which will be described as the following embodiment.
  • the casing 100 As shown in Figure 1, the casing 100; An insulator film 110 provided on the inner surface of the casing 100; An electrode 120 whose one surface is shielded by an insulator film 110 on one side of the casing 100; And another electrode 120 'installed to be spaced apart from the electrode 120 in the casing 100, wherein at least one bipolar electrode assembly 10 is provided between the electrode 120 and the electrode 120'. It is done.
  • one electrode 120 whose one surface is shielded by one side of the non-conductor film 110 in the casing 100 and one that is provided in the bipolar electrode assembly 10 and one surface of which is shielded by the non-conductor film 13 are provided.
  • the electrode 11, and the electrolyte 140 injected between the electrodes 120 and 11 and a separator or thin film 130 that divides the electrolyte 140 into a cathode electrolyte and a cathode electrolyte form one cell.
  • the other electrode 12 whose one surface is shielded by the non-conductive film 13 and the other electrode 120 'whose one surface is shielded by the non-conductive film 110 on the other side in the casing 100 are the electrodes.
  • One cell is formed together with the electrolyte 140 and the separator or thin film 130 injected between (12) and 120 ', and the cell and the cell share the insulator film 13.
  • the first electrode 120 of the first cell and the second electrode 120 'of the second cell are connected to an external power source of the power connection circuit 150, the first electrode 120 acts as an anode, One in-cell electrode 11 facing the anode operates as a cathode.
  • the electrode 12 constituting another cell connected to the electrode 11 acting as the cathode through an electrode connecting circuit 14 including an ammeter or a current sensor 15 operates as an anode, and is usually a bipolar electrode. The current flowing through the can be measured quantitatively through an ammeter or a current sensor.
  • the cathode which is in an electron poverty state due to the reduction of the cation, receives electrons through oxidation of the anion from the anode, and the flow current is visualized through the current sensor to enable quantitative measurement.
  • the current between the electrodes 120 and 120 ′ connected to the external power source may be measured by providing an ammeter or a current sensor 15 in the power connection circuit 150.
  • the voltage between the cells can also be measured quantitatively, which is measured by a voltmeter or voltage sensor 160 connected to and installed in the electrode connection circuit 14 and the power connection circuit 150.
  • the casing 100, the non-conductive film 110, the separator or the thin film 130, the electrolyte 140, and the like are applicable to various conventionally known electrochemical cells, and thus, detailed descriptions thereof will be omitted.
  • the electrodes 120 and 120 ′ of the present invention may be in the form of a flat plate.
  • the electrodes 120 and 120 ′ may be a flat plate having a rectangular shape or a circular flat plate, and the shape thereof is not limited thereto.
  • the casing 110 and the structure, the non-conductor structure and the non-conductor structure, the non-conductor structure and the thin film may be assembled by sealing the assembly by a plurality of sealing means, for example sealing (sealing), which is a crimping type in the module assembly To make the filter press useful.
  • sealing sealing
  • Electrochemical cell module may be configured in the state provided.
  • the current between the electrodes constituting the module and the voltage of the cell are monitored in real time, so that an electrode or cell having a performance problem can be easily identified.
  • the production rate of the electrolytic product of the cell, the current density of the electrode and the cumulative production can be calculated in real time.
  • the connection between the module and the module is the last electrode of one module and the first electrode of the neighboring module is provided with a current sensor or ammeter
  • a certain number of modules are connected to the power supply in parallel so that the whole module can be connected to one electrochemical cell. It is a system.
  • bipolar electrode assembly of the present invention can be implemented as a cylindrical, as shown in Figure 3, unlike Figure 1, 2, which will be described again below.
  • the electrochemical cell of the bipolar electrode array as shown in Figs. 1 and 2 has no difference in terms of power economy compared to the electrochemical cell composed of the single electrode, but the power efficiency is high due to the use of low current. It is mentioned.
  • the base module according to another embodiment for facilitating the crimping assembly of the module, preventing leakage between cells, extending the life of the facility, and facilitating maintenance of the facility is illustrated in FIG. 4. It is presented as
  • the basic module according to the other embodiment, the casing (100); An insulator film 110 provided on the inner surface of the casing 100; An electrode 11 whose one surface is shielded by an insulator film 110 on one side of the casing 100; Two or more unit modules (1) including a second electrode which is installed spaced apart from the electrode 11 in the casing (100), the one unit module (1) and the neighboring unit module It consists of an electrode connection circuit 14 provided with an ammeter or a current sensor 15 for connecting the neighboring electrodes 12, 11 'in 1'.
  • the electrode 12 ′ of the other unit module 1 ′ adjacent to the electrode 12 of the first unit module 1 is connected to the electrode connection circuit 14 provided with the ammeter or the current sensor 15.
  • the electrode connection circuit 14 provided with the ammeter or the current sensor 15.
  • This embodiment has a structure in which the electrode and the cell having a performance problem can be easily identified by monitoring the voltage and current of each cell in real time as in the previous embodiment, and the production rate of the electrolytic product of the cell and the current of the electrode Density and cumulative production can also be calculated in real time.
  • the first electrode of the first module and the last electrode of the last module in the power supply circuit and the neighboring electrode to the electrode connection circuit via the ammeter or the current sensor in the state that a plurality of unit modules are stacked in series
  • An electrochemical cell system combining multiple modules such as 5 is achieved.
  • the module shown in FIG. 4 effectively prevents leakage of electrolyte between cells as compared to the module of FIG. 1, which also maintains the application of the crimping assembly process and the replacement of defective cells. Since the maintenance cost is saved, the disadvantage of the conventional bipolar electrode is improved.
  • FIG. 5 three or more unit modules 1 of FIG. 4 are stacked, and the first electrode 11 and the last electrode 12 ′ of which one surface is shielded by the non-conductive film 110 are connected to the anode of the external power source. It is connected to the cathode, the remaining electrodes are connected to the neighboring electrode via the current sensor 15 to configure an electrochemical cell module using a bipolar electrode in which the current is housed.
  • the cell current amount can be controlled by connecting a certain number of modules to the power supply in parallel through the electrode connection circuit.
  • the surface of an electrode acting as an anode or a cathode does not have an even surface in microstructure, and an intentionally even surface to promote the effect of electrocatalytic effect and redox reaction, or removal of product gas bubbles. It may be avoided. That is, as the power lines diverge vertically from the surface, the design of the module will require a geometry that traps all the divergent power lines between the electrodes. For this purpose, a cylindrical module in which the sealing or balance configuration of the electrodes 120, 120 ', 11 and 12 may be easier than the flat electrode would be ideal.
  • the electrochemical cell and the bipolar electrode assembly 10 of the present invention can be implemented in a cylindrical shape, for example, as shown in FIG. 3, the bipolar electrode assembly 10 has a hollow on both sides of the cylindrical insulator film 13 having a hollow.
  • the cylindrical electrodes 11a and 12a having are attached.
  • the electrode connection circuit 14 includes an ammeter or a current sensor 15 for connecting the electrodes 11a and 12a shielded by the insulator film 13, similarly to the flat plate type described above.
  • Cylindrical electrodes corresponding to the electrodes 120 and 120 ′ of FIG. 1 are represented as a center electrode 11b and an outer electrode 12b in FIG. 6.
  • Other components constituting the cylindrical unit module are indicated in FIG. 6 by the same reference numerals as in FIG. 4.
  • FIG. 6 shows an anatomical view of the cylindrical unit modules corresponding to the flat unit module of FIG. 4.
  • the cylindrical module can provide a large electrode area with a small footprint according to the height of the module, thereby realizing a facility capable of accommodating high currents. Very advantageous. Such cylindrical modules would be well suited for electrochemical cell facilities that could be applied to future hydrogen production facilities if stable sealing means were applied between the components.
  • the electrochemical cell is configured by stacking a plurality of unit modules of FIG. 6, a module having a shape corresponding to that of FIG. 5 may be implemented. It becomes possible. That is, the cylindrical outer electrode (11b) having a hollow; Two or more unit modules (1) including a cylindrical central electrode (11a) having a hollow is inserted into the outer electrode (11b) in a double tube structure, the outer electrode (11b) of the one unit module (1) ) And the central electrode 11a of the neighboring unit module 1 'are connected to an electrode connection circuit 14 equipped with an ammeter or a current sensor 15.
  • the electrochemical cell of this structure has the advantage that the footprint of the equipment is significantly smaller than the large electrode area.
  • the rest of the configuration except that the unit module 1 has a cylindrical shape is the same as that of the unit module 1 of FIG.
  • the casing 100 which is the outermost shell of the circumference of FIG. 6, has a structure for providing mechanical integrity to the circumference. to be.
  • the function for providing mechanical integrity may be implemented by the outer electrode 12b or the insulator film 13 surrounding the outer electrode 12b without the casing 100 which is the outermost shell of the cylindrical unit module. have. Cylindrical unit modules of this structure can provide ease of assembly with cost reduction.
  • the structure of the electrode may change depending on the ease of use.
  • FIGS. 1, 2, and 4 and 5 are all configured to separate gas from the electrolyte through an upper gas collection plenum of the electrolyte 140, and the gas is connected to an upper portion of the space between the electrodes. It is discharged by the gas transport pipe 300 is installed.
  • the gas transport pipe 300 transports the gas discharged by being separately installed into the first gas transport pipe 300a and the second gas transport pipe 300b on the anode electrolyte and cathode electrolyte sides, respectively.
  • each of the gas transport pipe (300a, 300b) may be provided with a reverse pressure regulator 320 for maintaining a constant pressure of both the membrane or the thin film 130, respectively.
  • the back pressure regulator (320) on each gas transport pipe (300a, 300b) may be installed.
  • the supply of the electrolyte is preferably such that the positive and negative electrolytes are supplied separately.
  • the electrolyte supply pipe 200 connected to the lower portion of the space between the electrode and the electrode is separately installed as the first electrolyte supply pipe 200a and the second electrolyte supply pipe 200b on the positive and negative electrolyte sides.
  • the backflow prevention valve 210 may be installed in the electrolyte supply pipe 200. That is, by installing a check valve 210, cross diffusion power and salt bridge phenomenon due to the difference in concentration of ions can be blocked.
  • the non-return valve 210 is used, the electrolyte of the pump side during the normal operation of the electrolyzer will have to maintain a negative pressure with respect to the pressure of the electrolyzer.
  • the gas collection space at the top of the electrolyte disappears, and the gas collection space is a mixed fluid of gas bubbles and electrolyte (H 2 gas). + Catholyte or O 2 gas + Anolyte electrolyte), and the mixed fluid of the electrolyte and the gas is transported to a separate separation tank through the gas transport pipe 300, the separation of the gas and the electrolyte is performed in a separate separation tank.
  • the anode electrolyte and the cathode electrolyte from which the gas is separated are recycled to the electrolytic cell through the separated gas transport pipe 300 and the electrolyte supply pump 220.
  • the gas pressure sensor 310 and the reverse pressure regulator 320 is located at the gas outlet side of the separation tank.
  • the electrolyte may be circulated by installing separate electrolyte supply pumps 220 in the electrolyte supply pipe 200 for the anode electrolyte and the cathode electrolyte, respectively. This circulation of electrolyte is commonly used in industry as it is very advantageous in removing bubbles that seriously affect power efficiency.
  • the current flowing through the bipolar electrode is visualized so that the real-time current can be measured quantitatively, thereby introducing an electrochemical cell management system, which is an electronic system that manages the operation of the electrochemical cell as a whole. It became possible.
  • the electrochemical cell management system monitors the operating state and health state of the cell in real time from the current and voltage data of each cell, diagnoses electrode and cell defects, calculates the production rate, cumulative production amount and current density of electrode By providing the efficiency of the power supply in real time, the electrochemical cell to maintain the optimal operating state.
  • the number of operating cells corresponding to the applied voltage without loss of efficiency due to the use of a voltage regulator for power sources whose power varies over time, such as in solar panels or wind power outputs. Is calculated in real time and reflected through the control device to reflect the optimal operation of the battery.
  • an electrochemical facility using an electrochemical cell composed of a bipolar electrode in which current is visualized is managed as follows. Monitored real-time data such as cell current, cell voltage, cell pressure, electrolyte level (if having gas collection space in the electrolyzer), electrolyte temperature, etc., of the module including the bipolar electrode constituting the electrochemical cell Is collected by.
  • the data collection device also includes external input signals such as real-time data of current and voltage of the power supply, cross-contamination data of generated oxygen and hydrogen gas, and gas leak detection devices installed in the electrochemical facility chamber.
  • the control device implements the function to reflect the control of the number of operating cells.
  • the control device implements safe operation of the facility by cutting off the power of the entire system in an emergency by using the cross-contamination degree of the generated gas and gas leakage data in the electrolysis facility chamber.
  • the produced hydrogen is considered a major energy storage means or energy carrier because it is a means that can be stored and converted to power at the maximum power consumption of the urban grid. .
  • Power from solar or wind power can be useful for this purpose as it is applied to an electrochemical cell composed of a bipolar electrode in which the current is immediately visible.
  • the electrochemical cell management system of the present invention enables the power from renewable energy sources including solar power generation and wind power generation to be applied to hydrogen production at maximum efficiency.
  • the stored hydrogen gas, converted from renewable energy sources to hydrogen gas will be converted back into electricity at peak hours with high demand for electricity.
  • Electrochemical cells using current-polarized bipolar electrodes without these voltage regulators, operate cells that correspond to the power of a power source useful in the field with the support of a data bus in an electrochemical cell management system and a control system consisting of switches and relays. By adjusting the number of modules or the number of modules, an electrochemical plant that can operate at optimum conditions can be implemented.
  • the grid has a reserve power of about 10% of the base load for peak hour demand. This reserve is sometimes reported for battery charging or pumped-storage hydroelectricity.
  • the electrochemical cell management system When applied to electrolysis for the production of hydrogen, a means of energy storage, the electrochemical cell management system It is linked to power grid or smart grid system and adjusts the number of operating cells or modules flexibly for power excluding minimum safety margin within 0 ⁇ 10% of reserve power. It creates the utility of dissipative operational reserve power.
  • a bipolar electrode assembly was fabricated by attaching a 316L flat electrode with a thickness of 1 mm and a size of 160x160 mm to both sides of a 5 mm thick acrylic plate.
  • the electrode used in addition to the bipolar electrode assembly was also the same size as the flat electrode applied to the bipolar electrode, and the distance between the electrodes was 15 mm, and 25% KOH electrolyte was used.
  • the experiment was performed at the electrolyte temperature 13 ⁇ 18 °C. No membrane or thin film was used in all experiments.
  • each electrolyzer had a constant voltage and a constant current of 4.4, 6.6, 8.8, and 11 volts, respectively, depending on the number of bipolar electrode assemblies.
  • electrolysis was performed to measure the current and the cell voltage flowing through the bipolar electrode where the current was visualized.
  • the power efficiency varied from 73% to 100% within the measurement error limits of the instrument. In other words, the power efficiency decreased with increasing current density.
  • the decrease in the value of E with increasing current density means that the power efficiency is related to the rate at which the generated hydrogen and oxygen gas bubbles are removed from the electrode surface, resulting in various overpotential and ohmic losses.
  • the energy accumulated in the electrolyzer will lead to an increase in the temperature of the electrolyte, so it is confirmed that maintaining the optimal current density will be a means to maintain the optimum temperature and obtain the best power efficiency.
  • the current density of the electrode of the electrode is calculated in real time by the use of a bipolar electrode in which the current is visualized, so that the current economy and power economy efficiency of the electrochemical cell are real time
  • Various electrode materials, surface conditions of electrodes, electrochemical catalysts used, separators or thin films used, methods of separating gas bubbles including electrolyte circulation, distances between electrode-separators or thin-film electrodes It is possible to set the optimum operating conditions of the battery in terms of the efficiency of the electrolyte, the viscosity of the electrolyte, and the operating temperature and pressure of the battery.
  • the electrochemical cell management system provides the best efficiency in conjunction with renewable energy sources such as solar power and wind power to promote decarbonization of the power generation sector, and in tandem with the smart grid system. It can contribute to the decarbonization of the power and transport fuel sectors by creating the utility of dissipative reserves that are wasted and disappear, and by using the produced hydrogen for power generation or for hydrogen fueled vehicles.
  • the National Institute of Renewable Energy (EERE) of the United States has classified a hydrogen station, which can fuel more than 500 hydrogen fuel cell vehicles with 100,000 kg of hydrogen annually, as a full-service full-sized fueling station.
  • the power demand on July 26 was 81,110 MW, and the power reserve on that day was reported as 7,810 MW. If 25% of the spinning reserve power is left as a safety margin and the remaining 75% is applied to hydrogen production through an electrochemical cell management system linked to the grid, this would result in 12,800 full-service distributed production charging facilities.
  • the amount of hydrogen produced can support more than 4.8 million hydrogen fuel cell vehicles that run 33 miles (52.8 km) using 55 kg of hydrogen per day. If the number of passenger cars operating in Korea is assumed to be 10 million, this is nearly half of the number of passenger cars currently operating in Korea. This will not only promote the decarbonization of the transportation fuel sector, but will also greatly contribute to the universalization of hydrogen cars.
  • the electric grid uses surplus power from renewable energy sources by using an electrochemical facility consisting of bipolar electrodes capable of quantitative measurement by visualizing current as a variable load that the grid operator can adjust in real time through bidirectional communication with the grid. It is expected to contribute to decarbonization in the power generation sector by increasing the energy efficiency and increasing the utility of renewable energy.
  • the current flowing through the bipolar electrode of the electrochemical cell can be visualized to measure quantitatively, and thus the generation rate of the electrolytic byproduct, the current density of the electrode, and the cumulative production amount of the electrolytic byproduct from current information through the plurality of bipolar electrodes. It is possible to monitor in real time. In addition, since the current density of the electrode is measured in real time from the current through the bipolar electrode in which the current is visualized, it is useful for grasping real-time information of current economy and power efficiency.
  • real-time power efficiency information is analyzed in real time through the electrochemical cell management system to control the voltage and current of the power source or to adjust the number of operating cells or modules according to the demand of the power grid in real time, allowing the grid operator to control the electrochemical cell facilities in real time.
  • Applied to power grids by applying operating reserve power excluding minimum safety margins to hydrogen production, dissipative standby power that is wasted and disappeared essentially without effect is applied to hydrogen production, and excess power from variable renewable energy is applied to the grid. It accepts these bottlenecks without any bottlenecks and applies them to hydrogen production.
  • the produced hydrogen for power generation it promotes decarbonization in the power generation and transportation fuel sectors, and promotes the universalization of hydrogen fuel cell vehicles and hydrogen internal combustion engine vehicles. It is expected to accelerate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a bipolar electrode assembly that visualises the electric current flowing inside a bipolar electrode so as to allow quantitative measurements, an electrochemical cell and an electrochemical cell management system using the same; and is composed of an electrochemical cell using a bipolar electrode assembly comprising: adjacent electrodes that are not connected to an external power source; a non-conductive film that is inserted between the electrodes so as to shield the electrodes from one another; and an ammeter that connects the electrodes shielded by the non-conductive film, or an electrode connection circuit having an electric current sensor. According to the present invention, using electric current information that visualises the electric current flowing inside the bipolar electrode, the rate of generation of electrolysis by-products, the electrode current density, the accumulated production volume of electrolysis by-products, and the like can be monitored in real-time; an electric current, a cell voltage and an electrode current density can be measured in real-time using the bipolar electrode that visualises an electric current; and thereby real-time power efficiency information of the electrochemical cell facility is made available.

Description

전류가 가시화되어 양적 측정이 가능한 쌍극전극 어셈블리, 이를 사용한 전기화학전지 및 전기화학전지 관리시스템Bipolar electrode assembly capable of quantitative measurement by visualizing current, electrochemical cell and electrochemical cell management system using the same
본 발명은 쌍극전극 내부를 흐르는 전류를 가시화하여 양적 측정이 가능하도록 하는 쌍극전극 어셈블리, 이를 사용한 전기화학전지 및 전기화학전지 관리시스템에 관한 것으로, 더욱 상세하게는 쌍극전극 내부를 흐르는 전류를 전류계 또는 전류센서를 통해 가시화하여 양적 측정이 가능토록 함으로써, 전기화학전지의 효율을 극대화하는 것이다. The present invention relates to a bipolar electrode assembly, an electrochemical cell and an electrochemical cell management system using the same, which visualize the current flowing through the bipolar electrode to enable quantitative measurement. It is to maximize the efficiency of the electrochemical cell by visualizing through the current sensor to enable quantitative measurement.
물의 전기분해를 통하여 수소를 생산하기 위한 전해조(electrolyzer)의 설계는 단극전극(unipolar electrode)을 사용하는 방법과 쌍극전극(bipolar electrode)을 사용하는 방법의 두 종류로 나뉜다. The design of an electrolyzer for producing hydrogen through electrolysis of water is divided into two types: a method using a unipolar electrode and a method using a bipolar electrode.
먼저, 단극전극으로 구성된 전해조는, 전해조 내에 양극전극과 음극전극이 번갈아 배열되어 탱크형태(tank type)의 전해조로도 호칭된다. 쌍극전극 전해조에 있어서는 물리적으로 전원에 연결되지 않은 금속판(쌍극전극)이 셀과 셀을 전기적으로 연결한다.First, an electrolytic cell composed of a monopolar electrode is also referred to as a tank type electrolytic cell in which an anode electrode and a cathode electrode are alternately arranged in the electrolytic cell. In a bipolar electrolyzer, a metal plate (bipolar electrode) that is not physically connected to a power source electrically connects the cell to the cell.
상기 단극전극으로 구성된 전해조에 있어서, 전체 전해조에 적용된 전압은 각각의 셀에 적용된 전압과 같다. 또한, 단극전극 전해조는 전극의 배치가 단순하기에 전해장치의 제작과 유지 보수가 용이한 장점이 있으나, 작동시 저전압 고전류가 요구되어 저항 손실(Ohmic losses)이 큰 것이 단점으로 지적된다.In the electrolytic cell composed of the single electrode, the voltage applied to the entire electrolytic cell is equal to the voltage applied to each cell. In addition, the monopolar electrode electrolyzer has the advantage of easy manufacturing and maintenance of the electrolytic device due to the simple arrangement of the electrode, but it is pointed out that the low ohmic voltage is required during operation, resulting in large ohmic losses.
쌍극전극으로 구성된 전해조는, 전원에 연결된 양극과 음극 두 전극 사이에 전원에 연결되지 않은 단수 혹은 다수의 전극이 삽입된 형태로서, 전원에 연결되지 않은 금속 전극들은 전원에 연결된 양극과 음극에 의해 형성된 전계(electric field)에 의해서 전극의 양면이 양과 음의 쌍극을 가지도록 내부적 전자분포가 유도되어 전극의 양면에서 산화 환원의 서로 상이한 전기화학 반응이 일어난다.An electrolytic cell composed of a bipolar electrode has a single or multiple electrode which is not connected to a power source between a positive electrode and a negative electrode connected to a power source, and metal electrodes not connected to the power source are formed by a positive electrode and a negative electrode connected to a power source. The electric field induces internal electron distribution such that both sides of the electrode have positive and negative dipoles, resulting in different electrochemical reactions of redox on both sides of the electrode.
상기 쌍극전극으로 구성된 전해조에 있어서, 전체 전해조에 적용된 총 전압은 각 단위 셀 전압의 합이 된다. 이러한 전극배치는 전기화학 셀을 모듈화(modularize)할 수 있도록 하여, 단극 설계에 있어서보다 더 높은 전압과 더 낮은 전류로 작동하는 장점이 있다. 이러한 쌍극전극 전해조는 단극전극 전해조에 비해 단위 셀 간의 밀폐 문제와 함께 설계가 복잡하고, 전해질의 누출의 위험이 크다는 문제가 있으나, 그럼에도 불구하고 전력효율이 높다는 이유로 산업에서 선호되고 있다.In the electrolytic cell composed of the bipolar electrode, the total voltage applied to the entire electrolytic cell is the sum of the unit cell voltages. Such electrode arrangements allow the electrochemical cell to be modularized, which has the advantage of operating at higher voltages and lower currents than in monopolar designs. Such a bipolar electrode electrolyzer has a problem in that the design is complicated and the risk of leakage of the electrolyte is great, with the problem of sealing between unit cells, compared to the monopolar electrode electrolyzer, but it is nevertheless preferred in the industry for its high power efficiency.
쌍극전극 전해조의 작동원리는 전계 이론(electric field theory)과 전기화학(electrochemistry) 이론으로 설명되며, 상기 전계 이론에 의하면, 벡터의 성질을 가지는 전기력선(electric field line)은 양극전극의 표면에서 표면에 대해서 수직으로 발생되고 전기력선 밀도는 전계(electric field)의 세기에 관련된다. 전계에 노출된 도체 내의 자유전자는 적용된 전계를 따라서 쉽게 이동한다. 그 결과, 전계에 노출된 도체는 전자분포가 쌍극 분포를 가지도록 양면이 쌍극화되어 쌍극전극을 형성하게 된다. 그리고 전계에 노출되어 전하가 정전기적으로 평형상태에 있는 도체는 양극과 마주하는 표면에 높은 전자 밀도를 가지게 되고, 양극과 마주하는 쌍극전극의 표면에서 적용된 전압에 의해서 생성된 양이온의 환원으로 전자가 제거되면, 이 정전기적 평형상태는 무너지고, 전극은 다른 편의 전극표면으로부터 음이온의 산화를 통하여 전자가 공급되어야 할 필요가 야기된다.The principle of operation of a bipolar electrolyzer is explained by electric field theory and electrochemistry theory. According to the electric field theory, an electric field line having a property of a vector is formed from the surface of the anode electrode to the surface. Is generated perpendicular to and the electric field line density is related to the strength of the electric field. Free electrons in a conductor exposed to an electric field easily move along the applied electric field. As a result, the conductor exposed to the electric field is bipolarized so that the electron distribution has a bipolar distribution, thereby forming a bipolar electrode. The conductor exposed to the electric field and the charge is electrostatically balanced has a high electron density on the surface facing the anode, and the electrons are reduced by the reduction of the cation generated by the voltage applied on the surface of the bipolar electrode facing the anode. Once removed, this electrostatic equilibrium is broken, and the electrode needs to be supplied with electrons through oxidation of anions from the electrode surface of the other side.
그 결과, 전자는 전극의 한쪽 표면에서 다른 쪽 표면으로 전극의 내부를 통하여 흐르게 된다. 그리고 이런 이유로 전해조에 적용된 쌍극전극은 전원에 연결되지 않았음에도 한쪽 표면에서는 수소를 다른 쪽 표면에서는 산소를 생성하게 되는 것이다.As a result, electrons flow through the inside of the electrode from one surface of the electrode to the other surface. For this reason, the bipolar electrode applied to the electrolyzer produces hydrogen on one surface and oxygen on the other surface even though it is not connected to a power source.
즉, 전해조의 양극과 음극 사이에 삽입된 전극들은, 양극과 마주하는 전극(cathode) 표면은 전자 밀도가 높아질 것이고, 이는 적용된 전계(electric field)에 의해서 전기적으로 중성인 평형상태에서 전극의 캐소드 쪽 표면에서 양이온이 환원됨으로 말미암아 전체적으로 전자빈곤상태 (electron hungry state) 즉, 전기적으로 양인 상태에 이르게 될 것이다. 이러한 전자빈곤상태는 반대편 전극(anode) 표면에서의 음이온의 산화를 통하여 생성된 전자가 전극 내부를 통하여 캐소드 쪽 표면으로 이동함으로 전기적 회로가 완성된다. 즉, 전극의 애노드 쪽 표면은 외부에서 적용된 전계에 의해서 전자 도너(doner) 혹은 전자 소스(source)로 작용하고 캐소드 쪽 표면은 전자수용(electron acceptor) 전극 혹은 전자 싱크(sink) 전극으로 작동하게 되는 것이다. 또한, 복수의 전극이 사용된 전기화학 셀에 있어서, 음이온 산화를 통하여 캐소드에 전자를 공급하는 애노드 쪽의 표면은 전기적으로 양인 상태이므로 연속적으로 마주 대하는 전극 표면에 전기력선을 발산하여 전자빈곤상태를 야기하게 되므로, 이들 전극들은 전원에 직접 연결되지 않았음에도 전극의 양면에서의 양이온의 환원 및 음이온의 산화 반응을 통하여 서로 다른 전해 생성물을 생성하게 된다. That is, the electrodes inserted between the anode and cathode of the electrolyzer will have a high electron density at the cathode surface facing the anode, which is the cathode side of the electrode in equilibrium electrically neutral by the applied electric field. Reduction of cations at the surface will lead to an overall electron hungry state, that is, an electrically positive state. In this electron poverty state, electrons generated through the oxidation of negative ions at the opposite electrode surface move through the inside of the electrode to the cathode surface, thereby completing the electrical circuit. That is, the anode surface of the electrode acts as an electron donor or electron source by an externally applied electric field, and the cathode surface acts as an electron acceptor electrode or an electron sink electrode. will be. In addition, in the electrochemical cell using a plurality of electrodes, since the surface of the anode side which supplies electrons to the cathode through anion oxidation is in an electrically positive state, electric force lines are radiated to the electrode surfaces that face each other continuously, causing an electron poverty state. Since these electrodes are not directly connected to a power source, these electrodes generate different electrolytic products through reduction of cations and oxidation of anions on both sides of the electrode.
또한, 전기화학 이론에 따르면 전해질은 전자에 대해서는 부도체이고 이온에 대해서는 도체이다. 전원에 연결된 음극 전극에서 한 개의 전자는 한 개의 수소이온(H+)을 환원시킨다. 전원에 연결된 양극과 음극 그리고 그 사이에 한 개의 쌍극전극이 삽입된 전해조에 있어서 전원으로부터의 1 패러데이(96500 쿨롬)의 전류는 음극과 쌍극전극의 캐소드에서 각 1몰씩 총 2몰의 수소(H)를 생성한다. 즉, 같은 양의 전류가 제공되었을 때 양극과 음극 그리고 한 개의 쌍극전극으로 구성된 전기화학전지는 전류경제상 단극 전극으로 구성된 셀에 있어서보다 2배의 수소가 생산된다는 것이다.Electrochemical theory also states that an electrolyte is a nonconductor for electrons and a conductor for ions. One electron in the cathode electrode connected to the power source reduces one hydrogen ion (H +). In an electrolytic cell with a positive and negative electrode connected to a power source, and a bipolar electrode inserted between them, one Faraday (96500 coulomb) current from the power source is 2 moles of hydrogen (H), one mole each at the cathode and the cathode. Create In other words, when the same amount of current is provided, an electrochemical cell composed of a positive electrode, a negative electrode, and a bipolar electrode produces twice as much hydrogen as a cell composed of a single electrode due to the current economy.
전력 에너지 측면에서, 전기분해에 사용된 전력과 수소생산량과의 관계는 전력 효율에 직접적으로 관계됨으로 매우 중요하다. 산업적 알칼라인(alkaline) 전기분해 장치의 설계에는 단극전극 전해조와 쌍극전극 전해조에 있어서 보통 2.0 ∼2.2V의 셀 전압을 적용하는 것으로 알려졌다. 쌍극전극으로 구성된 전해조에 있어서 전원에서 적용되는 전압은 전해질의 농도, 온도, 압력, 전극의 표면조건 그리고 사용된 분리막(separator or diaphragm)이나 박막(membrane)에 따라 다르겠으나 보통 2.2 x (n-1) 볼트의 전압을 적용하는 것으로 알려졌다. 여기서 n은 적용된 양극과 음극 그리고 쌍극전극을 포함하는 전극의 총 숫자를 의미한다. 단극전극으로 구성된 전해조와 양극과 음극 그리고 한 개의 쌍극전극으로 구성된 전해조에 있어서의 전력소모를 비교하기 위하여, 만일 단극전극 배열의 장치에 2.2볼트를 적용했다면 쌍극 전극배열의 설비에 있어서의 전극 수는 총 3개임으로 적용되어야 할 전압은 4.4 볼트가 될 것이다. 만일, 같은 전류량이 두 전해조에 적용되었다면, 쌍극전극으로 구성된 전기분해장치는 단극전극에 비해서 두 배의 전력을 소모할 것이다. 즉, 쌍극전극 전해조는 전류경제상으로는 2배의 수소를 생산하는 대신에 두 배의 전력을 소모한다는 것이다.In terms of power energy, the relationship between the power used for electrolysis and the hydrogen production is very important because it is directly related to power efficiency. In the design of industrial alkaline electrolysis devices, it is known that cell voltages of 2.0 to 2.2 V are usually applied in monopolar and bipolar electrolysers. In an electrolytic cell consisting of a bipolar electrode, the voltage applied at the power source will vary depending on the electrolyte concentration, temperature, pressure, surface conditions of the electrode, and separator or diaphragm or membrane used, but is usually 2.2 x (n-1). It is known to apply a voltage of volts). N is the total number of electrodes including the applied anode and cathode and the bipolar electrode. To compare the power consumption of an electrolyzer consisting of a monopolar electrode and an electrolyzer consisting of a positive electrode and a negative electrode and a bipolar electrode, if 2.2 volts were applied to a device of a monopolar electrode array, the number of electrodes in the installation of the bipolar electrode array would be The total of three voltages will be 4.4 volts. If the same amount of current was applied to both electrolyzers, an electrolysis device consisting of a bipolar electrode would consume twice as much power as a monopolar electrode. That is, the bipolar electrolyzer consumes twice the power instead of producing twice the hydrogen in the current economy.
따라서, 여러 단점에도 불구하고 산업현장에서는 쌍극전극 전해조가 선호되는 바, 상기 쌍극전극은 전류가 전극의 한쪽 표면에서 다른 쪽 표면으로 내부를 통해서 흐르기 때문에, 전극 내부를 흐르는 전류는 가시화되어 양적으로 측정될 수 없다. 따라서, 전극의 작동 상태를 모니터링하고 진단할 수 없어, 전해생성물의 실시간 생성속도나 실시간 효율 측정이 실현될 수 없었다. 쌍극전극 내부를 흐르는 전류량이 유용하지 않아서 실시간 전력효율을 측정할 수 없었기에, 관련 산업은 전해 결과물을 기초로 역으로 효율을 계산해 온 것이 발견된다. 즉, "고위발열량(HHV)/1 kg 의 수소를 생산하는데 소모된 에너지"로 전기 분해의 전력효율을 계산해 온 것이 발견된다.Therefore, in spite of various disadvantages, the bipolar electrode electrolyzer is preferred in the industrial field. Since the bipolar electrode flows through the inside from one surface of the electrode to the other surface, the current flowing inside the electrode is visualized and measured quantitatively. Can't be. Therefore, it is not possible to monitor and diagnose the operating state of the electrode, so that the real time production rate or real time efficiency measurement of the electrolytic product cannot be realized. Since the amount of current flowing inside the bipolar electrode was not useful, it was not possible to measure the real-time power efficiency, and the related industry was found to calculate efficiency inversely based on the electrolytic results. In other words, it has been found that the power efficiency of electrolysis has been calculated as "energy consumed to produce HHV / 1 kg of hydrogen."
그러나 쌍극전극 내부를 흐르는 전류를 가시화하여 양적으로 측정할 수 있다면, 이는 모듈 내의 쌍극전극들로부터 발생되는 수소와 산소의 발생속도의 실시간 측정과 함께 누적 생산량 그리고 전극의 전류밀도(current density)를 계산할 수 있게 될 것이고, 또 실시간으로 전력효율을 계산할 수 있게 될 것이며 전극의 작동상태를 모니터하고 진단할 수 있게 될 것이다. 따라서, 이러한 점을 고려하여 본 발명을 완성하기에 이르렀다.However, if the current flowing through the bipolar electrode can be visualized and quantitatively measured, it is possible to calculate the cumulative output and current density of the electrode together with real-time measurement of the rate of hydrogen and oxygen generation from the bipolar electrodes in the module. In addition, it will be possible to calculate power efficiency in real time, and will be able to monitor and diagnose the operation of the electrodes. Accordingly, the present invention has been completed in consideration of these points.
한편, 평판형태의 쌍극전극을 사용한 전기화학 셀에 있어서 전극 간의 평형도는 셀 전압과 전류에 심각한 영향을 미치며, 쌍극전극으로 구성된 전기화학 셀에 있어서는 전극의 평형도와 함께 셀 간의 전해질의 누수 역시 전지의 전체적 성능과 전력효율에 심각한 영향을 미친다. 즉, 전극 간의 평형도와 셀 간의 전해질의 누수가 전력효율에 심각한 영향을 미침으로 전극 간의 최상의 평형도와 셀 간의 완전한 밀폐(seal)가 추구되어야 한다. On the other hand, in an electrochemical cell using a flat bipolar electrode, the balance between electrodes has a significant effect on the cell voltage and current.In an electrochemical cell composed of bipolar electrodes, the electrolyte leakage between the cells together with the balance of the electrode is also a battery. Has a significant impact on the overall performance and power efficiency. That is, the balance between the electrodes and the leakage of electrolyte between the cells have a serious effect on the power efficiency, so the best balance between the electrodes and the complete seal between the cells should be pursued.
이를 더욱 상세히 설명하면, 애노드 쪽 양극액(anolyte)과 캐소드쪽 음극액(catholyte) 간에는 양이온과 음이온의 농도차가 존재할 것이다. 이러한 농도 차는 언제나 양이온과 음이온의 교차확산(cross-diffusion) 현상의 주요한 원동력(driving force)이고 교차확산의 결과는 양이온과 음이온의 재결합이므로 쌍극전극을 중심으로 이웃하는 셀의 음극액과 양극액은 물리적으로 완벽하게 밀폐되어야 한다. 이온의 확산뿐 아니고 전계를 따른 이온의 이동은 다니엘 전지의 염다리(salt bridge) 현상에서 확연히 입증된다. 따라서 전류가 가시화된 쌍극전극으로 구성된 전기화학전지에서도 양극액과 이웃하는 셀의 음극액 간에는 완벽한 밀폐 수단이 적용되어야 한다. 쌍극전극으로 구성된 전기분해설비는 전해액 공급펌프로 전해질을 공급하고 때로 생성기포의 제거를 촉진하기 위하여 전해액(electrolyte)을 순환시킨다. 따라서 전해액 공급관 혹은 순환 회로를 통한 농도 차에 의한 이온의 교차확산과 염다리 현상을 방지할 수 있는 효과적 수단을 필요로 한다.In more detail, there will be a difference in concentration of cations and anions between the anode-side anolyte and the cathode-side catholyte. This difference in concentration is always the main driving force of the cross-diffusion phenomenon of cations and anions, and the result of cross-diffusion is the recombination of cations and anions. It must be completely physically sealed. The movement of ions along the electric field as well as the diffusion of ions is evident in the salt bridge phenomenon of the Daniell cell. Therefore, even in an electrochemical cell composed of a bipolar electrode in which current is visualized, a perfect sealing means must be applied between the anolyte and the catholyte of a neighboring cell. An electrolysis facility composed of a bipolar electrode circulates an electrolyte to supply electrolyte to an electrolyte supply pump and sometimes to promote removal of product bubbles. Therefore, there is a need for an effective means for preventing cross-diffusion and salt bridge phenomenon of ions due to the difference in concentration through an electrolyte supply pipe or a circulation circuit.
또한, 셀 설계에서 전극의 평형도와 함께 고려되어야 할 바는 물의 전기분해에 있어서와 같이 기체 생성물이 중요한 요소일 경우 분리막 또는 박막을 중심으로 캐소드 쪽과 애노드쪽 압력이 각각 일정하게 유지되어야 한다는 것이다. 분리막 또는 박막을 중심으로 온도와 농도 및 압력차는 확산 (diffusion)의 원동력(driving force)이고 분리막 또는 박막의 양쪽의 압력차는 두 기체의 교차오염(crosscontamination)의 원인이 될 수 있기 때문이다. 심지어 분리막이나 박막이 기체의 통과나 전해질 내의 용존 기체(dissolved gas)의 통과를 완벽하게 차단한다 할지라도, 분리막 혹은 박막 양쪽 압력의 압력차가 크면 이들 막들이나 구조물의 기계적 안정성이나 수명에 영향을 미칠 수 있으므로, 물의 전기분해에 있어서 양극 및 음극액에 가해지는 압력은 압력차와 농도차에 의한 확산 및 각 기체의 매질 내에서의 확산계수(diffusion coefficient)를 고려하여 양극액과 음극액의 압력을 각각 일정하게 유지시키기 위한 수단을 필요로 한다.In addition, the cell design should be considered along with the electrode balance, where the cathode- and anode-side pressures must remain constant around the separator or thin film, where gaseous products are an important factor, such as in the electrolysis of water. The difference in temperature, concentration, and pressure around the separator or thin film is a driving force of diffusion, and the pressure difference between both sides of the separator or thin film may cause crosscontamination of two gases. Even if the membrane or membrane completely blocks the passage of gases or the passage of dissolved gases in the electrolyte, large pressure differences between the membrane or membrane pressures can affect the mechanical stability or lifetime of these membranes or structures. Therefore, in the electrolysis of water, the pressure applied to the anode and the catholyte is determined by the pressure difference and the concentration difference and the pressure of the anolyte and the catholyte in consideration of the diffusion coefficient in the medium of each gas. There is a need for means to remain constant.
전해조의 운전 압력에 있어서 양극액과 음극액의 최적 압력차는, 근간까지 발표된 관계 분야의 문헌에서 찾을 수 없는 바, 이는 음극액(catholyte)의 운전압력에 대해서 발생 가스의 교차 오염을 최소화할 수 있는 양극액(anolyte)의 압력은 실험적으로 추구하는 이상 다른 방법이 없을 것이다.The optimum pressure difference between the anolyte and the catholyte in the operating pressure of the electrolyzer cannot be found in the literature published in the related fields, which can minimize cross-contamination of the generated gas with respect to the operating pressure of the catholyte. The pressure of the anolyte present will be no other way than experimentally pursued.
따라서, 본 발명의 목적은 쌍극전극의 내부를 흐르는 전류를 전류센서를 통하여 가시화하여 양적으로 측정할 수 있도록 함으로써, 전해 생성물의 생성속도와 전극의 전류밀도를 실시간으로 측정하고 누적생산량을 계산할 정보를 획득하며 셀의 건강상태를 감시하도록 하는 것이다.Accordingly, an object of the present invention is to visualize the current flowing through the bipolar electrode through a current sensor to measure the quantity, thereby measuring the production rate of the electrolytic product and the current density of the electrode in real time and calculating information for calculating the cumulative production amount. To monitor the health of the cell.
또한, 조립이 용이하면서도 전극 간의 평형도가 우수하며, 작은 점유면적(footprint)에 큰 전극면적을 제공할 수 있는 구조의 전기화학전지를 제공하는 것이다.In addition, it is easy to assemble and excellent balance between the electrodes, to provide an electrochemical cell having a structure that can provide a large electrode area in a small footprint (footprint).
또한, 전기화학전지의 운용시, 시간에 따라 전압이 변화하는 전원에 대하여 전압조정기(dc-dc voltage regulator)의 사용 없이 출력전력을 직접 전기화학전지에 적용함으로 시스템의 효율을 극대화하는 것이다.In addition, in the operation of the electrochemical cell, for the power source that changes with time, the output power is directly applied to the electrochemical cell without using a voltage regulator (dc-dc voltage regulator) to maximize the efficiency of the system.
또한, 양극액과 음극액의 이온과 용존(dissolved) 가스의 농도 차나 양극액과 음극액의 압력차로 인한 확산동력, 그리고 전해액 공급관로를 통한 양극액과 음극액간의 염다리(salt bridge) 현상을 제거할 수 있는 전해액(electrolyte) 공급시스템 혹은 순환 시스템을 구현하기 위하여, 이온의 환원과 산화에 의해서 캐소드와 애노드에서 생성되는 상이한 가스의 전해질에 대한 용해도와 확산계수(diffusion coefficient)를 고려하여 양극액과 음극액의 압력과 그 압력의 차이를 일정하게 유지할 수 있도록 함으로, 상기 확산동력으로 인한 교차확산 동력(driving force)을 줄이고 분리막 또는 박막이나 구조물의 기계적 안정성을 증진하게 될 것이다.It also eliminates diffusion power due to the difference between the concentration of ions and dissolved gases in the anolyte and catholyte, the pressure difference between the anolyte and the catholyte, and the salt bridge between the anolyte and the catholyte through the electrolyte supply line. In order to implement a viable electrolyte supply system or a circulation system, the anolyte solution and the diffusion coefficient are considered in consideration of the solubility and diffusion coefficient of the electrolyte of different gases generated at the cathode and the anode by reduction and oxidation of ions. By maintaining the pressure and the difference between the pressure of the catholyte constant, it will reduce the cross-driving force due to the diffusion power and improve the mechanical stability of the membrane or thin film or structure.
또한, 각 셀의 전류와 전압 데이터로부터 셀의 작동상태를 실시간으로 모니터하고 전해생성물의 생성 속도와 전극의 전류밀도 그리고 누적생산량과 함께 시스템 효율을 실시간으로 제공할 뿐 아니라 전기화학전지의 최적 작동상태를 유지하고 태양광 전지판이나 풍력발전 출력에 있어서와 같이 전압이 시간에 따라 가변적인 전원에 대하여 직류-직류 변압장치(dc-dc converter)의 사용으로 인한 효율의 손실 없이 유동적으로 변화하는 전원의 전압에 상응하는 작동 셀 혹은 모듈수를 계산하고 이를 제어 시스템을 통하여 최적 작동에 반영하도록 할 수 있는 전기화학전지 관리시스템(Electrochemical Cell Management System)을 구성하는 것이다.It also monitors the operating state of the cell from the current and voltage data of each cell in real time and provides the system efficiency in real time along with the production rate of the electrolytic product, the current density of the electrode and the cumulative production, as well as the optimum operating state of the electrochemical cell. Voltage of a power source that varies fluidly without loss of efficiency due to the use of a dc-dc converter for power sources whose voltage varies over time, such as in solar panels or wind power outputs. It is to construct an electrochemical cell management system that can calculate the number of corresponding operation cells or modules and reflect them to the optimum operation through the control system.
또한, 상기 전기화학전지 관리시스템을 스마트 그리드 시스템과 연동하여 운전 예비전력(spinning reserve)을 최소한의 안전마진(safety margin)을 제외하고 전기화학전지에 적용함으로 근본적으로 효용 없이 낭비되어 사라지는 소산성(dissipative) 운전예비전력의 효용을 창출하는 것이다. 스마트 그리드 시스템과 전력 수요에 대한 실시간 교신을 통하여, 전기화학전지 시스템의 작동 셀 혹은 모듈 수를 결정하고 전기화학전지 관리시스템의 제어 장치를 통하여 이를 실시간 반영함으로 운전예비 전력의 효용이 창출될 수 있을 것이다. 이 경우 전기화학전지 시스템은 전력망운영자가 실시간 전력수요에 따라 실시간으로 조절 가능한 전기적 부하(adjustable load)로 작용하게 된다.In addition, the electrochemical cell management system in conjunction with the smart grid system by applying the operating reserve (spinning reserve) to the electrochemical cell except the minimum safety margin (safety margin) is essentially dissipated dissipated without utility ( dissipative) to create the utility of operational reserve power. Through real-time communication with the smart grid system and power demand, the number of operating cells or modules of the electrochemical cell system can be determined and reflected in real time through the control device of the electrochemical cell management system. will be. In this case, the electrochemical cell system acts as an electrical load (adjustable load) in real time according to the real-time power demand by the grid operator.
또한 상기 전력망이나 스마트 전력망 시스템과 간헐적 및 가변적인 재생에너지와의 관계에 있어서, 풍력이나 태양광 단지의 발전량을 전력망이 과잉전력으로 간주하여 발전 중단을 요구한 사례가 미국과 유럽에서 보고되었다. 이러한 전력망의 병목현상은 전력망에서 재생에너지가 차지하는 비중이 늘어나면서 더욱 증가할 것으로 예측되는 바, 재생 에너지원으로부터의 과잉전력(excess power)을 전력망이 거부하지 않고 수용하여 전류가 가시화되어 양적측정이 가능한 쌍극전극으로 구성된 전기화학전지 설비에 적용하여 수소를 생산하여 재생에너지의 효용을 증대함으로 전력발전 부문의 탈탄소화(decarbonization)를 증진하는 목적이 있다. In addition, in the relationship between the grid or the smart grid system and intermittent and variable renewable energy, there have been cases reported in the United States and Europe that the generation of wind or solar complexes is considered as excessive power and the power generation is stopped. The bottleneck of the grid is expected to increase as the share of renewable energy in the grid increases. As a result, the electricity is visualized by accepting the excess power from the renewable energy source without rejecting the grid. The purpose is to promote the decarbonization of the power generation sector by increasing the utility of renewable energy by producing hydrogen by applying to electrochemical cell facilities composed of bipolar electrodes.
상기한 목적을 달성하기 위한 본 발명의 쌍극전극 어셈블리는, 전류가 가시화되어 양적 측정이 가능한 쌍극전극 어셈블리에 있어서, 외부 전원에 연결되지 않는 서로 이웃하는 전극; 상기 전극 사이에 삽입되어 전극 사이를 차폐시키는 부도체막; 상기 부도체막에 의해 차폐된 전극을 연결하는 전류계 또는 전류센서가 구비된 전극연결회로;를 포함하며, 상기 전극은 평판형이거나, 중공을 갖는 원통형인 것을 특징으로 한다.A bipolar electrode assembly of the present invention for achieving the above object, the bipolar electrode assembly that the current is visualized quantitative measurement, the electrode adjacent to each other not connected to an external power source; An insulator film inserted between the electrodes to shield the electrodes; And an electrode connecting circuit provided with an ammeter or a current sensor connecting the electrodes shielded by the insulator film, wherein the electrodes are flat or cylindrical having a hollow shape.
그리고 본 발명에 따른 전류가 가시화된 쌍극전극 전기화학전지는, 전류가 가시화된 쌍극전극 어셈블리로 구성되는 쌍극전극 전기화학전지 모듈로서, 케이싱; 상기 케이싱 내면에 구비되는 부도체막; 상기 케이싱 내 일측의 부도체막에 의해 일면이 차폐되는 전극; 및 상기 케이싱 내 상기 전극과 이격되어 마주보도록 설치되는 다른 전극을 포함하되, 상기 전극과 전극 사이에는 쌍극전극 어셈블리 하나 이상이 동일한 전극간 거리로 구비되며, 상기 쌍극전극 전기화학전지 모듈의 두 전극은 전원연결회로에 연결되는 것을 특징으로 한다.In addition, the bipolar electrode electrochemical cell in which the current is visualized according to the present invention is a bipolar electrode electrochemical cell module composed of a bipolar electrode assembly in which the current is visible, the casing; An insulator film provided on the inner surface of the casing; An electrode whose one surface is shielded by an insulator film on one side of the casing; And another electrode spaced apart from and facing the electrode in the casing, wherein one or more bipolar electrode assemblies are provided with the same distance between electrodes between the electrode and the electrode, and the two electrodes of the bipolar electrode electrochemical cell module are It is characterized in that connected to the power connection circuit.
그리고 본 발명에 따른 다른 쌍극전극 전기화학전지는, 전류가 가시화된 쌍극전극 단위 모듈로 구성되는 쌍극전극 전기화학전지 모듈로서, 케이싱; 상기 케이싱 내면에 구비되는 부도체막; 상기 케이싱 내 일측의 부도체막에 의해 일면이 차폐되는 전극; 상기 케이싱 내 상기 전극과 이격되어 설치되는 다른 전극;을 포함하는 단위모듈이 둘 이상 구비되며, 상기 하나의 단위 모듈과 이와 이웃하는 단위 모듈 내의 서로 이웃하는 전극을 연결하는 전류계 또는 전류센서가 구비된 전극연결회로를 포함하며, 상기 쌍극전극 단위 모듈의 전극은 중공을 갖는 원통형인 것을 특징으로 한다.And another bipolar electrode electrochemical cell according to the present invention, a bipolar electrode electrochemical cell module composed of a bipolar electrode unit module of the current is visible, the casing; An insulator film provided on the inner surface of the casing; An electrode whose one surface is shielded by an insulator film on one side of the casing; Two or more unit modules including a second electrode spaced apart from the electrode in the casing is provided, the ammeter or current sensor for connecting the neighboring electrodes in the unit module and the neighboring unit module is provided with Including an electrode connection circuit, the electrode of the bipolar unit module is characterized in that the cylindrical having a hollow.
그리고 본 발명에 따른 또 다른 전류가 가시화된 쌍극전극 어셈블리는, 전류가 가시화된 원통형 쌍극전극 어셈블리로 구성되는 쌍극전극 전기화학전지 모듈로서, 원통형 케이싱; 상기 케이싱 내면에 구비되는 원통형 부도체막; 상기 케이싱 내 일측의 부도체막에 의해 일면이 차폐되는 외곽전극; 및 상기 외곽전극과 동심원으로 거리를 두고 설치되는 원주형 금속 전극, 혹은 원통형 부도체막 혹은 원주형 부도체 외면에 부착된 중앙전극으로 구성되고, 상기 전극과 전극 사이에는 쌍극전극 어셈블리 하나 이상이 동일한 전극간 거리로 구비되며, 상기 중앙전극과 외곽전극은 전압계 혹은 전압센서와 전류계 혹은 전류센서를 구비한 전원연결회로에 연결되는 것을 특징으로 한다.And another bipolar electrode assembly according to the present invention is visible, the bipolar electrode electrochemical cell module consisting of a cylindrical bipolar electrode assembly of the current is visible, the cylindrical casing; A cylindrical insulator film provided on the inner surface of the casing; An outer electrode whose one surface is shielded by an insulator film on one side of the casing; And a central electrode attached to the outer electrode at a distance from the outer electrode, or a central electrode attached to an outer surface of the cylindrical insulator film or the cylindrical insulator, wherein at least one bipolar electrode assembly is formed between the electrodes. The center electrode and the outer electrode may be connected to a power connection circuit including a voltmeter or a voltage sensor and an ammeter or a current sensor.
또한, 본 발명에 따른 또 다른 쌍극전극 전기화학전지는, 중공을 갖는 원통형의 외곽 전극; 상기 외곽 전극에 이중관 구조로 삽입되는 중공을 갖는 원통형의 중앙 전극;을 포함하는 원통형 쌍극전극 단위 모듈이 둘 이상이 직렬로 적재되고, 직렬로 적재된 단위모듈들의 첫 모듈의 중앙전극과 마지막 모듈의 외곽전극이 전원연결회로에 연결되고; 상기 하나의 단위 모듈의 외곽 전극과 이와 이웃하는 단위 모듈의 중앙 전극을 연결하는 전류계 또는 전류센서가 구비된 전극연결회로에 연결되는 것을 특징으로 한다.In addition, another bipolar electrode electrochemical cell according to the present invention, the cylindrical outer electrode having a hollow; Cylindrical bipolar electrode unit module including a hollow; a cylindrical central electrode having a hollow inserted into the outer electrode structure in the outer electrode; two or more are stacked in series, the center electrode and the last module of the first module of the unit modules loaded in series The outer electrode is connected to the power connection circuit; And an electrode connecting circuit having an ammeter or a current sensor connecting the outer electrode of the one unit module and the center electrode of the neighboring unit module.
이에 더하여, 본 발명에 따른 또 다른 쌍극전극 전기화학전지는, 전류가 가시화된 쌍극전극 전기화학전지로서, 액상(liquid) 전해질과 양자교환박막 전기분해장치(PEM electrolyzer)에 있어서와 같은 고체 전해질(solid electrolyte)로 작동하는 쌍극전극 전기화학전지를 포함하고, 또한 수소, 산소 혹은 염소와 같은 기체 생성물을 생산하는 쌍극전극 전기화학전지와 함께 전기정련(electro-refining)이나 전해채취(electrowinning)에 있어서와 같이 금속 전해생성물을 생산하는 쌍극전극 전기화학전지를 포함하는 것을 특징으로 한다.In addition, another bipolar electrode electrochemical cell according to the present invention is a bipolar electrode electrochemical cell in which a current is visualized, and includes a solid electrolyte such as a liquid electrolyte and a PEM electrolyzer (PEM electrolyzer). In electro-refining or electrowinning, together with a bipolar electrochemical cell that operates as a solid electrolyte and also produces a gaseous product such as hydrogen, oxygen or chlorine. It characterized in that it comprises a bipolar electrode electrochemical cell to produce a metal electrolytic product as shown.
한편, 본 발명의 전기화학전지 관리시스템은, 전기화학전지 관리시스템(Electrochemical Cell Management System)으로서, 전류가 가시화된 쌍극전극으로 구성된 전기화학전지로부터 실시간으로 수집된 셀 전류 및 전압, 셀 압력, 셀 온도, 전해질 수위 등의 정보로부터 실시간 전류밀도, 전해생성물의 생성속도 및 누적생산량, 그리고 전력 효율을 계산하여 제시하고, 전해생성물의 교차 오염도와 가스 생성물의 누출 데이터 등의 데이터에 근거하여 설비의 안전 운전을 보장하는 전자적 관리시스템으로 데이터 수집장치(Data Collection Unit); 데이터 버스(Data Bus); 제어장치(Control Unit); 감시 및 제어 컴퓨터 시스템(Monitoring & Control Computer System)으로 구성되어 전기화학전지 시스템을 실시간 데이터에 의거 최적의 작동조건으로 운전되도록 총체적의 관리하는 것을 특징으로 한다.On the other hand, the electrochemical cell management system of the present invention, an electrochemical cell management system (Electrochemical Cell Management System), the cell current and voltage, the cell pressure, the cell collected in real time from the electrochemical cell composed of a bipolar electrode of the current is visible It calculates and presents real-time current density, production rate and cumulative production rate, and power efficiency from information such as temperature and electrolyte level, and safety of facility based on data such as cross contamination of electrolytic product and leakage data of gas product. An electronic management system that guarantees operation; a data collection unit; A data bus; Control Unit; It is composed of a Monitoring & Control Computer System, and the electrochemical cell system is characterized by total management to operate at optimal operating conditions based on real-time data.
본 발명에 따르면 전기화학전지의 쌍극전극을 통해서 흐르는 전류를 가시화하여 양적 측정이 가능하게 됨으로써, 다수의 쌍극전극을 통한 전류 정보로부터 전해부산물의 생성속도, 전극의 전류밀도, 전해부산물의 누적생산량의 등에 대한 실시간 모니터링이 가능해지는 효과가 있다. 또한, 전류가 가시화된 쌍극전극을 통한 전류로부터 전극의 전류밀도가 실시간으로 측정됨으로써, 전류경제와 전력 효율의 실시간 정보가 유용해지는 효과가 있다.According to the present invention, the current flowing through the bipolar electrode of the electrochemical cell can be visualized to measure quantitatively, and thus the generation rate of the electrolytic byproduct, the current density of the electrode, and the cumulative production amount of the electrolytic byproduct from current information through the plurality of bipolar electrodes. It is possible to monitor in real time. In addition, since the current density of the electrode is measured in real time from the current through the bipolar electrode in which the current is visualized, there is an effect that real-time information of current economy and power efficiency is useful.
또한, 실시간 전력효율 정보는 전기화학전지 관리시스템을 통하여 실시간으로 분석되어 전원의 전압과 전류를 제어하거나 전력망의 수요에 따라 작동 셀 수나 모듈 수를 실시간 조절함으로 전력망 운영자가 전기화학전지 설비를 실시간 조절 가능한 가변 부하로 사용할 수 있다. 전력망에 적용되어, 최소의 안전마진을 제외한 운전예비전력을 수소 생산에 적용함으로 근본적으로 효용 없이 낭비되어 사라지는 소산성(dissipative) 예비전력을 수소 생산에 적용하고, 가변 재생에너지로부터의 과잉전력을 전력망이 병목현상 없이 수용하여 수소 생산에 적용하며, 생산된 수소를 전력발전에 사용함으로 발전부문과 수송연료 부문에 있어서의 탈탄소화(decarbonization)를 촉진하고, 수소연료 전지차나 수소 내연기관 자동차의 보편화를 촉진하는 효과가 있다. In addition, real-time power efficiency information is analyzed in real time through the electrochemical cell management system to control the voltage and current of the power supply or to adjust the number of operating cells or modules according to the demand of the power grid in real time, so that the grid operator controls the electrochemical cell facilities in real time. Can be used as possible variable load. Applied to the grid, the operating reserve power excluding the minimum safety margin is applied to the production of hydrogen, so that dissipative standby power, which is essentially wasted and disappeared, is applied to the production of hydrogen, and surplus power from variable renewable energy is applied to the grid. It accepts this bottleneck and applies it to hydrogen production, and uses the produced hydrogen for power generation to promote decarbonization in the power generation and transportation fuel sectors, and to promote the universalization of hydrogen fuel cell vehicles and hydrogen internal combustion engine vehicles. It has the effect of promoting.
도 1은 본 발명의 일 실시예에 의하여 한개의 전류가 가시화된 평판형 쌍극전극 어셈블리로 구성된 전기화학전지의 기본 모듈을 나타낸 도면.1 is a view showing a basic module of an electrochemical cell composed of a flat plate type bipolar electrode assembly in which one current is visualized according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 평판형 쌍극전극 전기화학전지 모듈에서 쌍극전지 어셈블리를 다수 개 적용한 모듈 나타낸 도면.2 is a view showing a module to which a plurality of bipolar battery assemblies are applied in a flat bipolar electrode electrochemical cell module according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 의한 전류가 가시화되어 양적 측정이 가능하도록 하는 전기화학전지의 평판형 쌍극전지 어셈블리를 원통형으로 구현한 예를 나타낸 도면.3 is a view showing an example in which a cylindrical bipolar battery assembly of an electrochemical cell is configured to allow quantitative measurement by visualizing current according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 의한 전기화학전지의 평판형 전극 단위 모듈을 나타낸 도면.4 is a view showing a flat electrode unit module of an electrochemical cell according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 의한 전기화학전지의 단위 모듈을 다수 개를 직렬로 적재한 상태를 나타낸 도면.5 is a view showing a state in which a plurality of unit modules of the electrochemical cell according to another embodiment of the present invention are stacked in series.
도 6은 본 발명의 다른 실시예에 의한 전기화학전지 단위 모듈을 원통형으로 구현한 예의 해부도(anatomical diagram).6 is an anatomical diagram of an example of implementing an electrochemical cell unit module in a cylindrical shape according to another embodiment of the present invention.
도 7은 도 6의 원통형 단위 모듈 다수개를 직렬로 적재한 예를 나타낸 도면.7 is a view showing an example in which a plurality of cylindrical unit modules of Figure 6 stacked in series.
도 8은 본 발명에 의한 전기화학전지 관리시스템을 나타낸 개략도(schematic diagram).8 is a schematic diagram showing an electrochemical cell management system according to the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
먼저, 본 명세서에서 전기화학전지(electrochemical cell)라 함은 물이나 소금물의 쌍극전극 전기분해 장치에 있어서와 같이 기체 전해 생성물을 생산하거나 전기정련(electrorefining)이나 전해채취(electrowinning) 혹은 전기도금(electroplating)에 있어서와 같이 전원에 연결된 전극을 통하여 제공된 전압 및 전류 조건하에서 전원에 연결되지 않은 쌍극전극들로부터 금속 전해생성물을 생산하는 장치를 의미한다. First, in the present specification, an electrochemical cell is used to produce a gaseous electrolytic product, as in a bipolar electrode electrolysis device of water or brine, or to electrorefining, electrowinning, or electroplating. Means a device for producing a metal electrolytic product from bipolar electrodes not connected to the power supply under the voltage and current conditions provided through the electrode connected to the power supply.
또한, 본 명세서의 전기화학전지는 소금물이나 알칼라인 전해조에 있어서와 같이 액상 전해질을 사용하는 쌍극전극 전해조와 함께, 쌍극전극 양성자교환막(proton exchange membrane) 전기분해 장치(bipolar PEM electrolyzer)에 있어서와 같은 고체 전해질을 사용하는 쌍극전극 전기분해장치를 포함하나, 이에 국한되지 않고 다양한 액상 혹은 고체 전해질을 포함하는 쌍극전극 전해조를 포함한다. In addition, the electrochemical cell of the present specification is a solid as in a bipolar PEM electrolyzer with a bipolar electrode electrolyzer using a liquid electrolyte as in a brine or alkaline electrolyzer. It includes a bipolar electrode electrolyzer including, but not limited to, a bipolar electrode electrolysis device using an electrolyte.
본 발명은 쌍극전극의 전극 내부를 흐르는 전류를 가시화하고, 양적 측정이 가능하도록 하는 것을 가장 큰 특징으로 한다.The present invention is characterized in that the current flowing through the electrode of the bipolar electrode to visualize, quantitative measurement is possible.
이를 위해 본 발명의 쌍극전극 어셈블리(10)는 도 1에서와 같이, 전기화학전지에 사용되는 쌍극전극 어셈블리(10)에 있어서, 외부 전원에 연결되지 않는 서로 이웃하는 전극(11)(12); 상기 전극(11)(12) 사이에 삽입되어 전극(11)(12) 사이를 차폐시키는 부도체막(13); 상기 부도체막(13)에 의해 차폐된 전극(11)(12)을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14);를 포함한다.To this end, the bipolar electrode assembly 10 of the present invention, as shown in Figure 1, in the bipolar electrode assembly 10 used in the electrochemical cell, the neighboring electrodes (11, 12) not connected to an external power source; An insulator film (13) inserted between the electrodes (11) and (12) to shield the electrodes (11, 12); And an electrode connecting circuit 14 having an ammeter or a current sensor 15 for connecting the electrodes 11 and 12 shielded by the insulator film 13.
아울러, 도 4에서와 같이, 상기 서로 이웃하는 전극(11')(12)이 동일한 단위 모듈(1)(1') 내에 구비되는 것이 아닌, 서로 다른 단위 모듈(1)(1') 내에 구비되어 직렬로 적재될 수 있는 것으로, 서로 이웃하는 전극(11')(12)이 서로 하나 이상의 부도체막(13)(13')에 의해 차폐되면 족하며, 부도체막(13)(13') 사이에 케이싱(100)(100') 등이 개재, 즉 구비될 수도 있는 것으로, 그 실시형태를 제한하지 않는다.In addition, as shown in FIG. 4, the neighboring electrodes 11 ′ and 12 ′ are not provided in the same unit module 1, 1 ′, but in different unit modules 1, 1 ′. Can be stacked in series, so that adjacent electrodes 11 'and 12 are shielded by one or more non-conductive films 13 and 13', and between the non-conducting films 13 and 13 '. The casings 100, 100 'and the like may be interposed, that is, provided, and embodiments thereof are not limited.
즉, 본 발명의 전류가 가시화된 쌍극전극 어셈블리(10)는 그 구체적인 구현예 이외에도, 서로 이웃하는 전극(11)(12), 상기 전극 사이에 개재되어 전류를 차폐하는 하나 이상의 부도체막(13)이 구비되고, 상기 부도체막(13)에 의해 차폐된 전극(11)(12)을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)를 구비하면 족하다.That is, the bipolar electrode assembly 10 in which the current of the present invention is visualized may include the electrodes 11 and 12 adjacent to each other, and at least one non-conductive film 13 interposed between the electrodes to shield the current, in addition to the specific embodiment. And an electrode connection circuit 14 provided with an ammeter or a current sensor 15 for connecting the electrodes 11 and 12 shielded by the non-conductive film 13.
이와 같은, 쌍극전극 어셈블리(10)는 전기화학전지에 적용되는데, 이를 다음과 같은 실시예로서 설명한다.As such, the bipolar electrode assembly 10 is applied to an electrochemical cell, which will be described as the following embodiment.
먼저, 본 발명의 일실시예는 도 1에서와 같이, 케이싱(100); 케이싱(100) 내면에 구비되는 부도체막(110); 상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 전극(120); 상기 케이싱(100) 내 전극(120)과 이격되도록 설치되는 다른 전극(120')을 포함하되, 상기 전극(120)과 전극(120') 사이에는 쌍극전극 어셈블리(10)가 하나 이상 구비됨을 특징으로 한다. First, one embodiment of the present invention, as shown in Figure 1, the casing 100; An insulator film 110 provided on the inner surface of the casing 100; An electrode 120 whose one surface is shielded by an insulator film 110 on one side of the casing 100; And another electrode 120 'installed to be spaced apart from the electrode 120 in the casing 100, wherein at least one bipolar electrode assembly 10 is provided between the electrode 120 and the electrode 120'. It is done.
따라서, 상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 하나의 전극(120)과 상기 쌍극전극 어셈블리(10)에 구비되며 부도체막(13)에 의해 일면이 차폐된 하나의 전극(11), 그리고 상기 전극(120)(11) 사이에 주입되는 전해질(140) 및 상기 전해질(140)을 양극 전해질과 음극 전해질로 나누는 분리막 또는 박막(130)이 하나의 셀을 형성한다. 그리고 상기 부도체막(13)에 의해 일면이 차폐된 다른 하나의 전극(12)과 케이싱(100) 내 타측의 부도체막(110)에 의해 일면이 차폐되는 다른 하나의 전극(120')이 상기 전극(12)(120') 사이에 주입되는 전해질(140) 및 분리막 또는 박막(130)과 함께 다시 하나의 셀을 형성하며, 상기 셀과 셀은 부도체막(13)을 공유한다.Therefore, one electrode 120 whose one surface is shielded by one side of the non-conductor film 110 in the casing 100 and one that is provided in the bipolar electrode assembly 10 and one surface of which is shielded by the non-conductor film 13 are provided. The electrode 11, and the electrolyte 140 injected between the electrodes 120 and 11 and a separator or thin film 130 that divides the electrolyte 140 into a cathode electrolyte and a cathode electrolyte form one cell. . The other electrode 12 whose one surface is shielded by the non-conductive film 13 and the other electrode 120 'whose one surface is shielded by the non-conductive film 110 on the other side in the casing 100 are the electrodes. One cell is formed together with the electrolyte 140 and the separator or thin film 130 injected between (12) and 120 ', and the cell and the cell share the insulator film 13.
이 상태에서 첫 번째 셀의 첫 번째 전극(120)과 두 번째 셀의 두번째 전극(120')을 전원연결회로(150)의 외부전원에 연결하면 상기 첫 번째 전극(120)은 양극으로 작용하고, 상기 양극을 마주하는 하나의 셀 내 전극(11)은 캐소드로 작동하게 된다. 그리고 이 캐소드로 작동하는 전극(11)에 전류계나 전류센서(15)를 포함하는 전극연결회로(14)를 통해 연결된 다른 셀을 구성하는 전극(12)은 에노드로 작동하게 되며, 통상적으로 쌍극전극의 내부를 흐르던 전류는 전류계나 전류센서를 통해 양적 측정이 가능하게 된다.In this state, when the first electrode 120 of the first cell and the second electrode 120 'of the second cell are connected to an external power source of the power connection circuit 150, the first electrode 120 acts as an anode, One in-cell electrode 11 facing the anode operates as a cathode. In addition, the electrode 12 constituting another cell connected to the electrode 11 acting as the cathode through an electrode connecting circuit 14 including an ammeter or a current sensor 15 operates as an anode, and is usually a bipolar electrode. The current flowing through the can be measured quantitatively through an ammeter or a current sensor.
즉, 양이온의 환원으로 전자빈곤상태에 있던 캐소드는 애노드로부터 음이온의 산화를 통하여 전자를 공급받게 되고, 이때 흐른 전류는 전류센서를 통하여 가시화되어 양적 측정이 가능하게 된다.That is, the cathode, which is in an electron poverty state due to the reduction of the cation, receives electrons through oxidation of the anion from the anode, and the flow current is visualized through the current sensor to enable quantitative measurement.
아울러, 상기 외부전원에 연결된 전극(120)(120') 간의 전류는 전원연결회로(150)에 전류계 또는 전류센서(15)가 구비됨으로써, 측정될 수 있다. In addition, the current between the electrodes 120 and 120 ′ connected to the external power source may be measured by providing an ammeter or a current sensor 15 in the power connection circuit 150.
또한, 상기 셀 간의 전압 역시 양적 측정이 가능해지는데, 이는 상기 전극연결회로(14)와 상기 전원연결회로(150)에 연결, 설치되는 전압계 혹은 전압센서(160)에 의해 측정되는 것이다.In addition, the voltage between the cells can also be measured quantitatively, which is measured by a voltmeter or voltage sensor 160 connected to and installed in the electrode connection circuit 14 and the power connection circuit 150.
그리고 상기 케이싱(100), 부도체막(110), 분리막 또는 박막(130), 전해액(140) 등의 구성은 종래 공지된 다양한 전기화학전지에서 적용되는 것이므로, 이에 대한 상세한 설명은 생략한다. 다만, 본 발명의 전극(120)(120')은 평판형태일 수 있는바, 예시적으로 사각형태의 평판 또는 원 형태의 평판일 수 있는 것으로, 그 형태를 제한하지 않는다. 또한, 상기 케이싱(110)과 구조물, 부도체 구조물과 부도체 구조물, 부도체 구조물과 박막 사이에는 다수의 밀폐수단, 예시적으로 씰링(sealing)에 의해 밀폐되어 조립될 수 있는데, 이는 모듈 조립에 있어 압착식 조립(filter press)을 유용하도록 하기 위해서이다. The casing 100, the non-conductive film 110, the separator or the thin film 130, the electrolyte 140, and the like are applicable to various conventionally known electrochemical cells, and thus, detailed descriptions thereof will be omitted. However, the electrodes 120 and 120 ′ of the present invention may be in the form of a flat plate. For example, the electrodes 120 and 120 ′ may be a flat plate having a rectangular shape or a circular flat plate, and the shape thereof is not limited thereto. In addition, the casing 110 and the structure, the non-conductor structure and the non-conductor structure, the non-conductor structure and the thin film may be assembled by sealing the assembly by a plurality of sealing means, for example sealing (sealing), which is a crimping type in the module assembly To make the filter press useful.
본 발명의 일실시예에서는 상기에서 설명한 바와 같이, 두 개의 셀이 연결된 형태를 기본 모듈로 하는데, 이를 기본으로 하여 도 2과 같이, 셋 이상의 셀이 연결된 형태, 즉 다수 개의 쌍극전극 어셈블리(10)가 구비된 상태로 전기화학전지 모듈을 구성할 수도 있다.In one embodiment of the present invention, as described above, two cells are connected to the basic module, based on this, as shown in Figure 2, three or more cells are connected, that is, a plurality of bipolar electrode assembly 10 Electrochemical cell module may be configured in the state provided.
즉, 도 2의 전기화학전지 역시, 최초 애노드로 작동하는 전극으로부터 발생된 전기력선(electric field line)은 연속적으로 제2 또한 제3의 마주하는 전극에 전자 빈곤상태(electron hungry state)를 유발함으로써, 부도체로 분리된 두 전극에서 서로 다른 전해생성물을 생성하게 되는 것이다. That is, also in the electrochemical cell of FIG. 2, the electric field line generated from the electrode acting as the first anode continuously causes an electron hungry state to the second and third opposing electrodes, Two electrodes separated by insulators will produce different electrolytic products.
이와 같이 구성된 전기화학전지는, 모듈을 구성하는 각 전극 간 전류 및 셀의 전압이 실시간으로 모니터링됨으로써, 성능에 문제가 있는 전극이나 셀은 쉽게 확인될 수 있다. 또한, 셀의 전해생성물 생산속도와 전극의 전류밀도 그리고 누적생산량이 실시간으로 계산될 수 있다. In the electrochemical cell configured as described above, the current between the electrodes constituting the module and the voltage of the cell are monitored in real time, so that an electrode or cell having a performance problem can be easily identified. In addition, the production rate of the electrolytic product of the cell, the current density of the electrode and the cumulative production can be calculated in real time.
또한, 도 2에서와 같은 전류가 가시화된 쌍극전극 모듈 다수로 구성된 전기화학전지 시스템에 있어서, 모듈과 모듈간의 연결은 한 모듈의 마지막 전극과 이웃하는 모듈의 첫 전극을 전류센서 혹은 전류계가 구비된 전극연결회로에 연결하고 첫 번째 모듈의 첫 전극과 마지막 모듈의 마지막 전극을 전원연결회로에 연결하거나 셀 전류량을 조절하기 위하여 일정수의 모듈을 전원에 병렬로 연결하여 전체 모듈이 하나의 전기화학전지 시스템을 이루게 된다.In addition, in the electrochemical cell system composed of a plurality of bipolar electrode modules of the current as shown in Figure 2, the connection between the module and the module is the last electrode of one module and the first electrode of the neighboring module is provided with a current sensor or ammeter In order to connect the first electrode of the first module and the last electrode of the last module to the power connection circuit or to control the cell current amount, a certain number of modules are connected to the power supply in parallel so that the whole module can be connected to one electrochemical cell. It is a system.
아울러, 본 발명의 쌍극전극 어셈블리는 도 1, 2와는 달리 도 3과 같이, 원통형으로 구현할 수도 있는바, 이에 대해서는 하기에서 다시 설명한다.In addition, the bipolar electrode assembly of the present invention can be implemented as a cylindrical, as shown in Figure 3, unlike Figure 1, 2, which will be described again below.
한편, 전류 경제적 및 전력 경제적 분석에 의거하면 도 1 및 도 2와 같은 쌍극전극 배열의 전기화학전지는 전력 경제상으로는 단극전극으로 구성된 전기화학셀에 비해 차이가 없으나 저 전류의 사용으로 전력효율이 높다는 것이 언급되었다. On the other hand, according to the current economic and power economic analysis, the electrochemical cell of the bipolar electrode array as shown in Figs. 1 and 2 has no difference in terms of power economy compared to the electrochemical cell composed of the single electrode, but the power efficiency is high due to the use of low current. It is mentioned.
따라서, 밀폐 수단의 수를 줄임으로써, 모듈의 압착식 조립을 용이하게 하고, 셀간 누수를 방지하여 설비의 수명을 연장하며 시설의 보수 유지를 용이하게 하기 위한 다른 실시예에 의한 기본모듈이 도 4와 같이 제시되었다.Accordingly, by reducing the number of sealing means, the base module according to another embodiment for facilitating the crimping assembly of the module, preventing leakage between cells, extending the life of the facility, and facilitating maintenance of the facility is illustrated in FIG. 4. It is presented as
상기 다른 실시예에 의한 기본 모듈은, 케이싱(100); 케이싱(100) 내면에 구비되는 부도체막(110); 상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 전극(11); 상기 케이싱(100) 내 상기 전극(11)과 이격되어 설치되는 다른 전극(12);을 포함하는 단위 모듈(1)이 둘 이상 구비되며, 상기 하나의 단위 모듈(1)과 이와 이웃하는 단위 모듈(1') 내의 서로 이웃하는 전극(12)(11')을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)로 구성된다.The basic module according to the other embodiment, the casing (100); An insulator film 110 provided on the inner surface of the casing 100; An electrode 11 whose one surface is shielded by an insulator film 110 on one side of the casing 100; Two or more unit modules (1) including a second electrode which is installed spaced apart from the electrode 11 in the casing (100), the one unit module (1) and the neighboring unit module It consists of an electrode connection circuit 14 provided with an ammeter or a current sensor 15 for connecting the neighboring electrodes 12, 11 'in 1'.
즉, 상기 최초 단위 모듈(1)의 전극(12)과 이웃하는 다른 단위 모듈(1')의 인접하는 전극(11')이 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)로 연결됨으로써, 도 1과 같은 쌍극전극 어셈블리(10)를 구성하게 되는 것이다. 따라서, 한 전극은 캐소드로, 다른 전극은 애노드로 작동하게 됨으로써, 도 1의 기본 모듈과 같이 전류의 양적 측정이 가능해지는 것이다.That is, the electrode 12 ′ of the other unit module 1 ′ adjacent to the electrode 12 of the first unit module 1 is connected to the electrode connection circuit 14 provided with the ammeter or the current sensor 15. By connecting, it is to configure a bipolar electrode assembly 10 as shown in FIG. Thus, one electrode acts as the cathode and the other as the anode, allowing the quantitative measurement of the current as in the basic module of FIG.
이러한 실시예는 앞선 실시예와 동일하게 각 셀의 전압과 전류가 실시간으로 모니터링됨으로써, 성능에 문제가 있는 전극이나 셀이 쉽게 확인될 수 있는 구조이며, 셀의 전해생성물의 생산속도, 전극의 전류밀도 그리고 누적생산량 역시 실시간으로 계산될 수 있다. 또한, 다수의 단위 모듈이 직렬로 적재된 상태에서 첫 모듈의 첫 전극과 마지막 모듈의 마지막 전극을 전원연결회로에 연결하고 이웃하는 전극을 전류계 혹은 전류센서를 경유하는 전극연결회로에 연결함으로써, 도 5와 같은 모듈 다수를 결합한 전기화학전지 시스템을 이루게 된다. 아울러, 도 4가 보이는 모듈은 도 1의 모듈에 비해서 셀간의 전해액의 누수를 효과적으로 방지할 뿐 아니라, 이는 압착식 조립공정의 적용과 결함 있는 셀의 교체 역시 도 1에 비해 용이한 구조로서 그 유지보수 비용이 절약되므로, 종래 쌍극전극의 단점을 개선한 것이다.This embodiment has a structure in which the electrode and the cell having a performance problem can be easily identified by monitoring the voltage and current of each cell in real time as in the previous embodiment, and the production rate of the electrolytic product of the cell and the current of the electrode Density and cumulative production can also be calculated in real time. In addition, by connecting the first electrode of the first module and the last electrode of the last module in the power supply circuit and the neighboring electrode to the electrode connection circuit via the ammeter or the current sensor in the state that a plurality of unit modules are stacked in series, An electrochemical cell system combining multiple modules such as 5 is achieved. In addition, the module shown in FIG. 4 effectively prevents leakage of electrolyte between cells as compared to the module of FIG. 1, which also maintains the application of the crimping assembly process and the replacement of defective cells. Since the maintenance cost is saved, the disadvantage of the conventional bipolar electrode is improved.
또한, 도 5는 상기 도 4의 단위 모듈(1)이 셋 이상 적재된 것으로, 한 면이 부도체막(110)으로 차폐된 첫 전극(11)과 마지막 전극(12')은 외부전원의 양극과 음극에 연결되고, 나머지 전극들은 전류센서(15)를 경유하여 이웃하는 전극과 연결되어 전류가 가사화된 쌍극전극을 이용한 전기화학전지 모듈을 구성한 것이다. 일정수의 모듈을 전원에 병렬로 전극연결회로를 통하여 연결함으로 셀 전류량이 조절될 수 있다.In addition, in FIG. 5, three or more unit modules 1 of FIG. 4 are stacked, and the first electrode 11 and the last electrode 12 ′ of which one surface is shielded by the non-conductive film 110 are connected to the anode of the external power source. It is connected to the cathode, the remaining electrodes are connected to the neighboring electrode via the current sensor 15 to configure an electrochemical cell module using a bipolar electrode in which the current is housed. The cell current amount can be controlled by connecting a certain number of modules to the power supply in parallel through the electrode connection circuit.
한편, 애노드나 캐소드로 작동하는 전극의 표면은 미세구조상 고른 표면을 가지지 않을뿐더러, 전기화학적 촉매효과(electrocatalytic effect) 및 산화 환원반응의 효과, 혹은 생성가스 기포의 제거를 촉진하기 위하여 의도적으로 고른 표면을 회피하는 경우도 있다. 즉, 전력선이 표면에서 수직방향으로 발산됨으로 모듈의 설계는 발산되는 모든 전력선을 전극 사이에 가두는 기하학적 구조가 요구될 것이다. 이를 위하여는 전극(120)(120')(11)(12)의 밀폐나 평형도 구성이 평판형 전극보다 용이할 수 있는 원통형 모듈이 이상적일 것이다.On the other hand, the surface of an electrode acting as an anode or a cathode does not have an even surface in microstructure, and an intentionally even surface to promote the effect of electrocatalytic effect and redox reaction, or removal of product gas bubbles. It may be avoided. That is, as the power lines diverge vertically from the surface, the design of the module will require a geometry that traps all the divergent power lines between the electrodes. For this purpose, a cylindrical module in which the sealing or balance configuration of the electrodes 120, 120 ', 11 and 12 may be easier than the flat electrode would be ideal.
따라서, 본 발명의 전기화학전지 및 쌍극전극 어셈블리(10)는 원통형으로 구현할 수 있는바, 일례로서 도 3과 같이 쌍극전극 어셈블리(10)는 중공을 갖는 원통형 부도체막(13)의 양면에 중공을 갖는 원통형의 전극(11a)(12a)이 부착된다. 그리고 앞서 설명한 평판형과 동일하게, 상기 부도체막(13)에 의해 차폐된 전극(11a)(12a)을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)를 구비한다.Therefore, the electrochemical cell and the bipolar electrode assembly 10 of the present invention can be implemented in a cylindrical shape, for example, as shown in FIG. 3, the bipolar electrode assembly 10 has a hollow on both sides of the cylindrical insulator film 13 having a hollow. The cylindrical electrodes 11a and 12a having are attached. The electrode connection circuit 14 includes an ammeter or a current sensor 15 for connecting the electrodes 11a and 12a shielded by the insulator film 13, similarly to the flat plate type described above.
도 1의 전극(120)과 전극(120')에 상응하는 원통형 전극은 도 6에서 중앙전극(11b)과 외곽전극(12b)으로 표현되었다. 원통형 단위 모듈을 구성하는 기타 다른 구성부품들은 도 4에서와 같은 참고부호로 도 6에 표시되었다. 도 3의 직경이 다른 다수의 원통형 쌍극전극 어셈블리를 도 6의 중앙전극(11b)과 외곽전극(12b) 사이에 동일한 전극간 거리의 동심원으로 배치하면 도 2가 보이는 모듈에 해당하는 원통형의 전류가 가시화된 쌍극전극 전해조 모듈을 얻게 된다. 또한 도 6은 도 4의 평판형 단위모듈에 상응하는 원통형 단위 모듈들의 해부도를 보인다.Cylindrical electrodes corresponding to the electrodes 120 and 120 ′ of FIG. 1 are represented as a center electrode 11b and an outer electrode 12b in FIG. 6. Other components constituting the cylindrical unit module are indicated in FIG. 6 by the same reference numerals as in FIG. 4. When a plurality of cylindrical bipolar electrode assemblies having different diameters of FIG. 3 are arranged in concentric circles of the same electrode distance between the center electrode 11b and the outer electrode 12b of FIG. 6, the cylindrical current corresponding to the module shown in FIG. A visualized bipolar electrolyzer module is obtained. 6 shows an anatomical view of the cylindrical unit modules corresponding to the flat unit module of FIG. 4.
상기, 원통형 모듈은 모듈의 높이에 따라 작은 점유면적(footprint)에 큰 전극면적을 제공함으로 고 전류를 수용할 수 있는 시설을 구현할 수 있다는 점에서 중앙식 대형 수소 생산시설뿐 아니라 소형 수소 생산시설에서도 매우 유리하다. 이러한 원통형의 모듈은, 구성요소 간에 안정적 밀폐 수단이 적용된다면 미래의 수소 생산설비에 적용할 수 있는 전기화학전지 시설에 매우 적합한 구조가 될 것이다. The cylindrical module can provide a large electrode area with a small footprint according to the height of the module, thereby realizing a facility capable of accommodating high currents. Very advantageous. Such cylindrical modules would be well suited for electrochemical cell facilities that could be applied to future hydrogen production facilities if stable sealing means were applied between the components.
아울러, 도 6과 같이 원통형으로서 단위 모듈(1)을 구현한 후, 도 7과 같이, 도 6의 단위 모듈을 다수 개 적층하여 전기화학전지를 구성하면, 도 5와 상응하는 형태의 모듈을 구현할 수 있게 된다. 즉, 중공을 갖는 원통형의 외곽 전극(11b); 상기 외곽 전극(11b)에 이중관 구조로 삽입되는 중공을 갖는 원통형의 중앙 전극(11a);을 포함하는 단위 모듈(1)을 둘 이상 적재하며, 상기 하나의 단위 모듈(1)의 외곽 전극(11b)과 이와 이웃하는 단위 모듈(1')의 중앙 전극(11a)은 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)로 연결된다.In addition, after implementing the unit module 1 as a cylindrical as shown in FIG. 6, as shown in FIG. 7, if the electrochemical cell is configured by stacking a plurality of unit modules of FIG. 6, a module having a shape corresponding to that of FIG. 5 may be implemented. It becomes possible. That is, the cylindrical outer electrode (11b) having a hollow; Two or more unit modules (1) including a cylindrical central electrode (11a) having a hollow is inserted into the outer electrode (11b) in a double tube structure, the outer electrode (11b) of the one unit module (1) ) And the central electrode 11a of the neighboring unit module 1 'are connected to an electrode connection circuit 14 equipped with an ammeter or a current sensor 15.
이러한 구조의 전기화학전지는 넓은 전극 면적에 비해 장비의 점유면적(footprint)은 현저히 작다는 장점이 있는 것이다. 여기서, 단위 모듈(1)의 형상을 원통형으로 구성한 것 이외의 나머지 구성은 평판형의 도 4의 단위 모듈(1)과 동일함은 당연하다. The electrochemical cell of this structure has the advantage that the footprint of the equipment is significantly smaller than the large electrode area. Here, it is a matter of course that the rest of the configuration except that the unit module 1 has a cylindrical shape is the same as that of the unit module 1 of FIG.
도 4의 단위모듈(1)과 이를 원통형으로 구현한 도 6에 있어서, 도 6의 원주의 맨 바깥쪽 쉘(shell)인 케이싱(100)은 원주에 기계적 온전성(integrity)을 제공하기 위한 구조물이다. 기계적 온전성을 제공하기 위한 기능은 원통형 단위 모듈의 맨 바깥쪽 쉘(shell)인 케이싱(100) 없이 단지 외곽 전극(12b) 또는 외곽 전극(12b)을 감싸는 부도체막(13)에 의해서 구현될 수도 있다. 이러한 구조의 원통형 단위 모듈은 비용의 절감과 함께 조립에 있어서 용이성을 제공할 수 있다. 또한 도 6에서의 중앙전극은 부도체 원주 외면에 전극이 부착된 형태, 파이프 형태의 전극, 부도체 원통 외면에 전극이 부착된 형태 중 상판(101) 및 하판(102)과의 밀폐수단의 적용 및 조립의 용이성에 따라 전극의 구조가 변화될 수 있다.In the unit module 1 of FIG. 4 and in FIG. 6, which has a cylindrical shape, the casing 100, which is the outermost shell of the circumference of FIG. 6, has a structure for providing mechanical integrity to the circumference. to be. The function for providing mechanical integrity may be implemented by the outer electrode 12b or the insulator film 13 surrounding the outer electrode 12b without the casing 100 which is the outermost shell of the cylindrical unit module. have. Cylindrical unit modules of this structure can provide ease of assembly with cost reduction. In addition, the center electrode in FIG. 6 is applied and assembled with the sealing means with the upper plate 101 and the lower plate 102 in the form of the electrode attached to the outer surface of the non-conductor circumference, the electrode of the pipe shape, the form of attaching the electrode to the outer surface of the non-conductive cylinder The structure of the electrode may change depending on the ease of use.
한편, 도 1, 2 및 도 4, 5는 모두 전해액(140)의 상부 가스수집공간(gas collection plenum)을 통해서 전해액으로부터 가스가 분리되도록 구성되었는데, 이러한 가스는 전극과 전극 간의 공간부 상측에 연결 설치되는 가스 수송관(300)에 의해 배출된다. 이러한 가스 수송관(300)은 상기 양극 전해액 및 음극 전해액 측에 각각 제1가스 수송관(300a)과 제2가스 수송관(300b)으로 분리 설치되어 배출되는 가스를 수송한다. Meanwhile, FIGS. 1, 2, and 4 and 5 are all configured to separate gas from the electrolyte through an upper gas collection plenum of the electrolyte 140, and the gas is connected to an upper portion of the space between the electrodes. It is discharged by the gas transport pipe 300 is installed. The gas transport pipe 300 transports the gas discharged by being separately installed into the first gas transport pipe 300a and the second gas transport pipe 300b on the anode electrolyte and cathode electrolyte sides, respectively.
여기서, 상기 각각의 가스 수송관(300a)(300b)에는 분리막 또는 박막(130) 양쪽의 압력을 각각 일정하게 유지하기 위한 역압력조정기(320)를 설치할 수 있다. 또한, 분리막 또는 박막(130)의 기계적 안정성을 유지하고 농도차나 압력차로 인한 가스 생성물의 확산을 방지하기 위하여 각각의 가스 수송관(300a)(300b)에 역압력조정기(back pressure regulator)(320)와 함께 가스압력센서(310)를 설치할 수도 있다. In this case, each of the gas transport pipe (300a, 300b) may be provided with a reverse pressure regulator 320 for maintaining a constant pressure of both the membrane or the thin film 130, respectively. In addition, in order to maintain the mechanical stability of the separator or the thin film 130 and to prevent the diffusion of the gas product due to the concentration difference or pressure difference, the back pressure regulator (320) on each gas transport pipe (300a, 300b) In addition, the gas pressure sensor 310 may be installed.
또한, 양극 전해액과 음극 전해액 사이의 이온의 농도 차로 인한 확산 원동력과 염다리 현상을 차단하기 위해서, 전해액의 공급은 양극 전해액과 음극 전해액이 분리되어 공급되도록 함이 바람직하다. 이를 위해서는 상기 전극과 전극 간의 공간부 하측에 연결 설치되는 전해액 공급관(200)이 상기 양극 전해액 및 음극 전해액 측에 제1전해액 공급관(200a)과 제2전해액 공급관(200b)으로 분리 설치됨이 바람직하다.In addition, in order to block the diffusion driving force and the salt bridge phenomenon caused by the difference in concentration of ions between the positive and negative electrolytes, the supply of the electrolyte is preferably such that the positive and negative electrolytes are supplied separately. To this end, it is preferable that the electrolyte supply pipe 200 connected to the lower portion of the space between the electrode and the electrode is separately installed as the first electrolyte supply pipe 200a and the second electrolyte supply pipe 200b on the positive and negative electrolyte sides.
한편, 상기 전해액 공급관(200)을 분리하여 설치하지 않을 경우에는 전해액 공급관(200)에 역류 방지 밸브(210)를 설치할 수 있다. 즉, 역류 방지 밸브(check valve)(210)를 설치하면 이온의 농도 차에 의한 교차 확산동력과 염다리 현상을 차단할 수 있다. 상기 역류 방지 밸브(210)를 사용할 경우 전해조의 정상 운행시에 펌프 쪽의 전해액은 전해조의 압력에 대하여 음압이 유지되어야 할 것이다. Meanwhile, when the electrolyte supply pipe 200 is not separated and installed, the backflow prevention valve 210 may be installed in the electrolyte supply pipe 200. That is, by installing a check valve 210, cross diffusion power and salt bridge phenomenon due to the difference in concentration of ions can be blocked. When the non-return valve 210 is used, the electrolyte of the pump side during the normal operation of the electrolyzer will have to maintain a negative pressure with respect to the pressure of the electrolyzer.
또한, 전극표면으로부터 기포의 분리를 촉진하기 위하여 전해액 순환 시스템이 도입될 경우에는 전해액 상부의 가스수집 공간은 없어지고, 상기 가스수집 공간은 가스 기포와 전해액의 혼합유체(H2가스 + 음극 전해액 혹은 O2가스 + 양극전해액)로 채워지게 되며, 이러한 전해액과 가스의 혼합유체는 가스 수송관(300)을 통해 별도의 분리탱크로 수송되고, 가스와 전해액의 분리는 각각 별도의 분리탱크에서 수행된다. 그리고 가스가 분리된 양극 전해액과 음극 전해액은 분리된 가스 수송관(300)과 전해액 공급펌프(220)를 통하여 전해조에 재순환(recirculate)된다. 이때, 상기 가스압력센서(310)와 역압력조정기(320)는 분리탱크의 가스 출구 측에 위치하게 된다. 또한, 이러한 경우 상기 전해액은 양극 전해액과 음극 전해액에 대하여 전해액 공급관(200)에 별도의 전해액 공급펌프(220)를 각각 설치하여 전해액을 순환시켜야 한다. 이러한 전해액의 순환은 전력효율에 심각한 영향을 미치는 기포의 제거에 있어서 매우 유리함으로 산업에서 흔히 사용된다.In addition, when the electrolyte circulation system is introduced to promote separation of bubbles from the electrode surface, the gas collection space at the top of the electrolyte disappears, and the gas collection space is a mixed fluid of gas bubbles and electrolyte (H 2 gas). + Catholyte or O 2 gas + Anolyte electrolyte), and the mixed fluid of the electrolyte and the gas is transported to a separate separation tank through the gas transport pipe 300, the separation of the gas and the electrolyte is performed in a separate separation tank. The anode electrolyte and the cathode electrolyte from which the gas is separated are recycled to the electrolytic cell through the separated gas transport pipe 300 and the electrolyte supply pump 220. At this time, the gas pressure sensor 310 and the reverse pressure regulator 320 is located at the gas outlet side of the separation tank. In addition, in this case, the electrolyte may be circulated by installing separate electrolyte supply pumps 220 in the electrolyte supply pipe 200 for the anode electrolyte and the cathode electrolyte, respectively. This circulation of electrolyte is commonly used in industry as it is very advantageous in removing bubbles that seriously affect power efficiency.
상기와 같이, 쌍극전극 내부를 흐르는 전류가 가시화되어 실시간 전류가 양적으로 측정가능하게 됨으로써, 전기화학전지의 작동을 총체적으로 관리하는 전자적 시스템인 전기화학전지 관리시스템(Electrochemical cell management system)의 도입이 가능해졌다. As described above, the current flowing through the bipolar electrode is visualized so that the real-time current can be measured quantitatively, thereby introducing an electrochemical cell management system, which is an electronic system that manages the operation of the electrochemical cell as a whole. It became possible.
이는 전기자동차나 하이브리드 전기차의 배터리 관리시스템(battery management system)과 유사한 전자적 관리시스템을 전류가 가시화된 쌍극전극으로 구성된 전지에 도입한 것으로, 데이터 수집장치(data collection unit), 감시 및 제어 컴퓨터 시스템(computer system), 통신채널 혹은 데이터 버스(data bus), 그리고 제어장치(control unit)로 구성되며, 그 개략적 개념도를 도 8에 나타냈다. It introduces an electronic management system similar to the battery management system of an electric vehicle or a hybrid electric vehicle to a battery composed of a bipolar electrode in which current is visualized, and includes a data collection unit, a monitoring and control computer system ( It is composed of a computer system, a communication channel or data bus, and a control unit, and a schematic conceptual diagram thereof is shown in FIG. 8.
상기 전기화학전지 관리시스템은 각 셀의 전류와 전압 데이터로부터 셀의 작동상태와 건강상태를 실시간 감시하고, 전극 및 셀의 결함을 진단하며 전해생성물의 생성 속도 및 누적 생산량과 전극의 전류밀도를 계산하여 제시하고, 공급 전력에 대한 효율을 실시간 제공함으로써, 전기화학전지가 최적의 작동상태를 유지하도록 한다. 또한, 제어 장치(Control Unit)와 연계하여 태양전지판이나 풍력발전 출력에 있어서와 같이 전력이 시간에 따라 가변적인 전원에 대하여 전압 조정기의 사용으로 인한 효율의 손실 없이 적용된 전압에 상응하는 작동 셀의 수를 실시간으로 계산하고 이를 제어장치를 통하여 반영하여 전지의 최적 작동에 반영하는 기능을 가진다.The electrochemical cell management system monitors the operating state and health state of the cell in real time from the current and voltage data of each cell, diagnoses electrode and cell defects, calculates the production rate, cumulative production amount and current density of electrode By providing the efficiency of the power supply in real time, the electrochemical cell to maintain the optimal operating state. In addition, in conjunction with a control unit, the number of operating cells corresponding to the applied voltage without loss of efficiency due to the use of a voltage regulator for power sources whose power varies over time, such as in solar panels or wind power outputs. Is calculated in real time and reflected through the control device to reflect the optimal operation of the battery.
즉, 전류가 가시화된 쌍극전극으로 구성된 전기화학전지를 이용한 전기화학설비는 다음과 같이 관리된다. 전기화학전지를 구성하는 쌍극전극을 포함하는 모듈의 셀(cell) 전류, 셀 전압, 셀 압력, 전해질 수위(전해조 내 가스수집공간을 가질 경우), 전해질 온도 등의 모니터되는 실시간 데이터가 데이터 수집장치에 의해 수집된다. 그리고 이러한 데이터 수집장치는 이들 데이터 외에도 전원의 전류와 전압의 실시간 데이터, 생성된 산소와 수소 가스의 교차 오염도(cross-contamination) 데이터와 같은 외부입력신호와 전기화학설비 챔버에 설치된 가스누출검출장치를 통한 가스누출신호를 수집하여 감시 및 제어 컴퓨터 시스템에 보내 실시간 모니터하도록 하고, 제어장치를 통해 통신채널과 통신하여 전원의 전압, 전류의 제어, 전원의 유동적 전압에 대하여 활성화해야 할 셀 수를 계산하여 감시 및 제어 컴퓨터 시스템과 연계하여 작동 셀 수의 제어에 반영하는 기능을 구현한다. 이때, 제어장치는 생성된 가스의 교차 오염도와 전기분해 설비 챔버 내의 가스 누출 데이터를 사용하여 응급시에는 전 시스템의 전원을 차단함으로써 설비의 안전 운행을 구현하게 된다.That is, an electrochemical facility using an electrochemical cell composed of a bipolar electrode in which current is visualized is managed as follows. Monitored real-time data such as cell current, cell voltage, cell pressure, electrolyte level (if having gas collection space in the electrolyzer), electrolyte temperature, etc., of the module including the bipolar electrode constituting the electrochemical cell Is collected by. In addition to these data, the data collection device also includes external input signals such as real-time data of current and voltage of the power supply, cross-contamination data of generated oxygen and hydrogen gas, and gas leak detection devices installed in the electrochemical facility chamber. Collect gas leakage signal through the monitoring and control computer system to monitor in real time, and communicate with the communication channel through the control device to calculate the number of cells to be activated for power voltage, current control, and power voltage In conjunction with the monitoring and control computer system implements the function to reflect the control of the number of operating cells. In this case, the control device implements safe operation of the facility by cutting off the power of the entire system in an emergency by using the cross-contamination degree of the generated gas and gas leakage data in the electrolysis facility chamber.
그리고 전기화학전지에 있어서, 생산된 수소는 저장되었다가 도시전력망의 최대 전력 소모 시간에 전력으로 전환될 수 있는 수단이기 때문에, 주요한 에너지 저장(energy storage)수단 혹은 에너지 운반체(energy carrier)로 간주된다. 태양광이나 풍력발전으로부터의 전력은 곧바로 전류가 가시화된 쌍극전극으로 구성된 전기화학전지에 적용되어 이러한 목적을 위하여 유용하게 사용될 수 있다. 즉, 본 발명의 전기화학전지 관리시스템은 태양광 발전이나 풍력발전을 포함하는 재생에너지원으로부터의 전력을 최대 효율로 수소 생산에 적용할 수 있도록 한다. 재생에너지원으로부터 수소가스로 전환되어 저장된 수소가스는 전력수요가 높은 피크 아우어(peak hour)에 다시 전력으로 전환되어 사용될 것이다.In electrochemical cells, the produced hydrogen is considered a major energy storage means or energy carrier because it is a means that can be stored and converted to power at the maximum power consumption of the urban grid. . Power from solar or wind power can be useful for this purpose as it is applied to an electrochemical cell composed of a bipolar electrode in which the current is immediately visible. In other words, the electrochemical cell management system of the present invention enables the power from renewable energy sources including solar power generation and wind power generation to be applied to hydrogen production at maximum efficiency. The stored hydrogen gas, converted from renewable energy sources to hydrogen gas, will be converted back into electricity at peak hours with high demand for electricity.
전기분해에 적용되는 전원을 단극전극 전해조에 적용하기 위해서는 전압을 조절하기 위한 전압조정기를 사용하여야 하고, 이로 인해 전반적 전해 시스템의 효율은 저하될 것이다. 전류가 가시화된 쌍극전극을 사용한 전기화학전지는 이러한 전압조정기 없이, 전기화학전지 관리시스템의 데이터버스 그리고 스위치와 릴레이(relay)로 구성된 제어 시스템의 지원으로 현장에서 유용한 전원의 전력에 상응하는 작동 셀 수나 모듈 수를 조절함으로, 최적의 조건으로 작동하는 전기화학설비를 구현할 수 있다.In order to apply the electric power applied to the electrolytic cell to the monopolar electrode electrolyzer, a voltage regulator for controlling the voltage should be used, which will reduce the efficiency of the overall electrolytic system. Electrochemical cells using current-polarized bipolar electrodes, without these voltage regulators, operate cells that correspond to the power of a power source useful in the field with the support of a data bus in an electrochemical cell management system and a control system consisting of switches and relays. By adjusting the number of modules or the number of modules, an electrochemical plant that can operate at optimum conditions can be implemented.
일반적으로 전력망은 첨두수요(peak hour demand)를 위하여 기저부하(base load)의 10% 가량의 예비 전력을 가진다. 이 예비전력은 때로 배터리 충전이나 양수발전((pumped-storage hydroelectricity)에 적용되기도 하는 것으로 보고되었다. 이 예비전력을 에너지 저장 수단인 수소 생산을 위하여 전기분해에 적용할 경우, 전기화학전지 관리시스템은 전력망 혹은 스마트 그리드 시스템(smart grid system)과 연동되어 0~10%의 운전예비 전력 내에서 최소한의 안전마진을 제외한 전력에 대하여 작동 셀 수나 모듈 수를 탄력적으로 조절 함으로 근본적으로 효용 없이 낭비되어 사라지는 소산성(dissipative) 운전예비전력의 효용을 창출하는 것이다.In general, the grid has a reserve power of about 10% of the base load for peak hour demand. This reserve is sometimes reported for battery charging or pumped-storage hydroelectricity. When applied to electrolysis for the production of hydrogen, a means of energy storage, the electrochemical cell management system It is linked to power grid or smart grid system and adjusts the number of operating cells or modules flexibly for power excluding minimum safety margin within 0 ~ 10% of reserve power. It creates the utility of dissipative operational reserve power.
유럽이나 미국의 풍력발전단지를 여행하면서, 우리는 좋은 조건의 바람이 부는데도 작동하지 않고 있는 풍력터빈들을 발견하게 된다. 그 이유 중의 하나는 풍력단지나 태양광단지의 전력이 전력망의 병목(bottleneck) 현상으로 인하여 과잉전력으로 간주되어 전력망이 발전 중단을 요청한데 기인된 것으로 보고되었다. 전력망이 이러한 과잉전력을 수용하여 전류가 가시화되어 양적측정이 가능한 쌍극전극으로 구성된 전기화학전지 설비에 적용하여 수소를 생산함으로서 전력망의 과잉전력 수용 역량을 증대하고 재생에너지의 효용을 극대화 할 뿐 아니라 발전 부문의 탈탄소화(decarbonization)를 증진할 수 있는 것이다. Traveling around Europe or the US wind farms, we find wind turbines that aren't working even under good conditions. One of the reasons is that the power of wind farms and photovoltaic parks was considered excessive power due to bottleneck of power grid, and it was reported that the grid requested to stop generating electricity. The power grid accepts this excess power and applies hydrogen to an electrochemical cell facility consisting of bipolar electrodes that can visualize the current and visualize it to produce hydrogen, thereby increasing the capacity of the grid to maximize its surplus power and maximizing the utility of renewable energy. It can promote decarbonization of the sector.
본 발명의 실효성을 입증하기 위하여 다음과 같은 실험이 수행되었다.In order to prove the effectiveness of the present invention, the following experiment was performed.
본 발명의 일실시예를 따라 제작된 전류가 가시화된 쌍극전극으로 구성된 전해조를 통한 실험이 수행되었다. 이 실험에는 두께 1mm, 크기 160x160mm의 316L 평판 전극을 두께 5mm의 아크릴판의 양면에 부착하여 제작한 쌍극전극 어셈블리가 사용되었다. 그리고 쌍극전극 어셈블리 외 사용된 전극 역시 앞서 쌍극전극에 적용된 평판 전극과 동일한 크기로 하였으며, 전극 간 거리는 15mm로 하였고, 25% KOH 전해액이 사용되었다. 또한, 실험은 전해액 온도 13~18℃에서 수행되었다. 모든 실험에 있어서 분리막 또는 박막은 사용되지 않았다.Experiments were carried out through an electrolytic cell consisting of a bipolar electrode with a current produced in accordance with one embodiment of the present invention. In this experiment, a bipolar electrode assembly was fabricated by attaching a 316L flat electrode with a thickness of 1 mm and a size of 160x160 mm to both sides of a 5 mm thick acrylic plate. The electrode used in addition to the bipolar electrode assembly was also the same size as the flat electrode applied to the bipolar electrode, and the distance between the electrodes was 15 mm, and 25% KOH electrolyte was used. In addition, the experiment was performed at the electrolyte temperature 13 ~ 18 ℃. No membrane or thin film was used in all experiments.
그리고 상기 쌍극전극 어셈블리는 각 전해조 별로 1개, 2개, 3개, 4개가 적용되었으며, 각 전해조에는 쌍극전극 어셈블리 수에 따라 각각 4.4, 6.6, 8.8, 11볼트의 정전압(constant voltage) 및 정전류(constant current) 조건하에서 전기분해가 수행되어 전류가 가시화된 쌍극전극을 흐른 전류와 셀 전압이 측정되었다.In addition, one, two, three, and four of the bipolar electrode assemblies were applied to each electrolyzer, and each of the electrolyzers had a constant voltage and a constant current of 4.4, 6.6, 8.8, and 11 volts, respectively, depending on the number of bipolar electrode assemblies. Under the constant current conditions, electrolysis was performed to measure the current and the cell voltage flowing through the bipolar electrode where the current was visualized.
모든 실험에 있어서, 상기 셀 전압은 평균적으로 2.2 볼트로 측정되었다. [(공급 전류 + 각 쌍극전극 어셈블리를 흐른 전류의 합)]은 전극 표면을 통해서 수소가스의 생성에 사용된 전류량을 의미한다. 이 값을 E라고 하면 "E/공급전류량"은 전류 효율과 전력효율을 대표한다. 공급전류는 양극에서 산소를 음극에서 수소를 생성하는데 사용되고, 각각의 쌍극전극의 애노드와 캐소드 간의 전류 역시 수소가스와 산소가스를 생성하는 전류이다. 따라서 E값이 공급전류량의 (n-1)배라면, 이는 전력경제상 100%의 효율로 해석될 수 있다. In all experiments, the cell voltage was measured at 2.2 volts on average. [(Sum of supply current + current flowing through each bipolar electrode assembly)] means the amount of current used to generate hydrogen gas through the electrode surface. If this value is E, "E / supply current amount" represents current efficiency and power efficiency. The supply current is used to generate oxygen at the anode and hydrogen at the cathode, and the current between the anode and the cathode of each bipolar electrode is also a current to generate hydrogen gas and oxygen gas. Therefore, if the E value is (n-1) times the amount of supply current, it can be interpreted as an efficiency of 100% in power economy.
실험 결과는 E 값이 전극의 전류밀도에 의존한다는 것을 보였다. 전력효율의 전류밀도 의존도를 규명하기 위하여 정전압(constant voltage) 조건하에서 13mA/㎠~36mA/㎠의 다양한 전류밀도에 대한 실험이 수행되었다. Experimental results show that the E value depends on the current density of the electrode. In order to investigate the current density dependence of power efficiency, experiments were conducted for various current densities ranging from 13 mA / cm 2 to 36 mA / cm 2 under constant voltage conditions.
그 결과, 이러한 전류밀도에 대하여 전력효율은 계기의 측정오차 한계 내에서 73%~100%의 변화를 보였다. 즉, 전류밀도의 증가와 함께 전력 효율은 감소하였다. As a result, for these current densities, the power efficiency varied from 73% to 100% within the measurement error limits of the instrument. In other words, the power efficiency decreased with increasing current density.
전류밀도의 증가와 함께 E 값이 감소한다는 것은 전력 효율이 생성된 수소가스와 산소가스 기포가 전극표면으로부터 제거되는 속도와 관련이 있음을 의미하는 것인바, 각종 과전압(overpotential)과 저항손실(Ohmic loss)로 인하여 전해조 내에 축적되는 에너지는 전해액의 온도상승으로 이어질 것이므로 전류밀도를 최적으로 유지하는 것이 전해액의 최적 온도 유지와 최상의 전력효율을 얻기 위한 수단이 될 것이라는 것을 확인하였다. The decrease in the value of E with increasing current density means that the power efficiency is related to the rate at which the generated hydrogen and oxygen gas bubbles are removed from the electrode surface, resulting in various overpotential and ohmic losses. The energy accumulated in the electrolyzer will lead to an increase in the temperature of the electrolyte, so it is confirmed that maintaining the optimal current density will be a means to maintain the optimum temperature and obtain the best power efficiency.
위와 같은 본 발명의 실시예를 따른 실험 결과에서 알 수 있는 바와 같이, 전류가 가시화된 쌍극전극의 사용으로 전극의 전극의 전류밀도가 실시간으로 계산되어 전기화학전지의 전류경제상 및 전력경제상 효율이 실시간으로 모니터링될 수 있게 됨으로 다양한 전극 물질, 전극의 표면 조건, 사용된 전기화학적 촉매(electrocatalyst), 사용되는 분리막 또는 박막, 전해액 순환을 포함하는 가스 기포의 분리 방법, 전극-분리막 또는 박막-전극 간의 거리, 전해액의 점도, 그리고 전지의 작동 온도 및 압력하에서 전력 효율상 전지의 최적 작동 조건의 설정이 실험을 통해서 가능해질 수 있다는 것이다.As can be seen from the experimental results according to the embodiment of the present invention as described above, the current density of the electrode of the electrode is calculated in real time by the use of a bipolar electrode in which the current is visualized, so that the current economy and power economy efficiency of the electrochemical cell are real time Various electrode materials, surface conditions of electrodes, electrochemical catalysts used, separators or thin films used, methods of separating gas bubbles including electrolyte circulation, distances between electrode-separators or thin-film electrodes It is possible to set the optimum operating conditions of the battery in terms of the efficiency of the electrolyte, the viscosity of the electrolyte, and the operating temperature and pressure of the battery.
또한, 쌍극전극으로 구성된 전기화학전지의 전극 내부를 흐르는 전류를 가시화하여 양적 측정이 가능해짐으로써, 전기자동차나 하이브리드 전기차의 배터리 관리시스템(BMS: Battery Management System)과 유사한 쌍극전극 전기화학전지 시스템 전체를 최상의 전력 효율을 위한 최적의 작동 조건으로 유지 관리하는 전기화학전지 관리시스템(ECMS: Electrochemical Cell Management System)의 구현이 가능해진다.In addition, quantitative measurement is possible by visualizing the current flowing inside the electrode of the electrochemical cell composed of the bipolar electrode, and thus the entire bipolar electrode electrochemical cell system similar to the battery management system (BMS) of an electric vehicle or a hybrid electric vehicle is possible. It is possible to implement an electrochemical cell management system (ECMS) that maintains the optimum operating conditions for the best power efficiency.
나아가, 전기화학전지 관리시스템은 태양광발전이나 풍력발전과 같은 재생에너지원과 연동하여 최상의 효율을 제공함으로 발전부문의 탈탄소화를 증진할 수 있을 뿐 아니라, 스마트 그리드 시스템과 연동되어 근본적으로 효용 없이 낭비되어 사라지는 소산성(dissipative) 예비전력의 효용을 창출하고, 생산된 수소를 전력발전에 사용하거나 수소연료차에 사용함으로 전력부문과 수송연료부문의 탈탄소화에 기여할 수 있다. Furthermore, the electrochemical cell management system provides the best efficiency in conjunction with renewable energy sources such as solar power and wind power to promote decarbonization of the power generation sector, and in tandem with the smart grid system. It can contribute to the decarbonization of the power and transport fuel sectors by creating the utility of dissipative reserves that are wasted and disappear, and by using the produced hydrogen for power generation or for hydrogen fueled vehicles.
미국의 국립재생에너지연구소(EERE)는 년간 수소 생산량 100,000kg으로 500대 이상의 수소연료전지차에 연료를 지원할 수 있는 수소충전소를 풀 서비스규모의 충전소(Full Forecourt Sized Fueling Station)로 분류했다. 2016년 7월 28일 중앙일보 기사에 의하면, 7월 26일의 전력수요는 81,110 MW이었고, 이 날의 전력예비량은 7,810 MW로 보고 되었다. 이 운전예비전력(spinning reserve)전력의 25%를 안전마진으로 남기고 나머지 75%를 그리드와 연동하는 전기화학전지 관리시스템을 통하여 수소 생산에 적용할 경우, 이는 풀 서비스규모의 분산생산 충전 설비 12,800개를 지원할 수 있고, 생산된 수소량은 하루 55kg의 수소를 사용하여 33마일(52.8 km)을 운행하는 수소연료전지차 480만대 이상을 지원할 수 있다. 국내에서 운행하는 승용차 수를 1000만대로 가상하면, 이는 현재 국내에서 운행 중인 승용차 수의 절반에 육박하는 수치이다. 이는 수송연료부문의 탈탄소화를 증진할 뿐 아니라, 수소차의 보편화에 크게 기여할 것이다. The National Institute of Renewable Energy (EERE) of the United States has classified a hydrogen station, which can fuel more than 500 hydrogen fuel cell vehicles with 100,000 kg of hydrogen annually, as a full-service full-sized fueling station. According to the July 28, 2016 JoongAng Ilbo article, the power demand on July 26 was 81,110 MW, and the power reserve on that day was reported as 7,810 MW. If 25% of the spinning reserve power is left as a safety margin and the remaining 75% is applied to hydrogen production through an electrochemical cell management system linked to the grid, this would result in 12,800 full-service distributed production charging facilities. The amount of hydrogen produced can support more than 4.8 million hydrogen fuel cell vehicles that run 33 miles (52.8 km) using 55 kg of hydrogen per day. If the number of passenger cars operating in Korea is assumed to be 10 million, this is nearly half of the number of passenger cars currently operating in Korea. This will not only promote the decarbonization of the transportation fuel sector, but will also greatly contribute to the universalization of hydrogen cars.
또한, 전류가 가시화되어 양적측정이 가능한 쌍극전극으로 구성되는 전기화학 설비를 전력망과의 양방향 통신을 통하여 전력망 운영자가 실시간으로 조절 가능한 가변부하로 사용함으로 전력망이 재생에너지원으로부터의 과잉전력을 수용역량을 증대하고 재생에너지의 효용을 증대함으로 발전 부분에 있어서의 탈탄소화에 기여할 수 있을 것으로 기대된다.In addition, the electric grid uses surplus power from renewable energy sources by using an electrochemical facility consisting of bipolar electrodes capable of quantitative measurement by visualizing current as a variable load that the grid operator can adjust in real time through bidirectional communication with the grid. It is expected to contribute to decarbonization in the power generation sector by increasing the energy efficiency and increasing the utility of renewable energy.
본 발명에 따르면 전기화학전지의 쌍극전극을 통해서 흐르는 전류를 가시화하여 양적 측정이 가능하게 됨으로써, 다수의 쌍극전극을 통한 전류 정보로부터 전해부산물의 생성속도, 전극의 전류밀도, 전해부산물의 누적생산량의 등에 대한 실시간 모니터링이 가능해지는 효과가 있다. 또한, 전류가 가시화된 쌍극전극을 통한 전류로부터 전극의 전류밀도가 실시간으로 측정됨으로써, 전류경제와 전력 효율의 실시간 정보 파악에 유용하다. According to the present invention, the current flowing through the bipolar electrode of the electrochemical cell can be visualized to measure quantitatively, and thus the generation rate of the electrolytic byproduct, the current density of the electrode, and the cumulative production amount of the electrolytic byproduct from current information through the plurality of bipolar electrodes. It is possible to monitor in real time. In addition, since the current density of the electrode is measured in real time from the current through the bipolar electrode in which the current is visualized, it is useful for grasping real-time information of current economy and power efficiency.
또한, 실시간 전력효율 정보는 전기화학전지 관리시스템을 통하여 실시간으로 분석되어 전원의 전압과 전류를 제어하거나 전력망의 수요에 따라 작동 셀 수나 모듈 수를 실시간 조절함으로써 전력망 운영자가 전기화학전지 설비를 실시간 조절 가능한 가변 부하로 사용할 수 있다. 전력망에 적용되어, 최소의 안전마진을 제외한 운전예비전력을 수소 생산에 적용함으로써 근본적으로 효용 없이 낭비되어 사라지는 소산성(dissipative) 예비전력을 수소 생산에 적용하고, 가변 재생에너지로부터의 과잉전력을 전력망이 병목현상 없이 수용하여 수소 생산에 적용하며, 생산된 수소를 전력발전에 사용함으로써 발전부문과 수송연료 부문에 있어서의 탈탄소화(decarbonization)를 촉진하고, 수소연료 전지차나 수소 내연기관 자동차의 보편화를 촉진할 것으로 기대된다.In addition, real-time power efficiency information is analyzed in real time through the electrochemical cell management system to control the voltage and current of the power source or to adjust the number of operating cells or modules according to the demand of the power grid in real time, allowing the grid operator to control the electrochemical cell facilities in real time. Can be used as possible variable load. Applied to power grids, by applying operating reserve power excluding minimum safety margins to hydrogen production, dissipative standby power that is wasted and disappeared essentially without effect is applied to hydrogen production, and excess power from variable renewable energy is applied to the grid. It accepts these bottlenecks without any bottlenecks and applies them to hydrogen production. By using the produced hydrogen for power generation, it promotes decarbonization in the power generation and transportation fuel sectors, and promotes the universalization of hydrogen fuel cell vehicles and hydrogen internal combustion engine vehicles. It is expected to accelerate.

Claims (11)

  1. 전류가 가시화되어 양적 측정이 가능한 쌍극전극 어셈블리(10)에 있어서,In the bipolar electrode assembly 10 in which current is visualized and quantitatively measured,
    외부 전원에 연결되지 않는 서로 이웃하는 전극;Neighboring electrodes not connected to an external power source;
    상기 전극 사이에 삽입되어 전극 사이를 차폐시키는 부도체막(13);An insulator film 13 inserted between the electrodes to shield the electrodes;
    상기 부도체막(13)에 의해 차폐된 전극을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14);를 포함하며,And an electrode connection circuit 14 including an ammeter or a current sensor 15 for connecting the electrodes shielded by the insulator film 13.
    상기 전극은 평판형이거나, 중공을 갖는 원통형인 것을 특징으로 하는 전류가 가시화되어 양적 측정이 가능한 쌍극전극 어셈블리.The electrode is a flat plate or a cylindrical having a hollow, characterized in that the current is visualized bipolar electrode assembly capable of quantitative measurement.
  2. 제1항에 있어서,The method of claim 1,
    전류가 가시화된 원통형 쌍극전극 어셈블리는,Cylindrical bipolar electrode assembly in which the current is visible,
    원통형 부도체막(13); Cylindrical insulator film 13;
    상기 원통형 부도체 막의 내면과 외면에 부착된 원통형의 전극(11a)(12a); 상기 부도체막(13)에 의해 한 면이 차폐된 원통형 전극(11a)(12a)을 연결하는 전류계 또는 전류센서(15)가 구비되어 중공을 갖는 원통형인 것을 특징으로 하는 전류가 가시화된 쌍극전극 어셈블리.Cylindrical electrodes (11a) (12a) attached to inner and outer surfaces of the cylindrical insulator film; A bipolar electrode assembly in which a current is visualized, characterized in that the ammeter or a current sensor 15 connecting the cylindrical electrodes 11a and 12a, one surface of which is shielded by the insulator film 13, to have a hollow shape. .
  3. 전류가 가시화된 쌍극전극 어셈블리로 구성되는 쌍극전극 전기화학전지 모듈로서,A bipolar electrode electrochemical cell module composed of a bipolar electrode assembly in which a current is visualized,
    케이싱(100); 상기 케이싱(100) 내면에 구비되는 부도체막(110); Casing 100; An insulator film 110 provided on an inner surface of the casing 100;
    상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 전극(120); 및 An electrode 120 whose one surface is shielded by an insulator film 110 on one side of the casing 100; And
    상기 케이싱(100) 내 상기 전극(120)과 이격되어 마주보도록 설치되는 다른 전극(120')을 포함하되, Including the other electrode 120 'which is installed to face the electrode 120 in the casing 100 spaced apart,
    상기 전극(120)과 전극(120') 사이에는 쌍극전극 어셈블리(10) 하나 이상이 동일한 전극간 거리로 구비되며,One or more bipolar electrode assemblies 10 are provided at the same distance between electrodes between the electrode 120 and the electrode 120 ',
    상기 쌍극전극 전기화학전지 모듈의 두 전극(120)(120')은 전원연결회로(150)에 연결되는 것을 특징으로 하는 쌍극전극 전기화학전지.(발명의 명칭과 동일하게 적어야 합니다.) The two electrodes 120, 120 'of the bipolar electrode electrochemical cell module are bipolar electrode electrochemical cells, characterized in that connected to the power connection circuit 150. (The same as the name of the invention should be less.)
  4. 전류가 가시화된 쌍극전극 단위 모듈로 구성되는 쌍극전극 전기화학전지 모듈로서,A bipolar electrode electrochemical cell module composed of a bipolar electrode unit module in which a current is visualized.
    케이싱(100); Casing 100;
    상기 케이싱(100) 내면에 구비되는 부도체막(110); An insulator film 110 provided on an inner surface of the casing 100;
    상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 전극(11);An electrode 11 whose one surface is shielded by an insulator film 110 on one side of the casing 100;
    상기 케이싱(100) 내 상기 전극(11)과 이격되어 설치되는 다른 전극(12);을 포함하는 단위모듈(1)이 둘 이상 구비되며, Two or more unit modules (1) are provided, which includes; another electrode (12) spaced apart from the electrode (11) in the casing (100),
    상기 하나의 단위 모듈(1)과 이와 이웃하는 단위 모듈(1') 내의 서로 이웃하는 전극(12)(11')을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)를 포함하며,An electrode connection circuit 14 including an ammeter or a current sensor 15 for connecting the neighboring electrodes 12 and 11 'in the unit module 1 and the neighboring unit module 1' is provided. Include,
    상기 쌍극전극 단위 모듈의 전극은 중공을 갖는 원통형인 것을 특징으로 하는 쌍극전극 전기화학전지.The electrode of the bipolar electrode unit module is a bipolar electrode electrochemical cell, characterized in that the cylindrical having a hollow.
  5. 전류가 가시화된 원통형 쌍극전극 어셈블리로 구성되는 쌍극전극 전기화학전지 모듈로서,A bipolar electrode electrochemical cell module composed of a cylindrical bipolar electrode assembly in which current is visualized,
    원통형 케이싱(100); Cylindrical casing 100;
    상기 케이싱(100) 내면에 구비되는 원통형 부도체막(110); A cylindrical insulator film 110 provided on an inner surface of the casing 100;
    상기 케이싱(100) 내 일측의 부도체막(110)에 의해 일면이 차폐되는 외곽전극(12b); 및 An outer electrode 12b whose one surface is shielded by the non-conductive film 110 on one side of the casing 100; And
    상기 외곽전극과 동심원으로 거리를 두고 설치되는 원주형 금속 전극, 혹은 원통형 부도체막 혹은 원주형 부도체 외면에 부착된 중앙전극(11b)으로 구성되고,Consists of a cylindrical metal electrode installed at a distance concentric with the outer electrode, or a central electrode (11b) attached to the outer surface of the cylindrical insulator film or the cylindrical insulator,
    상기 전극(12b)과 전극(11b) 사이에는 쌍극전극 어셈블리(10) 하나 이상이 동일한 전극간 거리로 구비되며, One or more bipolar electrode assemblies 10 are provided between the electrodes 12b and 11b at the same distance between electrodes.
    상기 중앙전극(11b)과 외곽전극(12b)은 전압계 혹은 전압센서와 전류계 혹은 전류센서를 구비한 전원연결회로에 연결되는 것을 특징으로 하는 원통형 쌍극전극 어셈블리로 구성되는 전기화학전지.The center electrode (11b) and the outer electrode (12b) is an electrochemical cell consisting of a cylindrical bipolar electrode assembly, characterized in that connected to a power connection circuit having a voltmeter or voltage sensor and ammeter or current sensor.
  6. 제 4항에 있어서,The method of claim 4, wherein
    전류가 가시화된 중공을 갖는 원통형 쌍극전극 단위 모듈은,Cylindrical bipolar unit module having a hollow visible current,
    원통형 케이싱(100); Cylindrical casing 100;
    상기 케이싱의 내면에 부착된 부도체막(110); An insulator film 110 attached to an inner surface of the casing;
    상기 부도체막의 내면에 부착된 외곽 전극(12b)과 상기 외곽 전극(11b)과 동심원으로 거리를 두고 설치되는 원주형 금속 전극, 혹은 원통형 부도체막 혹은 원주형 부도체 외면에 부착된 중앙전극(11b)으로 구성되고,The outer electrode 12b attached to the inner surface of the insulator film and the center electrode 11b attached to the outer surface of the outer electrode 11b in a concentric manner or a cylindrical insulator film or a center electrode 11b attached to the outer surface of the cylindrical insulator. Composed,
    전류가 가시화된 중공을 갖는 원통형 쌍극전극 단위 모듈로 구성된 전기화학전지 모듈은,Electrochemical cell module consisting of a cylindrical bipolar electrode unit module having a hollow visible current,
    상기 전류가 가시화된 원통형 쌍극전극 단위 모듈(unit module) 둘 이상이 직렬로 적재되어 구비되고, 상기 첫 단위 모듈의 중앙전극(11b)과 마지막 단위 모듈의 외곽전극(12b)이 전원연결회로에 연결되고, 하나의 단위 모듈의 외곽전극(12b)과 이와 이웃하는 단위 모듈의 중앙전극(11b)을 연결하는 전류계 또는 전류센서(15)가 구비된 전극연결회로(14)에 연결되는 것을 특징으로 하는 쌍극전극 전기화학전지.Two or more cylindrical bipolar unit modules in which the current is visible are mounted in series, and the central electrode 11b of the first unit module and the outer electrode 12b of the last unit module are connected to a power connection circuit. And an ammeter or current sensor 15 connecting the outer electrode 12b of one unit module and the central electrode 11b of the neighboring unit module to the electrode connection circuit 14. Bipolar Electrochemical Cell.
  7. 전류가 가시화된 쌍극전극 전기화학전지로서,A bipolar electrode electrochemical cell in which a current is visualized,
    액상(liquid) 전해질과 양자교환박막 전기분해장치(PEM electrolyzer)에 있어서와 같은 고체 전해질(solid electrolyte)로 작동하는 쌍극전극 전기화학전지를 포함하고, 또한 수소, 산소 혹은 염소와 같은 기체 생성물을 생산하는 쌍극전극 전기화학전지와 함께 전기정련(electro-refining)이나 전해채취(electrowinning)에 있어서와 같이 금속 전해생성물을 생산하는 쌍극전극 전기화학전지를 포함하는 것을 특징으로 하는 전류가 가시화된 쌍극전극 전기화학전지.It includes bipolar electrochemical cells that operate as a solid electrolyte, such as in liquid electrolytes and PEM electrolyzers, and also produces gaseous products such as hydrogen, oxygen or chlorine. And a bipolar electrode electrochemical cell comprising a bipolar electrode electrochemical cell for producing a metal electrolytic product as in electro-refining or electrowinning together with a bipolar electrode electrochemical cell. Chemical cell.
  8. 전기화학전지 관리시스템(Electrochemical Cell Management System)으로서,As an electrochemical cell management system,
    전류가 가시화된 쌍극전극으로 구성된 전기화학전지로부터 실시간으로 수집된 셀 전류 및 전압, 셀 압력, 셀 온도, 전해질 수위 등의 정보로부터 실시간 전류밀도, 전해생성물의 생성속도 및 누적생산량, 그리고 전력 효율을 계산하여 제시하고, 전해생성물의 교차 오염도와 가스 생성물의 누출 데이터 등의 데이터에 근거하여 설비의 안전 운전을 보장하는 전자적 관리시스템으로 데이터 수집장치(Data Collection Unit); 데이터 버스(Data Bus); 제어장치(Control Unit); 감시 및 제어 컴퓨터 시스템(Monitoring & Control Computer System)으로 구성되어 전기화학전지 시스템을 실시간 데이터에 의거 최적의 작동조건으로 운전되도록 총체적의 관리하는 것을 특징으로 하는 전기화학전지 관리시스템.Real-time current density, production rate and cumulative production rate, and power efficiency of real-time current density, information on cell current and voltage, cell pressure, cell temperature, electrolyte level, etc. A data collection unit as an electronic management system that calculates and presents and guarantees safe operation of the facility based on data such as cross contamination of the electrolytic product and leakage data of gaseous products; A data bus; Control Unit; An electrochemical cell management system comprising a monitoring and control computer system, the overall management of the electrochemical cell system to operate at optimal operating conditions based on real-time data.
  9. 제 8항에 있어서,The method of claim 8,
    상기 전류가 가시화된 쌍극전극으로 구성된 전기화학전지 관리시스템은,Electrochemical cell management system consisting of a bipolar electrode the current is visible,
    간헐적 및 가변적 전력으로 특징지워지는 재생에너지원으로부터의 전력을 전원의 실시간 전력조건에 따라 작동 셀 수나 모듈 수를 조절함으로 최대 효율로 수소 생산에 적용하도록 하여 전력발전 부문의 탈탄소화를 증진하는 것을 특징으로 하는 전기화학전지 관리시스템.Promotes decarbonization of the power generation sector by applying power from renewable energy sources characterized by intermittent and variable power to hydrogen production at maximum efficiency by adjusting the number of operating cells or modules according to real-time power conditions of the power source. Electrochemical cell management system.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 전기화학전지 관리시스템은,The electrochemical cell management system,
    전력망 혹은 스마트 전력망 시스템(Smart Grid System)과 연동하여, 실시간 전력 수요에따라 작동 셀 혹은 모듈 수를 조절함으로 전력망의 운영 예비 전력(operating reserve) 혹은 소모성(dissipative) 운전예비전력(spinning reserve)을 실시간 조절 가능한 전기적 부하(realtime adjuatable electric load)로서의 전기화학전지 시스템에 적용함으로 근본적으로 효용 없이 낭비되어 사라지는 소산성 운전 예비전력의 효용을 창출하는 것을 특징으로 하는 전기화학전지 관리 시스템.In conjunction with the grid or the Smart Grid System, real-time operating reserve or dissipative spinning reserve of the grid is adjusted by adjusting the number of operating cells or modules according to real-time power demand. An electrochemical cell management system characterized by creating utility of dissipative operational reserve power that is essentially wasted and disappeared by no use by applying to an electrochemical cell system as a realtime adjuatable electric load.
  11. 제 8항에 있어서,The method of claim 8,
    상기 전기화학전지 관리시스템은,The electrochemical cell management system,
    전력망이 재생에너지원으로부터의 과잉전력을 수용하여 전류가 가시화되어 양적측정이 가능한 쌍극전극으로 구성된 전기화학전지 설비에 적용하여 수소를 생산함으로서 전력망의 병목현상을 제거하여 과잉전력 수용 역량을 증대함으로 재생에너지의 효용을 극대화 하고 전력발전 부문의 탈탄소화를 증진하도록 하는 것을 특징으로 하는 전기화학전지 관리 시스템.The power grid receives excess power from renewable energy sources and applies hydrogen to an electrochemical cell facility consisting of bipolar electrodes capable of quantitative measurement by visualizing current, eliminating bottlenecks in the power grid and increasing capacity to accommodate excess power. An electrochemical cell management system that maximizes the utility of energy and promotes decarbonization of the power generation sector.
PCT/KR2017/011001 2016-03-11 2017-10-02 Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same WO2018066939A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160029362 2016-03-11
KR1020160128946A KR101782637B1 (en) 2016-03-11 2016-10-06 Electrode assemblies visualizing internal electric currents in bipolar electrodes
KR10-2016-0128946 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066939A1 true WO2018066939A1 (en) 2018-04-12

Family

ID=60033921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011001 WO2018066939A1 (en) 2016-03-11 2017-10-02 Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same

Country Status (2)

Country Link
KR (2) KR101782637B1 (en)
WO (1) WO2018066939A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272855A (en) * 2020-03-25 2020-06-12 素水能源科技(苏州)有限公司 Testing device for single-electrode electrochemical test under working state of fuel cell
EP3828313A1 (en) * 2019-11-28 2021-06-02 Siemens Energy Global GmbH & Co. KG Electrolysis system for breaking water down into hydrogen and oxygen and method for operating the electrolysis system
WO2021209763A1 (en) * 2020-04-17 2021-10-21 Atom Industries International Limited Apparatus and method for production of hydrogen gas
CN113862690A (en) * 2021-11-30 2021-12-31 合肥综合性国家科学中心能源研究院(安徽省能源实验室) Water electrolysis hydrogen production device based on bipolar electrode system
WO2022129249A1 (en) * 2020-12-15 2022-06-23 Enapter S.r.l. A control system and method for controlling a micro-grid
WO2022195021A3 (en) * 2021-03-17 2022-12-08 Enapter S.r.l. Modular electrochemical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489394B1 (en) * 2017-11-24 2020-08-19 Siemens Aktiengesellschaft Electrolyzer for low pressure pem electrolysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197169A (en) * 1978-09-05 1980-04-08 Exxon Research & Engineering Co. Shunt current elimination and device
JP2004084028A (en) * 2002-08-28 2004-03-18 Japan Organo Co Ltd Bipolar electrolytic cell
JP2007031813A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Water electrolysis system, and method for operating the same
KR20130030847A (en) * 2011-09-20 2013-03-28 금오공과대학교 산학협력단 Structure of water electrolysis stack for higy capacity
JP2015059231A (en) * 2013-09-17 2015-03-30 株式会社東芝 Chemical reaction apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239873A (en) 1999-02-17 2000-09-05 Shinko Pantec Co Ltd Electrolytic device and electrolytic cell used for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197169A (en) * 1978-09-05 1980-04-08 Exxon Research & Engineering Co. Shunt current elimination and device
JP2004084028A (en) * 2002-08-28 2004-03-18 Japan Organo Co Ltd Bipolar electrolytic cell
JP2007031813A (en) * 2005-07-29 2007-02-08 Honda Motor Co Ltd Water electrolysis system, and method for operating the same
KR20130030847A (en) * 2011-09-20 2013-03-28 금오공과대학교 산학협력단 Structure of water electrolysis stack for higy capacity
JP2015059231A (en) * 2013-09-17 2015-03-30 株式会社東芝 Chemical reaction apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828313A1 (en) * 2019-11-28 2021-06-02 Siemens Energy Global GmbH & Co. KG Electrolysis system for breaking water down into hydrogen and oxygen and method for operating the electrolysis system
WO2021104744A1 (en) * 2019-11-28 2021-06-03 Siemens Energy Global GmbH & Co. KG Electrolysis system for breaking down water into hydrogen and oxygen, and a method for operating the electrolysis system
CN114761619A (en) * 2019-11-28 2022-07-15 西门子能源环球有限责任两合公司 Electrolysis system for splitting water into hydrogen and oxygen and method for operating an electrolysis system
CN114761619B (en) * 2019-11-28 2023-12-19 西门子能源环球有限责任两合公司 Electrolysis system for decomposing water into hydrogen and oxygen and method for operating an electrolysis system
CN111272855A (en) * 2020-03-25 2020-06-12 素水能源科技(苏州)有限公司 Testing device for single-electrode electrochemical test under working state of fuel cell
WO2021209763A1 (en) * 2020-04-17 2021-10-21 Atom Industries International Limited Apparatus and method for production of hydrogen gas
WO2022129249A1 (en) * 2020-12-15 2022-06-23 Enapter S.r.l. A control system and method for controlling a micro-grid
WO2022195021A3 (en) * 2021-03-17 2022-12-08 Enapter S.r.l. Modular electrochemical system
CN113862690A (en) * 2021-11-30 2021-12-31 合肥综合性国家科学中心能源研究院(安徽省能源实验室) Water electrolysis hydrogen production device based on bipolar electrode system

Also Published As

Publication number Publication date
KR20170106253A (en) 2017-09-20
KR101782638B1 (en) 2017-10-23
KR20170106166A (en) 2017-09-20
KR101782637B1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2018066939A1 (en) Bipolar electrode assembly that is capable of quantitative measurements by visualising electric current, and electrochemical cell and electrochemical cell management system using same
CA2486364C (en) Operating method of redox flow battery and cell stack of redox flow battery
US4197169A (en) Shunt current elimination and device
US7326329B2 (en) Commercial production of hydrogen from water
CN104617324B (en) Fuel battery pack with testing function
CN213804006U (en) Water electrolysis bath with novel channel arrangement mode
KR940010444A (en) Membrane flow cell battery
GB2603433A (en) Open type metal-air fuel cell system capable of uninterruptedly supplying power
US20220209274A1 (en) Redox flow battery with a balancing cell
US4277317A (en) Shunt current elimination and device employing tunneled protective current
CN113445070A (en) Modularized electrolytic cell group
US20220325425A1 (en) A system and a method for alkaline water electrolysis
US10177389B2 (en) Electrochemical device and method for controlling corrosion
CN209798117U (en) Hydrogen production device with series structure
WO2018079965A1 (en) Hybrid power generation system and energy-independent hydrogen-electricity hybrid charging station, which use reverse electrodialysis device capable of efficiently producing hydrogen-electricity
CN219342318U (en) Direct hydrogen production system for photovoltaic power generation
CN100361340C (en) Controlling connection method for integrated fuel battery pile
CN110518691A (en) The uninterrupted AC power supply system of power station Hydrogen Energy
CN219280053U (en) Multipole type electrolytic device for producing hydrogen peroxide and hydrogen by electrolyzing ammonium bisulfate
CN211771582U (en) Three-chamber electrochemical reactor
CN117276614B (en) Energy storage system with hydrogen peroxide as electronic energy carrier
CN117468019A (en) Modular electrolyzer, electrolyzer system and method of manufacture
Grimes et al. Shunt Current Control Methods In Electrochemical Systems—Applications
Poli Design and development of an electrolyte regeneration process for vanadium redox flow batteries
Shevchenko et al. Investigation of the Electrolysis Process of Obtaining Hydrogen and Oxygen with Serial and Parallel Connection of Electrons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858733

Country of ref document: EP

Kind code of ref document: A1