WO2018066662A1 - Method for producing silicon carbide semiconductor device - Google Patents

Method for producing silicon carbide semiconductor device Download PDF

Info

Publication number
WO2018066662A1
WO2018066662A1 PCT/JP2017/036349 JP2017036349W WO2018066662A1 WO 2018066662 A1 WO2018066662 A1 WO 2018066662A1 JP 2017036349 W JP2017036349 W JP 2017036349W WO 2018066662 A1 WO2018066662 A1 WO 2018066662A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon carbide
type
trench
sacrificial layer
Prior art date
Application number
PCT/JP2017/036349
Other languages
French (fr)
Japanese (ja)
Inventor
茂行 高木
下村 正樹
竹内 有一
鈴木 克己
佐智子 青井
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017179442A external-priority patent/JP6648743B2/en
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2018066662A1 publication Critical patent/WO2018066662A1/en
Priority to US16/353,670 priority Critical patent/US10748780B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present disclosure relates to a method for manufacturing a silicon carbide (hereinafter referred to as SiC) semiconductor device.
  • SiC silicon carbide
  • Non-Patent Document 1 After performing buried epitaxial growth so that the trench formed in the underlayer is filled with the SiC layer, it is further formed on the surface of the underlayer of the SiC layer. There has been proposed a method of removing the uneven portion and flattening. More specifically, the surface of the SiC layer is planarized by the following manufacturing method.
  • buried epitaxial growth is performed so as to fill the trench with a SiC layer.
  • the surface of the SiC layer has a concave-convex shape that is recessed at a position corresponding to the portion embedded in the trench and protrudes at a portion where the trench is not formed. Therefore, if the SiC layer is simply etched back to remove the portion of the SiC layer formed above the surface of the underlying layer, surface irregularities remain, and the surface of the SiC layer becomes flat. I can't plan.
  • LTO abbreviation of Low-Temperature Oxidation
  • SiC SiC
  • a polymer film is formed so as to cover the surface of the LTO. That is, even if the LTO is formed so as to cover the surface of the SiC layer, the surface unevenness remains, so that the LTO is further covered with a polymer film having a flat surface.
  • the polymer film and the LTO film are etched back so that the etching selectivity is 1, that is, the polymer film and the LTO are etched at the same rate.
  • the polymer film and the LTO are etched back at the same rate, that is, the surfaces of the polymer film and the LTO are kept flat regardless of the unevenness of the surface of the LTO.
  • the etching conditions such as the etching gas are switched, and the LTO and the SiC layer are etched back so that their etching selection ratio becomes 1.
  • the LTO and SiC layers are etched back at the same rate while the surface remains flat.
  • etch back of the LTO and SiC layers is continued until the underlayer is exposed.
  • Such a manufacturing method makes it possible to manufacture an SiC single crystal device having a structure in which an SiC layer is left only in a trench formed in an underlayer.
  • the above manufacturing method requires a step of manufacturing a polymer film in addition to LTO on the SiC layer. Also, a two-stage etch back process is required in which the polymer film and LTO are etched back so that the etching selectivity is 1, and then the LTO and SiC layer are etched back so that the etching selectivity is 1. become. Therefore, the manufacturing method becomes complicated, and as a result, the manufacturing cost increases.
  • a structure in which a SiC layer is left in the trench has been described as an example.
  • other structures may be used as the structure for flattening when irregularities are formed on the surface.
  • unevenness based on step bunching is formed when epitaxial growth is performed on an off-substrate having an off angle, or unevenness based on step bunching is formed by activation annealing after ion implantation of impurities. There is a case. In these cases as well, the above becomes a problem.
  • a first object of the present disclosure is to provide a manufacturing method capable of making the surface of a SiC layer flat more simply in a SiC semiconductor device having a structure in which a SiC layer is embedded in a trench formed in a base layer.
  • a second object of the present invention is to provide a manufacturing method capable of making the surface of the SiC layer flattened more simply when flattening the uneven surface on which the surface of the SiC layer is formed in the SiC semiconductor device. To do.
  • a semiconductor substrate made of SiC and having a base layer formed thereon is prepared, a trench is formed in the base layer, and the trench is formed in the trench.
  • the SiC layer is epitaxially grown so as to be formed on the surface of the underlayer while being buried, a sacrificial layer is formed on the surface of the SiC layer, and after the sacrificial layer is formed, the sacrificial layer is formed by reflow.
  • a fluid sacrificial layer is formed on the SiC layer. Since the surface of the sacrificial layer is in a flat state due to the fluidity, the surface of the SiC layer is flattened by etching back the SiC layer together with the sacrificial layer so that the etching selectivity is 1. Can be removed. Therefore, it is possible to more simply provide a method for manufacturing a SiC semiconductor device in which the surface of the base layer and the SiC layer after the etch back can be made flat.
  • a semiconductor substrate made of SiC and having a main surface and an off-substrate having an off angle is prepared.
  • a SiC layer is epitaxially grown on the surface, a sacrificial layer is formed on the surface of the epitaxially grown SiC layer and has unevenness based on step bunching, and the sacrificial layer is formed.
  • the sacrificial layer is planarized by reflow, and the SiC layer together with the planarized sacrificial layer is etched back by dry etching under an etching condition in which the etching selectivity between the sacrificial layer and the SiC layer is 1. , Including.
  • a fluid sacrificial layer is formed on the SiC layer.
  • the SiC layer can be removed so that the surface becomes flat by etching back the SiC layer together with the sacrificial layer so that the etching selectivity is 1. Therefore, it becomes possible to provide a method of manufacturing a SiC semiconductor device that can make the surface of the SiC layer after the etch back flattened more simply.
  • a semiconductor substrate made of SiC and having a main surface and an off substrate having an off angle is prepared.
  • An SiC layer is epitaxially grown on the surface, and after impurity implantation is performed on the surface of the epitaxially grown SiC layer, an activation annealing process is performed to form an impurity layer, and an activation annealing process is performed.
  • a sacrificial layer having fluidity is formed on the SiC layer. Forming. Also in this case, the SiC layer and the impurity layer can be removed so as to have a flat surface by etching back the SiC layer together with the sacrifice layer so that the etching selectivity is 1. Therefore, it is possible to more simply provide a method for manufacturing an SiC semiconductor device in which the surfaces of the SiC layer and the impurity layer after the etch back can be made flat.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the vertical MOSFET shown in FIG. 1. It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2A.
  • FIG. 3B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 2B.
  • FIG. 2D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 2C. It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2D. It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2E.
  • FIG. 3A is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 3B.
  • FIG. 3D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 3C. It is the figure which showed the same process as FIG. 3A by another cross section. It is the figure which showed the same process as FIG. 3B by another cross section.
  • FIG. 3C It is the figure which showed the same process as FIG. 3C by another cross section. It is the figure which showed the same process as FIG. 3D by another cross section. It is a top view of an alignment key. It is a top view of an alignment key. It is sectional drawing of JBS with which the SiC semiconductor device concerning 2nd Embodiment is equipped. It is sectional drawing which shows the manufacturing process of JBS shown in FIG. It is sectional drawing which shows the manufacturing process of JBS following FIG. 7A. It is sectional drawing which shows the manufacturing process of JBS following FIG. 7B.
  • FIG. 7D is a cross-sectional view showing the manufacturing process of JBS following FIG. 7C.
  • FIG. 10 is an enlarged cross-sectional view of a part of the vertical MOSFET shown in FIG. 9 during the manufacturing process.
  • FIG. 10B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10A.
  • FIG. 10B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10B.
  • FIG. 10D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10C.
  • the SiC semiconductor device according to the present embodiment has a vertical MOSFET formed as a semiconductor element.
  • the vertical MOSFET is formed in the cell region of the SiC semiconductor device, and the SiC semiconductor device is configured by forming the outer peripheral breakdown voltage structure so as to surround the cell region. Only shown.
  • the horizontal direction in FIG. 1 is the width direction
  • the vertical direction is the thickness direction or depth direction.
  • an n + type substrate 1 made of SiC is used as a semiconductor substrate.
  • the normal direction of the paper surface of FIG. 1 is matched with the off direction.
  • an off substrate having a (0001) Si surface and a predetermined off angle is used as the n + type substrate 1.
  • the off direction is ⁇ 11-20>.
  • the N + type substrate 1 has an N type impurity concentration of, for example, 1.0 ⁇ 10 19 / cm 3 .
  • an n ⁇ type drift layer 2 made of SiC, a p type base region 3 and an n + type source region 4 are epitaxially grown in this order.
  • the n ⁇ -type drift layer 2 has an n-type impurity concentration of 0.5 to 2.0 ⁇ 10 16 / cm 3 and a thickness of 5 to 14 ⁇ m.
  • the p-type base region 3 is a portion where a channel region is formed, and has a p-type impurity concentration of, for example, about 2.0 ⁇ 10 17 / cm 3 and a thickness of 0.5 to 2 ⁇ m.
  • the n + -type source region 4 has a higher impurity concentration than the n ⁇ -type drift layer 2, and the n-type impurity concentration in the surface layer portion is, for example, 2.5 ⁇ 10 18 to 1.0 ⁇ 10 19 / cm 3 and has a thickness. It is composed of about 0.5 to 2 ⁇ m.
  • a p-type deep layer 5 is formed so as to penetrate the n + -type source region 4 and the p-type base region 3 and reach the n ⁇ -type drift layer 2.
  • the p-type deep layer 5 is configured by, for example, embedding a trench 5 a having a width of 1 ⁇ m or less and an aspect ratio of 2 or more with a SiC layer by buried epitaxial growth. Also, the p-type impurity concentration is increased.
  • a plurality of p-type deep layers 5 are arranged at equal intervals on the n ⁇ -type drift layer 2 and are spaced apart from each other so that the top surface layout is striped.
  • each p-type deep layer 5 has a p-type impurity concentration of, for example, 1.0 ⁇ 10 17 to 1.0 ⁇ 10 19 / cm 3 , a width of 0.7 ⁇ m, and a depth of p-type base region 3 and n + -type. It is configured to be deeper than the total film thickness of the source region 4 by 0.4 ⁇ m or more.
  • the width is 0.8 ⁇ m and the depth is the p-type base region 3 and the n + -type source region so as to penetrate the p-type base region 3 and the n + -type source region 4 and reach the n ⁇ -type drift layer 2.
  • a gate trench 6 that is deeper by 0.2 to 0.4 ⁇ m than the total thickness of 4 is formed.
  • the p-type base region 3 and the n + -type source region 4 described above are arranged so as to be in contact with the side surface of the gate trench 6.
  • the gate trench 6 is formed in a line-shaped layout in which the horizontal direction in FIG. 1 is the width direction, the normal direction to the longitudinal direction is the longitudinal direction, and the vertical direction is the depth direction.
  • gate trench 6 Although only one gate trench 6 is shown in FIG. 1, a plurality of gate trenches 6 are arranged at equal intervals in the left-right direction on the paper surface, and are arranged so as to be sandwiched between p-type deep layers 5 respectively. It is made into a shape.
  • a portion of the p-type base region 3 located on the side surface of the gate trench 6 is a channel region that connects the n + -type source region 4 and the n ⁇ -type drift layer 2 when the vertical MOSFET is operated.
  • a gate insulating film 7 is formed on the inner wall surface of the gate trench 6 including the channel region.
  • a gate electrode 8 made of doped Poly-Si is formed on the surface of the gate insulating film 7, and the gate trench 6 is completely filled with the gate insulating film 7 and the gate electrode 8.
  • a source electrode 9 and a gate wiring layer are formed on the surface of the n + -type source region 4 and the p-type deep layer 5 and on the gate electrode 8 via an interlayer insulating film 10.
  • the source electrode 9 and the gate wiring layer are made of a plurality of metals such as Ni / Al. Of the plurality of metals, at least the n-type SiC, specifically, the n + -type source region 4 and the portion in contact with the gate electrode 8 in the case of n-type doping are made of a metal capable of ohmic contact with the n-type SiC. Yes.
  • the source electrode 9 is electrically insulated by being formed on the interlayer insulating film 10. The source electrode 9 is in electrical contact with the n + -type source region 4 and the p-type deep layer 5 through a contact hole formed in the interlayer insulating film 10.
  • n + -type substrate 1 On the back side of the n + -type substrate 1 n + -type substrate 1 and electrically connected to the drain electrode 11 is formed.
  • an n-channel type inverted MOSFET having a trench gate structure is formed.
  • a cell region is configured by arranging a plurality of such vertical MOSFETs.
  • An SiC semiconductor device is configured by forming an outer peripheral breakdown voltage structure such as a guard ring (not shown) so as to surround a cell region where such a vertical MOSFET is formed.
  • the n + -type source region 4, the p-type base region 3 and the n ⁇ -type drift layer 2 are used as a base layer, and the p-type deep layer 5 corresponding to the SiC layer is entered into the trench 5 a. It is formed by buried epitaxial growth.
  • the p-type base region 3 is formed, a portion of the p-type deep layer 5 that has been epitaxially grown in the buried epitaxial layer 5 is removed by a manufacturing process that will be described later. For this reason, the surfaces of the n + -type source region 4 and the p-type deep layer 5 are flat surfaces with few damage layers. Since the trench gate structure is formed on such a flat surface with few damage layers, the gate insulating film 7 is also formed with good film quality. Therefore, the SiC semiconductor device is capable of suppressing a reduction in gate life.
  • FIGS. 2A to 2H are cross-sectional views in a manufacturing process at a position corresponding to the vertical MOSFET shown in FIG. 3A to 3D and FIGS. 4A to 4D are cross-sectional views different from those in FIG. 1, and directions perpendicular to the direction parallel to ⁇ 11-20>, which is the off direction at the position where the alignment key is created, respectively.
  • FIG. 2 shows a part of a cross-sectional view during the manufacturing process.
  • FIG. 5A and 5B are layout diagrams when FIG. 3A and FIG. 4A and FIG. 3B and FIG. 4B are viewed from the upper side of the drawing.
  • 3A corresponds to the IIIA-IIIA section in FIG. 5A
  • FIG. 4A corresponds to the IVA-IVA section in FIG. 5A
  • 3B corresponds to the IIIB-IIIB cross section in FIG. 5B
  • FIG. 4B corresponds to the IVB-IVB cross section in FIG. 5B.
  • 3C, FIG. 3D, FIG. 4C, and FIG. 4D do not show layout views when viewed from above, but FIG. 3C and FIG. 3D are cross-sectional views at the same positions as FIG. 3A and FIG. FIG. 4D shows a cross section at the same position as in FIGS. 4A and 4B.
  • n + type substrate 1 is prepared as a semiconductor substrate. Then, an n ⁇ type drift layer 2 made of SiC, a p type base region 3 and an n + type source region 4 are epitaxially grown in this order on the main surface of the n + type substrate 1 with a desired film thickness.
  • a mask (not shown) is arranged on the surface of the n + -type source region 4, and a region where the p-type deep layer 5 is to be formed in the mask is opened. Then, anisotropic etching such as RIE (Reactive Ion Etching) is performed using the mask to form a trench 5a having a depth of, for example, a width of 1 ⁇ m or less and an aspect ratio of 2 or more.
  • RIE Reactive Ion Etching
  • an alignment trench 5b is formed at a position different from the trench 5a.
  • the alignment trench 5b as an alignment key is formed in a portion of the wafer that is different from a portion constituting the SiC semiconductor device or a portion that does not affect the vertical MOSFET in the chip.
  • the alignment trench 5b has a cross shape in which one of the two orthogonal sides extends in the ⁇ 11-20> direction, but may have another shape.
  • a p-type SiC layer 50 is formed. At this time, the p-type SiC layer 50 is buried in the trench 5a by buried epitaxial growth. However, since the trench 5a is formed in a narrow line shape, the p-type SiC layer 50 is formed in the trench 5a. Can be securely embedded.
  • the thickness of the portion of the p-type SiC layer 50 located above the surfaces of the trench 5a and the n + -type source region 4 corresponds to the trench 5a because the portion embedded in the trench 5a is generated. It becomes thin in the part to do. For this reason, the surface of the p-type SiC layer 50 has a concavo-convex shape which is recessed at a position corresponding to the portion embedded in the trench 5a and protrudes at a portion where the trench 5a is not formed.
  • the p-type SiC layer 50 has a recessed shape at a position corresponding to the alignment trench 5b, and as shown in FIG. 3B, the epitaxial growth depends on the plane orientation.
  • the facet 50a resulting from the property is formed. Specifically, facet 50a inclined along the off direction is formed on the surface of p-type SiC layer 50 at a position corresponding to one surface of alignment trench 5b whose normal direction is the ⁇ 11-20> direction. It is formed. As shown in FIG.
  • the facet 50a is not formed on the upstream side in the off direction, that is, on the side opposite to the direction in which the facet 50a extends.
  • the p-type SiC layers 50 formed on both side surfaces of the alignment trench 5b have a symmetrical shape, and the facets 50a are not formed.
  • the sacrificial layer 60 is flowed by reflowing at 950 to 1100 ° C. in an inert gas atmosphere such as a nitrogen gas atmosphere to flatten the surface.
  • an inert gas atmosphere such as a nitrogen gas atmosphere
  • PSG abbreviation of phospho silicate glass
  • BPSG abbreviation of Boro-phospho silicate glass
  • SOG abbreviation of Spin on glass
  • the surface of the sacrificial layer 60 becomes a flat surface by performing reflow.
  • the level difference due to the unevenness on the surface of the sacrificial layer 60 after reflow is 0.1 ⁇ m or less.
  • the sacrificial layer 60 is formed so that the recessed portion of the p-type SiC layer 50 at the position corresponding to the alignment trench 5b is buried.
  • the surface of the sacrificial layer 60 becomes a flat surface in the recessed portion as well as the outside of the recessed portion regardless of the presence or absence of the facet 50a.
  • Etchback is performed so that a portion of the p-type SiC layer 50 formed above the surface of the n + -type source region 4 is removed together with the sacrificial layer 60 by dry etching. Thereby, p-type SiC layer 50 remains only in trench 5a, and p-type deep layer 5 is formed.
  • etching back is performed so that the etching selection ratio between the sacrificial layer 60 and the p-type SiC layer 50 is 1, that is, the sacrificial layer 60 and the p-type SiC layer 50 are etched at the same rate.
  • the etching conditions are arbitrary. For example, a mixed gas of SF 6 and argon is used.
  • the RF power in the etching apparatus is 1200 W
  • the atmospheric pressure is 0.5 Pa
  • the flow rate of SF 6 is 3.7 sccm
  • argon The flow rate is 500 sccm.
  • the p-type SiC layer 50 is chemically etched with SF 6 and the sacrificial layer 60 is physically etched with argon, so that the etching selectivity can be 1.
  • sacrificial layer 60 and p-type SiC layer 50 are etched back at the same rate, that is, their surfaces are kept flat. Therefore, when the sacrificial layer 60 and the p-type SiC layer 50 are etched back until a portion formed above the surface of the n + -type source region 4 is removed, the n + -type source region 4 and the p-type deep layer 5 are removed.
  • the surface of can be made flat.
  • the surface after removal is also removed at the position serving as the alignment key. Can be flat. In the position serving as the alignment key, the facet 50a is formed. However, when the sacrificial layer 60 and the p-type SiC layer 50 are etched back so that the etching selection ratio becomes 1 as described above, Facet 50a can be removed.
  • the facet 50a remains when the p-type SiC layer 50 is etched back without forming the sacrificial layer 60, but the facet 50a does not remain by etching back the p-type SiC layer 50 together with the sacrificial layer 60.
  • the etch back method of this embodiment the surface state is good and the facet 50a can be removed.
  • the outer edge of the alignment trench 5b that is, the boundary between the p-type deep layer 5 and the n + -type source region 4 is used as an alignment key. If the facet 50a remains, when the alignment is recognized, the boundary between the facet 50a and the non-facet 50a may be erroneously recognized instead of the alignment key to be recognized. For this reason, it is possible to suppress the occurrence of misalignment by preventing the facet 50a from remaining.
  • the sacrificial layer 60 Since the sacrificial layer 60 is etched back with the p-type SiC layer 50 at a selection ratio of 1, the sacrificial layer 60 still remains in the alignment trench 5b when the etch-back of the p-type SiC layer 50 is completed. It becomes a state. For this reason, after the p-type SiC layer 50 is etched back, the sacrificial layer 60 in the alignment trench 5b is removed by switching to a condition in which only the sacrificial layer 60 is etched, so that it can be used as an alignment key thereafter. Become.
  • Step shown in FIG. 2F After forming a mask (not shown) on the n + -type source region 4 and the like, a region where the gate trench 6 is to be formed in the mask is opened. Then, the gate trench 6 is formed by performing anisotropic etching such as RIE using a mask. For example, the etching is performed with the depth of the gate trench 6 set to be 0.2 to 0.4 ⁇ m deeper than the total film thickness of the p-type base region 3 and the n + -type source region 4. Thereby, the protruding amount of the gate trench 6 from the bottom of the p-type base region 3 is set to 0.2 to 0.4 ⁇ m.
  • the gate insulating film 7 is formed by performing, for example, thermal oxidation, and the gate insulating film 7 covers the inner wall surface of the gate trench 6 and the surface of the n + type source region 4. Then, after depositing Poly-Si doped with p-type impurities or n-type impurities, this is etched back to leave the Poly-Si at least in the gate trench 6 to form the gate electrode 8.
  • An interlayer insulating film 10 made of, for example, an oxide film is formed so as to cover the surfaces of the gate electrode 8 and the gate insulating film 7. Then, after forming a mask (not shown) on the surface of the interlayer insulating film 10, a portion of the mask located between the gate electrodes 8, that is, a portion corresponding to the p-type deep layer 5 and its vicinity are opened. Thereafter, the interlayer insulating film 10 is patterned using a mask to form a contact hole exposing the p-type deep layer 5 and the n + -type source region 4.
  • an electrode material composed of, for example, a laminated structure of a plurality of metals is formed on the surface of the interlayer insulating film 10. Then, the source electrode 9 is formed by patterning the electrode material. Further, by performing a process such as forming the drain electrode 11 on the back surface side of the n + type substrate 1, the SiC semiconductor device having the vertical MOSFET according to the present embodiment shown in FIG. 1 is completed.
  • the p-type SiC layer 50 As described above, when the portion of the p-type SiC layer 50 for forming the p-type deep layer 5 formed above the surface of the n + -type source region 4 is removed, the p-type SiC layer 50 A fluid sacrificial layer 60 is formed thereon. Since the surface of the sacrificial layer 60 is in a flat state due to the fluidity, the p-type SiC layer 50 is etched back together with the sacrificial layer 60 so that the etching selectivity is 1, whereby the p-type SiC is obtained. The layer 50 can be removed so that the surface is flat.
  • JBS junction barrier Schottky diode
  • the JBS is formed in the cell portion of the SiC semiconductor device, and the SiC semiconductor device is configured by forming an outer peripheral breakdown voltage structure such as a guard ring so as to surround the cell region. Is mainly described.
  • an n ⁇ type drift layer 102 made of SiC having an n type impurity concentration lower than that of the n + type substrate 101 is formed on an n + type substrate 101 made of SiC.
  • a striped p-type deep layer 103 is formed on the surface portion of the n ⁇ -type drift layer 102, and although not shown, the p-type layer is formed so as to surround the periphery thereof.
  • An outer pressure-resistant structure such as a guard ring is provided.
  • the p-type deep layer 103 is arranged in a stripe-shaped trench 103a in which a plurality of n - type drift layers 102 are arranged at equal intervals, and is constituted by a p-type epitaxial film formed by buried epitaxial growth.
  • the trench 103a corresponds to a deep trench, and has a width of 1 ⁇ m or less and an aspect ratio of 2 or more, for example.
  • n ⁇ -type drift layer 102 and the p-type deep layer 103 a Schottky electrode 104 in contact with these surfaces is formed. Furthermore, an ohmic electrode 105 is formed on the back side of the n + type substrate 101.
  • the p-type deep layer 103 is formed by buried epitaxial growth in the trench 103a.
  • the etch back method similar to that of the first embodiment can also be applied when forming the p-type deep layer 103. Specifically, a method for manufacturing the SiC semiconductor device according to the present embodiment will be described with reference to FIGS. 7A to 7D.
  • n + type substrate 101 is prepared as a semiconductor substrate. Then, an n ⁇ type drift layer 102 made of SiC is epitaxially grown on the main surface of the n + type substrate 101 with a desired film thickness.
  • a mask (not shown) is arranged on the surface of the n ⁇ -type drift layer 102, and a region where the p-type deep layer 103 is to be formed in the mask is opened. Then, by performing anisotropic etching such as RIE using a mask, a trench 103a having a depth of, for example, a width of 1 ⁇ m or less and an aspect ratio of 2 or more is formed.
  • a p-type SiC layer 110 is formed. At this time, the p-type SiC layer 110 is buried in the trench 103a by buried epi, but since the trench 103a is formed in a narrow line shape, the p-type SiC layer 110 is formed in the trench 103a. Can be securely embedded.
  • the thickness of the portion of the p-type SiC layer 110 located above the surfaces of the trench 103a and the n ⁇ -type drift layer 102 corresponds to that of the trench 103a because the portion embedded in the trench 103a is generated. It becomes thin in the part to do. For this reason, the surface of the p-type SiC layer 110 has a concavo-convex shape that is recessed at a position corresponding to the portion embedded in the trench 103a and protrudes at a portion where the trench 103a is not formed.
  • Step shown in FIG. 7C After the sacrificial layer 120 is formed so as to cover the surface of the p-type SiC layer 110, the sacrificial layer 120 is flowed by performing reflow to flatten the surface.
  • the material of the sacrificial layer 120 and the reflow conditions are the same as in the first embodiment.
  • Etchback is performed so that a portion of the p-type SiC layer 110 formed above the surface of the n ⁇ -type drift layer 102 is removed together with the sacrificial layer 120 by dry etching.
  • the etch back method at this time is also the same as in the first embodiment. Thereby, p-type SiC layer 110 remains only in trench 103a, and p-type deep layer 5 is formed.
  • the surfaces of the n ⁇ -type drift layer 102 and the p-type deep layer 103 are It can be a flat surface.
  • the Schottky electrode 104 is formed on the front surface side of the n ⁇ type drift layer 102 and the p type deep layer 103, and the ohmic electrode 105 is formed on the back surface side of the n + type substrate 101. And so on. Thereby, the SiC semiconductor device according to the present embodiment is completed.
  • the same etch-back method as in the first embodiment can also be applied to a SiC semiconductor device having JBS formed by buried epitaxial growth of the p-type deep layer 103 in the trench 103a. Thereby, it is possible to obtain the same effect as in the first embodiment.
  • the SiC semiconductor device shown in FIG. 1 described in the first embodiment has a desired n ⁇ type drift layer 2 made of SiC on the main surface of the n + type substrate 1 as shown in FIG. 2A. Epitaxial growth with film thickness. At this time, since unevenness due to step bunching can be formed, it is flattened. Specifically, the steps shown in FIGS. 8A to 8D are performed.
  • an n + type substrate 1 is prepared.
  • an n ⁇ type drift layer 2 made of SiC is epitaxially grown on the main surface of the n + type substrate 1.
  • the n + type substrate 1 is an off substrate having an off angle, the surface of the n ⁇ type drift layer 2 formed thereon has an uneven surface on which unevenness due to step bunching is formed. 2a.
  • the sacrificial layer 60 is formed so as to cover the uneven surface 2a of the n ⁇ type drift layer 2, it is 950 to 1100 ° C. in an inert gas atmosphere such as a nitrogen gas atmosphere.
  • the sacrificial layer 60 is caused to flow by reflow to flatten the surface.
  • PSG, BPSG, SOG, or the like which becomes a fluid oxide film, can be used as in the first embodiment.
  • the sacrificial layer 60 and the n ⁇ -type drift layer 2 are etched back by dry etching so as to partially remove the uneven surface 2a side.
  • etching back is performed so that the etching selection ratio between the sacrificial layer 60 and the n ⁇ -type drift layer 2 is 1, that is, the sacrificial layer 60 and the n ⁇ -type drift layer 2 are etched at the same rate.
  • the etching conditions can be the same as those in the first embodiment, for example. Thereby, the surface of the n ⁇ -type drift layer 2 can be made flat.
  • the n ⁇ type drift layer 2 made of SiC is formed on the main surface of the n + type substrate 1, even when irregularities are formed by step bunching, the sacrificial layer 60 is formed, The sacrificial layer 60 and the n ⁇ type drift layer 2 are etched back so that the selection ratio becomes 1. As a result, irregularities on the surface of the n ⁇ type drift layer 2 can be removed, and the surface can be planarized.
  • the planarization of the p-type base region 3 and the n + -type source region 4 formed on the n ⁇ -type drift layer 2 is explained. Also in the case of performing the etching, an etch-back with a selection ratio of 1 using the sacrificial layer 60 may be performed. Further, only one of the n ⁇ type drift layer 2, the p type base region 3, and the n + type source region 4 may be planarized, or any one of a plurality of planarizations may be performed. good.
  • the SiC semiconductor device according to the present embodiment is also provided with a JBS as in the second embodiment.
  • the JBS is formed using an n + type substrate 101.
  • n is an n-type impurity concentration than the n + -type substrate 101 made of low been SiC - -type drift layer 102 is formed.
  • the JBS is formed in the cell portion of the SiC semiconductor substrate constituted by the n + -type substrate 1 and the n ⁇ -type drift layer 102, and the termination structure (not shown) is formed in the outer peripheral region thereof.
  • An SiC semiconductor device is configured.
  • a plurality of p-type deep layers 103 are arranged at equal intervals on the surface layer portion of the n ⁇ -type drift layer 102 to form a stripe shape.
  • a Schottky electrode 104 made of, for example, Mo (molybdenum) is formed on the surfaces of the n ⁇ -type drift layer 102 and the p-type deep layer 103. Schottky electrode 104 is in Schottky contact with n ⁇ type drift layer 102.
  • An insulating film 106 made of, for example, a silicon oxide film is formed on the surface of the n ⁇ type drift layer 102, and the Schottky electrode 104 is formed on the insulating film 106.
  • the Schottky electrode 104 is brought into contact with the surfaces of the n ⁇ -type drift layer 102 and the p-type deep layer 103 through an opening 106 a partially formed in the cell portion of the insulating film 106.
  • a p-type RESURF layer 107 is formed along the outer edge of the opening 106a.
  • the p-type RESURF layer 107 is further provided with a guard ring (not shown) on the outer periphery, thereby providing an outer peripheral withstand voltage structure.
  • an ohmic electrode 105 made of, for example, Ni (nickel), Ti (titanium), Mo, Au (gold), or the like is formed so as to be in contact with the back surface of the n + type substrate 101, thereby providing a JBS.
  • An SiC semiconductor device is configured.
  • the SiC semiconductor device configured as described above, for example, after the n ⁇ type drift layer 102 is epitaxially grown on the n + type substrate 101, ion implantation is performed and activation annealing treatment is performed, whereby a p type deep layer is formed. 103 and the p-type RESURF layer 107 can be formed. At this time, since unevenness due to step bunching can be formed, it is flattened. Specifically, the steps shown in FIGS. 10A to 10D are performed.
  • n + -type substrate 101 made of SiC on the main surface of the n + -type substrate 101
  • n - -type drift layer 102 is epitaxially grown. Further, a p-type impurity is ion-implanted into a region where the p-type deep layer 103 is to be formed using a mask (not shown). Only the p-type deep layer 103 is shown here, but at this time, p-type impurities are also ion-implanted into a region where the p-type RESURF layer 107 is to be formed. Then, an activation annealing process is performed.
  • n + -type substrate 1 has been turned off substrate having an off angle, n formed thereon - it also -type drift layer 102 is taken over. Therefore, as shown in FIG. 10B, the unevenness caused by the step bunching is formed on the surface of the n ⁇ type drift layer 102 including the surfaces of the p-type deep layer 103 and the p-type RESURF layer 107 by the annealing process. A surface 102a is formed.
  • the sacrificial layer 60 is formed so as to cover the uneven surface 102a of the n ⁇ type drift layer 102 including the surface of the p type deep layer 103, and then, for example, a nitrogen gas atmosphere is not used.
  • the sacrificial layer 60 is made to flow by reflowing at 950 to 1100 ° C. in an active gas atmosphere to flatten the surface.
  • PSG, BPSG, SOG, or the like which becomes a fluid oxide film, can be used as in the first embodiment.
  • etch back is performed by dry etching so as to partially remove the uneven surface 102a side of the n ⁇ type drift layer 102 including the surface of the p-type deep layer 103 and the like together with the sacrificial layer 60. .
  • the etching selection ratio between the sacrificial layer 60 and the n ⁇ type drift layer 102 and the p-type deep layer 103 is set to 1, that is, the sacrificial layer 60 and the n ⁇ type drift layer 102 and the p-type deep layer 103 and the like. Etch back so that and are etched at an equal rate.
  • the etching conditions can be the same as those in the first embodiment, for example. As a result, the surfaces of the n ⁇ -type drift layer 102 and the p-type deep layer 103 can be made flat.
  • the sacrificial layer 60 is formed, and then the n ⁇ -type drift layer 102 and the p ⁇ are formed together with the sacrificial layer 60.
  • the mold deep layer 103 and the like are etched back with a selection ratio of 1. As a result, surface irregularities such as the n ⁇ type drift layer 102 and the p type deep layer 103 can be removed, and the surfaces can be planarized.
  • the structure in which the n ⁇ type drift layer 2, the p type base region 3, and the n + type source region 4 are formed on the n + type substrate 1 as the base layer is taken as an example.
  • the structure in which the n ⁇ type drift layer 102 is formed on the n + type substrate 101 as the base layer is taken as an example.
  • the structure in which the SiC layer remains only in the trench formed in the base layer when the SiC layer is etched back together with the sacrificial layer has been described.
  • the uneven surface of the surface of the SiC layer epitaxially grown thereon or An example of the flattening of the uneven surface on which the impurity layer is formed by ion implantation is shown.
  • the vertical MOSFET has been described as an example of the semiconductor element provided in the SiC semiconductor device.
  • the semiconductor element is not limited to the vertical MOSFET, and other semiconductor elements are formed. May be.
  • the n-channel type MOSFET in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example, but a p-channel type MOSFET in which the conductivity type of each component is inverted may be used. good.
  • the MOSFET has been described as an example of the semiconductor element.
  • the present disclosure can be applied to an IGBT having a similar structure.
  • the IGBT only changes the conductivity type of the n + type substrate 1 from the n-type to the p-type with respect to the above-described embodiments, and the other structures and manufacturing methods are the same as those in the above-described embodiments.
  • the vertical MOSFET having the trench gate structure has been described as an example. However, the vertical MOSFET is not limited to the trench gate structure but may be a planar type.
  • a bar (-) should be attached on a desired number, but there is a limitation in terms of expression based on an electronic application. A bar shall be placed in front of the number.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

When a portion of a p-type SiC layer (50) for forming a p-type deep layer (5), said portion being formed above the surface of an n+-type source region (4), is removed, a sacrificial layer (60) having fluidity is formed on the p-type SiC layer (50). Since the surface of the sacrificial layer (60) is in a flat state due to the fluidity, the p-type SiC layer (50) is etched back together with the sacrificial layer (60) so that the etching selectivity thereof is 1. Consequently, the p-type SiC layer (50) is able to be removed so as to have a flat surface. Consequently, a method for producing an SiC semiconductor device according to the present invention is capable of enabling the n+-type source region (4) and the p-type deep layer (5) to have flat surfaces after the etching back step by a simpler process.

Description

炭化珪素半導体装置の製造方法Method for manufacturing silicon carbide semiconductor device 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年10月5日に出願された日本特許出願番号2016-197414と2017年9月19日に出願された日本特許出願番号2017-179442とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-197414 filed on October 5, 2016 and Japanese Patent Application No. 2017-179442 filed on September 19, 2017, the contents of which are described herein. Is incorporated by reference.
 本開示は、炭化珪素(以下、SiCという)半導体装置の製造方法に関するものである。 The present disclosure relates to a method for manufacturing a silicon carbide (hereinafter referred to as SiC) semiconductor device.
 従来より、SiCで形成された下地層に対してトレンチを形成したのち、トレンチ内のみにSiC層を埋め込む構造とするSiC半導体装置がある。このような構造の製造方法として、非特許文献1に、下地層に形成したトレンチ内をSiC層で埋め込むように埋込エピタキシャル成長を行ったのち、さらにSiC層のうち下地層の表面上に形成された部分を除去して平坦化する方法が提案されている。より詳しくは、以下のような製造方法によって、SiC層の表面の平坦化を行っている。 Conventionally, there is an SiC semiconductor device having a structure in which a trench is formed in a base layer made of SiC and then a SiC layer is embedded only in the trench. As a manufacturing method of such a structure, in Non-Patent Document 1, after performing buried epitaxial growth so that the trench formed in the underlayer is filled with the SiC layer, it is further formed on the surface of the underlayer of the SiC layer. There has been proposed a method of removing the uneven portion and flattening. More specifically, the surface of the SiC layer is planarized by the following manufacturing method.
 まず、下地層に対してトレンチを形成したのち、トレンチ内をSiC層で埋め込むように埋込エピタキシャル成長を行う。このとき、SiC層の表面は、トレンチに埋め込まれた部分と対応する位置において凹み、トレンチが形成されていない部分において突き出すような凹凸形状となる。したがって、単にSiC層をエッチバックしてSiC層のうちの下地層の表面よりも上に形成された部分を除去しようとしたのでは、表面の凹凸が残ってしまい、SiC層の表面の平坦化が図れない。 First, after forming a trench in the base layer, buried epitaxial growth is performed so as to fill the trench with a SiC layer. At this time, the surface of the SiC layer has a concave-convex shape that is recessed at a position corresponding to the portion embedded in the trench and protrudes at a portion where the trench is not formed. Therefore, if the SiC layer is simply etched back to remove the portion of the SiC layer formed above the surface of the underlying layer, surface irregularities remain, and the surface of the SiC layer becomes flat. I can't plan.
 このため、SiC層の表面を覆うようにLTO(Low TemperatureOxidationの略)を成膜し、さらに、LTOの表面を覆うようにポリマー膜を成膜している。つまり、LTOについては、SiC層の表面を覆うように形成しても表面の凹凸が残るため、表面が平坦となるポリマー膜でさらにLTOを覆うようにしている。 For this reason, LTO (abbreviation of Low-Temperature Oxidation) is formed so as to cover the surface of the SiC layer, and further, a polymer film is formed so as to cover the surface of the LTO. That is, even if the LTO is formed so as to cover the surface of the SiC layer, the surface unevenness remains, so that the LTO is further covered with a polymer film having a flat surface.
 このようにポリマー膜およびLTO膜を形成した後、ポリマー膜とLTO膜をエッチング選択比が1となるように、つまりポリマー膜とLTOが等しいレートでエッチングされるようにしてエッチバックする。これにより、LTOの表面の凹凸にかかわらず、ポリマー膜およびLTOが同じレートで、つまりポリマー膜およびLTOの表面が平坦な状態のままエッチバックされる。続いて、ポリマー膜が除去されると、エッチングガスなどのエッチング条件を切り替えて、今度はLTOとSiC層を、これらのエッチング選択比が1となるようにエッチバックする。これにより、表面が平坦なままの状態でLTOおよびSiC層が同じレートでエッチバックされる。そして、下地層が露出するまでLTOおよびSiC層のエッチバックを続ける。 After forming the polymer film and the LTO film in this way, the polymer film and the LTO film are etched back so that the etching selectivity is 1, that is, the polymer film and the LTO are etched at the same rate. Thereby, the polymer film and the LTO are etched back at the same rate, that is, the surfaces of the polymer film and the LTO are kept flat regardless of the unevenness of the surface of the LTO. Subsequently, when the polymer film is removed, the etching conditions such as the etching gas are switched, and the LTO and the SiC layer are etched back so that their etching selection ratio becomes 1. As a result, the LTO and SiC layers are etched back at the same rate while the surface remains flat. Then, etch back of the LTO and SiC layers is continued until the underlayer is exposed.
 このような製造方法により、下地層に形成したトレンチ内にのみSiC層を残した構造のSiC単結晶装置を製造することが可能となる。 Such a manufacturing method makes it possible to manufacture an SiC single crystal device having a structure in which an SiC layer is left only in a trench formed in an underlayer.
 しかしながら、上記の製造方法では、SiC層の上にLTOに加えてポリマー膜を製造する工程が必要になる。また、ポリマー膜とLTOとをエッチング選択比が1となるようにエッチバックしたのち、さらにLTOとSiC層とをエッチング選択比が1となるようにエッチバックするという2段階のエッチバック工程が必要になる。したがって、製造方法が複雑になり、その結果、製造コストも高くなる。 However, the above manufacturing method requires a step of manufacturing a polymer film in addition to LTO on the SiC layer. Also, a two-stage etch back process is required in which the polymer film and LTO are etched back so that the etching selectivity is 1, and then the LTO and SiC layer are etched back so that the etching selectivity is 1. become. Therefore, the manufacturing method becomes complicated, and as a result, the manufacturing cost increases.
 なお、ここでは表面に凹凸が形成されたときに平坦化を行うためのエッチバックを行う場合の一例として、トレンチ内にSiC層を残す構造を例に挙げて説明した。しかしながら、表面に凹凸が形成されたときに平坦化を行う構造としては、他の構造も挙げられる。例えば、オフ角を有するオフ基板の上にエピタキシャル成長を行ったときにステップバンチングに基づく凹凸が形成される場合や、不純物をイオン注入した後の活性化アニール処理によってステップバンチングに基づく凹凸が形成される場合がある。これらの場合にも、同様に、上記のことが課題となる。 Note that here, as an example of performing etch back for planarization when unevenness is formed on the surface, a structure in which a SiC layer is left in the trench has been described as an example. However, other structures may be used as the structure for flattening when irregularities are formed on the surface. For example, unevenness based on step bunching is formed when epitaxial growth is performed on an off-substrate having an off angle, or unevenness based on step bunching is formed by activation annealing after ion implantation of impurities. There is a case. In these cases as well, the above becomes a problem.
 本開示は、下地層に形成したトレンチ内にSiC層が埋め込まれた構造のSiC半導体装置において、より簡素にSiC層の表面を平坦面にできる製造方法を提供することを第1の目的とする。また、SiC半導体装置において、SiC層の表面に凹凸が形成された凹凸面を平坦化する際に、より簡素にSiC層の表面を平坦面にできる製造方法を提供することを第2の目的とする。 A first object of the present disclosure is to provide a manufacturing method capable of making the surface of a SiC layer flat more simply in a SiC semiconductor device having a structure in which a SiC layer is embedded in a trench formed in a base layer. . Further, a second object of the present invention is to provide a manufacturing method capable of making the surface of the SiC layer flattened more simply when flattening the uneven surface on which the surface of the SiC layer is formed in the SiC semiconductor device. To do.
 本開示の第1の観点におけるSiC半導体装置の製造方法では、SiCにて構成され、下地層が形成された半導体基板を用意することと、下地層に対してトレンチ形成することと、トレンチ内に埋め込みつつ、下地層の表面上に形成されるように、SiC層をエピタキシャル成長させることと、SiC層の表面に、犠牲層を成膜することと、犠牲層を成膜したのち、リフローによって犠牲層を平坦化することと、平坦化後の犠牲層と共にSiC層を、犠牲層とSiC層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる。 In the method of manufacturing a SiC semiconductor device according to the first aspect of the present disclosure, a semiconductor substrate made of SiC and having a base layer formed thereon is prepared, a trench is formed in the base layer, and the trench is formed in the trench. The SiC layer is epitaxially grown so as to be formed on the surface of the underlayer while being buried, a sacrificial layer is formed on the surface of the SiC layer, and after the sacrificial layer is formed, the sacrificial layer is formed by reflow. And planarizing and sacrificing the SiC layer together with the sacrificial layer after the planarization by dry etching under an etching condition in which the etching selectivity between the sacrificial layer and the SiC layer is 1.
 このように、SiC層のうち下地層の表面より上に形成された部分を除去する際に、SiC層の上に流動性のある犠牲層を形成している。そして、流動性により、犠牲層の表面が平坦な状態となっていることから、犠牲層と共にSiC層をエッチング選択比が1となるようにエッチバックすることで、SiC層を表面が平坦となるように除去できる。したがって、より簡素に、エッチバック後の下地層およびSiC層の表面を平坦面にできるSiC半導体装置の製造方法とすることが可能となる。 Thus, when removing the portion of the SiC layer formed above the surface of the underlayer, a fluid sacrificial layer is formed on the SiC layer. Since the surface of the sacrificial layer is in a flat state due to the fluidity, the surface of the SiC layer is flattened by etching back the SiC layer together with the sacrificial layer so that the etching selectivity is 1. Can be removed. Therefore, it is possible to more simply provide a method for manufacturing a SiC semiconductor device in which the surface of the base layer and the SiC layer after the etch back can be made flat.
 本開示の第2の観点におけるSiC半導体装置の製造方法では、SiCにて構成され、主表面を有すると共にオフ角を有するオフ基板にて構成された半導体基板を用意することと、半導体基板の主表面上に、SiC層をエピタキシャル成長させることと、エピタキシャル成長させたSiC層の表面であってステップバンチングに基づく凹凸を有する凹凸面の上に、犠牲層を成膜することと、犠牲層を成膜したのち、リフローによって犠牲層を平坦化することと、平坦化後の犠牲層と共にSiC層を、犠牲層とSiC層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる。 In the method of manufacturing a SiC semiconductor device according to the second aspect of the present disclosure, a semiconductor substrate made of SiC and having a main surface and an off-substrate having an off angle is prepared. A SiC layer is epitaxially grown on the surface, a sacrificial layer is formed on the surface of the epitaxially grown SiC layer and has unevenness based on step bunching, and the sacrificial layer is formed. After that, the sacrificial layer is planarized by reflow, and the SiC layer together with the planarized sacrificial layer is etched back by dry etching under an etching condition in which the etching selectivity between the sacrificial layer and the SiC layer is 1. , Including.
 このように、エピタキシャル成長させたSiC層の凹凸面を平坦化する際に、SiC層の上に流動性のある犠牲層を形成している。この場合にも、犠牲層と共にSiC層をエッチング選択比が1となるようにエッチバックすることで、SiC層を表面が平坦となるように除去できる。したがって、より簡素に、エッチバック後のSiC層の表面を平坦面にできるSiC半導体装置の製造方法とすることが可能となる。 Thus, when the uneven surface of the epitaxially grown SiC layer is flattened, a fluid sacrificial layer is formed on the SiC layer. Also in this case, the SiC layer can be removed so that the surface becomes flat by etching back the SiC layer together with the sacrificial layer so that the etching selectivity is 1. Therefore, it becomes possible to provide a method of manufacturing a SiC semiconductor device that can make the surface of the SiC layer after the etch back flattened more simply.
 本開示の第3の観点におけるSiC半導体装置の製造方法では、SiCにて構成され、主表面を有すると共にオフ角を有するオフ基板にて構成された半導体基板を用意することと、半導体基板の主表面上に、SiC層をエピタキシャル成長させることと、エピタキシャル成長させたSiC層の表面に不純物をイオン注入したのち、活性化アニール処理を行うことで不純物層を形成することと、活性化アニール処理を行った不純物層を含むSiC層の表面であってステップバンチングに基づく凹凸を有する凹凸面の上に、犠牲層を成膜することと、犠牲層を成膜したのち、リフローによって犠牲層を平坦化することと、平坦化後の犠牲層と共に不純物層およびSiC層を、犠牲層とSiC層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる。 In the method of manufacturing a SiC semiconductor device according to the third aspect of the present disclosure, a semiconductor substrate made of SiC and having a main surface and an off substrate having an off angle is prepared. An SiC layer is epitaxially grown on the surface, and after impurity implantation is performed on the surface of the epitaxially grown SiC layer, an activation annealing process is performed to form an impurity layer, and an activation annealing process is performed. Forming a sacrificial layer on the surface of the SiC layer including the impurity layer and having irregularities based on step bunching, and forming the sacrificial layer, and then planarizing the sacrificial layer by reflow And the impurity layer and the SiC layer together with the sacrificial layer after planarization under an etching condition in which the etching selectivity between the sacrificial layer and the SiC layer is 1. And it includes a etched back, a by dry etching.
 このように、SiC層に対してイオン注入および活性化アニール処理を行って不純物層を形成したときに形成される凹凸面を平坦化する際に、SiC層の上に流動性のある犠牲層を形成している。この場合にも、犠牲層と共にSiC層をエッチング選択比が1となるようにエッチバックすることで、SiC層および不純物層を表面が平坦となるように除去できる。したがって、より簡素に、エッチバック後のSiC層および不純物層の表面を平坦面にできるSiC半導体装置の製造方法とすることが可能となる。 As described above, when the uneven surface formed when the impurity layer is formed by performing ion implantation and activation annealing on the SiC layer, a sacrificial layer having fluidity is formed on the SiC layer. Forming. Also in this case, the SiC layer and the impurity layer can be removed so as to have a flat surface by etching back the SiC layer together with the sacrifice layer so that the etching selectivity is 1. Therefore, it is possible to more simply provide a method for manufacturing an SiC semiconductor device in which the surfaces of the SiC layer and the impurity layer after the etch back can be made flat.
第1実施形態にかかるSiC半導体装置に備えられる縦型MOSFETの断面図である。It is sectional drawing of the vertical MOSFET with which the SiC semiconductor device concerning 1st Embodiment is equipped. 図1に示す縦型MOSFETの製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing a manufacturing process of the vertical MOSFET shown in FIG. 1. 図2Aに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2A. 図2Bに続く縦型MOSFETの製造工程を示す断面図である。FIG. 3B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 2B. 図2Cに続く縦型MOSFETの製造工程を示す断面図である。FIG. 2D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 2C. 図2Dに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2D. 図2Eに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2E. 図2Fに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2F. 図2Gに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 2G. アライメントキーを作成する位置での図1に示す縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET shown in FIG. 1 in the position which produces an alignment key. 図3Aに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 3A. 図3Bに続く縦型MOSFETの製造工程を示す断面図である。FIG. 3B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 3B. 図3Cに続く縦型MOSFETの製造工程を示す断面図である。FIG. 3D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 3C. 図3Aと同じ工程を別断面で示した図である。It is the figure which showed the same process as FIG. 3A by another cross section. 図3Bと同じ工程を別断面で示した図である。It is the figure which showed the same process as FIG. 3B by another cross section. 図3Cと同じ工程を別断面で示した図である。It is the figure which showed the same process as FIG. 3C by another cross section. 図3Dと同じ工程を別断面で示した図である。It is the figure which showed the same process as FIG. 3D by another cross section. アライメントキーの上面図である。It is a top view of an alignment key. アライメントキーの上面図である。It is a top view of an alignment key. 第2実施形態にかかるSiC半導体装置に備えられるJBSの断面図である。It is sectional drawing of JBS with which the SiC semiconductor device concerning 2nd Embodiment is equipped. 図6に示すJBSの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of JBS shown in FIG. 図7Aに続くJBSの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of JBS following FIG. 7A. 図7Bに続くJBSの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of JBS following FIG. 7B. 図7Cに続くJBSの製造工程を示す断面図である。FIG. 7D is a cross-sectional view showing the manufacturing process of JBS following FIG. 7C. 第3実施形態で説明する縦型MOSFETの製造工程中の一部を拡大した断面図である。It is sectional drawing to which one part in the manufacturing process of the vertical MOSFET demonstrated in 3rd Embodiment was expanded. 図8Aに続く縦型MOSFETの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the vertical MOSFET following FIG. 8A. 図8Bに続く縦型MOSFETの製造工程を示す断面図である。FIG. 9A is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 8B. 図8Cに続く縦型MOSFETの製造工程を示す断面図である。FIG. 8D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 8C. 第4実施形態にかかるSiC半導体装置に備えられるJBSの断面図である。It is sectional drawing of JBS with which the SiC semiconductor device concerning 4th Embodiment is equipped. 図9に示す縦型MOSFETの製造工程中の一部を拡大したす断面図である。FIG. 10 is an enlarged cross-sectional view of a part of the vertical MOSFET shown in FIG. 9 during the manufacturing process. 図10Aに続く縦型MOSFETの製造工程を示す断面図である。FIG. 10B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10A. 図10Bに続く縦型MOSFETの製造工程を示す断面図である。FIG. 10B is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10B. 図10Cに続く縦型MOSFETの製造工程を示す断面図である。FIG. 10D is a cross-sectional view showing the vertical MOSFET manufacturing process following FIG. 10C.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態について説明する。本実施形態にかかるSiC半導体装置は、図1に示すように、半導体素子として縦型MOSFETが形成されたものである。縦型MOSFETは、SiC半導体装置のうちのセル領域に形成されており、そのセル領域を囲むように外周耐圧構造が形成されることでSiC半導体装置が構成されているが、ここでは縦型MOSFETのみ図示してある。なお、以下の説明では、図1の左右方向を幅方向とし、上下方向を厚み方向もしくは深さ方向として説明を行う。
(First embodiment)
A first embodiment will be described. As shown in FIG. 1, the SiC semiconductor device according to the present embodiment has a vertical MOSFET formed as a semiconductor element. The vertical MOSFET is formed in the cell region of the SiC semiconductor device, and the SiC semiconductor device is configured by forming the outer peripheral breakdown voltage structure so as to surround the cell region. Only shown. In the following description, the horizontal direction in FIG. 1 is the width direction, and the vertical direction is the thickness direction or depth direction.
 SiC半導体装置には、SiCからなるn型基板1が半導体基板として用いられている。本実施形態の場合、図1の紙面法線方向がオフ方向と一致させられている。n型基板1としては、表面が(0001)Si面とされていて、所定のオフ角を有したオフ基板が用いられており、例えばオフ方向が<11-20>とされている。n型基板1のN型不純物濃度は、例えば1.0×1019/cmとされている。 In the SiC semiconductor device, an n + type substrate 1 made of SiC is used as a semiconductor substrate. In the case of the present embodiment, the normal direction of the paper surface of FIG. 1 is matched with the off direction. As the n + type substrate 1, an off substrate having a (0001) Si surface and a predetermined off angle is used. For example, the off direction is <11-20>. The N + type substrate 1 has an N type impurity concentration of, for example, 1.0 × 10 19 / cm 3 .
 n型基板1の主表面上には、SiCからなるn型ドリフト層2、p型ベース領域3およびn型ソース領域4が順にエピタキシャル成長させられている。n型ドリフト層2は、例えばn型不純物濃度が0.5~2.0×1016/cmとされ、厚さが5~14μmとされている。p型ベース領域3は、チャネル領域が形成される部分で、p型不純物濃度が例えば2.0×1017/cm程度とされ、厚みが0.5~2μmで構成されている。n型ソース領域4は、n型ドリフト層2よりも高不純物濃度とされ、表層部におけるn型不純物濃度が例えば2.5×1018~1.0×1019/cm、厚さ0.5~2μm程度で構成されている。 On the main surface of the n + type substrate 1, an n type drift layer 2 made of SiC, a p type base region 3 and an n + type source region 4 are epitaxially grown in this order. For example, the n -type drift layer 2 has an n-type impurity concentration of 0.5 to 2.0 × 10 16 / cm 3 and a thickness of 5 to 14 μm. The p-type base region 3 is a portion where a channel region is formed, and has a p-type impurity concentration of, for example, about 2.0 × 10 17 / cm 3 and a thickness of 0.5 to 2 μm. The n + -type source region 4 has a higher impurity concentration than the n -type drift layer 2, and the n-type impurity concentration in the surface layer portion is, for example, 2.5 × 10 18 to 1.0 × 10 19 / cm 3 and has a thickness. It is composed of about 0.5 to 2 μm.
 n型ソース領域4やp型ベース領域3を貫通してn型ドリフト層2に達するようにp型ディープ層5が形成されている。p型ディープ層5は、例えば幅が1μm以下、アスペクト比が2以上の深さとされたトレンチ5a内を埋込エピタキシャル成長によってSiC層で埋め込むことによって構成されたものであり、p型ベース領域3よりもp型不純物濃度が高くされている。具体的には、p型ディープ層5は、n型ドリフト層2に複数本が等間隔に配置され、互いに交点なく離れて配置されることで、上面レイアウトがストライプ状とされている。例えば、各p型ディープ層5は、p型不純物濃度が例えば1.0×1017~1.0×1019/cm、幅0.7μm、深さがp型ベース領域3とn型ソース領域4の合計膜厚よりも0.4μm以上深くなるように構成されている。 A p-type deep layer 5 is formed so as to penetrate the n + -type source region 4 and the p-type base region 3 and reach the n -type drift layer 2. The p-type deep layer 5 is configured by, for example, embedding a trench 5 a having a width of 1 μm or less and an aspect ratio of 2 or more with a SiC layer by buried epitaxial growth. Also, the p-type impurity concentration is increased. Specifically, a plurality of p-type deep layers 5 are arranged at equal intervals on the n -type drift layer 2 and are spaced apart from each other so that the top surface layout is striped. For example, each p-type deep layer 5 has a p-type impurity concentration of, for example, 1.0 × 10 17 to 1.0 × 10 19 / cm 3 , a width of 0.7 μm, and a depth of p-type base region 3 and n + -type. It is configured to be deeper than the total film thickness of the source region 4 by 0.4 μm or more.
 また、p型ベース領域3およびn型ソース領域4を貫通してn型ドリフト層2に達するように、例えば幅が0.8μm、深さがp型ベース領域3とn型ソース領域4の合計膜厚よりも0.2~0.4μm深くされたゲートトレンチ6が形成されている。このゲートトレンチ6の側面と接するように上述したp型ベース領域3およびn型ソース領域4が配置されている。ゲートトレンチ6は、図1の紙面左右方向を幅方向、紙面法線方向を長手方向、紙面上下方向を深さ方向とするライン状のレイアウトで形成されている。また、図1には1本しか示していないが、ゲートトレンチ6は、複数本が紙面左右方向に等間隔に配置され、それぞれp型ディープ層5の間に挟まれるように配置されていてストライプ状とされている。 Further, for example, the width is 0.8 μm and the depth is the p-type base region 3 and the n + -type source region so as to penetrate the p-type base region 3 and the n + -type source region 4 and reach the n -type drift layer 2. A gate trench 6 that is deeper by 0.2 to 0.4 μm than the total thickness of 4 is formed. The p-type base region 3 and the n + -type source region 4 described above are arranged so as to be in contact with the side surface of the gate trench 6. The gate trench 6 is formed in a line-shaped layout in which the horizontal direction in FIG. 1 is the width direction, the normal direction to the longitudinal direction is the longitudinal direction, and the vertical direction is the depth direction. Although only one gate trench 6 is shown in FIG. 1, a plurality of gate trenches 6 are arranged at equal intervals in the left-right direction on the paper surface, and are arranged so as to be sandwiched between p-type deep layers 5 respectively. It is made into a shape.
 p型ベース領域3のうちゲートトレンチ6の側面に位置している部分は、縦型MOSFETの作動時にn型ソース領域4とn型ドリフト層2との間を繋ぐチャネル領域とされる。このチャネル領域を含むゲートトレンチ6の内壁面に、ゲート絶縁膜7が形成されている。そして、ゲート絶縁膜7の表面にはドープドPoly-Siにて構成されたゲート電極8が形成されており、これらゲート絶縁膜7およびゲート電極8によってゲートトレンチ6内が埋め尽くされている。 A portion of the p-type base region 3 located on the side surface of the gate trench 6 is a channel region that connects the n + -type source region 4 and the n -type drift layer 2 when the vertical MOSFET is operated. A gate insulating film 7 is formed on the inner wall surface of the gate trench 6 including the channel region. A gate electrode 8 made of doped Poly-Si is formed on the surface of the gate insulating film 7, and the gate trench 6 is completely filled with the gate insulating film 7 and the gate electrode 8.
 また、n型ソース領域4およびp型ディープ層5の表面やゲート電極8の上には、層間絶縁膜10を介してソース電極9やゲート配線層が形成されている。ソース電極9やゲート配線層は、複数の金属、例えばNi/Al等にて構成されている。そして、複数の金属のうち少なくともn型SiC、具体的にはn型ソース領域4やn型ドープの場合のゲート電極8と接触する部分はn型SiCとオーミック接触可能な金属で構成されている。また、複数の金属のうち少なくともp型SiC、具体的にはp型ディープ層5と接触する部分はp型SiCとオーミック接触可能な金属で構成されている。なお、ソース電極9は、層間絶縁膜10上に形成されることで電気的に絶縁されている。そして、層間絶縁膜10に形成されたコンタクトホールを通じて、ソース電極9はn型ソース領域4およびp型ディープ層5と電気的に接触させられている。 A source electrode 9 and a gate wiring layer are formed on the surface of the n + -type source region 4 and the p-type deep layer 5 and on the gate electrode 8 via an interlayer insulating film 10. The source electrode 9 and the gate wiring layer are made of a plurality of metals such as Ni / Al. Of the plurality of metals, at least the n-type SiC, specifically, the n + -type source region 4 and the portion in contact with the gate electrode 8 in the case of n-type doping are made of a metal capable of ohmic contact with the n-type SiC. Yes. Further, at least a portion of the plurality of metals that contacts the p-type SiC, specifically, the p-type deep layer 5, is made of a metal that can make ohmic contact with the p-type SiC. The source electrode 9 is electrically insulated by being formed on the interlayer insulating film 10. The source electrode 9 is in electrical contact with the n + -type source region 4 and the p-type deep layer 5 through a contact hole formed in the interlayer insulating film 10.
 さらに、n型基板1の裏面側にはn型基板1と電気的に接続されたドレイン電極11が形成されている。このような構造により、nチャネルタイプの反転型のトレンチゲート構造の縦型MOSFETが構成されている。このような縦型MOSFETが複数セル配置されることでセル領域が構成されている。そして、このような縦型MOSFETが形成されたセル領域を囲むように図示しないガードリングなどによる外周耐圧構造が構成されることでSiC半導体装置が構成されている。 Further, on the back side of the n + -type substrate 1 n + -type substrate 1 and electrically connected to the drain electrode 11 is formed. With such a structure, an n-channel type inverted MOSFET having a trench gate structure is formed. A cell region is configured by arranging a plurality of such vertical MOSFETs. An SiC semiconductor device is configured by forming an outer peripheral breakdown voltage structure such as a guard ring (not shown) so as to surround a cell region where such a vertical MOSFET is formed.
 このように構成されたSiC半導体装置では、n型ソース領域4やp型ベース領域3およびn型ドリフト層2を下地層として、SiC層に相当するp型ディープ層5をトレンチ5a内への埋込エピタキシャル成長によって形成している。このp型ベース領域3の形成時に、後述する製造工程により、埋込エピタキシャル成長させたp型ディープ層5のうち下地層の上に形成された部分を除去するようにしている。このため、n型ソース領域4およびp型ディープ層5の表面はダメージ層の少ない平坦面となっている。そして、このようなダメージ層の少ない平坦面に対してトレンチゲート構造を形成していることから、ゲート絶縁膜7も良好な膜質で形成されている。したがって、ゲート寿命の低下を抑制することが可能なSiC半導体装置となっている。 In the SiC semiconductor device configured as described above, the n + -type source region 4, the p-type base region 3 and the n -type drift layer 2 are used as a base layer, and the p-type deep layer 5 corresponding to the SiC layer is entered into the trench 5 a. It is formed by buried epitaxial growth. When the p-type base region 3 is formed, a portion of the p-type deep layer 5 that has been epitaxially grown in the buried epitaxial layer 5 is removed by a manufacturing process that will be described later. For this reason, the surfaces of the n + -type source region 4 and the p-type deep layer 5 are flat surfaces with few damage layers. Since the trench gate structure is formed on such a flat surface with few damage layers, the gate insulating film 7 is also formed with good film quality. Therefore, the SiC semiconductor device is capable of suppressing a reduction in gate life.
 次に、本実施形態にかかる縦型MOSFETを備えたSiC半導体装置の製造方法について、図2A~図2H、図3A~図3D、図4A~図4D、図5Aおよび図5Bを参照して説明する。なお、図2A~図2Hは、図1に示す縦型MOSFETと対応する位置での製造工程中の断面図である。図3A~図3Dおよび図4A~図4Dは、図1とは別断面であって、それぞれ、アライメントキーを作成する位置でのオフ方向である<11-20>と平行な方向と垂直な方向での製造工程中の断面図の一部を示したものである。また、図5Aおよび図5Bは、図3Aおよび図4Aや図3Bおよび図4Bを紙面上方から見たときのレイアウト図である。なお、図3Aは、図5AにおけるIIIA-IIIA断面と対応し、図4Aは、図5AにおけるIVA-IVA断面に対応している。また、図3Bは、図5BにおけるIIIB-IIIB断面と対応し、図4Bは、図5BにおけるIVB-IVB断面に対応している。図3C、図3D、図4Cおよび図4Dと対応する紙面上方から見たときのレイアウト図については示していないが、図3Cおよび図3Dは図3Aおよび図3Bと同じ位置の断面、図4Cおよび図4Dは図4Aおよび図4Bと同じ位置の断面を示している。 Next, a manufacturing method of the SiC semiconductor device including the vertical MOSFET according to the present embodiment will be described with reference to FIGS. 2A to 2H, FIGS. 3A to 3D, FIGS. 4A to 4D, FIGS. 5A and 5B. To do. 2A to 2H are cross-sectional views in a manufacturing process at a position corresponding to the vertical MOSFET shown in FIG. 3A to 3D and FIGS. 4A to 4D are cross-sectional views different from those in FIG. 1, and directions perpendicular to the direction parallel to <11-20>, which is the off direction at the position where the alignment key is created, respectively. FIG. 2 shows a part of a cross-sectional view during the manufacturing process. 5A and 5B are layout diagrams when FIG. 3A and FIG. 4A and FIG. 3B and FIG. 4B are viewed from the upper side of the drawing. 3A corresponds to the IIIA-IIIA section in FIG. 5A, and FIG. 4A corresponds to the IVA-IVA section in FIG. 5A. 3B corresponds to the IIIB-IIIB cross section in FIG. 5B, and FIG. 4B corresponds to the IVB-IVB cross section in FIG. 5B. 3C, FIG. 3D, FIG. 4C, and FIG. 4D do not show layout views when viewed from above, but FIG. 3C and FIG. 3D are cross-sectional views at the same positions as FIG. 3A and FIG. FIG. 4D shows a cross section at the same position as in FIGS. 4A and 4B.
 〔図2Aに示す工程〕
 まず、半導体基板として、ウェハ状のn型基板1を用意する。そして、このn型基板1の主表面上にSiCからなるn型ドリフト層2、p型ベース領域3およびn型ソース領域4を順に所望の膜厚でエピタキシャル成長させる。
[Step shown in FIG. 2A]
First, a wafer-like n + type substrate 1 is prepared as a semiconductor substrate. Then, an n type drift layer 2 made of SiC, a p type base region 3 and an n + type source region 4 are epitaxially grown in this order on the main surface of the n + type substrate 1 with a desired film thickness.
 〔図2Bに示す工程〕
 次に、n型ソース領域4の表面に図示しないマスクを配置し、マスクのうちのp型ディープ層5の形成予定領域を開口させる。そして、マスクを用いてRIE(Reactive Ion Etching)などの異方性エッチングを行うことにより、例えば幅が1μm以下、アスペクト比が2以上の深さのトレンチ5aを形成する。
[Step shown in FIG. 2B]
Next, a mask (not shown) is arranged on the surface of the n + -type source region 4, and a region where the p-type deep layer 5 is to be formed in the mask is opened. Then, anisotropic etching such as RIE (Reactive Ion Etching) is performed using the mask to form a trench 5a having a depth of, for example, a width of 1 μm or less and an aspect ratio of 2 or more.
 このとき、図3Aおよび図4Aに示すように、トレンチ5aと異なる位置に、アライメントトレンチ5bを形成する。例えば、ウェハのうちのSiC半導体装置を構成するチップとされる部分と異なる部分もしくはチップ内における縦型MOSFETには影響を与えない部位に、アライメントキーとしてのアライメントトレンチ5bを形成する。ここでは、図5Aに示すように、アライメントトレンチ5bについては、直行する二辺のうちの一方が<11-20>方向に延びる十字形状などとしているが、他の形状であっても良い。 At this time, as shown in FIGS. 3A and 4A, an alignment trench 5b is formed at a position different from the trench 5a. For example, the alignment trench 5b as an alignment key is formed in a portion of the wafer that is different from a portion constituting the SiC semiconductor device or a portion that does not affect the vertical MOSFET in the chip. Here, as shown in FIG. 5A, the alignment trench 5b has a cross shape in which one of the two orthogonal sides extends in the <11-20> direction, but may have another shape.
 〔図2Cに示す工程〕
 マスクを除去した後、p型SiC層50を成膜する。このとき、埋込エピタキシャル成長により、トレンチ5a内にp型SiC層50が埋め込まれることになるが、トレンチ5aを幅が狭いライン状で形成していることから、トレンチ5a内にp型SiC層50を確実に埋め込むことが可能になる。
[Step shown in FIG. 2C]
After removing the mask, a p-type SiC layer 50 is formed. At this time, the p-type SiC layer 50 is buried in the trench 5a by buried epitaxial growth. However, since the trench 5a is formed in a narrow line shape, the p-type SiC layer 50 is formed in the trench 5a. Can be securely embedded.
 ただし、p型SiC層50のうちトレンチ5aとn型ソース領域4の表面よりも上に位置している部分の厚みについては、トレンチ5a内に埋め込まれる部分が発生する分、トレンチ5aと対応する部分において薄くなる。このため、p型SiC層50の表面は、トレンチ5aに埋め込まれた部分と対応する位置において凹み、トレンチ5aが形成されていない部分において突き出すような凹凸形状となる。 However, the thickness of the portion of the p-type SiC layer 50 located above the surfaces of the trench 5a and the n + -type source region 4 corresponds to the trench 5a because the portion embedded in the trench 5a is generated. It becomes thin in the part to do. For this reason, the surface of the p-type SiC layer 50 has a concavo-convex shape which is recessed at a position corresponding to the portion embedded in the trench 5a and protrudes at a portion where the trench 5a is not formed.
 また、図3B、図4Bおよび図5Bに示すように、p型SiC層50のうちアライメントトレンチ5bと対応する位置においても凹んだ形状となり、かつ、図3Bに示すように、エピタキシャル成長の面方位依存性に起因したファセット50aが形成される。具体的には、アライメントトレンチ5bのうち<11-20>方向を法線方向とする面の一面と対応する位置において、p型SiC層50の表面に、オフ方向に沿って傾斜するファセット50aが形成される。なお、図5Bに示すように、アライメントトレンチ5bを十字形状とした場合、オフ方向の上流側、つまりファセット50aが伸びる方と反対側においてはファセット50aが形成されていない。このため、図4Bに示す断面においては、アライメントトレンチ5bの両側面上に形成されたp型SiC層50は、左右対称な形状となり、ファセット50aが形成されていないものとなる。 Further, as shown in FIGS. 3B, 4B, and 5B, the p-type SiC layer 50 has a recessed shape at a position corresponding to the alignment trench 5b, and as shown in FIG. 3B, the epitaxial growth depends on the plane orientation. The facet 50a resulting from the property is formed. Specifically, facet 50a inclined along the off direction is formed on the surface of p-type SiC layer 50 at a position corresponding to one surface of alignment trench 5b whose normal direction is the <11-20> direction. It is formed. As shown in FIG. 5B, when the alignment trench 5b has a cross shape, the facet 50a is not formed on the upstream side in the off direction, that is, on the side opposite to the direction in which the facet 50a extends. For this reason, in the cross section shown in FIG. 4B, the p-type SiC layers 50 formed on both side surfaces of the alignment trench 5b have a symmetrical shape, and the facets 50a are not formed.
 〔図2Dに示す工程〕
 p型SiC層50の表面を覆うように、犠牲層60を成膜したのち、例えば窒素ガス雰囲気などの不活性ガス雰囲気での950~1100℃のリフローによって犠牲層60を流動させて表面を平坦化する。犠牲層60としては、流動性のある酸化膜となるPSG(phospho silicate glassの略)、BPSG(Boro-phospho silicate glassの略)もしくはSOG(Spin on glassの略)を用いることができる。これらの材料はリフローによって容易に流動する流動性を有した材料であることから、リフローを行うことで犠牲層60の表面が平坦面となる。例えば、リフロー後の犠牲層60の表面の凹凸による段差が0.1μm以下となる。
[Step shown in FIG. 2D]
After the sacrificial layer 60 is formed so as to cover the surface of the p-type SiC layer 50, the sacrificial layer 60 is flowed by reflowing at 950 to 1100 ° C. in an inert gas atmosphere such as a nitrogen gas atmosphere to flatten the surface. Turn into. As the sacrificial layer 60, PSG (abbreviation of phospho silicate glass), BPSG (abbreviation of Boro-phospho silicate glass) or SOG (abbreviation of Spin on glass) which becomes a fluid oxide film can be used. Since these materials are fluid materials that easily flow by reflow, the surface of the sacrificial layer 60 becomes a flat surface by performing reflow. For example, the level difference due to the unevenness on the surface of the sacrificial layer 60 after reflow is 0.1 μm or less.
 このとき、図3Cおよび図4Cに示すように、p型SiC層50のうちアライメントトレンチ5bと対応する位置において凹んでいた部分も埋め込まれるように犠牲層60が形成される。そして、リフローが行われると、犠牲層60の表面は、凹んだ部分においても、ファセット50aの有無に関係なく、凹んだ部分の外部と同様に平坦面となる。 At this time, as shown in FIG. 3C and FIG. 4C, the sacrificial layer 60 is formed so that the recessed portion of the p-type SiC layer 50 at the position corresponding to the alignment trench 5b is buried. When the reflow is performed, the surface of the sacrificial layer 60 becomes a flat surface in the recessed portion as well as the outside of the recessed portion regardless of the presence or absence of the facet 50a.
 〔図2Eに示す工程〕
 ドライエッチングによって犠牲層60と共にp型SiC層50のうちn型ソース領域4の表面より上に形成された部分が取り除かれるようにエッチバックする。これにより、トレンチ5a内にのみp型SiC層50が残り、p型ディープ層5が形成される。
[Step shown in FIG. 2E]
Etchback is performed so that a portion of the p-type SiC layer 50 formed above the surface of the n + -type source region 4 is removed together with the sacrificial layer 60 by dry etching. Thereby, p-type SiC layer 50 remains only in trench 5a, and p-type deep layer 5 is formed.
 このとき、犠牲層60とp型SiC層50とのエッチング選択比が1となるように、つまり犠牲層60とp型SiC層50が等しいレートでエッチングされるようにエッチバックする。エッチング条件については、任意であるが、例えば、SFとアルゴンの混合ガスを用いており、エッチング装置におけるRFパワーを1200W、雰囲気圧力を0.5Paとし、SFの流量を3.7sccm、アルゴンの流量を500sccmとしている。このようなドライエッチングでは、SFによってp型SiC層50が化学的に削られると共に、アルゴンによって犠牲層60が物理的に削られることで、これらのエッチング選択比が1となるようにできる。 At this time, etching back is performed so that the etching selection ratio between the sacrificial layer 60 and the p-type SiC layer 50 is 1, that is, the sacrificial layer 60 and the p-type SiC layer 50 are etched at the same rate. The etching conditions are arbitrary. For example, a mixed gas of SF 6 and argon is used. The RF power in the etching apparatus is 1200 W, the atmospheric pressure is 0.5 Pa, the flow rate of SF 6 is 3.7 sccm, argon The flow rate is 500 sccm. In such dry etching, the p-type SiC layer 50 is chemically etched with SF 6 and the sacrificial layer 60 is physically etched with argon, so that the etching selectivity can be 1.
 これにより、p型SiC層50の表面の凹凸にかかわらず、犠牲層60およびp型SiC層50が同じレートで、つまりこれらの表面が平坦な状態のままエッチバックされる。したがって、犠牲層60と共にp型SiC層50のうちn型ソース領域4の表面より上に形成された部分が取り除かれるまでエッチバックしたときに、n型ソース領域4およびp型ディープ層5の表面が平坦面となるようにできる。 Thereby, regardless of the unevenness of the surface of p-type SiC layer 50, sacrificial layer 60 and p-type SiC layer 50 are etched back at the same rate, that is, their surfaces are kept flat. Therefore, when the sacrificial layer 60 and the p-type SiC layer 50 are etched back until a portion formed above the surface of the n + -type source region 4 is removed, the n + -type source region 4 and the p-type deep layer 5 are removed. The surface of can be made flat.
 また、アライメントキーとなる位置においても、図3Dおよび図4Dに示すように、犠牲層60で覆われることから、犠牲層60と共にp型SiC層50をエッチバックしたことによって、除去後の表面を平坦面にできる。アライメントキーとなる位置では、ファセット50a形成された状態になっているが、上記のように犠牲層60とp型SiC層50とをエッチング選択比が1となるようにエッチバックする場合には、ファセット50aを除去できる。 Further, as shown in FIGS. 3D and 4D, since the p-type SiC layer 50 is etched back together with the sacrificial layer 60, the surface after removal is also removed at the position serving as the alignment key. Can be flat. In the position serving as the alignment key, the facet 50a is formed. However, when the sacrificial layer 60 and the p-type SiC layer 50 are etched back so that the etching selection ratio becomes 1 as described above, Facet 50a can be removed.
 つまり、犠牲層60を形成することなくp型SiC層50をエッチバックする場合においてはファセット50aが残ってしまうが、犠牲層60と共にp型SiC層50をエッチバックすることでファセット50aが残らないようにできる。犠牲層60を形成しなくても、研削によってp型SiC層50を除去することでファセット50aの無い表面とすることができるが、研削による場合には表面が荒れて凹凸が残った状態になるため、好ましくない。これに対して、本実施形態のエッチバック方法によれば、表面状態が良好で、かつ、ファセット50aを除去することが可能となる。 That is, the facet 50a remains when the p-type SiC layer 50 is etched back without forming the sacrificial layer 60, but the facet 50a does not remain by etching back the p-type SiC layer 50 together with the sacrificial layer 60. You can Even if the sacrificial layer 60 is not formed, the surface without the facets 50a can be obtained by removing the p-type SiC layer 50 by grinding, but in the case of grinding, the surface is rough and unevenness remains. Therefore, it is not preferable. On the other hand, according to the etch back method of this embodiment, the surface state is good and the facet 50a can be removed.
 また、この後の工程において、アライメントを認識するときに、アライメントトレンチ5bの外縁、つまりp型ディープ層5とn型ソース領域4との境界をアライメントキーとして用いることになる。仮に、ファセット50aが残っていると、アライメントを認識するときに、認識したいアライメントキーではなく、ファセット50aとファセット50aではないところとの境界を誤認識することがある。このため、ファセット50aが残らないようにすることで、アライメントずれが生じることを抑制することが可能になるという効果も得られる。 In the subsequent process, when the alignment is recognized, the outer edge of the alignment trench 5b, that is, the boundary between the p-type deep layer 5 and the n + -type source region 4 is used as an alignment key. If the facet 50a remains, when the alignment is recognized, the boundary between the facet 50a and the non-facet 50a may be erroneously recognized instead of the alignment key to be recognized. For this reason, it is possible to suppress the occurrence of misalignment by preventing the facet 50a from remaining.
 なお、犠牲層60をp型SiC層50と選択比1でエッチバックしていることから、p型SiC層50のエッチバックが完了した際に、アライメントトレンチ5b内にまだ犠牲層60が残った状態になる。このため、p型SiC層50のエッチバック後には、犠牲層60のみがエッチングされる条件に切り替えてアライメントトレンチ5b内の犠牲層60を取り除くことで、この後もアライメントキーとして用いることが可能となる。 Since the sacrificial layer 60 is etched back with the p-type SiC layer 50 at a selection ratio of 1, the sacrificial layer 60 still remains in the alignment trench 5b when the etch-back of the p-type SiC layer 50 is completed. It becomes a state. For this reason, after the p-type SiC layer 50 is etched back, the sacrificial layer 60 in the alignment trench 5b is removed by switching to a condition in which only the sacrificial layer 60 is etched, so that it can be used as an alignment key thereafter. Become.
 〔図2Fに示す工程〕
 n型ソース領域4などの上に図示しないマスクを形成したのち、マスクのうちのゲートトレンチ6の形成予定領域を開口させる。そして、マスクを用いてRIEなどの異方性エッチングを行うことで、ゲートトレンチ6を形成する。例えば、ゲートトレンチ6の深さをp型ベース領域3とn型ソース領域4の合計膜厚よりも0.2~0.4μm深くするという設定としてエッチングを行う。これにより、p型ベース領域3の底部からのゲートトレンチ6の突き出し量が0.2~0.4μmとなるようにしている。
[Step shown in FIG. 2F]
After forming a mask (not shown) on the n + -type source region 4 and the like, a region where the gate trench 6 is to be formed in the mask is opened. Then, the gate trench 6 is formed by performing anisotropic etching such as RIE using a mask. For example, the etching is performed with the depth of the gate trench 6 set to be 0.2 to 0.4 μm deeper than the total film thickness of the p-type base region 3 and the n + -type source region 4. Thereby, the protruding amount of the gate trench 6 from the bottom of the p-type base region 3 is set to 0.2 to 0.4 μm.
 このとき、ゲートトレンチ6を形成する際のマスク合わせにおいて、アライメントキーを基準として行われるが、上記したように、ファセット50aが残っていないため、アライメントキーを誤認識しないようにでき、ゲートトレンチ6を正確な位置に形成できる。 At this time, mask alignment when forming the gate trench 6 is performed using the alignment key as a reference. However, since the facet 50a does not remain as described above, the alignment key can be prevented from being erroneously recognized. Can be formed at an accurate position.
 〔図2Gに示す工程〕
 マスクを除去した後、例えば熱酸化を行うことによって、ゲート絶縁膜7を形成し、ゲート絶縁膜7によってゲートトレンチ6の内壁面上およびn+型ソース領域4の表面上を覆う。そして、p型不純物もしくはn型不純物がドープされたPoly-Siをデポジションした後、これをエッチバックし、少なくともゲートトレンチ6内にPoly-Siを残すことでゲート電極8を形成する。
[Step shown in FIG. 2G]
After removing the mask, the gate insulating film 7 is formed by performing, for example, thermal oxidation, and the gate insulating film 7 covers the inner wall surface of the gate trench 6 and the surface of the n + type source region 4. Then, after depositing Poly-Si doped with p-type impurities or n-type impurities, this is etched back to leave the Poly-Si at least in the gate trench 6 to form the gate electrode 8.
 〔図2Hに示す工程〕
 ゲート電極8およびゲート絶縁膜7の表面を覆うように、例えば酸化膜などによって構成される層間絶縁膜10を形成する。そして、層間絶縁膜10の表面上に図示しないマスクを形成したのち、マスクのうち各ゲート電極8の間に位置する部分、つまりp型ディープ層5と対応する部分およびその近傍を開口させる。この後、マスクを用いて層間絶縁膜10をパターニングすることでp型ディープ層5およびn型ソース領域4を露出させるコンタクトホールを形成する。
[Step shown in FIG. 2H]
An interlayer insulating film 10 made of, for example, an oxide film is formed so as to cover the surfaces of the gate electrode 8 and the gate insulating film 7. Then, after forming a mask (not shown) on the surface of the interlayer insulating film 10, a portion of the mask located between the gate electrodes 8, that is, a portion corresponding to the p-type deep layer 5 and its vicinity are opened. Thereafter, the interlayer insulating film 10 is patterned using a mask to form a contact hole exposing the p-type deep layer 5 and the n + -type source region 4.
 この後の工程については図示しないが、層間絶縁膜10の表面上に例えば複数の金属の積層構造により構成される電極材料を形成する。そして、電極材料をパターニングすることで、ソース電極9を形成する。さらに、n型基板1の裏面側にドレイン電極11を形成するなどの工程を行うことで、図1に示した本実施形態にかかる縦型MOSFETを有するSiC半導体装置が完成する。 Although the subsequent steps are not shown, an electrode material composed of, for example, a laminated structure of a plurality of metals is formed on the surface of the interlayer insulating film 10. Then, the source electrode 9 is formed by patterning the electrode material. Further, by performing a process such as forming the drain electrode 11 on the back surface side of the n + type substrate 1, the SiC semiconductor device having the vertical MOSFET according to the present embodiment shown in FIG. 1 is completed.
 以上説明したように、p型ディープ層5を形成するためのp型SiC層50のうちn型ソース領域4の表面より上に形成された部分を除去する際に、p型SiC層50の上に流動性のある犠牲層60を形成している。そして、流動性により、犠牲層60の表面が平坦な状態となっていることから、犠牲層60と共にp型SiC層50をエッチング選択比が1となるようにエッチバックすることで、p型SiC層50を表面が平坦となるように除去できる。したがって、より簡素に、エッチバック後のn型ソース領域4およびp型ディープ層5の表面を平坦面にできるSiC半導体装置の製造方法とすることが可能となる。また、SiC半導体装置の製造方法をより簡素にできるため、SiC半導体装置の製造コストの削減を図ることも可能となる。 As described above, when the portion of the p-type SiC layer 50 for forming the p-type deep layer 5 formed above the surface of the n + -type source region 4 is removed, the p-type SiC layer 50 A fluid sacrificial layer 60 is formed thereon. Since the surface of the sacrificial layer 60 is in a flat state due to the fluidity, the p-type SiC layer 50 is etched back together with the sacrificial layer 60 so that the etching selectivity is 1, whereby the p-type SiC is obtained. The layer 50 can be removed so that the surface is flat. Therefore, it is possible to provide a method of manufacturing an SiC semiconductor device that can make the surfaces of n + -type source region 4 and p-type deep layer 5 after etch back flattened more simply. In addition, since the manufacturing method of the SiC semiconductor device can be simplified, it is possible to reduce the manufacturing cost of the SiC semiconductor device.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して半導体素子として縦型MOSFETに変えてジャンクションバリアショットキーダイオード(以下、JBSという)を備えるようにしたものである。その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. In the present embodiment, a junction barrier Schottky diode (hereinafter referred to as JBS) is provided instead of a vertical MOSFET as a semiconductor element as compared with the first embodiment. Others are the same as those in the first embodiment, and therefore only the parts different from the first embodiment will be described.
 JBSは、SiC半導体装置のうちのセル部に形成されており、このセル領域を囲むようにガードリングなどの外周耐圧構造が形成されることでSiC半導体装置が構成されているが、ここではJBSについて主に説明する。 The JBS is formed in the cell portion of the SiC semiconductor device, and the SiC semiconductor device is configured by forming an outer peripheral breakdown voltage structure such as a guard ring so as to surround the cell region. Is mainly described.
 図6に示すように、SiCで構成されたn型基板101の上に、n型基板101よりもn型不純物濃度が低くされたSiCからなるn型ドリフト層102が形成されている。セル領域において、n型ドリフト層102の表層部には、ストライプ状とされたp型ディープ層103が形成されており、図示していないが、その周囲を囲むようにp型層によって構成されるガードリングなどの外周耐圧構造が備えられている。 As shown in FIG. 6, an n type drift layer 102 made of SiC having an n type impurity concentration lower than that of the n + type substrate 101 is formed on an n + type substrate 101 made of SiC. . In the cell region, a striped p-type deep layer 103 is formed on the surface portion of the n -type drift layer 102, and although not shown, the p-type layer is formed so as to surround the periphery thereof. An outer pressure-resistant structure such as a guard ring is provided.
 p型ディープ層103は、n型ドリフト層102に複数本が等間隔に配置されたストライプ状のトレンチ103a内に配置され、埋込エピタキシャル成長によるp型のエピタキシャル膜によって構成されている。なお、このトレンチ103aがディープトレンチに相当するものであり、例えば幅が1μm以下、アスペクト比が2以上の深さとされている。 The p-type deep layer 103 is arranged in a stripe-shaped trench 103a in which a plurality of n - type drift layers 102 are arranged at equal intervals, and is constituted by a p-type epitaxial film formed by buried epitaxial growth. The trench 103a corresponds to a deep trench, and has a width of 1 μm or less and an aspect ratio of 2 or more, for example.
 また、n型ドリフト層102およびp型ディープ層103の上には、これらの表面に接触させられたショットキー電極104が形成されている。さらに、n型基板101の裏面側には、オーミック電極105が形成されている。 On the n -type drift layer 102 and the p-type deep layer 103, a Schottky electrode 104 in contact with these surfaces is formed. Furthermore, an ohmic electrode 105 is formed on the back side of the n + type substrate 101.
 このように、JBSを半導体素子として備えるSiC半導体装置においても、トレンチ103a内への埋込エピタキシャル成長によってp型ディープ層103を形成している。このp型ディープ層103を形成する際にも、第1実施形態と同様のエッチバック方法を適用することができる。具体的に、図7A~図7Dに基づいて、本実施形態にかかるSiC半導体装置の製造方法について説明する。 Thus, even in a SiC semiconductor device including JBS as a semiconductor element, the p-type deep layer 103 is formed by buried epitaxial growth in the trench 103a. The etch back method similar to that of the first embodiment can also be applied when forming the p-type deep layer 103. Specifically, a method for manufacturing the SiC semiconductor device according to the present embodiment will be described with reference to FIGS. 7A to 7D.
 〔図7Aに示す工程〕
 まず、半導体基板として、ウェハ状のn型基板101を用意する。そして、このn型基板101の主表面上にSiCからなるn型ドリフト層102を所望の膜厚でエピタキシャル成長させる。
[Step shown in FIG. 7A]
First, a wafer-like n + type substrate 101 is prepared as a semiconductor substrate. Then, an n type drift layer 102 made of SiC is epitaxially grown on the main surface of the n + type substrate 101 with a desired film thickness.
 次に、n型ドリフト層102の表面に図示しないマスクを配置し、マスクのうちのp型ディープ層103の形成予定領域を開口させる。そして、マスクを用いてRIEなどの異方性エッチングを行うことにより、例えば幅が1μm以下、アスペクト比が2以上の深さのトレンチ103aを形成する。 Next, a mask (not shown) is arranged on the surface of the n -type drift layer 102, and a region where the p-type deep layer 103 is to be formed in the mask is opened. Then, by performing anisotropic etching such as RIE using a mask, a trench 103a having a depth of, for example, a width of 1 μm or less and an aspect ratio of 2 or more is formed.
 〔図7Bに示す工程〕
 マスクを除去した後、p型SiC層110を成膜する。このとき、埋込エピにより、トレンチ103a内にp型SiC層110が埋め込まれることになるが、トレンチ103aを幅が狭いライン状で形成していることから、トレンチ103a内にp型SiC層110を確実に埋め込むことが可能になる。
[Step shown in FIG. 7B]
After removing the mask, a p-type SiC layer 110 is formed. At this time, the p-type SiC layer 110 is buried in the trench 103a by buried epi, but since the trench 103a is formed in a narrow line shape, the p-type SiC layer 110 is formed in the trench 103a. Can be securely embedded.
 ただし、p型SiC層110のうちトレンチ103aとn型ドリフト層102の表面よりも上に位置している部分の厚みについては、トレンチ103a内に埋め込まれる部分が発生する分、トレンチ103aと対応する部分において薄くなる。このため、p型SiC層110の表面は、トレンチ103aに埋め込まれた部分と対応する位置において凹み、トレンチ103aが形成されていない部分において突き出すような凹凸形状となる。 However, the thickness of the portion of the p-type SiC layer 110 located above the surfaces of the trench 103a and the n -type drift layer 102 corresponds to that of the trench 103a because the portion embedded in the trench 103a is generated. It becomes thin in the part to do. For this reason, the surface of the p-type SiC layer 110 has a concavo-convex shape that is recessed at a position corresponding to the portion embedded in the trench 103a and protrudes at a portion where the trench 103a is not formed.
 〔図7Cに示す工程〕
 p型SiC層110の表面を覆うように、犠牲層120を成膜したのち、リフローを行うことで犠牲層120を流動させて表面を平坦化する。犠牲層120の材料やリフローの条件については、第1実施形態と同様である。
[Step shown in FIG. 7C]
After the sacrificial layer 120 is formed so as to cover the surface of the p-type SiC layer 110, the sacrificial layer 120 is flowed by performing reflow to flatten the surface. The material of the sacrificial layer 120 and the reflow conditions are the same as in the first embodiment.
 〔図7Dに示す工程〕
 ドライエッチングによって犠牲層120と共にp型SiC層110のうちn型ドリフト層102の表面より上に形成された部分が取り除かれるようにエッチバックする。このときのエッチバック方法についても、第1実施形態と同様である。これにより、トレンチ103a内にのみp型SiC層110が残り、p型ディープ層5が形成される。つまり、p型SiC層50の表面の凹凸にかかわらず、犠牲層120およびp型SiC層110が同じレートでエッチバックされることから、n型ドリフト層102およびp型ディープ層103の表面が平坦面となるようにできる。
[Step shown in FIG. 7D]
Etchback is performed so that a portion of the p-type SiC layer 110 formed above the surface of the n -type drift layer 102 is removed together with the sacrificial layer 120 by dry etching. The etch back method at this time is also the same as in the first embodiment. Thereby, p-type SiC layer 110 remains only in trench 103a, and p-type deep layer 5 is formed. That is, since the sacrificial layer 120 and the p-type SiC layer 110 are etched back at the same rate regardless of the surface irregularities of the p-type SiC layer 50, the surfaces of the n -type drift layer 102 and the p-type deep layer 103 are It can be a flat surface.
 この後の工程については図示しないが、n型ドリフト層102およびp型ディープ層103の表面側に、ショットキー電極104を形成すると共に、n型基板101の裏面側にオーミック電極105を形成するなどの工程を行う。これにより、本実施形態にかかるSiC半導体装置が完成する。 Although the subsequent steps are not shown, the Schottky electrode 104 is formed on the front surface side of the n type drift layer 102 and the p type deep layer 103, and the ohmic electrode 105 is formed on the back surface side of the n + type substrate 101. And so on. Thereby, the SiC semiconductor device according to the present embodiment is completed.
 以上説明したように、トレンチ103a内にp型ディープ層103が埋込エピタキシャル成長されることによって形成されるJBSを有するSiC半導体装置についても、第1実施形態と同様のエッチバック方法を適用できる。これにより、第1実施形態と同様の効果を得ることが可能となる。 As described above, the same etch-back method as in the first embodiment can also be applied to a SiC semiconductor device having JBS formed by buried epitaxial growth of the p-type deep layer 103 in the trench 103a. Thereby, it is possible to obtain the same effect as in the first embodiment.
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、エピタキシャル成長時に生じるステップバンチングによる凹凸を平坦化する際に、第1、第2実施形態と同様の工程を行うものである。
(Third embodiment)
A third embodiment will be described. In the present embodiment, the same processes as those in the first and second embodiments are performed when flattening unevenness caused by step bunching that occurs during epitaxial growth.
 例えば、第1実施形態で説明した図1に示されるSiC半導体装置は、図2Aに示したように、n型基板1の主表面上にSiCからなるn型ドリフト層2などを所望の膜厚でエピタキシャル成長させる。このときに、ステップバンチングによる凹凸が形成され得るため、それを平坦化する。具体的には、図8A~図8Dに示す工程を行う。 For example, the SiC semiconductor device shown in FIG. 1 described in the first embodiment has a desired n type drift layer 2 made of SiC on the main surface of the n + type substrate 1 as shown in FIG. 2A. Epitaxial growth with film thickness. At this time, since unevenness due to step bunching can be formed, it is flattened. Specifically, the steps shown in FIGS. 8A to 8D are performed.
 まず、図8Aに示すように、n型基板1を用意する。そして、図8Bに示すように、n型基板1の主表面上にSiCからなるn型ドリフト層2をエピタキシャル成長させる。このとき、n型基板1がオフ角を有するオフ基板とされていることから、その上に形成されるn型ドリフト層2の表面は、ステップバンチングに起因する凹凸が形成された凹凸面2aとなる。 First, as shown in FIG. 8A, an n + type substrate 1 is prepared. Then, as shown in FIG. 8B, an n type drift layer 2 made of SiC is epitaxially grown on the main surface of the n + type substrate 1. At this time, since the n + type substrate 1 is an off substrate having an off angle, the surface of the n type drift layer 2 formed thereon has an uneven surface on which unevenness due to step bunching is formed. 2a.
 このため、図8Cに示すように、n型ドリフト層2の凹凸面2aを覆うように犠牲層60を成膜したのち、例えば窒素ガス雰囲気などの不活性ガス雰囲気での950~1100℃のリフローによって犠牲層60を流動させて表面を平坦化する。犠牲層60については、第1実施形態と同様、流動性のある酸化膜となるPSG、BPSGもしくはSOG等を用いることができる。 For this reason, as shown in FIG. 8C, after the sacrificial layer 60 is formed so as to cover the uneven surface 2a of the n type drift layer 2, it is 950 to 1100 ° C. in an inert gas atmosphere such as a nitrogen gas atmosphere. The sacrificial layer 60 is caused to flow by reflow to flatten the surface. For the sacrificial layer 60, PSG, BPSG, SOG, or the like, which becomes a fluid oxide film, can be used as in the first embodiment.
 そして、図8Dに示すように、ドライエッチングによって犠牲層60と共にn型ドリフト層2のうちの凹凸面2a側を部分的に取り除くようにエッチバックする。このとき、犠牲層60とn型ドリフト層2とのエッチング選択比が1となるように、つまり犠牲層60とn型ドリフト層2が等しいレートでエッチングされるようにエッチバックする。エッチング条件については、例えば第1実施形態と同様の条件とすることができる。これにより、n型ドリフト層2の表面を平坦面とすることが可能となる。 Then, as shown in FIG. 8D, the sacrificial layer 60 and the n -type drift layer 2 are etched back by dry etching so as to partially remove the uneven surface 2a side. At this time, etching back is performed so that the etching selection ratio between the sacrificial layer 60 and the n -type drift layer 2 is 1, that is, the sacrificial layer 60 and the n -type drift layer 2 are etched at the same rate. The etching conditions can be the same as those in the first embodiment, for example. Thereby, the surface of the n -type drift layer 2 can be made flat.
 以上説明したように、n型基板1の主表面上にSiCからなるn型ドリフト層2を形成したときにステップバンチングによる凹凸ができた際にも、犠牲層60を成膜したのち、犠牲層60と共にn型ドリフト層2を選択比が1となるエッチバックを施す。これにより、n型ドリフト層2の表面の凹凸を取り除くことができ、当該表面を平坦化することが可能となる。 As described above, when the n type drift layer 2 made of SiC is formed on the main surface of the n + type substrate 1, even when irregularities are formed by step bunching, the sacrificial layer 60 is formed, The sacrificial layer 60 and the n type drift layer 2 are etched back so that the selection ratio becomes 1. As a result, irregularities on the surface of the n type drift layer 2 can be removed, and the surface can be planarized.
 なお、ここでは、n型ドリフト層2の表面を平坦化する場合について説明したが、n型ドリフト層2の上に形成されるp型ベース領域3やn型ソース領域4の平坦化を行う場合にも、犠牲層60を用いた選択比1となるエッチバックを施すようにしても良い。また、n型ドリフト層2とp型ベース領域3およびn型ソース領域4のいずれか1つのみ平坦化を行うようにしても良いし、いずれか複数の平坦化を行うようにしても良い。 Although the case where the surface of the n -type drift layer 2 is planarized has been described here, the planarization of the p-type base region 3 and the n + -type source region 4 formed on the n -type drift layer 2 is explained. Also in the case of performing the etching, an etch-back with a selection ratio of 1 using the sacrificial layer 60 may be performed. Further, only one of the n type drift layer 2, the p type base region 3, and the n + type source region 4 may be planarized, or any one of a plurality of planarizations may be performed. good.
 (第4実施形態)
 第4実施形態について説明する。本実施形態は、不純物のイオン注入を行った後に活性化アニール処理を行ったときに生じるステップバンチングによる凹凸を平坦化する際に、第1、第2実施形態と同様の工程を行うものである。ここでは、その一例として、JBSを例に挙げて説明する。
(Fourth embodiment)
A fourth embodiment will be described. In the present embodiment, the same process as in the first and second embodiments is performed when flattening irregularities by step bunching that occurs when an activation annealing process is performed after ion implantation of impurities. . Here, as an example, JBS will be described as an example.
 図9に示すように、本実施形態にかかるSiC半導体装置も、第2実施形態と同様、JBSが備えられている。JBSは、n型基板101を用いて形成されている。n型基板101の上には、n型基板101よりもn型不純物濃度が低くされたSiCからなるn型ドリフト層102が形成されている。これらn型基板1およびn型ドリフト層102によって構成されたSiC半導体基板のセル部にJBSが形成されていると共に、その外周領域に図示しない終端構造が形成されることで本実施形態のSiC半導体装置が構成されている。 As shown in FIG. 9, the SiC semiconductor device according to the present embodiment is also provided with a JBS as in the second embodiment. The JBS is formed using an n + type substrate 101. On the n + -type substrate 101, n is an n-type impurity concentration than the n + -type substrate 101 made of low been SiC - -type drift layer 102 is formed. The JBS is formed in the cell portion of the SiC semiconductor substrate constituted by the n + -type substrate 1 and the n -type drift layer 102, and the termination structure (not shown) is formed in the outer peripheral region thereof. An SiC semiconductor device is configured.
 具体的には、n型ドリフト層102の表層部にp型ディープ層103が複数本等間隔に配置されてストライプ状とされている。そして、n型ドリフト層102およびp型ディープ層103の表面上には、例えばMo(モリブデン)にて構成されたショットキー電極104が形成されている。ショットキー電極104は、n型ドリフト層102に対してショットー接触させられている。また、n型ドリフト層102の表面には、例えばシリコン酸化膜などで構成された絶縁膜106が形成されており、ショットキー電極104は、この絶縁膜106の上に形成されている。そして、絶縁膜106のうちセル部に部分的に形成された開口部106aを通じて、ショットキー電極104がn型ドリフト層102およびp型ディープ層103の表面に接触させられている。 Specifically, a plurality of p-type deep layers 103 are arranged at equal intervals on the surface layer portion of the n -type drift layer 102 to form a stripe shape. A Schottky electrode 104 made of, for example, Mo (molybdenum) is formed on the surfaces of the n -type drift layer 102 and the p-type deep layer 103. Schottky electrode 104 is in Schottky contact with n type drift layer 102. An insulating film 106 made of, for example, a silicon oxide film is formed on the surface of the n type drift layer 102, and the Schottky electrode 104 is formed on the insulating film 106. The Schottky electrode 104 is brought into contact with the surfaces of the n -type drift layer 102 and the p-type deep layer 103 through an opening 106 a partially formed in the cell portion of the insulating film 106.
 さらに、開口部106aの外縁に沿ってp型リサーフ層107が形成されている。このp型リサーフ層107の更に外周に図示しないガードリングなどが備えられることで外周耐圧構造が備えられている。そして、n型基板101の裏面と接触するように、例えばNi(ニッケル)、Ti(チタン)、Mo、Au(金)等により構成されたオーミック電極105が形成されることで、JBSを備えたSiC半導体装置が構成されている。 Further, a p-type RESURF layer 107 is formed along the outer edge of the opening 106a. The p-type RESURF layer 107 is further provided with a guard ring (not shown) on the outer periphery, thereby providing an outer peripheral withstand voltage structure. Then, an ohmic electrode 105 made of, for example, Ni (nickel), Ti (titanium), Mo, Au (gold), or the like is formed so as to be in contact with the back surface of the n + type substrate 101, thereby providing a JBS. An SiC semiconductor device is configured.
 このように構成されるSiC半導体装置では、例えばn型基板101の上にn型ドリフト層102をエピタキシャル成長させたのち、イオン注入を行い、活性化アニール処理を行うことで、p型ディープ層103やp型リサーフ層107を形成することができる。このときに、ステップバンチングに起因する凹凸が形成され得るため、それを平坦化する。具体的には、図10A~図10Dに示す工程を行う。 In the SiC semiconductor device configured as described above, for example, after the n type drift layer 102 is epitaxially grown on the n + type substrate 101, ion implantation is performed and activation annealing treatment is performed, whereby a p type deep layer is formed. 103 and the p-type RESURF layer 107 can be formed. At this time, since unevenness due to step bunching can be formed, it is flattened. Specifically, the steps shown in FIGS. 10A to 10D are performed.
 まず、図10Aに示すように、n型基板101を用意したのち、n型基板101の主表面上にSiCからなるn型ドリフト層102をエピタキシャル成長させる。さらに、図示しないマスクを用いてp型ディープ層103の形成予定領域にp型不純物をイオン注入する。なお、ここではp型ディープ層103のみしか図示していないが、このときに同時にp型リサーフ層107の形成予定領域にもp型不純物をイオン注入している。そして、活性化アニール処理を行う。このとき、n型基板1がオフ角を有するオフ基板とされており、その上に形成されるn型ドリフト層102にもそれが引き継がれている。このため、図10Bに示すように、アニール処理によって、p型ディープ層103やp型リサーフ層107の表面を含めn型ドリフト層102の表面に、ステップバンチングに起因する凹凸が形成された凹凸面102aが形成される。 First, as shown in FIG. 10A, After preparing n + -type substrate 101, made of SiC on the main surface of the n + -type substrate 101 n - -type drift layer 102 is epitaxially grown. Further, a p-type impurity is ion-implanted into a region where the p-type deep layer 103 is to be formed using a mask (not shown). Only the p-type deep layer 103 is shown here, but at this time, p-type impurities are also ion-implanted into a region where the p-type RESURF layer 107 is to be formed. Then, an activation annealing process is performed. In this case, n + -type substrate 1 has been turned off substrate having an off angle, n formed thereon - it also -type drift layer 102 is taken over. Therefore, as shown in FIG. 10B, the unevenness caused by the step bunching is formed on the surface of the n type drift layer 102 including the surfaces of the p-type deep layer 103 and the p-type RESURF layer 107 by the annealing process. A surface 102a is formed.
 このため、図10Cに示すように、p型ディープ層103の表面を含めてn型ドリフト層102の凹凸面102aを覆うように犠牲層60を成膜したのち、例えば窒素ガス雰囲気などの不活性ガス雰囲気での950~1100℃のリフローによって犠牲層60を流動させて表面を平坦化する。犠牲層60については、第1実施形態と同様、流動性のある酸化膜となるPSG、BPSGもしくはSOG等を用いることができる。 For this reason, as shown in FIG. 10C, the sacrificial layer 60 is formed so as to cover the uneven surface 102a of the n type drift layer 102 including the surface of the p type deep layer 103, and then, for example, a nitrogen gas atmosphere is not used. The sacrificial layer 60 is made to flow by reflowing at 950 to 1100 ° C. in an active gas atmosphere to flatten the surface. For the sacrificial layer 60, PSG, BPSG, SOG, or the like, which becomes a fluid oxide film, can be used as in the first embodiment.
 そして、図10Dに示すように、ドライエッチングによって犠牲層60と共にp型ディープ層103等の表面を含めてn型ドリフト層102のうちの凹凸面102a側を部分的に取り除くようにエッチバックする。このとき、犠牲層60とn型ドリフト層102およびp型ディープ層103等とのエッチング選択比が1となるように、つまり犠牲層60とn型ドリフト層102およびp型ディープ層103等とが等しいレートでエッチングされるようにエッチバックする。エッチング条件については、例えば第1実施形態と同様の条件とすることができる。これにより、n型ドリフト層102およびp型ディープ層103等の表面を平坦面とすることが可能となる。 Then, as shown in FIG. 10D, etch back is performed by dry etching so as to partially remove the uneven surface 102a side of the n type drift layer 102 including the surface of the p-type deep layer 103 and the like together with the sacrificial layer 60. . At this time, the etching selection ratio between the sacrificial layer 60 and the n type drift layer 102 and the p-type deep layer 103 is set to 1, that is, the sacrificial layer 60 and the n type drift layer 102 and the p-type deep layer 103 and the like. Etch back so that and are etched at an equal rate. The etching conditions can be the same as those in the first embodiment, for example. As a result, the surfaces of the n -type drift layer 102 and the p-type deep layer 103 can be made flat.
 以上説明したように、イオン注入後に活性化アニール処理を行ってステップバンチングに起因する凹凸ができた際にも、犠牲層60を成膜したのち、犠牲層60と共にn型ドリフト層102およびp型ディープ層103等を選択比1でエッチバックする。これにより、n型ドリフト層102およびp型ディープ層103等の表面の凹凸を取り除くことができ、当該表面を平坦化することが可能となる。 As described above, even when the activation annealing treatment is performed after the ion implantation and unevenness due to step bunching is formed, the sacrificial layer 60 is formed, and then the n -type drift layer 102 and the p − are formed together with the sacrificial layer 60. The mold deep layer 103 and the like are etched back with a selection ratio of 1. As a result, surface irregularities such as the n type drift layer 102 and the p type deep layer 103 can be removed, and the surfaces can be planarized.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上記第1実施形態では、下地層としてn型基板1の上にn型ドリフト層2、p型ベース領域3およびn型ソース領域4を形成した構造を例に挙げた。同様に、第2実施形態では、下地層としてn型基板101の上にn型ドリフト層102を形成した構造を例に挙げた。しかしながら、これは単なる一例を挙げたに過ぎず、下地層に対してトレンチを形成したのち、トレンチに対してSiC層を埋込エピタキシャル成長させ、SiC層のうちの下地層の表面よりも上の部分をエッチバックする構成であれば、他の構造であってもよい。 For example, in the first embodiment, the structure in which the n type drift layer 2, the p type base region 3, and the n + type source region 4 are formed on the n + type substrate 1 as the base layer is taken as an example. Similarly, in the second embodiment, the structure in which the n type drift layer 102 is formed on the n + type substrate 101 as the base layer is taken as an example. However, this is merely an example. After forming a trench in the underlying layer, a SiC layer is buried and epitaxially grown in the trench, and a portion of the SiC layer above the surface of the underlying layer is formed. Other structures may be used as long as they are configured to etch back.
 また、上記第1、第2実施形態では、犠牲層と共にSiC層をエッチバックしたときに、下地層に形成したトレンチ内にのみSiC層が残る構造について説明した。しかしながら、これも一例を示したに過ぎず、SiC層の一部が下地層の表面上に残る構造であっても良い。このような構造においても、上記したエッチバック方法を適用することでSiC層の表面を平坦面とすることが可能になる。 In the first and second embodiments, the structure in which the SiC layer remains only in the trench formed in the base layer when the SiC layer is etched back together with the sacrificial layer has been described. However, this is only an example, and a structure in which a part of the SiC layer remains on the surface of the underlayer may be used. Even in such a structure, the surface of the SiC layer can be made flat by applying the above-described etch back method.
 また、上記第3、第4実施形態では、オフ角を有するオフ基板にて構成された半導体基板が用いられている場合において、その上にエピタキシャル成長させられたSiC層の表面の凹凸面、もしくは、イオン注入にて不純物層を形成した凹凸面の平坦化の一例を示した。しかしながら、これらも一例を示したに過ぎず、同様の凹凸面が形成される場合のSiC半導体装置の製造方法に対して適用されても良い。 In the third and fourth embodiments, when a semiconductor substrate composed of an off-substrate having an off-angle is used, the uneven surface of the surface of the SiC layer epitaxially grown thereon, or An example of the flattening of the uneven surface on which the impurity layer is formed by ion implantation is shown. However, these are only examples, and may be applied to a method of manufacturing an SiC semiconductor device in which a similar uneven surface is formed.
 また、上記第1、第3実施形態等では、SiC半導体装置に備えられる半導体素子として縦型MOSFETを例に挙げて説明したが、縦型MOSFETに限らず他の半導体素子を形成するものであっても良い。さらに、第1導電型をn型、第2導電型をp型としたnチャネルタイプのMOSFETを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのMOSFETとしても良い。また、上記説明では、半導体素子としてMOSFETを例に挙げて説明したが、同様の構造のIGBTに対しても本開示を適用することができる。IGBTは、上記各実施形態に対してn型基板1の導電型をn型からp型に変更するだけであり、その他の構造や製造方法に関しては上記各実施形態と同様である。さらに、縦型のMOSFETとしてトレンチゲート構造のものを例に挙げて説明したが、トレンチゲート構造のものに限らず、プレーナ型のものであっても良い。 In the first and third embodiments, the vertical MOSFET has been described as an example of the semiconductor element provided in the SiC semiconductor device. However, the semiconductor element is not limited to the vertical MOSFET, and other semiconductor elements are formed. May be. Further, the n-channel type MOSFET in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example, but a p-channel type MOSFET in which the conductivity type of each component is inverted may be used. good. In the above description, the MOSFET has been described as an example of the semiconductor element. However, the present disclosure can be applied to an IGBT having a similar structure. The IGBT only changes the conductivity type of the n + type substrate 1 from the n-type to the p-type with respect to the above-described embodiments, and the other structures and manufacturing methods are the same as those in the above-described embodiments. Further, the vertical MOSFET having the trench gate structure has been described as an example. However, the vertical MOSFET is not limited to the trench gate structure but may be a planar type.
 なお、結晶の方位を示す場合、本来ならば所望の数字の上にバー(-)を付すべきであるが、電子出願に基づく表現上の制限が存在するため、本明細書においては、所望の数字の前にバーを付すものとする。 It should be noted that when indicating the orientation of a crystal, a bar (-) should be attached on a desired number, but there is a limitation in terms of expression based on an electronic application. A bar shall be placed in front of the number.

Claims (8)

  1.  炭化珪素にて構成され、下地層(2~4、102)が形成された半導体基板(1、101)を用意することと、
     前記下地層に対してトレンチ(5a、103a)形成することと、
     前記トレンチ内に埋め込みつつ、前記下地層の表面上に形成されるように、炭化珪素層(50、110)をエピタキシャル成長させることと、
     前記炭化珪素層の表面に、犠牲層(60、120)を成膜することと、
     前記犠牲層を成膜したのち、リフローによって前記犠牲層を平坦化することと、
     平坦化後の前記犠牲層と共に前記炭化珪素層を、前記犠牲層と前記炭化珪素層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる炭化珪素半導体装置の製造方法。
    Preparing a semiconductor substrate (1, 101) made of silicon carbide and having an underlayer (2-4, 102) formed thereon;
    Forming trenches (5a, 103a) in the base layer;
    Epitaxially growing a silicon carbide layer (50, 110) so as to be formed on the surface of the underlayer while being embedded in the trench;
    Forming a sacrificial layer (60, 120) on the surface of the silicon carbide layer;
    After depositing the sacrificial layer, planarizing the sacrificial layer by reflow;
    Etching the silicon carbide layer together with the sacrificial layer after planarization by dry-etching the silicon carbide layer under an etching condition in which an etching selectivity between the sacrificial layer and the silicon carbide layer is 1 A method for manufacturing a semiconductor device.
  2.  前記エッチバックすることにおいては、前記エッチバックによって前記下地層の表面を露出させ、前記トレンチ内にのみ前記炭化珪素層を残す請求項1に記載の炭化珪素半導体装置の製造方法。 The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein in the etch back, the surface of the base layer is exposed by the etch back, and the silicon carbide layer is left only in the trench.
  3.  前記犠牲層を成膜することでは、前記犠牲層としてPSG、BPSGおよびSOGのいずれか1つを成膜することである請求項1または2に記載の炭化珪素半導体装置の製造方法。 3. The method of manufacturing a silicon carbide semiconductor device according to claim 1, wherein forming the sacrificial layer includes forming any one of PSG, BPSG, and SOG as the sacrificial layer.
  4.  前記トレンチを形成することにおいては、前記下地層に対して前記トレンチと異なる位置にアライメントトレンチ(5b)を形成することを含み、
     前記炭化珪素層をエピタキシャル成長させることにおいては、前記アライメントトレンチ内にも前記炭化珪素層を成長させ、
     前記犠牲層を成膜することにおいては、前記アライメントトレンチを埋め込むように形成された前記炭化珪素層の上にも前記犠牲層を成膜し、
     前記エッチバックすることでは、前記炭化珪素層の表面のうち前記アライメントトレンチに対応した位置に形成される凹みに含まれるファセット(50a)が除去されるまで前記エッチバックを行う請求項1ないし3のいずれか1つに記載の炭化珪素半導体装置の製造方法。
    Forming the trench includes forming an alignment trench (5b) at a position different from the trench with respect to the foundation layer,
    In the epitaxial growth of the silicon carbide layer, the silicon carbide layer is also grown in the alignment trench,
    In forming the sacrificial layer, the sacrificial layer is also formed on the silicon carbide layer formed to fill the alignment trench,
    The etching back is performed until the facet (50a) included in a recess formed at a position corresponding to the alignment trench in the surface of the silicon carbide layer is removed. The manufacturing method of the silicon carbide semiconductor device as described in any one.
  5.  前記下地層が形成された半導体基板を用意することにおいては、前記半導体基板として、第1または第2導電型の炭化珪素基板(1)を用い、前記下地層として、該炭化珪素基板の上に該前記炭化珪素基板よりも低不純物濃度とされる炭化珪素にて構成された第1導電型のドリフト層(2)と、炭化珪素にて構成された第2導電型のベース領域(3)と、前記ドリフト層よりも高不純物濃度の炭化珪素にて構成された第1導電型のソース領域(4)とが順に形成されたものを用意し、
     前記エッチバックすることにおいては、前記ソース領域の表面を露出させるまで前記エッチバックを行うことで、前記トレンチ(5a)内に第2導電型のディープ層(5)を形成し、
     前記ディープ層を形成したのち、前記ソース領域の表面から前記ベース領域よりも深いゲートトレンチ(6)と、該ゲートトレンチの内壁面に形成されるゲート絶縁膜(7)と、前記ゲート絶縁膜の上に形成されるゲート電極(8)と、を有して構成されるトレンチゲート構造を形成することと、
     前記ソース領域および前記ディープ層に電気的に接続されるソース電極(9)を形成することと、
     前記半導体基板の裏面側に、ドレイン電極(11)を形成することと、を含んでいる請求項1ないし4のいずれか1つに記載の炭化珪素半導体装置の製造方法。
    In preparing a semiconductor substrate on which the underlayer is formed, a silicon carbide substrate (1) of the first or second conductivity type is used as the semiconductor substrate, and the silicon carbide substrate is used as the underlayer. A first conductivity type drift layer (2) made of silicon carbide having a lower impurity concentration than the silicon carbide substrate, and a second conductivity type base region (3) made of silicon carbide; And a first conductivity type source region (4) composed of silicon carbide having a higher impurity concentration than the drift layer is prepared in order,
    In the etch back, a deep layer (5) of the second conductivity type is formed in the trench (5a) by performing the etch back until the surface of the source region is exposed.
    After forming the deep layer, a gate trench (6) deeper than the base region from the surface of the source region, a gate insulating film (7) formed on the inner wall surface of the gate trench, and the gate insulating film Forming a trench gate structure comprising a gate electrode (8) formed thereon;
    Forming a source electrode (9) electrically connected to the source region and the deep layer;
    The method for manufacturing a silicon carbide semiconductor device according to claim 1, further comprising: forming a drain electrode (11) on a back surface side of the semiconductor substrate.
  6.  前記下地層が形成された半導体基板を用意することにおいては、前記半導体基板として、第1導電型の炭化珪素基板(101)を用い、前記下地層として、該炭化珪素基板の上に該炭化珪素基板よりも低不純物濃度とされる炭化珪素にて構成された第1導電型のドリフト層(102)が形成されたものを用意し、
     前記エッチバックすることにおいては、前記ドリフト層の表面を露出させるまで前記エッチバックを行うことで、前記トレンチ(103a)内に第2導電型のディープ層(103)を形成し、
     前記ドリフト層および前記ディープ層に電気的に接続されるショットキー電極(104)を形成することと、
     前記半導体基板の裏面側に、オーミック電極(105)を形成することと、を含んでいる請求項1ないし4のいずれか1つに記載の炭化珪素半導体装置の製造方法。
    In preparing the semiconductor substrate on which the foundation layer is formed, a silicon carbide substrate (101) of the first conductivity type is used as the semiconductor substrate, and the silicon carbide is formed on the silicon carbide substrate as the foundation layer. Preparing a first conductivity type drift layer (102) formed of silicon carbide having a lower impurity concentration than the substrate;
    In the etch back, a second conductive type deep layer (103) is formed in the trench (103a) by performing the etch back until the surface of the drift layer is exposed.
    Forming a Schottky electrode (104) electrically connected to the drift layer and the deep layer;
    The method for manufacturing a silicon carbide semiconductor device according to claim 1, further comprising: forming an ohmic electrode (105) on a back surface side of the semiconductor substrate.
  7.  炭化珪素にて構成され、主表面を有すると共にオフ角を有するオフ基板にて構成された半導体基板(1)を用意することと、
     前記半導体基板の主表面上に、炭化珪素層(2)をエピタキシャル成長させることと、
     前記エピタキシャル成長させた前記炭化珪素層の表面であってステップバンチングに基づく凹凸を有する凹凸面(2a)の上に、犠牲層(60)を成膜することと、
     前記犠牲層を成膜したのち、リフローによって前記犠牲層を平坦化することと、
     平坦化後の前記犠牲層と共に前記炭化珪素層を、前記犠牲層と前記炭化珪素層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる炭化珪素半導体装置の製造方法。
    Providing a semiconductor substrate (1) made of silicon carbide and having a main surface and an off-substrate having an off angle;
    Epitaxially growing a silicon carbide layer (2) on the main surface of the semiconductor substrate;
    Depositing a sacrificial layer (60) on the surface of the epitaxially grown silicon carbide layer on the uneven surface (2a) having unevenness based on step bunching;
    After depositing the sacrificial layer, planarizing the sacrificial layer by reflow;
    Etching the silicon carbide layer together with the sacrificial layer after planarization by dry-etching the silicon carbide layer under an etching condition in which an etching selectivity between the sacrificial layer and the silicon carbide layer is 1 A method for manufacturing a semiconductor device.
  8.  炭化珪素にて構成され、主表面を有すると共にオフ角を有するオフ基板にて構成された半導体基板(101)を用意することと、
     前記半導体基板の主表面上に、炭化珪素層(102)をエピタキシャル成長させることと、
     前記エピタキシャル成長させた前記炭化珪素層の表面に不純物をイオン注入したのち、活性化アニール処理を行うことで不純物層(103、107)を形成することと、
     前記活性化アニール処理を行った前記不純物層を含む前記炭化珪素層の表面であってステップバンチングに基づく凹凸を有する凹凸面(102a)の上に、犠牲層(120)を成膜することと、
     前記犠牲層を成膜したのち、リフローによって前記犠牲層を平坦化することと、
     平坦化後の前記犠牲層と共に前記不純物層を含む前記炭化珪素層を、前記犠牲層と前記炭化珪素層とのエッチング選択比が1となるエッチング条件でドライエッチングしてエッチバックすることと、を含んでいる炭化珪素半導体装置の製造方法。
    Providing a semiconductor substrate (101) made of silicon carbide and having a main surface and an off-substrate having an off angle;
    Epitaxially growing a silicon carbide layer (102) on the main surface of the semiconductor substrate;
    Forming an impurity layer (103, 107) by ion-implanting impurities into the surface of the epitaxially grown silicon carbide layer and then performing an activation annealing treatment;
    Depositing a sacrificial layer (120) on the surface of the silicon carbide layer including the impurity layer that has been subjected to the activation annealing process and on the uneven surface (102a) having unevenness based on step bunching;
    After depositing the sacrificial layer, planarizing the sacrificial layer by reflow;
    Etching back the silicon carbide layer including the impurity layer together with the sacrificial layer after planarization by dry etching under an etching condition in which an etching selectivity between the sacrificial layer and the silicon carbide layer is 1. A method for manufacturing a silicon carbide semiconductor device.
PCT/JP2017/036349 2016-10-05 2017-10-05 Method for producing silicon carbide semiconductor device WO2018066662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/353,670 US10748780B2 (en) 2016-10-05 2019-03-14 Manufacturing method of silicon carbide semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-197414 2016-10-05
JP2016197414 2016-10-05
JP2017-179442 2017-09-19
JP2017179442A JP6648743B2 (en) 2016-10-05 2017-09-19 Method for manufacturing silicon carbide semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/353,670 Continuation US10748780B2 (en) 2016-10-05 2019-03-14 Manufacturing method of silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2018066662A1 true WO2018066662A1 (en) 2018-04-12

Family

ID=61832204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036349 WO2018066662A1 (en) 2016-10-05 2017-10-05 Method for producing silicon carbide semiconductor device

Country Status (1)

Country Link
WO (1) WO2018066662A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168097A (en) * 1997-08-18 1999-03-09 Fuji Electric Co Ltd Manufacture of silicon carbide semiconductor device
JP2001168327A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Semiconductor device and power switching drive system provided with the same
JP2006100035A (en) * 2004-09-28 2006-04-13 Tokyo Sensor:Kk Bent long switch
JP2010135552A (en) * 2008-12-04 2010-06-17 Mitsubishi Electric Corp Method of manufacturing silicon carbide semiconductor device
JP2014060276A (en) * 2012-09-18 2014-04-03 Denso Corp Silicon carbide semiconductor device
JP2014236189A (en) * 2013-06-05 2014-12-15 株式会社デンソー Silicon carbide semiconductor device and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168097A (en) * 1997-08-18 1999-03-09 Fuji Electric Co Ltd Manufacture of silicon carbide semiconductor device
JP2001168327A (en) * 1999-12-09 2001-06-22 Hitachi Ltd Semiconductor device and power switching drive system provided with the same
JP2006100035A (en) * 2004-09-28 2006-04-13 Tokyo Sensor:Kk Bent long switch
JP2010135552A (en) * 2008-12-04 2010-06-17 Mitsubishi Electric Corp Method of manufacturing silicon carbide semiconductor device
JP2014060276A (en) * 2012-09-18 2014-04-03 Denso Corp Silicon carbide semiconductor device
JP2014236189A (en) * 2013-06-05 2014-12-15 株式会社デンソー Silicon carbide semiconductor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US9722070B2 (en) Methods of manufacturing trench semiconductor devices with edge termination structures
JP6341074B2 (en) Manufacturing method of semiconductor device
JP6354525B2 (en) Method for manufacturing silicon carbide semiconductor device
US7595241B2 (en) Method for fabricating silicon carbide vertical MOSFET devices
WO2013187017A1 (en) Silicon carbide semiconductor device and method for producing same
WO2013187019A1 (en) Silicon carbide semiconductor device and method for producing same
WO2017145594A1 (en) Compound semiconductor device production method and compound semiconductor device
JP6950290B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP5671779B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
US7989884B2 (en) Structure for making a top-side contact to a substrate
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
JP2018060924A (en) Semiconductor device and semiconductor device manufacturing method
JP2013038308A (en) Silicon carbide semiconductor device and manufacturing method therefor
JP6848382B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP5583846B2 (en) Semiconductor device
US9954068B2 (en) Method of forming a transistor, method of patterning a substrate, and transistor
US8017494B2 (en) Termination trench structure for mosgated device and process for its manufacture
WO2017145548A1 (en) Compound semiconductor device and production method for same
JP6648743B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4539057B2 (en) Manufacturing method of semiconductor substrate
WO2018066662A1 (en) Method for producing silicon carbide semiconductor device
US10978308B2 (en) Method for manufacturing a semiconductor device
JP6928336B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
US20230170399A1 (en) Method for manufacturing semiconductor device
KR100691598B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858498

Country of ref document: EP

Kind code of ref document: A1