WO2018066146A1 - Method for producing fluorinated compound - Google Patents

Method for producing fluorinated compound Download PDF

Info

Publication number
WO2018066146A1
WO2018066146A1 PCT/JP2017/000996 JP2017000996W WO2018066146A1 WO 2018066146 A1 WO2018066146 A1 WO 2018066146A1 JP 2017000996 W JP2017000996 W JP 2017000996W WO 2018066146 A1 WO2018066146 A1 WO 2018066146A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
base
carbon atoms
fluorinated
formula
Prior art date
Application number
PCT/JP2017/000996
Other languages
French (fr)
Japanese (ja)
Inventor
栗原一樹
原田晃典
中村裕
Original Assignee
関東電化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東電化工業株式会社 filed Critical 関東電化工業株式会社
Publication of WO2018066146A1 publication Critical patent/WO2018066146A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a fluorinated compound.
  • Fluorinated compounds such as fluorinated alkanes are used as media for plasma reaction gases, fluorine-containing pharmaceutical intermediates, refrigerants and heat transfer media.
  • highly purified fluorinated alkanes are suitably used as plasma etching gases, chemical vapor deposition (CVD) gases, and the like in the field of manufacturing semiconductor devices using plasma reactions.
  • Non-Patent Document 1 uses perfluorobutanesulfonic acid fluoride as a fluorinating agent and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) as a base in a toluene solvent.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • Non-Patent Document 2 discloses a method in which a primary to tertiary alcohol is fluorinated in a ternary system of perfluorobutanesulfonic acid fluoride-trialkylamine hydrogen fluoride complex-trialkylamine in tetrahydrofuran or methylene chloride solvent.
  • Non-Patent Document 3 describes an example in which various alcohols are fluorinated using nonafluorobutanesulfonic acid fluoride as a fluorinating agent and DBU as a base.
  • Patent Document 1 describes that a high molecular weight alcohol compound is fluorinated using fluorinated aliphatic sulfonic acid fluoride as a fluorinating agent and DBU as a base in a solvent such as toluene and diethylene glycol dimethyl ether.
  • Patent Document 2 discloses that in an inert organic solvent such as toluene, nonafluorobutanesulfonic acid fluoride is used as a fluorinating agent, amidine base is used as a base, aliphatic alcohols, aromatic hydrocarbon compounds, and enol compounds are fluorinated. It is described that.
  • Patent Document 4 describes that 2-fluorobutane was obtained from 2-butanol in a yield of 68% using triethylammonium hexafluorocyclobutane as a fluorinating agent in the absence of a solvent.
  • the triethylammonium hexafluorocyclobutane used is manufactured using hexafluorocyclobutene which is industrially very expensive and highly toxic.
  • Patent Document 5 describes that sec-butyl fluoride was obtained by contacting sulfur hexafluoride with a sec-butyllithium cyclohexane-hexane solution.
  • Patent Document 6 describes that 2-fluorobutane was obtained by hydrogenating 2-fluorobutadiene in the presence of a catalyst. However, the method described in this document has a problem that it is difficult to obtain the raw material 2-fluorobutadiene.
  • Patent Document 1 JP 2002-530356
  • Patent Document 2 JP 9-507503
  • Patent Document 3 JP 59-46251
  • Patent Document 4 JP 9-48741
  • Patent Document 5 JP 2009-292749
  • Patent Document 6 USP. 2,550,953 Non-patent literature
  • Non-Patent Document 1 Tetrahedron Letters, Vol. 36, 2614 (1995)
  • Non-Patent Document 2 Organic Letters, Vol. 6, 1465 (2004)
  • Non-Patent Document 3 Synthesis, No. 8, 1165 (2008) Summary of the Invention Problems to be Solved by the Invention
  • the present invention has been made in view of the above-described prior art, and an object thereof is to provide a method for producing a fluorinated compound in an industrially advantageous manner.
  • a hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base is represented by the formula (1): R 1 SO 2 F (R 1 is a methyl group, an ethyl group or Fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms)
  • n is 0 or 2
  • the method for producing a fluorinated compound according to any one of [1] to [3], which is an amidine base [5] The production of the fluorinated compound according to any one of [1] to [4], wherein the base is 1,8-diazabicyclo [5.4.0] undec-7-ene Method. [6] The method for producing a fluorinated compound according to any one of [1] to [5], wherein the base is present as an acid salt with hydrogen fluoride.
  • a hydroxy compound having 3 or more carbon atoms in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base is represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group), and is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a compound having 3 or more carbon atoms) Represents a group obtained by removing a hydroxy group from a hydroxy compound.).
  • a hydroxy compound having 6 or more carbon atoms is fluorinated with a fluorinating agent represented by the formula (1): R 1 SO 2 F in the presence of a base selected from the group consisting of an amidine base and a phosphazene base.
  • a fluorinating agent represented by the formula (1): R 1 SO 2 F in the presence of a base selected from the group consisting of an amidine base and a phosphazene base.
  • the production method of the present invention uses a hydroxy compound having 6 or more carbon atoms as a raw material.
  • the hydroxy compound having 6 or more carbon atoms is preferably a compound having one or more hydroxyl groups, for example, alcoholic hydroxyl groups.
  • the hydroxy compound having 6 or more carbon atoms is preferably a compound having one or two hydroxyl groups. What is necessary is just to select and use the hydroxy compound from which the target fluorinated compound is obtained.
  • the hydroxy compound may have 30 or less carbon atoms, 25 or less carbon atoms, 20 or less carbon atoms, 18 or less carbon atoms, and 15 or less carbon atoms.
  • Examples of the hydroxy compound having 6 or more carbon atoms include the following.
  • (A) Alcohol having 6 or more carbon atoms (B) N-substituted hydroxypyrrolidine and derivatives thereof, which are compounds having 6 or more total carbon atoms
  • the compound may have a functional group other than a hydroxyl group, such as a ketone, ether, amide, or amine.
  • the compounds (A), (B), and (C) may also have a functional group other than a hydroxyl group.
  • (A1) Monohydric alcohol having 6 or more carbon atoms
  • (A2) Polyhydric alcohol having 6 or more carbon atoms may be mentioned.
  • Examples of the compound (A1) include saturated alcohols and unsaturated alcohols. Specifically, monovalent saturated alcohol having 6 to 30 carbon atoms, further 6 to 20 carbon atoms, and further 6 to 15 carbon atoms, 6 to 30 carbon atoms, further 6 to 20 carbon atoms, and further 6 to 15 carbon atoms. Examples thereof include alcohols selected from monounsaturated alcohols, monovalent aromatic alcohols, and monovalent aromatic alcohols having 6 to 30 carbon atoms in total. Examples of the monohydric alcohol having 6 or more carbon atoms include primary alcohol, secondary alcohol, and tertiary alcohol. The monohydric alcohol is preferably a secondary alcohol.
  • examples of the monovalent saturated alcohol include saturated steroids such as 1-hexanol, 2-hexanol, 2-octanol and androsterone.
  • examples of monounsaturated alcohols include 2-hexen-1-ol, 3-hexen-1-ol, 2-octen-1-ol, and geraniol.
  • Examples of the monovalent aromatic alcohol include aralkyl alcohol and further aralkyl alcohol having 6 to 30 carbon atoms in total.
  • monovalent aromatic alcohols benzyl alcohol, 1-phenylethanol, 2-phenylethanol, 1-naphthylethanol, 4-fluoro- ⁇ -methylbenzyl alcohol, 4-chloro- ⁇ -methylbenzyl alcohol, 4-bromo- ⁇ -Methylbenzyl alcohol, 4-methyl- ⁇ -methylbenzyl alcohol, 4-methoxy- ⁇ -methylbenzyl alcohol, 4-amino- ⁇ -methylbenzyl alcohol and the like.
  • Examples of the aralkyl alcohol include a compound represented by the following formula.
  • R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group or an alkenyl group
  • R ′ is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group. Or it is an alkenyl group, a hydroxyl group, an amino group, or a halogen group.
  • R is preferably an alkyl or alkenyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • R ′ is preferably a hydrogen atom, or an alkyl or alkenyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and more preferably a hydrogen atom.
  • the hydrocarbon group for R or R ′ may have a ring structure. The ring structure may have a substituent.
  • the compound (A1) is preferably 2-octanol or 1-phenylethanol from the viewpoint of easy availability of raw materials.
  • Examples of the compound (A2) include alkylene glycol having a total carbon number of 6 or more and polyglycerin having a total carbon number of 6 or more.
  • the alkylene glycol preferably has a total carbon number of 30 or less, and more preferably 20 or less.
  • the polyglycerin preferably has a total carbon number of 30 or less, and more preferably 20 or less. Specific examples include triethylene glycol, dipropylene glycol, and diglycerin.
  • a hydroxy compound having two or more hydroxyl groups preferably does not have a structure in which hydroxyl groups are bonded to two adjacent carbon atoms.
  • N-substituted hydroxypyrrolidine and derivatives thereof having a total carbon number of 6 or more preferably have a total carbon number of 6 to 30, more preferably 6 to 20.
  • Examples of N-substituted hydroxypyrrolidine and its derivatives having a total carbon number of 6 or more include N-alkyl-substituted hydroxypyrrolidine and N-aralkyl-substituted hydroxypyrrolidine.
  • N-substituted hydroxypyrrolidine derivatives include N-alkyl-substituted hydroxypyrrolidine carboxylic acid, N-alkyl-substituted hydroxypyrrolidine carboxylic acid ester, N-aralkyl-substituted hydroxypyrrolidine carboxylic acid, and N-aralkyl-substituted hydroxypyrrolidine carboxylic acid ester.
  • Examples of the compound (B) include compounds represented by the following formula.
  • R represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an aryl group having 7 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, or an alkoxy group having 2 to 20 carbon atoms.
  • R ′ is a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group or an alkenyl group. However, R and R ′ are selected so that the total number of carbon atoms in the compound is 6 or more, preferably 6 to 30, and more preferably 6 to 20. ]
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, and more preferably a methyl group.
  • the aryl group having 7 to 20 carbon atoms is preferably an aryl group having 7 to 15 carbon atoms, and more preferably a benzyl group (Bn).
  • the acyl group having 2 to 20 carbon atoms is preferably an acyl group having 2 to 15 carbon atoms, more preferably an acetyl group (Ac) or a benzoyl group (Bz).
  • the alkoxycarbonyl group having 2 to 20 carbon atoms is preferably an alkoxy group having 2 to 15 carbon atoms, and more preferably a tert-butoxycarbonyl group (Boc).
  • the aryloxycarbonyl group having 7 to 20 carbon atoms is preferably an aryloxycarbonyl group having 7 to 15 carbon atoms, and more preferably a benzyloxycarbonyl group (Cbz group).
  • R is preferably a benzyl group (Bn).
  • R ′ is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, and still more preferably a methyl group.
  • the hydroxycarboxylic acid having 6 or more carbon atoms may be a hydroxycarboxylic acid having 6 to 30 carbon atoms.
  • Examples of the hydroxycarboxylic acid having 6 or more carbon atoms include ⁇ -hydroxycarboxylic acids, preferably ⁇ -hydroxycarboxylic acids having 6 to 30 carbon atoms.
  • Examples of the derivative of a hydroxycarboxylic acid having 6 or more carbon atoms include salts of the carboxylic acid and esters of the carboxylic acid.
  • (C) is preferably a hydroxycarboxylic acid ester having 6 or more carbon atoms. Examples of the compound (C) include compounds represented by the following formula.
  • R represents a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, and further an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms and further 1 to 15 carbon atoms.
  • R ′ is a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, further an alkenyl group having 1 to 15 carbon atoms, or carbon.
  • R and R ′ are selected so that the total number of carbon atoms in the compound is 6 or more, preferably 6 to 30, and more preferably 6 to 20.
  • the hydrocarbon group for R or R ′ may have a ring structure.
  • the ring structure may have a substituent.
  • examples of the hydroxycarboxylic acid having 6 or more carbon atoms include saturated steroids having a hydroxyl group and a carboxyl group such as lithocholic acid.
  • the hydroxy compound having 6 or more carbon atoms is preferably N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, or lactic acid ester having 6 or more carbon atoms from the viewpoint of easy availability of raw materials.
  • the lactic acid ester is preferably an ester of lactic acid and an alcohol having 3 to 20 carbon atoms.
  • R 1 SO 2 F is used as the fluorinating agent.
  • R 1 represents a methyl group, an ethyl group, or an aromatic group.
  • the aromatic group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. These aromatic groups may have a substituent such as a methyl group or an ethyl group.
  • the compound represented by the formula (1) include aliphatic sulfonic acid fluorides such as methanesulfonic acid fluoride and ethanesulfonic acid fluoride; aromatic sulfonic acid fluorides such as benzenesulfonic acid fluoride and p-toluenesulfonic acid fluoride; Etc.
  • methanesulfonic acid fluoride and ethanesulfonic acid fluoride are preferable, and methanesulfonic acid fluoride is more preferable from the viewpoint of economically high yield of the target product and ease of handling.
  • the compound shown by Formula (1) can be manufactured using a conventionally well-known method.
  • aliphatic sulfonic acid fluoride is prepared by a method in which sulfonic acid chloride is brought into contact with an alkali metal fluoride such as sodium fluoride or potassium fluoride in an aqueous solvent (Japanese Patent Laid-Open No. 6-263715), It can be produced by a method of contacting with potassium hydrogen difluoride in an aqueous solvent (Journal of Chemical Society, 173 (1956)) or the like.
  • Aromatic sulfonic acid fluoride uses aromatic sulfonic acid chloride as a starting material, phase transfer catalyst in the presence of polyethylene glycol or 18-crown-6-ether, and potassium fluoride as a fluorinating agent. Method of fluorination (Chemistry Letters, 283 (1978), Journal of Organic Chemistry, Vol. 42, 2031 (1977)) or the like. In the present invention, an inexpensive and easily available fluorinating agent as described above is used.
  • the amount of the fluorinating agent used may be 1 equivalent or more with respect to the raw material hydroxy compound, preferably 1.0 to 5.0 equivalent, more preferably 1.1 to 2.0 equivalent. . If the amount of the fluorinating agent used is too small relative to the raw material hydroxy compound, the raw material is wasted, which is not preferable. On the other hand, if the fluorinating agent is used in excess, the fluorinating agent will not be consumed efficiently.
  • the base used in the present invention is a base selected from the group consisting of an amidine base and a phosphazene base.
  • An amidine base is a basic organic compound having a —N—C ⁇ N— skeleton.
  • the amidine base may be an open-chain compound or an alicyclic ring, bicyclic ring and tricyclic ring containing 4 to 8, preferably 5 or 6, ring members.
  • the amidine base used in the present invention is preferably a compound containing 4 to 20, more preferably 4 to 14, and still more preferably 4 to 10 carbon atoms.
  • amidine bases include 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene (MTBD); diazabicyclo [4.3.0] non-5-ene. (DBN), 1,8-diazabicyclo [5.4.0] -undec-7-ene (DBU), and the like, but are not limited thereto.
  • a phosphazene base is a basic organic compound having a (—N—) 3 P ⁇ N— skeleton in the molecule.
  • Examples of the phosphazene base include t-butyliminotris (dimethylaminophosphorane) (abbreviation: P 1 -t-Bu), 1-t-butyl-4,4,4-tris (dimethylamino) -2,2 -Bis [tris (dimethylamino) phosphoranylideneamino] -2 ⁇ 5 , 4 ⁇ 5 -catenadi (phosphazene) (abbreviation: P 4 -t-Bu) and the like, but are not limited thereto.
  • an amidine base is preferable from the viewpoint of availability, and an amidine base having a skeleton represented by the following formula (3) is more preferable.
  • N represents an integer of 0 or 2
  • Specific examples of the compound having the skeleton include 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [4.3.0] non-5-ene. (DBN), with DBU being particularly preferred.
  • the amount of the base used is preferably 1 to 10 equivalents, more preferably 1.1 to 5.0 equivalents with respect to the raw material hydroxy compound. If the amount of base used is too small, the yield will be unfavorable. On the other hand, when the amount used is too large, the viscosity of the reaction solution increases, and the treatment after the reaction ends becomes troublesome.
  • the base is preferably present as an acid salt with hydrogen fluoride from the viewpoint of improving the yield.
  • the base is preferably the amidine base of the formula (3).
  • the acid salt of the base with hydrogen fluoride include DBU-hydrogen trifluoride / acid salt. This is an acid salt of hydrogen equivalent of 3 equivalents to 1 equivalent of DBU.
  • the acid salt may be a complex salt.
  • the amount of the acid salt of the base with hydrogen fluoride used is preferably from 0.1 to 5.0 equivalents, more preferably from 0.5 to 2.0 equivalents, based on the raw material hydroxy compound. It is preferable to use an acid salt of the base and hydrogen fluoride.
  • the base and an acid salt of hydrogen fluoride of the base it is preferable to use both the base and an acid salt of hydrogen fluoride of the base.
  • the molar ratio of (the base) / (acid salt of the base and hydrogen fluoride) is preferably 1 to 20, and more preferably 1 to 5.
  • reaction in the present invention, the fluorination of a hydroxy compound having 6 or more carbon atoms can be carried out without a solvent or in an organic solvent.
  • Organic solvents include toluene, ethyl acetate, methylene chloride, acetonitrile and the like.
  • the organic solvent is preferably toluene or acetonitrile.
  • the base can be added to the reaction system to carry out the reaction.
  • the reaction can be performed by adding the base and an acid salt of the base and hydrogen fluoride to a reaction system.
  • the mixing order of the raw material hydroxy compound, the base, and the fluorinating agent is not particularly limited, but from the viewpoint of obtaining the target product with good yield, the raw material hydroxy compound and the fluorinating agent are mixed, and the resulting mixture contains a base. Is preferably added (dropped). The base may be added all at once or in small portions.
  • the reaction temperature is usually 50 ° C. to 150 ° C., preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 100 ° C.
  • the mixture of the raw material hydroxy compound and the fluorinating agent is preliminarily set to a temperature within the above range, then a base is dropped, and the reaction is further allowed to proceed within the above temperature range after the dropping is completed. That is, the reaction is preferably performed by adding the base to the mixture of the hydroxy compound and the fluorinating agent at 60 ° C. to 150 ° C.
  • reaction start temperature and the subsequent reaction temperature are lower than the above temperature range, there is a risk that problems such as a low raw material conversion rate and a very long reaction time may occur.
  • reaction start temperature and the reaction temperature are higher than the above temperature range, depending on the type of raw material hydroxy compound used, the hydroxy compound distills together with the product fluorinated compound, leading to a decrease in yield. Cheap.
  • the reaction time is usually 1 to 48 hours, preferably 3 to 20 hours, although it depends on the raw material hydroxy compound used and the type of base or base acid salt.
  • the reaction time is too short, the conversion rate of the raw material hydroxy compound is lowered, and the yield of the target product is lowered.
  • the reaction time is too long, energy costs are wasted, which is not preferable.
  • the reaction completion solution is poured into water or an aqueous solution of an alkali metal inorganic base (for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, etc.), and an organic solvent (
  • an alkali metal inorganic base for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, etc.
  • the crude product can be obtained by extraction with toluene, ethyl acetate, methylene chloride or the like.
  • the target fluorinated compound can be further purified by distillation, recrystallization, activated carbon treatment, silica gel chromatography, or the like, if necessary.
  • R 2 -F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) can be produced.
  • R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms.
  • fluorinated compound represented by the formula (2) examples include 1-fluorohexane, 2-fluorohexane, 2-fluorooctane, benzyl fluoride, 1-phenyl-1-fluoroethane, 2-phenyl-1- Fluoroethane, 1-naphthyl-1-fluoroethane, 4-fluoro- ⁇ -methylbenzyl fluoride, 4-chloro- ⁇ -methylbenzyl fluoride, 4-bromo- ⁇ -methylbenzyl fluoride, 4-methyl- ⁇ -Methylbenzyl fluoride, 4-methoxy- ⁇ -methylbenzyl fluoride, 4-amino- ⁇ -methylbenzyl fluoride, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline.
  • 2-fluorooctane 1-phenyl-1-fluoroethane, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2- Fluoropropionic acid esters are preferred.
  • These fluorinated compounds can be produced using 2-octanol, 1-phenylethanol, N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, and lactic acid ester as raw material hydroxy compounds.
  • the production method of the present invention using a raw material and a fluorinating agent that can be obtained industrially at low cost, without using a solvent, it is possible to safely, easily, at low cost and with high yield.
  • the fluorinated compound can be produced at a rate.
  • a hydroxy compound having 6 or more carbon atoms and a fluorinating agent represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group) are mixed.
  • a base selected from the group consisting of an amidine base and a phosphazene base, or an acid salt of the base and hydrogen fluoride of the base is added to the mixture, and a fluorination reaction is performed.
  • a method for producing a fluorinated compound is preferred which obtains a fluorinated compound represented by 2- F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms).
  • the present invention also provides a hydroxy compound having 3 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt of hydrogen fluoride with the formula (1): R 1 SO 2 It is fluorinated with a fluorinating agent represented by F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is the number of carbon atoms
  • R 2 represents a group obtained by removing a hydroxy group from three or more hydroxy compounds.
  • Examples of the hydroxy compound having 3 or more carbon atoms include hydroxy compounds having 3 to 5 carbon atoms and hydroxy compounds having 6 or more carbon atoms.
  • the hydroxy compound having 6 or more carbon atoms is as described above.
  • Examples of the hydroxy compound having 3 to 5 carbon atoms include alcohols having 3 to 5 carbon atoms.
  • Examples of the alcohol having 3 to 5 carbon atoms include monohydric alcohols having 3 to 5 carbon atoms and polyhydric alcohols having 3 to 5 carbon atoms.
  • Examples of the monohydric alcohol having 3 to 5 carbon atoms include monovalent saturated alcohols having 3 to 5 carbon atoms and monovalent unsaturated alcohols having 3 to 5 carbon atoms.
  • Examples of the alcohol having 3 to 5 carbon atoms include alcohols having 3 carbon atoms such as 1-propanol and 2-propanol; carbon numbers such as 1-butanol, 2-butanol, isobutanol, t-butanol, cyclobutanol, and methallyl alcohol.
  • monohydric alcohols having 4 or 5 carbon atoms are preferable from the viewpoint of ease of handling and usefulness of the fluorinated compound to be produced, and 2-pentanol, 3-pentanol, cyclopent Tanol, 1-butanol, 2-butanol, isobutanol, t-butanol, and methallyl alcohol are more preferable.
  • a dihydric alcohol having 3 to 5 carbon atoms such as propylene glycol is also preferred.
  • examples of the hydroxy compound having 3 to 5 carbon atoms include hydroxycarboxylic acid esters having 3 to 5 carbon atoms.
  • a lactic acid ester having 4 or 5 carbon atoms is preferable, and ethyl lactate is more preferable.
  • a hydroxy compound having 3 or more carbon atoms may have a functional group other than a hydroxyl group such as a ketone, an ether, an amide, or an amine.
  • an acid salt of the base and hydrogen fluoride is used.
  • Specific examples and use conditions of the acid salt of the base and hydrogen fluoride are as described above. Other compounds and conditions are also as described above.
  • a hydroxy compound having 3 or more carbon atoms and a fluorinating agent represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group) are mixed.
  • an acid salt of hydrogen fluoride of a base selected from the group consisting of an amidine base and a phosphazene base is added to the mixture, and a fluorination reaction is carried out to obtain a formula (2): R 2 -F (R 2 is carbon
  • a method for producing a fluorinated compound is preferred, which represents a group obtained by removing a hydroxy group from a hydroxy compound of several formulas or more).
  • a hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base in an organic solvent is represented by the formula (1): R 1 SO 2 F (R 1 is a methyl group or an ethyl group) Or represents an aromatic group.), which is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a hydroxy compound having 6 or more carbon atoms, and the hydroxy group is removed)
  • a hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt with hydrogen fluoride of the base in an organic solvent is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is carbon This represents a group obtained by removing a hydroxy group from a hydroxy compound of formula 6 or more).
  • the hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is carbon This represents a group obtained by removing a hydroxy group from a hydroxy compound of formula 6 or more).
  • a hydroxy compound having 3 or more carbon atoms is added in the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt of hydrogen fluoride in an organic solvent with the formula (1): R 1 SO 2 F ( R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated with a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a carbon number of 3 or more) Represents a group in which a hydroxy group is removed from the hydroxy compound.).
  • the hydroxy compound having 3 or more carbon atoms is represented by the formula (1): R 1 SO 2 F ( R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated with a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a carbon number of 3 or more) Represents a group in which a hydroxy group is removed from the hydroxy compound.).
  • a hydroxy compound having 3 or more carbon atoms in the presence of an acid salt of a base and hydrogen fluoride selected from the group consisting of an amidine base and a phosphazene base in the presence of an organic solvent and the base is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is carbon A group obtained by removing a hydroxy group from a hydroxy compound of formula 3 or more).
  • a hydroxy compound having 3 or more carbon atoms is added in the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base and hydrogen fluoride in the absence of a solvent and the base
  • a hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 SO 2 F in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in an organic solvent.
  • R 1 represents a methyl group, an ethyl group, or an aromatic group
  • R 2 -F R 2 has 3 carbon atoms Represents a group obtained by removing a hydroxy group from the above hydroxy compound.
  • a hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 SO 2 F in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in the absence of a solvent.
  • R 1 represents a methyl group, an ethyl group, or an aromatic group
  • R 2 -F R 2 has 3 carbon atoms Represents a group obtained by removing a hydroxy group from the above hydroxy compound.
  • the hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 It is fluorinated by a fluorinating agent represented by SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is A group obtained by removing a hydroxy group from a hydroxy compound having 3 or more carbon atoms).
  • a hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in the absence of a solvent. It is fluorinated by a fluorinating agent represented by SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group).
  • R 2 -F R 2 is A group obtained by removing a hydroxy group from a hydroxy compound having 3 or more carbon atoms).
  • R 1 represents a methyl group, an ethyl group or an aromatic group, and n is 0 or 2.
  • Step (III) of distilling off aromatic hydrocarbons from the aromatic hydrocarbon solution containing the amidine base obtained in Step (II)
  • the amidine base-sulfonic acid complex is a hydroxy compound having 6 or more carbon atoms represented by the following formula (3):
  • R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group. ) Obtained from a reaction mixture in which a reaction for fluorination with a fluorinating agent represented by A method for separating and recovering amidine bases is disclosed.
  • the amidine base-sulfonic acid complex used in the present invention is represented by the amidine base represented by the formula (4) and the formula: R 1 —SO 3 H (R 1 represents the same meaning as described above). It is a salt composed of sulfonic acid. Specific examples include DBU-methanesulfonic acid complex, DBU-ethanesulfonic acid complex, 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) -methanesulfonic acid complex, DBN-ethanesulfonic acid.
  • DBU-methanesulfonic acid complex DBU-ethanesulfonic acid complex
  • 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) -methanesulfonic acid complex DBN-ethanesulfonic acid.
  • Aliphatic sulfonic acid complexes such as complexes; aromatic sulfonic acid complexes such as DBU-benzenesulfonic acid complexes, DBU-p-toluenesulfonic acid complexes, DBN-benzenesulfonic acid complexes, DBN-p-toluenesulfonic acid complexes; Can be mentioned.
  • aromatic sulfonic acid complexes such as DBU-benzenesulfonic acid complexes, DBU-p-toluenesulfonic acid complexes, DBN-benzenesulfonic acid complexes, DBN-p-toluenesulfonic acid complexes;
  • an aliphatic sulfonic acid complex is preferable and a DBU-methanesulfonic acid complex is particularly preferable from the viewpoint that the effects of the present invention can be obtained more remarkably.
  • the amidine base-sulfonic acid complex used in the present invention is obtained from a reaction mixture obtained by performing a reaction of fluorinating a hydroxy compound having 6 or more carbon atoms with a fluorinating agent represented by the above formula (3). It is.
  • the amidine base-sulfonic acid complex is preferably obtained by the method for producing a fluorinated compound of the present invention.
  • step (I) is a step of dissolving an amidine base-sulfonic acid complex in an aromatic hydrocarbon and adding an aqueous alkali solution to the resulting solution to precipitate an alkali metal sulfonate.
  • the aromatic hydrocarbon used in the present invention is preferably one that dissolves the amidine base-sulfonic acid complex to form an azeotropic mixture with water.
  • Specific examples include alkyl-substituted benzenes such as benzene, toluene, xylene and ethylbenzene; halogen-substituted benzenes such as fluorobenzene, chlorobenzene and dichlorobenzene.
  • alkyl-substituted benzenes are preferable, and toluene that can be distilled off at a relatively low temperature is more preferable.
  • the amount of aromatic hydrocarbon used is usually 0.7 to 1 ml per 1 g of amidine base-sulfonic acid complex, although it depends on the reaction scale and the like. If the amount of aromatic hydrocarbon used is too small, the extraction efficiency of the amidine base may be deteriorated. On the other hand, if the amount used is too large, it takes a lot of time to distill off the aromatic hydrocarbons in the subsequent step, resulting in poor productivity.
  • the alkaline aqueous solution used in the present invention when added to an aromatic hydrocarbon solution of an amidine base-sulfonic acid complex, the sulfonic acid salt is formed by forming a salt with the sulfonic acid constituting the amidine base-sulfonic acid complex. If it precipitates, there will be no restriction
  • an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or cesium hydroxide is preferable, and an aqueous solution of potassium hydroxide or cesium hydroxide is more preferable and inexpensive.
  • an aqueous solution of potassium hydroxide having a high solubility in water of the resulting sulfonate is particularly preferable.
  • Alkali metal hydroxides themselves usually exist as pellets or flaky solids, but are used as aqueous solutions from the viewpoint of industrial ease of handling.
  • the concentration of the aqueous alkaline solution used is not particularly limited, but is preferably about 10% to 50% by weight. If the concentration of the alkaline aqueous solution is too low, a large amount of alkaline aqueous solution is required to neutralize the sulfonic acid in the amidine base-sulfonic acid complex and liberate the amidine base. The effect becomes smaller and the recovery rate becomes worse. On the other hand, if the concentration of the aqueous alkaline solution is too high, there is a risk that the heat generated becomes large when the sulfonic acid of the amidine base-sulfonic acid complex is neutralized, resulting in danger.
  • the amount of alkali used in the alkaline aqueous solution is usually 0.9 to 1.5 equivalents relative to the amidine base-sulfonic acid complex. If the amount of alkali (alkaline aqueous solution) used is too small, the neutralization reaction with sulfonic acid will not be completed, and the recovery rate of amidine base will deteriorate. On the other hand, if the amount of alkali (alkaline aqueous solution) used is too large, the treatment of the waste liquid becomes troublesome.
  • a solution temperature range from 0 ° C. to room temperature (25 ° C. ⁇ 10 ° C., the same applies hereinafter) while stirring the solution. And the method of dripping alkaline aqueous solution is preferable. If the addition temperature is too low, the aromatic hydrocarbon solution of the amidine base-sulfonic acid complex becomes viscous and the neutralization reaction between the sulfonic acid and the alkali does not proceed smoothly. On the other hand, when the addition temperature is too high, the neutralization reaction between the sulfonic acid and the alkali proceeds rapidly, which may cause problems such as bumping.
  • step (II) water is added to the solution obtained by precipitation of the alkali metal sulfonate salt obtained in the step (I) to dissolve the alkali metal salt of sulfonic acid, This is a step of removing the aqueous layer in which is dissolved.
  • water is added to the solution in which the alkali metal sulfonate salt is deposited, it is separated into two layers: an aqueous layer in which the alkali metal salt of sulfonic acid is dissolved and an aromatic hydrocarbon layer (organic layer) in which the liberated amidine base is dissolved.
  • the amount of water to be added may be an amount necessary for dissolving the alkali metal sulfonate. If the amount of water to be added is too small, the alkali metal salt of the sulfonic acid will remain undissolved, making it difficult to separate the two layers from the organic layer in which the liberated amidine base is dissolved (extracted). On the other hand, when the amount of water to be added is too large, the effect of extracting the amidine base is reduced, resulting in problems such as poor recovery.
  • an aromatic hydrocarbon solution containing the extracted amidine base By removing the aqueous layer in which the alkali metal salt of the lower sulfonic acid is dissolved, an aromatic hydrocarbon solution containing the extracted amidine base can be obtained.
  • an extraction operation may be performed by further adding an aromatic hydrocarbon to the aqueous layer in which the alkali metal salt of the sulfonic acid is dissolved. good.
  • Step (III) of the present invention is a step of distilling off aromatic hydrocarbons from the aromatic hydrocarbon solution containing the amidine base obtained in step (II).
  • a method of distilling off aromatic hydrocarbon from the aromatic hydrocarbon solution containing an amidine base For example, the method of using concentration apparatuses, such as a rotary evaporator, under reduced pressure is mentioned. Thereby, the amidine base can be recovered.
  • amidine bases thus recovered may contain a small amount of tar components and salts (alkali metal salt of sulfonic acid). It is preferable to provide a purification step such as vacuum distillation.
  • the amidine base When the recovered amidine base is reused, the amidine base preferably contains no water. However, the amidine base aromatic hydrocarbon solution obtained in step (II) often contains moisture. Therefore, it is preferable to provide a step (IV) for removing moisture from the aromatic hydrocarbon solution containing the amidine base obtained in the step (II) after the step (II) and before the step (III).
  • a dehydrating agent such as molecular sieve, anhydrous magnesium sulfate, or anhydrous sodium sulfate is added to the aromatic hydrocarbon solution, and moisture is added to the dehydrating agent.
  • the method include a method of separating and removing the dehydrating agent that has absorbed water after absorption, a method of removing water using a Dean-Stark water separator, and the latter method is preferred.
  • the Dean-Stark water separation device water and aromatic hydrocarbons are azeotroped by heating by utilizing the property that aromatic hydrocarbons azeotrope with water, and moisture can be efficiently removed.
  • the azeotropic point is 85 ° C. when the weight ratio of toluene and water is 80.1: 19.9. Therefore, using a Dean-Stark water separator, the toluene solution in which the amidine base is dissolved is continuously heated at a temperature higher than 85 ° C., and water is removed by azeotropy with toluene. When no change is observed in the amount of distilled water, heating is stopped, and then step (III) may be performed.
  • the amidine base-sulfonic acid complex is preferably a 1,8-diazabicyclo [5.4.0] undec-7-ene-methanesulfonic acid complex.
  • the step (IV) of removing can be included.
  • the step (IV) uses a Dean-Stark water separator to remove the water contained in the aromatic hydrocarbon solution containing the amidine base obtained in step (II). It is preferable to use and remove.
  • the amidine base is preferably 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • an amidine base can be easily and efficiently separated and recovered from an amidine base-sulfonic acid complex produced in a reaction in which a hydroxy compound is fluorinated with sulfonic acid fluoride in the presence of an amidine base. This reduces the load on the environment while reducing the amount of amidine base-sulfonic acid complex, which is a very viscous oil that is difficult to handle and difficult to dispose of, and improves handling. .
  • a hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group, or an aromatic group) in the presence of a base.
  • R 2 -F R 2 is a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms
  • Disclosed is a method of using the recovered amidine base using the amidine base separated and recovered by the method of the present invention as a base.
  • the reaction for producing the fluorinated compound can be carried out without a solvent or in an organic solvent.
  • the amount of the recovered amidine base used is preferably 1 to 3 equivalents, more preferably 1.1 to 2.0 equivalents, relative to the raw material hydroxy compound. If the amount of base used is too small, the yield will be unfavorable. On the other hand, when the amount used is too large, the viscosity of the reaction solution increases, and the treatment after the reaction ends becomes troublesome.
  • the order of mixing the hydroxy compound, the recovered amidine base, and the fluorinating agent is not particularly limited, but from the viewpoint of obtaining the target product with good yield, the raw material hydroxy compound and the fluorinating agent are mixed, and the resulting mixture is It is preferable to add (drop) a base.
  • the base may be added all at once or in small portions.
  • the reaction temperature is usually 50 ° C. to 150 ° C., preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 100 ° C.
  • the mixture of the raw material hydroxy compound and the fluorinating agent is preliminarily set to a temperature within the above range, then a base is dropped, and the reaction is further allowed to proceed within the above temperature range after the dropping is completed. If the reaction start temperature and the subsequent reaction temperature are lower than the above temperature range, there is a risk that problems such as a low raw material conversion rate and a very long reaction time may occur. On the other hand, when the reaction start temperature and the reaction temperature are higher than the above temperature range, depending on the type of raw material hydroxy compound used, the hydroxy compound distills together with the product fluorinated compound, leading to a decrease in yield. Cheap.
  • the reaction time is usually 1 to 48 hours, preferably 3 to 20 hours, although it depends on the raw material hydroxy compound and the type of base used. If the reaction time is too short, the conversion rate of the raw material hydroxy compound is lowered, resulting in a decrease in the yield of the desired product. On the other hand, if the reaction time is too long, energy costs are wasted, which is not preferable.
  • the product (target product) After completion of the reaction, if the product (target product) has a boiling point lower than the reaction temperature, it is connected to a reaction vessel connected to a reaction vessel and cooled with a refrigerant such as dry ice ethanol. Can be collected and recovered.
  • a refrigerant such as dry ice ethanol.
  • the product can be recovered in a receiver cooled with a refrigerant or the like under reduced pressure after the reaction is stopped. In this case, the recovered unreacted hydroxy compound can be reused as a raw material.
  • the fluorinated compound collected in the receiver can be further purified by distillation purification or the like as necessary.
  • R 2 -F a fluorinated compound represented by the formula (2): R 2 -F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) can be produced.
  • R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms.
  • fluorinated compound represented by the formula (2) examples include 1-fluorohexane, 2-fluorohexane, 2-fluorooctane, benzyl fluoride, 1-phenyl-1-fluoroethane, 2-phenyl-1- Fluoroethane, 1-naphthyl-1-fluoroethane, 4-fluoro- ⁇ -methylbenzyl fluoride, 4-chloro- ⁇ -methylbenzyl fluoride, 4-bromo- ⁇ -methylbenzyl fluoride, 4-methyl- ⁇ -Methylbenzyl fluoride, 4-methoxy- ⁇ -methylbenzyl fluoride, 4-amino- ⁇ -methylbenzyl fluoride, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2-fluoropropion Examples include acid esters.
  • 2-fluorooctane 1-phenyl-1-fluoroethane, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2- Fluoropropionic acid esters are preferred.
  • These fluorinated compounds can be produced using 2-octanol, 1-phenylethanol, N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, and lactic acid ester as raw material hydroxy compounds.
  • a fluorinated compound can be produced simply and at low cost and in high yield using the recovered amidine base. According to the present invention, the cost can be reduced by collecting and using a very expensive amidine base.
  • a crude product of a fluorinated compound represented by the formula (1) was obtained as a toluene solution.
  • the conversion rate of the reaction was measured by gas chromatography and found to be 100%.
  • the selectivity of the crude product was measured by gas chromatography and found to contain 2.25 g (17.01 mmol) of the fluorinated compound. It was.
  • the yield was 85%.
  • a crude product of a fluorinated compound represented by the formula (1) was obtained as a toluene solution.
  • the conversion rate of the reaction was measured by gas chromatography to be 100%, and the crude product was measured by 19 F-NMR and found to contain 1.32 g (10.60 mmol) of the fluorinated compound.
  • the yield was 53%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The present invention relates to a method for producing a fluorinated compound represented by formula (2): R2-F (where R2 represents a group obtained by removing a hydroxy group from a hydroxy compound having six or more carbon atoms), the method being characterized by fluorinating a hydroxy compound having six or more carbon atoms by a fluorinating agent represented by formula (1): R1SO2F (where R1 represents a methyl group, an ethyl group, or an aromatic group) in the presence of a base selected from the group consisting of amidine base and phosphazene base.

Description

フッ素化化合物の製造方法Method for producing fluorinated compound
 本発明は、フッ素化化合物の製造方法に関する。
背景技術
The present invention relates to a method for producing a fluorinated compound.
Background art
 フッ素化アルカンなどのフッ素化化合物は、プラズマ反応用ガス、含フッ素医薬中間体、冷媒・熱媒等の媒体として使用されている。特に、高純度化されたフッ素化アルカンは、プラズマ反応を用いた半導体装置の製造分野において、プラズマエッチングガス、化学気相成長法(CVD)用ガス等として好適に用いられている。 Fluorinated compounds such as fluorinated alkanes are used as media for plasma reaction gases, fluorine-containing pharmaceutical intermediates, refrigerants and heat transfer media. In particular, highly purified fluorinated alkanes are suitably used as plasma etching gases, chemical vapor deposition (CVD) gases, and the like in the field of manufacturing semiconductor devices using plasma reactions.
 従来、フッ素化アルカンの製造方法として、対応するアルコールに、フッ素化剤としてアルキルスルホン酸フルオリドを反応させる方法が知られている。
 例えば、非特許文献1には、トルエン溶媒中、フッ素化剤としてパーフルオロブタンスルホン酸フルオリドを、塩基として1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)を用いて、ステロイド前駆体の水酸基をフッ素化した例が記載されている。
 非特許文献2には、テトラヒドロフラン又は塩化メチレン溶媒中、1級から3級アルコールを、パーフルオロブタンスルホン酸フルオリド-トリアルキルアミンフッ化水素錯体-トリアルキルアミンの3元系でフッ素化する方法が記載されている。
 非特許文献3には、フッ素化剤としてノナフルオロブタンスルホン酸フルオリド、塩基としてDBUを用いて、各種アルコールをフッ素化した例が記載されている。
 特許文献1には、トルエンやジエチレングルコールジメチルエーテル等の溶媒中、フッ素化剤としてフッ素化脂肪族スルホン酸フルオリドを、塩基としてDBUを用いて、高分子量のアルコール化合物をフッ素化したことが記載されている。
 また、特許文献2には、トルエンなどの不活性有機溶媒中、フッ素化剤としてノナフルオロブタンスルホン酸フルオリド、塩基としてアミジン塩基を用いて、脂肪族アルコール、芳香族炭化水素化合物、エノール化合物をフッ素化したことが記載されている。
Conventionally, as a method for producing a fluorinated alkane, a method of reacting a corresponding alcohol with an alkylsulfonic acid fluoride as a fluorinating agent is known.
For example, Non-Patent Document 1 uses perfluorobutanesulfonic acid fluoride as a fluorinating agent and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) as a base in a toluene solvent. An example in which the hydroxyl group of a steroid precursor is fluorinated is described.
Non-Patent Document 2 discloses a method in which a primary to tertiary alcohol is fluorinated in a ternary system of perfluorobutanesulfonic acid fluoride-trialkylamine hydrogen fluoride complex-trialkylamine in tetrahydrofuran or methylene chloride solvent. Are listed.
Non-Patent Document 3 describes an example in which various alcohols are fluorinated using nonafluorobutanesulfonic acid fluoride as a fluorinating agent and DBU as a base.
Patent Document 1 describes that a high molecular weight alcohol compound is fluorinated using fluorinated aliphatic sulfonic acid fluoride as a fluorinating agent and DBU as a base in a solvent such as toluene and diethylene glycol dimethyl ether. ing.
Patent Document 2 discloses that in an inert organic solvent such as toluene, nonafluorobutanesulfonic acid fluoride is used as a fluorinating agent, amidine base is used as a base, aliphatic alcohols, aromatic hydrocarbon compounds, and enol compounds are fluorinated. It is described that.
 しかし、これらの文献において用いられるフッ素化剤のパーフルオロアルカンスルホン酸フルオリドは高価であり、工業的使用には適さない。また、これらのフッ素化剤を使用した場合に生成するパーフルオロアルカンスルホン酸誘導体は、長期毒性の懸念があり、安全上の問題がある。 However, the fluorinating agent perfluoroalkanesulfonic acid fluoride used in these documents is expensive and not suitable for industrial use. In addition, perfluoroalkanesulfonic acid derivatives produced when these fluorinating agents are used have a concern about long-term toxicity and have safety problems.
 一方、フッ素化化合物の中でも、炭素数3~5のフッ素化アルカンの製造方法として、以下のものが知られている。
 特許文献3には、2-ブタノールに、フッ素化剤としてのN,N’-ジエチル-3-オキソ-メチルトリフルオロプロピルアミンを接触させて、収率46%で2-フルオロブタンを得たことが記載されている。
 しかし、用いるN,N’-ジエチル-3-オキソ-メチルトリフルオロプロピルアミンは、工業的に入手困難な4-クロロ-3,4,4-トリフルオロ-2-ブタノンと2当量のジエチルアミンから製造されるものであるため、非常に高価なフッ素化剤といえる。また、目的物の2―フルオロブタンの収率も46%と満足のいくものではない。
 特許文献4には、無溶媒下、フッ素化剤としてトリエチルアンモニウムヘキサフルオロシクロブタンを用いて、2-ブタノールから収率68%で2-フルオロブタンを得たことが記載されている。
 しかし、用いるトリエチルアンモニウムヘキサフルオロシクロブタンは、工業的に非常に高価で、かつ、毒性の強いヘキサフルオロシクロブテンを用いて製造されるものである。
 特許文献5には、sec-ブチルリチウムシクロヘキサン-ヘキサン溶液に、六フッ化硫黄を接触させることにより、フッ化sec-ブチルを得たことが記載されている。
 しかし、用いるsec-ブチルリチウムシクロヘキサン-ヘキサン溶液は発火性が大きく、取扱い上の問題がある。また、六フッ化硫黄は大気寿命が非常に長いものであるため、安全性に問題がある。
 さらに、特許文献6には、2-フルオロブタジエンを、触媒存在下に水素化することにより、2-フルオロブタンを得たことが記載されている。
 しかし、この文献に記載の方法には、原料の2-フルオロブタジエンの入手が困難であるという問題がある。
On the other hand, among the fluorinated compounds, the following are known as methods for producing fluorinated alkanes having 3 to 5 carbon atoms.
In Patent Document 3, 2-butanol was contacted with N, N′-diethyl-3-oxo-methyltrifluoropropylamine as a fluorinating agent to obtain 2-fluorobutane in a yield of 46%. Is described.
However, the N, N′-diethyl-3-oxo-methyltrifluoropropylamine used is prepared from 4-chloro-3,4,4-trifluoro-2-butanone and 2 equivalents of diethylamine which are difficult to obtain industrially. Therefore, it can be said to be a very expensive fluorinating agent. Also, the yield of the target 2-fluorobutane is not satisfactory at 46%.
Patent Document 4 describes that 2-fluorobutane was obtained from 2-butanol in a yield of 68% using triethylammonium hexafluorocyclobutane as a fluorinating agent in the absence of a solvent.
However, the triethylammonium hexafluorocyclobutane used is manufactured using hexafluorocyclobutene which is industrially very expensive and highly toxic.
Patent Document 5 describes that sec-butyl fluoride was obtained by contacting sulfur hexafluoride with a sec-butyllithium cyclohexane-hexane solution.
However, the sec-butyllithium cyclohexane-hexane solution used is highly ignitable and has a handling problem. Further, since sulfur hexafluoride has a very long atmospheric life, there is a problem with safety.
Further, Patent Document 6 describes that 2-fluorobutane was obtained by hydrogenating 2-fluorobutadiene in the presence of a catalyst.
However, the method described in this document has a problem that it is difficult to obtain the raw material 2-fluorobutadiene.
 以上のように、これらの文献に記載の方法は、フッ素化アルカンの好ましい工業的製造方法とは言い難いものである。
先行技術文献
特許文献
As described above, the methods described in these documents are hardly preferred industrial production methods for fluorinated alkanes.
Prior art documents Patent documents
  特許文献1:特表2002-530356号公報
  特許文献2:特表平9-507503号公報
  特許文献3:特開昭59-46251号公報
  特許文献4:特開平9-48741号公報
  特許文献5:特開2009-292749号公報
  特許文献6:USP.2,550,953
非特許文献
Patent Document 1: JP 2002-530356 A Patent Document 2: JP 9-507503 JP Patent Document 3: JP 59-46251 JP Patent Document 4: JP 9-48741 JP Patent Document 5: JP 2009-292749 A Patent Document 6: USP. 2,550,953
Non-patent literature
  非特許文献1:Tetrahedron Letters,Vol.36,2614(1995)
  非特許文献2:Organic Letters、Vol.6,1465(2004)
  非特許文献3:Synthesis、No.8、1165(2008)
発明の概要
発明が解決しようとする課題
Non-Patent Document 1: Tetrahedron Letters, Vol. 36, 2614 (1995)
Non-Patent Document 2: Organic Letters, Vol. 6, 1465 (2004)
Non-Patent Document 3: Synthesis, No. 8, 1165 (2008)
Summary of the Invention Problems to be Solved by the Invention
 本発明は、上記した従来技術に鑑みてなされたものであり、フッ素化化合物を、工業的に有利に製造する方法を提供することを目的とする。
課題を解決するための手段
The present invention has been made in view of the above-described prior art, and an object thereof is to provide a method for producing a fluorinated compound in an industrially advantageous manner.
Means for solving the problem
 本発明者らは、上記課題を解決すべく鋭意研究した結果、炭素数6以上のヒドロキシ化合物に、アミジン塩基等の存在下で、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤を作用させることにより、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物(以下、「フッ素化化合物」ということがある。)を、安全に簡便に、経済的に、かつ、高収率で得ることができることを見出した。
 そして、これらの知見を基に、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that a hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO 2 F (R 1 is methyl) in the presence of an amidine base or the like. And a fluorinating agent represented by formula (2): R 2 -F (R 2 is a hydroxy compound having 6 or more carbon atoms removed from the hydroxy group). It has been found that a fluorinated compound represented by a group (hereinafter sometimes referred to as “fluorinated compound”) can be obtained safely, simply, economically and in a high yield.
And based on these knowledge, it came to complete this invention.
 かくして本発明によれば、下記〔1〕~〔11〕のフッ素化化合物の製造方法が提供される。
〔1〕炭素数6以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
〔2〕前記ヒドロキシ化合物と前記フッ素化剤の混合物に、60℃~150℃で、前記塩基を添加して反応を行うことを特徴とする、〔1〕に記載のフッ素化化合物の製造方法。
〔3〕前記フッ素化剤が、メタンスルホン酸フルオリドであることを特徴とする、〔1〕又は〔2〕に記載のフッ素化化合物の製造方法。
〔4〕前記塩基が、下記式(3)
Thus, according to the present invention, the following methods for producing fluorinated compounds [1] to [11] are provided.
[1] A hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base is represented by the formula (1): R 1 SO 2 F (R 1 is a methyl group, an ethyl group or Fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) A method for producing a fluorinated compound represented by:
[2] The method for producing a fluorinated compound according to [1], wherein the reaction is performed by adding the base to a mixture of the hydroxy compound and the fluorinating agent at 60 ° C. to 150 ° C.
[3] The method for producing a fluorinated compound according to [1] or [2], wherein the fluorinating agent is methanesulfonic acid fluoride.
[4] The base is represented by the following formula (3)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、nは0又は2である。)で示される、アミジン塩基である、〔1〕~〔3〕のいずれかに記載のフッ素化化合物の製造方法。
〔5〕前記塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであることを特徴とする、〔1〕~〔4〕のいずれかに記載のフッ素化化合物の製造方法。
〔6〕前記塩基を、フッ化水素との酸塩として存在させる、〔1〕~〔5〕のいずれかに記載のフッ素化化合物の製造方法。
(Wherein n is 0 or 2), the method for producing a fluorinated compound according to any one of [1] to [3], which is an amidine base.
[5] The production of the fluorinated compound according to any one of [1] to [4], wherein the base is 1,8-diazabicyclo [5.4.0] undec-7-ene Method.
[6] The method for producing a fluorinated compound according to any one of [1] to [5], wherein the base is present as an acid salt with hydrogen fluoride.
〔7〕炭素数3以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
〔8〕前記ヒドロキシ化合物と前記フッ素化剤の混合物に、60℃~150℃で、前記塩基を添加して反応を行うことを特徴とする、〔7〕に記載のフッ素化化合物の製造方法。
〔9〕前記フッ素化剤が、メタンスルホン酸フルオリドであることを特徴とする、〔7〕又は〔8〕に記載のフッ素化化合物の製造方法。
〔10〕前記塩基が、下記式(3)
[7] A hydroxy compound having 3 or more carbon atoms in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base is represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group), and is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a compound having 3 or more carbon atoms) Represents a group obtained by removing a hydroxy group from a hydroxy compound.).
[8] The method for producing a fluorinated compound according to [7], wherein the reaction is performed by adding the base to a mixture of the hydroxy compound and the fluorinating agent at 60 ° C. to 150 ° C.
[9] The method for producing a fluorinated compound according to [7] or [8], wherein the fluorinating agent is methanesulfonic acid fluoride.
[10] The base is represented by the following formula (3)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、nは0又は2である。)で示される、アミジン塩基である、〔7〕~〔9〕のいずれかに記載のフッ素化化合物の製造方法。
〔11〕前記塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであることを特徴とする、〔7〕~〔10〕のいずれかに記載のフッ素化化合物の製造方法。
発明の効果
(Wherein n is 0 or 2), the method for producing a fluorinated compound according to any one of [7] to [9], which is an amidine base.
[11] The production of the fluorinated compound according to any one of [7] to [10], wherein the base is 1,8-diazabicyclo [5.4.0] undec-7-ene Method.
The invention's effect
 本発明によれば、工業的に安価に入手できる、原料及びフッ素化剤を用いて、安全に簡便に、経済的、かつ、高収率で、プラズマエッチングガス、CVD用ガス等として好適な、フッ素化化合物を製造することができる。
発明を実施するための形態
According to the present invention, using raw materials and a fluorinating agent that can be obtained industrially inexpensively, safely and simply, economically, and in high yield, suitable as a plasma etching gas, a CVD gas, etc. Fluorinated compounds can be produced.
BEST MODE FOR CARRYING OUT THE INVENTION
<フッ素化化合物の製造方法>
 本発明は、炭素数6以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基存在下に、式(1):RSOFで示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-Fで示されるフッ素化化合物の製造方法である。
<Method for producing fluorinated compound>
In the present invention, a hydroxy compound having 6 or more carbon atoms is fluorinated with a fluorinating agent represented by the formula (1): R 1 SO 2 F in the presence of a base selected from the group consisting of an amidine base and a phosphazene base. This is a method for producing a fluorinated compound represented by the formula (2): R 2 -F.
(原料ヒドロキシ化合物)
 本発明の製造方法は、原料として、炭素数6以上のヒドロキシ化合物を用いる。炭素数6以上のヒドロキシ化合物は、水酸基、例えばアルコール性水酸基を1つ以上有する化合物が好ましい。炭素数6以上のヒドロキシ化合物は、水酸基を1つ又は2つ有する化合物が好ましい。目的とするフッ素化化合物が得られるようなヒドロキシ化合物を選択して用いればよい。ヒドロキシ化合物は、炭素数30以下、更に炭素数25以下、更に炭素数20以下、更に炭素数18以下、更に炭素数15以下であってよい。
(Raw material hydroxy compound)
The production method of the present invention uses a hydroxy compound having 6 or more carbon atoms as a raw material. The hydroxy compound having 6 or more carbon atoms is preferably a compound having one or more hydroxyl groups, for example, alcoholic hydroxyl groups. The hydroxy compound having 6 or more carbon atoms is preferably a compound having one or two hydroxyl groups. What is necessary is just to select and use the hydroxy compound from which the target fluorinated compound is obtained. The hydroxy compound may have 30 or less carbon atoms, 25 or less carbon atoms, 20 or less carbon atoms, 18 or less carbon atoms, and 15 or less carbon atoms.
 炭素数6以上のヒドロキシ化合物としては、以下のものが挙げられる。
(A)炭素数6以上のアルコール
(B)N-置換ヒドロキシピロリジン及びその誘導体であって総炭素数6以上の化合物
(C)炭素数6以上のヒドロキシカルボン酸及びその誘導体
 炭素数6以上のヒドロキシ化合物は、ケトン、エーテル、アミド、アミンなどの、水酸基以外の官能基を有していてもよい。前記(A)、(B)、(C)の化合物も、水酸基以外の官能基を有していても良い。
 すなわち、本発明では、(A)炭素数6以上のアルコール、(B)N-置換ヒドロキシピロリジン及びその誘導体であって総炭素数6以上の化合物、並びに、(C)炭素数6以上のヒドロキシカルボン酸及びその誘導体から選ばれるヒドロキシ化合物を用いることができる。
Examples of the hydroxy compound having 6 or more carbon atoms include the following.
(A) Alcohol having 6 or more carbon atoms (B) N-substituted hydroxypyrrolidine and derivatives thereof, which are compounds having 6 or more total carbon atoms (C) Hydroxycarboxylic acids having 6 or more carbon atoms and derivatives thereof Hydroxy having 6 or more carbon atoms The compound may have a functional group other than a hydroxyl group, such as a ketone, ether, amide, or amine. The compounds (A), (B), and (C) may also have a functional group other than a hydroxyl group.
That is, in the present invention, (A) alcohol having 6 or more carbon atoms, (B) N-substituted hydroxypyrrolidine and derivatives thereof having a total carbon number of 6 or more, and (C) hydroxycarbon having 6 or more carbon atoms. Hydroxy compounds selected from acids and derivatives thereof can be used.
 (A)の炭素数6以上のアルコールとしては、
 (A1)炭素数6以上の1価アルコール
 (A2)炭素数6以上の多価アルコール
が挙げられる。
As the alcohol having 6 or more carbon atoms in (A),
(A1) Monohydric alcohol having 6 or more carbon atoms (A2) Polyhydric alcohol having 6 or more carbon atoms may be mentioned.
 (A1)の化合物としては、飽和アルコール、不飽和アルコールが挙げられる。具体的には、炭素数6~30、更に炭素数6~20、更に炭素数6~15の1価飽和アルコール、炭素数6~30、更に炭素数6~20、更に炭素数6~15の1価不飽和アルコール、及び1価芳香族アルコール、更に総炭素数6~30の1価芳香族アルコールから選ばれるアルコールが挙げられる。炭素数6以上の1価アルコールは、1級アルコール、2級アルコール、3級アルコールが挙げられる。1価アルコールは、2級アルコールが好ましい。
 より具体的には、1価飽和アルコールとして、1-ヘキサノール、2-ヘキサノール、2-オクタノール、アンデロステロンなどの飽和ステロイド類などが挙げられる。
 また、1価不飽和アルコールとして、2-ヘキセン-1-オール、3-ヘキセン-1-オール、2-オクテン-1-オール、ゲラニオールなどが挙げられる。
Examples of the compound (A1) include saturated alcohols and unsaturated alcohols. Specifically, monovalent saturated alcohol having 6 to 30 carbon atoms, further 6 to 20 carbon atoms, and further 6 to 15 carbon atoms, 6 to 30 carbon atoms, further 6 to 20 carbon atoms, and further 6 to 15 carbon atoms. Examples thereof include alcohols selected from monounsaturated alcohols, monovalent aromatic alcohols, and monovalent aromatic alcohols having 6 to 30 carbon atoms in total. Examples of the monohydric alcohol having 6 or more carbon atoms include primary alcohol, secondary alcohol, and tertiary alcohol. The monohydric alcohol is preferably a secondary alcohol.
More specifically, examples of the monovalent saturated alcohol include saturated steroids such as 1-hexanol, 2-hexanol, 2-octanol and androsterone.
Examples of monounsaturated alcohols include 2-hexen-1-ol, 3-hexen-1-ol, 2-octen-1-ol, and geraniol.
 また、1価芳香族アルコールとして、アラルキルアルコール、更に総炭素数6~30のアラルキルアルコールが挙げられる。1価芳香族アルコールとして、ベンジルアルコール、1-フェニルエタノール、2-フェニルエタノール、1-ナフチルエタノール、4-フルオロ-α-メチルベンジルアルコール、4-クロロ-α-メチルベンジルアルコール、4-ブロモ-α-メチルベンジルアルコール、4-メチル-α-メチルベンジルアルコール、4-メトキシ-α-メチルベンジルアルコール、4-アミノ-α-メチルベンジルアルコールなどが挙げられる。
 アラルキルアルコールとして、下記式の化合物が挙げられる。
Examples of the monovalent aromatic alcohol include aralkyl alcohol and further aralkyl alcohol having 6 to 30 carbon atoms in total. As monovalent aromatic alcohols, benzyl alcohol, 1-phenylethanol, 2-phenylethanol, 1-naphthylethanol, 4-fluoro-α-methylbenzyl alcohol, 4-chloro-α-methylbenzyl alcohol, 4-bromo-α -Methylbenzyl alcohol, 4-methyl-α-methylbenzyl alcohol, 4-methoxy-α-methylbenzyl alcohol, 4-amino-α-methylbenzyl alcohol and the like.
Examples of the aralkyl alcohol include a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式中、Rは、水素原子、又は炭素数1~10の炭化水素基、好ましくはアルキル基もしくはアルケニル基、R’は、水素原子、炭素数1~10の炭化水素基、好ましくはアルキル基もしくはアルケニル基、水酸基、アミノ基、又はハロゲン基である。〕
 Rは、炭素数1~10、更に炭素数1~5のアルキル基又はアルケニル基が好ましい。R’は、水素原子、又は炭素数1~10、更に炭素数1~5のアルキル基もしくはアルケニル基が好ましく、水素原子がより好ましい。R又はR’の炭化水素基は、環構造を有するものであってもよい。また、環構造は置換基を有していてもよい。
[Wherein, R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group or an alkenyl group, and R ′ is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group. Or it is an alkenyl group, a hydroxyl group, an amino group, or a halogen group. ]
R is preferably an alkyl or alkenyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. R ′ is preferably a hydrogen atom, or an alkyl or alkenyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and more preferably a hydrogen atom. The hydrocarbon group for R or R ′ may have a ring structure. The ring structure may have a substituent.
 (A1)の化合物は、原料の入手のしやすさの観点から、2-オクタノール又は1-フェニルエタノールが好ましい。 The compound (A1) is preferably 2-octanol or 1-phenylethanol from the viewpoint of easy availability of raw materials.
 (A2)の化合物としては、総炭素数6以上のアルキレングリコール、総炭素数6以上のポリグリセリンが挙げられる。前記アルキレングリコールは、総炭素数30以下、更に20以下が好ましい。前記ポリグリセリンは、総炭素数30以下、更に20以下が好ましい。
 具体的には、トリエチレングリコール、ジプロピレングリコール、ジグリセリンなどが挙げられる。
Examples of the compound (A2) include alkylene glycol having a total carbon number of 6 or more and polyglycerin having a total carbon number of 6 or more. The alkylene glycol preferably has a total carbon number of 30 or less, and more preferably 20 or less. The polyglycerin preferably has a total carbon number of 30 or less, and more preferably 20 or less.
Specific examples include triethylene glycol, dipropylene glycol, and diglycerin.
 多価アルコールのように、2つ以上の水酸基を有するヒドロキシ化合物は、隣接する2つの炭素原子にそれぞれ水酸基が結合した構造を有していないものが好ましい。 As in the case of a polyhydric alcohol, a hydroxy compound having two or more hydroxyl groups preferably does not have a structure in which hydroxyl groups are bonded to two adjacent carbon atoms.
 (B)のN-置換ヒドロキシピロリジン及びその誘導体であって総炭素数6以上の化合物は、総炭素数が6~30、更に6~20が好ましい。(B)N-置換ヒドロキシピロリジン及びその誘導体であって総炭素数6以上の化合物としては、N-アルキル置換ヒドロキシピロリジン、N-アラルキル置換ヒドロキシピロリジンが挙げられる。また、N-置換ヒドロキシピロリジンの誘導体としては、N-アルキル置換ヒドロキシピロリジンカルボン酸、N-アルキル置換ヒドロキシピロリジンカルボン酸エステル、N-アラルキル置換ヒドロキシピロリジンカルボン酸、N-アラルキル置換ヒドロキシピロリジンカルボン酸エステルが挙げられる。(B)の化合物として、下記式の化合物が挙げられる。 The (B) N-substituted hydroxypyrrolidine and derivatives thereof having a total carbon number of 6 or more preferably have a total carbon number of 6 to 30, more preferably 6 to 20. (B) Examples of N-substituted hydroxypyrrolidine and its derivatives having a total carbon number of 6 or more include N-alkyl-substituted hydroxypyrrolidine and N-aralkyl-substituted hydroxypyrrolidine. Examples of N-substituted hydroxypyrrolidine derivatives include N-alkyl-substituted hydroxypyrrolidine carboxylic acid, N-alkyl-substituted hydroxypyrrolidine carboxylic acid ester, N-aralkyl-substituted hydroxypyrrolidine carboxylic acid, and N-aralkyl-substituted hydroxypyrrolidine carboxylic acid ester. Can be mentioned. Examples of the compound (B) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式中、Rは、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数7~20のアリール基、炭素数2~20のアシル基、炭素数2~20のアルコキシカルボニル基、又は炭素数7~20のアリールオキシカルボニル基である。R’は、炭素数1~20の炭化水素基、好ましくはアルキル基又はアルケニル基である。ただし、R及びR’は、化合物全体の炭素数が6以上、好ましくは6~30、より好ましくは6~20となるように選択される。〕 [Wherein, R represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an aryl group having 7 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, or an alkoxy group having 2 to 20 carbon atoms. A carbonyl group or an aryloxycarbonyl group having 7 to 20 carbon atoms. R ′ is a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group or an alkenyl group. However, R and R ′ are selected so that the total number of carbon atoms in the compound is 6 or more, preferably 6 to 30, and more preferably 6 to 20. ]
 Rのうち、炭素数1~20のアルキル基は、炭素数1~15のアルキル基が好ましく、メチル基が更に好ましい。また、炭素数7~20のアリール基は、炭素数7~15のアリール基が好ましく、ベンジル基(Bn)が更に好ましい。また、炭素数2~20のアシル基は、炭素数2~15のアシル基が好ましく、アセチル基(Ac)、ベンゾイル基(Bz)が更に好ましい。また、炭素数2~20のアルコキシカルボニル基は、炭素数2~15のアルコキシ基が好ましく、tert-ブトキシカルボニル基(Boc)が更に好ましい。また、炭素数7~20のアリールオキシカルボニル基は、炭素数7~15のアリールオキシカルボニル基が好ましく、ベンジルオキシカルボニル基(Cbz基)が更に好ましい。Rは、ベンジル基(Bn)が好ましい。
 また、R’は、炭素数1~20のアルキル基が好ましく、炭素数1~15のアルキル基がより好ましく、炭素数1~10のアルキル基が更に好ましく、メチル基がより更に好ましい。
Of R, the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, and more preferably a methyl group. The aryl group having 7 to 20 carbon atoms is preferably an aryl group having 7 to 15 carbon atoms, and more preferably a benzyl group (Bn). The acyl group having 2 to 20 carbon atoms is preferably an acyl group having 2 to 15 carbon atoms, more preferably an acetyl group (Ac) or a benzoyl group (Bz). The alkoxycarbonyl group having 2 to 20 carbon atoms is preferably an alkoxy group having 2 to 15 carbon atoms, and more preferably a tert-butoxycarbonyl group (Boc). The aryloxycarbonyl group having 7 to 20 carbon atoms is preferably an aryloxycarbonyl group having 7 to 15 carbon atoms, and more preferably a benzyloxycarbonyl group (Cbz group). R is preferably a benzyl group (Bn).
R ′ is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, and still more preferably a methyl group.
 (C)の炭素数6以上のヒドロキシカルボン酸としては、炭素数6~30のヒドロキシカルボン酸が挙げられる。炭素数6以上のヒドロキシカルボン酸としては、α-ヒドロキシカルボン酸、好ましくは炭素数6~30のα-ヒドロキシカルボン酸が挙げられる。炭素数6以上のヒドロキシカルボン酸の誘導体としては、該カルボン酸の塩、該カルボン酸のエステルが挙げられる。(C)は、炭素数6以上のヒドロキシカルボン酸エステルが好ましい。(C)の化合物としては、下記式で表される化合物が挙げられる。 (C) The hydroxycarboxylic acid having 6 or more carbon atoms may be a hydroxycarboxylic acid having 6 to 30 carbon atoms. Examples of the hydroxycarboxylic acid having 6 or more carbon atoms include α-hydroxycarboxylic acids, preferably α-hydroxycarboxylic acids having 6 to 30 carbon atoms. Examples of the derivative of a hydroxycarboxylic acid having 6 or more carbon atoms include salts of the carboxylic acid and esters of the carboxylic acid. (C) is preferably a hydroxycarboxylic acid ester having 6 or more carbon atoms. Examples of the compound (C) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔式中、Rは、炭素数1~20の炭化水素基、好ましくは炭素数1~20、更に炭素数1~15のアルキル基又は炭素数1~20、更に炭素数1~15のアルケニル基、R’は、炭素数1~20の炭化水素基、好ましくは炭素数1~20、更に炭素数1~15のアルキル基、炭素数1~20、更に炭素数1~15のアルケニル基又は炭素数6~20、更に炭素数6~15のアリール基である。ただし、R及びR’は、化合物全体の炭素数が6以上、好ましくは6~30、より好ましくは6~20となるように選択される。〕
 上記式において、R又はR’の炭化水素基は、環構造を有するものであってもよい。また、環構造は置換基を有していてもよい。
[In the formula, R represents a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, and further an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 1 to 20 carbon atoms and further 1 to 15 carbon atoms. , R ′ is a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, further an alkenyl group having 1 to 15 carbon atoms, or carbon. An aryl group having 6 to 20 carbon atoms and 6 to 15 carbon atoms. However, R and R ′ are selected so that the total number of carbon atoms in the compound is 6 or more, preferably 6 to 30, and more preferably 6 to 20. ]
In the above formula, the hydrocarbon group for R or R ′ may have a ring structure. The ring structure may have a substituent.
 また、炭素数6以上のヒドロキシカルボン酸としては、リトコール酸などの水酸基とカルボキシル基とを有する飽和ステロイド類が挙げられる。 In addition, examples of the hydroxycarboxylic acid having 6 or more carbon atoms include saturated steroids having a hydroxyl group and a carboxyl group such as lithocholic acid.
 炭素数6以上のヒドロキシ化合物は、原料の入手にしやすさの観点から、N-ベンジル-3-ヒドロキシピロリジン、N-ベンジル-4-ヒドロキシプロリン、炭素数6以上の乳酸エステルが好ましい。乳酸エステルは、乳酸と炭素数3~20のアルコールとのエステルが好ましい。 The hydroxy compound having 6 or more carbon atoms is preferably N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, or lactic acid ester having 6 or more carbon atoms from the viewpoint of easy availability of raw materials. The lactic acid ester is preferably an ester of lactic acid and an alcohol having 3 to 20 carbon atoms.
(フッ素化剤)
 本発明においては、フッ素化剤として、式(1):RSOFで示される化合物を用いる。
 式(1)中、Rは、メチル基、エチル基、又は、芳香族基を表す。芳香族基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。これらの芳香族基は、メチル基、エチル基等の置換基を有していてもよい。
(Fluorinating agent)
In the present invention, a compound represented by the formula (1): R 1 SO 2 F is used as the fluorinating agent.
In formula (1), R 1 represents a methyl group, an ethyl group, or an aromatic group. Examples of the aromatic group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. These aromatic groups may have a substituent such as a methyl group or an ethyl group.
 式(1)で示される化合物の具体例としては、メタンスルホン酸フルオリド、エタンスルホン酸フルオリド等の脂肪族スルホン酸フルオリド;ベンゼンスルホン酸フルオリド、p-トルエンスルホン酸フルオリド等の芳香族スルホン酸フルオリド;等が挙げられる。これらの中でも、経済的に収率良く目的物が得られ、かつ、取扱い易さの観点から、メタンスルホン酸フルオリド、エタンスルホン酸フルオリドが好ましく、メタンスルホン酸フルオリドがより好ましい。 Specific examples of the compound represented by the formula (1) include aliphatic sulfonic acid fluorides such as methanesulfonic acid fluoride and ethanesulfonic acid fluoride; aromatic sulfonic acid fluorides such as benzenesulfonic acid fluoride and p-toluenesulfonic acid fluoride; Etc. Among these, methanesulfonic acid fluoride and ethanesulfonic acid fluoride are preferable, and methanesulfonic acid fluoride is more preferable from the viewpoint of economically high yield of the target product and ease of handling.
 式(1)で示される化合物は、従来公知の方法を用いて製造することができる。
 例えば、脂肪族スルホン酸フルオリドは、スルホン酸クロリドを、水溶媒中、フッ化ナトリウム、フッ化カリウム等のアルカリ金属フッ化物と接触させる方法(特開平6-263715号公報)や、スルホン酸クロリドを、水溶媒中、二フッ化水素カリウムと接触させる方法(Journal of Chemical Society,173(1956))等により製造することができる。
The compound shown by Formula (1) can be manufactured using a conventionally well-known method.
For example, aliphatic sulfonic acid fluoride is prepared by a method in which sulfonic acid chloride is brought into contact with an alkali metal fluoride such as sodium fluoride or potassium fluoride in an aqueous solvent (Japanese Patent Laid-Open No. 6-263715), It can be produced by a method of contacting with potassium hydrogen difluoride in an aqueous solvent (Journal of Chemical Society, 173 (1956)) or the like.
 また、芳香族スルホン酸フルオリドは、芳香族スルホン酸クロリドを出発原料とし、相間移動触媒として、ポリエチレングリコール又は18-クラウン-6-エーテルの存在下に、フッ素化剤として、フッ化カリウムを用いてフッ素化する方法(Chemistry
 Letters,283(1978)、Journal of Organic Chemistry,Vol.42,2031(1977))等により製造することができる。
 本発明においては、以上のような、安価で、入手が容易なフッ素化剤を使用する。
Aromatic sulfonic acid fluoride uses aromatic sulfonic acid chloride as a starting material, phase transfer catalyst in the presence of polyethylene glycol or 18-crown-6-ether, and potassium fluoride as a fluorinating agent. Method of fluorination (Chemistry
Letters, 283 (1978), Journal of Organic Chemistry, Vol. 42, 2031 (1977)) or the like.
In the present invention, an inexpensive and easily available fluorinating agent as described above is used.
 フッ素化剤の使用量は、原料ヒドロキシ化合物に対して、1当量以上用いればよく、1.0~5.0当量となる量が好ましく、1.1~2.0当量となる量がより好ましい。原料ヒドロキシ化合物に対してフッ素化剤の使用量が少なすぎると原料の無駄が多くなり好ましくない。一方、フッ素化剤を過剰に使用すると、フッ素化剤が効率的に消費されなくなる。 The amount of the fluorinating agent used may be 1 equivalent or more with respect to the raw material hydroxy compound, preferably 1.0 to 5.0 equivalent, more preferably 1.1 to 2.0 equivalent. . If the amount of the fluorinating agent used is too small relative to the raw material hydroxy compound, the raw material is wasted, which is not preferable. On the other hand, if the fluorinating agent is used in excess, the fluorinating agent will not be consumed efficiently.
(塩基)
 本発明に用いる塩基は、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基である。
 アミジン塩基とは、-N-C=N-骨格を有する塩基性有機化合物である。アミジン塩基としては、開鎖化合物であっても、4ないし8個、好ましくは5又は6個の環員を含む脂環式環、二環状および三環状環であってもよい。本発明に用いるアミジン塩基としては、好ましくは4ないし20個、より好ましくは4ないし14個、さらに好ましくは4ないし10個の炭素原子を含む化合物である。
 アミジン塩基の具体例としては、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD);ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,8-ジアザビシクロ[5.4.0]-ウンデカ-7-エン(DBU)等が挙げられるが、これらに限定されるものではない。
(base)
The base used in the present invention is a base selected from the group consisting of an amidine base and a phosphazene base.
An amidine base is a basic organic compound having a —N—C═N— skeleton. The amidine base may be an open-chain compound or an alicyclic ring, bicyclic ring and tricyclic ring containing 4 to 8, preferably 5 or 6, ring members. The amidine base used in the present invention is preferably a compound containing 4 to 20, more preferably 4 to 14, and still more preferably 4 to 10 carbon atoms.
Specific examples of amidine bases include 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene (MTBD); diazabicyclo [4.3.0] non-5-ene. (DBN), 1,8-diazabicyclo [5.4.0] -undec-7-ene (DBU), and the like, but are not limited thereto.
 フォスファゼン塩基とは、分子内に、(-N-)P=N-骨格を有する塩基性有機化合物である。フォスファゼン塩基としては、例えば、t-ブチルイミノトリス(ジメチルアミノホスホラン)(略称:P-t-Bu)、1-t-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2Λ,4Λ-カテナジ(ホスファゼン)(略称:P-t-Bu)等が挙げられるが、これらに限定されるものでない。 A phosphazene base is a basic organic compound having a (—N—) 3 P═N— skeleton in the molecule. Examples of the phosphazene base include t-butyliminotris (dimethylaminophosphorane) (abbreviation: P 1 -t-Bu), 1-t-butyl-4,4,4-tris (dimethylamino) -2,2 -Bis [tris (dimethylamino) phosphoranylideneamino] -2Λ 5 , 4Λ 5 -catenadi (phosphazene) (abbreviation: P 4 -t-Bu) and the like, but are not limited thereto.
 これらの中でも、入手容易性の観点から、アミジン塩基が好ましく、下記式(3)に示す骨格を有するアミジン塩基がより好ましい。 Among these, an amidine base is preferable from the viewpoint of availability, and an amidine base having a skeleton represented by the following formula (3) is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(nは0又は2の整数を表す。)
 上記骨格を有する化合物は、具体的には、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)であり、DBUが特に好ましい。
(N represents an integer of 0 or 2)
Specific examples of the compound having the skeleton include 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [4.3.0] non-5-ene. (DBN), with DBU being particularly preferred.
 塩基の使用量は、原料ヒドロキシ化合物対して、1~10当量が好ましく、1.1~5.0当量がより好ましい。塩基の使用量が少なすぎると、収率が悪くなるので好ましくない。一方、使用量が多すぎると、反応液の粘度が大きくなり、反応終了後の処理が面倒になる。 The amount of the base used is preferably 1 to 10 equivalents, more preferably 1.1 to 5.0 equivalents with respect to the raw material hydroxy compound. If the amount of base used is too small, the yield will be unfavorable. On the other hand, when the amount used is too large, the viscosity of the reaction solution increases, and the treatment after the reaction ends becomes troublesome.
 本発明では、前記塩基を、フッ化水素との酸塩として存在させることが、収率向上の観点で好ましい。この場合、塩基は、前記式(3)のアミジン塩基が好ましい。前記塩基のフッ化水素との酸塩としては、DBU-三フッ化水素・酸塩が挙げられる。これは、DBU1当量に対して3当量のフッ化水素の酸塩である。酸塩は、錯塩であってもよい。 In the present invention, the base is preferably present as an acid salt with hydrogen fluoride from the viewpoint of improving the yield. In this case, the base is preferably the amidine base of the formula (3). Examples of the acid salt of the base with hydrogen fluoride include DBU-hydrogen trifluoride / acid salt. This is an acid salt of hydrogen equivalent of 3 equivalents to 1 equivalent of DBU. The acid salt may be a complex salt.
 前記塩基のフッ化水素との酸塩の使用量は、原料ヒドロキシ化合物に対して、0.1~5.0当量が好ましく、0.5~2.0当量がより好ましい。前記塩基とフッ化水素との酸塩を用いることが好ましい。 The amount of the acid salt of the base with hydrogen fluoride used is preferably from 0.1 to 5.0 equivalents, more preferably from 0.5 to 2.0 equivalents, based on the raw material hydroxy compound. It is preferable to use an acid salt of the base and hydrogen fluoride.
 本発明では、前記塩基と、前記塩基のフッ化水素との酸塩の両方を用いることが好ましい。その場合、(前記塩基)/(前記塩基とフッ化水素との酸塩)のモル比は、1~20が好ましく、1~5がより好ましい。 In the present invention, it is preferable to use both the base and an acid salt of hydrogen fluoride of the base. In that case, the molar ratio of (the base) / (acid salt of the base and hydrogen fluoride) is preferably 1 to 20, and more preferably 1 to 5.
(反応)
 本発明では、炭素数6以上のヒドロキシ化合物のフッ素化は、無溶媒下又は有機溶媒下で行うことができる。
(reaction)
In the present invention, the fluorination of a hydroxy compound having 6 or more carbon atoms can be carried out without a solvent or in an organic solvent.
 有機溶媒としては、トルエン、酢酸エチル、塩化メチレン、アセトニトリルなどが挙げられる。有機溶媒はトルエンまたはアセトニトリルが好ましい。 Organic solvents include toluene, ethyl acetate, methylene chloride, acetonitrile and the like. The organic solvent is preferably toluene or acetonitrile.
 前記原料ヒドロキシ化合物が、反応温度において液体であり、かつ安価に入手できる場合は、無溶媒下でフッ素化を行うことができる。 When the raw material hydroxy compound is liquid at the reaction temperature and can be obtained at a low cost, fluorination can be performed in the absence of a solvent.
 本発明では、前記塩基を、反応系に添加して反応を行うことができる。
 また、本発明では、前記塩基と、前記塩基とフッ化水素との酸塩とを、反応系に添加して反応を行うことができる。
 本発明の製造方法に用いる各成分の使用量について、前記の当量やモル比は、仕込み量を基準に算出してもよい。
In the present invention, the base can be added to the reaction system to carry out the reaction.
In the present invention, the reaction can be performed by adding the base and an acid salt of the base and hydrogen fluoride to a reaction system.
About the usage-amount of each component used for the manufacturing method of this invention, you may calculate the said equivalent and molar ratio on the basis of preparation amount.
 前記原料ヒドロキシ化合物、塩基、フッ素化剤の混合順序は特に制約はないが、収率よく目的物が得られる観点から、原料ヒドロキシ化合物とフッ素化剤を混合し、得られた混合物中に、塩基を添加(滴下)するのが好ましい。塩基は、一度に全量を加えてもよいし
、少量ずつ添加してもよい。
The mixing order of the raw material hydroxy compound, the base, and the fluorinating agent is not particularly limited, but from the viewpoint of obtaining the target product with good yield, the raw material hydroxy compound and the fluorinating agent are mixed, and the resulting mixture contains a base. Is preferably added (dropped). The base may be added all at once or in small portions.
 反応温度は、通常50℃~150℃、好ましくは60℃~150℃、より好ましくは60℃~100℃である。
 本発明においては、原料ヒドロキシ化合物とフッ素化剤の混合物を、予め上記範囲の温度としてから、塩基を滴下し、滴下終了後、さらに上記温度範囲で反応を進行させるのが好ましい。
 すなわち、前記ヒドロキシ化合物と前記フッ素化剤の混合物に、60℃~150℃で、前記塩基を添加して反応を行うことが好ましい。
 反応開始温度及びその後の反応温度が上記温度範囲より低いと、原料転化率が低くなったり、反応時間が非常に長くなったりする等の不具合を招くおそれがある。一方、反応開始温度及び反応温度が上記温度範囲より高いと、使用する原料ヒドロキシ化合物の種類によっては、ヒドロキシ化合物が、生成物のフッ素化化合物と一緒に留出してしまい、収率の低下を招きやすい。
The reaction temperature is usually 50 ° C. to 150 ° C., preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 100 ° C.
In the present invention, it is preferable that the mixture of the raw material hydroxy compound and the fluorinating agent is preliminarily set to a temperature within the above range, then a base is dropped, and the reaction is further allowed to proceed within the above temperature range after the dropping is completed.
That is, the reaction is preferably performed by adding the base to the mixture of the hydroxy compound and the fluorinating agent at 60 ° C. to 150 ° C.
If the reaction start temperature and the subsequent reaction temperature are lower than the above temperature range, there is a risk that problems such as a low raw material conversion rate and a very long reaction time may occur. On the other hand, when the reaction start temperature and the reaction temperature are higher than the above temperature range, depending on the type of raw material hydroxy compound used, the hydroxy compound distills together with the product fluorinated compound, leading to a decrease in yield. Cheap.
 反応時間は用いる原料ヒドロキシ化合物や塩基や塩基の酸塩の種類にもよるが、通常、1~48時間、好ましくは3~20時間である。反応時間が短すぎると原料ヒドロキシ化合物の転化率が低くなり、目的物の収率低下を招く。一方、反応時間が長すぎるとエネルギーコストの無駄を生じ好ましくない。 The reaction time is usually 1 to 48 hours, preferably 3 to 20 hours, although it depends on the raw material hydroxy compound used and the type of base or base acid salt. When the reaction time is too short, the conversion rate of the raw material hydroxy compound is lowered, and the yield of the target product is lowered. On the other hand, if the reaction time is too long, energy costs are wasted, which is not preferable.
 後処理としては、特に制限は無いが、通常は反応終了液を水、またはアルカリ金属の無機塩基(例えば炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムなど)の水溶液を注ぎ込み、有機溶媒(トルエン、酢酸エチル、塩化メチレンなど)で抽出することにより粗生成物を得ることができる。目的とするフッ素化化合物は、必要に応じて、蒸留や再結晶、活性炭処理、シリカゲルクロマトグラフィーなどで精製を行い、さらに純度を高めることができる。 There is no particular limitation on the post-treatment, but usually the reaction completion solution is poured into water or an aqueous solution of an alkali metal inorganic base (for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, etc.), and an organic solvent ( The crude product can be obtained by extraction with toluene, ethyl acetate, methylene chloride or the like. The target fluorinated compound can be further purified by distillation, recrystallization, activated carbon treatment, silica gel chromatography, or the like, if necessary.
(フッ素化化合物)
 以上のようにして、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物を製造することができる。
 式(2)中、Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。
(Fluorinated compounds)
As described above, a fluorinated compound represented by the formula (2): R 2 -F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) can be produced.
In formula (2), R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms.
 式(2)で示されるフッ素化化合物の具体例としては、1-フルオロヘキサン、2-フルオロヘキサン、2-フルオロオクタン、ベンジルフロライド、1-フェニル-1-フルオロエタン、2-フェニル-1-フルオロエタン、1-ナフチル-1-フルオロエタン、4-フルオロ-α-メチルベンジルフロライド、4-クロロ-α-メチルベンジルフロライド、4-ブロモ-α-メチルベンジルフロライド、4-メチル-α-メチルベンジルフロライド、4-メトキシ-α-メチルベンジルフロライド、4-アミノ-α-メチルベンジルフロライド、N-ベンジル-3-フルオロピロリジン、N-ベンジル-4-フルオロプロリンが挙げられる。
 これらの中でも、本発明の効果がより得られやすい観点から、2-フルオロオクタン、1-フェニル-1-フルオロエタン、N-ベンジル-3-フルオロピロリジン、N-ベンジル-4-フルオロプロリン、2-フルオロプロピオン酸エステルが好ましい。これらフッ素化化合物は、原料ヒドロキシ化合物として2-オクタノール、1-フェニルエタノール、N-ベンジル-3-ヒドロキシピロリジン、N-ベンジル-4-ヒドロキシプロリン、乳酸エステルを用いて製造することができる。
Specific examples of the fluorinated compound represented by the formula (2) include 1-fluorohexane, 2-fluorohexane, 2-fluorooctane, benzyl fluoride, 1-phenyl-1-fluoroethane, 2-phenyl-1- Fluoroethane, 1-naphthyl-1-fluoroethane, 4-fluoro-α-methylbenzyl fluoride, 4-chloro-α-methylbenzyl fluoride, 4-bromo-α-methylbenzyl fluoride, 4-methyl-α -Methylbenzyl fluoride, 4-methoxy-α-methylbenzyl fluoride, 4-amino-α-methylbenzyl fluoride, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline.
Among these, from the viewpoint of easily obtaining the effects of the present invention, 2-fluorooctane, 1-phenyl-1-fluoroethane, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2- Fluoropropionic acid esters are preferred. These fluorinated compounds can be produced using 2-octanol, 1-phenylethanol, N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, and lactic acid ester as raw material hydroxy compounds.
 このように、本発明の製造方法によれば、工業的に安価に入手できる原料及びフッ素化剤を用いて、溶媒を使用することなく、安全に、簡便に、低コストで、かつ、高収率でフッ素化化合物を製造することができる。 As described above, according to the production method of the present invention, using a raw material and a fluorinating agent that can be obtained industrially at low cost, without using a solvent, it is possible to safely, easily, at low cost and with high yield. The fluorinated compound can be produced at a rate.
 本発明では、炭素数6以上のヒドロキシ化合物と式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤とを混合し、該混合物に、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基、あるいは該塩基と該塩基のフッ化水素による酸塩とを添加して、フッ素化反応を行い、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物を得る、フッ素化化合物の製造方法が好ましい。 In the present invention, a hydroxy compound having 6 or more carbon atoms and a fluorinating agent represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group) are mixed. Then, a base selected from the group consisting of an amidine base and a phosphazene base, or an acid salt of the base and hydrogen fluoride of the base is added to the mixture, and a fluorination reaction is performed. A method for producing a fluorinated compound is preferred which obtains a fluorinated compound represented by 2- F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms).
(本発明の他の側面による製造方法)
 本発明は、また、炭素数3以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法を提供する。
(Manufacturing method according to another aspect of the present invention)
The present invention also provides a hydroxy compound having 3 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt of hydrogen fluoride with the formula (1): R 1 SO 2 It is fluorinated with a fluorinating agent represented by F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is the number of carbon atoms) And represents a group obtained by removing a hydroxy group from three or more hydroxy compounds.).
 炭素数3以上のヒドロキシ化合物は、炭素数3~5のヒドロキシ化合物及び炭素数6以上のヒドロキシ化合物がある。炭素数6以上のヒドロキシ化合物は、前記の通りである。
 炭素数3~5のヒドロキシ化合物としては、炭素数3~5のアルコールが挙げられる。炭素数3~5のアルコールとしては、炭素数3~5の1価アルコール、炭素数3~5の多価アルコールが挙げられる。炭素数3~5の1価アルコールとしては、炭素数3~5の1価飽和アルコール、炭素数3~5の1価不飽和アルコールが挙げられる。
 炭素数3~5のアルコールとしては、1-プロパノール、2-プロパノール等の炭素数3のアルコール;1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、シクロブタノール、メタリルアルコール等の炭素数4の1価アルコール;1-ペンタノール、2-ペンタノール、3-ペンタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、シクロペンタノール等の炭素数5の1価アルコール;プロピレングリコール等の炭素数3~5の多価アルコール等が挙げられる。
 これらの中でも、本発明においては、生成するフッ素化化合物の取扱い易さ、有用性等の観点から、炭素数4又は5の1価アルコールが好ましく、2-ペンタノール、3-ペンタノール、シクロペンタノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、メタリルアルコールがより好ましい。また、プロピレングリコール等の炭素数3~5の2価アルコールも好ましい。
Examples of the hydroxy compound having 3 or more carbon atoms include hydroxy compounds having 3 to 5 carbon atoms and hydroxy compounds having 6 or more carbon atoms. The hydroxy compound having 6 or more carbon atoms is as described above.
Examples of the hydroxy compound having 3 to 5 carbon atoms include alcohols having 3 to 5 carbon atoms. Examples of the alcohol having 3 to 5 carbon atoms include monohydric alcohols having 3 to 5 carbon atoms and polyhydric alcohols having 3 to 5 carbon atoms. Examples of the monohydric alcohol having 3 to 5 carbon atoms include monovalent saturated alcohols having 3 to 5 carbon atoms and monovalent unsaturated alcohols having 3 to 5 carbon atoms.
Examples of the alcohol having 3 to 5 carbon atoms include alcohols having 3 carbon atoms such as 1-propanol and 2-propanol; carbon numbers such as 1-butanol, 2-butanol, isobutanol, t-butanol, cyclobutanol, and methallyl alcohol. 4 monohydric alcohols; 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 2-methyl-2 -Monohydric alcohols having 5 carbon atoms such as butanol, 2,2-dimethyl-1-propanol and cyclopentanol; polyhydric alcohols having 3 to 5 carbon atoms such as propylene glycol and the like.
Among these, in the present invention, monohydric alcohols having 4 or 5 carbon atoms are preferable from the viewpoint of ease of handling and usefulness of the fluorinated compound to be produced, and 2-pentanol, 3-pentanol, cyclopent Tanol, 1-butanol, 2-butanol, isobutanol, t-butanol, and methallyl alcohol are more preferable. A dihydric alcohol having 3 to 5 carbon atoms such as propylene glycol is also preferred.
 また、炭素数3~5のヒドロキシ化合物としては、炭素数3~5のヒドロキシカルボン酸エステルが挙げられる。炭素数3~5のヒドロキシカルボン酸エステルとしては、炭素数4又は5の乳酸エステルが好ましく、乳酸エチルがより好ましい。 Further, examples of the hydroxy compound having 3 to 5 carbon atoms include hydroxycarboxylic acid esters having 3 to 5 carbon atoms. As the hydroxycarboxylic acid ester having 3 to 5 carbon atoms, a lactic acid ester having 4 or 5 carbon atoms is preferable, and ethyl lactate is more preferable.
 炭素数3以上のヒドロキシ化合物、例えば炭素数3~5のヒドロキシ化合物は、ケトン、エーテル、アミド、アミンなどの、水酸基以外の官能基を有していてもよい。 A hydroxy compound having 3 or more carbon atoms, for example, a hydroxy compound having 3 to 5 carbon atoms, may have a functional group other than a hydroxyl group such as a ketone, an ether, an amide, or an amine.
 この方法では、前記塩基とフッ化水素との酸塩を用いる。前記塩基とフッ化水素との酸塩の具体例や使用条件は前記の通りである。また、他の化合物や条件なども、前記の通りである。 In this method, an acid salt of the base and hydrogen fluoride is used. Specific examples and use conditions of the acid salt of the base and hydrogen fluoride are as described above. Other compounds and conditions are also as described above.
 この方法では、炭素数3以上のヒドロキシ化合物と式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤とを混合し、該混合物に、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基のフッ化水素による酸塩を添加して、フッ素化反応を行い、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物を得る、フッ素化化合物の製造方法が好ましい。 In this method, a hydroxy compound having 3 or more carbon atoms and a fluorinating agent represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group) are mixed. Then, an acid salt of hydrogen fluoride of a base selected from the group consisting of an amidine base and a phosphazene base is added to the mixture, and a fluorination reaction is carried out to obtain a formula (2): R 2 -F (R 2 is carbon A method for producing a fluorinated compound is preferred, which represents a group obtained by removing a hydroxy group from a hydroxy compound of several formulas or more).
(本発明の態様)
 本発明のフッ素化化合物の製造方法の態様を以下に示す。これらの態様には、これまでに述べた本発明のフッ素化化合物の製造方法に関する事項を適宜適用することができる。
<1a>
 炭素数6以上のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
(Aspect of the present invention)
The aspect of the manufacturing method of the fluorinated compound of this invention is shown below. The matters relating to the method for producing the fluorinated compound of the present invention described so far can be appropriately applied to these embodiments.
<1a>
A hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base in an organic solvent is represented by the formula (1): R 1 SO 2 F (R 1 is a methyl group or an ethyl group) Or represents an aromatic group.), Which is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a hydroxy compound having 6 or more carbon atoms, and the hydroxy group is removed) A method for producing a fluorinated compound represented by:
<1b>
 炭素数6以上のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<1b>
The number of 6 or more hydroxy compounds of carbon, the absence of a solvent in the presence of a base in selected from the group consisting of amidine bases and phosphazene base of formula (1): R 1 SO 2 F (R 1 is a methyl group, an ethyl group Or represents an aromatic group.), Which is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a hydroxy compound having 6 or more carbon atoms, and the hydroxy group is removed) A method for producing a fluorinated compound represented by:
<1c>
 炭素数6以上のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基並びに該塩基のフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<1c>
A hydroxy compound having 6 or more carbon atoms in the presence of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt with hydrogen fluoride of the base in an organic solvent, is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is carbon This represents a group obtained by removing a hydroxy group from a hydroxy compound of formula 6 or more).
<1d>
 炭素数6以上のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基並びに該塩基のフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<1d>
In the presence of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt with hydrogen fluoride of the base in the absence of a solvent, the hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is carbon This represents a group obtained by removing a hydroxy group from a hydroxy compound of formula 6 or more).
<2a>
 炭素数3以上のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2a>
A hydroxy compound having 3 or more carbon atoms is added in the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt of hydrogen fluoride in an organic solvent with the formula (1): R 1 SO 2 F ( R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated with a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a carbon number of 3 or more) Represents a group in which a hydroxy group is removed from the hydroxy compound.).
<2b>
 炭素数3以上のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2b>
In the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base and an acid salt of hydrogen fluoride with no solvent, the hydroxy compound having 3 or more carbon atoms is represented by the formula (1): R 1 SO 2 F ( R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated with a fluorinating agent represented by the formula (2): R 2 -F (R 2 is a carbon number of 3 or more) Represents a group in which a hydroxy group is removed from the hydroxy compound.).
<2c>
 炭素数3以上のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩並びに前記塩基の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2c>
A hydroxy compound having 3 or more carbon atoms in the presence of an acid salt of a base and hydrogen fluoride selected from the group consisting of an amidine base and a phosphazene base in the presence of an organic solvent and the base is represented by the formula (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is carbon A group obtained by removing a hydroxy group from a hydroxy compound of formula 3 or more).
<2d>
 炭素数3以上のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩並びに前記塩基の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2d>
A hydroxy compound having 3 or more carbon atoms is added in the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base and hydrogen fluoride in the absence of a solvent and the base (1): R 1 SO It is fluorinated with a fluorinating agent represented by 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is carbon A group obtained by removing a hydroxy group from a hydroxy compound of formula 3 or more).
<2e>
 炭素数3~5のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2e>
A hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 SO 2 F in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in an organic solvent. (R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 has 3 carbon atoms) Represents a group obtained by removing a hydroxy group from the above hydroxy compound.).
<2f>
 炭素数3~5のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2f>
A hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 SO 2 F in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in the absence of a solvent. (R 1 represents a methyl group, an ethyl group, or an aromatic group), and is fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 has 3 carbon atoms) Represents a group obtained by removing a hydroxy group from the above hydroxy compound.).
<2g>
 炭素数3~5のヒドロキシ化合物を、有機溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩並びに前記塩基の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2g>
In the presence of an acid salt of a base selected from the group consisting of an amidine base and a phosphazene base with an acid salt of hydrogen fluoride and the base in an organic solvent, the hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 It is fluorinated by a fluorinating agent represented by SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is A group obtained by removing a hydroxy group from a hydroxy compound having 3 or more carbon atoms).
<2d>
 炭素数3~5のヒドロキシ化合物を、無溶媒下、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩並びに前記塩基の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。
<2d>
A hydroxy compound having 3 to 5 carbon atoms is represented by the formula (1): R 1 in the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base in the absence of a solvent. It is fluorinated by a fluorinating agent represented by SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group). Formula (2): R 2 -F (R 2 is A group obtained by removing a hydroxy group from a hydroxy compound having 3 or more carbon atoms).
<アミジン塩基の分離、回収方法>
 本発明は、また、下記式(4)
<Method for separating and recovering amidine base>
The present invention also provides the following formula (4):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Rはメチル基、エチル基又は芳香族基を表し、nは0又は2である。)
で示されるアミジン塩基-スルホン酸錯体から、下記式(3)
(In the formula, R 1 represents a methyl group, an ethyl group or an aromatic group, and n is 0 or 2.)
From the amidine base-sulfonic acid complex represented by the following formula (3)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、nは0又は2である。)で示されるアミジン塩基を分離、回収する方法であって、
 アミジン塩基-スルホン酸錯体を芳香族炭化水素に溶解させて得られる溶液に、アルカリ水溶液を添加して、スルホン酸アルカリ金属塩を析出させる工程(I)、
 工程(I)で得られた、スルホン酸アルカリ金属塩が析出した溶液に水を添加して、スルホン酸アルカリ金属塩を溶解させ、スルホン酸アルカリ金属塩が溶解した水層と、アミジン塩基を含む芳香族炭化水素溶液の層に分液し、前記スルホン酸アルカリ金属塩が溶解した水層を除去する工程(II)、及び、
 工程(II)で得られるアミジン塩基を含む芳香族炭化水素溶液から、芳香族炭化水素を留去する工程(III)
を有し、
 前記アミジン塩基-スルホン酸錯体が、炭素数6以上のヒドロキシ化合物を、下記式(3)
(Wherein n is 0 or 2), wherein the amidine base is separated and recovered,
A step (I) of adding an aqueous alkali solution to a solution obtained by dissolving an amidine base-sulfonic acid complex in an aromatic hydrocarbon to precipitate an alkali metal sulfonate;
Water is added to the solution in which the alkali metal sulfonate salt obtained in step (I) is precipitated to dissolve the alkali metal salt of sulfonate, and the aqueous layer in which the alkali metal salt of sulfonic acid is dissolved and an amidine base are included. Separating into a layer of an aromatic hydrocarbon solution and removing the aqueous layer in which the alkali metal sulfonate is dissolved, and (II)
Step (III) of distilling off aromatic hydrocarbons from the aromatic hydrocarbon solution containing the amidine base obtained in Step (II)
Have
The amidine base-sulfonic acid complex is a hydroxy compound having 6 or more carbon atoms represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、nは0又は2である。)で示される、アミジン塩基存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化する反応を行った反応混合物から得られたものである、
するアミジン塩基の分離、回収方法を開示する。
(Wherein n is 0 or 2), in the presence of an amidine base, the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group or an aromatic group. ) Obtained from a reaction mixture in which a reaction for fluorination with a fluorinating agent represented by
A method for separating and recovering amidine bases is disclosed.
 本発明に用いられる、アミジン塩基-スルホン酸錯体は、前記式(4)で表されるアミジン塩基と、式:R-SOH(Rは前記と同じ意味を表す。)で表されるスルホン酸から構成される塩である。具体例としては、DBU-メタンスルホン酸錯体、DBU-エタンスルホン酸錯体、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)-メタンスルホン酸錯体、DBN-エタンスルホン酸錯体等の脂肪族スルホン酸錯体;DBU-ベンゼンスルホン酸錯体、DBU-p-トルエンスルホン酸錯体、DBN-ベンゼンスルホン酸錯体、DBN-p-トルエンスルホン酸錯体等の芳香族スルホン酸錯体;等が挙げられる。
 これらの中でも、本発明の効果がより顕著に得られる観点から、脂肪族スルホン酸錯体が好ましく、DBU-メタンスルホン酸錯体が特に好ましい。
The amidine base-sulfonic acid complex used in the present invention is represented by the amidine base represented by the formula (4) and the formula: R 1 —SO 3 H (R 1 represents the same meaning as described above). It is a salt composed of sulfonic acid. Specific examples include DBU-methanesulfonic acid complex, DBU-ethanesulfonic acid complex, 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) -methanesulfonic acid complex, DBN-ethanesulfonic acid. Aliphatic sulfonic acid complexes such as complexes; aromatic sulfonic acid complexes such as DBU-benzenesulfonic acid complexes, DBU-p-toluenesulfonic acid complexes, DBN-benzenesulfonic acid complexes, DBN-p-toluenesulfonic acid complexes; Can be mentioned.
Among these, an aliphatic sulfonic acid complex is preferable and a DBU-methanesulfonic acid complex is particularly preferable from the viewpoint that the effects of the present invention can be obtained more remarkably.
 また、本発明に用いられるアミジン塩基-スルホン酸錯体は、炭素数6以上のヒドロキシ化合物を、前記式(3)で示されるフッ素化剤によりフッ素化する反応を行った反応混合物から得られたものである。該アミジン塩基-スルホン酸錯体は、前記本発明のフッ素化化合物の製造方法で得られたものが好ましい。 The amidine base-sulfonic acid complex used in the present invention is obtained from a reaction mixture obtained by performing a reaction of fluorinating a hydroxy compound having 6 or more carbon atoms with a fluorinating agent represented by the above formula (3). It is. The amidine base-sulfonic acid complex is preferably obtained by the method for producing a fluorinated compound of the present invention.
(工程(I))
 本発明において、工程(I)は、アミジン塩基-スルホン酸錯体を、芳香族炭化水素に溶解させて、得られる溶液に、アルカリ水溶液を添加して、スルホン酸アルカリ金属塩を析出させる工程である。
(Process (I))
In the present invention, step (I) is a step of dissolving an amidine base-sulfonic acid complex in an aromatic hydrocarbon and adding an aqueous alkali solution to the resulting solution to precipitate an alkali metal sulfonate. .
 本発明に用いる芳香族炭化水素としては、アミジン塩基-スルホン酸錯体を溶解し、水と共沸混合物組成を形成するものが好ましい。具体例としては、ベンゼン、トルエン、キシレン、エチルベンゼンなどのアルキル置換ベンゼン類;フルオロベンゼン、クロロベンゼン、ジクロロベンゼンなどのハロゲン置換ベンゼン類;等が挙げられる。これらの中でも、アルキル置換ベンゼン類が好ましく、比較的低温で留去可能なトルエンがより好ましい。 The aromatic hydrocarbon used in the present invention is preferably one that dissolves the amidine base-sulfonic acid complex to form an azeotropic mixture with water. Specific examples include alkyl-substituted benzenes such as benzene, toluene, xylene and ethylbenzene; halogen-substituted benzenes such as fluorobenzene, chlorobenzene and dichlorobenzene. Among these, alkyl-substituted benzenes are preferable, and toluene that can be distilled off at a relatively low temperature is more preferable.
 芳香族炭化水素の使用量は、反応規模等にもよるが、アミジン塩基-スルホン酸錯体1gに対し、通常0.7~1mlである。芳香族炭化水素の使用量が少なすぎるとアミジン塩基の抽出効率が悪くなる可能性がある。一方、使用量が多すぎると、後工程での芳香族炭化水素の留去に多大な時間を要し、生産性が悪くなる。 The amount of aromatic hydrocarbon used is usually 0.7 to 1 ml per 1 g of amidine base-sulfonic acid complex, although it depends on the reaction scale and the like. If the amount of aromatic hydrocarbon used is too small, the extraction efficiency of the amidine base may be deteriorated. On the other hand, if the amount used is too large, it takes a lot of time to distill off the aromatic hydrocarbons in the subsequent step, resulting in poor productivity.
 本発明に用いられるアルカリ水溶液としては、アミジン塩基-スルホン酸錯体の芳香族炭化水素溶液に添加すると、前記アミジン塩基-スルホン酸錯体を構成するスルホン酸と塩を形成することで、該スルホン酸塩が析出するものであれば、特に制限されない。
 なかでも、水との親和性に優れる観点から、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物の水溶液が好ましく、水酸化カリウム、水酸化セシウムの水溶液がより好ましく、安価で、生成するスルホン酸塩の水への溶解度が大きい水酸化カリウムの水溶液が特に好ましい。
As the alkaline aqueous solution used in the present invention, when added to an aromatic hydrocarbon solution of an amidine base-sulfonic acid complex, the sulfonic acid salt is formed by forming a salt with the sulfonic acid constituting the amidine base-sulfonic acid complex. If it precipitates, there will be no restriction | limiting in particular.
Among these, from the viewpoint of excellent affinity with water, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or cesium hydroxide is preferable, and an aqueous solution of potassium hydroxide or cesium hydroxide is more preferable and inexpensive. In particular, an aqueous solution of potassium hydroxide having a high solubility in water of the resulting sulfonate is particularly preferable.
 アルカリ金属水酸化物自体は、通常、ペレット、あるいはフレーク状の固体としても存在するが、工業的な取り扱い易さの観点から、水溶液として用いる。
 用いるアルカリ水溶液の濃度としては、特に限定されないが、10重量%~50重量%程度のものが好ましい。アルカリ水溶液の濃度があまりに低いと、アミジン塩基-スルホン酸錯体中のスルホン酸を中和し、アミジン塩基を遊離させるのに大量のアルカリ水溶液が必要になるので、廃水が多くなり、アミジン塩基の抽出効果が小さくなり、回収率が悪くなる。一方、アルカリ水溶液の濃度があまりに高いと、アミジン塩基-スルホン酸錯体のスルホン酸を中和する際、発熱が大きくなり、危険を伴うおそれがある。
Alkali metal hydroxides themselves usually exist as pellets or flaky solids, but are used as aqueous solutions from the viewpoint of industrial ease of handling.
The concentration of the aqueous alkaline solution used is not particularly limited, but is preferably about 10% to 50% by weight. If the concentration of the alkaline aqueous solution is too low, a large amount of alkaline aqueous solution is required to neutralize the sulfonic acid in the amidine base-sulfonic acid complex and liberate the amidine base. The effect becomes smaller and the recovery rate becomes worse. On the other hand, if the concentration of the aqueous alkaline solution is too high, there is a risk that the heat generated becomes large when the sulfonic acid of the amidine base-sulfonic acid complex is neutralized, resulting in danger.
 アルカリ水溶液中のアルカリの使用量は、アミジン塩基-スルホン酸錯体に対し、通常0.9~1.5当量である。アルカリ(アルカリ水溶液)の使用量が少なすぎると、スルホン酸との中和反応が完結せず、アミジン塩基の回収率が悪くなる。一方、アルカリ(アルカリ水溶液)の使用量が多すぎると、廃液の処理が面倒になる。 The amount of alkali used in the alkaline aqueous solution is usually 0.9 to 1.5 equivalents relative to the amidine base-sulfonic acid complex. If the amount of alkali (alkaline aqueous solution) used is too small, the neutralization reaction with sulfonic acid will not be completed, and the recovery rate of amidine base will deteriorate. On the other hand, if the amount of alkali (alkaline aqueous solution) used is too large, the treatment of the waste liquid becomes troublesome.
 アミジン塩基-スルホン酸錯体の芳香族炭化水素溶液にアルカリ水溶液を添加する方法としては、前記溶液を撹拌しながら、0℃から室温(25℃±10℃、以下にて同じ。)の溶液温度範囲で、アルカリ水溶液を滴下する方法が好ましい。添加温度が低すぎると、アミジン塩基-スルホン酸錯体の芳香族炭化水素溶液が粘ちゅうな状態になり、スルホン酸とアルカリとの中和反応が円滑に進行しなくなる。一方、添加温度が高すぎると、スルホン酸とアルカリとの中和反応が急激に進行し、突沸等の不具合を生じるおそれがあり好ましくない。 As a method of adding an alkaline aqueous solution to an aromatic hydrocarbon solution of an amidine base-sulfonic acid complex, a solution temperature range from 0 ° C. to room temperature (25 ° C. ± 10 ° C., the same applies hereinafter) while stirring the solution. And the method of dripping alkaline aqueous solution is preferable. If the addition temperature is too low, the aromatic hydrocarbon solution of the amidine base-sulfonic acid complex becomes viscous and the neutralization reaction between the sulfonic acid and the alkali does not proceed smoothly. On the other hand, when the addition temperature is too high, the neutralization reaction between the sulfonic acid and the alkali proceeds rapidly, which may cause problems such as bumping.
 アミジン塩基-スルホン酸錯体の芳香族炭化水素溶液を撹拌しながら、0℃から室温でアルカリ水溶液を滴下していくと、中和反応が進行し、アミジン塩基が遊離すると同時に、スルホン酸のアルカリ金属塩が析出する。 While stirring an aromatic hydrocarbon solution of an amidine base-sulfonic acid complex, when an alkaline aqueous solution is added dropwise at 0 ° C. to room temperature, a neutralization reaction proceeds, and the amidine base is liberated. A salt precipitates out.
(工程(II))
 本発明において、工程(II)は、工程(I)で得られた、スルホン酸アルカリ金属塩が析出した溶液に水を添加して、スルホン酸アルカリ金属塩を溶解させ、前記スルホン酸アルカリ金属塩が溶解した水層を除去する工程である。
 スルホン酸アルカリ金属塩が析出した溶液に水を添加すると、スルホン酸アルカリ金属塩が溶解した水層と、前記遊離したアミジン塩基が溶解した芳香族炭化水素層(有機層)の2層に分離する。
 添加する水の量は、スルホン酸アルカリ金属塩を溶解させるのに必要な量であれば良い。添加する水の量が少なすぎると、スルホン酸のアルカリ金属塩の溶け残りが生じ、遊離したアミジン塩基が溶解した(抽出された)有機層との2層分離が困難になる。一方、添加する水の量が多すぎると、アミジン塩基の抽出効果が小さくなり、回収率が悪くなるなどの不具合を生じる。
(Process (II))
In the present invention, in the step (II), water is added to the solution obtained by precipitation of the alkali metal sulfonate salt obtained in the step (I) to dissolve the alkali metal salt of sulfonic acid, This is a step of removing the aqueous layer in which is dissolved.
When water is added to the solution in which the alkali metal sulfonate salt is deposited, it is separated into two layers: an aqueous layer in which the alkali metal salt of sulfonic acid is dissolved and an aromatic hydrocarbon layer (organic layer) in which the liberated amidine base is dissolved. .
The amount of water to be added may be an amount necessary for dissolving the alkali metal sulfonate. If the amount of water to be added is too small, the alkali metal salt of the sulfonic acid will remain undissolved, making it difficult to separate the two layers from the organic layer in which the liberated amidine base is dissolved (extracted). On the other hand, when the amount of water to be added is too large, the effect of extracting the amidine base is reduced, resulting in problems such as poor recovery.
 下層のスルホン酸のアルカリ金属塩が溶解した水層を除去することにより、抽出されたアミジン塩基を含む芳香族炭化水素溶液を取得することができる。
 なお、アミジン塩基は水溶性であるため、アミジン塩基の抽出効率を高めるために、スルホン酸のアルカリ金属塩が溶解した水層に、さらに、芳香族炭化水素を添加して抽出操作を行っても良い。
By removing the aqueous layer in which the alkali metal salt of the lower sulfonic acid is dissolved, an aromatic hydrocarbon solution containing the extracted amidine base can be obtained.
In addition, since the amidine base is water-soluble, in order to increase the extraction efficiency of the amidine base, an extraction operation may be performed by further adding an aromatic hydrocarbon to the aqueous layer in which the alkali metal salt of the sulfonic acid is dissolved. good.
(工程(III))
 本発明の工程(III)は、工程(II)で得られるアミジン塩基を含む芳香族炭化水素溶液から、芳香族炭化水素を留去する工程である。
 アミジン塩基を含む芳香族炭化水素溶液から、芳香族炭化水素を留去する方法としては、特に制約はないが、例えば、減圧下に、ロータリーエバポレーター等の濃縮装置を使用する方法が挙げられる。
 これにより、アミジン塩基を回収することができる。
(Step (III))
Step (III) of the present invention is a step of distilling off aromatic hydrocarbons from the aromatic hydrocarbon solution containing the amidine base obtained in step (II).
Although there is no restriction | limiting in particular as a method of distilling off aromatic hydrocarbon from the aromatic hydrocarbon solution containing an amidine base, For example, the method of using concentration apparatuses, such as a rotary evaporator, under reduced pressure is mentioned.
Thereby, the amidine base can be recovered.
 また、このようにして回収されたアミジン塩基類は、微量のタール成分や、塩類(スルホン酸のアルカリ金属塩)を含む場合があるので、さらに、純度の高いアミジン塩基を得たい場合には、減圧蒸留等の精製工程を設けるのが好ましい。 In addition, the amidine bases thus recovered may contain a small amount of tar components and salts (alkali metal salt of sulfonic acid). It is preferable to provide a purification step such as vacuum distillation.
(工程(IV))
 回収するアミジン塩基を再使用する場合等には、アミジン塩基は水分を含まないことが好ましい。しかしながら、工程(II)で得られるアミジン塩基の芳香族炭化水素溶液は、水分を含有している場合が多い。そのため、工程(II)の後、工程(III)の前に、工程(II)で得られるアミジン塩基を含む芳香族炭化水素溶液から、水分を除去する工程(IV)を設けるのが好ましい。
(Process (IV))
When the recovered amidine base is reused, the amidine base preferably contains no water. However, the amidine base aromatic hydrocarbon solution obtained in step (II) often contains moisture. Therefore, it is preferable to provide a step (IV) for removing moisture from the aromatic hydrocarbon solution containing the amidine base obtained in the step (II) after the step (II) and before the step (III).
 アミジン塩基を含む芳香族炭化水素溶液から、水分を除去する方法としては、前記芳香族炭化水素溶液に、モレキュラーシーブ、無水硫酸マグネシウム、無水硫酸ナトリウム等の脱水剤を添加し、脱水剤に水分を吸収させた後、水分を吸収した脱水剤を分離除去する方法、ディーン・スターク水分離装置を用いて水分を除去する方法等が挙げられ、後者の方法が好ましい。ディーン・スターク水分離装置によれば、芳香族炭化水素が水と共沸する性質を利用して、加熱により水と芳香族炭化水素を共沸させ、効率よく水分を除去することができる。 As a method for removing moisture from an aromatic hydrocarbon solution containing an amidine base, a dehydrating agent such as molecular sieve, anhydrous magnesium sulfate, or anhydrous sodium sulfate is added to the aromatic hydrocarbon solution, and moisture is added to the dehydrating agent. Examples of the method include a method of separating and removing the dehydrating agent that has absorbed water after absorption, a method of removing water using a Dean-Stark water separator, and the latter method is preferred. According to the Dean-Stark water separation device, water and aromatic hydrocarbons are azeotroped by heating by utilizing the property that aromatic hydrocarbons azeotrope with water, and moisture can be efficiently removed.
 芳香族炭化水素と水との共沸温度は、例えば、以下の通りである。トルエン:水=80.1:19.9(重量比、以下にて同じ)(沸点:85℃)、o-キシレン:水=50.1:49.9(沸点93.5℃)、m-キシレン:水=60.0:40.0(沸点:94.5℃)、エチルベンゼン:水=67.0:33.0(沸点:92℃)、クロロベンゼン:水=71.6:28.4(沸点:90.2℃)(いずれも大気圧下)(化学便覧改訂3版、基礎II、日本化学会編)。 The azeotropic temperature of aromatic hydrocarbon and water is, for example, as follows. Toluene: water = 80.1: 19.9 (weight ratio, the same applies hereinafter) (boiling point: 85 ° C.), o-xylene: water = 50.1: 49.9 (boiling point 93.5 ° C.), m- Xylene: water = 60.0: 40.0 (boiling point: 94.5 ° C.), ethylbenzene: water = 67.0: 33.0 (boiling point: 92 ° C.), chlorobenzene: water = 71.6: 28.4 ( (Boiling point: 90.2 ° C.) (both under atmospheric pressure) (Chemical Handbook revised 3rd edition, Basic II, edited by the Chemical Society of Japan).
 例えば、芳香族炭化水素としてトルエンを使用した場合、トルエンと水の重量比が80.1:19.9である場合には、共沸点は85℃である。よって、ディーン・スターク水分離装置を用いて、アミジン塩基の溶解したトルエン溶液を85℃より高い温度で加熱を継続し、水を、トルエンとの共沸により除去する。水の留出量に変化が認められなくなったら、加熱を停止し、次いで、工程(III)を行えばよい。 For example, when toluene is used as the aromatic hydrocarbon, the azeotropic point is 85 ° C. when the weight ratio of toluene and water is 80.1: 19.9. Therefore, using a Dean-Stark water separator, the toluene solution in which the amidine base is dissolved is continuously heated at a temperature higher than 85 ° C., and water is removed by azeotropy with toluene. When no change is observed in the amount of distilled water, heating is stopped, and then step (III) may be performed.
 以上述べたアミジン塩基の分離、回収方法では、前記アミジン塩基-スルホン酸錯体が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン-メタンスルホン酸錯体であることが好ましい。
 また、以上述べたアミジン塩基の分離、回収方法では、前記工程(II)の後、工程(III)の前に、工程(II)で得られるアミジン塩基を含む芳香族炭化水素溶液に含まれる水分を除去する工程(IV)を有することができる。
 また、以上述べたアミジン塩基の分離、回収方法では、前記工程(IV)が、工程(II)で得られるアミジン塩基を含む芳香族炭化水素溶液に含まれる水分を、ディーン・スターク水分離装置を用いて除去するものであることが好ましい。
 また、以上述べたアミジン塩基の分離、回収方法では、前記アミジン塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであることが好ましい。
In the method for separating and recovering amidine base described above, the amidine base-sulfonic acid complex is preferably a 1,8-diazabicyclo [5.4.0] undec-7-ene-methanesulfonic acid complex.
In the method for separating and recovering amidine base described above, the water contained in the aromatic hydrocarbon solution containing the amidine base obtained in step (II) after step (II) and before step (III). The step (IV) of removing can be included.
In the method for separating and recovering amidine base described above, the step (IV) uses a Dean-Stark water separator to remove the water contained in the aromatic hydrocarbon solution containing the amidine base obtained in step (II). It is preferable to use and remove.
In the method for separating and recovering amidine base described above, the amidine base is preferably 1,8-diazabicyclo [5.4.0] undec-7-ene.
 本発明によれば、アミジン塩基存在下、ヒドロキシ化合物を、スルホン酸フルオリドによりフッ素化する反応において生成するアミジン塩基-スルホン酸錯体から、アミジン塩基を、簡便に効率よく分離、回収することができる。これにより、非常に粘ちゅうな油状物であって、取扱い難く廃棄が困難な、アミジン塩基-スルホン酸錯体の量を減少させ、取扱い性を向上させつつ、環境への負荷を軽減することができる。 According to the present invention, an amidine base can be easily and efficiently separated and recovered from an amidine base-sulfonic acid complex produced in a reaction in which a hydroxy compound is fluorinated with sulfonic acid fluoride in the presence of an amidine base. This reduces the load on the environment while reducing the amount of amidine base-sulfonic acid complex, which is a very viscous oil that is difficult to handle and difficult to dispose of, and improves handling. .
<回収アミジン塩基の使用方法>
 本発明は、また、炭素数6以上のヒドロキシ化合物を、塩基存在下、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化し、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物を製造する反応において、前記本発明の方法で分離、回収したアミジン塩基を塩基として用いる、回収アミジン塩基の使用方法を開示する。
<How to use recovered amidine base>
In the present invention, a hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO 2 F (R 1 represents a methyl group, an ethyl group, or an aromatic group) in the presence of a base. In a reaction for producing a fluorinated compound represented by the formula (2): R 2 -F (R 2 is a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) by fluorination with a fluorinating agent, Disclosed is a method of using the recovered amidine base using the amidine base separated and recovered by the method of the present invention as a base.
 この使用方法で用いられる炭素数6以上のヒドロキシ化合物、式(1)のフッ素化剤の具体例及び好ましい態様、使用量などは、それぞれ、前記本発明のフッ素化化合物の製造方法と同じである。また、フッ素化化合物を製造する反応は、無溶媒下又は有機溶媒下で行うことができる。 Specific examples and preferred embodiments of the hydroxy compound having 6 or more carbon atoms and the fluorinating agent of formula (1) used in this method of use, the amount of use, and the like are the same as in the method for producing the fluorinated compound of the present invention. . In addition, the reaction for producing the fluorinated compound can be carried out without a solvent or in an organic solvent.
 回収アミジン塩基の使用量は、原料ヒドロキシ化合物に対して、1~3当量が好ましく、1.1~2.0当量がより好ましい。塩基の使用量が少なすぎると、収率が悪くなるので好ましくない。一方、使用量が多すぎると、反応液の粘度が大きくなり、反応終了後の処理が面倒になる。 The amount of the recovered amidine base used is preferably 1 to 3 equivalents, more preferably 1.1 to 2.0 equivalents, relative to the raw material hydroxy compound. If the amount of base used is too small, the yield will be unfavorable. On the other hand, when the amount used is too large, the viscosity of the reaction solution increases, and the treatment after the reaction ends becomes troublesome.
 前記ヒドロキシ化合物、回収アミジン塩基、フッ素化剤の混合順序は特に制約はないが、収率よく目的物が得られる観点から、原料ヒドロキシ化合物と前記フッ素化剤を混合し、得られる混合物中に、塩基を添加(滴下)するのが好ましい。塩基は、一度に全量を加えてもよいし、少量ずつ添加してもよい。 The order of mixing the hydroxy compound, the recovered amidine base, and the fluorinating agent is not particularly limited, but from the viewpoint of obtaining the target product with good yield, the raw material hydroxy compound and the fluorinating agent are mixed, and the resulting mixture is It is preferable to add (drop) a base. The base may be added all at once or in small portions.
 反応温度は、通常50℃~150℃、好ましくは60℃~150℃、より好ましくは60℃~100℃である。
 本発明においては、原料ヒドロキシ化合物とフッ素化剤の混合物を、予め上記範囲の温度としてから、塩基を滴下し、滴下終了後、さらに上記温度範囲で反応を進行させるのが好ましい。
 反応開始温度及びその後の反応温度が上記温度範囲より低いと、原料転化率が低くなったり、反応時間が非常に長くなったりする等の不具合を招くおそれがある。一方、反応開始温度及び反応温度が上記温度範囲より高いと、使用する原料ヒドロキシ化合物の種類によっては、ヒドロキシ化合物が、生成物のフッ素化化合物と一緒に留出してしまい、収率の低下を招きやすい。
The reaction temperature is usually 50 ° C. to 150 ° C., preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 100 ° C.
In the present invention, it is preferable that the mixture of the raw material hydroxy compound and the fluorinating agent is preliminarily set to a temperature within the above range, then a base is dropped, and the reaction is further allowed to proceed within the above temperature range after the dropping is completed.
If the reaction start temperature and the subsequent reaction temperature are lower than the above temperature range, there is a risk that problems such as a low raw material conversion rate and a very long reaction time may occur. On the other hand, when the reaction start temperature and the reaction temperature are higher than the above temperature range, depending on the type of raw material hydroxy compound used, the hydroxy compound distills together with the product fluorinated compound, leading to a decrease in yield. Cheap.
 反応時間は用いる原料ヒドロキシ化合物や塩基の種類にもよるが、通常、1~48時間、好ましくは3~20時間である。反応時間が短すぎると原料ヒドロキシ化合物の転化率が低くなり目的物の収率低下を招く。一方、反応時間が長すぎるとエネルギーコストの無駄を生じ好ましくない。 The reaction time is usually 1 to 48 hours, preferably 3 to 20 hours, although it depends on the raw material hydroxy compound and the type of base used. If the reaction time is too short, the conversion rate of the raw material hydroxy compound is lowered, resulting in a decrease in the yield of the desired product. On the other hand, if the reaction time is too long, energy costs are wasted, which is not preferable.
 反応終了後においては、生成物(目的物)が反応温度より沸点が低いものである場合には、反応容器に接続され、ドライアイスエタノール等の冷媒で冷却された、反応系外の受器に補集し回収することができる。
 また、生成物(目的物)が反応温度より沸点が高いものである場合には、生成物は、反応停止後、減圧下に、冷媒等で冷却された受器内に回収することができる。この場合、回収される未反応のヒドロキシ化合物は、原料として再使用することができる。
After completion of the reaction, if the product (target product) has a boiling point lower than the reaction temperature, it is connected to a reaction vessel connected to a reaction vessel and cooled with a refrigerant such as dry ice ethanol. Can be collected and recovered.
When the product (target product) has a boiling point higher than the reaction temperature, the product can be recovered in a receiver cooled with a refrigerant or the like under reduced pressure after the reaction is stopped. In this case, the recovered unreacted hydroxy compound can be reused as a raw material.
 受器に捕集されたフッ素化化合物は、必要に応じて、蒸留精製等の精製を行い、純度をさらに高めることができる。 The fluorinated compound collected in the receiver can be further purified by distillation purification or the like as necessary.
 以上のようにして、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物を製造することができる。
 式(2)中、Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。
As described above, a fluorinated compound represented by the formula (2): R 2 -F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms) can be produced.
In formula (2), R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms.
 式(2)で示されるフッ素化化合物の具体例としては、1-フルオロヘキサン、2-フルオロヘキサン、2-フルオロオクタン、ベンジルフロライド、1-フェニル-1-フルオロエタン、2-フェニル-1-フルオロエタン、1-ナフチル-1-フルオロエタン、4-フルオロ-α-メチルベンジルフロライド、4-クロロ-α-メチルベンジルフロライド、4-ブロモ-α-メチルベンジルフロライド、4-メチル-α-メチルベンジルフロライド、4-メトキシ-α-メチルベンジルフロライド、4-アミノ-α-メチルベンジルフロライド、N-ベンジル-3-フルオロピロリジン、N-ベンジル-4-フルオロプロリン、2-フルオロプロピオン酸エステルが挙げられる。
 これらの中でも、本発明の効果がより得られやすい観点から、2-フルオロオクタン、1-フェニル-1-フルオロエタン、N-ベンジル-3-フルオロピロリジン、N-ベンジル-4-フルオロプロリン、2-フルオロプロピオン酸エステルが好ましい。これらフッ素化化合物は、原料ヒドロキシ化合物として2-オクタノール、1-フェニルエタノール、N-ベンジル-3-ヒドロキシピロリジン、N-ベンジル-4-ヒドロキシプロリン、乳酸エステルを用いて製造することができる。
Specific examples of the fluorinated compound represented by the formula (2) include 1-fluorohexane, 2-fluorohexane, 2-fluorooctane, benzyl fluoride, 1-phenyl-1-fluoroethane, 2-phenyl-1- Fluoroethane, 1-naphthyl-1-fluoroethane, 4-fluoro-α-methylbenzyl fluoride, 4-chloro-α-methylbenzyl fluoride, 4-bromo-α-methylbenzyl fluoride, 4-methyl-α -Methylbenzyl fluoride, 4-methoxy-α-methylbenzyl fluoride, 4-amino-α-methylbenzyl fluoride, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2-fluoropropion Examples include acid esters.
Among these, from the viewpoint of easily obtaining the effects of the present invention, 2-fluorooctane, 1-phenyl-1-fluoroethane, N-benzyl-3-fluoropyrrolidine, N-benzyl-4-fluoroproline, 2- Fluoropropionic acid esters are preferred. These fluorinated compounds can be produced using 2-octanol, 1-phenylethanol, N-benzyl-3-hydroxypyrrolidine, N-benzyl-4-hydroxyproline, and lactic acid ester as raw material hydroxy compounds.
 このように、本発明の使用方法によれば、回収アミジン塩基を用いて、簡便に、低コストで、かつ、高収率でフッ素化化合物を製造することができる。
 本発明によれば、非常に高価なアミジン塩基を回収し使用することにより、コスト低減を図ることができる。
実施例
Thus, according to the method of use of the present invention, a fluorinated compound can be produced simply and at low cost and in high yield using the recovered amidine base.
According to the present invention, the cost can be reduced by collecting and using a very expensive amidine base.
Example
以下、実施例により本発明の実施の形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the embodiments of the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
[実施例1]
 ガラス製反応容器に、下記式
[Example 1]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
で示されるヒドロキシ化合物2.60g(20.00mmol、1.00eq)、トルエン20.0mL、フッ素化剤であるメタンスルホン酸フルオリド3.92g(40.00mmol、2.00eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩(DBU1当量とフッ化水素3当量とを反応させて得た酸塩、以下同様)2.78g(13.10mmol、0.65eq)とDBU8.67g(56.95mmol、2.84eq)を滴下し24時間攪拌した。反応終了液に水20.0mLを加え、有機層を分離することで、 2.60 g (20.00 mmol, 1.00 eq) of a hydroxy compound represented by formula (2), 20.0 mL of toluene, 3.92 g (40.00 mmol, 2.00 eq) of methanesulfonic acid fluoride as a fluorinating agent were added, and 30 at room temperature was added. Stir for minutes. 2.78 g (13.10 mmol, 0. 1) of DBU-hydrogen trifluoride / acid salt (acid salt obtained by reacting 1 equivalent of DBU and 3 equivalents of hydrogen fluoride, the same shall apply hereinafter) by heating the internal temperature to 60 ° C. 65 eq) and 8.67 g (56.95 mmol, 2.84 eq) of DBU were added dropwise and stirred for 24 hours. By adding 20.0 mL of water to the reaction completion liquid and separating the organic layer,
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
で示されるフッ素化化合物の粗生成物をトルエン溶液として得た。反応の変換率をガスクロマトグラフィーにより測定したところ100%であり、粗生成物の選択率をガスクロマトグラフィーにより測定したところフッ素化化合物が2.25g(17.01mmol)含まれていることがわかった。収率85%であった。 A crude product of a fluorinated compound represented by the formula (1) was obtained as a toluene solution. The conversion rate of the reaction was measured by gas chromatography and found to be 100%. The selectivity of the crude product was measured by gas chromatography and found to contain 2.25 g (17.01 mmol) of the fluorinated compound. It was. The yield was 85%.
[実施例2]
 ガラス製反応容器に、下記式
[Example 2]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
で示されるヒドロキシ化合物2.44g(20.00mmol、1.00eq)、トルエン20.0mL、フッ素化剤であるメタンスルホン酸フルオリド3.92g(40.00mmol、2.00eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩2.78g(13.10mmol、0.65eq)とDBU8.67g(56.95mmol、2.84eq)を滴下し24時間攪拌した。反応終了液に水20.0mLを加え、有機層を分離することで、 2.44 g (20.00 mmol, 1.00 eq) of a hydroxy compound represented by formula (2), 20.0 mL of toluene, and 3.92 g (40.00 mmol, 2.00 eq) of fluorinated methanesulfonic acid fluoride were added at room temperature. Stir for minutes. The internal temperature was heated to 60 ° C., and 2.78 g (13.10 mmol, 0.65 eq) of DBU-hydrogen trifluoride / acid salt and 8.67 g (56.95 mmol, 2.84 eq) of DBU were added dropwise and stirred for 24 hours. . By adding 20.0 mL of water to the reaction completion liquid and separating the organic layer,
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で示されるフッ素化化合物の粗生成物をトルエン溶液として得た。反応の変換率をガスクロマトグラフィーにより測定したところ100%であり、粗生成物を19F-NMRにより測定したところフッ素化化合物が1.32g(10.60mmol)含まれていることがわかった。収率53%であった。 A crude product of a fluorinated compound represented by the formula (1) was obtained as a toluene solution. The conversion rate of the reaction was measured by gas chromatography to be 100%, and the crude product was measured by 19 F-NMR and found to contain 1.32 g (10.60 mmol) of the fluorinated compound. The yield was 53%.
[実施例3]
 ガラス製反応容器に、下記式
[Example 3]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で示されるヒドロキシ化合物2.36g(20.00mmol、1.00eq)、フッ素化剤であるメタンスルホン酸フルオリド2.35g(24.00mmol、1.20eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩2.78g(13.10mmol、0.65eq)とDBU8.67g(56.95mmol、2.84eq)を滴下し24時間攪拌した。反応終了液に水20.0mLを加え、有機層を分離することで、 2.36 g (20.00 mmol, 1.00 eq) of a hydroxy compound represented by formula (2) and 2.35 g (24.00 mmol, 1.20 eq) of methanesulfonic acid fluoride as a fluorinating agent were added, and the mixture was stirred at room temperature for 30 minutes. The internal temperature was heated to 60 ° C., and 2.78 g (13.10 mmol, 0.65 eq) of DBU-hydrogen trifluoride / acid salt and 8.67 g (56.95 mmol, 2.84 eq) of DBU were added dropwise and stirred for 24 hours. . By adding 20.0 mL of water to the reaction completion liquid and separating the organic layer,
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が1.54g(12.80mmol)含まれていることがわかった。収率64%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 1.54 g (12.80 mmol) of the fluorinated compound was contained. The yield was 64%.
[実施例4]
 ガラス製反応容器に、下記式
[Example 4]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
で示されるヒドロキシ化合物0.35g(2.00mmol、1.00eq)、トルエン2.0mL、フッ素化剤であるメタンスルホン酸フルオリド0.29g(3.00mmol、1.50eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩0.42g(2.00mmol、1.00eq)とDBU0.98g(6.43mmol、3.21eq)を滴下し24時間攪拌した。反応終了液に5%炭酸水素ナトリウム水溶液10.0mLを加え、有機層を分離し、回収有機層を減圧下濃縮することで、 And 0.35 g (2.00 mmol, 1.00 eq) of a hydroxy compound represented by formula (2), 2.0 mL of toluene, and 0.29 g (3.00 mmol, 1.50 eq) of methanesulfonic acid fluoride as a fluorinating agent were added at room temperature. Stir for minutes. The internal temperature was heated to 60 ° C., and 0.42 g (2.00 mmol, 1.00 eq) of DBU-hydrogen trifluoride / acid salt and 0.98 g (6.43 mmol, 3.21 eq) of DBU were added dropwise and stirred for 24 hours. . By adding 10.0 mL of 5% aqueous sodium hydrogen carbonate solution to the reaction completion liquid, separating the organic layer, and concentrating the recovered organic layer under reduced pressure,
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が0.31g(1.72mmol)含まれていることがわかった。収率86%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 0.31 g (1.72 mmol) of the fluorinated compound was contained. The yield was 86%.
[実施例5]
 ガラス製反応容器に、下記式
[Example 5]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
で示されるヒドロキシ化合物0.47g(2.00mmol、1.00eq)、トルエン2.0mL、フッ素化剤であるメタンスルホン酸フルオリド0.29g(3.00mmol、1.50eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩0.42g(2.00mmol、1.00eq)とDBU0.98g(6.43mmol、3.21eq)を滴下し24時間攪拌した。反応終了液に5%炭酸水素ナトリウム水溶液10.0mLを加え、有機層を分離し、回収有機層を減圧下濃縮することで、 And 0.49 g (2.00 mmol, 1.00 eq) of a hydroxy compound represented by the following formula: 2.0 mL of toluene, 0.29 g (3.00 mmol, 1.50 eq) of fluorinated methanesulfonic acid fluoride, and 30 at room temperature. Stir for minutes. The internal temperature was heated to 60 ° C., and 0.42 g (2.00 mmol, 1.00 eq) of DBU-hydrogen trifluoride / acid salt and 0.98 g (6.43 mmol, 3.21 eq) of DBU were added dropwise and stirred for 24 hours. . By adding 10.0 mL of 5% aqueous sodium hydrogen carbonate solution to the reaction completion liquid, separating the organic layer, and concentrating the recovered organic layer under reduced pressure,
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が0.42g(1.76mmol)含まれていることがわかった。収率88%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 0.42 g (1.76 mmol) of the fluorinated compound was contained. The yield was 88%.
[実施例6]
 ガラス製反応容器に、下記式
[Example 6]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
で示されるヒドロキシ化合物1.44g(20.00mmol、1.00eq)、アセトニトリル20.0mL、フッ素化剤であるメタンスルホン酸フルオリド2.35g(24.00mmol、1.20eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩2.82g(13.3mmol、0.67eq)とDBU7.41g(48.67mmol、2.43eq)を滴下し20時間攪拌した。反応終了液に水を加え、有機層を分離することで 1.44 g (20.00 mmol, 1.00 eq) of a hydroxy compound represented by formula (2), 20.0 mL of acetonitrile, and 2.35 g (24.00 mmol, 1.20 eq) of methanesulfonic acid fluoride as a fluorinating agent were added, and 30 at room temperature was added. Stir for minutes. The internal temperature was heated to 60 ° C., and 2.82 g (13.3 mmol, 0.67 eq) of DBU-hydrogen trifluoride / acid salt and 7.41 g (48.67 mmol, 2.43 eq) of DBU were added dropwise and stirred for 20 hours. . By adding water to the reaction solution and separating the organic layer
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が1.13g(15.2mmol)含まれていることがわかった。収率76%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 1.13 g (15.2 mmol) of the fluorinated compound was contained. The yield was 76%.
[実施例7]
 ガラス製反応容器に、下記式
[Example 7]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
で示されるヒドロキシ化合物1.52g(20.00mmol、1.00eq)、アセトニトリル20.0mL、フッ素化剤であるメタンスルホン酸フルオリド4.91g(50.00mmol、2.50eq)を加え、室温で30分攪拌した。内温を60℃に加熱してDBU-三フッ化水素・酸塩2.82g(13.3mmol、0.67eq)とDBU11.10g(72.91mmol、3.65eq)を滴下し20時間攪拌した。反応終了液に水を加え、有機層を分離することで、 1.52 g (20.00 mmol, 1.00 eq), 20.0 mL of acetonitrile, and 4.91 g (50.00 mmol, 2.50 eq) of methanesulfonic acid fluoride as a fluorinating agent were added, and 30 at room temperature was added. Stir for minutes. The internal temperature was heated to 60 ° C., and 2.82 g (13.3 mmol, 0.67 eq) of DBU-hydrogen trifluoride / acid salt and 11.10 g (72.91 mmol, 3.65 eq) of DBU were added dropwise and stirred for 20 hours. . By adding water to the reaction completion liquid and separating the organic layer,
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が1.13g(15.2mmol)含まれていることがわかった。収率76%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 1.13 g (15.2 mmol) of the fluorinated compound was contained. The yield was 76%.
[実施例8]
 ガラス製反応容器に、下記式
[Example 8]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
で示されるヒドロキシ化合物0.45g(2.00mmol、1.00eq)、アセトニトリル2.0ml、フッ素化剤であるであるメタンスルホン酸フルオリド0.29g(3.00mmol、1.50eq)を加え、室温で30分攪拌した。DBU・三フッ化水素錯体0.28g(1.32mmol、0.66eq)とDBU0.78g(5.12mmol、2.84eq)を滴下し内温を60℃に加熱して24時間攪拌した。反応終了液に水20.0mLを加え、有機層をトルエンで抽出することで、 0.45 g (2.00 mmol, 1.00 eq) of a hydroxy compound represented by the following formula: 2.0 ml of acetonitrile, 0.29 g (3.00 mmol, 1.50 eq) of methanesulfonic acid fluoride which is a fluorinating agent were added at room temperature. For 30 minutes. DBU.hydrogen trifluoride complex 0.28 g (1.32 mmol, 0.66 eq) and DBU 0.78 g (5.12 mmol, 2.84 eq) were added dropwise, the internal temperature was heated to 60 ° C., and the mixture was stirred for 24 hours. By adding 20.0 mL of water to the reaction completion liquid and extracting the organic layer with toluene,
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が0.32g(14.00mmol)含まれていることがわかった。収率70%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 0.32 g (14.00 mmol) of the fluorinated compound was contained. The yield was 70%.
[実施例9]
 ガラス製反応容器に、下記式
[Example 9]
In a glass reaction vessel,
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
で示されるヒドロキシ化合物0.36g(2.00mmol、1.00eq)、アセトニトリル2.0ml、フッ素化剤であるであるメタンスルホン酸フルオリド0.29g(3.00mmol、1.50eq)を加え、室温で30分攪拌した。DBU・三フッ化水素錯体0.28g(1.32mmol、0.66eq)とDBU0.78g(5.12mmol、2.84eq)を滴下し内温を60℃に加熱して24時間攪拌した。反応終了液に水20.0mLを加え、有機層をトルエンで抽出することで、 0.36 g (2.00 mmol, 1.00 eq) of a hydroxy compound represented by the formula, 2.0 ml of acetonitrile, 0.29 g (3.00 mmol, 1.50 eq) of methanesulfonic acid fluoride which is a fluorinating agent were added, and room temperature was added. For 30 minutes. DBU.hydrogen trifluoride complex 0.28 g (1.32 mmol, 0.66 eq) and DBU 0.78 g (5.12 mmol, 2.84 eq) were added dropwise, the internal temperature was heated to 60 ° C., and the mixture was stirred for 24 hours. By adding 20.0 mL of water to the reaction completion liquid and extracting the organic layer with toluene,
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
で示されるフッ素化化合物の粗生成物を得た。粗生成物を19F-NMRにより測定したところフッ素化化合物が0.15g(0.82mmol)含まれていることがわかった。収率41%であった。 A crude product of a fluorinated compound represented by When the crude product was measured by 19 F-NMR, it was found that 0.15 g (0.82 mmol) of the fluorinated compound was contained. The yield was 41%.

Claims (11)

  1.  炭素数6以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数6以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。 In the presence of a base selected from the group consisting of an amidine base and a phosphazene base, a hydroxy compound having 6 or more carbon atoms is represented by the formula (1): R 1 SO 2 F (R 1 is a methyl group, an ethyl group or an aromatic group) Wherein R 2 -F (R 2 represents a group obtained by removing a hydroxy group from a hydroxy compound having 6 or more carbon atoms, which is characterized by being fluorinated with a fluorinating agent represented by: The manufacturing method of the fluorinated compound shown by this.
  2.  前記ヒドロキシ化合物と前記フッ素化剤の混合物に、50℃~150℃で、前記塩基を添加して反応を行うことを特徴とする、請求項1に記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to claim 1, wherein the reaction is carried out by adding the base to a mixture of the hydroxy compound and the fluorinating agent at 50 ° C to 150 ° C.
  3.  前記フッ素化剤が、メタンスルホン酸フルオリドであることを特徴とする、請求項1又は2に記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to claim 1 or 2, wherein the fluorinating agent is methanesulfonic acid fluoride.
  4.  前記塩基が、下記式(3)
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは0又は2である。)で示される、アミジン塩基である、請求項1~3のいずれかに記載のフッ素化化合物の製造方法。
    The base is represented by the following formula (3)
    Figure JPOXMLDOC01-appb-C000001
    The method for producing a fluorinated compound according to any one of claims 1 to 3, which is an amidine base represented by the formula: wherein n is 0 or 2.
  5.  前記塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであることを特徴とする、請求項1~4のいずれかに記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to any one of claims 1 to 4, wherein the base is 1,8-diazabicyclo [5.4.0] undec-7-ene.
  6.  前記塩基を、フッ化水素との酸塩として存在させる、請求項1~5のいずれかに記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to any one of claims 1 to 5, wherein the base is present as an acid salt with hydrogen fluoride.
  7.  炭素数3以上のヒドロキシ化合物を、アミジン塩基及びフォスファゼン塩基からなる群から選択される塩基とフッ化水素との酸塩の存在下に、式(1):RSOF(Rは、メチル基、エチル基又は芳香族基を表す。)で示されるフッ素化剤によりフッ素化することを特徴とする、式(2):R-F(Rは炭素数3以上のヒドロキシ化合物からヒドロキシ基を除いた基を表す。)で示されるフッ素化化合物の製造方法。 In the presence of an acid salt of hydrogen fluoride and a base selected from the group consisting of an amidine base and a phosphazene base, a hydroxy compound having 3 or more carbon atoms is represented by the formula (1): R 1 SO 2 F (R 1 is Fluorinated by a fluorinating agent represented by the formula (2): R 2 -F (R 2 represents a hydroxy compound having 3 or more carbon atoms) Represents a group excluding a hydroxy group.).
  8.  前記ヒドロキシ化合物と前記フッ素化剤の混合物に、50℃~150℃で、前記塩基を添加して反応を行うことを特徴とする、請求項7に記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to claim 7, wherein the reaction is carried out by adding the base to the mixture of the hydroxy compound and the fluorinating agent at 50 ° C to 150 ° C.
  9.  前記フッ素化剤が、メタンスルホン酸フルオリドであることを特徴とする、請求項7又は8に記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to claim 7 or 8, wherein the fluorinating agent is methanesulfonic acid fluoride.
  10.  前記塩基が、下記式(3)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは0又は2である。)で示される、アミジン塩基である、請求項7~9のいずれかに記載のフッ素化化合物の製造方法。
    The base is represented by the following formula (3)
    Figure JPOXMLDOC01-appb-C000002
    The method for producing a fluorinated compound according to any one of claims 7 to 9, which is an amidine base represented by the formula (wherein n is 0 or 2).
  11.  前記塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであることを特徴とする、請求項7~10のいずれかに記載のフッ素化化合物の製造方法。 The method for producing a fluorinated compound according to any one of claims 7 to 10, wherein the base is 1,8-diazabicyclo [5.4.0] undec-7-ene.
PCT/JP2017/000996 2016-10-05 2017-01-13 Method for producing fluorinated compound WO2018066146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197110 2016-10-05
JP2016197110A JP2019214513A (en) 2016-10-05 2016-10-05 Manufacturing method of fluorinated compound

Publications (1)

Publication Number Publication Date
WO2018066146A1 true WO2018066146A1 (en) 2018-04-12

Family

ID=61830973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000996 WO2018066146A1 (en) 2016-10-05 2017-01-13 Method for producing fluorinated compound

Country Status (3)

Country Link
JP (1) JP2019214513A (en)
TW (1) TW201825445A (en)
WO (1) WO2018066146A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760255A (en) * 1994-10-26 1998-06-02 Bayer Ag Process for the conversion of hydroxyl groups into the corresponding fluorine compounds
US6248889B1 (en) * 1998-11-20 2001-06-19 3M Innovative Properties Company Process for converting an alcohol to the corresponding fluoride
DE102008051415A1 (en) * 2008-10-11 2010-04-15 Saltigo Gmbh New aromatic sulfonic acid fluoride compounds useful for fluorinating of alcohols, and for producing medicaments, agrochemicals or liquid crystals
WO2016158947A1 (en) * 2015-03-31 2016-10-06 関東電化工業株式会社 Method for producing fluorinated alkane, method for separating and recovering amidine base, and method for using recovered amidine base

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760255A (en) * 1994-10-26 1998-06-02 Bayer Ag Process for the conversion of hydroxyl groups into the corresponding fluorine compounds
US6248889B1 (en) * 1998-11-20 2001-06-19 3M Innovative Properties Company Process for converting an alcohol to the corresponding fluoride
DE102008051415A1 (en) * 2008-10-11 2010-04-15 Saltigo Gmbh New aromatic sulfonic acid fluoride compounds useful for fluorinating of alcohols, and for producing medicaments, agrochemicals or liquid crystals
WO2016158947A1 (en) * 2015-03-31 2016-10-06 関東電化工業株式会社 Method for producing fluorinated alkane, method for separating and recovering amidine base, and method for using recovered amidine base

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NIELSEN, MATTHEW K. ET AL.: "PyFluor: A Low- Cost, Stable, and Selective Deoxyfluorination Reagent", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 137, no. 30, 2015, pages 9571 - 9574, XP055315828 *
SHIMIZU, MAKOTO ET AL.: "Chemoselective fluorination for primary alcohols", TETRAHEDRON LETTERS, vol. 26, no. 35, 1985, pages 4207 - 4210, XP055476057 *
VORBRUEGGEN, HELMUT ET AL.: "The conversion of primary or secondary alcohols with nonaflyl fluoride into their corresponding inverted fluorides", SYNTHESIS, 2008, pages 1165 - 1174, XP055315823 *

Also Published As

Publication number Publication date
TW201825445A (en) 2018-07-16
JP2019214513A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR20190049863A (en) Preparation of 2-exo- (2-methylbenzyloxy) -1-methyl-4-isopropyl-7-oxabicyclo [2.2.1] heptane
US20190337873A1 (en) Method for producing fluorinated alkane, method for separating and recovering amidine base, and method for using recovered amidine base
CN114539048B (en) Carlong anhydride intermediate and preparation method of Carlong anhydride
WO2018141642A1 (en) Process for the preparation of 2-chloro-4-fluoro-5-nitrobenzotrichloride
JP7009012B2 (en) Method for Producing N-Retinoyl Cysteic Acid Alkyl Ester
RU2641294C2 (en) Method for obtaining of sulfonimide compound and its salts
US10329267B2 (en) Method for producing 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione
WO2018066146A1 (en) Method for producing fluorinated compound
WO2009142206A1 (en) Process for producing laurolactam
JP2006219419A (en) Method for producing perfluorovinyl ether monomer
US8304580B2 (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
JP2012530075A (en) Disubstituted aminodifluorosulfinium salts, process for their preparation and use as deoxofluorination reagents
JP6839356B2 (en) Two-phase reaction medium using 1,1,1,3,3,3-hexafluoropropan-2-ol and an aliphatic hydrocarbon solvent
WO2018173863A1 (en) Production method for fluorinated hydrocarbon
WO2022220231A1 (en) Method for isolating fluorinated substance
JP2007182426A (en) Method for producing tetrafluoroterephthalic acid difluoride
CN109096075B (en) Separation and purification method of 5-chloro-2-hydroxy-4-methoxybenzophenone
JP5105825B2 (en) Method for producing 4-hydroxy-2-adamantanone compound
CN117924058A (en) Method for purifying terephthalaldehyde from terephthalaldehyde crude product
JP6503228B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JPH09278759A (en) Production of n&#39;-methylcycloamidinium salt
JP6094969B2 (en) Method for producing hydroxystyrene derivative
CN117924062A (en) Method for purifying terephthalaldehyde by recrystallizing terephthalaldehyde crude product
JP2023007203A (en) Method for producing ether compound
JP2018002689A (en) Method for producing 6-hydroxy-2-naphthoic acid alkyl ester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17857986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP