WO2018066691A1 - Three-dimensionally shaped object and system and method for shaping same, shaping data for three-dimensionally shaped object and device for geneatating same, generation method, program, and storage medium having program stored thereon - Google Patents

Three-dimensionally shaped object and system and method for shaping same, shaping data for three-dimensionally shaped object and device for geneatating same, generation method, program, and storage medium having program stored thereon Download PDF

Info

Publication number
WO2018066691A1
WO2018066691A1 PCT/JP2017/036464 JP2017036464W WO2018066691A1 WO 2018066691 A1 WO2018066691 A1 WO 2018066691A1 JP 2017036464 W JP2017036464 W JP 2017036464W WO 2018066691 A1 WO2018066691 A1 WO 2018066691A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
modeling
coordinate system
dimensional structure
model body
Prior art date
Application number
PCT/JP2017/036464
Other languages
French (fr)
Japanese (ja)
Inventor
敦志 藤野
直行 藤田
博之 吹田
伸行 相馬
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Publication of WO2018066691A1 publication Critical patent/WO2018066691A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a three-dimensional structure, a system and method for forming the three-dimensional object, data for forming a three-dimensional structure, an apparatus for generating the same, a generation method, a program, and a storage medium storing the program.
  • Non-patent Document 1 a three-dimensional additive manufacturing technique
  • the result of the numerical simulation is used as a model body, and a three-dimensional structure composed of a transparent cylindrical body containing the model body is created using a three-dimensional additive manufacturing technique.
  • FIG. 8 is a three-dimensional structure of the numerical simulation result of the turbulent flow situation around the aircraft leg (landing gear).
  • Patent Document 1 discloses a model body, a model, and a model when a three-dimensional model of a subject is three-dimensionally formed based on three-dimensional color image data obtained by imaging a subject such as a person.
  • a technique for creating a three-dimensional structure including a transparent container that contains a body using a three-dimensional stacking technique is disclosed.
  • the model body contains a structurally weak part such as a relatively thin part or a comparatively thin part or a part floating in the space, there is a transparent container around it. Therefore, it is possible to form such a model body or prevent the model body from being broken.
  • the model body which is a simulation result, is blurred and unclear, and the simulation result cannot be observed clearly.
  • the present inventors have found that the phenomenon in which the model body appears blurred and unclear is caused when the model body is observed from a direction perpendicular to the stacking direction of the modeling material of the three-dimensional structure. It was difficult to find an effective measure.
  • the present invention relates to a three-dimensional structure in which a modeling material layer is stacked, including a model body and a housing body that contains the model body and is transparent to the model body and has a substantially straight column body portion.
  • a modeling material layer is stacked, including a model body and a housing body that contains the model body and is transparent to the model body and has a substantially straight column body portion.
  • One of the purposes is to substantially prevent the model body from appearing blurred and unclear.
  • One aspect of the present invention is a three-dimensional structure in which modeling material layers are stacked, and includes a model body, the model body, and a container that is more transparent than the model body.
  • the stacking direction of the modeling material layer is the xyz orthogonal coordinate system when the bottom surface of the substantially rectangular column portion is on the xy plane of the xyz orthogonal coordinate system.
  • Rotate by a predetermined angle around at least one of the x, y, and z axes except when rotating only around the z axis and when all rotation angles are multiples of 90 °
  • the present invention provides a three-dimensional structure that is parallel to the z′-axis direction of the x′y′z ′ coordinate system.
  • the predetermined angle may be 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °.
  • the xyz orthogonal coordinate system when the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system is two of the x axis, the y axis, and the z axis.
  • a direction parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated about the axis by 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °. Can be.
  • the substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the zx plane, the axis that rotates the xyz orthogonal coordinate system is the y-axis,
  • the predetermined angle may be an angle formed by a diagonal line with a side on the x-axis of the one side surface.
  • the substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the x-axis,
  • the predetermined angle may be an angle formed by a diagonal line with a side on the y-axis of the one side surface.
  • the substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the z axis,
  • the predetermined angle may be an angle formed by a diagonal line with a side on the y-axis of the bottom surface.
  • the model body may be a model body showing a numerical simulation result.
  • One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them.
  • One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them.
  • a method of generating modeling data for performing the xyz orthogonal coordinate system when the stacking direction of the modeling material layer is such that the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system.
  • Generating a modeling data including a step of generating modeling data of the three-dimensional model so as to be in a direction parallel to the z′-axis direction of the x′y′z ′ coordinate system. is there.
  • One aspect of the present invention provides a program for causing a computer to execute the method for generating modeling data.
  • One aspect of the present invention provides a computer-readable storage medium storing the program.
  • One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them.
  • the modeling material layer is laminated in the stacking direction of the modeling material layer with respect to the xyz orthogonal coordinate system when the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system, x rotated by a predetermined angle around at least one of the y-axis and z-axis (except when rotating only around the z-axis and when all rotation angles are multiples of 90 °)
  • the data for modeling which is a direction parallel to the z'-axis direction of the 'y'z' coordinate system is provided.
  • One aspect of the present invention provides a computer-readable storage medium storing the modeling data.
  • One aspect of the present invention is the above-described tertiary including the model body and the container that contains the model body and has a substantially straight column body portion that is transparent to the model body using the modeling data.
  • a method of modeling an original model by forming the modeling material layers in order and laminating them.
  • One aspect of the present invention is a substantially straight column body that contains the model body and the model body, and is more transparent than the model body, based on the modeling data generation device and the modeling data.
  • a three-dimensional modeling system including a three-dimensional modeling apparatus that models a three-dimensional modeled object including a container having a portion by sequentially forming a modeling material layer and stacking the modeling material layers.
  • a model body, and a tertiary layer in which a modeling material layer is stacked including a model body and a housing body that has a portion of a substantially straight column body that is more transparent than the model body.
  • a model body looks blurred.
  • FIG. 10 It is a figure showing the whole 3D modeling system composition concerning one embodiment of the present invention. It is a figure showing an example of hardware constitutions of modeling data generation device 10 concerning one embodiment of the present invention. It is a figure which shows the structure of the three-dimensional modeling apparatus which concerns on one embodiment of this invention. It is a flowchart of the example of the modeling process of the three-dimensional modeling system which concerns on one embodiment of this invention. It is the schematic diagram which looked at the three-dimensional modeled object modeled by the modeling method concerning one embodiment of the present invention, and the three-dimensional modeled object modeled by the conventional method from the y-axis direction, respectively.
  • the substantially rectangular parallelepiped portion is a rectangular parallelepiped portion
  • the xyz orthogonal coordinate system is set around the y axis, and the x axis of the one side surface
  • FIG. 1 is a diagram illustrating an overall configuration of a three-dimensional modeling system according to one embodiment of the present invention
  • FIG. 3 is a diagram illustrating a configuration of a three-dimensional modeling apparatus according to one embodiment of the present invention.
  • the three-dimensional modeling system 1 includes a modeling data generation device 10 and a three-dimensional modeling device 20.
  • the three-dimensional modeling apparatus 20 forms on the modeling stage 230 a modeling material layer including a model material and a support material for supporting and / or covering the model material in contact with the model material during the modeling operation of the three-dimensional modeling object 50.
  • the three-dimensional structure 50 is formed by sequentially forming and stacking.
  • the three-dimensional modeling apparatus 20 has a so-called overhanging part or isolated part in which the width of the model material at the upper position is larger than the width of the model material at the lower position,
  • the support material is automatically provided so as to support the overhang portion and the isolated portion from below.
  • the support material can be removed after the modeling of the three-dimensional structure 50 is completed. For example, if the support material is water-soluble, it can be removed if immersed in water.
  • the modeling data generation apparatus 10 includes a 3D data reception unit 101, a synthetic modeling data acquisition / generation unit 103, a three-dimensional modeling modeling data generation unit 105, and a setting unit 109.
  • the modeling data generation device 10 may be a server, a PC, a smartphone, a tablet terminal, or the like, and part or all of the modeling data generation device 10 is the same as part or all of the three-dimensional modeling device 20. It may be configured as a physical device.
  • the modeling data generation device 10 does not have to be configured as one physical device, and may be configured from a plurality of physical devices.
  • the setting unit 109 outputs various setting data input via the setting unit 109 to each unit of the modeling data generation apparatus 10.
  • the 3D data receiving unit 101 receives 3D data (CAD data, numerical simulation result visualization data, etc.) indicating the three-dimensional shape of the modeling object directly or via a network or a storage medium, and acquires and generates synthetic modeling data. Send to part 103.
  • the 3D data may include not only the three-dimensional shape of the modeling target but also color information related to the modeling target.
  • the synthetic modeling data acquisition / generation unit 103 receives the 3D data of the modeling object from the 3D data receiving unit 101, converts the 3D data into 3D modeling data, for example, STL (Stereo) Lithography) data, Data for modeling of the model body 501 corresponding to the modeling object is obtained. Then, based on the setting data such as the shape and dimensions of the container 503 input via the setting unit 109, the model body 501 and the model body 501 having a substantially columnar portion are accommodated. STL data for synthetic modeling, which is synthetic modeling data obtained by synthesizing the container 503 that is more transparent than 501, is generated.
  • the data format of the synthetic modeling data is not limited to STL data, and any appropriate data format can be used.
  • the synthetic modeling data acquisition / generation unit 103 may acquire the already generated synthetic modeling data without generating the synthetic modeling data without going through the 3D data receiving unit 101.
  • the three-dimensional structure modeling data generation unit 105 is a composite acquired or generated by the synthetic modeling data acquisition / generation unit 103 based on the setting data such as the rotation axis and the rotation angle input via the setting unit 109.
  • the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the bottom surface of the substantially columnar body portion of the container 503 is the xy plane of the xyz orthogonal coordinate system.
  • the xyz Cartesian coordinate system is assumed to be on a predetermined angle around at least one of the x-axis, y-axis, and z-axis (provided that the rotation is performed only around the z-axis, and all rotation angles are
  • the orientation of the three-dimensional structure 50 is set so that the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated only by a multiple of 90 °.
  • STL data for modeling the object 50 is generated.
  • the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the xyz orthogonal coordinate system is the x axis, the y axis, and the z axis when the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system.
  • the orientation of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated by 45 ° around two axes of STL data for modeling of the model 50 is generated.
  • the predetermined angle may be excluded unless all the rotation angles are the same multiple of 90 °.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the modeling data generation apparatus 10 according to an embodiment of the present invention.
  • the modeling data generation apparatus 10 includes a CPU 10a, a RAM 10b, a ROM 10c, an external memory 10d, an input unit 10e, an output unit 10f, and a communication unit 10g.
  • the RAM 10b, ROM 10c, external memory 10d, input unit 10e, output unit 10f, and communication unit 10g are connected to the CPU 10a via the system bus 10h.
  • the CPU 10a comprehensively controls each device connected to the system bus 10h.
  • the ROM 10c and the external memory 10d store a BIOS and OS, which are control programs for the CPU 10a, and various programs and data necessary for realizing functions executed by the computer.
  • the RAM 10b functions as a main memory and work area of the CPU.
  • the CPU 10a implements various operations by loading a program or the like necessary for execution of processing from the ROM 10c or the external memory 10d to the RAM 10b and executing the loaded program.
  • the external memory 10d is composed of, for example, a flash memory, a hard disk, a DVD-RAM, a USB memory, and the like.
  • the input unit 10e receives an operation instruction from a user or the like.
  • the input unit 10e includes input devices such as an input button, a keyboard, a pointing device, a microphone, and a camera, for example.
  • the output unit 10f outputs data processed by the CPU 10a and data stored in the RAM 10b, the ROM 10c, and the external memory 10d.
  • the output unit 10f includes an output device such as a CRT display, an LCD, an organic EL panel, a printer, and a speaker.
  • the communication unit 10g is an interface for connecting / communication with an external device via a network or directly.
  • the communication unit 10g includes an interface such as a serial interface or a LAN interface.
  • the computer hardware configuration of the three-dimensional modeling apparatus 20 is the same.
  • Each part of the modeling data generation apparatus shown in FIG. 1 includes a CPU 10a, a RAM 10b, a ROM 10c, an external memory 10d, an input unit 10e, an output unit 10f, a communication unit 10g, and the like. Realized by using as a resource. The same applies to a slice data generation unit 210 and a control unit 220 of the 3D modeling apparatus 20 described later.
  • the three-dimensional modeling apparatus 20 includes a slice data generation unit 210, a control unit 220, a modeling stage 230 that can move in the stacking direction (Z direction) of the modeling material layer, and a head unit 240.
  • the head unit 240 includes a first printer head 241 that discharges opaque model material droplets on the modeling stage 230, a second printer head 243 that discharges transparent model material droplets on the modeling stage 230, and the modeling stage 230.
  • a third printer head 245 that discharges droplets of the support material is provided thereon, and UV light sources 247 and 248 for photocuring the applied modeling material.
  • the three-dimensional modeling apparatus 20 does not need to be configured as one physical apparatus, and may be configured from a plurality of physical apparatuses. Further, the model material ejected from the first printer head 241 is not limited to the opaque model material, and the model material ejected from the second printer head 243 is ejected from the first printer head 241. A transparent or translucent model material may be used as long as the model material is transparent.
  • the slice data generation unit 210 generates slice data of each modeling material layer sliced in the stacking direction from the STL data for modeling of the three-dimensional model 50 generated by the three-dimensional model modeling data generation unit 105. Send to section 220.
  • the modeling STL data of the three-dimensional structure 50 may be passed from the modeling data generation apparatus 10 to the three-dimensional modeling apparatus 20 via a network, a storage medium, or the like, or the three-dimensional structure modeling data generation unit 105. And the slice data generation unit 210 may be sent directly in the same physical device.
  • an opaque model material region is set for the modeling data of the model body 501 of the three-dimensional structure 50, and a transparent model material region is set for a portion other than the model body 501 of the three-dimensional structure 50. Is done. Moreover, in this embodiment, since the attitude
  • the control unit 220 controls the operation of the entire 3D modeling apparatus 20 during the modeling operation of the 3D model 50.
  • the modeling stage 230 has a horizontal and flat modeling surface, and is a movable stage for stacking a modeling material layer on the modeling surface to form the three-dimensional modeled object 50. Z direction).
  • the elevating drive unit 235 moves the modeling stage 230 vertically downward by a distance corresponding to the thickness of the modeling layer every time the formation of each modeling material layer is completed by a control signal from the control unit 220.
  • the head unit 240 can be moved in the main scanning direction (X direction) and the sub-scanning direction (Y direction) above the modeling stage 230 by driving means (not shown) based on a control signal from the control unit 220.
  • the first printer head 241 drops an opaque model material droplet in a region where an opaque model material region is set for slice data corresponding to the modeling material layer. Is discharged. By repeating this discharge operation a plurality of times while shifting in the sub-scanning direction, an opaque model material region of the modeling material layer is formed in a desired region of the modeling stage 230. The opaque model material region is cured by irradiating ultraviolet rays from the UV light sources 247 and 248.
  • the second printer head 243 drops a transparent model material droplet in a region where a transparent model material region is set for slice data corresponding to the modeling material layer. Is discharged. By repeating this discharge operation a plurality of times while shifting in the sub-scanning direction, a transparent model material region of the modeling material layer is formed in a desired region of the modeling stage 230. The transparent model material region is cured by irradiating ultraviolet rays from the UV light sources 247 and 248.
  • the third printer head 245 ejects droplets of the support material in an area where the support material area is set for slice data corresponding to the modeling material layer. To do.
  • a support material region of the modeling material layer is formed in a desired region of the modeling stage 230.
  • the support material region is cured by irradiation of light energy by irradiating ultraviolet rays from UV light sources 247 and 248.
  • thermosetting material or a material that is cured by natural cooling may be used in addition to the photocurable material as described above.
  • the modeling stage 230 and the head unit 240 are moved by the control signal from the control unit 220, and the opaque model material is transferred from the first printer head 241 based on the slice data sent from the control unit 220.
  • the 3D model 50 is modeled by supplying the transparent model material from the second printer head 243 and the support material from the third printer head 245 to the modeling stage 230, respectively.
  • FIG. 4 is a flowchart of an example of a modeling process of the three-dimensional modeling system according to one embodiment of the present invention.
  • the shape of the container 503 is described as a cube.
  • the 3D data receiving unit 101 receives 3D data (CAD data, numerical simulation result visualization data, etc.) indicating the three-dimensional shape of the modeling object (S1).
  • 3D data CAD data, numerical simulation result visualization data, etc.
  • the synthetic modeling data acquisition / generation unit 103 converts the 3D data of the modeling target received by the 3D data reception unit 101 into, for example, STL (StereoLithography) data as data for three-dimensional modeling, and the model body 501 Data for modeling is obtained (S2). Then, based on the setting data such as the shape and dimensions of the container 503 input via the setting unit 109, the model 501 and the synthetic modeling data obtained by synthesizing the container 503 having a substantially straight column part. Certain synthetic modeling STL data is generated (S3). In this embodiment, a cube is input as setting data as the shape of the container 503. The synthetic modeling data acquisition / generation unit 103 may acquire the already generated synthetic modeling data without generating the synthetic modeling data without going through the 3D data receiving unit 101.
  • STL StepoLithography
  • the three-dimensional structure modeling data generation unit 105 is a composite acquired or generated by the synthetic modeling data acquisition / generation unit 103 based on the setting data such as the rotation axis and the rotation angle input via the setting unit 109.
  • the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the bottom surface of the substantially columnar body portion of the container 503 is the xy plane of the xyz orthogonal coordinate system.
  • the xyz Cartesian coordinate system is assumed to be on a predetermined angle around at least one of the x-axis, y-axis, and z-axis (provided that the rotation is performed only around the z-axis, and all rotation angles are
  • the orientation of the three-dimensional structure 50 is set so that the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated only by a multiple of 90 °.
  • a setting for rotating the xyz coordinate system by 45 ° around the y-axis about the plane parallel to the xy plane of the cubic container 503 is input, and according to the setting, the modeling material layer of the three-dimensional structure 50 is input.
  • the xyz Cartesian coordinate system is rotated by 45 ° around the y-axis axis when the stacking direction is such that the bottom surface of the substantially columnar body portion of the container 503 is on the xy plane of the xyz Cartesian coordinate system.
  • the posture of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system, and STL data for modeling the three-dimensional structure 50 is generated.
  • the STL data for modeling of the three-dimensional structure 50 may be generated by setting based on data such as the axis and the rotation angle. That is, a setting for rotating the three-dimensional structure 50 by ⁇ 45 ° around the Y axis with a plane parallel to the XY plane of the cubic container 503 as the bottom surface is input, and the posture of the three-dimensional structure 50 is changed according to the setting.
  • the STL data for modeling of the three-dimensional structure 50 may be generated by setting.
  • the slice data generation unit 210 Slice data of each modeling material layer sliced in the stacking direction is generated from the modeling STL data (S5).
  • an opaque model material region is set for the model body 501, and a transparent model material region is set for a portion other than the model body 501 of the three-dimensional structure 50.
  • the support material is automatically provided so as to support the overhang portion from below, but the support material region corresponding to the support material is also set for each slice data.
  • the modeling stage 230 and the head unit 240 are moved by the control signal from the control unit 220, and the opaque model material is transferred from the first printer head 241 based on the slice data sent from the control unit 220.
  • the transparent model material from the printer head 243 and the support material from the third printer head 245 to the modeling stage 230, the three-dimensional structure 50 including the model body 501 and the container 503 is formed,
  • the support material portion S is also shaped (S6).
  • the left view of FIG. 5 shows the three-dimensional structure 50 formed by the forming method of the present embodiment, the right view of FIG. 5, and the three-dimensional structure 50 ′ formed by the conventional forming method from the y-axis direction.
  • It is a schematic diagram.
  • the stacking direction is the direction perpendicular to the bottom surface parallel to the xy plane, each of the cubes that are assumed to be main observation surfaces.
  • the model body 501 was observed from the x-axis direction and the y-axis direction perpendicular to the cube side surface of the surface, the model body 501 looked blurred.
  • the stacking direction is perpendicular to the y-axis direction, it is blurred when the model body 501 is observed from the y-axis direction.
  • the stacking direction is not perpendicular to the x-axis direction and the z-axis direction and is inclined 45 °, both the observation from the x-axis direction and the observation from the z-axis direction are possible.
  • the model body 501 can be clearly seen without blurring.
  • a setting for rotating the xyz orthogonal coordinate system around the y axis by 45 ° about the plane parallel to the xy plane of the cubic container 503 is input, and the three-dimensional structure 50 according to the setting.
  • the xyz orthogonal coordinate system is 45 around the axis of the y-axis when the stacking direction of the modeling material layers is such that the bottom surface of the substantially rectangular column portion of the container 503 is on the xy plane of the xyz orthogonal coordinate system.
  • the orientation of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated by °, and STL data for modeling the three-dimensional structure 50 is generated.
  • the stacking direction is not perpendicular to the y axis direction and is inclined by 45 °. Therefore, even if the model body 501 is observed from the y-axis direction, It can be seen in the clear without blurring even by observing the model 501 from the direction perpendicular to all the faces of the cube.
  • FIG. 6 is a photograph showing an example when the model body 501 ′ is observed from the z-axis direction, the x-axis direction, and the y-axis direction, respectively, and also from these photographs, the direction perpendicular to all the faces of the cube From this, it can be seen that even if the model body 501 is observed, it can be clearly seen without blurring.
  • the direction orthogonal to the stacking direction is the diagonal direction of the side surface of the container, and the diagonal direction of the side surface of the container is generally the direction in which the probability that the model body is observed is low.
  • the observation range that can be seen in is widened.
  • the stacking direction of the modeling material layer of the three-dimensional structure is such that the bottom surface of the portion of the substantially columnar body that the container has is on the xy plane of the xyz orthogonal coordinate system.
  • a predetermined angle around at least one of the x, y, and z axes (except when rotating only around the z axis and when all rotation angles are multiples of 90 °) Since the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system that has been rotated only by this, the stacking direction is not perpendicular to the axial direction other than the rotational axis, and the axial direction other than the rotational axis For observation, the model body can be clearly seen without blurring.
  • the main direction assumed to observe the model body is a direction perpendicular to or substantially perpendicular to the bottom surface or side surface of the substantially columnar part of the container. Since the direction is the direction, the model body can be clearly seen without being more blurred with respect to the observation from the bottom surface or the side surface perpendicular to the axial direction other than the rotation axis. This is particularly advantageous when precise observation is required, such as when the model body is a numerical simulation result.
  • a thin or thin object that is difficult to form as a three-dimensional structure by itself can be expressed in three dimensions, and the model body can be clearly observed in various directions from each surface of the polyhedron. can do.
  • objects that are difficult to model as a three-dimensional model by itself such as flying objects in the space due to instantaneous phenomena, can be expressed in three dimensions, and the model body can be clearly displayed in various directions from each side of the polyhedron. Can be observed.
  • by dividing one object into a plurality of parts and using the divided parts as model bodies they are housed in a transparent housing corresponding to each of them, and each shaped three-dimensional structure is combined. It is also possible to observe the inside of one object as a cross section.
  • the substantially rectangular parallelepiped portion is a cubic portion which is a rectangular parallelepiped, and one side surface of the rectangular parallelepiped portion is on the zx plane
  • xyz orthogonal coordinates are used.
  • the axis that rotates the system is the y-axis
  • the rotation angle is an angle formed by a diagonal line with the side on the x-axis of the one side surface.
  • the substantially rectangular parallelepiped portion is a cubic portion that is a rectangular parallelepiped, and one side surface of the rectangular parallelepiped portion is on the zx plane, and the other side surface adjacent to the one side surface is another side.
  • the axes that rotate the xyz orthogonal coordinate system are the y-axis and the x-axis
  • the rotation angles are angles formed by diagonal lines with the side on the x-axis of the one side surface, respectively.
  • FIG. 7 shows that when the substantially rectangular parallelepiped portion is a rectangular parallelepiped portion, when one side surface of the rectangular parallelepiped portion is on the zx plane, the xyz orthogonal coordinate system is arranged around the y axis.
  • It is the schematic diagram which looked at the three-dimensional modeling object modeled by the modeling method rotated only by the angle which the side on the x-axis of a side surface makes, and a diagonal. Referring to FIG. 7, it can be seen that the diagonal direction of the side surface of the substantially rectangular parallelepiped portion of the container is generally the direction in which the probability that the model body is observed is low.
  • the direction perpendicular to the stacking direction of the modeling material layer of the three-dimensional structure is the diagonal direction of the side surface of the cubic part that is a rectangular parallelepiped of the container, so the model body is cleared.
  • the observation range that can be seen in is widened.
  • the rotation angle of the xyz coordinate axis around which rotation axis is determined according to the main observation surface It may be determined in consideration of which surface of the body is assumed.
  • this angle is preferably 20 ° or more, and more preferably 30 ° or more.
  • the rotation angle is preferably 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 ° or 290 ° to 340 °, and 30 ° to 60 °, 120 ° to 150 °, 210 ° to 240 ° or 300 ° to 330 ° is more preferable.
  • a container has a part of a substantially straight pillar body, it shall have arbitrary appropriate shapes.
  • the container can have a substantially rectangular parallelepiped or substantially cylindrical shape.
  • the container has a shape in which a part of an arbitrary shape is added to all or a part of the upper part or the lower part of the substantially columnar part, or a part of the side surface of the substantially prismatic part. May be.
  • the container has a substantially columnar part, but even if the container has a shape other than that, the observation direction with high probability and the observation direction with low probability are known in advance.
  • the direction in which the modeling material layer of the three-dimensional structure is stacked is in the observation direction with high probability or a direction in the vicinity thereof, or the direction orthogonal to the stacking direction of the modeling material layer in the three-dimensional structure is low in observation A direction or a direction in the vicinity thereof may be used.
  • the present invention can be applied to a wide range of fields such as research tools, educational toys, and sales tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

A three-dimensionally shaped object in which shaping material layers are laminated together includes a model body and an accommodation body accommodating the model body and more transparent than the model body. The accommodation body has a substantially straight columnar portion. When a bottom surface of the substantially straight columnar portion is assumed to be on an xy plane of an xyz orthogonal coordinate system, a laminating direction of the shaping material layers is a direction parallel to a z'-axis direction of an x'y'z' coordinate system obtained by rotating the xyz orthogonal coordinate system through a prescribed angle about at least one of an x-axis, a y-axis, and a z-axis (except for a case of rotation only about the z-axis and a case in which all of the angles of rotation are multiples of 90°).

Description

三次元造形物並びにその造形のためのシステム及び方法、三次元造形物の造形用データ並びにその生成のための装置、生成方法、プログラム、及びプログラムを記憶した記憶媒体Three-dimensional structure, system and method for modeling, three-dimensional structure modeling data and apparatus for generating the same, generation method, program, and storage medium storing program
 この発明は、三次元造形物並びにその造形のためのシステム及び方法、三次元造形物の造形用データ並びにその生成のための装置、生成方法、プログラム、及びプログラムを記憶した記憶媒体に関する。 The present invention relates to a three-dimensional structure, a system and method for forming the three-dimensional object, data for forming a three-dimensional structure, an apparatus for generating the same, a generation method, a program, and a storage medium storing the program.
 本発明者らは、ディスプレイ上の画像を見るだけでは分かりにくい数値シミュレーションの結果を、三次元積層造形技術を用いて可視化することを提案してきた(下記非特許文献1)。具体的には、数値シミュレーションの結果をモデル体とし、そのモデル体を収容する直柱体の透明な収容体とで構成される三次元造形物を三次元積層造形技術を用いて作成するものである。図8は、航空機の脚部分(ランディングギア)周辺の乱流状況の数値シミュレーション結果の三次元造形物である。 The present inventors have proposed to visualize the result of numerical simulation, which is difficult to understand simply by looking at an image on a display, using a three-dimensional additive manufacturing technique (Non-patent Document 1 below). Specifically, the result of the numerical simulation is used as a model body, and a three-dimensional structure composed of a transparent cylindrical body containing the model body is created using a three-dimensional additive manufacturing technique. is there. FIG. 8 is a three-dimensional structure of the numerical simulation result of the turbulent flow situation around the aircraft leg (landing gear).
 同様な技術として、下記特許文献1には、人物などの被写体を撮像して得られた三次元カラー画像データに基づいて、その被写体の三次元モデルを立体造形する場合において、モデル体と、モデル体を収容する透明な収容体をとで構成される三次元造形物を三次元積層技術を用いて作成する技術が開示されている。 As a similar technique, Patent Document 1 below discloses a model body, a model, and a model when a three-dimensional model of a subject is three-dimensionally formed based on three-dimensional color image data obtained by imaging a subject such as a person. A technique for creating a three-dimensional structure including a transparent container that contains a body using a three-dimensional stacking technique is disclosed.
 これらの技術によれば、比較的細い部分や比較的薄い部分等の構造的に弱い部分、空間に浮いている部分がモデル体に含まれていても、その周囲に透明な収容体が存在しているため、そのようなモデル体を造形可能としたり、モデル体が壊れることを防止したりすることができる。 According to these technologies, even if the model body contains a structurally weak part such as a relatively thin part or a comparatively thin part or a part floating in the space, there is a transparent container around it. Therefore, it is possible to form such a model body or prevent the model body from being broken.
特開2015-205461号公報Japanese Patent Laying-Open No. 2015-205461
 しかしながら、このような三次元造形物をある方向から観察すると、シミュレーション結果であるモデル体がぼやけて不鮮明に見え、シミュレーション結果をクリアに観察できなかった。本発明者らは、このモデル体がぼやけて不鮮明に見える現象は、三次元造形物の造形材の積層方向に垂直な方向からモデル体を観察した場合に生じることを発見したものの、この現象に対する有効な対策を見出すことは困難であった。 However, when such a three-dimensional structure is observed from a certain direction, the model body, which is a simulation result, is blurred and unclear, and the simulation result cannot be observed clearly. The present inventors have found that the phenomenon in which the model body appears blurred and unclear is caused when the model body is observed from a direction perpendicular to the stacking direction of the modeling material of the three-dimensional structure. It was difficult to find an effective measure.
 そこで、本発明は、モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む、造形材層が積層された三次元造形物において、モデル体がぼやけて不鮮明に見えること実質的に防止することをこと目的の1つとする。 Therefore, the present invention relates to a three-dimensional structure in which a modeling material layer is stacked, including a model body and a housing body that contains the model body and is transparent to the model body and has a substantially straight column body portion. One of the purposes is to substantially prevent the model body from appearing blurred and unclear.
 本発明の1つの態様は、造形材層が積層された三次元造形物であって、モデル体と、前記モデル体を収容し、前記モデル体よりも透明な収容体を含み、前記収容体は、略直柱体の部分を有し、前記造形材層の積層方向は、前記略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向である三次元造形物を提供するものである。 One aspect of the present invention is a three-dimensional structure in which modeling material layers are stacked, and includes a model body, the model body, and a container that is more transparent than the model body. And the stacking direction of the modeling material layer is the xyz orthogonal coordinate system when the bottom surface of the substantially rectangular column portion is on the xy plane of the xyz orthogonal coordinate system. Rotate by a predetermined angle around at least one of the x, y, and z axes (except when rotating only around the z axis and when all rotation angles are multiples of 90 °) The present invention provides a three-dimensional structure that is parallel to the z′-axis direction of the x′y′z ′ coordinate system.
 前記所定の角度は20°~70°、110°~160°、200°~250°又は290°~340°であるものとすることができる。 The predetermined angle may be 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °.
 前記造形材層の積層方向は、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸のうちの2つの軸の周りに20°~70°、110°~160°、200°~250°又は290°~340°だけ回転させたx'y'z'座標系のz'軸方向と平行な方向であるものとすることができる。 As for the stacking direction of the modeling material layer, the xyz orthogonal coordinate system when the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system is two of the x axis, the y axis, and the z axis. A direction parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated about the axis by 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °. Can be.
 前記略直柱体の部分は、略直方体の部分であり、前記直方体の部分の1つの側面がzx平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がy軸であり、前記所定の角度が、前記1つの側面のx軸上の辺と対角線のなす角度であるものとすることができる。 The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the zx plane, the axis that rotates the xyz orthogonal coordinate system is the y-axis, The predetermined angle may be an angle formed by a diagonal line with a side on the x-axis of the one side surface.
 前記略直柱体の部分は、略直方体の部分であり、前記直方体の部分の1つの側面がyz平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がx軸であり、前記所定の角度が、前記1つの側面のy軸上の辺と対角線のなす角度であるものとすることができる。 The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the x-axis, The predetermined angle may be an angle formed by a diagonal line with a side on the y-axis of the one side surface.
 前記略直柱体の部分は、略直方体の部分であり、前記直方体の部分の1つの側面がyz平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がz軸であり、前記所定の角度が、前記底面のy軸上の辺と対角線のなす角度であるものとすることができる。 The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion, and when one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the z axis, The predetermined angle may be an angle formed by a diagonal line with a side on the y-axis of the bottom surface.
 前記モデル体は、数値シミュレーション結果を示すモデル体であるものとすることができる。 The model body may be a model body showing a numerical simulation result.
 本発明の1つの態様は、モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データの生成装置であって、前記モデル体の造形用データに基づいて前記モデル体と前記収容体とを合成した合成造形用データを取得又は生成する合成造形用データ取得/生成部と、前記合成造形用データに基づいて、前記造形材層の積層方向が、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたとき、前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように前記三次元造形物の造形用データを生成する三次元造形物造形用データ生成部とを備える造形用データの生成装置を提供するものである。 One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them. An apparatus for generating modeling data for acquiring, or acquiring / generating synthetic modeling data that acquires or generates synthetic modeling data obtained by synthesizing the model body and the container based on modeling data of the model body And the stacking direction of the modeling material layer is based on the synthetic modeling data, and the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system, the xyz orthogonal coordinate system is x Rotate a predetermined angle around at least one of the axis, y-axis, and z-axis (except when rotating only around the z-axis and when all rotation angles are multiples of 90 °) Z 'axis direction of the x'y'z' coordinate system and There is provided apparatus for generating a modeling data comprising a 3D object modeling data generating unit that generates a shaping data of the 3D object such that the row direction.
 本発明の1つの態様は、モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データの生成方法であって、前記造形材層の積層方向が、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように前記三次元造形物の造形用データを生成するステップとを含む造形用データの生成方法を提供するものである。 One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them. A method of generating modeling data for performing the xyz orthogonal coordinate system when the stacking direction of the modeling material layer is such that the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system. Rotate by a predetermined angle around at least one of the x, y, and z axes (except when rotating only around the z axis and when all rotation angles are multiples of 90 °) Generating a modeling data including a step of generating modeling data of the three-dimensional model so as to be in a direction parallel to the z′-axis direction of the x′y′z ′ coordinate system. is there.
 本発明の1つの態様は、前記造形用データの生成方法をコンピュータに実行させるためのプログラムを提供するものである。 One aspect of the present invention provides a program for causing a computer to execute the method for generating modeling data.
 本発明の1つの態様は、前記プログラムを記憶したコンピュータ読み取り可能な記憶媒体を提供するものである。 One aspect of the present invention provides a computer-readable storage medium storing the program.
 本発明の1つの態様は、モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データであって、前記造形材層の積層方向は、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向である造形用データを提供するものである。 One aspect of the present invention is to form a three-dimensional structure including a model body and a housing body that contains the model body and has a substantially straight column body by sequentially forming a modeling material layer and stacking them. The modeling material layer is laminated in the stacking direction of the modeling material layer with respect to the xyz orthogonal coordinate system when the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system, x rotated by a predetermined angle around at least one of the y-axis and z-axis (except when rotating only around the z-axis and when all rotation angles are multiples of 90 °) The data for modeling which is a direction parallel to the z'-axis direction of the 'y'z' coordinate system is provided.
 本発明の1つの態様は、前記造形用データを記憶したコンピュータ読み取り可能な記憶媒体を提供するものである。 One aspect of the present invention provides a computer-readable storage medium storing the modeling data.
 本発明の1つの態様は、前記造形用データを用いて、前記モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む前記三次元造形物を、前記造形材層を順に形成して積層することによって造形する方法を提供するものである。 One aspect of the present invention is the above-described tertiary including the model body and the container that contains the model body and has a substantially straight column body portion that is transparent to the model body using the modeling data. A method of modeling an original model by forming the modeling material layers in order and laminating them.
 本発明の1つの態様は、前記造形用データの生成装置と、前記造形用データに基づいて、前記モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形する三次元造形装置とを備える三次元造形システムを提供するものである。 One aspect of the present invention is a substantially straight column body that contains the model body and the model body, and is more transparent than the model body, based on the modeling data generation device and the modeling data. A three-dimensional modeling system including a three-dimensional modeling apparatus that models a three-dimensional modeled object including a container having a portion by sequentially forming a modeling material layer and stacking the modeling material layers.
 上記構成を有する本発明によれば、モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む、造形材層が積層された三次元造形物において、モデル体がぼやけて見えること実質的に防止することができる。 According to the present invention having the above-described configuration, a model body, and a tertiary layer in which a modeling material layer is stacked, including a model body and a housing body that has a portion of a substantially straight column body that is more transparent than the model body. In the original model, it can be substantially prevented that the model body looks blurred.
本発明の1つの実施形態に係る三次元造形システムの全体構成を示す図である。It is a figure showing the whole 3D modeling system composition concerning one embodiment of the present invention. 本発明の1つの実施形態に係る造形用データ生成装置10のハードウエア構成の例を示す図である。It is a figure showing an example of hardware constitutions of modeling data generation device 10 concerning one embodiment of the present invention. 本発明の1つの実施形態に係る三次元造形装置の構成を示す図である。It is a figure which shows the structure of the three-dimensional modeling apparatus which concerns on one embodiment of this invention. 本発明の1つの実施形態に係る三次元造形システムの造形処理の例のフローチャートである。It is a flowchart of the example of the modeling process of the three-dimensional modeling system which concerns on one embodiment of this invention. 本発明の1つの実施形態に係る造形方法により造形された三次元造形物、従来の方法により造形された三次元造形物をそれぞれy軸方向から見た模式図である。It is the schematic diagram which looked at the three-dimensional modeled object modeled by the modeling method concerning one embodiment of the present invention, and the three-dimensional modeled object modeled by the conventional method from the y-axis direction, respectively. 本発明の1つの実施形態に係る造形方法により造形された三次元造形物、従来の方法により造形された三次元造形物をz軸方向から観察したときの写真である。It is a photograph when the three-dimensional modeled object modeled by the modeling method concerning one embodiment of the present invention and the three-dimensional modeled object modeled by the conventional method are observed from the z-axis direction. 本発明の1つの実施形態に係る造形方法により造形された三次元造形物、従来の方法により造形された三次元造形物をx軸方向から観察したときの写真である。It is a photograph when the three-dimensional modeled object modeled by the modeling method concerning one embodiment of the present invention and the three-dimensional modeled object modeled by the conventional method are observed from the x-axis direction. 本発明の1つの実施形態に係る造形方法により造形された三次元造形物、従来の方法により造形された三次元造形物をy軸方向から観察したときの写真である。It is a photograph when the three-dimensional modeled object modeled by the modeling method concerning one embodiment of the present invention and the three-dimensional modeled object modeled by the conventional method are observed from the y-axis direction. 略直柱体の部分が直方体の部分である場合において、直方体の部分の1つの側面がzx平面上にあるとしたとき、xyz直交座標系をy軸の周りに、該1つの側面のx軸上の辺と対角線のなす角度だけ回転させた造形方法により造形された三次元造形物をy軸方向から見た模式図である。In the case where the substantially rectangular parallelepiped portion is a rectangular parallelepiped portion, when one side surface of the rectangular parallelepiped portion is on the zx plane, the xyz orthogonal coordinate system is set around the y axis, and the x axis of the one side surface It is the schematic diagram which looked at the three-dimensional structure modeled by the modeling method rotated only by the angle which the upper side and a diagonal line make from the y-axis direction. 数値シミュレーション結果の三次元造形物の従来例である。It is a conventional example of the three-dimensional structure of the numerical simulation result.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の1つの実施形態に係る三次元造形システムの全体構成を示す図であり、図3は、本発明の1つの実施形態に係る三次元造形装置の構成を示す図である。図1に示されるように本実施形態に係る三次元造形システム1は、造形用データ生成装置10、三次元造形装置20を備える。三次元造形装置20は、造形ステージ230上に、モデル材と、三次元造形物50の造形動作中にモデル材に接してモデル材を支持及び/又は覆うためのサポート材からなる造形材層を順に形成して積層することによって、三次元造形物50を造形する。三次元造形装置20は、造形材層の積層方向において、下方の位置のモデル材の幅よりも上方の位置のモデル材の幅が大きい、いわゆるオーバーハングしている部分や孤立部分がある場合、下方の位置のモデル材の周囲にサポート材を配置することにより、このオーバーハング部分や孤立部分を下方より支持するように自動的にサポート材を設けるようになっている。サポート材は三次元造形物50の造形の完了後に除去することができる。例えば、サポート材が水溶性である場合は、水に浸ければ除去することができる。 FIG. 1 is a diagram illustrating an overall configuration of a three-dimensional modeling system according to one embodiment of the present invention, and FIG. 3 is a diagram illustrating a configuration of a three-dimensional modeling apparatus according to one embodiment of the present invention. . As shown in FIG. 1, the three-dimensional modeling system 1 according to this embodiment includes a modeling data generation device 10 and a three-dimensional modeling device 20. The three-dimensional modeling apparatus 20 forms on the modeling stage 230 a modeling material layer including a model material and a support material for supporting and / or covering the model material in contact with the model material during the modeling operation of the three-dimensional modeling object 50. The three-dimensional structure 50 is formed by sequentially forming and stacking. In the stacking direction of the modeling material layer, the three-dimensional modeling apparatus 20 has a so-called overhanging part or isolated part in which the width of the model material at the upper position is larger than the width of the model material at the lower position, By arranging the support material around the model material at the lower position, the support material is automatically provided so as to support the overhang portion and the isolated portion from below. The support material can be removed after the modeling of the three-dimensional structure 50 is completed. For example, if the support material is water-soluble, it can be removed if immersed in water.
<造形用データ生成装置>
 造形用データ生成装置10は、3Dデータ受付部101、合成造形用データ取得・生成部103、三次元造形物造形用データ生成部105、設定部109を備える。造形用データ生成装置10は、サーバ、PC、スマートフォン、タブレット端末等であってもよいし、造形用データ生成装置10の一部又は全部が、三次元造形装置20の一部又は全部と同一の物理的装置として構成されてもよい。また、造形用データ生成装置10は、1つの物理的な装置として構成される必要はなく、複数の物理的な装置から構成されてもよい。
<Modeling data generator>
The modeling data generation apparatus 10 includes a 3D data reception unit 101, a synthetic modeling data acquisition / generation unit 103, a three-dimensional modeling modeling data generation unit 105, and a setting unit 109. The modeling data generation device 10 may be a server, a PC, a smartphone, a tablet terminal, or the like, and part or all of the modeling data generation device 10 is the same as part or all of the three-dimensional modeling device 20. It may be configured as a physical device. The modeling data generation device 10 does not have to be configured as one physical device, and may be configured from a plurality of physical devices.
 設定部109は、設定部109を介して入力された各種の設定データを、造形用データ生成装置10の各部に出力する。 The setting unit 109 outputs various setting data input via the setting unit 109 to each unit of the modeling data generation apparatus 10.
 3Dデータ受付部101は、造形対象物の三次元形状を示す3Dデータ(CADデータ、数値シミュレーション結果可視化データ等)を、直接、又はネットワークや記憶媒体を介して受け取り、合成造形用データ取得・生成部103に送る。3Dデータは、造形対象物の三次元形状のみでなく、造形対象物に関するカラー情報を含んでもよい。 The 3D data receiving unit 101 receives 3D data (CAD data, numerical simulation result visualization data, etc.) indicating the three-dimensional shape of the modeling object directly or via a network or a storage medium, and acquires and generates synthetic modeling data. Send to part 103. The 3D data may include not only the three-dimensional shape of the modeling target but also color information related to the modeling target.
 合成造形用データ取得・生成部103は、3Dデータ受付部101から、造形対象物の3Dデータを受け取り、この3Dデータを三次元造形用のデータとして、例えばSTL(Stereo Lithography)データに変換し、造形対象物に対応するモデル体501の造形用データを得る。そして、設定部109を介して入力された、収容体503の形状や寸法等の設定データに基づいて、モデル体501と、略直柱体の部分を有する、モデル体501を収容し、モデル体501よりも透明な収容体503を合成した合成造形用データである合成造形用STLデータを生成する。合成造形用データのデータ形式は、STLデータに限定されるものでなく、適切な任意のデータ形式を用いることができる。合成造形用データ取得・生成部103は、合成造形用データを生成せずに、3Dデータ受付部101を介することなく、既に生成された合成造形用データを取得してもよい。 The synthetic modeling data acquisition / generation unit 103 receives the 3D data of the modeling object from the 3D data receiving unit 101, converts the 3D data into 3D modeling data, for example, STL (Stereo) Lithography) data, Data for modeling of the model body 501 corresponding to the modeling object is obtained. Then, based on the setting data such as the shape and dimensions of the container 503 input via the setting unit 109, the model body 501 and the model body 501 having a substantially columnar portion are accommodated. STL data for synthetic modeling, which is synthetic modeling data obtained by synthesizing the container 503 that is more transparent than 501, is generated. The data format of the synthetic modeling data is not limited to STL data, and any appropriate data format can be used. The synthetic modeling data acquisition / generation unit 103 may acquire the already generated synthetic modeling data without generating the synthetic modeling data without going through the 3D data receiving unit 101.
 三次元造形物造形用データ生成部105は、設定部109を介して入力された回転軸、回転角等の設定データに基づいて、合成造形用データ取得・生成部103により取得又は生成された合成造形用STLデータで表される三次元造形物50について、三次元造形物50の造形材層の積層方向が、収容体503が有する略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように、三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成する。例えば、三次元造形物50の造形材層の積層方向が、略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をx軸、y軸、z軸のうちの2つの軸の周りに45°だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように、三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成する。なお、所定の角度は、すべての回転角度が90°の同じ倍数となる場合を除いてもよい。 The three-dimensional structure modeling data generation unit 105 is a composite acquired or generated by the synthetic modeling data acquisition / generation unit 103 based on the setting data such as the rotation axis and the rotation angle input via the setting unit 109. Regarding the three-dimensional structure 50 represented by the STL data for modeling, the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the bottom surface of the substantially columnar body portion of the container 503 is the xy plane of the xyz orthogonal coordinate system. The xyz Cartesian coordinate system is assumed to be on a predetermined angle around at least one of the x-axis, y-axis, and z-axis (provided that the rotation is performed only around the z-axis, and all rotation angles are The orientation of the three-dimensional structure 50 is set so that the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated only by a multiple of 90 °. STL data for modeling the object 50 is generated. For example, the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the xyz orthogonal coordinate system is the x axis, the y axis, and the z axis when the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system. The orientation of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated by 45 ° around two axes of STL data for modeling of the model 50 is generated. The predetermined angle may be excluded unless all the rotation angles are the same multiple of 90 °.
 図2は、本発明の1つの実施形態に係る造形用データ生成装置10のハードウエア構成の例を示す図である。造形用データ生成装置10は、CPU10a、RAM10b、ROM10c、外部メモリ10d、入力部10e、出力部10f、通信部10gを含む。RAM10b、ROM10c、外部メモリ10d、入力部10e、出力部10f、通信部10gは、システムバス10hを介して、CPU10aに接続されている。 FIG. 2 is a diagram illustrating an example of a hardware configuration of the modeling data generation apparatus 10 according to an embodiment of the present invention. The modeling data generation apparatus 10 includes a CPU 10a, a RAM 10b, a ROM 10c, an external memory 10d, an input unit 10e, an output unit 10f, and a communication unit 10g. The RAM 10b, ROM 10c, external memory 10d, input unit 10e, output unit 10f, and communication unit 10g are connected to the CPU 10a via the system bus 10h.
 CPU10aは、システムバス10hに接続される各デバイスを統括的に制御する。 The CPU 10a comprehensively controls each device connected to the system bus 10h.
 ROM10cや外部メモリ10dには、CPU10aの制御プログラムであるBIOSやOS、コンピュータが実行する機能を実現するために必要な各種プログラムやデータ等が記憶されている。 The ROM 10c and the external memory 10d store a BIOS and OS, which are control programs for the CPU 10a, and various programs and data necessary for realizing functions executed by the computer.
 RAM10bは、CPUの主メモリや作業領域等として機能する。CPU10aは、処理の実行に際して必要なプログラム等をROM10cや外部メモリ10dからRAM10bにロードして、ロードしたプログラムを実行することで各種動作を実現する。 The RAM 10b functions as a main memory and work area of the CPU. The CPU 10a implements various operations by loading a program or the like necessary for execution of processing from the ROM 10c or the external memory 10d to the RAM 10b and executing the loaded program.
 外部メモリ10dは、例えば、フラッシュメモリ、ハードディスク、DVD-RAM、USBメモリ等から構成される。 The external memory 10d is composed of, for example, a flash memory, a hard disk, a DVD-RAM, a USB memory, and the like.
 入力部10eは、ユーザ等からの操作指示等を受け付ける。入力部10eは、例えば、入力ボタン、キーボード、ポインティングデバイス、マイクロフォン、カメラ等の入力デバイスから構成される。 The input unit 10e receives an operation instruction from a user or the like. The input unit 10e includes input devices such as an input button, a keyboard, a pointing device, a microphone, and a camera, for example.
 出力部10fは、CPU10aで処理されるデータや、RAM10b、ROM10cや外部メモリ10dに記憶されるデータを出力する。出力部10fは、例えば、CRTディスプレイ、LCD、有機ELパネル、プリンタ、スピーカ等の出力デバイスから構成される。 The output unit 10f outputs data processed by the CPU 10a and data stored in the RAM 10b, the ROM 10c, and the external memory 10d. The output unit 10f includes an output device such as a CRT display, an LCD, an organic EL panel, a printer, and a speaker.
 通信部10gは、ネットワークを介して又は直接、外部機器と接続・通信するためのインタフェースである。通信部10gは、例えばシリアルインタフェース、LANインタフェース等のインタフェースから構成される。 The communication unit 10g is an interface for connecting / communication with an external device via a network or directly. The communication unit 10g includes an interface such as a serial interface or a LAN interface.
 三次元造形装置20のコンピュータハードウエア構成も同様である。 The computer hardware configuration of the three-dimensional modeling apparatus 20 is the same.
 図1に示される造形用データ生成装置の各部は、ROM10cや外部メモリ10dに記憶された各種プログラムが、CPU10a、RAM10b、ROM10c、外部メモリ10d、入力部10e、出力部10f、通信部10g等を資源として使用することで実現される。また、後述の三次元造形装置20のスライスデータ生成部210、制御部220等についても同様である。 Each part of the modeling data generation apparatus shown in FIG. 1 includes a CPU 10a, a RAM 10b, a ROM 10c, an external memory 10d, an input unit 10e, an output unit 10f, a communication unit 10g, and the like. Realized by using as a resource. The same applies to a slice data generation unit 210 and a control unit 220 of the 3D modeling apparatus 20 described later.
<三次元造形装置>
 図3に示すように、三次元造形装置20は、スライスデータ生成部210、制御部220、造形材層の積層方向(Z方向)に移動可能な造形ステージ230、及びヘッドユニット240を備える。ヘッドユニット240は、造形ステージ230上に不透明モデル材の液滴を吐出する第1のプリンタヘッド241、造形ステージ230上に透明モデル材の液滴を吐出する第2のプリンタヘッド243、造形ステージ230上にサポート材の液滴を吐出する第3のプリンタヘッド245、塗布された造形材を光硬化させるためのUV光源247、248を備える。三次元造形装置20は、1つの物理的な装置として構成される必要はなく、複数の物理的な装置から構成されてもよい。また、第1のプリンタヘッド241から吐出されるモデル材は、不透明なモデル材に限定されるものではなく、第2のプリンタヘッド243から吐出されるモデル材が、第1のプリンタヘッド241から吐出されるモデル材よりも透明であれば、透明又は半透明なモデル材としてもよい。
<Three-dimensional modeling device>
As shown in FIG. 3, the three-dimensional modeling apparatus 20 includes a slice data generation unit 210, a control unit 220, a modeling stage 230 that can move in the stacking direction (Z direction) of the modeling material layer, and a head unit 240. The head unit 240 includes a first printer head 241 that discharges opaque model material droplets on the modeling stage 230, a second printer head 243 that discharges transparent model material droplets on the modeling stage 230, and the modeling stage 230. A third printer head 245 that discharges droplets of the support material is provided thereon, and UV light sources 247 and 248 for photocuring the applied modeling material. The three-dimensional modeling apparatus 20 does not need to be configured as one physical apparatus, and may be configured from a plurality of physical apparatuses. Further, the model material ejected from the first printer head 241 is not limited to the opaque model material, and the model material ejected from the second printer head 243 is ejected from the first printer head 241. A transparent or translucent model material may be used as long as the model material is transparent.
 スライスデータ生成部210は、三次元造形物造形用データ生成部105により生成された三次元造形物50の造形用STLデータから、積層方向についてスライスした各造形材層のスライスデータを生成し、制御部220に送る。三次元造形物50の造形用STLデータは、造形用データ生成装置10から三次元造形装置20にネットワークや記憶媒体等を介して渡されてもよいし、三次元造形物造形用データ生成部105とスライスデータ生成部210が同一の物理的装置内にある等の場合には、直接送られてもよい。 The slice data generation unit 210 generates slice data of each modeling material layer sliced in the stacking direction from the STL data for modeling of the three-dimensional model 50 generated by the three-dimensional model modeling data generation unit 105. Send to section 220. The modeling STL data of the three-dimensional structure 50 may be passed from the modeling data generation apparatus 10 to the three-dimensional modeling apparatus 20 via a network, a storage medium, or the like, or the three-dimensional structure modeling data generation unit 105. And the slice data generation unit 210 may be sent directly in the same physical device.
 各スライスデータに対しては、三次元造形物50のモデル体501の造形用データに対して不透明モデル材領域、三次元造形物50のモデル体501以外の部分に対して透明モデル材領域が設定される。また、本実施形態においては、三次元造形物50の姿勢を上記のように回転させているので、オーバーハング部分が生じる。そのため、上述のように、オーバーハング部分を下方から支持するようにサポート材が自動的に設けられるが、各スライスデータに対して、このサポート材に対応するサポート材領域も設定される。 For each slice data, an opaque model material region is set for the modeling data of the model body 501 of the three-dimensional structure 50, and a transparent model material region is set for a portion other than the model body 501 of the three-dimensional structure 50. Is done. Moreover, in this embodiment, since the attitude | position of the three-dimensional structure 50 is rotated as mentioned above, an overhang part arises. Therefore, as described above, the support material is automatically provided so as to support the overhang portion from below, but the support material region corresponding to the support material is also set for each slice data.
 制御部220は、三次元造形物50の造形動作中に、三次元造形装置20全体の動作を制御する。 The control unit 220 controls the operation of the entire 3D modeling apparatus 20 during the modeling operation of the 3D model 50.
 造形ステージ230は、水平で平坦な造形面を有し、造形面上に造形材層を積層させ、三次元造形物50を形成するための可動ステージであり、昇降駆動部235によって、鉛直方向(Z方向)に移動させることができる。 The modeling stage 230 has a horizontal and flat modeling surface, and is a movable stage for stacking a modeling material layer on the modeling surface to form the three-dimensional modeled object 50. Z direction).
 昇降駆動部235は、制御部220からの制御信号によって、各造形材層の形成が完了する毎に、造形層の厚さに相当する距離だけ鉛直下方向に造形ステージ230を移動させる。 The elevating drive unit 235 moves the modeling stage 230 vertically downward by a distance corresponding to the thickness of the modeling layer every time the formation of each modeling material layer is completed by a control signal from the control unit 220.
 ヘッドユニット240は、制御部220からの制御信号に基づいて図示しない駆動手段によって、造形ステージ230の上方において、主走査方向(X方向)及び副走査方向(Y方向)に移動させることができる。 The head unit 240 can be moved in the main scanning direction (X direction) and the sub-scanning direction (Y direction) above the modeling stage 230 by driving means (not shown) based on a control signal from the control unit 220.
 第1のプリンタヘッド241は、1層分の造形材層が形成される際、その造形材層に対応するスライスデータに対して不透明モデル材領域が設定された領域に、不透明モデル材の液滴を吐出する。この吐出動作を、副走査方向にずらしながら複数回繰り返すことにより、造形ステージ230の所望の領域に造形材層の不透明モデル材領域を形成する。不透明モデル材領域は、UV光源247、248から紫外線を照射することによって硬化する。 When a modeling material layer for one layer is formed, the first printer head 241 drops an opaque model material droplet in a region where an opaque model material region is set for slice data corresponding to the modeling material layer. Is discharged. By repeating this discharge operation a plurality of times while shifting in the sub-scanning direction, an opaque model material region of the modeling material layer is formed in a desired region of the modeling stage 230. The opaque model material region is cured by irradiating ultraviolet rays from the UV light sources 247 and 248.
 第2のプリンタヘッド243は、1層分の造形材層が形成される際、その造形材層に対応するスライスデータに対して透明モデル材領域が設定された領域に、透明モデル材の液滴を吐出する。この吐出動作を、副走査方向にずらしながら複数回繰り返すことにより、造形ステージ230の所望の領域に造形材層の透明モデル材領域を形成する。透明モデル材領域はUV光源247、248から紫外線を照射することによって硬化する。 When a modeling material layer for one layer is formed, the second printer head 243 drops a transparent model material droplet in a region where a transparent model material region is set for slice data corresponding to the modeling material layer. Is discharged. By repeating this discharge operation a plurality of times while shifting in the sub-scanning direction, a transparent model material region of the modeling material layer is formed in a desired region of the modeling stage 230. The transparent model material region is cured by irradiating ultraviolet rays from the UV light sources 247 and 248.
 第3のプリンタヘッド245は、1層分の造形材層が形成される際、その造形材層に対応するスライスデータに対してサポート材領域が設定された領域に、サポート材の液滴を吐出する。この吐出動作を、副走査方向にずらしながら複数回繰り返すことにより、造形ステージ230の所望の領域に造形材層のサポート材領域を形成する。サポート材領域はUV光源247、248から紫外線を照射することによって光エネルギーの照射によって硬化する。 When a modeling material layer for one layer is formed, the third printer head 245 ejects droplets of the support material in an area where the support material area is set for slice data corresponding to the modeling material layer. To do. By repeating this discharge operation a plurality of times while shifting in the sub-scanning direction, a support material region of the modeling material layer is formed in a desired region of the modeling stage 230. The support material region is cured by irradiation of light energy by irradiating ultraviolet rays from UV light sources 247 and 248.
 ここで、不透明モデル材、透明モデル材、サポート材は、上記のような光硬化性のものの他に、熱硬化性のものや、自然冷却により硬化するものを用いてもよい。 Here, as the opaque model material, the transparent model material, and the support material, a thermosetting material or a material that is cured by natural cooling may be used in addition to the photocurable material as described above.
 このように、制御部220からの制御信号によって、造形ステージ230やヘッドユニット240が移動すると共に、制御部220から送られるスライスデータに基づいて、第1のプリンタヘッド241から不透明モデル材が、第2のプリンタヘッド243から透明モデル材が、第3のプリンタヘッド245からサポート材がそれぞれ造形ステージ230に供給されることによって、三次元造形物50の造形が行われる。 As described above, the modeling stage 230 and the head unit 240 are moved by the control signal from the control unit 220, and the opaque model material is transferred from the first printer head 241 based on the slice data sent from the control unit 220. The 3D model 50 is modeled by supplying the transparent model material from the second printer head 243 and the support material from the third printer head 245 to the modeling stage 230, respectively.
 以上のシステム構成を前提に、本発明の1つの実施形態に係る三次元造形システムの処理の例を、図1~6等を参照して、以下に説明する。図4は、本発明の1つの実施形態に係る三次元造形システムの造形処理の例のフローチャートである。説明の便宜上、収容体503の形状は立方体として説明する。 Based on the above system configuration, an example of processing of the three-dimensional modeling system according to one embodiment of the present invention will be described below with reference to FIGS. FIG. 4 is a flowchart of an example of a modeling process of the three-dimensional modeling system according to one embodiment of the present invention. For convenience of explanation, the shape of the container 503 is described as a cube.
 3Dデータ受付部101は、造形対象物の三次元形状を示す3Dデータ(CADデータ、数値シミュレーション結果可視化データ等)を受け取る(S1)。 The 3D data receiving unit 101 receives 3D data (CAD data, numerical simulation result visualization data, etc.) indicating the three-dimensional shape of the modeling object (S1).
 合成造形用データ取得・生成部103は、3Dデータ受付部101により受け取られた造形対象物の3Dデータを三次元造形用のデータとして、例えばSTL(Stereo Lithography)データに変換し、モデル体501の造形用データを得る(S2)。そして、設定部109を介して入力された、収容体503の形状や寸法等の設定データに基づいて、モデル体501と略直柱体の部分を有する収容体503を合成した合成造形用データである合成造形用STLデータを生成する(S3)。本実施形態においては、収容体503の形状として立方体を設定データとして入力する。合成造形用データ取得・生成部103は、合成造形用データを生成せずに、3Dデータ受付部101を介することなく、既に生成された合成造形用データを取得してもよい。 The synthetic modeling data acquisition / generation unit 103 converts the 3D data of the modeling target received by the 3D data reception unit 101 into, for example, STL (StereoLithography) data as data for three-dimensional modeling, and the model body 501 Data for modeling is obtained (S2). Then, based on the setting data such as the shape and dimensions of the container 503 input via the setting unit 109, the model 501 and the synthetic modeling data obtained by synthesizing the container 503 having a substantially straight column part. Certain synthetic modeling STL data is generated (S3). In this embodiment, a cube is input as setting data as the shape of the container 503. The synthetic modeling data acquisition / generation unit 103 may acquire the already generated synthetic modeling data without generating the synthetic modeling data without going through the 3D data receiving unit 101.
 三次元造形物造形用データ生成部105は、設定部109を介して入力された回転軸、回転角等の設定データに基づいて、合成造形用データ取得・生成部103により取得又は生成された合成造形用STLデータで表される三次元造形物50について、三次元造形物50の造形材層の積層方向が、収容体503が有する略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように、三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成する(S4)。例えば、立方体の収容体503のxy平面と平行な面を底面として、xyz座標系をy軸の周りに45°回転する設定が入力され、その設定に従って、三次元造形物50の造形材層の積層方向が、収容体503が有する略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をy軸の軸の周りに45°だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように、三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成する。このとき、三次元造形装置20のXYZ直交座標系で規定される造形空間内における合成造形用STLデータで表される三次元造形物50の姿勢を、設定部109を介して入力された、回転軸、回転角等のデータに基づいて設定し、三次元造形物50の造形用STLデータを生成してもよい。すなわち、立方体の収容体503のXY平面と平行な面を底面として、三次元造形物50をY軸の周りに-45°回転する設定が入力され、その設定に従って三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成してもよい。 The three-dimensional structure modeling data generation unit 105 is a composite acquired or generated by the synthetic modeling data acquisition / generation unit 103 based on the setting data such as the rotation axis and the rotation angle input via the setting unit 109. Regarding the three-dimensional structure 50 represented by the STL data for modeling, the stacking direction of the modeling material layer of the three-dimensional structure 50 is such that the bottom surface of the substantially columnar body portion of the container 503 is the xy plane of the xyz orthogonal coordinate system. The xyz Cartesian coordinate system is assumed to be on a predetermined angle around at least one of the x-axis, y-axis, and z-axis (provided that the rotation is performed only around the z-axis, and all rotation angles are The orientation of the three-dimensional structure 50 is set so that the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated only by a multiple of 90 °. Generate STL data for modeling the object 50 (S ). For example, a setting for rotating the xyz coordinate system by 45 ° around the y-axis about the plane parallel to the xy plane of the cubic container 503 is input, and according to the setting, the modeling material layer of the three-dimensional structure 50 is input. The xyz Cartesian coordinate system is rotated by 45 ° around the y-axis axis when the stacking direction is such that the bottom surface of the substantially columnar body portion of the container 503 is on the xy plane of the xyz Cartesian coordinate system. The posture of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system, and STL data for modeling the three-dimensional structure 50 is generated. At this time, the rotation of the three-dimensional structure 50 expressed by the STL data for synthetic modeling in the modeling space defined by the XYZ orthogonal coordinate system of the three-dimensional modeling apparatus 20 is input via the setting unit 109. The STL data for modeling of the three-dimensional structure 50 may be generated by setting based on data such as the axis and the rotation angle. That is, a setting for rotating the three-dimensional structure 50 by −45 ° around the Y axis with a plane parallel to the XY plane of the cubic container 503 as the bottom surface is input, and the posture of the three-dimensional structure 50 is changed according to the setting. The STL data for modeling of the three-dimensional structure 50 may be generated by setting.
 三次元造形物造形用データ生成部105により生成された三次元造形物50の造形用STLデータが、スライスデータ生成部210に入力されると、スライスデータ生成部210は、三次元造形物50の造形用STLデータから、積層方向についてスライスした各造形材層のスライスデータを生成する(S5)。 When the STL data for modeling of the three-dimensional structure 50 generated by the three-dimensional structure modeling data generation unit 105 is input to the slice data generation unit 210, the slice data generation unit 210 Slice data of each modeling material layer sliced in the stacking direction is generated from the modeling STL data (S5).
 各スライスデータに対しては、モデル体501に対して不透明モデル材領域、三次元造形物50のモデル体501以外の部分に対して透明モデル材領域が設定される。また、本実施形態においては、三次元造形物50の姿勢を上記のように回転させているので、オーバーハング部分が生じる。そのため、上述のように、オーバーハング部分を下方から支持するようにサポート材が自動的に設けられるが、各スライスデータに対して、このサポート材に対応するサポート材領域も設定される。 For each slice data, an opaque model material region is set for the model body 501, and a transparent model material region is set for a portion other than the model body 501 of the three-dimensional structure 50. Moreover, in this embodiment, since the attitude | position of the three-dimensional structure 50 is rotated as mentioned above, an overhang part arises. Therefore, as described above, the support material is automatically provided so as to support the overhang portion from below, but the support material region corresponding to the support material is also set for each slice data.
 そして、制御部220からの制御信号によって、造形ステージ230やヘッドユニット240が移動すると共に、制御部220から送られるスライスデータに基づいて、第1のプリンタヘッド241から不透明モデル材が、第2のプリンタヘッド243から透明モデル材が、第3のプリンタヘッド245からサポート材がそれぞれ造形ステージ230に供給されることによって、モデル体501、収容体503からなる三次元造形物50が造形されると共に、サポート材部分Sも造形される(S6)。 Then, the modeling stage 230 and the head unit 240 are moved by the control signal from the control unit 220, and the opaque model material is transferred from the first printer head 241 based on the slice data sent from the control unit 220. By supplying the transparent model material from the printer head 243 and the support material from the third printer head 245 to the modeling stage 230, the three-dimensional structure 50 including the model body 501 and the container 503 is formed, The support material portion S is also shaped (S6).
 図5の左図は、本実施形態の造形方法により造形された三次元造形物50、図5の右図、従来の造形方法により造形された三次元造形物50'をそれぞれy軸方向から見た模式図である。従来の造形方法により造形された三次元造形物50'においては、積層方向が、xy平面と平行な底面に垂直な方向であったため、主な観察面となると想定される面である立方体の各面のうちの立方体の側面に垂直なx軸方向とy軸方向から、モデル体501を観察するとぼやけて見えた。これに対して、本実施形態の造形方法により造形された三次元造形物50においては、y軸方向に対しては積層方向が垂直であるために、y軸方向からモデル体501を観察するとぼやけて見えるものの、x軸方向及びz軸方向に対しては積層方向が垂直でなく、45°傾いているので、x軸方向からの観察に対しても、z軸方向からの観察に対しても、モデル体501をぼやけずにクリアに見ることができる。 The left view of FIG. 5 shows the three-dimensional structure 50 formed by the forming method of the present embodiment, the right view of FIG. 5, and the three-dimensional structure 50 ′ formed by the conventional forming method from the y-axis direction. It is a schematic diagram. In the three-dimensional structure 50 ′ modeled by the conventional modeling method, since the stacking direction is the direction perpendicular to the bottom surface parallel to the xy plane, each of the cubes that are assumed to be main observation surfaces. When the model body 501 was observed from the x-axis direction and the y-axis direction perpendicular to the cube side surface of the surface, the model body 501 looked blurred. On the other hand, in the three-dimensional structure 50 modeled by the modeling method of the present embodiment, since the stacking direction is perpendicular to the y-axis direction, it is blurred when the model body 501 is observed from the y-axis direction. However, since the stacking direction is not perpendicular to the x-axis direction and the z-axis direction and is inclined 45 °, both the observation from the x-axis direction and the observation from the z-axis direction are possible. The model body 501 can be clearly seen without blurring.
 上記実施形態においては、立方体の収容体503のxy平面と平行な面を底面として、xyz直交座標系をy軸の周りに45°回転する設定が入力され、その設定に従って、三次元造形物50の造形材層の積層方向が、収容体503が有する略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をy軸の軸の周りに45°だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように、三次元造形物50の姿勢を設定し、三次元造形物50の造形用STLデータを生成したが、xyz直交座標系をy軸の周りに45°回転し、更にx軸の周りに45°回転する設定とすれば、y軸方向に対しても積層方向が垂直でなく、45°傾いているので、y軸方向からモデル体501を観察しても、すなわち立方体のすべての面に対して垂直な方向からモデル体501を観察してもぼやけずにクリアに見ることができる。図6A、6B、6Cは、立方体をy軸及びx軸の周りに45°回転させた場合の、z軸方向、x軸方向、y軸方向からモデル体501を観察したときの例、及び回転させない場合の、z軸方向、x軸方向、y軸方向からモデル体501'を観察したときの例をそれぞれ示す写真であり、これらの写真からも、立方体のすべての面に対して垂直な方向からモデル体501を観察してもぼやけずにクリアに見ることができることが分かる。 In the above-described embodiment, a setting for rotating the xyz orthogonal coordinate system around the y axis by 45 ° about the plane parallel to the xy plane of the cubic container 503 is input, and the three-dimensional structure 50 according to the setting. The xyz orthogonal coordinate system is 45 around the axis of the y-axis when the stacking direction of the modeling material layers is such that the bottom surface of the substantially rectangular column portion of the container 503 is on the xy plane of the xyz orthogonal coordinate system. The orientation of the three-dimensional structure 50 is set so as to be parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated by °, and STL data for modeling the three-dimensional structure 50 is generated. However, if the xyz orthogonal coordinate system is rotated by 45 ° around the y axis and further rotated by 45 ° around the x axis, the stacking direction is not perpendicular to the y axis direction and is inclined by 45 °. Therefore, even if the model body 501 is observed from the y-axis direction, It can be seen in the clear without blurring even by observing the model 501 from the direction perpendicular to all the faces of the cube. FIGS. 6A, 6B, and 6C are examples in which the model body 501 is observed from the z-axis direction, the x-axis direction, and the y-axis direction when the cube is rotated by 45 ° around the y-axis and the x-axis, and the rotation. FIG. 6 is a photograph showing an example when the model body 501 ′ is observed from the z-axis direction, the x-axis direction, and the y-axis direction, respectively, and also from these photographs, the direction perpendicular to all the faces of the cube From this, it can be seen that even if the model body 501 is observed, it can be clearly seen without blurring.
 また、この積層方向と直交する方向は、収容体の側面の対角線方向であり、収容体の側面の対角線方向は、一般に、モデル体が観察される蓋然性が低い方向であるから、モデル体をクリアに見ることができる観察範囲が広くなっている。 In addition, the direction orthogonal to the stacking direction is the diagonal direction of the side surface of the container, and the diagonal direction of the side surface of the container is generally the direction in which the probability that the model body is observed is low. The observation range that can be seen in is widened.
 本実施形態によれば、三次元造形物の造形材層の積層方向が、収容体が有する略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときのxyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向であるので、回転軸以外の軸方向に対しては積層方向が垂直でなく、回転軸以外の軸方向からの観察に対して、モデル体をよりぼやけることなくクリアに見ることができる。収容体が略直柱体の部分を有する場合、モデル体を観察するのに想定される主な方向は、収容体が有する略直柱体の部分の底面又は側面に垂直な方向又は垂直に近い方向であるので、回転軸以外の軸方向に垂直な底面又は側面からの観察に対して、モデル体をよりぼやけることなくクリアに見ることができる。そして、このことは、モデル体が数値シミュレーション結果である場合のような、精緻な観察が必要な場合に特に有利である。 According to the present embodiment, the stacking direction of the modeling material layer of the three-dimensional structure is such that the bottom surface of the portion of the substantially columnar body that the container has is on the xy plane of the xyz orthogonal coordinate system. A predetermined angle around at least one of the x, y, and z axes (except when rotating only around the z axis and when all rotation angles are multiples of 90 °) Since the direction is parallel to the z′-axis direction of the x′y′z ′ coordinate system that has been rotated only by this, the stacking direction is not perpendicular to the axial direction other than the rotational axis, and the axial direction other than the rotational axis For observation, the model body can be clearly seen without blurring. When the container has a substantially rectangular column part, the main direction assumed to observe the model body is a direction perpendicular to or substantially perpendicular to the bottom surface or side surface of the substantially columnar part of the container. Since the direction is the direction, the model body can be clearly seen without being more blurred with respect to the observation from the bottom surface or the side surface perpendicular to the axial direction other than the rotation axis. This is particularly advantageous when precise observation is required, such as when the model body is a numerical simulation result.
 本実施形態によれば、薄い、細いなど、それ自体では三次元造形物として造形しにくいものでも、立体的に表現することができ、多面体の各面から様々な方向でクリアにモデル体を観察することができる。また、瞬間的な現象による空間での飛散物など、それ自体では三次元造形物として造形しにくいものでも、立体的に表現することができ、多面体の各面から様々な方向でクリアにモデル体を観察することができる。また、1つの物体を複数に分割し、分割されたそれぞれの部分をモデル体として、それらがそれぞれに対応する透明な収容体に収容され、造形された、それぞれの三次元造形物を組み合わせることによって、1つの物体の内部を断面として観察することも可能となる。 According to the present embodiment, even a thin or thin object that is difficult to form as a three-dimensional structure by itself can be expressed in three dimensions, and the model body can be clearly observed in various directions from each surface of the polyhedron. can do. In addition, even objects that are difficult to model as a three-dimensional model by itself, such as flying objects in the space due to instantaneous phenomena, can be expressed in three dimensions, and the model body can be clearly displayed in various directions from each side of the polyhedron. Can be observed. In addition, by dividing one object into a plurality of parts and using the divided parts as model bodies, they are housed in a transparent housing corresponding to each of them, and each shaped three-dimensional structure is combined. It is also possible to observe the inside of one object as a cross section.
 上述のように、図5の実施形態においては、略直柱体の部分が直方体である立方体の部分であり、該直方体の部分の1つの側面がzx平面上にあるとしたとき、xyz直交座標系を回転させる軸がy軸であり、その回転角度が、該1つの側面のx軸上の辺と対角線のなす角度である。また、図6の実施形態においては、略直柱体の部分が直方体である立方体の部分であり、該直方体の部分の1つの側面がzx平面上にあり、該1つの側面に隣接する他の側面がyz平面上にあるとしたとき、xyz直交座標系を回転させる軸がy軸及びx軸であり、その回転角度が、それぞれ、該1つの側面のx軸上の辺と対角線のなす角度、該他の側面のy軸上の辺と対角線のなす角度である。 As described above, in the embodiment of FIG. 5, when the substantially rectangular parallelepiped portion is a cubic portion which is a rectangular parallelepiped, and one side surface of the rectangular parallelepiped portion is on the zx plane, xyz orthogonal coordinates are used. The axis that rotates the system is the y-axis, and the rotation angle is an angle formed by a diagonal line with the side on the x-axis of the one side surface. In the embodiment of FIG. 6, the substantially rectangular parallelepiped portion is a cubic portion that is a rectangular parallelepiped, and one side surface of the rectangular parallelepiped portion is on the zx plane, and the other side surface adjacent to the one side surface is another side. Assuming that the side surface is on the yz plane, the axes that rotate the xyz orthogonal coordinate system are the y-axis and the x-axis, and the rotation angles are angles formed by diagonal lines with the side on the x-axis of the one side surface, respectively. , An angle formed by a diagonal line with a side on the y-axis of the other side surface.
 図7は、略直柱体の部分が直方体の部分である場合において、直方体の部分の1つの側面がzx平面上にあるとしたとき、xyz直交座標系をy軸の周りに、該1つの側面のx軸上の辺と対角線のなす角度だけ回転させた造形方法により造形された三次元造形物をy軸方向から見た模式図である。図7を参照すると、収容体の略直方体の部分の側面の対角線方向は、一般に、モデル体が観察される蓋然性が低い方向であることが分かる。したがって、本実施形態によれば、三次元造形物の造形材層の積層方向と直交する方向が、収容体の直方体である立方体の部分の側面の対角線方向となっているから、モデル体をクリアに見ることができる観察範囲が広くなっている。 FIG. 7 shows that when the substantially rectangular parallelepiped portion is a rectangular parallelepiped portion, when one side surface of the rectangular parallelepiped portion is on the zx plane, the xyz orthogonal coordinate system is arranged around the y axis. It is the schematic diagram which looked at the three-dimensional modeling object modeled by the modeling method rotated only by the angle which the side on the x-axis of a side surface makes, and a diagonal. Referring to FIG. 7, it can be seen that the diagonal direction of the side surface of the substantially rectangular parallelepiped portion of the container is generally the direction in which the probability that the model body is observed is low. Therefore, according to the present embodiment, the direction perpendicular to the stacking direction of the modeling material layer of the three-dimensional structure is the diagonal direction of the side surface of the cubic part that is a rectangular parallelepiped of the container, so the model body is cleared. The observation range that can be seen in is widened.
 収容体が有する略直柱体の底面に対する積層方向の決定において、どの回転軸の周りにどのぐらいの回転角でxyz座標軸を回転させるかは、主な観察面が、収容体が有する略直柱体のどの面と想定されるか等を考慮して決定すればよい。この点、上述のように、観察方向が、積層方向に垂直な方向である場合に、モデル体がぼやけて見えるので、観察方向と、積層方向に垂直な方向とのなす角度が大きくなるにつれて、よりクリアにモデル体を観察できるが、この角度は20°以上とすることが好ましく、30°以上とすることがより好ましい。この場合、回転角は20°~70°、110°~160°、200°~250°又は290°~340°が好ましく、30°~60°、120°~150°、210°~240°又は300°~330°がより好ましいこととなる。 In the determination of the stacking direction with respect to the bottom surface of the substantially rectangular column included in the container, the rotation angle of the xyz coordinate axis around which rotation axis is determined according to the main observation surface. It may be determined in consideration of which surface of the body is assumed. In this regard, as described above, when the observation direction is a direction perpendicular to the stacking direction, the model body appears blurred, so as the angle between the observation direction and the direction perpendicular to the stacking direction increases, Although the model body can be observed more clearly, this angle is preferably 20 ° or more, and more preferably 30 ° or more. In this case, the rotation angle is preferably 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 ° or 290 ° to 340 °, and 30 ° to 60 °, 120 ° to 150 °, 210 ° to 240 ° or 300 ° to 330 ° is more preferable.
 上記実施形態においては、収容体の形状が立方体である例を説明したが、収容体は、略直柱体の部分を有していれば、任意の適切な形状を有するものとすることができる。例えば、収容体は、略直方体や略円柱の形状を有するものとすることができる。また、収容体は、略直柱体の部分の上部若しくは下部の全部若しくは一部、又は略直柱体の部分の側面の一部に任意の形状の部分が加えられた形状を有するものであってもよい。 In the said embodiment, although the example whose shape of a container is a cube was demonstrated, if a container has a part of a substantially straight pillar body, it shall have arbitrary appropriate shapes. . For example, the container can have a substantially rectangular parallelepiped or substantially cylindrical shape. In addition, the container has a shape in which a part of an arbitrary shape is added to all or a part of the upper part or the lower part of the substantially columnar part, or a part of the side surface of the substantially prismatic part. May be.
 上記実施形態においては、収容体が略直柱体の部分を有していたが、収容体がそれ以外の形状であっても、蓋然性の高い観察方向や蓋然性の低い観察方向が予め分かっている等の場合は、三次元造形物の造形材層の積層方向を蓋然性の高い観察方向若しくはその付近の方向に、又は三次元造形物の造形材層の積層方向と直交する方向を蓋然性の低い観察方向若しくはその付近の方向とすればよい。 In the above embodiment, the container has a substantially columnar part, but even if the container has a shape other than that, the observation direction with high probability and the observation direction with low probability are known in advance. In the case of, etc., the direction in which the modeling material layer of the three-dimensional structure is stacked is in the observation direction with high probability or a direction in the vicinity thereof, or the direction orthogonal to the stacking direction of the modeling material layer in the three-dimensional structure is low in observation A direction or a direction in the vicinity thereof may be used.
 上記実施形態においては、三次元積層造形の方式として、インクジェット方式を用いるものを例に説明したが、インクジェットバインダ方式、光造形方式、粉末焼結方式、熱溶解方式等の他の三次元積層造形方式を用いてもよいことは言うまでもない。 In the above-described embodiment, as an example of a three-dimensional additive manufacturing method, an example using an inkjet method has been described, but other three-dimensional additive manufacturing methods such as an ink-jet binder method, an optical modeling method, a powder sintering method, a heat melting method, and the like. It goes without saying that the method may be used.
 本発明は、研究用ツール、教育用玩具、営業用ツール等幅広い分野に適用可能である。 The present invention can be applied to a wide range of fields such as research tools, educational toys, and sales tools.
 以上、本発明について、例示のためにいくつかの実施形態に関して説明してきたが、本発明はこれに限定されるものでなく、本発明の範囲から逸脱することなく、形態及び詳細について、様々な変形及び修正を行うことができることは、当業者に明らかである。 Although the present invention has been described above with reference to several embodiments for purposes of illustration, the present invention is not limited thereto and various forms and details may be used without departing from the scope of the present invention. It will be apparent to those skilled in the art that variations and modifications can be made.
1 三次元造形システム
10 造形用データ生成装置
101 3Dデータ受付部
103 合成造形用データ取得/生成部
105 三次元造形物造形用データ生成部
109 設定部
20 三次元造形装置
210 スライスデータ生成部
220 制御部
230 造形ステージ
235 昇降駆動部
240 ヘッドユニット
241 第1のプリンタヘッド
243 第2のプリンタヘッド
245 第3のプリンタヘッド
247、248 UV光源
50、50' 三次元造形物
501、501' モデル体
503、503' 収容体
DESCRIPTION OF SYMBOLS 1 3D modeling system 10 Modeling data generation apparatus 101 3D data reception part 103 Synthetic modeling data acquisition / generation part 105 Three-dimensional modeling object data generation part 109 Setting part 20 3D modeling apparatus 210 Slice data generation part 220 Control Unit 230 modeling stage 235 elevating drive unit 240 head unit 241 first printer head 243 second printer head 245 third printer head 247, 248 UV light source 50, 50 ′ three-dimensional modeled object 501, 501 ′ model body 503, 503 'container

Claims (15)

  1.  造形材層が積層された三次元造形物であって、
     モデル体と、前記モデル体を収容し、前記モデル体よりも透明な収容体を含み、
     前記収容体は、略直柱体の部分を有し、
     前記造形材層の積層方向は、前記略直柱体の部分の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向である、三次元造形物。
    A three-dimensional structure in which modeling material layers are stacked,
    A model body, containing the model body, including a container transparent to the model body,
    The container has a substantially columnar part,
    As for the stacking direction of the modeling material layer, the xyz orthogonal coordinate system is at least one of the x-axis, y-axis, and z-axis when the bottom surface of the substantially rectangular column portion is on the xy plane of the xyz orthogonal coordinate system. X'y'z 'coordinate system rotated by a predetermined angle around one axis (except when rotating only around the z-axis and when all rotation angles are multiples of 90 °) A three-dimensional structure that is parallel to the z′-axis direction.
  2.  前記所定の角度は20°~70°、110°~160°、200°~250°又は290°~340°である請求項1に記載の三次元造形物。 The three-dimensional structure according to claim 1, wherein the predetermined angle is 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °.
  3.  前記造形材層の積層方向は、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸のうちの2つの軸の周りに20°~70°、110°~160°、200°~250°又は290°~340°だけ回転させたx'y'z'座標系のz'軸方向と平行な方向である請求項2に記載の三次元造形物。 As for the stacking direction of the modeling material layer, the xyz orthogonal coordinate system when the bottom surface of the substantially columnar body is on the xy plane of the xyz orthogonal coordinate system is two of the x axis, the y axis, and the z axis. A direction parallel to the z′-axis direction of the x′y′z ′ coordinate system rotated about the axis by 20 ° to 70 °, 110 ° to 160 °, 200 ° to 250 °, or 290 ° to 340 °. The three-dimensional structure according to claim 2.
  4.  前記略直柱体の部分は、略直方体の部分であり、
     前記直方体の部分の1つの側面がzx平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がy軸であり、前記所定の角度が、前記1つの側面のx軸上の辺と対角線のなす角度である請求項1~3のいずれか1項に記載の三次元造形物。
    The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion,
    When one side surface of the rectangular parallelepiped portion is on the zx plane, the axis that rotates the xyz orthogonal coordinate system is the y axis, and the predetermined angle is the side on the x axis of the one side surface. The three-dimensional structure according to any one of claims 1 to 3, wherein the three-dimensional structure is an angle formed by a diagonal line.
  5.  前記略直柱体の部分は、略直方体の部分であり、
     前記直方体の部分の1つの側面がyz平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がx軸であり、前記所定の角度が、前記1つの側面のy軸上の辺と対角線のなす角度である請求項1~4のいずれか1項に記載の三次元造形物。
    The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion,
    When one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the x axis, and the predetermined angle is the side on the y axis of the one side surface. The three-dimensional structure according to any one of claims 1 to 4, wherein the three-dimensional structure is an angle formed by a diagonal line.
  6.  前記略直柱体の部分は、略直方体の部分であり、
     前記直方体の部分の1つの側面がyz平面上にあるとしたとき、前記xyz直交座標系を回転させる軸がz軸であり、前記所定の角度が、前記底面のy軸上の辺と対角線のなす角度である請求項1~5のいずれか1項に記載の三次元造形物。
    The substantially rectangular parallelepiped portion is a substantially rectangular parallelepiped portion,
    Assuming that one side surface of the rectangular parallelepiped portion is on the yz plane, the axis that rotates the xyz orthogonal coordinate system is the z axis, and the predetermined angle is diagonal to the side on the y axis of the bottom surface. The three-dimensional structure according to any one of claims 1 to 5, wherein the three-dimensional structure is an angle formed.
  7.  前記モデル体は、数値シミュレーション結果を示すモデル体である請求項1~6のいずれか1項に記載の三次元造形物。 The three-dimensional structure according to any one of claims 1 to 6, wherein the model body is a model body showing a numerical simulation result.
  8.  モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データの生成装置であって、
     前記モデル体の造形用データに基づいて前記モデル体と前記収容体とを合成した合成造形用データを取得又は生成する合成造形用データ取得/生成部と、前記合成造形用データに基づいて、前記造形材層の積層方向が、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたとき、前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように前記三次元造形物の造形用データを生成する三次元造形物造形用データ生成部と、
    を備える造形用データの生成装置。
    Generation of modeling data for modeling a model body and a three-dimensional structure including the model body and a container having a substantially straight column body by forming and stacking modeling material layers in order. A device,
    Based on the synthetic modeling data acquisition / generation unit that acquires or generates synthetic modeling data obtained by synthesizing the model body and the container based on the modeling data of the model body, The stacking direction of the modeling material layer is such that when the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system, the xyz orthogonal coordinate system is at least one of the x axis, the y axis, and the z axis. Z 'axis of the x'y'z' coordinate system rotated by a predetermined angle around (except when rotating only around the z axis and when all rotation angles are multiples of 90 °) A three-dimensional structure modeling data generation unit that generates modeling data of the three-dimensional structure so as to be parallel to the direction;
    An apparatus for generating modeling data.
  9.  モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データの生成方法であって、
     前記造形材層の積層方向が、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向となるように前記三次元造形物の造形用データを生成するステップと、
    を含む造形用データの生成方法。
    Generation of modeling data for modeling a model body and a three-dimensional structure including the model body and a container having a substantially straight column body by forming and stacking modeling material layers in order. A method,
    The stacking direction of the modeling material layer is such that the xyz orthogonal coordinate system is at least one of the x-axis, y-axis, and z-axis when the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system. Z 'in the x'y'z' coordinate system rotated by a predetermined angle around (except when rotating only around the z-axis and when all rotation angles are multiples of 90 °) Generating modeling data of the three-dimensional structure so as to be parallel to the axial direction;
    Method for generating modeling data including
  10.  請求項9に記載の造形用データの生成方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the method for generating modeling data according to claim 9.
  11.  請求項10に記載のプログラムを記憶したコンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium storing the program according to claim 10.
  12.  モデル体と、前記モデル体を収容し、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形するための造形用データであって、
     前記造形材層の積層方向は、前記略直柱体の底面がxyz直交座標系のxy平面上にあるとしたときの前記xyz直交座標系をx軸、y軸、z軸の少なくとも1つの軸の周りに所定の角度(但し、z軸の周りにのみ回転させる場合、及びすべての回転角度が90°の同じ倍数となる場合を除く)だけ回転させたx'y'z'座標系のz'軸方向と平行な方向である、
    造形用データ。
    Modeling data for modeling a model body and a three-dimensional structure including the model body and including a container having a substantially straight column part by sequentially forming and stacking modeling material layers. And
    The stacking direction of the modeling material layer is such that the xyz orthogonal coordinate system is at least one of the x axis, the y axis, and the z axis when the bottom surface of the substantially rectangular column is on the xy plane of the xyz orthogonal coordinate system. Z in the x'y'z 'coordinate system rotated by a predetermined angle around (except when rotating only around the z-axis and when all rotation angles are the same multiple of 90 °) 'A direction parallel to the axial direction,
    Modeling data.
  13.  請求項12に記載の造形用データを記憶したコンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium storing the modeling data according to claim 12.
  14.  請求項12の造形用データを用いて、前記モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む前記三次元造形物を、前記造形材層を順に形成して積層することによって造形する方法。 Using the modeling data of claim 12, the three-dimensional modeled object including the model body, the model body, and a container having a portion of a substantially straight column body that is more transparent than the model body. A method of modeling by sequentially forming and stacking the modeling material layers.
  15.  請求項8に記載の造形用データの生成装置と、
     請求項12に記載の造形用データに基づいて、前記モデル体と、前記モデル体を収容し、前記モデル体よりも透明な、略直柱体の部分を有する収容体を含む三次元造形物を、造形材層を順に形成して積層することによって造形する三次元造形装置と、
    を備える三次元造形システム。
    The modeling data generating device according to claim 8;
    A three-dimensional structure including a housing body that contains the model body, the model body, and a transparent body that is more transparent than the model body, based on the modeling data according to claim 12. , A three-dimensional modeling apparatus that models by forming and layering modeling material layers in order,
    3D modeling system.
PCT/JP2017/036464 2016-10-07 2017-10-06 Three-dimensionally shaped object and system and method for shaping same, shaping data for three-dimensionally shaped object and device for geneatating same, generation method, program, and storage medium having program stored thereon WO2018066691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-199394 2016-10-07
JP2016199394A JP6617250B2 (en) 2016-10-07 2016-10-07 Three-dimensional structure, system and method for modeling, three-dimensional structure modeling data and apparatus for generating the same, generation method, program, and storage medium storing program

Publications (1)

Publication Number Publication Date
WO2018066691A1 true WO2018066691A1 (en) 2018-04-12

Family

ID=61831825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036464 WO2018066691A1 (en) 2016-10-07 2017-10-06 Three-dimensionally shaped object and system and method for shaping same, shaping data for three-dimensionally shaped object and device for geneatating same, generation method, program, and storage medium having program stored thereon

Country Status (2)

Country Link
JP (1) JP6617250B2 (en)
WO (1) WO2018066691A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129770B1 (en) * 2018-11-29 2020-07-03 이성배 Sculpture in three-dimensional transparent dimension and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006249A (en) * 1998-06-25 2000-01-11 Nakakin:Kk Manufacture of stereo lithographic product
JP2000037782A (en) * 1998-07-23 2000-02-08 Mitsubishi Electric Corp Apparatus and method for sheet laminating and shaping
JP2000094453A (en) * 1998-09-22 2000-04-04 Teijin Seiki Co Ltd Mold for molding resin and manufacture thereof
JP2014513637A (en) * 2011-03-02 2014-06-05 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for manufacturing 3D components
JP2017039293A (en) * 2015-08-21 2017-02-23 株式会社ミマキエンジニアリング Inkjet molding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006249A (en) * 1998-06-25 2000-01-11 Nakakin:Kk Manufacture of stereo lithographic product
JP2000037782A (en) * 1998-07-23 2000-02-08 Mitsubishi Electric Corp Apparatus and method for sheet laminating and shaping
JP2000094453A (en) * 1998-09-22 2000-04-04 Teijin Seiki Co Ltd Mold for molding resin and manufacture thereof
JP2014513637A (en) * 2011-03-02 2014-06-05 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for manufacturing 3D components
JP2017039293A (en) * 2015-08-21 2017-02-23 株式会社ミマキエンジニアリング Inkjet molding method

Also Published As

Publication number Publication date
JP6617250B2 (en) 2019-12-11
JP2018058317A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
CN109863014B (en) Improved additive manufacturing of three-dimensional objects
KR102024078B1 (en) Slicing and/or texturing for three-dimensional printing
US20160129631A1 (en) Three dimensional printing apparatus
US8903534B2 (en) System and method for producing three-dimensional multi-layer objects from digital models
US10642253B2 (en) System, method, and computer program for creating geometry-compliant lattice structures
TWI674978B (en) Color three-dimensional printing method and three-dimensional printing equipment
US20180356794A1 (en) Methods of defining internal structures for additive manufacturing
US20180095448A1 (en) System, method, and computer program for creating united cellular lattice structure
US20200356074A1 (en) Method for setting printing properties of a three-dimensional object for additive manufacturing process
JP2017094495A (en) Support member design device, method, program, structure formation device, and production method of structure
WO2017159002A1 (en) Information processing device, program, information processing method and molding system
TW201542344A (en) A printing method for three-dimensional object and system thereof
WO2018066691A1 (en) Three-dimensionally shaped object and system and method for shaping same, shaping data for three-dimensionally shaped object and device for geneatating same, generation method, program, and storage medium having program stored thereon
US10442178B2 (en) Information processing apparatus, information processing method, and three-dimensional solid object
CN107155316B (en) Honeycomb structure and manufacturing method thereof
JP2008117113A (en) Image forming device and method, and image forming program
JP6519756B2 (en) Method and apparatus for generating a numerical representation of a three-dimensional object suitable for use in producing a three-dimensional object by stereolithography
JP6745837B2 (en) 3D printing device and 3D printing method
KR102328851B1 (en) Three-dimensional printing using fast stl file conversion
US20210200185A1 (en) Determining object volumes in virtual object space
US20230052977A1 (en) Method of printing a three-dimensional object comprising a plurality of discrete elements
JP2017185715A (en) Slice image creating apparatus, 3-dimensional configuration generating system, and slice image creating method
JP2018058317A5 (en)
JP6840944B2 (en) 3D data generator, modeling device, manufacturing method and program of modeled object
Hoelzle et al. Expert survey to understand and optimize part orientation in direct metal laser sintering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858527

Country of ref document: EP

Kind code of ref document: A1